

Oracle® Fusion Applications
Developer's Guide

11g Release 5 (11.1.5)

E15524-10

April 2013

Documentation for external Oracle Fusion Applications
developers that describes Oracle Fusion Middleware
components, installing JDeveloper, deploying applications
on WebLogic Server (WLS), using Applications Core
Technology (ApplCore), customization, security, Flexfields,
developing web applications with the UI Shell page template
and patterns, Enterprise Crawl and Search (ECSF), database
schema deployment, seed data, and use cases.

Oracle Fusion Applications Developer's Guide 11g Release 5 (11.1.5)

E15524-10

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Shelly Butcher, Richard Gugeler, Karen Ram, Karen Summerly, Chris Kutler, Vickie
Laughlin, Ralph Gordon, Peter Jew, Madhubala Ponnekanti

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. liii

Audience.. liii
Documentation Accessibility .. liii
Related Documents .. liii
Conventions .. liv

What's New in This Guide .. lvii

New and Changed Features for 11g Release 5 (11.1.5) .. lvii

Part I Getting Started Building Your Oracle Fusion Applications

1 Getting Started with Oracle Fusion Applications

1.1 Overview of Fusion Technologies .. 1-1
1.2 Using Oracle ADF Functional Patterns and Best Practices ... 1-4

2 Setting Up Your Development Environment

2.1 Introduction to the Development Environment ... 2-1
2.1.1 Shared Environment .. 2-2
2.1.1.1 Creating the OWSM_MDS Schema ... 2-4
2.1.1.1.1 How to Create the OWSM_MDS Schema ... 2-4
2.1.2 Personal Environment ... 2-11
2.2 Setting Up the JDeveloper-based Personal Environment ... 2-12
2.2.1 Before You Begin .. 2-12
2.2.1.1 Removing the SCIM Process .. 2-12
2.2.1.2 Increasing Open File Limit on Local Linux Servers ... 2-13
2.2.1.3 Installing JDeveloper ... 2-13
2.2.1.4 Adding Customization Extension Bundles to the jdev.conf File 2-13
2.2.1.5 Setting Up the JDeveloper-based Development Environment 2-14
2.2.1.6 Using the OWSM_MDS Schema .. 2-22
2.2.1.7 Distributing the fusion_apps_wls.properties and cwallet.sso Files 2-22
2.2.2 How to Use the Oracle Fusion Domain Wizard ... 2-23
2.2.2.1 Creating the Properties File for Default Integrated Server 2-29
2.2.2.2 Completing the Oracle Fusion Domain Wizard for Standalone Server 2-35
2.2.3 How to Start Integrated WebLogic Server ... 2-43

iv

2.2.3.1 Managing Integrated WebLogic Server ... 2-45
2.3 Setting Up the Personal Environment for Standalone WebLogic Server 2-45
2.3.1 How to Create a Domain for Standalone WebLogic Server 2-46
2.3.1.1 Creating a Special SOAINFRA Schema ... 2-47
2.3.1.2 Setting Up the Environment for Standalone WebLogic Server 2-47
2.3.1.2.1 How to Fix Domain Creation Errors ... 2-50
2.3.1.2.2 How to Test the Server ... 2-51
2.3.1.3 Managing the Standalone WebLogic Server Lifecycle 2-51
2.4 Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion Middleware Control

... 2-52
2.4.1 How to Use the Application Logging Service .. 2-52
2.4.2 How to Use Alternate Database Schemas .. 2-54
2.5 Using Deployment Profiles Settings ... 2-54
2.5.1 How to Use Service Deployments ... 2-55
2.5.2 How to Update the Standard ... 2-56
2.6 Configuring the Oracle Enterprise Scheduler (ESS) ... 2-56
2.6.1 How to Provision the Runtime Environment .. 2-57
2.6.2 How to Create Supporting Database Schema .. 2-57
2.6.3 Post-Installation Checks ... 2-58
2.6.3.1 Verifying the Temp Directory Location and Write Permissions 2-58
2.6.3.2 Verifying ESS Artifacts Deployment Targets .. 2-58
2.6.3.3 Checking ESS Health ... 2-58
2.7 Testing Your Installation .. 2-59
2.8 Using Best Practices for Setting Up the Development Environment 2-67
2.8.1 How to Implement Best Practices for JDeveloper .. 2-67
2.8.2 How to Refresh the Oracle ADF Library Dependencies Library 2-68
2.8.3 How to Manage OutOfMemory Exceptions (PermGen) .. 2-69
2.8.4 How to Work with Oracle ADF Libraries at Design Time 2-70
2.9 Configuring Hierarchy Providers for Approval Management (AMX) 2-70

3 Setting Up Your JDeveloper Application Workspace and Projects

3.1 Using Technology Scopes ... 3-2
3.2 Provisioning the Application Workspace ... 3-2
3.3 Adding Necessary Libraries to Your Data Model Project .. 3-2
3.4 Adding the Applications Core Tag Library to Your User Interface Project 3-3
3.5 Integrating Oracle Fusion Middleware Extensions for Applications (Applications Core)

Setup UIs .. 3-4
3.5.1 What You May Need to Know About Setup UIs in Oracle Fusion Functional Setup

Manager ... 3-4
3.5.2 How to Integrate Setup UIs into Functional Setup Manager 3-5
3.6 Creating a Database Connection .. 3-6
3.7 Adding the Search Navigation Tab to the Overview Editor for Oracle Enterprise Crawl

and Search Framework (ECSF) ... 3-8
3.7.1 How to Add the Search Navigation Tab to the Overview Editor 3-8
3.7.2 What Happens When You Add the Search Navigation Tab to the Overview Editor 3-9
3.8 Overriding the Default Resource Bundle ... 3-9
3.9 Deploying Oracle SOA Suite .. 3-9
3.10 Implementing Oracle Enterprise Scheduler Service Workspace and Deployment 3-10

v

3.10.1 How to Create the SuperEss Project ... 3-11
3.10.2 How to Build the EAR/MAR Profiles .. 3-11
3.10.2.1 Deploying a Project-level Metadata Archive (MAR) ... 3-11
3.10.2.1.1 How to Enable Your Application Workspace for Project-level MAR

Deployment .. 3-11
3.10.2.2 Building the EAR Profile ... 3-13
3.10.2.3 Deploying an Oracle Enterprise Scheduler Service Hosting Application 3-13
3.11 Implementing Oracle Application Development Framework UI Workspace and Projects

.. 3-14
3.11.1 How to Set Up Your Web Project ... 3-14
3.11.1.1 Configuring Your User Interface Project ... 3-14
3.11.2 How to Create the SuperEss Project in the ADF UI Workspace 3-22
3.11.3 How to Deploy Your Web Project .. 3-22

Part II Defining Business Services

4 Getting Started with Business Services

4.1 Introduction to Implementing Business Logic .. 4-1
4.1.1 About Entity Objects .. 4-1
4.1.1.1 Standard Business and Validation Logic ... 4-1
4.1.1.2 Specialized Business Functions ... 4-2
4.1.2 About View Objects ... 4-2
4.1.3 About Application Modules .. 4-3
4.2 Understanding Validators .. 4-3
4.3 Understanding List of Values (LOV) .. 4-4
4.4 Understanding Batch Processing .. 4-4
4.5 Understanding Extensibility and Reusability ... 4-4
4.6 Understanding Services .. 4-5
4.7 Using the Declarative Approach .. 4-5
4.7.1 How to Define View Objects Using the Declarative Approach 4-5
4.7.1.1 Using Entity Object Based View Objects ... 4-6
4.7.1.2 Utilizing View Criteria .. 4-6

5 Developing Services

5.1 Introduction to Services .. 5-1
5.2 Designing the Service Interface .. 5-2
5.2.1 Identifying Business Objects .. 5-2
5.2.1.1 Business Object Attributes ... 5-2
5.2.2 Identifying Service Operations on the Business Objects .. 5-3
5.2.2.1 Types of Operations .. 5-3
5.2.2.2 Identifying Operations .. 5-4
5.2.2.3 Defining Service Operations - General Guidelines .. 5-5
5.2.3 How to Identify Services .. 5-7
5.2.4 How to Define Service Exceptions and Information .. 5-7
5.2.4.1 Defining Service Exceptions .. 5-7
5.2.4.2 Defining Partial Failure and Bulk Processing .. 5-8

vi

5.2.4.3 Defining Informational Messages ... 5-8
5.3 Developing Services ... 5-8
5.3.1 How to Create Service Data Objects .. 5-9
5.3.1.1 SDO Attributes .. 5-9
5.3.1.2 Parent-Child Relationships ... 5-12
5.3.1.3 Enabling Partial Failure ... 5-12
5.3.1.4 Enabling Support Warnings .. 5-12
5.3.1.5 Defining a List of Values (LOV) to Resolve Foreign Key ID 5-13
5.3.2 How to Create Services .. 5-15
5.3.2.1 What You May Need to Know About Design Time .. 5-15
5.3.3 How to Generate Synchronous and Asynchronous Service Methods 5-16
5.3.4 How to Expose Flexfields .. 5-17
5.3.5 How to Enable Security ... 5-17
5.3.5.1 Authentication ... 5-17
5.3.5.2 Authorization .. 5-17
5.3.6 Using the Java Transaction API ... 5-20
5.3.6.1 Data Source ... 5-20
5.3.6.2 Transaction Attributes ... 5-22
5.3.7 Deploying Services .. 5-22
5.3.7.1 Service Context Root ... 5-22
5.3.8 Testing Services ... 5-23
5.3.8.1 What to Test .. 5-23
5.3.8.2 How to Test ... 5-24
5.4 Invoking Services ... 5-24
5.4.1 How to Invoke a Synchronous Service .. 5-25
5.4.1.1 Using Service Factory .. 5-25
5.4.1.2 Using Service-Based Entity Object and View Object ... 5-35
5.4.1.3 Using the JAX-WS Client ... 5-36
5.4.1.4 Using SOA ... 5-37
5.4.2 How to Invoke an Asynchronous Service .. 5-37

6 Defining Defaulting and Derivation Logic

6.1 Understanding Entity Object Defaulting and Derivation Logic 6-1
6.2 Using Groovy Scripting Language ... 6-3
6.2.1 Keywords and Available Names ... 6-4
6.2.2 Scripting Logic ... 6-4
6.2.3 Groovy Expression Examples .. 6-5
6.2.3.1 Querying Based on the Current Locale ... 6-5
6.2.3.2 Error Message Tokens ... 6-5
6.2.3.3 Expression Validators ... 6-5
6.2.3.4 Attribute Defaulting and Calculation .. 6-7
6.2.4 Defining Expressions at Design Time .. 6-9
6.3 Using Oracle ADF Validators and Convertor Hints ... 6-10

7 Defining and Using Message Dictionary Messages

7.1 Introduction to Message Dictionary Messages ... 7-1
7.2 Understanding Message Types .. 7-2

vii

7.3 Understanding Message Content ... 7-4
7.3.1 About Message Names .. 7-4
7.3.2 About Message Numbers ... 7-4
7.3.3 About Translation Notes .. 7-5
7.3.4 About Message Components ... 7-5
7.3.5 About Tokens ... 7-7
7.4 About Grouping Messages by Category and Severity .. 7-7
7.5 Understanding Incidents and Diagnostic Logs with Message Dictionary 7-8
7.6 Using Message Dictionary Messages in Oracle ADF Java Code 7-9
7.6.1 How to Raise Exceptions Using Oracle Fusion Middleware Extensions for

Applications Exception Classes ... 7-9
7.6.2 How to Retrieve Message Text Programmatically ... 7-11
7.7 Associating Message Dictionary Messages with Oracle ADF Validation Rules 7-12
7.7.1 How to Associate Error Messages with Oracle ADF Entity Object Validation Rules

... 7-12
7.8 Raising Error Messages Programmatically in PL/SQL .. 7-14
7.8.1 How to Raise Exceptions Programmatically in PL/SQL .. 7-14
7.8.2 How to Raise Errors in PL/SQL .. 7-15
7.8.3 How to Retrieve Errors when PL/SQL is Called from Java 7-16
7.9 Diagnosing Generic System Error Messages .. 7-17
7.10 Formatting Message Dictionary Messages for Display in Oracle ADF Applications 7-17
7.10.1 How to Programmatically Convert XML Messages ... 7-18
7.10.2 How to Convert XML Messages by Configuring the Error Format Handler 7-18
7.11 Integrating Messages Task Flows into Oracle Fusion Functional Setup Manager 7-19

8 Managing Reference Data with SetIDs

8.1 Introduction to SetIDs .. 8-1
8.1.1 Partitioning by SetID .. 8-2
8.1.2 SetID Determinant Types ... 8-2
8.1.3 Understanding SetID Machinery ... 8-3
8.1.3.1 Partitioning Patterns .. 8-3
8.1.3.2 Reference Groups .. 8-4
8.1.3.3 Set Configuration Tables ... 8-5
8.1.3.4 SetID PL/SQL Utilities .. 8-6
8.2 Implementing SetID on Entity Objects ... 8-8
8.2.1 How to Annotate Reference Entity Objects for Sharing ... 8-9
8.2.2 How to Build Entity Associations for All Foreign References 8-11
8.2.3 How to Annotate Transactional Entity Objects for SetID ... 8-11
8.2.4 How to Define View Accessors for Shared Reference Entities 8-13
8.2.5 How to Define a Key Exists Validator for Shared Reference Entities 8-13
8.2.6 How to Create LOVs for Shared Reference Entities ... 8-16
8.3 Integrating SetID Task Flows into Oracle Fusion Functional Setup Manager 8-17

9 Using Fusion Middleware Extensions for Oracle Applications Base Classes

9.1 Introduction to Fusion Middleware Extensions for Oracle Applications Base Classes 9-1
9.2 Using Multi-Language Support Features ... 9-2

viii

9.2.1 Using Utility APIs .. 9-3
9.2.2 How to Create a Multi-Language ADF Business Components Entity Object 9-3
9.2.2.1 What You Need to Know About Overrides .. 9-9
9.3 Using WHO Column Features ... 9-9
9.3.1 How to Use the Extension .. 9-9
9.3.2 What Happens with WHO Column at Design Time and Runtime 9-11
9.4 Using PL/SQL-Based Entities ... 9-11
9.4.1 How to Use APIs to Facilitate DML Operations .. 9-12
9.4.2 How to Use the Extensions .. 9-12
9.4.3 What Happens with PL/SQL Entities at Design Time and Runtime 9-13
9.5 Accessing FND Services ... 9-13
9.5.1 How to Use the Extension .. 9-14
9.6 Using Unique ID .. 9-14
9.6.1 How to Use the Extension .. 9-14
9.6.2 What Happens with Unique ID at Design Time .. 9-14
9.6.3 What Happens with Unique ID at Runtime ... 9-15
9.7 Using Data Security .. 9-15
9.7.1 How to Use the Extension .. 9-15
9.8 Using Document Sequencing ... 9-16

10 Implementing Lookups

10.1 Introduction to Lookups .. 10-1
10.1.1 Overview of Lookups .. 10-2
10.1.2 Standard, Set-Enabled, and Common Lookup Views .. 10-3
10.1.3 Lookup Customization Levels ... 10-5
10.1.3.1 What Happens to Customization Levels at Runtime .. 10-5
10.2 Preparing Entities and Views for Lookups ... 10-6
10.2.1 How to Prepare Custom Lookup Views .. 10-6
10.3 Referencing Lookups .. 10-8
10.3.1 How to Reference Lookups .. 10-8
10.4 Defining Validators for Lookups .. 10-8
10.4.1 How to Define a List Validator .. 10-9
10.4.2 How to Define a Key Exists Validator ... 10-10
10.5 Annotating Lookup Code Reference Attributes for Set-Enabled Lookups 10-13
10.6 Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager 10-14

11 Setting Up Document Sequences

11.1 Introduction to Document Sequences .. 11-1
11.2 Defining Document Sequence Categories .. 11-2
11.3 Assigning a Document Sequence ... 11-2
11.4 Striping Document Sequence Assignments .. 11-3
11.5 Defining a Document Sequence Audit Table ... 11-3
11.6 Enabling Document Sequences in ADF Business Components 11-4
11.6.1 Using the Document-Sequence Extension ... 11-4
11.6.1.1 What Happens with Document Sequences at Design Time 11-6
11.6.1.2 What Happens with Document Sequences at Runtime 11-7
11.7 Managing PL/SQL APIs .. 11-7

ix

11.8 Integrating Document Sequence Task Flows into Oracle Fusion Functional Setup Manager
.. 11-9

Part III Defining User Interfaces

12 Getting Started with Your Web Interface

12.1 Introduction to Developing a Web Application ... 12-1
12.2 Oracle Fusion Guidelines, Patterns, and Standards .. 12-1
12.3 Basic Building Blocks .. 12-1
12.4 Introduction to the UI Shell .. 12-3
12.5 Applications UI Patterns and Features ... 12-3

13 Implementing the UI Shell

13.1 Introduction to Implementing the UI Shell .. 13-1
13.1.1 Standard Related to the UI Shell .. 13-2
13.1.2 UI Shell Description ... 13-2
13.1.2.1 Global Area Standard Links .. 13-3
13.2 Populating a UI Shell .. 13-5
13.2.1 How to Create a JSF Page ... 13-5
13.2.1.1 Working with the Applications Menu Model .. 13-8
13.2.1.1.1 How to Create an Applications Menu ... 13-8
13.2.2 How to Add Default Main Area Task Flows to a Page .. 13-10
13.2.3 How to Add Dynamic Main Area and Regional Area Task Flows to a Page 13-19
13.2.3.1 Adding the Tasks List Menu to the Page ... 13-20
13.2.3.2 Grouping Tasks in the Tasks Pane into a Category ... 13-20
13.2.3.3 Linking to a Task Flow in a Different Page .. 13-21
13.2.3.4 Supporting No-Tab Work Areas ... 13-21
13.2.3.5 Implementing the Task Popup .. 13-22
13.2.4 How to Pass Parameters into Task Flows from Tasks List 13-23
13.2.5 How to Open Data Files from a Tasks List Link .. 13-25
13.3 Implementing Application Menu Security ... 13-25
13.4 Controlling the State of Main and Regional Area Task Flows 13-27
13.4.1 How to Control Main Area Task Flows ... 13-27
13.4.1.1 closeMainTask History .. 13-31
13.4.2 How to Control Regional Area Task Flows .. 13-32
13.4.3 How to Control the State of the Contextual Area Splitter 13-34
13.4.4 Sizing Regional Area Panels .. 13-36
13.5 Working with the Global Menu Model .. 13-37
13.5.1 How to Implement a Global Menu .. 13-37
13.5.1.1 Menu Attributes Added by Oracle Fusion Middleware Extensions for

Applications (Applications Core) .. 13-38
13.5.1.2 Displaying the Navigator Menu .. 13-38
13.5.1.3 Implementing a Global Menu .. 13-39
13.5.2 How to Set Up Global Menu Security .. 13-40
13.5.2.1 Enforcing User Privileges and Restrictions ... 13-40
13.5.3 How to Create the Navigator Menu ... 13-41

x

13.5.3.1 Rendering the Navigator Menu as Dropdown Buttons 13-42
13.6 Using the Personalization Menu .. 13-42
13.7 Implementing End User Preferences .. 13-43
13.7.1 How to Use Preferences Link Navigation .. 13-44
13.7.2 How to Use the Preferences Work Area Page .. 13-44
13.7.3 How to Deploy Preferences Pages and Design General Preferences Content 13-46
13.7.4 How to Configure and Implement End-User Preferences 13-46
13.7.4.1 Using the Preferences Menu Model .. 13-47
13.7.4.2 Configuring User Session and ADF Security .. 13-48
13.7.4.3 Retrieving Preference Values and Checking Accessibility Mode by Using an

Expression Language Expression .. 13-48
13.7.4.4 Implementing the Password Management Page ... 13-48
13.7.5 How to Use the Most Common Preferences .. 13-48
13.7.5.1 Configuring the Language Preference ... 13-48
13.7.5.2 Configuring the Accessibility Preference .. 13-49
13.7.5.3 Configuring the Regional Preferences ... 13-49
13.8 Using the Administration Menu .. 13-50
13.8.1 How to Secure the Administration Menu .. 13-51
13.9 Using the Help Menu ... 13-52

14 Implementing Search Functions in the UI Shell

14.1 Implementing Tagging Integration .. 14-1
14.1.1 How to Use the Delivered Oracle WebCenter Portal Tagging Components 14-3
14.1.1.1 Tagging a Resource (Business Object) ... 14-3
14.1.1.2 Enabling Multiple Navigation Targets .. 14-7
14.1.1.3 Tagging a Resource at the Row Level of a Table ... 14-8
14.1.1.4 Searching for a Tag .. 14-8
14.1.1.5 Resource Viewer for Tagged Items .. 14-8
14.1.2 Implementing Tagging Security .. 14-9
14.1.3 How to Use Tagging in a UI Shell Application .. 14-10
14.2 Implementing Recent Items ... 14-11
14.2.1 How to Choose Labels for Task Flows ... 14-12
14.2.2 How to Call Sub Flows .. 14-12
14.2.2.1 Sub Flow Registration APIs ... 14-12
14.2.2.2 openSubTask API Labels ... 14-13
14.2.2.3 Starting from Recent Items .. 14-14
14.2.3 How to Enable a Sub Flow to Be Bookmarked in Recent Items 14-14
14.2.3.1 Implementing the Sub Flow Design Pattern .. 14-16
14.2.4 How to Use Additional Capabilities of the Recent Items openSubTask API 14-20
14.2.5 How to Implement Data Security for Recent Items and Favorites 14-20
14.2.6 Known Issues ... 14-21
14.3 Implementing the Watchlist ... 14-21
14.3.1 Watchlist Data Model Effects ... 14-22
14.3.2 Watchlist Physical Data Model Entities ... 14-22
14.3.3 Supported Watchlist Items .. 14-26
14.3.3.1 Asynchronous Items Overview: Expense Reports Saved Search 14-26
14.3.3.2 Summary of Implementation Tasks .. 14-27

xi

14.3.4 How to Use the Watchlist .. 14-29
14.3.4.1 Making the Watchlist Link in the UI Shell Global Area Work 14-29
14.3.4.2 Seed Reference Data (All items) .. 14-29
14.3.4.3 Create a Summary View Object (SEEDED_QUERY) 14-29
14.3.4.3.1 Summary Tables ... 14-30
14.3.4.4 Create Seeded Saved Searches in MDS (SEEDED_SAVED_SEARCH) 14-30
14.3.4.5 Creating Application Module and View Objects (All except HUMAN_TASK)

... 14-31
14.3.4.6 Setting Up Service (All except HUMAN_TASK) ... 14-31
14.3.4.7 Importing All Watchlist-Related Application Modules 14-31
14.3.4.8 Nesting Watchlist Application Modules ... 14-31
14.3.4.9 Using the refreshWatchlistCategory Method .. 14-31
14.3.4.10 Importing Watchlist JAR Files into the Saved Search Project (USER_SAVED_

SEARCH) ... 14-31
14.3.4.11 Promoting Saved Search to the ATK Watchlist (USER_SAVED_SEARCH) 14-32
14.3.4.11.1 How to Promote a User-Saved Search to the Watchlist 14-33
14.3.4.12 Code Task Flows to Accept Parameters (All except HUMAN_TASK) 14-38
14.3.4.12.1 Saved Search ... 14-39
14.3.4.13 Import Watchlist UI JAR File in User Interface Project 14-40
14.3.4.14 Additional Entries for Standalone Deployment .. 14-40
14.4 Implementing Group Spaces .. 14-40
14.4.1 Assumptions .. 14-40
14.4.2 How to Implement Group Spaces .. 14-40
14.4.3 Overview of Group Spaces Functionality .. 14-41
14.4.4 How to Pass a Chromeless Template ... 14-41
14.5 Implementing Activity Streams and Business Events .. 14-41
14.5.1 Introduction to WebCenter Portal Activities .. 14-42
14.5.2 How to Publish Business Events to Activities .. 14-42
14.5.3 How to Publish Activities Using a Programmatic API .. 14-43
14.5.4 How to Implement Activity Streams ... 14-46
14.5.4.1 Defining and Publishing Business Events in JDeveloper 14-46
14.5.4.2 Overriding isActivityPublishingEnabled() to Enable Activity Publishing 14-47
14.5.4.3 Defining Activity Attributes Declaratively .. 14-48
14.5.5 How to Define Activities .. 14-49
14.5.5.1 Adding the ActivityStream UI Task Flow ... 14-49
14.5.5.2 Defining Activities in the service-definition.xml File 14-50
14.5.6 How to Implement Comments and Likes .. 14-54
14.5.7 How to Implement Follow for an Object .. 14-54
14.5.7.1 Defining the Service Category ... 14-55
14.5.7.2 Adding ActivityTypes for Follow and Unfollow ... 14-55
14.5.8 How to Render Contextual Actions in Activity Streams .. 14-56
14.6 Implementing the Oracle Fusion Applications Search Results UI 14-57
14.6.1 How to Disable Oracle Fusion Applications Search ... 14-57
14.6.2 How to Use Basic Search .. 14-57
14.6.2.1 Search Results .. 14-59
14.6.3 How to Implement the GlobalSearchUtil API .. 14-64
14.6.3.1 Using the Search API ... 14-65

xii

14.6.3.2 Running the Oracle Fusion Applications Search UI Under Oracle WebLogic
Server .. 14-65

14.6.4 Introduction to the Crawled Objects Project .. 14-65
14.6.5 How to Implement Tags in Oracle Fusion Applications Search 14-66
14.6.6 How to Use the Actionable Results API with Oracle Fusion Applications Search 14-70
14.6.6.1 Implementing the URL Action Type ... 14-71
14.6.6.2 Implementing the Task Action Type ... 14-72
14.6.6.2.1 How to Implement Preferred Navigation ... 14-74
14.6.6.3 Passing Parameters in Oracle Fusion Applications Search 14-76
14.6.6.4 Ordering the Other Actions ... 14-77
14.6.6.5 Using Click Path and the Saved Search ... 14-77
14.6.7 How to Integrate Non-Applications Data into Oracle Fusion Applications Search

... 14-78
14.6.7.1 Oracle Business Intelligence Integration ... 14-78
14.6.7.2 Integrating Oracle WebCenter Portal ... 14-80
14.6.7.3 Ensuring Parity of Users ... 14-80

15 Implementing Additional Functions in the UI Shell

15.1 Introducing the Navigate API .. 15-1
15.1.1 How to Use the Navigate API Data Control Method ... 15-2
15.1.2 How to Implement Navigation Across Web Applications 15-6
15.2 Warning of Pending Changes in the UI Shell ... 15-7
15.2.1 How to Implement Warning of Pending Changes ... 15-7
15.2.2 How to Suppress Warning of Pending Changes .. 15-8
15.3 Implementing the Oracle Fusion Home Page UI .. 15-9
15.3.1 Supported Behavior ... 15-9
15.3.2 How to Create a Home Page .. 15-9
15.3.3 Getting the URL ... 15-10
15.4 Using the Single Object Context Workarea .. 15-10
15.4.1 Implementation Notes ... 15-11
15.4.1.1 Developer Implementation ... 15-12
15.5 Implementing the Third-Party Component Area ... 15-13
15.5.1 How to Implement the ThirdPartyComponentArea Facet Developer 15-14
15.6 Developing an Activity Guide Client Application with the UI Shell 15-14
15.7 Troubleshooting UI Shell Issues ... 15-20
15.7.1 ApplSession Is Not Created ... 15-21
15.7.2 Navigator Shows a Little White Box .. 15-22
15.7.3 Navigator Shows Unfiltered Entries .. 15-23
15.7.4 Other Navigation Issues .. 15-23

16 Implementing UIs in JDeveloper with Application Tables, Trees and Tree
Tables

16.1 Implementing Applications Tables .. 16-1
16.1.1 Understanding Applications Tables Facets and Properties 16-2
16.1.2 How to Create an Applications Table .. 16-10
16.1.2.1 Adding Applications Tables to JSF Pages or Page Fragments 16-10

xiii

16.1.2.2 Adding Applications Table Components Using the Applications Table Wizard
... 16-10

16.1.2.2.1 Manually Enabling Delete Confirmation .. 16-16
16.1.2.2.2 Multiple Row Selection on Table .. 16-17
16.1.2.2.3 Toggle Click to Edit / Edit All in Applications Table 16-18
16.1.3 Introduction to Selected Elements in the Table Property Inspector 16-19
16.1.3.1 Common Properties Section .. 16-19
16.1.3.2 Patterns Properties .. 16-20
16.1.3.3 Other Properties .. 16-22
16.1.4 How to Modify Applications Table Components and Properties 16-22
16.1.4.1 Adding Data Controls to Tables .. 16-22
16.1.4.2 Working with Table Menus and Icons ... 16-23
16.1.4.3 Increasing Table Width to Fill 100% of Its Container 16-24
16.1.4.4 Using an Applications Table with a Query Component 16-24
16.1.5 What Happens When You Add an Applications Table ... 16-24
16.2 Implementing the Applications Tree .. 16-24
16.2.1 How to Add an Applications Tree to Your Page ... 16-24
16.2.1.1 Adding the Applications Tree ... 16-31
16.2.1.2 Applications Tree Create Wizard .. 16-32
16.2.1.3 Working with the Applications Tree ... 16-35
16.3 Implementing Applications Tree Tables ... 16-36
16.3.1 How to Add an Applications Tree Table ... 16-45
16.3.1.1 Applications Tree Table Create Wizard ... 16-46
16.3.1.2 Working with the Applications Tree Table ... 16-50
16.3.1.2.1 Adding a Data Source ... 16-51
16.3.1.2.2 Adding UI Content ... 16-51
16.3.1.2.3 Increasing Tree Table Width to Fill 100% of Its Container 16-51
16.3.1.2.4 Toggle Click to Edit / Edit All in Applications Tree Table 16-51
16.4 Using the Custom Wizard with Applications Popups ... 16-51
16.4.1 Creating a Popup ... 16-52
16.4.1.1 How to Add Applications Popups to JSF Pages or Page Fragments 16-52
16.4.1.2 How to Add Applications Popup Components Using the Wizard 16-53
16.4.2 How to Modify Popup Components and Properties ... 16-58
16.4.2.1 Accessing the Popup on a JSF Page ... 16-58
16.4.2.2 Adding a Data Source to an Existing Popup ... 16-58
16.4.2.3 Adding User-Interface Content to an Existing Popup 16-58
16.4.2.4 Adding action and actionListener Methods to the Popup Buttons 16-59

17 Implementing Applications Panels, Master-Detail, Hover, and Dialog Details

17.1 Implementing Applications Panels .. 17-1
17.1.1 Overview of Applications Panel Components ... 17-1
17.1.2 How to Create an Applications Panel .. 17-9
17.1.2.1 Adding Applications Panels Using the Applications Panel Wizard 17-10
17.1.3 How to Modify Applications Panels Components and Properties 17-16
17.1.3.1 Stretching the Applications Panel .. 17-16
17.1.3.2 Accessing the Applications Panel on a JSF Page .. 17-17
17.1.3.3 Editing Applications Panel Properties and Components 17-17

xiv

17.1.3.4 Adding a Data Source to an Existing Panel ... 17-17
17.1.3.5 Adding User-Interface Content to Applications Panels 17-18
17.2 Implementing Applications Master-Detail ... 17-18
17.2.1 Component Structure and Functions ... 17-19
17.2.2 Introduction to Master-Detail Components ... 17-19
17.2.3 How to Create a Master-Detail .. 17-20
17.2.3.1 Adding a Master-Detail to JSF Pages or Page Fragments 17-21
17.2.3.2 Adding Master-Details Components Using the Applications Master-Details

Wizard ... 17-21
17.2.4 Master-Detail Guidelines for Creating New Records .. 17-29
17.2.4.1 Master-Detail without a Default Primary Key Generator 17-29
17.2.4.2 Master-Detail with a Default Primary Key Generator 17-29
17.2.4.3 Master-Detail with a Composite Primary Key .. 17-29
17.2.4.4 Any Other Case ... 17-29
17.2.5 How to Modify Master-Detail Components and Properties 17-30
17.3 Implementing Hover .. 17-30
17.4 Implementing Applications Dialog Details .. 17-33
17.4.1 How to Add Applications Dialog Details to Your Page ... 17-33
17.4.1.1 Adding Applications Dialog Details ... 17-34
17.4.1.2 Working with the Applications Dialog Details ... 17-40
17.4.1.3 Implementing OK and Cancel Buttons in a Popup ... 17-41

18 Implementing Attachments

18.1 Introduction to Attachments .. 18-1
18.2 Creating Attachments .. 18-5
18.2.1 How to Set Up Your Model Project for Attachments ... 18-7
18.2.2 How to Create Attachment View Links ... 18-8
18.2.3 What Happens When You Create an Attachment View Link 18-13
18.2.4 How to Delete the Business Object .. 18-14
18.2.5 How to Assign Categories to the Attachment Entity ... 18-15
18.2.6 How to Create an Attachments Field or an Attachments Table 18-15
18.2.7 What Happens When You Implement Attachments ... 18-16
18.2.8 How to Create an Attachments Column in an Applications Table 18-16
18.2.9 How to Set Up Required Properties ... 18-17
18.2.10 What Happens at Runtime .. 18-18
18.3 Displaying Attachments for Multiple Entities in the Same Table 18-19
18.3.1 How to Configure the Attachments Component to Display Attachments for Multiple

Entities ... 18-19
18.4 Configuring the Attachments Component UI .. 18-21
18.5 Working with Attachments Programmatically .. 18-25
18.5.1 Creating New Attachment Types .. 18-25
18.5.2 Retrieving Attachments ... 18-27
18.5.3 Using Attachment Utilities .. 18-28
18.6 Setting Up Miscellaneous Attachments Features ... 18-29
18.6.1 Custom Actions ... 18-29
18.6.2 Approvals .. 18-29
18.7 Integrating Attachments Task Flows into Oracle Fusion Functional Setup Manager .. 18-30

xv

18.8 Securing Attachments .. 18-30
18.8.1 Attachment Category Data Security .. 18-31
18.8.1.1 How to Set Up Category Data Security ... 18-31
18.8.2 File Sharing .. 18-32
18.8.3 Attachments SaaS ... 18-32
18.9 Using Attachments (Runtime) .. 18-32
18.9.1 How to Use Attachments File-Level Security .. 18-32
18.9.2 How to Update Attachments ... 18-33
18.9.2.1 Attachments Update Functions ... 18-34
18.9.2.2 Determining the Checked Out Status of File and Text-Type Attachments 18-35
18.9.2.3 Enabling or Disabling Attachments Update Functions 18-35
18.9.3 How to Check Out and Check In File Attachments ... 18-36

19 Organizing Hierarchical Data with Tree Structures

19.1 Introduction to Trees .. 19-1
19.1.1 Understanding Tree Structures, Trees, and Tree Versions 19-2
19.2 Configuring the Trees Application Launch Page ... 19-4
19.3 Working with Tree Structures .. 19-7
19.3.1 How to Manage Tree Structure Data Sources .. 19-7
19.3.2 How to Specify Data Source Parameters .. 19-8
19.3.2.1 Implementing Use Cases ... 19-9
19.3.2.1.1 Example Use Case ... 19-9
19.3.2.1.2 Basic Use Cases and Their Settings ... 19-10
19.3.3 How to Search for a Tree Structure .. 19-13
19.3.4 How to Use the Search Field .. 19-14
19.3.5 How to Create a Tree Structure .. 19-15
19.3.6 How to Duplicate a Tree Structure .. 19-24
19.3.7 How to Edit a Tree Structure ... 19-25
19.3.8 How to Delete a Tree Structure .. 19-25
19.3.9 How to Set Tree Structure Status ... 19-26
19.3.10 How to Audit a Tree Structure ... 19-26
19.4 Working with Trees .. 19-30
19.4.1 How to Search for a Tree .. 19-30
19.4.2 How to Create a Tree ... 19-30
19.4.3 How to Duplicate a Tree .. 19-33
19.4.4 How to Edit a Tree ... 19-34
19.4.5 How to Delete a Tree ... 19-35
19.5 Working with Tree Versions ... 19-35
19.5.1 How to Create a Tree Version .. 19-35
19.5.2 How to Add Tree Nodes to a Tree Version .. 19-39
19.5.2.1 How to Configure the Add Tree Node: Specific Values 19-40
19.5.2.2 How to Configure the Add Tree Node: Values Within a Range 19-41
19.5.2.3 How to Configure the Add Tree Node: Referenced Hierarchy 19-42
19.5.2.4 How to Use Drag-and-Drop to Move Nodes ... 19-43
19.5.2.5 How to Add a Node Using a Custom Search UI ... 19-43
19.5.2.6 How to Edit a Tree Node ... 19-44
19.5.3 How to Create a Record for a Data Source ... 19-45

xvi

19.5.4 How to Duplicate a Tree Version ... 19-46
19.5.5 How to Edit a Tree Version ... 19-47
19.5.6 How to Perform CRUD Operations on Tree Nodes Using APIs 19-47
19.5.7 How to Perform Sub-tree Node Operations Using PL/SQL APIs 19-51
19.5.8 How to Set Tree Version Status ... 19-53
19.5.9 How to Audit Trees and Tree Versions ... 19-53
19.5.10 How to Flatten Rows and Columns ... 19-59
19.6 Managing Labels in the Generic Label Data Source ... 19-61
19.6.1 How to Search for a Label .. 19-61
19.6.2 How to Create a Label ... 19-62
19.6.3 How to Edit a Label ... 19-63
19.6.4 How to Delete a Label .. 19-63
19.7 Using the Applications Hierarchy Component to Develop Applications 19-64
19.7.1 How to Create a Tree Application ... 19-65
19.7.2 How to Create a Tree Table Application .. 19-67
19.8 Integrating Custom Task Flows into the Applications Hierarchy Component 19-68
19.8.1 Registering Custom Task Flows .. 19-69
19.8.2 Creating Custom Task Flows ... 19-70
19.8.2.1 How to Create a Search Task Flow for the Add Node Operation 19-70
19.8.2.2 How to Create a Create Task Flow .. 19-71
19.8.2.3 How to Create a Duplicate Task Flow ... 19-72
19.8.2.4 How to Create an Edit Task Flow .. 19-74
19.8.2.5 How to Create a Delete Task Flow .. 19-75
19.9 Using the fnd:hierarchy Property Inspector to Specify Tree Versions 19-76
19.10 Using the Expression Builder to Bind TreeCode, TreeStructureCode, and TreeVersionId

Properties ... 19-79
19.11 Embedding the Tree Picker Component in a User Interface 19-79
19.12 Setting Bind Variables and View Criteria ... 19-81
19.12.1 How to Set Bind Variables and View Criteria .. 19-81
19.13 Using Service APIs to Manage Trees .. 19-81
19.13.1 How to Use TreeStructureService .. 19-82
19.13.2 How to Use TreeService ... 19-83
19.13.3 How to Use TreeNodeService .. 19-84
19.14 Advanced Topics .. 19-86
19.14.1 Using the Tree Data Model .. 19-86
19.14.2 Using PL/SQL APIs .. 19-87
19.14.3 Using Incremental Flattening .. 19-87
19.14.3.1 How to Use FND_TREE_FLATTENING_HISTORY 19-88
19.14.3.2 How to Use FND_TREE_LOG .. 19-88
19.14.3.3 How to Use FND_TREE_LOG_PARAMS ... 19-89
19.14.3.4 Flattening Rows ... 19-90
19.14.3.4.1 IS_LEAF .. 19-90
19.14.3.4.2 DISTANCE ... 19-90
19.14.3.5 Flattening Columns ... 19-91
19.14.4 Using Trees Business Events .. 19-92
19.14.5 Using WLST Commands for Flattening ... 19-93
19.14.5.1 How to Invoke Flattening APIs ... 19-94
19.14.5.2 How to Use flattenAll API .. 19-94

xvii

19.14.5.3 How to Use flattenTreeStructure API .. 19-95
19.14.5.4 How to Use flattenTree API .. 19-95
19.14.5.5 How to Use flattenTreeVersion API .. 19-96
19.14.5.6 How to Use forceFlattenTreeVersion API ... 19-97
19.14.6 Understanding XML Report Formats for WLST Commands 19-97

20 Working with Localization Formatting

20.1 Introduction to Localization Formatting .. 20-1
20.2 Formatting Currency .. 20-1
20.2.1 How to Format Currency ... 20-3
20.2.1.1 Formatting Currency Values ... 20-3
20.2.1.2 What Happens When You Format Currency .. 20-4
20.2.1.3 What Happens at Runtime: How Currency Is Formatted 20-4
20.3 Formatting Numbers .. 20-5
20.3.1 How to Format Numbers ... 20-5
20.3.1.1 Formatting Decimal Numbers ... 20-5
20.3.1.2 Formatting Integer Numbers ... 20-7
20.3.1.3 Formatting ID Numbers .. 20-9
20.3.1.4 How to Format Numbers in Hyperlinks ... 20-10
20.3.1.5 How to Format Percentage Values .. 20-11
20.3.2 What Happens When You Format Numbers ... 20-13
20.3.3 What Happens at Runtime: How Numbers Are Formatted 20-13
20.4 Formatting Date and Timestamp Values .. 20-13
20.4.1 How to Format Dates and Timestamp Values ... 20-13
20.4.1.1 Formatting Dates ... 20-13
20.4.1.2 Formatting Current Dates ... 20-14
20.4.1.3 Formatting Timestamp Values .. 20-15
20.4.2 What Happens When You Format Dates and Timestamps 20-17
20.4.3 What Happens at Runtime: How Dates and Timestamps Are Formatted 20-17
20.4.4 Standards and Guidelines for Formatting Dates and Timestamps 20-17
20.5 Formatting Time Zones .. 20-17
20.5.1 How to Format Time Zones ... 20-18
20.5.2 How to Format Invariant Time Zone Values ... 20-21
20.5.3 What Happens When You Format Time Zones ... 20-22
20.5.4 What Happens at Runtime: How Time Zones Are Formatted 20-22
20.5.5 Standards and Guidelines .. 20-22
20.6 Formatting Numbers, Currency and Dates Using Localization Expression Language

Functions .. 20-23
20.6.1 How to Format Numbers, Currency and Dates Using Expression Language Functions

... 20-23
20.6.1.1 Formatting Numbers Using Expression Language Functions 20-23
20.6.1.2 Formatting Currency Using Expression Language Functions 20-24
20.6.1.3 Formatting Dates Using Expression Language Functions 20-24
20.6.2 What Happens When You Format Numbers, Currency and Dates Using Expression

Language Functions ... 20-25
20.6.3 What Happens at Runtime: How Currency, Dates and Numbers and Time Zones are

Formatted Using Expression Language Functions .. 20-26

xviii

20.7 Implementing Bi-directional Support .. 20-26
20.7.1 How to Implement Bi-directional Support .. 20-26
20.7.1.1 Making Panels and Columns Provide Bi-directional Support 20-26
20.7.1.2 Making Images Provide Bi-directional Support .. 20-27
20.8 Supporting Mnemonic Keys ... 20-28
20.8.1 How to Implement Mnemonic Key Support ... 20-29
20.9 Implementing Localization Formatting in ADF Desktop Integration 20-30
20.9.1 How to Format Numbers .. 20-31
20.9.1.1 Formatting Numbers ... 20-31
20.9.1.2 What Happens When You Format Numbers .. 20-33
20.9.1.3 What Happens at Runtime: How Numbers Are Formatted 20-33
20.9.2 How to Format Currency Values ... 20-34
20.9.2.1 Formatting Currency Values ... 20-34
20.9.2.2 What Happens When You Format Currencies .. 20-34
20.9.2.3 What Happens at Runtime: How Currency Values Are Formatted 20-34
20.9.3 How to Format Dates and Timestamp Values ... 20-35
20.9.3.1 Formatting Date and Timestamp Values ... 20-35
20.9.3.2 What Happens When You Format the Date and Timestamp 20-37
20.9.3.3 What Happens at Runtime: How Date and Timestamp Are Formatted 20-37
20.9.3.4 Honoring Time Zones ... 20-37
20.10 Implementing Localization Formatting in Oracle BI Publisher Reports 20-38
20.10.1 How to Format Numbers in a Oracle BI Publisher Report 20-38
20.10.2 How to Format Currency Values in Oracle BI Publisher 20-40
20.10.3 How to Format Dates and Timestamps in Oracle BI Publisher 20-43
20.10.4 How to Honor Time Zones in Oracle BI Publisher .. 20-46
20.11 Implementing Localization Formatting in ADF Data Visualization Components 20-46
20.11.1 How to Format Numbers on a Graph .. 20-46
20.11.2 Standards and Guidelines for Formatting Numbers in Graphs 20-48
20.11.3 How to Format Currency Values in ADF Data Visualization 20-49
20.11.3.1 Formatting Currency Values on a Graph .. 20-49
20.11.3.2 Standards and Guidelines for Formatting Currency Values in Graphs 20-50
20.11.4 How to Format Dates and Timestamp Values in ADF Data Visualization 20-51
20.11.4.1 Formatting Dates and Timestamp Values on a Graph 20-51
20.12 Configuring National Language Support Attributes ... 20-52
20.12.1 Session National Language Support Attributes ... 20-53
20.12.2 Database Session Attributes ... 20-56
20.13 Standards and Guidelines for Localization Formatting ... 20-58

Part IV Developing Applications with Flexfields

21 Getting Started with Flexfields

21.1 Introduction to Flexfields ... 21-1
21.1.1 Descriptive Flexfields .. 21-3
21.1.2 Extensible Flexfields .. 21-3
21.1.3 Key Flexfields .. 21-4
21.1.4 Value Sets .. 21-4
21.1.5 Flexfield Integration with Oracle Business Intelligence ... 21-5

xix

21.2 Participant Roles ... 21-5
21.3 The Flexfield Development Lifecycle ... 21-6
21.4 Flexfields in the Application User Interface ... 21-7

22 Using Descriptive Flexfields

22.1 Introduction to Descriptive Flexfields .. 22-1
22.1.1 Benefits of Descriptive Flexfields ... 22-3
22.1.2 How Descriptive Flexfields Are Modeled in Oracle Application Development

Framework ... 22-3
22.2 Developing Descriptive Flexfields .. 22-4
22.2.1 How to Create Descriptive Flexfield Columns ... 22-5
22.2.2 How to Register and Define Descriptive Flexfields ... 22-5
22.2.2.1 Registering and Defining Descriptive Flexfields Using a Registration Task 22-6
22.2.2.2 Registering and Defining Descriptive Flexfields Using the Setup APIs 22-9
22.2.2.2.1 What You May Need to Know About the Descriptive Flexfield Setup API 22-9
22.2.3 How to Reuse a Descriptive Flexfield on Another Table ... 22-9
22.2.4 How to Register the Reuse of a Descriptive Flexfield .. 22-10
22.2.4.1 Registering the Secondary Usage of a Descriptive Flexfield Using a Registration

Task .. 22-10
22.2.4.2 Registering the Secondary Usage of a Descriptive Flexfield Using the Setup APIs

... 22-11
22.2.5 How to Register Entity Details ... 22-11
22.2.5.1 Registering Entity Details Using a Registration Task 22-12
22.2.5.2 Registering Entity Details Using the Setup APIs ... 22-13
22.2.6 How to Register Descriptive Flexfield Parameters ... 22-13
22.2.6.1 Registering a Flexfield Parameter Using a Registration Task 22-14
22.2.6.2 Registering a Flexfield Parameter Using the Setup APIs 22-15
22.3 Creating Descriptive Flexfield Business Components .. 22-15
22.3.1 How to Create Descriptive Flexfield Business Components 22-16
22.4 Creating Descriptive Flexfield View Links ... 22-22
22.4.1 How to Create Descriptive Flexfield View Links ... 22-22
22.5 Nesting the Descriptive Flexfield Application Module Instance in the Application Module

.. 22-23
22.5.1 How to Nest the Descriptive Flexfield Application Module Instance in the Application

Module ... 22-24
22.6 Adding a Descriptive Flexfield View Object to the Application Module 22-25
22.6.1 How to Add a Descriptive Flexfield View Object Instance to the Application Module

... 22-25
22.7 Adding Descriptive Flexfield UI Components to a Page .. 22-26
22.7.1 How to Add a Descriptive Flexfield UI Component to a Form 22-27
22.7.2 How to Add an Unrestricted Descriptive Flexfield UI Component to a Table 22-28
22.7.3 How to Add Descriptive Flexfield Context-Sensitive Segments to a Table as Columns

... 22-30
22.7.4 How to Add Create Row and Delete Row Functionality to the Page 22-32
22.7.5 How to Add a Row to an Empty Table in a Custom createInsert Method 22-33
22.7.6 How to Dynamically Refresh a Descriptive Flexfield .. 22-34
22.7.7 What Happens When You Add a Descriptive Flexfield to a Page 22-34
22.8 Configuring Descriptive Flexfield UI Components .. 22-35

xx

22.8.1 How to Configure Flexfield-Level UI Properties ... 22-35
22.8.2 How to Configure Segment-Level UI Properties ... 22-37
22.8.2.1 Configuring a Context Segment .. 22-38
22.8.2.2 Configuring All Global Segments ... 22-38
22.8.2.3 Configuring Individual Global Segments ... 22-39
22.8.2.4 Configuring All Context-Sensitive Segments .. 22-39
22.8.2.5 Configuring Individual Context-Sensitive Segments 22-39
22.8.3 How to Configure Descriptive Flexfield Parameters ... 22-40
22.9 Loading Seed Data ... 22-40
22.10 Working with Descriptive Flexfield UI Programmatically ... 22-41
22.10.1 How to Update a Descriptive Flexfield Programmatically 22-41
22.10.2 How to Determine Whether Descriptive Flexfield Segments Have Been Defined . 22-41
22.10.3 How to Configure a Descriptive Flexfield to Handle Value Change Events 22-41
22.11 Incorporating Descriptive Flexfield into a Search Form ... 22-42
22.11.1 How to Incorporate Descriptive Flexfields Into a Search Form 22-42
22.12 Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence

... 22-44
22.12.1 How to Enable a Descriptive Flexfield for Oracle Business Intelligence 22-45
22.12.2 How to Flatten the Descriptive Flexfield Model for a Business Intelligence-Enabled

Descriptive Flexfield .. 22-45
22.13 Publishing Descriptive Flexfields as Web Services ... 22-48
22.13.1 How to Expose a Descriptive Flexfield as a Web Service 22-49
22.13.2 How to Test the Web Service ... 22-53
22.14 Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook 22-58
22.14.1 How to Configure ADF Desktop Integration with a Dynamic Column Descriptive

Flexfield ... 22-59
22.14.2 How to Handle User-Initiated Context Value Changes in a Dynamic Column

Descriptive Flexfield .. 22-60
22.14.3 How to Configure ADF Desktop Integration with a Static Column Descriptive

Flexfield ... 22-60
22.14.4 How to Handle Updating or Inserting of a Descriptive Flexfield Data Row 22-61

23 Using Extensible Flexfields

23.1 Introduction to Extensible Flexfields .. 23-1
23.1.1 Understanding Extensible Flexfields ... 23-2
23.1.1.1 About Contexts (Attribute Groups) ... 23-2
23.1.1.2 Context-Sensitive Segments .. 23-4
23.1.1.3 About Logical Pages .. 23-4
23.1.1.4 About Categories ... 23-5
23.1.1.5 About Category Hierarchies .. 23-5
23.1.1.6 About Usages (Data Levels) .. 23-6
23.1.2 The Benefits of Extensible Flexfields .. 23-6
23.1.3 Extensible Flexfield Structure and Content .. 23-7
23.2 Overview of Integrating Extensible Flexfields in an Application 23-8
23.3 Creating Extensible Flexfield Data Tables .. 23-10
23.3.1 How to Create a Base Extension Table ... 23-10
23.3.2 How to Create a Translation Extension Table .. 23-11
23.3.3 How to Create a Translation Extension View .. 23-13

xxi

23.4 Registering Extension Tables as Secured Objects ... 23-13
23.4.1 How to Register a Table as a Secured Object ... 23-13
23.5 Defining and Registering Extensible Flexfields .. 23-14
23.5.1 How to Register Extensible Flexfields .. 23-15
23.6 Defining and Registering Extensible Flexfield Business Components 23-16
23.6.1 How to Create and Configure Extensible Flexfield Entity Objects 23-18
23.6.1.1 Creating and Configuring an Entity Object from the Base Extension Table 23-19
23.6.1.2 Creating and Configuring an Entity Object from the Translation Extension Table

... 23-19
23.6.1.3 Creating and Configuring an Entity Object from the Translation Extension View

... 23-20
23.6.2 How to Configure the EFF_LINE_ID Attribute as a Unique ID 23-21
23.6.3 How to Create and Configure Extensible Flexfield View Objects 23-21
23.6.3.1 Creating and Configuring Context View Objects .. 23-22
23.6.3.2 Creating and Configuring the Category View Object 23-22
23.6.3.3 Creating a Declarative SQL-Based View Object to Enable Searching 23-23
23.6.4 How to Configure an Extensible Flexfield Application Module 23-24
23.6.5 How to Register Extensible Flexfield Business Components 23-24
23.7 Employing an Extensible Flexfield on a User Interface Page .. 23-25
23.7.1 How to Expose the Logical Pages and Contexts Associated with One Extensible

Flexfield Usage ... 23-26
23.7.1.1 Creating a Task Flow for a Single Extensible Flexfield Usage 23-26
23.7.1.2 Adding the Task Flow to the UI Page .. 23-28
23.7.1.3 Rendering the Page ... 23-28
23.7.2 How to Expose the Complete Set of an Extensible Flexfield's Usages, Logical Pages,

and Associated Contexts .. 23-29
23.7.2.1 Creating the Task Flows .. 23-30
23.7.2.2 Creating the Fragments ... 23-30
23.7.2.3 Using the Task Flows in the Page .. 23-31
23.7.3 How to Expose One Logical Page and Its Contexts ... 23-31
23.7.4 How to Expose One Extensible Flexfield Context .. 23-31
23.8 Loading Seed Data ... 23-33
23.9 Customizing the Extensible Flexfield Modelers ... 23-33
23.9.1 How to Customize the Runtime Business Component Modeler for Extensible

Flexfields .. 23-33
23.9.2 How to Customize the Runtime User Interface Modeler for Extensible Flexfields 23-35
23.9.2.1 Creating the Customizer Wrapper Class ... 23-35
23.9.2.1.1 How to Customize the Context JSF Page Fragment 23-35
23.9.2.1.2 How to Customize the Segment Components in the Generated Context Task

Flow .. 23-35
23.9.2.1.3 How to Customize the Page Links in the Generated Links Task Flow 23-36
23.9.2.1.4 How to Customize the Page Task Flow .. 23-36
23.9.2.1.5 How to Customize the Search Task Flow .. 23-36
23.9.2.1.6 How to Create a Metadata Provider Implementation Class 23-38
23.9.2.1.7 How to Register the Metadata Provider Class for the Business Component

.. 23-38
23.10 Testing the Flexfield ... 23-38
23.11 Accessing Information About Extensible Flexfield Business Components 23-38

xxii

23.11.1 How to Access Information About Extensible Flexfield Business Components 23-39

24 Using Key Flexfields

24.1 Introduction to Key Flexfields .. 24-1
24.1.1 Benefits of Key Flexfields ... 24-1
24.1.2 How Key Flexfields Are Modeled in Oracle Application Development Framework

... 24-2
24.1.3 Secondary Usage Feature ... 24-2
24.1.4 Participant Roles .. 24-3
24.1.5 Completing the Key Flexfield Development Process ... 24-3
24.1.5.1 Maintenance Mode and Dynamic Combination Insertion 24-4
24.1.5.2 Cross-Validation Rules and Custom Validation .. 24-5
24.1.5.3 Understanding the Key Flexfield Producer Development Tasks 24-5
24.1.5.4 Understanding the Key Flexfield Consumer Development Tasks 24-6
24.2 Completing the Producer Tasks for Key Flexfields .. 24-7
24.2.1 How to Develop Key Flexfields ... 24-8
24.2.1.1 Creating the Combinations Table .. 24-8
24.2.1.2 Creating Foreign Key Columns to Enable the Use of Flexfield Combinations on

Application Pages ... 24-10
24.2.1.3 Including Segment Columns in Secondary Tables .. 24-11
24.2.1.4 Creating Filter Columns .. 24-11
24.2.1.5 Registering and Defining Key Flexfields Using the Setup APIs 24-11
24.2.1.6 What You May Need to Know About the Key Flexfield Setup API 24-12
24.2.1.7 Enabling Multiple Structure, Multiple Structure Instance, and Data Set Features

.. 24-12
24.2.1.8 Reusing Key Flexfield Segments in Another Table ... 24-12
24.2.1.9 Registering Entity Details Using the Setup APIs ... 24-12
24.2.2 How to Implement Key Flexfield Segment Labels ... 24-13
24.2.2.1 Defining Key Flexfield Segment Labels ... 24-14
24.2.2.2 Using Value Attributes .. 24-15
24.2.3 How to Implement Cross-Validation Rules and Custom Validation 24-15
24.2.3.1 Implementing Cross-Validation Rules .. 24-16
24.2.3.2 Implementing Custom Validation ... 24-18
24.2.4 How to Create Key Flexfield Business Components .. 24-19
24.2.4.1 Building a Writable Maintenance Model ... 24-21
24.2.4.1.1 How to Create Key Flexfield Business Components for a Maintenance Model

.. 24-21
24.2.4.1.2 How to Link the Master View Object to the Maintenance Model Key Flexfield

Business Components ... 24-25
24.2.4.1.3 How to Create the Maintenance Application Module 24-26
24.2.4.1.4 How to Manage Code Combination Locking ... 24-28
24.2.4.2 Enabling Dynamic Combination Insertion .. 24-29
24.2.4.2.1 Enabling Dynamic Combination Insertion ... 24-29
24.2.4.2.2 Inserting a Code Combination — the Simplest Case 24-30
24.2.4.2.3 Inserting a Code Combination with Added Combination Attributes 24-30
24.2.4.2.4 Inserting a Code Combination that Uses Custom Validation Procedures or

Cross-Validation Rules ... 24-34
24.2.4.3 Building a Read-Only Reference Model .. 24-35

xxiii

24.2.5 How to Share Key Flexfield Business Components ... 24-35
24.2.5.1 Creating an ADF Library JAR File ... 24-35
24.2.5.2 Importing Business Components from an ADF Library 24-36
24.2.6 How to Build a Key Flexfield Maintenance User Interface 24-36
24.2.6.1 Building a Key Flexfield Code-Combination Maintenance Page 24-37
24.2.6.2 Ensuring Proper Handling of New Rows .. 24-37
24.2.7 What Happens at Runtime: Creating New Combinations 24-38
24.3 Completing the Consumer Tasks for Key Flexfields in Reference Mode 24-38
24.3.1 How to Create Key Flexfield View Links ... 24-39
24.3.2 How to Nest an Instance of the Key Flexfield Application Module in the Product

Application Module ... 24-41
24.3.3 How to Add an Instance of a Key Flexfield View Object to the Product Application

Module ... 24-41
24.4 Employing Key Flexfield UI Components on a Page ... 24-42
24.4.1 How to Employ a Key Flexfield Component on a Page ... 24-43
24.4.1.1 Adding Key Flexfield UI Components to a Form or a Table 24-45
24.4.1.2 Ensuring Proper Handling of New Rows .. 24-46
24.4.1.3 Ensuring Proper Updating of Reference Mode SIN values in an ADF Form or ADF

Applications Table ... 24-47
24.4.1.4 Ensuring Proper Updating of Secondary Mode SIN Values in an ADF Form . 24-47
24.4.1.5 Dynamically Refreshing Segments on a Code-Combination Maintenance Page or

Secondary Usage Segments ... 24-48
24.4.1.6 What Happens When You Add a Key Flexfield to a Page 24-49
24.4.2 How to Incorporate Key Flexfields into a Query Search Form 24-50
24.4.2.1 Setting Up the Business Component Model Layer .. 24-51
24.4.2.2 Creating the Query Search Form ... 24-53
24.4.3 How to Configure Key Flexfield UI Components .. 24-56
24.4.3.1 Configuring Flexfield-Level User Interface Properties 24-56
24.4.3.2 Configuring Label-Based Segment UI Properties .. 24-59
24.4.3.3 Configuring Secondary Usage UI Properties ... 24-60
24.5 Using Key Flexfield Advanced Features in Reference Mode .. 24-61
24.5.1 How to Define Code Combination Constraints ... 24-61
24.5.1.1 Creating a View Accessor to Define a Code Combination Constraint 24-62
24.5.1.2 Constraining Code Combinations by an Extra WHERE Clause 24-65
24.5.1.3 Constraining Code Combinations by Validation Date 24-65
24.5.1.4 Constraining Code Combinations by Validation Rules 24-66
24.5.1.4.1 How to Create Validation Rules ... 24-66
24.5.1.4.2 How to Set the Bind_ValidationRules Parameter 24-68
24.5.1.5 Enabling or Disabling Dynamic Combination Creation for a Specific Usage .. 24-68
24.5.2 How to Access Segment Labels Using the Java API ... 24-69
24.5.3 How to Prepare Key Flexfield Business Components for Oracle Business Intelligence

... 24-70
24.5.3.1 Enabling a Key Flexfield for Oracle Business Intelligence 24-70
24.5.3.2 Producing a Flattened Model for a Business Intelligence-Enabled Key Flexfield

... 24-71
24.5.4 How to Publish Key Flexfield Application Modules as Web Services 24-73
24.5.4.1 Exposing a Key Flexfield Application Module as a Web Service 24-75
24.5.4.2 Testing the Web Service .. 24-83

xxiv

24.5.5 How to Access Key Flexfields from an ADF Desktop Integration Excel Workbook
... 24-85

24.5.5.1 Configuring ADF Desktop Integration with a Dynamic Column Key Flexfield
.. 24-87

24.5.5.2 Handling User-Initiated Structure Code Value Changes in a Dynamic Column Key
Flexfield ... 24-88

24.5.5.3 Configuring ADF Desktop Integration with a Static Column Key Flexfield ... 24-88
24.5.5.4 Handling Update or Insert of a Key Flexfield Data Row 24-89
24.6 Completing the Development Tasks for Key Flexfields in Secondary Mode 24-92
24.6.1 How to Register a Key Flexfield All-Segment Secondary Usage 24-94
24.6.2 How to Register a Key Flexfield Single-Segment Secondary Usage 24-94
24.6.3 How to Create Key Flexfield Business Components for Secondary Usage 24-95
24.6.4 How to Create Key Flexfield View Links for a Secondary Usage 24-100
24.7 Working with Code-Combination Filters for Key Flexfields 24-102
24.7.1 How to Use Standard Combination Filters .. 24-102
24.7.2 How to Use Code-Combination Filters for Oracle BI Publisher Reports 24-103
24.7.3 How to Use Cross-Validation Filters ... 24-104
24.7.4 How to Prepare the Database for Standard Code-Combination Filters 24-104
24.7.5 How to Add Code-Combination Filters to Your Application 24-105
24.7.5.1 Creating a Filter Entity Object for a Standard Filter 24-105
24.7.5.2 Creating a Filter View Object .. 24-108
24.7.5.3 Associating Code-Combination Filters with Key Flexfields 24-109
24.7.5.4 Configuring, Deploying, and Testing Code-Combination Filters 24-109
24.7.6 How to Employ Code-Combination Filters on an Application Page 24-110
24.7.6.1 Adding Your Key Flexfield Filter to an Application Page 24-110
24.7.6.2 What Happens When You Add a Filter-Repository Filter to an Application Page

.. 24-113
24.7.7 How to Create Code-Combination Filter Definitions for Testing 24-115
24.7.8 How to Apply Code-Combination Filters Using the PL/SQL Filter APIs 24-117
24.7.8.1 Applying Standard Filters Using the WHERE Clause API 24-117
24.7.8.2 Applying Repository Filters for Oracle Enterprise Scheduler Service 24-121
24.7.9 How to Remove Code-Combination Filters from Your Application 24-122
24.7.10 How to Remove Filters from the Filter Repository .. 24-122

25 Testing and Deploying Flexfields

25.1 Testing Flexfields ... 25-1
25.1.1 How to Make Flexfields Available for Testing ... 25-1
25.1.2 How to Test Flexfields ... 25-2
25.2 Deploying Flexfields in a Standalone WebLogic Server Environment 25-4
25.2.1 How to Package a Flexfield Application for Deployment .. 25-4
25.2.1.1 Enabling the Flexfield Packaging Plugin ... 25-4
25.2.1.2 Generating an EAR File for the Application .. 25-4
25.2.2 How to Deploy a Flexfield Application ... 25-5
25.2.2.1 Creating an MDS Partition .. 25-6
25.2.2.2 Mapping the EAR File to the MDS Partition ... 25-7
25.2.2.3 Mapping the ApplCore Setup Application to the MDS Partition 25-8
25.2.2.4 Including Product Application Model Libraries in the ApplCore Setup EAR File

.. 25-9

xxv

25.2.2.5 Deploying the Product and Setup Applications to the Server Domains 25-9
25.2.2.6 Priming the MDS Partition with Configured Flexfield Artifacts 25-10
25.2.3 How to Configure Flexfields .. 25-10
25.3 Using the WLST Flexfield Commands ... 25-10
25.3.1 How to Prepare Your Environment to Use the WLST Flexfield Commands 25-11
25.3.2 How to Prepare Your Environment to Use the deployFlexForApp Command 25-11
25.4 Regenerating Flexfield Business Components Programmatically 25-12
25.5 Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager 25-13

Part V Using Oracle Enterprise Crawl and Search Framework

26 Getting Started with Oracle Enterprise Crawl and Search Framework

26.1 Introduction to Using Oracle Enterprise Crawl and Search Framework 26-1
26.1.1 ECSF Architecture .. 26-1
26.1.1.1 Searchable Object Manager ... 26-2
26.1.1.2 Search Designer ... 26-2
26.1.1.3 Semantic Engine .. 26-3
26.1.1.4 Fusion Applications Control ... 26-3
26.1.1.5 ECSF Command Line Administration Utility .. 26-3
26.1.1.6 Security Service ... 26-3
26.1.1.7 Data Service ... 26-4
26.1.1.8 Query Service .. 26-4
26.1.1.9 Oracle SES Search Engine .. 26-4
26.1.1.10 Security Plug-in ... 26-4
26.1.1.11 Crawler Plug-in ... 26-5
26.2 Setting Up and Running ECSF Command Line Administration Utility 26-5
26.2.1 How to Make Searchable Objects Accessible to the ECSF Command Line

Administration Utility ... 26-6
26.2.2 How to Set the Class Path .. 26-7
26.2.2.1 Setting the Class Path in Windows .. 26-7
26.2.2.2 Setting the Class Path in Linux .. 26-8
26.2.3 How to Set the Connection Information .. 26-8
26.2.3.1 Setting the Connection Information in Windows .. 26-9
26.2.3.2 Setting the Connection Information in Linux .. 26-10
26.2.4 How to Manually Connect to the Oracle Fusion Applications Database 26-10
26.2.5 How to Provide the Path of the JPS Config File ... 26-12
26.2.6 How to Configure the Log Settings .. 26-12
26.2.7 How to Automate the ECSF Command Line Administration Utility 26-12
26.3 Setting Up Oracle Enterprise Manager and Discovering ECSF 26-13
26.3.1 How to Register the ECSF Runtime MBean to the Integrated WebLogic Server 26-14
26.3.1.1 Adding the MBean listener to web.xml ... 26-14
26.3.1.2 Creating the Application EAR File for Deployment .. 26-14
26.3.1.3 Configuring Data Sources in Oracle WebLogic Server 26-14
26.3.1.4 Deploying the ECSF Application Using the EAR File 26-15
26.3.1.5 Starting the Oracle WebLogic Server Instance ... 26-15
26.3.2 How to Install Oracle Enterprise Manager ... 26-15
26.3.3 How to Discover ECSF in Oracle Enterprise Manager ... 26-15

xxvi

26.3.4 How to Add Users to the Administrators Group .. 26-16

27 Creating Searchable Objects

27.1 Introduction to Creating Searchable Objects .. 27-1
27.2 Defining Searchable Objects ... 27-2
27.2.1 How to Use Groovy Expressions in ECSF ... 27-4
27.2.1.1 Referencing View Object Attributes as Variables .. 27-4
27.2.1.2 Referencing Child View Object Attributes .. 27-5
27.2.1.3 Referencing View Object Attributes in Multilevel Searchable Objects 27-6
27.2.1.4 Formatting View Object Attribute Values ... 27-7
27.2.2 What Happens When You Use Groovy Expressions in ECSF 27-8
27.2.3 How to Make View Objects Searchable ... 27-8
27.2.3.1 Setting Search Property Values for View Objects .. 27-9
27.2.3.2 Using the Select Primary Table Dialog .. 27-10
27.2.3.3 Using the Search PlugIn Dialog ... 27-11
27.2.4 What Happens When You Make View Objects Searchable 27-13
27.2.5 What You May Need to Know About Making View Objects Searchable 27-13
27.2.6 How to Make View Object Attributes Searchable .. 27-13
27.2.6.1 Making View Object Attributes Searchable ... 27-14
27.2.6.2 Modifying Searchable Attributes .. 27-16
27.2.6.3 Deleting Searchable Attributes .. 27-17
27.2.7 What Happens When You Define Searchable Attributes 27-17
27.2.8 What You May Need to Know About Defining Searchable Attributes 27-18
27.2.9 What You May Need to Know about Preventing Conflicts with Oracle SES Default

Search Attributes ... 27-18
27.2.10 What You May Need to Know About Preventing Search Attribute Naming Conflicts

... 27-19
27.2.10.1 Checking for Stored Attribute Conflicts .. 27-21
27.3 Securing Searchable Objects ... 27-21
27.3.1 How to Set Permissions for Searchable Objects ... 27-22
27.3.2 How to Create the Security Realm ... 27-22
27.3.3 How to Create the Application Policy Store .. 27-23
27.4 Configuring Search Features .. 27-25
27.4.1 How to Define Search Result Actions .. 27-25
27.4.1.1 Access URL ... 27-26
27.4.1.2 Redirect Service ... 27-26
27.4.1.3 Adding Search Result Actions ... 27-27
27.4.1.4 Defining Properties for Bounded Task Flows ... 27-29
27.4.1.5 Modifying Search Result Actions .. 27-29
27.4.1.6 Deleting Search Result Actions ... 27-30
27.4.2 What Happens When You Define Search Result Actions 27-30
27.4.3 What You May Need to Know About Defining Search Result Actions 27-30
27.4.4 How to Implement Faceted Navigation ... 27-30
27.4.4.1 Defining Lists of Values .. 27-31
27.4.4.2 Constraining View Objects by Stored Attributes ... 27-32
27.4.4.3 Creating Search Facets ... 27-33
27.4.4.4 Defining a Facet to Use a Child View Object Attribute 27-35

xxvii

27.4.4.5 Using the Select Text Resource Dialog to Select a Matching Text Resource 27-36
27.4.4.6 Using the Select Text Resource Dialog to Create and Select a New Text Resource

... 27-37
27.4.4.7 Modifying Search Facets .. 27-37
27.4.4.8 Deleting Root Search Facets ... 27-38
27.4.4.9 Deleting Child Search Facets ... 27-38
27.4.4.10 Defining Facets That Support Ranges .. 27-38
27.4.4.11 Defining Derived Facets .. 27-39
27.4.5 What Happens When You Implement Faceted Navigation 27-39
27.4.6 What You May Need to Know About Implementing Faceted Navigation 27-39
27.5 Configuring Custom Properties for Searchable Objects ... 27-40
27.5.1 How to Modify Default Runtime Behavior of Searchable Objects 27-40
27.5.2 How to Make Searchable Objects Public .. 27-40

28 Configuring ECSF Security

28.1 Introduction to Configuring ECSF Security .. 28-1
28.2 Securing ECSF Credentials ... 28-1
28.2.1 How to Add the Permission Policy .. 28-1
28.2.2 How to Configure Application Identities for Search .. 28-2
28.2.2.1 Setting the SearchContext to FusionSearchContextImpl 28-3
28.2.2.2 Creating the Application Identities ... 28-3
28.2.2.3 Adding the Permission Policy for the Application Identities 28-4
28.3 Authorizing Users for Search Feeds ... 28-5
28.4 Securing the Searchable Application Data .. 28-6
28.4.1 How to Secure the Searchable Application Data .. 28-6

29 Validating and Testing Search Metadata

29.1 Introduction to Validating and Testing Search Metadata ... 29-1
29.2 Validating the Search Metadata .. 29-1
29.2.1 How to Validate Search Metadata ... 29-2
29.3 Testing Searchable Objects Through a Web Browser ... 29-2
29.3.1 How to Run the ECSF Feed Servlet .. 29-3
29.3.2 How to Test the Config Feed ... 29-4
29.3.3 How to Test the Control Feed .. 29-5
29.3.4 How to Test the Data Feed ... 29-6
29.3.5 How to Reset the State of the Feeds ... 29-8

30 Deploying and Crawling Searchable Objects

30.1 Introduction to Deploying and Crawling Searchable Objects .. 30-1
30.2 Deploying Searchable Objects and Dependencies .. 30-1
30.2.1 How to Deploy the ECSF Shared Library to Oracle WebLogic Server 30-1
30.2.1.1 Updating the SearchDB Data Source ... 30-2
30.2.1.2 Deploying the ECSF Shared Library to the Standalone WebLogic Server Instance

... 30-3
30.2.2 How to Create an Application ... 30-3

xxviii

30.2.3 How to Change the Application Name and Context Root of the View-Controller
Project .. 30-4

30.2.4 How to Modify the Run Configuration of the View-Controller Project 30-4
30.2.5 How to Add the ECSF Runtime Server Library and Required Java Archive Files to the

Model and View-Controller Projects ... 30-7
30.2.6 How to Deploy the ECSF Application ... 30-8
30.3 Crawling Searchable Objects .. 30-8
30.3.1 How to Verify the Crawl ... 30-8

31 Advanced Topics for ECSF

31.1 Introduction to Advanced Topics for ECSF .. 31-1
31.2 Enabling Search on Fusion File Attachments ... 31-1
31.2.1 How to Make File Attachments Crawlable .. 31-2
31.3 Enabling Search on WebCenter Tags ... 31-2
31.3.1 How to Add Tags to Indexable Documents ... 31-6
31.3.2 How to Add Tags for Querying ... 31-7
31.3.3 How to Modify Tags in Indexable Documents .. 31-8
31.3.4 How to Register Change Listeners ... 31-8
31.4 Enabling Search on Tree Structure-based Source Systems ... 31-9
31.4.1 How to Crawl Tree Structures ... 31-11
31.4.1.1 Creating a Searchable Object ... 31-11
31.4.1.2 Implementing a Crawlable Tree Node .. 31-12
31.4.1.3 Extending AbstractTreeWalker ... 31-14
31.4.1.4 Implementing Security .. 31-15
31.4.1.5 Implementing the Attachments Interface .. 31-17
31.4.1.6 Deploying and Starting the ECSF Servlet .. 31-18
31.4.1.7 Configuring Oracle SES to Crawl ECSF .. 31-19
31.4.2 How to Integrate Search Functionality for Tree Structures 31-21
31.4.2.1 Setting the Configuration .. 31-21
31.4.2.2 Using the Configuration Interface ... 31-22
31.4.2.3 Using the AbstractConfiguration Class ... 31-23
31.4.2.4 Implementing Searchable Object Classes .. 31-25
31.4.2.5 Extending AbstractConfiguration ... 31-26
31.5 Managing Recent Searches ... 31-27
31.5.1 How to Use the RecentSearchManager API ... 31-28
31.5.2 How Recent Searches Are Processed ... 31-29
31.6 Setting Up Federated Search .. 31-32
31.6.1 How to Create the SearchDB Connection on Oracle WebLogic Server Instance 31-32
31.6.2 How to Update the Application Deployment Profile with the Target Directory for

Searchable Objects ... 31-33
31.6.3 How to Update the Application to Reference the ECSF Service Shared Library ... 31-33
31.6.4 How to Add the ECSF Runtime Library .. 31-34
31.6.5 How to Set the System Parameter for Web Service .. 31-34
31.6.5.1 Setting the System Parameter in Java System Properties 31-34
31.6.5.2 Setting the System Parameter in the ecsf.properties File 31-34
31.6.6 How to Package and Deploy the Search Application .. 31-35
31.6.6.1 Running the ant Targets from the Command Line .. 31-35

xxix

31.6.6.2 Running the ant Targets from Oracle JDeveloper .. 31-35
31.6.7 How to Update the Search Application with New Searchable Objects or Dependencies

... 31-35
31.6.8 How to Set Up the ECSF Client Application for Federation 31-36
31.6.8.1 Adding Encryption Keys to cwallet.sso and default-keystore.jks 31-36
31.6.8.2 Adding the Keystore to jps-config.xml .. 31-36
31.6.8.3 Creating the Proxy User .. 31-37
31.6.8.4 Updating connections.xml ... 31-37
31.6.9 How to Set the SearchContext Scope to GLOBAL ... 31-39
31.6.10 How to Integrate Federation Across Oracle Fusion Applications Product Families

... 31-39
31.7 Federating Oracle SES Instances ... 31-40
31.8 Raising Change Events Synchronously .. 31-41
31.9 Using the External ECSF Web Service for Integration .. 31-42
31.9.1 Web Service Methods ... 31-42
31.9.2 ECSF Web Service WSDL and XSD .. 31-42
31.9.3 Web Service Request XSDs and XMLs ... 31-49
31.9.3.1 SavedSearch Request XSD ... 31-49
31.9.3.2 QueryMetaData Request XSD ... 31-53
31.9.3.3 engineInstanceRequest Request XSD .. 31-55
31.9.4 Web Service Response XSDs .. 31-55
31.9.4.1 getSavedSearch() ... 31-56
31.9.4.2 getSavedSearches() .. 31-58
31.9.4.3 saveSearch() ... 31-58
31.9.4.4 deleteSearch() .. 31-58
31.9.4.5 getSavedSearchDetails ... 31-58
31.9.4.6 search() .. 31-60
31.9.4.7 getEngineInstances() ... 31-63
31.9.5 How to Invoke the ECSF Web Service ... 31-66
31.9.5.1 Creating a JAX-WS Web Service Proxy ... 31-66
31.9.5.2 Modifying the AppModuleSearchServiceSoapHttpPortClient Class 31-66
31.10 Localizing ECSF Artifacts ... 31-72
31.10.1 How to Translate Strings in Groovy Expressions .. 31-72
31.10.1.1 Associating Resource Bundles to View Objects ... 31-72
31.10.1.2 Using the format() Function in Groovy Expressions 31-73
31.10.1.3 Associating Translated Labels to Attributes .. 31-73
31.10.1.4 Using the getLabel() function in Groovy Expressions 31-74
31.10.2 How to Localize Facet Display Names ... 31-74
31.10.2.1 Configuring LOVs for Localization Using the VL Table 31-75
31.10.2.2 Configuring LOVs for Localization Using the Resource Bundles 31-76
31.10.3 How to Localize Crawl Management Display Names ... 31-77
31.10.4 How to Localize Crawlable Dynamic Content ... 31-78
31.10.5 How to Localize Crawlable Template Content .. 31-78
31.10.6 How to Determine Locale .. 31-79
31.10.6.1 Search Page .. 31-79
31.10.6.2 ECSF Command Line Administration Utility .. 31-79
31.10.6.3 Crawl ... 31-80

xxx

31.10.6.4 Query .. 31-80
31.11 Using ECSF Diagnostics ... 31-80
31.11.1 Query Tests .. 31-80
31.11.1.1 Simple Query .. 31-80
31.11.1.2 Searchable Object Metadata .. 31-81
31.11.1.3 Searchable Groups .. 31-81
31.11.1.4 Advanced Query (Protected) ... 31-82
31.11.2 Crawl Tests .. 31-82
31.11.2.1 Crawl Searchable Object .. 31-82
31.11.2.2 SES Instance .. 31-83
31.11.2.3 Control Feed .. 31-83
31.11.2.4 Data Feed (Protected) .. 31-84
31.11.3 Environment and Configuration Information ... 31-84
31.11.3.1 Configuration Parameters ... 31-84
31.11.3.2 Environment Information ... 31-84
31.11.3.3 Data Source ... 31-84
31.11.3.4 Application Extension/ApplCore Session Locale (Protected) 31-85
31.11.4 Security .. 31-85
31.11.4.1 Security (Protected) ... 31-85
31.11.4.2 Credential Store ... 31-85
31.11.4.3 Security Plugin (Protected) .. 31-86
31.12 Troubleshooting ECSF ... 31-86
31.12.1 Problems and Solutions ... 31-86
31.12.1.1 Cannot Remove the ECSF Runtime Server Library ... 31-86
31.12.1.2 Cannot See Data in Data Feeds .. 31-87
31.12.1.3 Configuration or Data Feed Execution Thread Is Busy for Longer than the

Configured Warning Timeout ... 31-87
31.12.1.4 Class Not Found Errors When Running the ECSF Servlet 31-87
31.12.1.5 Out of Memory Error when Deploying the ECSF Application to Oracle WebLogic

Server or Running the Application ... 31-88
31.12.1.6 Blank Oracle ADF/UI Shell Pages ... 31-88
31.12.1.7 Memory Leak on ThreadLocal Variable (SearchContext) 31-88
31.12.1.8 How to Check the Space Availability for SES Crawls in the Database 31-89
31.12.1.9 How to Crawl with a Different User ... 31-89
31.12.1.10 "FND-6601 Search categories are not available" .. 31-90
31.12.1.11 "FND-6603 Search is not currently available" .. 31-90
31.12.1.12 "FND-6606 An application error occurred with this search" 31-91
31.12.1.13 Query Does Not Return Search Results but No Errors Are Displayed on the UI

.. 31-91
31.12.1.14 FUSION_RUNTIME.FND_TABLE_OF_VARCHAR2_4000 Exception on

Schedules .. 31-91
31.12.1.15 Where Can I Find the SES-ESS Crawler Logs? .. 31-92
31.12.1.16 My Crawls Are Failing .. 31-92
31.12.1.17 How to Get the Password for the SES Administration Page 31-92
31.12.2 Diagnosing ECSF Problems ... 31-92
31.12.3 Need More Help? .. 31-93

Part VI Common Service Use Cases and Design Patterns

xxxi

32 Initiating a SOA Composite from an Oracle ADF Web Application

32.1 Introduction to the Recommended Design Pattern .. 32-1
32.2 Other Approaches .. 32-2
32.3 Example .. 32-3
32.4 How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

.. 32-3
32.5 Alternative Approaches ... 32-8
32.5.1 Using the Java Event API to Publish Events .. 32-8
32.5.2 Using a JAX-WS Proxy to Invoke a Synchronous BPEL Process 32-10
32.6 Securing the Design Pattern ... 32-11
32.6.1 Running the Mediator as an Event Publisher ... 32-11
32.6.2 Securing Event-Driven Applications ... 32-12
32.7 Verifying the Deployment .. 32-12
32.7.1 How to Verify the Deployment .. 32-12
32.7.2 How to Test EDN Functionality from the Command Line 32-13
32.7.2.1 SendEvent .. 32-13
32.7.2.2 BusinessEventConnectionFactorySupport .. 32-13
32.8 Troubleshooting the Use Case .. 32-14
32.8.1 Deployment ... 32-14
32.8.2 Runtime Errors ... 32-14
32.9 What You May Need to Know About Initiating a SOA Composite from an Oracle ADF

Web Application ... 32-14
32.10 Known Issues and Workarounds ... 32-15

33 Initiating a SOA Composite from a PL/SQL Stored Procedure

33.1 Introduction to the Recommended Design Pattern .. 33-1
33.2 Other Approaches .. 33-1
33.3 Example .. 33-2
33.4 How to Invoke a SOA Composite Application Component Using PL/SQL 33-2
33.5 Securing the Design Pattern ... 33-3
33.6 Verifying the Deployment .. 33-3
33.6.1 Testing and Deploying the Use Case ... 33-3
33.6.2 Verifying the SOA Composite Deployment Using Oracle Enterprise Manager Fusion

Middleware Control Console ... 33-3
33.7 Troubleshooting the Use Case .. 33-5
33.8 What You May Need to Know About Initiating a SOA Composite from a PL/SQL Stored

Procedure ... 33-5
33.9 Known Issues and Workarounds ... 33-6

34 Orchestrating ADF Business Components Services

34.1 Introduction to the Recommended Design Pattern .. 34-1
34.2 Other Approaches .. 34-2
34.3 Example .. 34-2
34.4 How to Invoke an ADF Business Components Service from a BPEL Process Service

Component ... 34-2
34.5 Securing the Design Pattern ... 34-6

xxxii

34.6 Verifying the Deployment .. 34-7
34.7 Troubleshooting the Use Case .. 34-7
34.8 What You May Need to Know About Orchestrating ADF Business Components Services

... 34-7

35 Manipulating Back-End Data from a SOA Composite

35.1 Introduction to the Recommended Design Pattern .. 35-1
35.2 Example ... 35-2
35.3 How to Manipulate Data from a BPEL Process Service Component 35-2
35.4 Securing the Design Pattern ... 35-4
35.5 Verifying the Deployment .. 35-4
35.6 Troubleshooting the Use Case .. 35-5
35.7 What You May Need to Know About Manipulating Back-end Data from a SOA

Composite .. 35-5
35.7.1 When Entity Variables Flush Changes Back to ADF Business Components 35-5
35.7.2 Support for XPath Operations ... 35-6
35.7.3 Invoking an ADF Business Components Service and Entity Variables in the Same

BPEL Process Service Component ... 35-7

36 Accessing a PL/SQL Service from a SOA Composite

36.1 Introduction to the Recommended Design Pattern .. 36-1
36.2 Other Approaches .. 36-1
36.3 Example ... 36-1
36.4 How to Invoke a PL/SQL Stored Procedure from a SOA Composite Application 36-2
36.5 Securing the Design Pattern ... 36-2
36.6 Verifying the Deployment .. 36-2

37 Invoking Custom Java Code from a SOA Composite

37.1 Introduction to the Recommended Design Pattern .. 37-1
37.2 Other Approaches .. 37-1
37.3 Example ... 37-2
37.4 How to Invoke a Java Class from a SOA Composite Application 37-2
37.5 Securing the Design Pattern ... 37-2
37.6 Verifying the Deployment .. 37-3
37.7 Troubleshooting the Use Case .. 37-3
37.8 What You May Need to Know About Invoking Custom Java Code from a SOA Composite

... 37-3

38 Managing Tasks from an Oracle ADF Application

38.1 Introduction to the Recommended Pattern .. 38-2
38.2 Other Approaches .. 38-3
38.3 Example ... 38-3
38.4 How to Manage a Human Task Flow from an ADF Application 38-3
38.5 Other Approaches .. 38-5
38.6 Securing the Design Pattern ... 38-6
38.7 Verifying the Deployment .. 38-6

xxxiii

38.8 Troubleshooting the Use Case .. 38-7
38.8.1 Worklist Notification Locale Does Not Honor the Regional Applications Session

Setting .. 38-7
38.8.2 Task Does Not Display in Worklist Application .. 38-8
38.8.3 Task Details Do Not Display in the ADF Task Flow .. 38-8
38.8.4 Logging .. 38-9
38.8.4.1 Workflow Logging .. 38-9
38.8.4.2 ADF Task Flow Logging .. 38-10
38.9 What You May Need to Know About Managing Tasks from an ADF Application 38-10

39 Working with Data from a Remote ADF Business Components Service

39.1 Introduction to the Recommended Design Pattern .. 39-1
39.2 Potential Approaches ... 39-1
39.3 Example .. 39-2
39.4 How to Create Service-Based Entity Objects and View Objects 39-2
39.5 Securing the Design Pattern ... 39-3
39.6 Verifying the Deployment .. 39-3
39.7 Troubleshooting the Use Case .. 39-3
39.8 Understanding the Transactional Behavior of Service-Based Entity Objects and View

Objects .. 39-3
39.9 Known Issues and Workarounds ... 39-3

40 Invoking an Asynchronous Service from a SOA Composite

40.1 Introduction to the Recommended Design Pattern .. 40-1
40.2 Other Approaches .. 40-2
40.3 Example .. 40-2
40.4 How to Invoke a SOA Composite Application from Within a SOA Composite Application

.. 40-3
40.4.1 Defining a New Web Service Reference ... 40-3
40.4.2 Wiring the BPEL Process to the New Web Service Reference 40-4
40.4.3 Invoking the Asynchronous Web Service from the BPEL Flow 40-6
40.4.4 What Happens When You Invoke an Asynchronous Service from within a SOA

Composite Application .. 40-11
40.4.5 What Happens at Runtime: How an Asynchronous Service is Invoked from within a

SOA Composite Application .. 40-12
40.5 Securing the Design Pattern ... 40-12
40.6 Verifying the Deployment .. 40-12
40.7 Troubleshooting the Use Case .. 40-13
40.7.1 Deployment ... 40-13
40.7.2 Runtime ... 40-13
40.8 What You May Need to Know About Invoking an Asynchronous Service from Another

SOA Composite .. 40-13

41 Synchronously Invoking an ADF Business Components Service from an
Oracle ADF Application

41.1 Introduction to the Recommended Design Pattern .. 41-1
41.2 Potential Approaches ... 41-1

xxxiv

41.3 Example ... 41-2
41.4 How to Invoke an ADF Business Components Service from an Oracle ADF Application

... 41-2
41.5 Securing the Design Pattern ... 41-4
41.6 Verifying the Deployment .. 41-4

42 Implementing an Asynchronous Service Initiation with Dynamic UI Update

42.1 Introduction to the Recommended Design Pattern .. 42-2
42.2 Potential Approaches ... 42-2
42.3 Example ... 42-2
42.4 How to Implement an Asynchronous Service Initiation with Dynamic UI Update 42-2
42.4.1 Writing the Active Data Handler ... 42-4
42.4.2 Building the Supporting Active Data Entry Classes .. 42-11
42.4.3 Registering the Active Data Collection Model with the Oracle ADF UI Page 42-13
42.4.4 Registering the Component Managed JavaBean for Supporting Method Actions . 42-14
42.4.5 Referencing the Managed JavaBean in the Page UI ... 42-17
42.4.6 Creating the Data Model and Adding Application Module Methods 42-17
42.4.7 Creating a SOA Composite that Subscribes to the Published Event 42-21
42.4.8 Constructing a BPEL Process to Perform Asynchronous Work 42-21
42.4.9 Invoking the ADF Business Components Service ... 42-22
42.5 Securing the Design Pattern ... 42-22
42.6 Verifying the Deployment .. 42-22
42.7 Troubleshooting the Use Case .. 42-24
42.8 What You May Need to Know About Initiating an Asynchronous Service with Dynamic

UI Update ... 42-24
42.9 Known Issues and Workarounds ... 42-24

43 Managing Tasks Programmatically

43.1 Introduction to the Recommended Design Pattern .. 43-1
43.2 Potential Approaches ... 43-2
43.3 Example ... 43-2
43.4 Managing Human Workflow Tasks from a Java Application .. 43-2
43.4.1 How to Connect to the Task Service/Task Query Service 43-2
43.4.2 How to Use the Single Server Task Service API .. 43-3
43.4.2.1 Import Libraries into the Java Project .. 43-3
43.4.2.2 Import Code Packages into the Java Project .. 43-3
43.4.2.3 Declare and Obtain Task Service Object References .. 43-4
43.4.2.4 Obtain the Workflow Service Context Object .. 43-5
43.4.2.5 Obtain the Single Task Object and Set Task Outcome 43-5
43.4.3 How to Use the Single Server Task Query Service API ... 43-5
43.4.3.1 Import Libraries into the Java Project .. 43-6
43.4.3.2 Import Code Packages into the Java Project .. 43-6
43.4.3.3 Declare and Obtain Task Query Service Object References 43-6
43.4.3.4 Manage Query and Task Outcome States ... 43-7
43.4.4 How to Use the Federated Server Task Query Service API 43-7
43.4.4.1 Import Libraries into the Java Project .. 43-7
43.4.4.2 Import Code Packages into the Java Project .. 43-7

xxxv

43.4.4.3 Create a List of Servers for a Parallel Federated Query 43-7
43.4.4.4 Declare Task and Query Service References and Create the Workflow Client

Service Object .. 43-8
43.4.4.5 Obtain the Workflow Service Context ... 43-8
43.4.4.6 Implement Exception Handling for Federated Queries 43-8
43.4.4.7 Manage Query and Task Outcome States .. 43-9
43.4.5 How to Query and Traverse Federated and Non-federated Query Result Sets 43-9
43.4.5.1 Determine Query Service Search Criteria .. 43-9
43.4.5.2 Construct the Predicate for queryTasks() .. 43-11
43.4.5.3 Arrange the Order of Results Returned by the queryTasks() Method 43-12
43.4.5.4 Construct the List of Display Columns for the queryTasks() Method 43-12
43.4.5.5 Construct a List of OptionalInfo Items to be Returned from queryTasks() 43-12
43.4.5.6 Invoke queryTasks() with the Attribute Lists .. 43-13
43.4.5.7 Iterate through the Result Set .. 43-13
43.4.5.8 Programmatically Set the Task Outcome .. 43-14
43.5 Other Approaches .. 43-15
43.6 Securing the Design Pattern ... 43-15
43.7 Verifying the Deployment .. 43-15
43.7.1 Deploying the Human Task ... 43-15
43.7.2 Deploying Programmatic Task Functionality .. 43-15
43.7.3 Invoking Programmatic Task Functionality ... 43-16
43.8 Troubleshooting the Use Case .. 43-16
43.8.1 Troubleshooting Task Data .. 43-16
43.8.2 Troubleshooting Java Code .. 43-16
43.9 What You May Need to Know About Implementing Email Notification for an Oracle ADF

Task Flow for a Human Task ... 43-16

44 Implementing an Oracle ADF Task Flow for a Human Task

44.1 Introduction to the Recommended Design Pattern .. 44-1
44.2 Other Approaches .. 44-1
44.3 Example .. 44-1
44.4 How to Implement an Oracle ADF Task Flow for a Human Task 44-1
44.4.1 Creating an Oracle ADF Task Flow ... 44-2
44.4.2 Creating a User Interface for the Human Task .. 44-4
44.4.3 Implementing Product-Specific Sections .. 44-7
44.4.3.1 How to Add Instructions ... 44-7
44.4.3.2 How to Modify Details .. 44-8
44.4.3.3 How to Modify Recommended Actions .. 44-9
44.4.3.4 How to Modify <PLACE APPLICATION SPECIFIC CONTENT HERE> 44-10
44.4.3.5 How to Implement Links ... 44-11
44.4.3.6 How to Modify Comments and Attachments ... 44-11
44.4.3.7 How to Modify Related Links ... 44-12
44.4.3.8 How to Modify History ... 44-13
44.4.4 Implementing a Task Detail with Contextual Area .. 44-13
44.4.5 Implementing Email Notification .. 44-13
44.4.5.1 Before You Begin ... 44-13
44.4.5.2 Determining the Implementation Approach ... 44-14

xxxvi

44.4.5.3 Using a Switcher Component .. 44-15
44.4.5.4 Using a Separate View for Online and Email Versions 44-15
44.4.5.5 Fine-Tuning the Emailable Page .. 44-16
44.4.6 Displaying Localized Translated Data ... 44-17
44.4.7 Displaying Rows in the Approval Task ... 44-17
44.4.8 Configuring a Deployment Profile .. 44-18
44.5 Securing the Design Pattern ... 44-20
44.6 Verifying the Deployment .. 44-20
44.7 Troubleshooting the Use Case .. 44-22
44.7.1 Specify oracle.soa.workflow.wc in weblogic-application.xml 44-23
44.7.2 Set the FRAME_BUSTING Attribute in web.xml ... 44-23
44.7.3 Migrate from an Earlier Version of the Drop Handler Template 44-23
44.7.4 Override the EL for the Create Button ... 44-24

45 Cross Family Business Event Subscription Pattern

45.1 Introduction to the Recommended Design Pattern .. 45-1
45.2 Potential Approaches ... 45-1
45.3 Example ... 45-2
45.4 How to Subscribe to a Cross-Family Business Event ... 45-3
45.4.1 Before You Begin ... 45-3
45.4.2 Determining the Composites to Be Defined ... 45-4
45.4.3 Determining the Aqueue Message Recipient ... 45-5
45.4.4 Defining an XFamilyPub Composite ... 45-5
45.4.5 Defining an XFamilySub Composite .. 45-9
45.5 Verifying the Deployment .. 45-12
45.5.1 How to Verify the Deployment of the XFamilyPub Composite 45-13
45.5.2 How to Verify the Deployment of the XFamilySub Composite 45-14
45.6 Troubleshooting the Use Case .. 45-14
45.6.1 Privileges to FUSION_RUNTIME .. 45-14
45.6.2 Aqueue enabled for Enqueuing and Dequeuing ... 45-15
45.6.3 AQ_INVALID_QUEUE_TYPE .. 45-16

Part VII Implementing Security

46 Getting Started with Security

46.1 Introduction to Securing Oracle Fusion Applications .. 46-1
46.1.1 Architecture ... 46-1
46.1.1.1 Oracle Platform Security Services (OPSS) Security Framework 46-3
46.1.1.2 Oracle Web Services Manager ... 46-4
46.1.1.3 Oracle ADF Security .. 46-5
46.1.1.4 Application User Sessions ... 46-5
46.1.1.5 Oracle Fusion Data Security .. 46-6
46.1.1.6 Oracle Virtual Private Database .. 46-6
46.1.1.7 Oracle Data Integrator ... 46-6
46.1.2 Authentication ... 46-6
46.1.2.1 Oracle Identity Management Repository .. 46-7

xxxvii

46.1.2.1.1 Users ... 46-7
46.1.2.1.2 Roles .. 46-7
46.1.2.1.3 Segregation of Duties .. 46-7
46.1.2.1.4 File-Based Identity Store ... 46-7
46.1.2.1.5 File-Based Policy Store .. 46-8
46.1.2.1.6 ODI ... 46-8
46.1.2.2 Identity Propagation .. 46-8
46.1.2.3 Application User Session Propagation .. 46-10
46.1.3 Authorization ... 46-10
46.1.3.1 OPSS Application Security Repository .. 46-10
46.1.3.2 Oracle Fusion Data Security Repository .. 46-11
46.2 Authentication Techniques and Best Practices ... 46-11
46.2.1 APIs ... 46-12
46.2.2 Expression Language ... 46-12
46.2.3 Non-browser Based Login ... 46-12
46.3 Authorization Techniques and Best Practices ... 46-12
46.3.1 Function Security ... 46-12
46.3.1.1 Resource Entitlements and Permissions .. 46-13
46.3.1.2 Expression Language .. 46-13
46.3.2 Data Security .. 46-14
46.3.2.1 APIs and Expression Language ... 46-14
46.3.2.2 Oracle Virtual Private Database .. 46-14
46.3.2.3 Personally Identifiable Information ... 46-14
46.3.2.4 Data Role Templates .. 46-14

47 Implementing Application User Sessions

47.1 Introduction to Application User Sessions ... 47-1
47.2 Configuring Your Project to Use Application User Sessions .. 47-2
47.2.1 How to Configure Your Project to Use Application User Sessions 47-2
47.2.2 How to Configure the ADF Business Component Browser 47-3
47.2.3 How to Use the ApplSession Logger for Troubleshooting 47-3
47.2.4 What Happens at Runtime: How the Application User Session is Used 47-4
47.3 Accessing Properties of the Applications Context .. 47-4
47.3.1 How to Access Sessions Using Java APIs ... 47-6
47.3.1.1 Initializing Sessions ... 47-6
47.3.1.2 Getting Context Attributes .. 47-7
47.3.1.3 Setting Context Attributes ... 47-7
47.3.1.4 Accessing the Connection .. 47-8
47.3.1.5 Accessing Session Context Using the Java API .. 47-9
47.3.2 How to Access Sessions Using PL/SQL APIs .. 47-9
47.3.2.1 Initializing Sessions ... 47-10
47.3.2.2 Getting Context Attributes .. 47-10
47.3.2.3 Setting Context Attributes ... 47-10

48 Implementing Oracle Fusion Data Security

48.1 Introduction to Oracle Fusion Data Security .. 48-1

xxxviii

48.1.1 Terminology .. 48-3
48.1.2 Integrating Oracle Fusion Data Security with Oracle Platform Security Services

(OPSS) .. 48-5
48.1.3 Integrating Data Security Task Flows into Oracle Fusion Functional Setup Manager

... 48-5
48.1.4 Integrating Oracle Fusion Data Security with User Sessions 48-6
48.1.5 Integrating Oracle Fusion Data Security with Virtual Private Database (VPD) 48-6
48.2 Managing Data Security Artifacts in the Oracle Fusion Data Security Policy Tables 48-7
48.2.1 How to Get Started Managing Data Security ... 48-7
48.2.2 What You May Need to Know About Administering Oracle Fusion Data Security

Policy Tables .. 48-8
48.3 Integrating with ADF Business Components ... 48-9
48.3.1 How to Configure the ADF Data Model Project .. 48-9
48.3.2 How to Secure Rows Queried By Entity-Based View Objects 48-10
48.3.3 What Happens at Runtime: How Oracle Fusion Data Security Filters View Instance

Rows .. 48-14
48.3.4 How to Perform Authorization Checks for Custom Operations 48-14
48.3.5 How to Test Privileges Using Expression Language Expressions in the User Interface

 .. 48-15
48.4 Using Oracle Fusion Data Security to Secure New Business Resources 48-17
48.4.1 How to Use Oracle Fusion Data Security to Secure a Business Object 48-19
48.4.2 How to Use Parameterized Conditions When Securing a Business Object 48-20
48.4.2.1 Converting Non-String Parameter Values Into Character Values 48-21
48.4.2.2 Writing Performance Type Conversions in Predicates 48-21
48.4.3 How to Create Test Users in JDeveloper .. 48-24
48.4.4 What You May Need to Know About Creating Application Roles 48-25
48.5 Getting Security Information from the Application User Session Context 48-25
48.5.1 How to Use the DataSecurityAM API to Get Session Context Information 48-25
48.5.2 How to Use the PL/SQL Data Security API to Check User Privileges 48-26
48.6 Understanding Data Security Performance Best Practices ... 48-28
48.7 Validating Data Security with Diagnostic Scripts .. 48-29
48.7.1 How to Validate Data Security Configuration with Diagnostic Scripts 48-30
48.7.2 How to Validate Applications Context .. 48-31
48.8 Integrating with Data Security Task Flows .. 48-32
48.8.1 About Integrating the Data Security Task Flows into Your Application 48-33
48.8.2 How to Configure Data Security Task Flows to Display in the Primary Window . 48-36
48.8.2.1 Creating a Task Flow Call Activity in Your Application's Task Flow 48-37
48.8.2.2 Initializing the Data Security Task Flow Using a Managed Bean 48-39
48.8.2.3 Registering the Managed Bean with Your Application's Task Flow 48-42
48.8.3 How to Configure the Object Instance Task Flow to Display in a Dialog 48-43
48.8.3.1 Creating the Task Flow Executable in the Region Page Definition FIle 48-43
48.8.3.2 Initializing the Object-Instance Task Flow Using a Managed Bean 48-46
48.8.3.3 Registering the Managed Bean with Your Application's Task Flow 48-47
48.8.4 How to Grant the End User Access to the Data Security Task Flows 48-48
48.8.5 How to Grant the Application Access to the Application Policy Store 48-49
48.8.6 How to Map the Application to an Existing Application Stripe 48-50

xxxix

49 Implementing Function Security

49.1 Introduction to Function Security ... 49-1
49.1.1 Function Security Development Environment ... 49-2
49.1.2 Function Security Implementation Scenarios ... 49-3
49.1.3 Function Security-Related Application Files .. 49-5
49.2 Function Security Implementation Process Overview .. 49-7
49.3 Adding Function Security to the Application ... 49-9
49.3.1 How to Create Entitlement Grants for Custom Application Roles 49-11
49.3.2 What Happens After You Create an Entitlement Grant ... 49-13
49.3.3 How to Define Resource Grants for OPSS Built-In Roles 49-15
49.3.4 What Happens When You Make an ADF Resource Public 49-17
49.3.5 How to Enforce Authorization for Securable ADF Artifacts 49-18
49.3.6 How to Enable Authentication and Test the Application in JDeveloper 49-20
49.3.7 What You May Need to Know About Actions That Developers Must Not Perform

... 49-20
49.3.8 What You May Need to Know About Testing ... 49-21
49.3.9 What You May Need to Know About Security Best Practices 49-22

50 Securing Web Services Use Cases

50.1 Introduction to Securing Web Services Use Cases .. 50-1
50.2 Understanding Oracle Web Services Manager Best Practices .. 50-3
50.3 Attaching Policies Globally .. 50-4
50.4 Attaching Policies Locally .. 50-5
50.4.1 How to Make a Web Service Publicly Accessible ... 50-7
50.4.2 How to Support Elevated Privileges for Web Service Clients 50-8
50.4.3 How to Provide Additional Security Hardening for Web Service Clients 50-8
50.4.4 How to Connect to Third Party Web Services .. 50-9
50.5 Authorizing the Web Service with Entitlement Grants .. 50-9
50.5.1 How to Grant Access for the Service .. 50-9
50.5.2 How to Enforce Authorization for the Service ... 50-12
50.6 What Happens At Runtime: How Policies Are Enforced ... 50-13
50.7 Maintaining Application Session Context Across Web Service Requests 50-14

51 Securing End-to-End Portlet Applications

51.1 Introduction to Securing End-to-End Portlet Applications .. 51-1
51.2 Securing the Portlet Service .. 51-2
51.2.1 How to Authenticate the Service ... 51-2
51.2.2 How to Configure the Key Store and Credential Store .. 51-3
51.2.3 How to Authorize the Service .. 51-4
51.3 Securing the Portlet Client .. 51-7
51.4 Registering the Key Store and Writing to the Credential Store 51-7
51.4.1 How to Register the Key Store and Write to the Credential Store 51-7
51.4.2 What Happens When You Register the Key Store and Write to the Credential Store

... 51-10
51.5 Maintaining Application Session Context Across Web Service Requests 51-10

xl

Part VIII Advanced Topics

52 Running and Deploying Applications on Oracle WebLogic Server

52.1 Introduction to Deploying Applications to Oracle WebLogic Server 52-1
52.1.1 Prerequisites for Deployment .. 52-3
52.1.2 Introduction to the Standalone Administration Server WebLogic Server Instance . 52-4
52.2 Running Applications on Integrated WebLogic Server .. 52-7
52.2.1 How to Deploy an Application with Metadata to Integrated WebLogic Server 52-8
52.3 Preparing to Deploy Oracle ADF Applications to an Administration Server Instance of

WebLogic Server .. 52-9
52.3.1 How to Reference the Shared Libraries ... 52-10
52.3.2 How to Create Deployment Profiles for Standalone WebLogic Server Deployment

... 52-11
52.4 Deploying Your Oracle ADF Applications to an Administration Server Instance of

WebLogic Server .. 52-11
52.4.1 How to Create an Application Server Connection Using JDeveloper 52-12
52.4.2 How to Deploy the Application Using JDeveloper .. 52-13
52.4.3 How to Create an EAR File for Deployment .. 52-14
52.5 Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server

... 52-14
52.5.1 How to Deploy Your SOA Projects Using JDeveloper ... 52-14
52.5.1.1 Check the Deployed SOA Project .. 52-15

53 Creating Repository Connections

53.1 Creating a Content Repository Connection .. 53-1
53.1.1 How to Create a Content Repository Connection .. 53-1
53.1.1.1 Creating a Connection for Oracle Fusion Applications Development 53-1
53.1.1.2 Creating a Connection for Ad Hoc Development ... 53-4
53.1.2 Troubleshooting Content Server Connections ... 53-7
53.1.2.1 User Does Not have Sufficient Privileges .. 53-7
53.1.2.2 Invalid Security: Error in Processing the WS-Security Header 53-8
53.1.2.3 Access Denied: Credential AccessPermission ... 53-8
53.2 Creating an Oracle Data Integrator Repository Connection ... 53-8
53.3 Creating Oracle Business Activity Monitoring Server Repository Connection 53-9
53.3.1 How to Create an Oracle BAM Connection ... 53-9
53.3.2 How to Use Oracle BAM Adapter in a SOA Composite Application 53-11
53.3.3 How to Integrate Sensors With Oracle BAM ... 53-11

54 Defining Profiles

54.1 Introduction to Profiles .. 54-1
54.2 Integrating Profiles Task Flows into Oracle Fusion Functional Setup Manager 54-2
54.3 Setting and Accessing Profile Values ... 54-3
54.3.1 How to View and Set Profile Values Using the Setup UI ... 54-4
54.3.2 How to Access Profile Values Programmatically ... 54-5
54.3.3 How to Access Profile Values Using Expression Language 54-5
54.4 Managing Profile Definitions ... 54-5
54.4.1 How to Edit Profile Definitions ... 54-6

xli

54.4.2 Registering a New Profile Option .. 54-8
54.5 Managing Profile Categories .. 54-8
54.5.1 How to Manage Profile Categories .. 54-9

55 Initializing Oracle Fusion Application Data Using the Seed Data Loader

55.1 Introduction to the Seed Data Loader .. 55-1
55.2 Using the Seed Data Loader in JDeveloper .. 55-2
55.2.1 Introduction to the Seed Data Framework ... 55-2
55.2.2 How to Set Up the Seed Data Environment ... 55-5
55.2.3 How to Use the Seed Data Extract Manager .. 55-13
55.2.4 How to Use Seed Data Extract Processing ... 55-16
55.2.4.1 Understanding Extract Taxonomy Partition Selection Dialogs 55-16
55.2.4.2 Using the Extract Seed Data Command Line Interface 55-20
55.2.5 How to Use the Seed Data Upload Manager ... 55-23
55.2.5.1 Uploading Seed Data ... 55-24
55.2.5.1.1 How to Upload Seed Data Using the Command Line Interface 55-26
55.2.5.1.2 How to Invoke Seed Loader Modes .. 55-27
55.2.6 How to Share Application Modules ... 55-29
55.2.7 How to Update Seed Data .. 55-31
55.2.7.1 Using Incremental Updates ... 55-31
55.2.7.2 Implementing Java Database Connectivity-based National Language Support

Updates ... 55-32
55.3 Translating Seed Data ... 55-33
55.3.1 How to Extract Translation Data .. 55-33
55.3.1.1 Treating Seed Data Base XML and Language XLIFF as a Single Entity 55-33
55.3.2 How to Process Seed Data Translations ... 55-33
55.3.3 How to Load Translation Seed Data .. 55-33
55.3.4 Oracle Fusion Middleware Extensions for Applications Translation Support 55-34

56 Using the Database Schema Deployment Framework

56.1 Introduction to Using the Database Schema Deployment Framework 56-1
56.2 Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data

Modeling Extensions) ... 56-1
56.2.1 How to Use the Offline Database ... 56-2
56.2.2 How to Create an Offline Database .. 56-2
56.2.3 How to Deploy an Offline Database in XML Persistence Format 56-4
56.2.4 How to Validate Application Data Model Standards .. 56-4
56.2.5 Application User Defined Properties ... 56-5
56.2.5.1 User Defined Properties for Tables .. 56-5
56.2.5.2 User Defined Properties for Columns ... 56-9
56.2.5.3 User Defined Properties for Indexes .. 56-11
56.2.5.4 User Defined Properties for Constraints .. 56-12
56.2.5.5 User Defined Properties for Views .. 56-13
56.2.5.6 User Defined Properties for Sequence ... 56-14
56.2.5.7 User Defined Properties for Materialized View .. 56-15
56.2.5.8 User Defined Properties for Materialized View Log 56-16

xlii

56.2.5.9 User Defined Properties for Trigger .. 56-17
56.2.6 How to Create an Offline Database Object .. 56-17
56.2.7 How to Edit an Offline Database Object .. 56-17
56.2.8 How to Import an Offline Database Object .. 56-18
56.2.9 How to Deploy the Offline Database Objects .. 56-20
56.2.9.1 Deploying in SXML Persistence Format .. 56-20
56.2.9.1.1 How to Use the Database Object Deployment Wizard in JDeveloper 56-20
56.2.9.1.2 How to Use the Database Object Deployment Command Line Interface . 56-25
56.2.9.2 Setting the CLASSPATH Variable ... 56-26
56.2.9.3 Using Bootstrap Mode ... 56-27
56.2.9.4 Deployment FAQ .. 56-27
56.2.9.5 Cleaning Database Objects .. 56-28
56.2.9.5.1 Making a Database Object Obsolete .. 56-28
56.2.9.5.2 How to Use the Force Mode Option in Schema Deployment 56-29
56.2.9.5.3 How to Use fnd_cleanup_pkg and fnd_drop_obsolete_objects 56-29
56.2.9.5.4 Frequently Asked Questions ... 56-31
56.3 Using Schema Separation to Provide Grants .. 56-32

57 Improving Performance

57.1 Introduction to Improving the Performance of Applications ... 57-1
57.2 ADF Business Components Guidelines .. 57-1
57.2.1 Working with Entity Objects ... 57-2
57.2.1.1 Enable Batch Updates for your Entity Objects .. 57-2
57.2.1.2 Children Entity Objects in Composite Entity Associations Should not set the

Foreign Key Attribute Values of the Parent .. 57-2
57.2.1.3 Avoid Using List Validator Against Large Lists .. 57-2
57.2.1.4 Avoid Repeated Calls to the same Association Accessor 57-3
57.2.1.5 Close Unused RowSets .. 57-3
57.2.1.6 Use "Retain Association Accessor RowSet" when Appropriate 57-3
57.2.1.7 Mark the Change Indicator Column ... 57-4
57.2.2 Working with View Objects ... 57-4
57.2.2.1 Tune the View Object SQL Statement ... 57-4
57.2.2.2 Select the Correct Usage for View Objects ... 57-5
57.2.2.3 Set Appropriate Fetch Size and Max Fetch Size .. 57-5
57.2.2.4 Use Bind Variables .. 57-6
57.2.2.5 Include at Least One Required or Selectively Required View Criteria Item 57-6
57.2.2.6 Use Forward-Only Mode when Possible ... 57-6
57.2.2.7 Avoid Calling getRowCount ... 57-7
57.2.2.8 Avoid Entity Object Fault-in by Selecting Necessary Attributes Up-Front 57-7
57.2.2.9 Reduce the Number of View Object Key Attributes to a Minimum 57-7
57.2.2.10 Use Range Paging when Jumping to Different Row Ranges 57-8
57.2.2.11 Use setListenToEntityEvents(false) for Non-UI Scenarios 57-8
57.2.2.12 Use Appropriate Getter or Setter on View Row .. 57-9
57.2.2.13 Use Appropriate Indexes with Case-Insensitive View Criteria Items 57-9
57.2.2.14 Avoid View Object Leaks .. 57-9
57.2.2.15 Provide a "Smart" Filter when Using LOV Combobox 57-9
57.2.2.16 Use Small ListRangeSize for LOVs .. 57-9

xliii

57.2.2.17 Avoid Reference Entity Objects when not Needed .. 57-9
57.2.2.18 Do Not Use the "All at Once" Fetch Mode in View Objects 57-10
57.2.2.19 Do Not Use the "Query List Automatically" List of Value Setting 57-10
57.2.2.20 Avoid the "CONTAINS" or "ENDSWITH" Operator for Required or Selectively

Required View Criteria Items .. 57-10
57.2.3 Working with Application Modules .. 57-10
57.2.3.1 Enable Lazy Delivery .. 57-10
57.2.3.2 Make Application Code Passivation-Safe .. 57-10
57.2.3.3 Avoid Passivating Read-Only View Objects ... 57-12
57.2.3.4 Avoid Passivating Certain Transient Attributes of a View Object 57-13
57.2.3.5 Maintain Application Session User Tables .. 57-13
57.2.3.6 Tune the Application Module Release Level ... 57-15
57.2.3.7 Do Not Leave Uncommitted Database Updates Across Requests 57-18
57.2.3.8 Release Dynamically Created Root Application Modules 57-18
57.2.3.9 Do Not Destroy the Application Module when Calling Configuration.releaseRoot

ApplicationModule. .. 57-18
57.2.4 Working with Services ... 57-18
57.2.4.1 Set the Find Criteria to Fetch Only Attributes that are Needed 57-18
57.2.4.2 Expose Service for Frequently Used Logical Entities 57-19
57.2.4.3 Use Correct ChangeOperation when Calling a Service 57-19
57.2.4.4 Set Only Changed Columns on Service Data Objects for Update 57-19
57.3 ADF ViewController Layer Guidelines .. 57-19
57.3.1 Working with Various ADF ViewController Components 57-19
57.3.1.1 Minimize the Number of Application Module Data Controls 57-19
57.3.1.2 Use the Visible and Rendered Attributes .. 57-20
57.3.1.3 Remove Unused Items from Page Bindings .. 57-20
57.3.1.4 Disable Column Stretching .. 57-20
57.3.1.5 Use Appropriate Values for Refresh and RefreshCondition 57-20
57.3.1.6 Disable Estimated Row Count if Necessary .. 57-21
57.3.1.7 Use HTTPSession Hash Table in Moderation .. 57-21
57.3.1.8 Use Short Component IDs ... 57-21
57.3.1.9 Follow UI Standards when Using Search .. 57-22
57.3.1.10 Avoid Executing Component Subtree by Adding a Condition Check 57-22
57.3.1.11 Do not set Client Component Property to True ... 57-23
57.3.1.12 Set Immediate Property to True when Appropriate .. 57-23
57.3.1.13 Use Appropriate ContentDelivery Mode for a Table or a Tree Table 57-23
57.3.1.14 Set the Appropriate Fetch Size for a Table ... 57-23
57.3.1.15 Avoid Frozen Columns and Header Columns if Possible 57-24
57.3.1.16 Avoid Unnecessary Regions .. 57-24
57.3.1.17 Set the Data Control Scope to "Shared" ... 57-24
57.3.1.18 Select the No Save Point Option on a Task Flow when Appropriate 57-24
57.3.1.19 Use Click-To-Edit Tables when Appropriate ... 57-24
57.3.1.20 Avoid Unnecessary Task Flow Activation for Regions Under Popups 57-24
57.3.1.21 Delay Creation of Popup Child Components .. 57-25
57.3.1.22 Avoid Unnecessary Task Flow Activation for Regions Under Switchers 57-25
57.3.1.23 Avoid Unnecessary Root Application Module Creation from UI-layer Code . 57-26
57.3.1.24 Avoid Unnecessary Savepoints on Task Flow Entry 57-26

xliv

57.3.1.25 Cache Return Values in Backing Bean Getters .. 57-27
57.3.1.26 Do Not Maintain References to UI Components in Managed Beans 57-27
57.3.2 Enable ADF Rich Client Geometry Management .. 57-27
57.3.3 Use Page Templates ... 57-27
57.3.4 Use ADF Rich Client Partial Page Rendering (PPR) .. 57-27
57.4 SOA Guidelines for Human Workflow and Approval Management Extensions 57-27
57.5 Oracle Fusion Middleware Extensions for Applications Guidelines 57-27
57.5.1 Use Profile.get to Get Profile Option Values .. 57-27
57.5.2 Release any Application Modules Returned from getInstance Calls 57-28
57.5.3 Avoid Unnecessary Activation of Attachments Taskflow 57-28
57.5.4 Use Static APIs on Message Get Message Text .. 57-28
57.5.5 Set the Data Control Scope to Isolated for Page Level Item Nodes 57-28
57.6 General Java Guidelines ... 57-29
57.6.1 Working with Strings and StringBuilder ... 57-29
57.6.1.1 Use StringBuilder Rather than the String Concatenation Operator (+) 57-29
57.6.1.2 Check the Log Level Before Making a Logging Call 57-30
57.6.1.3 Use Proper Logging APIs for Debug Logging ... 57-31
57.6.1.4 Lazy Instantiation .. 57-31
57.6.2 Configure Collections .. 57-31
57.6.3 Manage Synchronization ... 57-31
57.6.4 Work with Other Java Features ... 57-31
57.6.4.1 Avoid Autoboxing .. 57-32
57.6.4.2 Do not use Exceptions for Code Path Execution ... 57-32
57.6.4.3 Reuse Pattern Object for Regular Expression Matches 57-32
57.6.4.4 Avoid Repeated Calls to the same APIs that have Non-Trivial Costs 57-32
57.6.4.5 Close Unused JDBC Statements to Avoid Memory Leaks 57-32
57.6.4.6 Use registerOutParameter to Specify Bind Types and Precisions 57-34
57.6.4.7 Avoid JDBC Connection Leaks ... 57-34
57.7 Caching Data .. 57-34
57.7.1 Identifying Data to Cache .. 57-35
57.7.2 How to Add Data to Cache .. 57-35
57.7.3 How to Cache Multi-Language Support Data ... 57-36
57.7.3.1 Creating ADF Business Components objects for shared MLS data 57-36
57.7.3.1.1 How to create objects if only the data from the base table needs to be shared

.. 57-36
57.7.3.1.2 How to create objects if only the data from the _TL table needs to be shared

.. 57-36
57.7.3.1.3 How to create objects if both the data from the base table and the _TL table

needs to be shared .. 57-37
57.7.3.2 Creating ADF Business Components Objects that Join to MLS tables 57-37
57.7.3.2.1 How to create objects if only the data from the base table is required 57-37
57.7.3.2.2 How to create objects if only data from the _TL table is required 57-37
57.7.3.2.3 How to create objects if data from both the base table and the _TL table is

required .. 57-38
57.7.4 How to Consume Cached Data .. 57-38
57.7.4.1 Consuming Shared Data Using a View Accessor .. 57-38
57.7.4.2 Creating a shared application module programmatically 57-39

xlv

57.7.5 What Happens at Runtime: When Another Service Accesses the Shared Application
Module Cache .. 57-39

57.8 Profiling and Tracing Oracle Fusion Applications ... 57-39
57.8.1 How to Profile Oracle Fusion Applications with JDeveloper Profiler 57-39
57.9 Set up a Debug Breakpoint ... 57-40

58 Debugging Oracle ADF and Oracle SOA Suite

58.1 Introduction to Debugging Oracle ADF Debugging and Oracle SOA Suite 58-1
58.2 Collecting Diagnostics .. 58-2
58.2.1 How to Collect Diagnostics in the Integrated WebLogic Server Environment 58-2
58.2.1.1 Enabling Diagnostic Logging in the Development Environment 58-2
58.2.1.2 Enabling Database Tracing in Integrated WebLogic Server Instances 58-2
58.2.2 How to Collect Diagnostics in the Standalone WebLogic Server Environment 58-3
58.2.2.1 Enabling Diagnostic Logging in the Provisioned Environment 58-3
58.2.2.2 Adding Debug Messages to Your Code .. 58-4
58.2.2.3 Enabling Database Tracing in Standalone WebLogic Server Instances 58-4
58.2.2.3.1 Enabling Database Tracing ... 58-4
58.2.2.3.2 Locating Your Trace File ... 58-5
58.3 Diagnosing Problems ... 58-5
58.3.1 How to Diagnose Problems in the Integrated WebLogic Server Environment 58-5
58.3.1.1 Testing the JDBC Data Source Connections ... 58-6
58.3.1.2 Viewing the Application Module Pooling Statistics .. 58-6
58.3.1.3 Sanity Checking Your EAR File in the Integrated WebLogic Server Environment

... 58-6
58.3.2 How to Diagnose Problems in the Standalone WebLogic Server Environment 58-7
58.3.2.1 Sanity Checking Your EAR File in the Standalone WebLogic Server Environment

... 58-7
58.3.2.2 Examining the Oracle WebLogic Server Classloaders 58-7
58.4 Debugging in JDeveloper ... 58-8
58.4.1 How to Debug an Application Remotely ... 58-8
58.5 Troubleshooting Oracle ADF ... 58-9
58.5.1 Problems and Solutions ... 58-9
58.5.1.1 "Too many files" Error Occurs on Local Linux Servers 58-10
58.5.1.2 Compilation Error Occurs ... 58-10
58.5.1.3 "No def found" or "No class def found" Exception Occurs 58-10
58.5.1.4 Breakpoints Are Not Functioning Correctly .. 58-11
58.5.1.5 Empty List in the Data Controls Panel .. 58-11
58.5.1.6 Runtime Error Related to DataBindings.cpx File ... 58-12
58.5.1.7 "Application module not found" Errors Related to DataBindings.cpx File 58-12
58.5.1.8 Oracle WebLogic Server Hot Reloading Does Not Work 58-12
58.5.1.9 Missing ADF Component at Runtime in Oracle WebLogic Server 58-12
58.5.1.10 Odd ADF Component Errors .. 58-13
58.5.1.11 Oracle WebLogic Server is Not Responding .. 58-13
58.5.1.12 Missing Base Class ... 58-14
58.5.1.13 Unavailable FND Components ... 58-14
58.5.1.14 JavaServer Pages Compilation Errors .. 58-14
58.5.1.15 ApplicationDB Errors While Running the Integrated WebLogic Server 58-14

xlvi

58.5.1.16 Metadata Services Runtime Exception .. 58-15
58.5.1.17 Application Cannot Fetch Data from Oracle Fusion Applications Database ... 58-15
58.5.1.18 "The task cannot be processed further" Message Appears 58-15
58.5.1.19 TimedOut Exception Occurs ... 58-16
58.6 Testing and Troubleshooting Oracle SOA Suite ... 58-16

59 Designing and Securing View Objects for Oracle Business Intelligence
Applications

59.1 Introduction to View Objects for Oracle Business Intelligence Applications 59-1
59.2 General Design Guidelines ... 59-2
59.2.1 Entity Object Guidelines .. 59-3
59.2.2 Association Guidelines .. 59-3
59.2.3 View Object Guidelines ... 59-3
59.2.3.1 Technical Requirements .. 59-3
59.2.3.2 View Object Attributes Guidelines .. 59-4
59.2.3.3 Outer Joins .. 59-5
59.2.4 View Links Guidelines ... 59-5
59.2.5 View Criteria Guidelines ... 59-6
59.3 Understanding Oracle Business Intelligence Design Patterns .. 59-6
59.3.1 Understanding Flattened View Objects ... 59-6
59.3.2 Understanding Fact-Dimension Relationships .. 59-7
59.3.3 Understanding Self Referencing Entities (Self-Joins) ... 59-7
59.3.4 Understanding Business Intelligence Filters .. 59-7
59.3.5 Understanding Translations .. 59-8
59.3.6 Understanding Date Effectivity ... 59-8
59.3.6.1 Date Effectivity Exceptions for Oracle BI Applications 59-8
59.4 Designing and Securing Fact View Objects .. 59-9
59.4.1 Designing Fact View Objects ... 59-9
59.4.2 Securing Fact View Objects .. 59-9
59.4.2.1 Securing the Same Transaction by Multiple Entities for Different Roles 59-10
59.4.2.2 Securing Transactions Different from Securing Dimensions 59-12
59.4.2.3 Joining Facts to Facts ... 59-12
59.4.2.4 Securing MOAC-Based transactional Applications ... 59-13
59.5 Designing and Securing Dimension View Objects ... 59-13
59.5.1 Designing Dimension View Objects .. 59-13
59.5.2 Designing Business Unit Dimensions .. 59-13
59.5.3 Securing Dimension View Objects ... 59-13
59.5.3.1 Securing Dimensions Composed of Multiple Entities 59-14
59.5.3.2 Securing Transactions Using Dimension with Dimension Browsing Unsecured

.. 59-14
59.5.4 Using Multi-Valued Dimension Attributes .. 59-14
59.5.5 Using Junk Dimensions and Mini Dimensions .. 59-15
59.5.6 Using Secured and Unsecured Dimension View Objects 59-15
59.6 Designing Date Dimensions ... 59-15
59.6.1 Using the Gregorian Calendar ... 59-15
59.6.2 Using the Fiscal Calendar .. 59-16
59.6.3 Using the Projects Calendar ... 59-16

xlvii

59.6.4 Using Timestamp Columns ... 59-16
59.6.5 Using Role-Playing Date Dimensions .. 59-16
59.7 Designing Lookups as Dimensions .. 59-16
59.7.1 Securing Data on Lookups ... 59-17
59.8 Designing and Securing Tree Data ... 59-17
59.8.1 Designing a Column-Flattened View Object for Oracle Business Intelligence 59-17
59.8.1.1 How to Generate a BICVO Automatically Using Tree Management 59-20
59.8.2 Customizing the FND Table Structure and Indexes ... 59-22
59.8.3 Using Declarative SQL Mode to Design View Objects for Oracle Business Intelligence

Applications ... 59-22
59.8.3.1 Using Single Data Source View Object Design Pattern 59-22
59.8.3.2 Using Multiple Data Source View Objects Design Pattern 59-23
59.8.3.3 Setting the Declarative-Mode BICVO Properties ... 59-25
59.8.4 Guidelines for ATG-Registration and BICVO Generation 59-25
59.8.5 Guidelines for Hierarchy Depth and Conformance ... 59-26
59.8.5.1 Resolving Problems ... 59-28
59.8.6 Securing ADF Business Components View Objects for Trees 59-28
59.8.6.1 Security Implementation ... 59-29
59.9 Supporting Flexfields for Oracle Business Intelligence .. 59-30
59.10 Supporting SetID .. 59-30
59.10.1 How to Expose the SetID Attribute for Set-Enabled Lookups 59-30
59.10.2 How to Expose the SetID Attribute for Set-Enabled Reference Tables 59-31
59.11 Supporting Multi-Currency .. 59-31

60 Implementing ADF Desktop Integration

60.1 Oracle Application Development Framework Desktop Integration Standards and
Guidelines .. 60-1

60.1.1 How to Structure the ADF Desktop Integration Directories 60-2
60.1.2 How to Name Your ADF Desktop Integration Files .. 60-3
60.1.3 How to Implement the Dialog Attributes Declarative Component 60-4
60.1.3.1 Adding the Component to Your Page ... 60-5
60.2 Skinning Excel ADF Desktop Integration Workbooks ... 60-6
60.3 Configuring the WebLogic Server Frontend .. 60-6

61 Creating Customizable Applications

61.1 Introduction to Creating Customizable Applications ... 61-1
61.2 Preparing an Application for Customizations .. 61-2
61.2.1 How to Set Project Properties to Enable User and Seeded Customizations 61-3
61.2.2 How to Configure the Persistence Change Manager ... 61-4
61.2.3 How to Enable Translations of Customized Strings .. 61-6
61.2.4 How to Add Composer Technology Scope to Your Project 61-6
61.2.5 How to Enable the User Customization of the UI Shell Template 61-7
61.2.6 How to Create a Database Connection at the IDE Level .. 61-8
61.3 Enabling Runtime Customization of Pages and Components .. 61-9
61.3.1 How to Enable Pages for Runtime Customization ... 61-11
61.3.1.1 Ensuring Customizable Pages Have Page Definitions 61-12

xlviii

61.3.1.2 Making a JSPX Document Editable at Runtime ... 61-12
61.3.1.3 Setting Up a Resource Catalog .. 61-12
61.3.1.4 Using the Default Catalog Definition File for Testing 61-12
61.3.2 How to Enable End-User Personalizations for a Page ... 61-13
61.3.3 How to Restrict Customization of a Page, Page Fragment, or Component 61-13
61.3.4 How to Authorize the Runtime Customization of Pages and Task Flows 61-14
61.3.5 How to Persist Implicit Runtime Customizations .. 61-15

62 Working with Extensions to Oracle Enterprise Scheduler

62.1 Introduction to Oracle Enterprise Scheduler Extensions ... 62-2
62.2 Standards and Guidelines .. 62-2
62.3 Creating and Implementing a Scheduled Job in Oracle JDeveloper 62-2
62.3.1 How to Create and Implement a Scheduled Job in JDeveloper 62-3
62.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in

JDeveloper ... 62-3
62.4 Creating a Job Definition .. 62-3
62.4.1 How to Create a Job Definition .. 62-3
62.4.2 How to Define File Groups for a Job .. 62-9
62.4.3 What Happens When You Create a Job Definition .. 62-10
62.4.4 What Happens at Runtime: How Job Definitions Are Created 62-10
62.5 Configuring a Spawned Job Environment ... 62-11
62.5.1 How to Create an Environment File for Spawned Jobs ... 62-11
62.5.2 How to Configure an Oracle Wallet for Spawned Jobs .. 62-12
62.5.3 What Happens When You Configure a Spawned Job Environment 62-14
62.6 Implementing a PL/SQL Scheduled Job .. 62-14
62.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job 62-14
62.6.2 How to Define Metadata for a PL/SQL Scheduled Job ... 62-14
62.6.3 How to Implement a PL/SQL Scheduled Job .. 62-14
62.6.4 What Happens When You Implement a PL/SQL Job .. 62-14
62.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented 62-16
62.7 Implementing a SQL*Plus Scheduled Job .. 62-17
62.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job 62-17
62.7.2 How to Implement a SQL*Plus Job .. 62-17
62.7.3 How to Use the SQL*Plus Runtime API .. 62-17
62.7.4 What Happens When You Implement a SQL*Plus Job .. 62-18
62.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented 62-19
62.8 Implementing a SQL*Loader Scheduled Job .. 62-19
62.8.1 How to Implement a SQL*Loader Scheduled Job .. 62-19
62.8.2 What Happens When You Implement a SQL*Loader Scheduled Job 62-20
62.9 Implementing a Perl Scheduled Job ... 62-20
62.9.1 How to Implement a Perl Scheduled Job ... 62-20
62.9.2 What Happens When You Implement a Perl Scheduled Job 62-21
62.10 Implementing a C Scheduled Job ... 62-23
62.10.1 How to Define Metadata for a C Scheduled Job .. 62-23
62.10.2 How to Implement a C Scheduled Job ... 62-23
62.10.3 Scheduled C Job API .. 62-23
62.10.4 How to Test a C Scheduled Job .. 62-25

xlix

62.10.5 What Happens When You Implement a C Scheduled Job 62-26
62.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented 62-29
62.11 Implementing a Host Script Scheduled Job .. 62-29
62.12 Implementing a Java Scheduled Job ... 62-30
62.12.1 How to Define Metadata for a Scheduled Java Job .. 62-30
62.12.2 How to Use the Java Runtime API ... 62-30
62.12.3 How to Cancel a Scheduled Java Job ... 62-30
62.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented 62-31
62.13 Elevating Access Privileges for a Scheduled Job .. 62-31
62.13.1 How to Elevate Access Privileges for a Scheduled Job .. 62-32
62.13.2 How Access Privileges Are Elevated for a Scheduled Job 62-33
62.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job 62-34
62.14 Creating an Oracle ADF User Interface for Submitting Job Requests 62-34
62.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests 62-34
62.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting Job

Requests ... 62-41
62.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User

Interface for Submitting Job Requests .. 62-42
62.14.4 How to Save and Schedule a Job Request Using an Oracle ADF UI 62-43
62.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF UI 62-44
62.14.6 How to Notify Users or Groups of the Status of Executed Jobs 62-45
62.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting Job

Requests ... 62-46
62.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job

Requests Is Created .. 62-46
62.15 Submitting Job Requests Using the Request Submission API 62-47
62.16 Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled

Job .. 62-47
62.16.1 How to Define Oracle BI Publisher Postprocessing for a Scheduled Job 62-48
62.16.2 How to Define Oracle BI Publisher Postprocessing Actions for a Scheduled PL/SQL

Job .. 62-52
62.16.3 What Happens When You Define Oracle BI Publisher Postprocessing Actions for a

Scheduled Job .. 62-53
62.16.4 What Happens at Runtime: How Oracle BI Publisher Postprocessing Actions are

Defined for a Scheduled Job ... 62-53
62.16.5 Invoking Postprocessing Actions Programmatically ... 62-53
62.17 Monitoring Scheduled Job Requests Using an Oracle ADF UI 62-56
62.17.1 How to Monitor Scheduled Job Requests .. 62-56
62.17.2 How to Embed a Table of Search Results as a Region on a Page 62-57
62.17.3 How to Log Scheduled Job Requests in an Oracle ADF UI 62-59
62.17.4 How to Troubleshoot an Oracle ADF UI Used to Monitor Scheduled Job Requests

... 62-59
62.18 Using a Task Flow Template for Submitting Scheduled Requests Through an Oracle ADF

UI .. 62-61
62.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through an

Oracle ADF UI ... 62-62
62.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests through

an Oracle ADF UI ... 62-63

l

62.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled
Requests through an Oracle ADF UI ... 62-64

62.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit Scheduled
Requests through an Oracle ADF UI ... 62-64

62.19 Securing Oracle ADF UIs ... 62-64
62.20 Integrating Scheduled Job Logging with Oracle Fusion Applications 62-65
62.21 Logging Scheduled Jobs ... 62-65
62.21.1 Using the Request Log ... 62-65
62.21.2 Using the Output File .. 62-66
62.21.3 Debugging and Error Logging ... 62-66

63 Oracle Enterprise Scheduler Security

63.1 Introduction to Oracle Enterprise Scheduler Security .. 63-1
63.1.1 Oracle Enterprise Scheduler Metadata Access Control .. 63-1
63.1.2 Oracle Enterprise Scheduler Job Execution Security .. 63-2
63.2 Configuring Metadata Security for Oracle Enterprise Scheduler 63-2
63.2.1 How to Enable Application Security with Oracle ADF Security Wizard 63-3
63.2.2 How to Define Principals for Security ... 63-3
63.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages 63-4
63.2.4 How to Create Grants with Oracle ADF Security Wizard 63-5
63.2.5 MetadataPermission APIs .. 63-7
63.2.6 What Happens When You Configure Metadata Security .. 63-7
63.3 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler 63-8
63.4 Elevating Privileges for Oracle Enterprise Scheduler Jobs ... 63-8
63.5 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler 63-8
63.5.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler 63-9
63.5.2 What Happens When You Configure a Single Policy Stripe 63-10
63.5.3 What Happens at Runtime .. 63-10
63.6 Configuring Oracle Fusion Data Security for Job Requests .. 63-10
63.6.1 Oracle Fusion Data Security Artifacts .. 63-11
63.6.2 How to Apply Oracle Fusion Data Security Policies ... 63-15
63.6.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler

Components ... 63-15

Part IX Appendices

A Working with the Application Taxonomy

A.1 Introduction to the Oracle Fusion Application Taxonomy ...A-1
A.1.1 Characteristics of the Level Categories ..A-2
A.1.2 How to Manage the Lifecycle ..A-2
A.1.2.1 Creating Patches and Patch Sets ..A-2
A.1.2.2 System Administration ..A-2
A.1.2.3 Diagnostics and Maintenance ...A-3
A.1.3 Benefits of a Logical Hierarchy ..A-3
A.1.4 Delivery Hierarchy ..A-3
A.1.5 How to Integrate Taxonomy Task Flows into Oracle Fusion Functional Setup Manager

...A-4

li

A.2 Working with Objects and Methods in the Application TaxonomyA-4
A.2.1 Particular Table Columns and Data ...A-5
A.2.2 Denormalized Taxonomy Table ...A-5
A.2.3 Available Public Business Objects ..A-6
A.2.3.1 Accessing the Entity and View Objects ...A-8
A.2.4 How to Use Exposed Service Methods ..A-10
A.2.5 How to Traverse the Taxonomy Hierarchy ..A-11
A.3 Understanding Taxonomy MBeans ..A-11

B ECSF Command Line Administration Utility

lii

liii

Preface

Welcome to the Developer's Guide! This guide describes the Oracle Middleware
Extensions for Applications for developing Oracle Fusion Applications using the
Oracle Fusion Middleware components. This guide includes guidelines on how to set
up your development environment and build, test, and deploy Oracle Fusion
Applications. It includes specific feature details needed by developers when using the
Oracle Middleware Extensions to create applications.

Audience
This document is intended for Oracle Fusion Applications Developers and assumes
familiarity with:

■ Java and SQL

■ Java EE, JavaServlets, and JavaServer Pages

■ Oracle Application Development Framework

■ Oracle JDeveloper

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle 11g Fusion
Middleware documentation set:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition)

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition)

liv

■ Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle
Application Development Framework

■ Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle
Application Development Framework

■ Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence
Enterprise Edition

■ Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle
Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition)

■ Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence
Publisher (Oracle Fusion Applications Edition)

■ Oracle Fusion Middleware Report Designer's Guide for Oracle Business
Intelligence Publisher

■ Oracle Fusion Middleware Modeling and Implementation Guide for Oracle
Business Process Management

■ Oracle Fusion Middleware Business Process Composer User's Guide for Oracle
Business Process Management

■ Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for
Oracle Data Integrator

■ Oracle Fusion Middleware Knowledge Module Developer's Guide for Oracle Data
Integrator

■ Oracle WebCenter Content Developer's Guide for Imaging

■ Oracle Fusion Middleware Application Developer's Guide for Oracle Identity
Management

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

■ Oracle Fusion Middleware User's Guide for Technology Adapters

■ Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring

■ Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal

■ Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces

■ Oracle WebLogic Communication Services Developer's Guide

■ Oracle Fusion Middleware Application Security Guide

■ Oracle Fusion Applications Security Guide

■ Oracle Fusion Applications Security Hardening Guide

Conventions
The following text conventions are used in this document:

lv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

lvi

lvii

What's New in This Guide

The following topics introduce the new and changed features of the Oracle Fusion
Applications Developer's Guide 11g Release 5 (11.1.5) and other significant changes
that are described in this guide, and provides pointers to additional information.

New and Changed Features for 11g Release 5 (11.1.5)
The Oracle Fusion Applications Developer's Guide Release 5 (11.1.5) includes the
following new and changed features for this document.

■ New section added to describe service data object (SDO) attribute types. See
Section 5.3.1.1, "SDO Attributes."

■ New section added to describe how to include developer key attributes for foreign
keys. See Section 5.3.1.5, "Defining a List of Values (LOV) to Resolve Foreign Key
ID."

■ New section added to describe how to use flexfields as extension points. See
Section 5.3.4, "How to Expose Flexfields."

■ New section added to describe the policies required to enable security on a service.
See Section 5.3.5, "How to Enable Security."

■ New section added to describe how the Java Transaction API is used to handle
ADF Business Components transactions. See Section 5.3.6, "Using the Java
Transaction API."

■ New section added to describe how to deploy a service to an integrated or
standalone Oracle WebLogic Server service. See Section 5.3.7, "Deploying
Services."

■ New section added to describe how to test a service after it has been deployed. See
Section 5.3.8, "Testing Services."

■ New section added to describe how to invoke a synchronous service from a Java
client, including an ADF Business Components component, UI, or Oracle
Enterprise Scheduler using Service Factory. See Section 5.4.1.1, "Using Service
Factory."

■ New section added to describe the Flattening APIs. These APIs allow you to
perform flattening operations by executing WLST commands. See Section 19.14.5,
"Using WLST Commands for Flattening."

■ New section added to describe the WLST Command Report and XML Reports ,
which are generated when any of the WLST commands are executed. See
Section 19.14.6, "Understanding XML Report Formats for WLST Commands."

lviii

■ Section revised to describe the need to register the view of the extensible flexfield's
translation extension table as a database resource, instead of registering the
translation extension table itself, to enable implementors to specify and manage
access privileges for context attributes. See Section 23.4, "Registering Extension
Tables as Secured Objects."

■ Section revised to describe how to override the EffCategoryPagesBean.java class
if your application uses a different method for associating an extensible flexfield's
extension table rows with product table rows. See Section 23.9.2.1.4, "How to
Customize the Page Task Flow."

Part I
Part I Getting Started Building Your Oracle

Fusion Applications

This part of the Developer's Guide discusses how to set up and configure your
development environment to build your Oracle Fusion Applications using Oracle
JDeveloper.

Getting Started with Oracle Fusion Applications describes how to design and build your
Oracle Fusion Applications using the Oracle standards and guidelines.

Setting Up Your Development Environment describes how to configure and test your 11g
development environment. It includes the steps for setting up your JDeveloper
environment and Oracle Application Development Framework (Oracle ADF)
installation, running and deploying applications on Oracle Integrated WebLogic
Server and Oracle Standalone WebLogic Server, and the basic steps for setting up your
service-oriented architecture (SOA) development environment.

Setting Up Your JDeveloper Application Workspace and Projects describes how to create an
application so that the system automatically creates your Model and user interface
projects. Also included are instructions about how to set up your projects including
manually adding the Applications Core library to the data model project and the
Applications Core Tag library to the user interface project.

This part contains the following chapters:

■ Chapter 1, "Getting Started with Oracle Fusion Applications"

■ Chapter 2, "Setting Up Your Development Environment"

■ Chapter 3, "Setting Up Your JDeveloper Application Workspace and Projects"

1

Getting Started with Oracle Fusion Applications 1-1

1Getting Started with Oracle Fusion
Applications

This chapter describes how to design and build your Oracle Fusion Applications using
Oracle standards and guidelines. It includes an overview of Oracle Fusion
technologies and using Oracle Application Development Framework (ADF) functional
patterns.

This chapter includes the following sections:

■ Section 1.1, "Overview of Fusion Technologies"

■ Section 1.2, "Using Oracle ADF Functional Patterns and Best Practices"

1.1 Overview of Fusion Technologies
Oracle Fusion web applications are a set of business-related applications developed
with the help of various technologies. This section describes the various technologies
with which an Oracle Fusion web application developer works when developing the
applications.

The following is a list of the various categories of technologies that, as an Oracle
Fusion web application developer, you will encounter. This section does not go into
the details about why the specified technologies have been chosen, the main intention
is to give you an overview of the various technologies that are used to develop Oracle
Fusion web applications.

■ User interface (UI) technologies

■ Model technologies

■ Backend technologies

■ Orchestration technologies

■ Security

■ Customization-related technologies

■ Metadata services

■ General middle-tier technologies

■ Application server technologies

UI Technologies
Technologies that are used to create user interfaces fall into this category. The
technologies that must be used in Oracle Fusion to create these user interfaces are:

Overview of Fusion Technologies

1-2 Developer's Guide

■ ADF Faces Rich Client:

The ADF Faces rich client technology is used to create browser-based user
interfaces. It provides a set of UI components, which can be dragged and dropped
to create UIs. Among these ADF components are other components called the data
visualization tools, which are a set of rich interactive components that provide
graphical and tabular capabilities for visualizing and analyzing data.

For more information about ADF Faces, see the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

For more information about ADF Faces rich client components, see the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

■ ADF Desktop Integration:

This technology is used to create interfaces accessed through Microsoft Excel.

For more information about ADF Desktop Integration, see the Oracle Fusion
Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework.

■ ADF Mobile:

This technology is used to create interfaces that can be accessed through browsers
in mobile devices.

For more information about ADF Mobile, see the Oracle Fusion Middleware Mobile
Browser Developer's Guide for Oracle Application Development Framework.

Model Technologies
Technologies that are used to represent the business logic and the data on which the
business logic is based fall into this category. The UI technologies discussed
previously can be based on any model technology such as Enterprise JavaBeans (EJB),
Oracle Toplink, and so on. In Oracle Fusion, ADF Business Components is the model
technology that is used in all applications.

Backend Technologies
These technologies are the set of storage technologies that are used to store the
transactional and relational data. The primary technologies used in Oracle Fusion to
store and retrieve data are:

■ Oracle Database: This is used to store and retrieve all transactional and reference
data.

For more information see the Oracle Database Administrator's Guide.

■ Oracle Essbase: This is used to manage multi-dimensional data. Essbase provides
adaptable data storage mechanisms for specific types of analytic and performance
management applications. It is used to manage multi-dimensional data.

Orchestration Technologies
These are the technologies that are used in the service-oriented architecture (SOA)
world. The primary purpose of these technologies is to assemble various services
together to provide comprehensive functionality.

In Oracle Fusion, many product applications provide their functionality in the form of
web services. OracleAS BPEL Process Manager is used to assemble these web services
together to provide end-to-end functionality.

Overview of Fusion Technologies

Getting Started with Oracle Fusion Applications 1-3

For more information about SOA, see the Oracle Fusion Middleware Developer's Guide for
Oracle SOA Suite.

Security
Security is an integral part of all of the technologies previously mentioned. The
technology used to provide security for Oracle Fusion Applications is Oracle Platform
Security Services (OPSS).

For more information about OPSS, see the Oracle Fusion Middleware Oracle Platform
Security Services (OPSS) & Oracle Authorization Policy Manager (OAPM) Frequently Asked
Questions.

Customization-Related Technologies
Customization-related technologies give customers the tools they need to customize
the artifacts that developers have created. For example, the customer requires more
information on the Invoices Entry UI that the developer created. They want to
customize the UI by adding this extra information. To perform this type of
customization, Metadata Services (MDS) technology is used.

Another level of customization, which is used to customize the UI pages at runtime, is
called Design Time at Runtime (DTRT) customization. This type of customization is
performed using the WebCenter technologies. (This uses Oracle Metadata Services
(MDS) internally.)

In addition to customization, WebCenter provides many other services. For more
information about WebCenter technologies, see the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

Additional Technologies
In addition to the technologies previously discussed, there are many others that Oracle
Fusion web application developers may encounter. These include:

■ Oracle Enterprise Scheduler Service: Oracle Enterprise Scheduler Service
provides the ability to run different Job Types, including: Java, PL/SQL, and
Binary Scripts, distributed across the nodes in an OracleAS Cluster. Oracle
Enterprise Scheduler Service runs these jobs securely, with high availability and
scalability, with load balancing and provides monitoring and management
through Oracle Enterprise Manager Fusion Middleware Control.

For more information about Oracle Enterprise Scheduler Service, see the Oracle
Fusion Middleware Developer's Guide for Oracle Enterprise Scheduler.

■ Oracle Enterprise Crawl and Search Framework (ECSF): ECSF helps expose
application context information on business objects to enable full-text transactional
search.

For more information about Oracle Enterprise Crawl and Search Framework, see
Chapter 26, "Getting Started with Oracle Enterprise Crawl and Search
Framework."

■ Oracle Business Rules (OBR): Oracle Business Rules enable dynamic decisions at
runtime allowing you to automate policies, computations, and reasoning while
separating rule logic from underlying application code. This allows more agile
rule maintenance and empowers business analysts with the ability to modify rule
logic without programmer assistance and without interrupting business processes.

For more information about Oracle Business Rules, see the Oracle Fusion
Middleware User's Guide for Oracle Business Rules.

Using Oracle ADF Functional Patterns and Best Practices

1-4 Developer's Guide

■ Oracle Data Integrator (ODI): Oracle Data Integrator is a comprehensive data
integration platform that covers all data integration requirements - from
high-volume, high-performance batches, to event-driven, trickle-feed integration
processes, to SOA-enabled data services.

For more information about Oracle Data Integrator, see the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

1.2 Using Oracle ADF Functional Patterns and Best Practices
The Oracle ADF Functional Patterns and Best Practices web site contains documents that
describe and demonstrate functional patterns and best practices for specific tasks in
development when utilizing the Oracle Application Development Framework (Oracle
ADF) within JDeveloper. New functional patterns and best practices will appear on a
regular basis. Also remember to check JDeveloper's online help and search the Web for
more information that might be published on blogs.

The functional patterns and best practices discussed on the web site include:

■ Oracle User Interface Shell

■ Accessibility Global Link

■ Unsaved Changes

■ ADF Region Interaction

■ Enabling and Disabling a UI Component.

2

Setting Up Your Development Environment 2-1

2Setting Up Your Development Environment

This chapter describes how to configure and test your development environment. It
includes the steps for setting up your JDeveloper environment and Oracle Application
Development Framework (Oracle ADF) installation, running and deploying
applications on Integrated WebLogic Server, and the basic steps for setting up your
Oracle SOA Suite development environment.

This chapter includes these sections:

■ Section 2.1, "Introduction to the Development Environment"

■ Section 2.2, "Setting Up the JDeveloper-based Personal Environment"

■ Section 2.3, "Setting Up the Personal Environment for Standalone WebLogic
Server"

■ Section 2.4, "Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion
Middleware Control"

■ Section 2.5, "Using Deployment Profiles Settings"

■ Section 2.6, "Configuring the Oracle Enterprise Scheduler (ESS)"

■ Section 2.7, "Testing Your Installation"

■ Section 2.8, "Using Best Practices for Setting Up the Development Environment"

■ Section 2.9, "Configuring Hierarchy Providers for Approval Management (AMX)"

2.1 Introduction to the Development Environment

Oracle Fusion Applications provisioning involves installing, patching, configuring,
and deploying all the enterprise components. At the end of the provisioning process,
the system will be operational. An application administrator will be able to log in to
the application and begin the process of configuring the functional (application
specific) components.

Note: This chapter assumes that you are using a 64-bit operating
system although JDeveloper works well in a 32-bit environment.

However, if you do need to create and run Standalone WebLogic Server
on a local PC, such as when doing SOA work, then the operating
system must be 64-bit. The MW_HOME directory that is installed
contains a number of Oracle Homes and the Oracle Business
Intelligence installation is 64-bit only.

Introduction to the Development Environment

2-2 Developer's Guide

On-site, the administrator uses eDelivery or the DVD media to kick-start the
provisioning processes to create the test environment and the production environment.
These environments are completely isolated from one another and set up in an
identical manner. There is no reuse of, for example, the database from the production
environment in the test environment, or reuse of the Identity Store across the
environments.

These environments need to be extremely stable and should not be affected by
development projects. Typical development projects include creating new
customizations for existing Oracle Fusion applications, developing new in-house
Oracle Fusion applications, and extending Oracle Fusion applications with additional
functionality. These development projects will typically involve a team of developers
that needs to reuse certain parts, but still needs the isolation to run, test, and debug
without affecting other team members.

As a developer, you will work with one development environment that has two parts:

■ Shared environment

Includes the database and LDAP. It can also host the instance of WebLogic Server
if you require SOA for your customization work.

■ Personal environment

This is the JDeveloper instance and an instance of Integrated WebLogic Server.
This is what can run on your local desktop or laptop. You still would connect to
the database and LDAP instances on the Shared Environment.

The Personal environment also can have a standalone MW_HOME and WebLogic
Server domain, such as:

– standalone: Only the AdminServer where you can run and deploy ADF
applications.

– adminsoa: AdminServer plus SOA managed server.

– adminall: AdminServer configured for a standalone domain and a SOA
managed server.

– adminadfess: AdminServer configured for standalone domain and an ESS
managed server.

The shared environment plus the personal environment form the complete
development environment.

2.1.1 Shared Environment
The shared environment is a fully-provisioned Oracle Fusion Applications
environment to be shared among multiple developers. It normally will be set up by an
administrator using the provisioning framework. This environment normally is set up
on a machine that is more powerful than the normal developer's machine, which often
is a laptop.

Developers would obtain the EAR files to be customized from the filesystem from this
environment.

The database, WebLogic Servers and common services provided by this environment
would be used by the developers' applications.

When it is provisioned, the shared environment contains:

■ Database

Introduction to the Development Environment

Setting Up Your Development Environment 2-3

When provisioning installs and configures the database, it makes sure that all the
necessary schemas are created in it. Provisioning also ensures that the Oracle
Fusion Functional Setup Manager is run, the taxonomy tables are populated, and
the FlexFields are defined. The same database also contains the ApplicationDB
schema that contains the data that developers see when working with the
applications.

■ Oracle Middleware Home

Provisioning creates a complete Middleware home while creating the shared
environment. Middleware home contains individual Oracle homes for product
families, Oracle Business Intelligence, Oracle Fusion applications, WebLogic
Server, and so on. Middleware home contains the exploded EAR (archive)
directories of the deployed applications. The provisioning processes update and
modify the connections.xml and the adf-config.xml files in the exploded EAR
directories of all the deployed applications to point to the correct host, port, and
endpoint details, based on where the database and the WebLogic Server domains
have been provisioned in the shared environment.

■ WebLogic Server domains

The shared environment has one or more WebLogic Server domains running with
Oracle Fusion applications deployed. Each domain will have one AdminServer
and at most three ManagedServers. One of the applications may use web services
from another application. As a result, the connections.xml file will have
references to the endpoint defined in other applications. These domains will be
useful in performing system tests.

■ Identity Store and Policy Store

The Identity Store and the Policy Store are not provisioned by the provisioning
process. The administrator follows the Identity Management documentation and
processes to set up LDAP/Oracle Internet Directory-based Identity and Policy
Stores for authentication and authorization purposes. These stores in the Shared
Environment are used by multiple personal environments set up on developers'
laptops. Like the exploded EAR directories of the deployed applications in the
Middleware home, these stores from the shared environment are not intended to
be modified by the personal environments that are using them.

Properties and features of the shared environment include:

■ The shared environment can be accessed from the personal environment (see
Section 2.1.2, "Personal Environment") so developers can reach the installation
directory that normally is called MW_HOME.

■ The exploded EAR directory in Middleware home can be opened from JDeveloper
and a workspace can be created. The exploded EARs in Middleware home have
the connections.xml and adf-config.xml files set up correctly to point to the
correct database and other deployed applications in the shared environment.

■ The LDAP and OPSS credentials in the personal environment point to the Identity
Store and the Policy Store in the shared environment.

■ WebLogic Server domains run in the shared environment and Oracle Fusion
applications are deployed to those domains.

For more information about provisioning an environment, see "Provisioning a New
Applications Environment" in the Oracle Fusion Applications Installation Guide, and the
Oracle Fusion Applications release notes.

Introduction to the Development Environment

2-4 Developer's Guide

2.1.1.1 Creating the OWSM_MDS Schema
Typically, and particularly in a test environment and a production environment, this
schema is in the Oracle Identity Manager (IDM) database. In the case of a development
environment, being able to access the Oracle Web Services Manager_Metadata Services
(OWSM_MDS) schema provides the same options that Oracle Fusion Applications
developers at Oracle have.

This step is optional and depends on how the environment is set up and the type of
security that is required.

The mds-owsm datasource needs to be correctly configured to point to an MDS
schema. In the production environment, this schema would be in the LDAP
infrastructure database.

■ To configure the datasource, you need to know the schema password. If the
administrator allows all developers to know the schema password for this MDS
schema, then a new MDS schema does not need to be created.

■ If the schema password is locked down, then follow the steps in this section to
create a new MDS schema for OWSM use. See Section 2.1.1.1.1, "How to Create the
OWSM_MDS Schema."

■ If you have a local database, you probably will want to create the schema in the
local database.

2.1.1.1.1 How to Create the OWSM_MDS Schema This section provides detailed snapshots
on how to create the OWSM_MDS schema using the Oracle Fusion Applications
Repository Creation Utility.

In a production environment, the OWSM_MDS schema is in the IDM database. The
IDM is typically locked down so information such as schema passwords are not
handed out. But, to configure the domain, the schema and the password are required
to set up the mds-owsm datasource. The starter transaction database does not contain
the OWSM_MDS schema. This is correct and the base template to create the starter
transaction database should not be changed to include it. To avoid widely
disseminating the schema password of the IDM database, an extra MDS should be
added to the development's transaction database using the Oracle Fusion Applications
Repository Creation Utility with a prefix of OWSM.

You do not have to do anything else apart from adding this schema. The schema will
be correctly populated when your domain starts, if it does not already contain the
correct data.

There may be a number of Oracle Fusion Applications Repository Creation Utilities
available. To provision Oracle Fusion Applications, you will have created an installer
repository. In this repository, you will see the following:

installers/
 apps_rcu/
 linux/
 rcuHome_fusionapps_linux.zip
 windows/
 rcuHome_fusionapps_win.zip
 biapps_rcu/
 fmw_rcu/

Copy the appropriate ZIP file to your system from the installers/apps_rcu directory.

Once you get the ZIP file to your machine, follow these steps:

Linux system

Introduction to the Development Environment

Setting Up Your Development Environment 2-5

% mkdir fa_rcu
% cd fa_rcu
% cp /from_zip_file_location/rcuHome_fusionapps_linux.zip .
% unzip rcuHome_fusionapps_linux.zip
% cd bin
% ./rcu

Windows system

md fa_rcu
cd fa_rcu
copy \from_zip_file_location\rcuHome_fusionapps_win.zip .
unzip rcuHome_fusionapps_win.zip
\path_to_rcu_utility\rcu

The Oracle Fusion Applications Repository Creation Utility starts and displays the
Create Repository dialog, shown in Figure 2–1.

Figure 2–1 Creating the Repository

Select Create and click Next to display the Database Connection Details dialog, shown
in Figure 2–2.

Introduction to the Development Environment

2-6 Developer's Guide

Figure 2–2 Creating the Database Connection

Enter your database connection details and click Next to display the Checking Global
Prerequisites dialog, shown in Figure 2–3.

Figure 2–3 Checking Global Prerequisites

Click OK to display the Select Components dialog, shown in Figure 2–4.

Introduction to the Development Environment

Setting Up Your Development Environment 2-7

Figure 2–4 Selecting Components

Select Create a new Prefix and enter OWSM as the name.

Expand AS Common Schemas and select Metadata Services.

Click Next to display the Checking Component Prerequisites dialog, shown in
Figure 2–5.

Figure 2–5 Checking Component Prerequisites

Click OK to display the Schema Passwords dialog, shown in Figure 2–6.

Introduction to the Development Environment

2-8 Developer's Guide

Figure 2–6 Setting Schema Passwords

Select Use same passwords for all schemas and enter the password for the OWSM_
MDS schema in the Password and Confirm Password fields.

Click Next to display the Map Tablespaces dialog, shown in Figure 2–7.

Introduction to the Development Environment

Setting Up Your Development Environment 2-9

Figure 2–7 Mapping Tablespaces

In the Default Tablespace field, select FUSION_TS_TOOLS.

In the Temp Tablespace field, select either FUSION_TEMP or TEMP3.

Click Next to display the Validating and Creating Tablespaces dialog, shown in
Figure 2–8.

Figure 2–8 Validating Created Tablespaces

Click OK to display the Summary dialog, shown in Figure 2–9.

Introduction to the Development Environment

2-10 Developer's Guide

Figure 2–9 Summary

Verify the information and click Create.

When the operation has completed successfully, the Completion Summary dialog,
shown in Figure 2–10, displays.

Introduction to the Development Environment

Setting Up Your Development Environment 2-11

Figure 2–10 Completion Summary

Click Close.

The OWSM_MDS schema now can be used to configure the mds_owsm datasource in
the domain.

2.1.2 Personal Environment
Each developer has this environment that uses the database, Middleware home, and
the Identity and Policy stores from the shared environment. The shared environment is
made available by using NFS mount or a mapped drive in the personal environment.
In this environment, developers can use JDeveloper to run, test, and debug their
changes without affecting other team members.

The personal environment consists of two parts:

■ The JDeveloper-based environment that is created by installing JDeveloper,
extension bundles and patches.

■ The environment for Standalone WebLogic Server that is created using scripts and
installer files.

Manually Deploying the oracle.apps.common.resource Shared Library
Once an Integrated or a Standalone WebLogic Server has been launched, you will need
to deploy the oracle.apps.common.resource.ear shared library. You may need to get
the location of the file from an administrator and then use the WebLogic Server
Console to deploy it as a shared library using oracle.apps.common.resource as the name.
See Section 2.2.3.1, "Managing Integrated WebLogic Server."

Setting Up the JDeveloper-based Personal Environment

2-12 Developer's Guide

2.2 Setting Up the JDeveloper-based Personal Environment
You assemble this environment on your machine by performing these steps in this
order:

■ Installing JDeveloper

■ Installing Extension Bundles

■ Applying patches (if necessary)

Using JDeveloper and the Oracle Fusion Domain wizard, you can create the fusion_
apps_wls.properties file and a credential store. You will enter the host, port, and
other details for the database and Identity Store from the shared environment.
Eventually, the wizard will do the following:

■ Create DefaultDomain.

■ Extend DefaultDomain with WebLogic Server templates so that the shared
libraries are added to the CLASSPATH and the system properties are set.

■ Configure DefaultDomain with datasources and the Identity Store that are
available in the shared environment.

DefaultDomain is run as part of Integrated WebLogic Server from within JDeveloper.
To create customizations for a shipped Oracle Fusion application, you can use
JDeveloper to point to the exploded EAR directory of the application in the shared
environment's Middleware home. A customization workspace will be created in
JDeveloper with the adf-config.xml file being modified such that the Metadata
Services (MDS) metadata store points to the filesystem. However, the DefaultDomain
is configured with the ApplicationDB datasource that points to the fusion runtime
schema that is installed in the database from the shared environment. Since the MDS
namespace has been altered while incorporating the exploded EAR directory, the
customizations that are created on the filesystem are picked up when the application is
run within Integrated WebLogic Server.

2.2.1 Before You Begin
Before you can use JDeveloper, there are several things you need to do.

2.2.1.1 Removing the SCIM Process

If you are using your own workstation, you probably have a process called SCIM
running. This process may prevent you from entering a password in the Oracle Fusion
Domain wizard or anywhere a JPasswordField occurs. You can remove SCIM from your
system by executing this command.

sudo yum remove scim

You also can just kill the processes by executing the following command. However, if
you just kill the processes instead of removing SCIM, you must kill them each time
you reboot your system.

ps -ef | grep -i scim

You then can kill -9 all those processes.

Note: This step is not applicable if you are running a Windows
environment.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-13

2.2.1.2 Increasing Open File Limit on Local Linux Servers
This system configuration change is required on local Linux servers to increase the
open file limit and resolve a number of JDeveloper, WebLogic Server and other "Too
many files" errors when doing a build or merge.

■ Add these two instructions to the /etc/security/limits.conf file:

■ soft nofile 8192

■ hard nofile 8192

■ Restart the machine to have these values take effect.

■ To check whether the settings took effect, change to a bash shell and run this
command.

[userid@blah ~] bash
bash-3.1$ > ulimit -n
8192

2.2.1.3 Installing JDeveloper
JDeveloper is supplied on the Oracle JDeveloper 11g and Oracle Application
Development Framework 11g (11.1.1.5.3) disk. JDeveloper support files, such as
extensions, are supplied on the Oracle Fusion Applications Companion 11g
(11.1.1.5.3) disk. Your administrator may choose to make the contents of the disks
available on a shared directory that will have the same directory structure as the disks.
We strongly recommend that the administrator make the contents of the Oracle Fusion
Applications Companion 11g (11.1.1.5.3) disk available on a shared directory.

Install the Studio edition of JDeveloper from the top-level directory of the Oracle
JDeveloper 11g and Oracle Application Development Framework 11g (11.1.1.5.3) disk.

For Windows, you can use the jdevstudio11115install.exe installer. For Linux, you can
use the jdevstudio11115install.bin installer. If you decide to use the generic
jdevstudio11115install.jar installer, you must first install JDK 6 Update 24 from the
Oracle Technical Network and then install JDeveloper using the generic installer.

The installation will let you specify the directory into which to install JDeveloper. Do
not include any spaces in the path. This installation directory is referred to as MW_HOME.

When you have started JDeveloper, you will need to install the extension bundles from
the fusion_apps_extensions directory on the Oracle Fusion Applications Companion
11g (11.1.1.5.3) disk. See Section 2.2.1.5, "Setting Up the JDeveloper-based
Development Environment."

For more installation information, see the Oracle Fusion Middleware Installation Guide for
Oracle JDeveloper (Oracle Fusion Applications Edition).

2.2.1.4 Adding Customization Extension Bundles to the jdev.conf File
You must set this option before starting to customize an application if your application
contains product-specific customization classes.

In $MW_HOME/jdeveloper/jdev/bin, open the jdev.conf file in a text editor and add
this line:

AddVMOption -Dide.extension.extra.search.path

Note: The directions in this section assume that you are installing
from the disk.

Setting Up the JDeveloper-based Personal Environment

2-14 Developer's Guide

/path/to/customization/bundles/directory1:/path/to/customization/bundles/directory
2

where -Dide.extension.extra.search.path
/path/to/customization/bundles/directory1:/path/to/customization/bundles/d
irectory2 is the fully-qualified path or paths to the directory or directories in which
the JAR files containing the product-specific customization classes are located. Paths
already exist as part of the provisioned environment. You will have to get one or more
paths from an administrator. The administrator can use these steps to locate the JAR
files:

■ Look under APP-INF/lib under the exploded EAR for all JAR files that start with
Ext.

■ Find the JAR files that contain the product specific customization classes. These
classes can be found in the adf-config file. If the product-specific customization
class cannot be found in any of the JAR files under APP_INF/lib/Ext*.jar, look at
all JAR files under the EarContents to find it.

2.2.1.5 Setting Up the JDeveloper-based Development Environment
Follow these steps to create a development environment based on Integrated
WebLogic Server:

1. From a command prompt, run python -V to see if you have Python 2.4.3 or later
on your machine. If you do not, install Python version 2.4.3 or newer.

2. Set these environment variables:

csh commands:

setenv PATH /path/to/python/bin:$PATH
setenv MW_HOME /path/to/JDeveloper/installation/directory
setenv JAVA_HOME $MW_HOME/jdk160_24
setenv PATH $JAVA_HOME/bin:$PATH
setenv JDEV_USER_HOME /path/to/a/directory
(Optional) setenv FADEV_VERBOSE true
setenv USER_MEM_ARGS "-Xms256m -Xmx1024m -XX:MaxPermSize=512m
-XX:CompileThreshold=8000"

bash commands:

export PATH=/path/to/python/bin:$PATH
export MW_HOME=/path/to/JDeveloper/installation/directory
export JAVA_HOME=$MW_HOME/jdk160_24
export PATH=$JAVA_HOME/bin:$PATH
export JDEV_USER_HOME=/path/to/a/directory
(Optional) export FADEV_VERBOSE=true
export USER_MEM_ARGS="-Xms256m -Xmx1024m -XX:MaxPermSize=512m
-XX:CompileThreshold=8000"

Windows command prompt commands:

set MW_HOME=\path\to\JDeveloper\installation\directory (Important: The path
must not contain spaces.)
set JAVA_HOME=%MW_HOME%\jdk160_24 (Recommended: You can download a 64-bit JDK
from the Oracle Technology Network here:
http://www.oracle.com/technetwork/java/javasebusiness/downloads/jav
a-archive-downloads-javase6-419409.html#jdk-6u24-oth-JPR)
set PATH=%JAVA_HOME%\bin;%PATH%
set JDEV_USER_HOME=\path\to\a\directory (Important: The path must not contain
spaces.)

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-15

set USER_MEM_ARGS=-Xms256m -Xmx1024m -XX:MaxPermSize=512m
-XX:CompileThreshold=8000
(Optional) set FADEV_VERBOSE=true

3. Change directory to $MW_HOME/jdeveloper/jdev/bin.

4. Open the jdev.conf file in a text editor and add this line:

AddVMOption -Djdev.wlst.env.vars=HOME,JDEV_USER_HOME

If necessary, add other options from Table 2–1.

Save and close the jdev.conf file.

5. Start JDeveloper.

jdev &

If you need more details about the JDeveloper startup, you can use the verbose
command line argument, such as:

jdev -verbose

When prompted, select the Default Role, as shown in Figure 2–11.

Table 2–1 VMOptions in jdev.conf

Name Value Comments

-Dide.extension.extra.search.path /x/y/z Fully qualified path or paths to the directory or
directories where Customization Extension Bundles a
located. You probably will need to get this informatio
from an administrator.

-DURLChooser.forceUseList true Optional.

-DURLChooser.disableCompletionPopup true Optional.

-DUNIX_WEB_BROWSER /usr/bin/firefox Location of the browser executable specific to the
environment at the customer's site.

-Djbo.SecondaryADFLibVisible true

-Ddeployment.jario.writepolicy recreate

-Doracle.webcenter.portlet.enableApplic
ationStriping

true

-Doracle.webcenter.portlet.dt.excludeEx
portSet

true

-Dadflib.project.open.refresh false

-Djdev.wlst.env.vars HOME,JDEV_USER_
HOME

These are sanctioned environment variables that will
allowed for use in WebLogic Server Scripting Tool
(WLST) scripts. Environment variables that are not in
this list will be ignored by the script. You can add
variables to this list.

-XX:MaxPermSize 512M

-Xmx1024M

-Xms256M

-XX:+DisableExplicitGC

Setting Up the JDeveloper-based Personal Environment

2-16 Developer's Guide

Figure 2–11 Selecting the Default Role

Because you will need to select a different role later, you should make sure you
select the Always prompt for role selection on startup option.

The JDeveloper environment can be tailored based on the role you select. The
modified environment removes unneeded items from JDeveloper, including
menus, preferences, New Gallery, and even individual fields on dialogs. The
JDeveloper role you select determines which technologies and options are
available to you as you work in JDeveloper.

Table 2–2 provides a brief explanation of the available roles.

Click OK. As JDeveloper loads, the Migrate User Settings prompt may display. If
it does and you are not sure whether or not to migrate settings, you should click
No.

Table 2–2 JDeveloper Roles

Role Description

Default Role This role allows you to access all of JDeveloper's features. The other roles provide
subsets of these features.

Oracle Fusion
Applications
Administrator
Customization

This is the main customization role for Oracle Fusion Applications customers.

Important: You must use this Role for customizing SOA Composites.

Oracle Fusion
Applications Developer

This is for Oracle Fusion Applications developers to use to build new applications.

Database Edition This gives you access to just the core database development tools.

Java EE Edition This includes only features for core Java EE development.

Java Edition This includes only features for core Java development.

BPM Process Analyst Configures the product for a BPM Business Analyst.

Customization Developer Configures the product for customizing metadata.

Oracle Fusion
Applications
Customization

Configures JDeveloper for customizing metadata for Oracle Fusion Applications
developers.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-17

6. Install the Fusion Apps Development Environment extension bundle, an
all-encompassing JDeveloper bundle that is specific for Oracle Fusion
Applications. To install the bundle:

a. Select Help > Check for Updates.

b. Click Next past the Welcome dialog.

c. If the Proxy Setup dialog displays, enter the applicable information for your
situation, as shown in Figure 2–12.

Figure 2–12 Completing the Proxy Setup Dialog

Ignore any error messages that might be displayed when you click the Test
Proxy button.

d. Click OK. The Source dialog, shown in Figure 2–13, displays.

Setting Up the JDeveloper-based Personal Environment

2-18 Developer's Guide

Figure 2–13 Available Update Centers

e. Unselect any marked Update Centers.

f. Click Add to display the Update Center dialog, shown in Figure 2–14.

Figure 2–14 Adding a New Update Center

g. Enter a name for the new Update Center, such as Oracle Fusion Applications
Update Center.

h. Click Browse to locate and select the fusion_apps_update_center.xml file, as
shown in Figure 2–15. The location of this file in on the Oracle Fusion
Applications Companion 11g (11.1.1.5.3) disk in the fusion_apps_extensions
directory, or on a shared directory provided by the administrator.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-19

Figure 2–15 Browsing for the Update File

i. Click Open.

j. Click OK.

k. Select the newly-defined Update Center, as shown in Figure 2–16.

Figure 2–16 Selecting the New Update Center

Note that only the new Update Center should be selected.

l. Click Next to display the Updates dialog, shown in Figure 2–17. Note that,
initially, no updates will be selected.

Setting Up the JDeveloper-based Personal Environment

2-20 Developer's Guide

Figure 2–17 Selecting the Updates

m. Select the Fusion Apps Development Environment extension bundle. The
other bundles automatically will be selected.

n. Click Next to display the Download dialog and start the download, as shown
in Figure 2–18.

Figure 2–18 Downloading the Updates

When the download finishes, the Summary dialog, similar to that shown in
Figure 2–19, displays automatically.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-21

Figure 2–19 Summary Dialog

o. Click Finish. If you are using JDeveloper on a Linux system, the Confirm Exit
prompt shown in Figure 2–20 displays.

Figure 2–20 Confirm Exit Prompt

p. Click Yes to exit JDeveloper.

Note: If you are using JDeveloper on Windows the prompt will ask if you
want to restart JDeveloper. If you click Yes, JDeveloper is automatically
restarted.

7. Restart JDeveloper, selecting either the Oracle Fusion Applications Developer role or
the Oracle Fusion Applications Administrator Customization role, as shown in
Figure 2–21. The restart results in installing the extension bundles that were
downloaded.

Figure 2–21 Selecting the Oracle Fusion Applications Developer Role

Setting Up the JDeveloper-based Personal Environment

2-22 Developer's Guide

If you do not have an administrator-supplied fusion_apps_wls.properties file in
the default location, you will be prompted to configure WebLogic Server (launch
the Oracle Fusion Domain wizard) as shown in Figure 2–22. Click Yes. See
Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard."

Note that if you do have an administrator-supplied fusion_apps_wls.properties
file, the administrator also must supply the entire o.jdevimpl.rescat2 folder
from his $JDEV_USER_HOME/system11.1.1.xx.yy.zz folder. See Section 2.2.1.7,
"Distributing the fusion_apps_wls.properties and cwallet.sso Files."

Figure 2–22 WebLogic Server Not Configured Prompt

Once JDeveloper is up, the environment should have all the components in the correct
locations. You should be able to create new, or customize existing, Oracle Fusion
applications.

2.2.1.6 Using the OWSM_MDS Schema
There are two options for how a developer can use the OWSM_MDS schema.

■ The developers have to provide the connect string and other details of the owsm_
mds schema available in the central IDM or LDAP while creating the properties
file. This requires that an administrator provide the IDM database details. These
are the host, port, userid, password, and SID. Figure 2–23 shows how the wizard's
Database dialog will be completed.

Figure 2–23 Setting Up the OWSM_MDS Schema

■ The administrator will use the Oracle Fusion Applications Repository Creation
Utility to create the MDS schema, described in Section 2.1.1.1.1, "How to Create the
OWSM_MDS Schema," in the database in the shared environment. The schema
name must have a prefix of owsm. This will create a schema named OWSM_MDS.
Developers, then, will not need to do anything else to use the schema.

2.2.1.7 Distributing the fusion_apps_wls.properties and cwallet.sso Files
Instead of each developer creating the properties file and the credential store using the
Oracle Fusion Domain wizard, the administrator can create them once and distribute
them to the entire development team. The administrator can use the wizard and enter
the property values, which include connect strings to the database and to the Identity

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-23

Store. These values are captured in the fusion_apps_wls.properties file and the
passwords are stored in an encrypted form using the credential store. Both the fusion_
apps_wls.properties file and the cwallet.sso file, which is the credential store, are
created in the o.jdevimpl.rescat2 sub-folder under the $JDEV_USER_
HOME/system11.1.1.5.xx.yy.zz folder. The administrator can distribute the entire
o.jdevimpl.rescat2 sub-folder to the development team. The developers can install
JDeveloper and install the bundles. The developers then can copy the entire
o.jdevimpl.rescat2 sub-folder under their own $JDEV_USER_
HOME/system11.1.1.5.xx.yy.zz folder. This way, the administrator can enforce
uniformity and the developers will not have to go through the wizard to create the
properties file.

Now, if developers need to use their own SOAINFRA or MDS_SOA schemas, they can
manually launch the wizard and provide connect strings specifically for those
schemas.

2.2.2 How to Use the Oracle Fusion Domain Wizard
The wizard helps you to create and update a fusion_apps_wls.properties file and a
cwallet.sso file that are used to set up the Oracle WebLogic Server domain for Oracle
Fusion Applications development. The wizard incorporates two main paths: one for
configuring an Integrated WebLogic Server domain (in which JDeveloper manages the
server) and one for setting up a remote Standalone WebLogic Server domain.

In the case of Integrated WebLogic Server, completion of the wizard will create the
domain. For Standalone WebLogic Server, you will have to create the domain from the
command line, using a Python script and the fusion_apps_wls.properties and
cwallet.sso files that were populated using the wizard. Note that the properties file
and the cwallet.sso file must be in the same location.

The wizard can be run multiple times to change properties in the file. If certain critical
properties are changed, the domain may have to be re-created. This will be done
automatically for the Integrated WebLogic Server domain, but will be a manual step
for a Standalone WebLogic Server domain.

The wizard can be launched automatically or manually. It will be launched
automatically under either of these conditions:

■ The fusion_apps_wls.properties file is not found when JDeveloper starts. The
name of the file defaults to fusion_apps_wls.properties, and the location
defaults to the system11.1.1.xx.yy.zz/o.jdevimpl.rescat2 directory.

■ The fusion_apps_wls.properties file is not found when you select to Run an
application from JDeveloper, or you select to Start Server Instance from
JDeveloper.

To start the wizard manually from within JDeveloper:

■ Select View > Application Server Navigator.

■ Expand the Application Servers node.

Note: Although the Oracle Fusion Domain wizard includes
additional properties for Standalone WebLogic Server, the same
fusion_apps_wls.properties and cwallet.sso files are used for both
Integrated WebLogic Server and Standalone WebLogic Server creation
and configuration.

Setting Up the JDeveloper-based Personal Environment

2-24 Developer's Guide

■ Right-click IntegratedWebLogicServer and select the Configure Fusion Domain
option, as shown in Figure 2–24.

Figure 2–24 Manually Starting the Oracle Fusion Domain Wizard

The properties that can be captured in the wizard are shown in Table 2–3. The
properties are defined under section headers that are surrounded by [square brackets],
for example:

[domain]
domainType=adminall

Table 2–3 Properties to be Captured in the Oracle Fusion Domain Wizard

Property Name
Standalone/
Integrated Required Default Comments

domainType Standalone Yes standalone Valid values are:

adfess: Admin server only for Oracle
ADF and ESS

adminsoa: Admin server (EM) and
SOA managed server

adminall: Combination of standalone
and adminsoa (Oracle ADF,ESS,SOA)

adminessadf: Admin server for Oracle
ADF and ESS managed server

standalone: Default setting. This is an
admin server only; not a managed
server.

domainName Standalone Yes fusion_domain

domainDir Standalone Yes The location in the file system in which
the domain will be created.

If it is not specified, the domain will be
created in the default location which is
$MW_HOME/user_projects/<domain_
name>.

installerLocation Standalone Yes Location of the Oracle Fusion
Applications installer files. These
usually are located on a central server,
rather than on each developer's system.
Ask your administrator for the
location. See Section 2.3.1.2, "Setting Up
the Environment for Standalone
WebLogic Server" for a list of the files
needed.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-25

listenPort Standalone Yes Default based on
Standalone or
Integrated.
Default is 7011
for Standalone
WebLogic
Server.

soaPort Standalone Yes, only
when
domainType
is
adminsoa/ad
minall.

Needed for adminsoa and adminall.

As this is on their own machines,
developers choose the values.

essPort Standalone Yes, only
when
domainType
is adminess.

As this is on their own machines,
developers choose the values.

wlName Both Yes weblogic

wlPassword Both Yes NA Users must supply the password by
using the wizard.

ldapHost Both Yes This is a string value similar to:
ldaphostname.yourcompany.com.

ldapPort Both Yes Example: 3060

ldapUser Both Yes Example: cn=wlsproxyuser

ldapPass Both Yes Example: welcome1

Important: In the UI, the password will
display as the normal ******* mask. The
password is not saved in the fusion_
apps_wls.properties file. It is
encrypted and saved in the
cwallet.sso file maintained in the
system11.1.1.xx.yy.zz/o.jdevimpl.r
escat2/ directory.

ldapUserDN Both Yes Example:
cn=users,dc=us,dc=yourcompany,dc=c
om

ldapGroupDN Both Yes Example:
cn=groups,dc=us,dc=yourcompany,dc=
com

ldapSSLEnabled Both No false true or false

opssHost Standalone No Optional separate OPSS store. This is a
string value similar to:
opsshostname.yourcompany.com.

For Integrated WebLogic Server, the
DefaultDomain uses the XML-based
Policy Store (such as
system-jazn-data.xml). For
Standalone WebLogic Server, if
undefined, the standalone domain
defaults to the XML-based Policy Store
(such as system-jazn-data.xml).

Table 2–3 (Cont.) Properties to be Captured in the Oracle Fusion Domain Wizard

Property Name
Standalone/
Integrated Required Default Comments

Setting Up the JDeveloper-based Personal Environment

2-26 Developer's Guide

opssPort Standalone No Example: 3061

opssUser Standalone No Example: cn=wlsproxyuser

opssPass Standalone No Important: In the UI, the password will
display as the standard ***** mask. The
password is not saved in the fusion_
apps_wls.properties file. It is
encrypted and saved in the
cwallet.sso file maintained in the
system11.1.1.xx.yy.zz/o.jdevimpl.r
escat2/ directory.

opssSSLEnabled Standalone No false true or false

jpsRootContext Standalone No Text field

Example: cn=FADevPolicies

biHostPort Standalone No Oracle Business Intelligence will only
be supported in the Standalone
WebLogic Server environment.

Specify a port to point to the BI server.
This generates a BIP configuration file
that gets added to the domain home.
The template then adds the location of
the configuration file as a system
property to be set when Oracle
WebLogic Server is started.

familyName Both Yes Family names are: COMMON, IC,
HCM, FIN, PRC, PRJ, SCM, and CRM.

Table 2–3 (Cont.) Properties to be Captured in the Oracle Fusion Domain Wizard

Property Name
Standalone/
Integrated Required Default Comments

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-27

fusionDb - connect
string

Both Yes JDBC connect string.

Note: This is split into sub-fields:

■ fusionDbUser

■ fusionDbPassword

■ fusionDbHost

■ fusionDbPort

■ fusionDbSid

This is applicable to these schemas:

■ activityDb

■ apmDb

■ AppMasterDb

■ essMdsDb

■ fusionAq

■ fusionEdn

■ fusionMds

■ oraessDb

■ orasdpmDb

■ owsmMdsDb

■ portletDb

■ soadatasrcDb

■ soaMdsDb

■ wcDb

activityDbUser -
connect string

Both No You can connect to the fusionDB
database as fusion_activities. Your
system administrator will provide the
connection details and schema
password to be used.

apmDbUser - connect
string

Both No You can connect to the fusionDB
database as fusion_apm. Your system
administrator will provide the
connection details and schema
password to be used.

AppMasterDbUser -
connect string

Both No You can connect to the fusionDB
database as fusion_runtime. Your
system administrator will provide the
connection details and schema
password to be used.

essMdsDbUser - connect
string

Both No You can connect to the fusionDB
database as fusion_mds_ess. Your
system administrator will provide the
connection details and schema
password to be used.

fusionAqUser - connect
string

Both Yes, but the
database
connection is
the same as
for fusionDb.

You can connect to the fusionDB
database as fusion_aq. Your system
administrator will provide the
connection details and schema
password to be used.

Table 2–3 (Cont.) Properties to be Captured in the Oracle Fusion Domain Wizard

Property Name
Standalone/
Integrated Required Default Comments

Setting Up the JDeveloper-based Personal Environment

2-28 Developer's Guide

fusionEdnUser -
connect string

Both Yes, but the
database
connection is
the same as
for fusionDb.

Note: CRM will be replaced with the
familyName that is passed in.

You can connect to the fusionDB
database as crm_fusion_soainfra.
Your system administrator will provide
the connection details and schema
password to be used.

fusionMdsUser -
connect string

Both Yes, but the
database
connection is
the same as
for fusionDb.

You can connect to the fusionDB
database as fusion_mds. Your system
administrator will provide the
connection details and schema
password to be used.

oraEssDbUser - connect
string

Both No You can connect to the fusionDB
database as fusion_ora_ess. Your
system administrator will provide the
connection details and schema
password to be used.

orasdpmDbUser -
connect string

Both No You can connect to the fusionDB
database as fusion_orasdpm. Your
system administrator will provide the
connection details and schema
password to be used.

owsmMdsDbUser -
connect string

Both No You can connect to the fusionDB
database as owsm_mds. Your system
administrator will provide the
connection details and schema
password to be used.

portletDbUser -
connect string

Both No You can connect to the fusionDB
database as fusion_portlet. Your
system administrator will provide the
connection details and schema
password to be used.

soadatasrcDbUser -
connect string

Both No Family name used in prefix.

You can connect to the fusionDB
database as crm_fusion_soainfra.
Your system administrator will provide
the connection details and schema
password to be used.

soaMdsDbUser - connect
string

Both No Family name used in prefix.

You can connect to the fusionDB
database as crm_fusion_mds_soa. Your
system administrator will provide the
connection details and schema
password to be used.

wcDbUser - connect
string

Both No You can connect to the fusionDB
database as fusion_webcenter. Your
system administrator will provide the
connection details and schema
password to be used.

Table 2–3 (Cont.) Properties to be Captured in the Oracle Fusion Domain Wizard

Property Name
Standalone/
Integrated Required Default Comments

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-29

2.2.2.1 Creating the Properties File for Default Integrated Server

The wizard will start automatically if the fusion_apps_wls.properties file is not
found when you start JDeveloper. You also can start the wizard manually. See
Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard."

If the fusion_apps_wls.properties file is not found when you start JDeveloper, the
prompt shown in Figure 2–25 displays.

Figure 2–25 JDeveloper Startup Server Configuration Prompt

Click Yes to launch the wizard and display the Usage page, as shown in Figure 2–26.

Figure 2–26 Selecting Domain Usage

Note: The wizard requires considerable information about the
network and various servers, such as LDAP and database. In normal
situations, the administrator will disseminate his entire
o.jdevimpl.rescat2 folder from his $JDEV_USER_
HOME/system11.1.1.xx.yy.zz folder to developers who will copy the
folder into the correct directory. See Section 2.2.1.7, "Distributing the
fusion_apps_wls.properties and cwallet.sso Files."

Setting Up the JDeveloper-based Personal Environment

2-30 Developer's Guide

■ Default Integrated Server

Select this option, the default, to configure and create a server that will be
controlled by JDeveloper. This is the normal choice for development work. When
the wizard finishes, an Integrated WebLogic Server domain will be created and
can be used to run and test your applications.

■ Standalone Server

Selecting this option only creates or updates the fusion_apps_wls.properties
and cwallet.sso files. See Section 2.2.2.2, "Completing the Oracle Fusion Domain
Wizard for Standalone Server" for the dialogs that are specific to creating the
fusion_apps_wls.properties file for a Standalone WebLogic Server domain.
Creating a Standalone WebLogic Server domain must be done from the command
line using the fusion_apps_wls.properties file as input. See Section 2.3, "Setting
Up the Personal Environment for Standalone WebLogic Server."

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Further wizard pages depend on the selected Usage. The flow for the Default
Integrated Server selection is covered first. The flow for the Standalone Server
selection is covered in Section 2.2.2.2, "Completing the Oracle Fusion Domain Wizard
for Standalone Server."

When you select the Default Integrated Server Usage option and click Next, the
Domain dialog, shown in Figure 2–27, displays.

Figure 2–27 Configuring the Domain

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-31

■ WebLogic User Name

This value defaults to weblogic. Change it if necessary.

■ WebLogic Password / Confirm Password

The password requires at least one numeral.There is no default, and you must
supply the password. Note that the password is not stored in the fusion_apps_
wls.properties file. It is encrypted and stored in the cwallet.sso file.

■ Fusion Family Name

Leave this at the default value.

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Click Next to display the Database dialog, shown in Figure 2–28

Figure 2–28 Configuring the Database

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

Setting Up the JDeveloper-based Personal Environment

2-32 Developer's Guide

■ Fusion Database User

This schema name comes from the database installation. fusion_runtime is a
recommended standard name.

■ Fusion Database Password

Enter the password. You probably will need to get this from an administrator if the
cwallet.sso file was not provided to you. (Passwords are encrypted and stored in
that file.)

■ Fusion Database

Enter the host, port, and the SID information using a colon (:) delimiter, such as
a.your.company.com:1234:xyzzyon. You probably will need to get this from an
administrator if the fusion_apps_wls.properties file was not prepared for you.

■ Credential Type List

A number of credentials are supplied with Oracle Fusion Applications and are
included in the fusion_apps_wls.properties file. When you click a credential, the
three fields to the right will display the default values. The Password field will
remain blank because any passwords are encrypted and stored in the cwallet.sso
file.

If OWSM_MDS is selected, and the administrator has chosen to open up the IDM
database in which the schema already exists, you will need to enter all the
necessary information in this dialog. However, if the administrator has created the
OWSM_MDS schema in the transaction database, you may not need to enter any

Notes:

■ If a credential that is listed in the Database dialog does not have
the same password as the corresponding schema name itself, you
must provide the password using the fields to the right of the
credential list. For example, if the password of the Activities
credential happens to be fooBar812 instead of fusion_activities
(which is the schema name), you should select the Activities
credential from the list and provide the password for the fusion_
activities schema as fooBar812 in the Password field. The
Username field will contain fusion_activities. You do not have
to provide anything in the Connect String field for this schema, as
it will be in the same database.

■ If the credential that is listed in the Database dialog has to be
mapped to a schema other than the default schema, you should
provide the appropriate schema name and password using the
fields to the right of the credential list. For example, the OWSM MDS
credential is mapped to the owsm_mds schema by default. But, if it
has to be mapped to the hcm_fusion_mds_soa schema, you can
choose the OWSM MDS credential from the list and then enter hcm_
fusion_mds_soa in the Username field and specify the password
in the Password field on the right. Once again, the Connect String
field can be left blank if the schema is in the same database.

■ If each of the credentials in the Database dialog have the same
password as the corresponding schema name, you only need to
enter values in the Fusion Database field in the host:port:SID
format.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-33

data here. For more information about the owsm_mds schema, see Section 2.1.1.1,
"Creating the OWSM_MDS Schema."

You can change the default values of almost all the credentials, if necessary.

– User Name

This field corresponds to the Fusion Database User field.

– Password

This field corresponds to the Fusion Database Password field.

– Connect String

This field corresponds to the Fusion Database field.

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Click Next to display the Security dialog, shown in Figure 2–29.

Figure 2–29 Configuring Security for Integrated Domain Server

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

■ LDAP Server

This field cannot be edited directly. Click the edit icon to display the Edit LDAP
Server dialog shown in Figure 2–30.

Setting Up the JDeveloper-based Personal Environment

2-34 Developer's Guide

Figure 2–30 Editing the LDAP Server

– Host

Enter the name of your LDAP host, such as ldap_server.your_company.com.

– Port

Enter the port number, such as 1066.

– Principal

This is the internal LDAP user name by which you connect to LDAP, such as
cn=wlsproxyuser.

– Password

Enter the password used by the Principal. The password will be encrypted
and stored in the cwallet.sso file, and not in the fusion_apps_
wls.properties file.

– SSL Enabled

This value defaults to LDAP (not checked). Select this check box if you want to
use LDAPS.

– User Base DN

Enter the User DN based your LDAP. A sample User DN resembles
cn=users,dc=us,dc=your_company,dc=com.

The DN (Distinguished Name) is the LDAP attribute that uniquely defines an
object. Each DN must have a different name and location from all other objects
in Active Directory.

The components include cn=common name, ou=organizational unit, and
dc=domain content. DC often is listed with two entries, dc=cp and dc=com.

– Group Base DN

Enter the Group DN based your LDAP. A sample Group DN resembles
cn=groups,dc=us,dc=your_company,dc=com.

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Click Next to display the Finish dialog shown in Figure 2–31.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-35

Figure 2–31 Finishing the Integrated Domain

■ Click Finish to save the properties in the following file

This value cannot be edited. The field simply shows the name of the fusion_apps_
wls.properties file and the directory in which it will be created or updated.

■ Create the Domain Now

This defaults to Yes (checked). When selected and you click Finish, the Integrated
WebLogic Server domain will be created so you can test your applications by
selecting one of the JDeveloper Run options.

2.2.2.2 Completing the Oracle Fusion Domain Wizard for Standalone Server
When you select the Standalone Server Usage option and click Next, the Domain
dialog, shown in Figure 2–32, displays.

Note: Creating the domain involves a great deal of background work
to correctly set up the environment. This process can take several
minutes.

Setting Up the JDeveloper-based Personal Environment

2-36 Developer's Guide

Figure 2–32 Configuring the Standalone Domain

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

■ Domain Type

This is the type of domain you wish to create. It can be:

– adfess: Configured for Oracle ADF and Oracle Enterprise Scheduler
technologies.

– adminsoa: Creates an Oracle SOA Suite domain with an AdminServer with
Oracle Enterprise Manager Fusion Middleware Control deployed, and a
managed server, named soa_server1, where SOA composites are deployed
and run.

– adminall: A combination of standalone and Oracle SOA Suite, AdminServer
for Oracle ADF/Oracle Enterprise Scheduler and managed server soa_server1
for Oracle SOA Suite.

– adminessadf: Admin server for Oracle ADF and Oracle Enterprise Scheduler
Service (ESS) managed server.

■ Domain Name

The name of your domain. If you have more than one domain, you need to change
this value and the domainDir value.

Note: If an administrator has not created the fusion_apps_
wls.properties file for you, with this information, you will need to
get most of this information from an administrator.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-37

– Create a new fusion_apps_wls.properties file with domainName=Domain1
and domainDir=$MW_HOME/user_projects/Domain1.

– When the properties file has been created, copy fusion_apps_wls.properties
to fusion_apps_wls_Domain1.properties in the $JDEV_USER_
HOME/system11.1.1.*/o.jdevimpl.rescat2 directory.

– Run FADevCreateDomain.py -p $JDEV_USER_
HOME/system11.1.1.*/o.jdevimpl.rescat2/fusion_apps_wls_
Domain1.properties to create Domain1.

– Edit fusion_apps_wls.properties and change domainName=Domain2 and
domainDir=$MW_HOME/user_projects/Domain2.

– Copy fusion_apps_wls.properties to fusion_apps_wls_
Domain2.properties in the $JDEV_USER_
HOME/system11.1.1.*/o.jdevimpl.rescat2 directory.

– Run FADevCreateDomain.py -p $JDEV_USER_
HOME/system11.1.1.*/o.jdevimpl.rescat2/fusion_apps_wls_
Domain2.properties to create Domain2.

You now have two properties files in the o.jdevimpl.rescat2 folder and two
domains.

■ Installer Location

This is the location of the Oracle Fusion Applications installer files, usually on a
central server. Also see Section 2.3.1.2, "Setting Up the Environment for Standalone
WebLogic Server."

■ Domain Location

The location in the file system in which the domain will be created.

If it is not specified, it will be created in the default location, which is $MW_
HOME/user_projects/<domain_name>.

This can be changed by setting the domainDir property in the fusion_apps_
wls.properties file. If you have more than one domain, you need to change this
value. See the description of domainName.

■ Listen Port

Listen Port is the adminserver listen-port you want to use.

■ SOA Port

This field, which displays only if the Domain Type is adminall or adminsoa, is the
port number for your Oracle SOA Suite managed server (soa_server1) if you are
using Oracle SOA Suite. If you are not using Oracle SOA Suite, you can leave this
blank.

■ BI Host Port

This is the host:port where the BI Publisher server is running. The format for the
value for this field is hostname:port, such as my.domain.com:9999. You may need
to get this value from your administrator.

■ WebLogic User Name

This value defaults to weblogic. Change it if necessary.

■ WebLogic Password / Confirm Password

Setting Up the JDeveloper-based Personal Environment

2-38 Developer's Guide

The password requires at least one numeral.There is no default, and you must
supply the password. Note that the password is not stored in the fusion_apps_
wls.properties file. It is encrypted and stored in the cwallet.sso file.

■ Fusion Family Name

Leave this at the default value.

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Click Next to display the Database dialog, shown in Figure 2–33

Figure 2–33 Configuring the Database

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-39

■ Fusion Database User

This schema name comes from the database installation. A recommended
standard name is fusion_runtime.

■ Fusion Database Password

Enter the password. You probably will need to get this from an administrator if the
cwallet.sso file was not provided to you. (Passwords are encrypted and stored in
that file.)

■ Fusion Database

Enter the host, port, and the SID information using a colon (:) delimiter, such as
a.your.company.com:1234:xyzzyon. You probably will need to get this from an
administrator if the fusion_apps_wls.properties file was not prepared for you.

■ Credential Type List

A number of credentials are supplied with Oracle Fusion Applications and are
included in the fusion_apps_wls.properties file. When you click a credential, the
three fields to the right will display the default values. The Password field will
remain blank because any passwords are encrypted and stored in the cwallet.sso
file.

If OWSM_MDS is selected, and the administrator has chosen to open up the IDM
database in which the schema already exists, you will need to enter all the
necessary information in this dialog. However, if the administrator has created the
OWSM_MDS schema in the transaction database, you may not need to enter any

Notes:

■ If a credential that is listed in the Database dialog does not have
the same password as the corresponding schema name itself, you
must provide the password using the fields to the right of the
credential list. For example, if the password of the Activities
credential happens to be fooBar812 instead of fusion_activities
(which is the schema name), you should select the Activities
credential from the list and provide the password for the fusion_
activities schema as fooBar812 in the Password field. The
Username field will contain fusion_activities. You do not have
to provide anything in the Connect String field for this schema, as
it will be in the same database.

■ If the credential that is listed in the Database dialog has to be
mapped to a schema other than the default schema, you should
provide the appropriate schema name and password using the
fields to the right of the credential list. For example, the OWSM MDS
credential is mapped to the owsm_mds schema by default. But, if it
has to be mapped to the hcm_fusion_mds_soa schema, you can
choose the OWSM MDS credential from the list and then enter hcm_
fusion_mds_soa in the Username field and specify the password
in the Password field on the right. Once again, the Connect String
field can be left blank if the schema is in the same database.

■ If each of the credentials in the Database dialog have the same
password as the corresponding schema name, you only need to
enter values in the Fusion Database field in the host:port:SID
format.

Setting Up the JDeveloper-based Personal Environment

2-40 Developer's Guide

data here. For more information about the owsm_mds schema, see Section 2.1.1.1,
"Creating the OWSM_MDS Schema."

You can change the default values of almost all the credentials, if necessary.

– User Name

This field corresponds to the Fusion Database User field.

– Password

This field corresponds to the Fusion Database Password field.

– Connect String

This field corresponds to the Fusion Database field.

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

Click Next to display the Security dialog shown in Figure 2–34.

Figure 2–34 Configuring Security for Standalone Server

If the fusion_apps_wls.properties file already exists and is in place, the fields will
show the values that are in the file.

■ LDAP Server

This field cannot be edited directly. Click the edit icon to display the Edit LDAP
Server dialog shown in Figure 2–35.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-41

Figure 2–35 Editing the LDAP Server

– Host

Enter the name of your LDAP host, such as ldap_server.your_company.com.

– Port

Enter the port number, such as 1066.

– Principal

This is the internal LDAP user name by which you connect to LDAP, such as
cn=wlsproxyuser.

– Password

Enter the password used by the Principal. The password will be encrypted
and stored in the cwallet.sso file, and not in the fusion_apps_
wls.properties file.

– SSL Enabled

This value defaults to LDAP (not checked). Select this check box if you want to
use LDAPS.

– User Base DN

Enter the User DN based your LDAP. A sample User DN resembles
cn=users,dc=us,dc=your_company,dc=com.

The DN (Distinguished Name) is the LDAP attribute that uniquely defines an
object. Each DN must have a different name and location from all other objects
in Active Directory.

The components include cn=common name, ou=organizational unit, and
dc=domain content. DC often is listed with two entries, dc=cp and dc=com.

– Group Base DN

Enter the Group DN based your LDAP. A sample Group DN resembles
cn=groups,dc=us,dc=your_company,dc=com.

■ OPSS Server

Defining the Oracle Platform Security Services (OPSS) Server is optional. Define
this if its policy store is in a different location than your LDAP policy store. If
OPSS-related properties are not specified, the domain is configured to use the
XML-based Policy Store, such as system-jazn-data.xml.

Setting Up the JDeveloper-based Personal Environment

2-42 Developer's Guide

Figure 2–36 Editing the OPSS Server

– Host

Enter the name of your LDAP host, such as ldap_server.your_company.com.

– Port

Enter the port number, such as 1066.

– Principal

This is the internal LDAP user name by which you connect to LDAP, such as
cn=wlsproxyuser1.

– Password

Enter the password used by the Principal. The password will be encrypted
and stored in the cwallet.sso file, and not in the fusion_apps_
wls.properties file.

– SSL Enabled

This value defaults to not enabled. Select this check box if you want to enable
SSL.

– JPS Root Context

Enter the JPS Root Distinguished Name, which is the top-level (outermost)
node that contains OPSS data in an LDAP directory, such as cn=FAPolicies.

Click Next to display the Finish dialog shown in Figure 2–37.

Setting Up the JDeveloper-based Personal Environment

Setting Up Your Development Environment 2-43

Figure 2–37 Finishing the Standalone Domain Configuration

■ Click Finish to save the properties in the following file

This value cannot be edited. The field simply shows the name of the fusion_apps_
wls.properties file and the directory in which it will be created or updated.

■ To create the domain ...

This value cannot be edited. The field simply shows the directory in which the
script file will be created, and the name of the script file, FADevCreateDomain.py,
you will need to run at the command line. See Section 2.3.1, "How to Create a
Domain for Standalone WebLogic Server."

■ Messages

A message is displayed in this field if any errors occur in the definition. These
errors must be corrected before you continue.

2.2.3 How to Start Integrated WebLogic Server
Integrated WebLogic Server and the deployed applications are separate entities. You
can start Integrated WebLogic Server before running or deploying any applications.

Starting Integrated WebLogic Server
There are two ways to start Integrated WebLogic Server.

■ Right-click and run a page from a project. If the server is not running, it will be
started.

■ From the JDeveloper main menu, select Run > Start Server Instance, as shown in
Figure 2–38.

Setting Up the JDeveloper-based Personal Environment

2-44 Developer's Guide

Figure 2–38 Start Server Using Start Server Instance

Stopping Integrated WebLogic Server and the Application
To stop Integrated WebLogic Server or the application from either the Integrated
Server window or from the JDeveloper menu bar, click the red stop button and select
either the IntegratedWebLogicServer or the connection option, as shown in
Figure 2–39.

Figure 2–39 Stopping Integrated WebLogic Server or the Application

If you select the connection option, the application will be undeployed and the server
will remain running.

If you select the IntegratedWebLogicServer option, the deployed application will be
undeployed and the server shut down. Wait for the application to be undeployed and
the server to stop.

If the shutdown of Integrated WebLogic Server did not respond or shut down the
server, click the red shutdown button again to kill the process, as shown in
Figure 2–40.

Figure 2–40 Forcing Shutdown of Integrated WebLogic Server

Setting Up the Personal Environment for Standalone WebLogic Server

Setting Up Your Development Environment 2-45

If you still do not see the Process Exited message when you terminate Integrated
WebLogic Server, you will have to manually kill the process.

Manually killing the process
1. From a terminal window, execute this command.

/usr/sbin/lsof -i -P | grep 7101

2. Kill the process. For instance, if the process is 15846, you would execute this
command:

kill -9 15846

2.2.3.1 Managing Integrated WebLogic Server
The WebLogic Server Console can be deployed and accessed to manage Integrated
WebLogic Server. To access the WebLogic Server Console, enter the following URL in
your web browser: http://<hostname.domainname>:<port>/console, such as
http://localhost:7101/console.

2.3 Setting Up the Personal Environment for Standalone WebLogic
Server

Following the steps in this section will give you a portable workspace without needing
access to the full environment until you are ready to deploy and unit test.

While the JDeveloper-based environment with Integrated WebLogic Server is useful in
creating and validating customizations to the Oracle ADF artifacts, it cannot be used to
validate SOA customizations. Anything that relies upon SOA infrastructure for
development (such as BPM and ESS) will need the standalone environment in the
following situations:

■ Rapid testing of development before publishing to the full development
environment.

■ Remote access using either dial-up or VPN proves either to be too slow or unstable
to connect to the full environment for successful deployment will benefit from the
standalone environment installed locally on the developer's machine (64bit
required).

To create this environment, you need Python scripts that are part of the
JDeveloper-based environment and the repository of installer files that are used to
create the shared environment. You first will have to create the JDeveloper-based
environment, create or update the fusion_apps_wls.properties file, and then execute
the scripts that are packaged with the fa_dev_bundle.zip extension bundle to create
the standalone environment. One of the inputs to the Python script is the location of
the repository that contains the installer files. You can use the Oracle Fusion Domain
wizard from the JDeveloper-based environment to update the fusion_apps_
wls.properties file such that it can be used in the standalone environment. So, the
same properties file can be used to create both the JDeveloper-based environment and
the standalone environment.

When the Python scripts are executed, they automatically do the following:

Note: 7101 is the default Integrated WebLogic Server port. It may be
different.

Setting Up the Personal Environment for Standalone WebLogic Server

2-46 Developer's Guide

■ Create a lightweight MW_HOME directory that is a subset of the Middleware home
that is available in the shared environment.

■ Create a Standalone WebLogic Server domain with an AdminServer and a
ManagedServer.

■ Use the domainType defined in the fusion_apps_wls.properties file to apply
appropriate WebLogic Server templates and set up system properties for Oracle
Fusion applications.

■ Configure the domain with the data sources and the Identity Store that are
available in the shared environment.

■ Configure the domain to either point to the LDAP-based Policy Store in the shared
environment or a local XML-based Policy Store.

Typically in this environment, you have to deploy the exploded EAR directory of the
application from the Middleware home of the shared environment using the WebLogic
Server Console. As a result, the adf-config.xml descriptor contains an MDS metadata
store that points to the database in the shared environment and the customizations are
picked up from the MDS repository. If you have created customizations on the
filesystem using the JDeveloper-based environment, you should import those
customizations to the MDS schema in the database that is running as part of the
shared environment to test and validate them. When you import the customizations to
the repository and database in the shared environment, it will affect all the developers
who are using the shared environment. You will be able to test and validate the
customizations by exercising all the applications that have a touch-point with the
customized application, to ensure that things outside the application are working as
expected.

Because Standalone WebLogic Server for SOA points to a separate SOAINFRA MDS
schema, the customizations need to be exported and imported into the shared
environment once they are successfully tested by developers.

See "Managing the Metadata Repository" in the Oracle Fusion Middleware
Administrator's Guide.

Even though the Standalone WebLogic Server domain that is created as part of this
environment is used to deploy the application from the same APPL_TOP and is
configured to point to the same data sources, the Identity Store, and the Policy Store,
as the domains that are part of the shared environment, you have the flexibility in
setting up the domain that is part of the standalone environment in a way that it can
work on a laptop or desktop without requiring excess resources. The domains that are
created in the shared environment by the provisioning processes have one
AdminServer and three ManagedServers. But, the domain in the standalone
environment has just one AdminServer and one ManagedServer. You can decide
whether to target SOA or ESS or various technologies at the ManagedServer based on
the project.

2.3.1 How to Create a Domain for Standalone WebLogic Server
Installer files are used to create and run Standalone WebLogic Server domains. You
may need to obtain the files from an administrator. See details in Section 2.3.1.2,
"Setting Up the Environment for Standalone WebLogic Server."

Setting Up the Personal Environment for Standalone WebLogic Server

Setting Up Your Development Environment 2-47

This install also allows Oracle SOA Suite developers to create their domains without
extra installs or steps.

2.3.1.1 Creating a Special SOAINFRA Schema
If you are creating a SOA customization, a special SOAINFRA schema that is in the
database in the shared environment may need to be created so your work does not
interfere with the normal database.

Important: You must use the Oracle Fusion Applications Administrator Customization
role for customizing SOA Composites.

Because the existing composites reference Web Service Description Language (WSDL)
and schemas in MDS, when new SOAINFRA and MDS_SOA schemas are created for
the standalone environment, all the WSDLs and schemas needed by the composites to
be customized need to be exported from the shared MDS_SOA and imported into the
new standalone MDS_SOA schema.

See "Managing the Metadata Repository" in the Oracle Fusion Middleware
Administrator's Guide.

2.3.1.2 Setting Up the Environment for Standalone WebLogic Server
Follow these steps to create a Standalone WebLogic Server environment. These steps
assume that you already have downloaded and installed JDeveloper and the Fusion
Apps Development Environment extension bundle.

1. If you have not already done so, download and install the 64-bit JDK, preferably
not to a directory location containing spaces, such as \Program Files.

When installing JDeveloper, you will select the 64-bit JDK location you just
installed.

If a 32-bit JDK already was installed and used, you must delete the old %MW_HOME%
installation and the system directory in %JDEV_USER_HOME% before reinstalling
JDeveloper and the Oracle Fusion Applications extensions updates.

If you are using Windows XP and encounter issues running Integrated Weblogic
Server, you will need to change to the 64-bit version of Windows 7.

2. You will need installer files from the provisioned environment. The site
administrator should make the installer files available.

If you are not able to access a provisioned environment on a server, you will need
to copy these directories (defined in the FADevInstallMwHome.py script file) and
their contents from the installation disk to the installerLocation described in
Table 2–3. (If you do not have the disk, you will need to download the entire 60GB
Oracle Fusion Applications package from eDelivery.)

■ atgpf

■ biappsshiphome

Notes:

■ The installer repository on Windows must be a local or a mapped
drive.

■ Windows and Linux operating systems must be 64-bit.

■ You are using the 64-bit version of the JDK.

Setting Up the Personal Environment for Standalone WebLogic Server

2-48 Developer's Guide

■ bishiphome (if included on the release)

■ odi

■ soa

■ wc

■ weblogic

■ jdk

This subset of the entire installation package is approximately 20GB in size, with
biappsshiphome using approximately 10GB.

3. Update the properties file that was created for Integrated WebLogic Server so that
it can be used to create Standalone WebLogic Server:

■ In the Integrated WebLogic Server environment you already created, start
JDeveloper, select the Oracle Fusion Applications Developer role, and launch the
Oracle Fusion Domain wizard, as described in Section 2.2.2, "How to Use the
Oracle Fusion Domain Wizard."

■ Select the Standalone Server option on the wizard's Usage dialog. Selecting
this option creates or updates the fusion_apps_wls.properties and
cwallet.sso files.

■ On the Domain dialog, set Installer Location to the directory that the
administrator has provided or that you have created locally. See Step 2.

Set Domain Location appropriately, such as /path_to_
domain/FAStandaloneDomain. Make sure that the directory name you enter
does not exist.

4. Create the Standalone WebLogic Server environment.

■ Set these environment variables:

csh commands:

setenv MW_HOME /path_to/FAStandalone_MW_HOME
setenv JDEV_MW_HOME /path/to/JDeveloper/install_directory
setenv ANT_HOME $JDEV_MW_HOME/jdeveloper/ant
setenv JAVA_HOME /path/to/JDK/installation/directory

bash commands:

export MW_HOME=/path_to/FAStandalone_MW_HOME.
export JDEV_MW_HOME=/path/to/JDeveloper/install_directory
export ANT_HOME=$JDEV_MW_HOME/jdeveloper/ant
export JAVA_HOME=/path/to/installed/JDK

Windows command prompt commands:

set MW_HOME=\path_to\FAStandalone_MW_HOME
set JDEV_MW_HOME=\path\to\JDeveloper\install_directory
set ANT_HOME=%JDEV_MW_HOME%\jdeveloper\ant
set JAVA_HOME=C:\JDK_install_directory

■ mkdir /path_to/FAStandaloneWork

■ chmod +x $JDEV_MW_HOME/jdeveloper/fadev/bin/*.py

■ Create a working/staging directory, such as C:\standaloneStage on a
Windows installation, to be used during the installation.

Setting Up the Personal Environment for Standalone WebLogic Server

Setting Up Your Development Environment 2-49

■ Create a lightweight MW_HOME directory by running the
FADevInstallMwHome.py script. This script is installed when you install the
Fusion Apps Development Environment extension bundle, described in Step 6
of Section 2.2.1.5, "Setting Up the JDeveloper-based Development
Environment." Note that the options have been placed on separate lines for
clarity. When you run the script, all must be on the same line.

$JDEV_MW_HOME/jdeveloper/fadev/bin/FADevInstallMwHome.py
 -m $MW_HOME
 -i /path/to/installer_files
 -w /path_to/stagingdirectory
 -v

Example 2–1 FADevInstallMwHome.py Options

Valid options are:
 -m : MW_HOME (standalone - will be created if it does not exist)
 -i : Installer location (the provisioning repository)
 -w : Working directory. Used for response files, unzip installers
 Defaults to the current directory
 -r : reinstall MW_HOME
 -v : verbose

■ -m <mw_home>: Use an MW_HOME directory other than the default, for an
initial install or after it has already been created.

■ -i: The location of the installer files. This setting is required only for a
Standalone WebLogic Server domain and overrides the installerLocation
setting in the properties file.

■ -w: Set the working/staging directory for log and other temporary files.

■ -r: Reinstall the MW_HOME directory. Note that this will remove all items in the
existing MW_HOME directory.

■ -v: Turn on verbose mode.

5. Patch the MW_HOME directory. For more information, see the Oracle Fusion
Middleware Patching Guide.

For the standalone domain creation to succeed, you must patch the atgpf directory
in the standalone MW_HOME directory using the patches from the installer repository
before executing the script to create the standalone domain. Otherwise, the
standalone domain creation will not be complete and trying to deploy Oracle
Fusion applications to the standalone domain will result in issues.

Follow these steps to patch the atgpf directory in the standalone MW_HOME
directory using all the opatches that are in the repository:

Linux system

% setenv ORACLE_HOME $MW_HOME/atgpf
% setenv ATGPF_ORACLE_HOME $ORACLE_HOME
% setenv JHOME $MW_HOME/jdk6 [Note: Must be a 64-bit JDK.]
% setenv INV_LOC $ORACLE_HOME/oraInst.loc
% setenv PATH $ORACLE_HOME/OPatch:$PATH

% opatch napply <installer_repository_location>/installers/atgpf/patch -jdk
$JHOME -invPtrLoc $INV_LOC

Windows system

c:\> set ORACLE_HOME=%MW_HOME%\atgpf

Setting Up the Personal Environment for Standalone WebLogic Server

2-50 Developer's Guide

c:\> set ATGPF_ORACLE_HOME=%ORACLE_HOME%
c:\> set JHOME=%MW_HOME%\jdk6 [Note: Must be a 64-bit JDK.]
c:\> set PATH=%ORACLE_HOME%\OPatch;%PATH%

opatch napply <installer_repository_location>\installers\atgpf\patch -jdk
C:\jdk_installed_location

where -jdk is the location of the JDK under Oracle Fusion Middleware home.

[Note: For Windows, do not specify the invPtrLoc command-line argument.]

6. Create, extend and configure the Standalone WebLogic Server domain by running
the FADevCreateDomain.py script. Note that the options have been placed on
separate lines for clarity. When you run the script, all must be on the same line. A
Windows example is shown here:

C:\Oracle\Middleware\jdeveloper\fadev\bin\FADevCreateDomain.py
 -m C:\standalone
 -p
C:\Users\username\AppData\Roaming\JDeveloper\system11.1.1.5.xx.yy.zz\o.jdevimpl
.rescat2\fusion_apps_wls.properties
 -i /path/to/installer_files
 -w /path_to/FAStandaloneWork -v

FADevCreateDomain.py options
If you execute FADevCreateDomain.py -help, the help shown in Example 2–2 will be
displayed.

Example 2–2 FADevCreateDomain.py Options

-p : property file
-m : MW_HOME (standalone - will be created if does not exist)
-i : installer location (Provisioning repository)
 overrides installerLocation in the properties file
-w : working/staging directory for log and other temp files
-v : verbose

■ -p <properties file>: Use a different fusion_apps_wls.properties file to
configure the domain.

■ -m <mw_home>: Use an MW_HOME directory other than the default, for an initial
install or after it has already been created.

■ -i: The location of the installer files. This setting is required only for a Standalone
WebLogic Server domain and overrides the installerLocation setting in the
properties file.

■ -w: Set the working/staging directory for log and other temporary files.

■ -v: Turn on verbose mode.

2.3.1.2.1 How to Fix Domain Creation Errors These three causes of a domain creation error
are easily corrected:

■ The domain creation may fail in FADevCreateDomain.py related to the properties
file such as:

Creating domain for Fusion Applications Development ...
... checkWorkingDir
... checkPropFile
Traceback (most recent call last):

Setting Up the Personal Environment for Standalone WebLogic Server

Setting Up Your Development Environment 2-51

File "C:\Oracle\Middleware\jdeveloper\fadev\bin\FADevCreateDomain.py", line
546, in <module>
checkPropFile()
File "C:\Oracle\Middleware\jdeveloper\fadev\bin\FADevCreateDomain.py", line
146, in checkPropFile
defaultPropFile= os.path.join(os.getenv('HOME'),'fusion_apps_wls.properties')
File "C:\Python27\Lib\ntpath.py", line 96, in join
assert len(path) > 0
TypeError: object of type 'NoneType' has no len()

This is caused by a Python installation issue. The suggested fix is to uninstall and
re-install Python.

■ The domain creation fails with:

File "C:\Oracle\Middleware\jdeveloper\fadev\bin\FADevFusionAppsDomain.py", line
1754, in targetSharedLibraries
KeyError: oracle.appstrace.model

There is a synchronization issue between the domain creation scripts and
templates used. This can be fixed by adding the entries tagged with
"WORKAROUND" in the FADevFusionAppsDomain.py:

'oracle.appltest.diagfwk.executor':14, # ess-soa-adf
'oracle.appstrace.model':2, # WORKAROUND
'oracle.appstrace.webapp':2, # WORKAROUND
'oracle.bi.adf.model.slib':15, # ess-soa-adf-admin

■ The domain creation can fail with:

com.oracle.cie.domain.script.jython.WLSTException:
com.oracle.cie.domain.script.jython.WLSTException:
 com.oracle.cie.domain.script.ScriptException: unable to parse
"template-info.xml" from template jar
"c:\standalone\oracle_common\common\templates\applications\oracle.clickhistory_
template_11.1.1.jar

Check whether the oracle.clickhistory_template_11.1.1.jar file exists. If it does not
exist, copy it from JDEV_HOME to the standalone home:

C:\Oracle>copy \oracle\Middleware\oracle_
common\common\templates\applications\oracle.clickhistory_template_11.1.1.jar
\standalone\oracle_common\common\templates\applications

2.3.1.2.2 How to Test the Server To test the server:

■ Start the server using a command line command similar to:

C:\standalone\fusion_domain\bin\startWebLogic.cmd

■ Once started, it can be accessed from a web browser, using a URL similar to:

http://1.23.45.678:7011/console

2.3.1.3 Managing the Standalone WebLogic Server Lifecycle
There will be times when you want to change the properties in fusion_apps_
wls.properties, or point to a different Identity Store, or you may want to delete the
domain and start from scratch. To do these, you will have to stop the running server,
remove the domain directory, edit the properties file using the wizard, and recreate the
domain. Follow these steps to accomplish the tasks. Remember to change any example
directory names to the names you have used.

Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion Middleware Control

2-52 Developer's Guide

■ Stop the server

When you stop the server, use the same xterm that was used to create the domain
and execute these commands:

ps
kill -9 <pid_of_startWebLogic.sh> <pid_of_java>

If you had started the ManagedServer, you should kill it, too.

■ Remove the domain

You may want to start over by removing the domain. Use the same xterm that was
used to create the Standalone WebLogic Server domain and execute these
commands:

rm -rf /path/to/FAStandaloneDomain
rm -rf /path/to/FAStandaloneWork/*

■ Edit the fusion_apps_wls.properties file

There may be times when you have to use a different Identity Store or modify
some properties. In such an event, restart JDeveloper and follow these steps:

– Manually launch the Oracle Fusion Domain wizard. See Section 2.2.2, "How to
Use the Oracle Fusion Domain Wizard."

– Right-click the Integrated Servers node and select the Configure Fusion
Domain... option.

– Select the Standalone Server option from the first wizard dialog.

– Continue through the wizard, changing the property values as necessary.

■ Recreate the domain

To do so, execute these commands. Note that the options have been placed on
separate lines for clarity. When you run the FADevCreateDomain.py script, all must
be on the same line.

rm -rf /path/to/FAStandaloneDomain
rm -rf /path/to/FAStandaloneWork/*
$JDEV_MW_HOME/jdeveloper/fadev/bin/FADevCreateDomain.py
 -m $MW_HOME
 -p $JDEV_MW_
HOME/jdeveloper/system11.1.1.5.xx.xx.xx/o.jdevimpl.rescat2/fusion_apps_
wls.properties
 -i /path/to/Repository/installers
 -w /path/to/FAStandaloneWork -v

2.4 Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion
Middleware Control

This section discusses configuration options for the Oracle Service Oriented
Architecture Suite and Oracle Enterprise Manager Fusion Middleware Control servers.

2.4.1 How to Use the Application Logging Service

Note: Only Oracle SOA Suite applications developers need to
perform these steps.

Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion Middleware Control

Setting Up Your Development Environment 2-53

To use the Application Logging Service, complete these steps.

1. Set up your environment to use the Oracle SOA Suite and Java Apps Logger.

2. Update the oracle.soa.bpel.jar, file as shown in Example 2–3.

Example 2–3 Updating the oracle.soa.bpel.jar

cp $MW_HOME/jdeveloper/jdev/oaext/services/Applcore-Logging-XPath.jar $MW_
HOME/jdeveloper/soa/modules/oracle.soa.ext_11.1.1
cp $MW_HOME/jdeveloper/jdev/oaext/services/Applcore-Logging-XPath.jar $MW_
HOME/jdeveloper/soa/modules/oracle.soa.ext_11.1.1
$MW_HOME/modules/org.apache.ant_1.7.0/bin/ant -f $MW_
HOME/jdeveloper/soa/modules/oracle.soa.ext_11.1.1/build.xml

3. Update the soa-infra-wls.ear file, as shown in Example 2–4.

Example 2–4 Updating soa-infra-wls.ear

pushd $MW_ORA_HOME/soa/applications
mkdir -p soa-infra-wls
cp soa-infra-wls.ear soa-infra-wls.ear.orig
cd soa-infra-wls
#add library reference
unzip -o ../soa-infra-wls.ear META-INF/weblogic-application.xml
mv META-INF/weblogic-application.xml META-INF/weblogic-application.xml.orig
sed '/<\/weblogic-application>/i<library-ref>\n
<library-name>oracle.applcore.model</library-name>\n</library-ref>\n<library-ref>\
n <library-name>Diagnostics-Engine</library-name>\n</library-ref>'
META-INF/weblogic-application.xml.orig > META-INF/weblogic-application.xml
rm META-INF/weblogic-application.xml.orig
zip -f ../soa-infra-wls.ear META-INF/weblogic-application.xml
#add resource reference
unzip -o ../soa-infra-wls.ear ejb_ob_engine_wls.jar
unzip -o ejb_ob_engine_wls.jar META-INF/ejb-jar.xml
mv META-INF/ejb-jar.xml META-INF/ejb-jar.xml.orig
sed '/<ejb-name>BPELEngineBean<\/ejb-name>/a\ <resource-ref>\n
<res-ref-name>jdbc/ApplicationDBDS</res-ref-name>\n
<res-type>javax.sql.DataSource</res-type>\n <res-auth>Container</res-auth>\n
</resource-ref>' META-INF/ejb-jar.xml.orig > META-INF/ejb-jar.xml
zip -f ejb_ob_engine_wls.jar META-INF/ejb-jar.xml
zip -f ../soa-infra-wls.ear META-INF/weblogic-application.xml
popd

4. Update the config.xml file if localhost access is required, as shown in
Example 2–5.

Example 2–5 Updating config.xml

if [-z "$(grep '<listen-address></listen-address>' $DOMAIN_
HOME/config/config.xml)"];then
 mv $DOMAIN_HOME/config/config.xml $DOMAIN_HOME/config/config.xml.orig
 sed
's@<listen-address>.*</listen-address>@<listen-address></listen-address>@'
$DOMAIN_HOME/config/config.xml.orig > $DOMAIN_HOME/config/config.xml
fi

5. Restart (or start) Integrated WebLogic Server.

Using Deployment Profiles Settings

2-54 Developer's Guide

2.4.2 How to Use Alternate Database Schemas
The main reason to use an alternate database is to improve performance. For instance,
if the main database is remote, you can improve performance by installing the
dehydration store, EDN, MDS and OraSDPM on your local machine.

To use an alternate database schema, follow these steps.

1. Create the required database schemas, as shown in Example 2–6.

Example 2–6 Creating database schemas

cd $RCU_SHIPHOMELOC/bin
DB_HOST=localhost
DB_PORT=1521
DB_SID=XE
CONNECT_STRING=$DB_HOST:$DB_PORT:$DB_SID

2. Drop the Repository, as shown in Example 2–7. Enter the SYS password when
prompted.

Example 2–7 Dropping the repository

./rcu -silent -dropRepository -connectString $CONNECT_STRING -dbUser sys -dbRole
sysdba -lockSchemas false -schemaPrefix SH -component SOAINFRA -component MDS
-component ORASDPM -component BAM

If the -silent switch is omitted, a wizard will be launched. It will ask you to
enter the same values as shown in Example 2–6.

3. Recreate the Repository, as shown in Example 2–8. Enter the SYS password when
prompted.

Example 2–8 Recreating the repository

./rcu -silent -createRepository -connectString $CONNECT_STRING -dbUser sys -dbRole
sysdba -lockSchemas false -schemaPrefix SH -component SOAINFRA -component MDS
-component ORASDPM -component BAM

2.5 Using Deployment Profiles Settings
When creating an Oracle ADF library deployment profile, you can include connection
information. When a project attaches that Oracle ADF library, the connection
information is merged with its own connection information. This provides runtime
consistency. The Oracle ADF library, by including the connection information, can
ensure that all of the resources that it needs (the connections) are properly propagated
to the consumers.

Note: These steps need the number of processes in the database to be
set to at least 200. If needed, log in as sysdba, run this command, and
restart the database.

alter system set processes=200 scope=SPFILE;

Note: You will need to supply passwords for the different users. You
should make the username and the password for that user the same,
such as jmaus/jmaus. You will have to remember all the passwords.
You will need them when you configure the DataSources.

Using Deployment Profiles Settings

Setting Up Your Development Environment 2-55

When creating an Oracle ADF library deployment profile, the default is to include all
connection details for every connection in the connections.xml, which is a workspace
level file. Subsequently, when the Oracle ADF library is attached to a project, all of the
connections are merged with the connections.xml for that project's workspace. This
causes a proliferation of the connections across Oracle Fusion Applications. While the
propagation of the connections is desirable, it is propagating much more than is really
needed.

Example of Connections Propagation
A Financials project creates an Oracle ADF library with the defaults. All of the
connection information for that Financials workspace is included in the Oracle ADF
library. HCM picks up that Oracle ADF library. HCM's workspace now contains all
connections that HCM needs, and all of the connections from the Financials
workspace. If the defaults are retained, all of HCM's projects contain connection
information from Financials plus HCM. If CRM picks up any of those HCM Oracle
ADF libraries, it merges the connection information into the CRM workspace; which
now contains all of Financials plus HCM plus CRM.

Cleanup
Developers should audit the current deployment profiles for all of Oracle Fusion
applications to make sure they are not including all of the connection information.
Developers need to make sure their deployment profiles only include the connections
that are truly needed directly by that project.

Developers also need to remove any unnecessary connections from the
connections.xml files from each workspace. The connections.xml file should be a
superset of all of these connections and not include unnecessary connections.

2.5.1 How to Use Service Deployments
A project that contains an Oracle ADF Business Components-based service can have
two purposes. The Oracle ADF Business Components code can be invoked as a service
or it can be used as a regular Oracle ADF Business Components object. Oracle ADF
provides two different deployment profiles to handle each of these cases.

For the service scenario, the BC Service Profile creates two JAR files. One is the
Common one that contains information that is needed by the service invoker (Web
Service Description Language (WSDL), XML schema definition (XSD), Service
Interface). The MiddleTier one is an Enterprise JavaBeans (EJB) JAR file that contains
the actual implementation.

For use as an Oracle ADF Business Components object, consumers must get an Oracle
ADF library. That is the only way the Oracle ADF Business Components objects are
exposed to consumers in the Oracle ADF Business Components design time wizards.
Oracle ADF library also has no option for filtering, so it includes all the artifacts from
the project including the WSDL, XSD, and Service Interface. Additionally, the Oracle
ADF library includes the connection information for invoking the service. Because of
this, developers inherit extra connection information if they want to use a
service-enabled application module, not as a service, but as an application module.

Common must be an Oracle ADF library because consumers of this need a connection
entry to be injected into the consumers' connection.xml file. This does not happen
with ordinary JAR files.

Configuring the Oracle Enterprise Scheduler (ESS)

2-56 Developer's Guide

2.5.2 How to Update the Standard
All Oracle ADF library deployment profiles should be updated to selectively include
connections that are important to that one project. Common scenarios include:

■ Data Model Project

– ApplicationDB database connection

– ApplicationsRepository, if you use Attachments

– Service connections for any ServiceFactory invocations

– Essbase

■ User interface project

– Portlet producers

– Web Service Data Control connections

In the Edit ADF Library JAR Deployment Profile Properties dialog, choose to include
Connection Name Only, as shown in Figure 2–41

Figure 2–41 Editing a Deployment Profile

2.6 Configuring the Oracle Enterprise Scheduler (ESS)
If you have elected to use Standalone WebLogic Server for Oracle Fusion Applications
ESS development, you will need to perform the tasks in this section.

For information about using the Oracle Enterprise Scheduler, see the Oracle Fusion
Middleware Developer's Guide for Oracle Enterprise Scheduler.

For information about setting up cross-domain security, see Enabling Trust Between
WebLogic Server Domains.

Important: The ESS and Fusion schema must be located in the same
database and must be linked to each other.

Configuring the Oracle Enterprise Scheduler (ESS)

Setting Up Your Development Environment 2-57

2.6.1 How to Provision the Runtime Environment
Section 2.3, "Setting Up the Personal Environment for Standalone WebLogic Server"
shows how to configure the fusion_apps_wls.properties file and run the
FADevConfigDomain.py script to stage and deploy the necessary infrastructure.

For Oracle Enterprise Scheduler, you must ensure that you have configured the
domainType property in the fusion_apps_wls.properties file to standalone,
adminall or adminessadf. Example 2–9 shows correctly configured Oracle Enterprise
Scheduler database and schema information, and ESS-related settings.

Example 2–9 Sample Showing Correctly-Configured Oracle ESS Database and Schema
Information, and ESS-related Settings

[domain]
domainType=adminessadf
domainName=fusion_domain
listenPort=7011
soaPort=7012
wlName=weblogic
wlPassword=password
...
[wlsconfig]
fusionDbHost=fpp-ta02.companyname.com
fusionDbPort=1522
fusionDbSid=fppta02
...
leave oraessDbHost, oraessDbPort, oraessDbSid blank if using fusion database
oraessDbHost=
oraessDbPort=
oraessDbSid=
oraessDbUser=oraess_d8b2
oraessDbPassword=password
#
essMdsDbHost=
essMdsDbPort=
essMdsDbSid=
essMdsDbUser=fusion_mds_ess
essMdsDbPassword=password

After provisioning the runtime, you should create the supporting database schema
before starting the managed servers which is covered in Section 2.6.2, "How to Create
Supporting Database Schema."

2.6.2 How to Create Supporting Database Schema
There are two approaches to creating the database schema: using the Oracle Fusion
Applications Repository Creation Utility or creating the schema using SQL scripts. The
latter allows greater flexibility in the naming of the schema and user, but requires use
of SQL*Plus.

For pre-requisite steps and configuration of the Oracle Enterprise Scheduler schema
using the Oracle Fusion Applications Repository Creation Utility, see Section 2.4.2,
"How to Use Alternate Database Schemas." Example 2–10 shows how to configure the
Oracle Enterprise Scheduler schema using the Oracle Fusion Applications Repository
Creation Utility schema.

Configuring the Oracle Enterprise Scheduler (ESS)

2-58 Developer's Guide

Example 2–10 Configuring Oracle Enterprise Scheduler Schema Using the Oracle
Fusion Applications Repository Creation Utility Schema

cd $RCU_SHIPHOMELOC/bin
DB_HOST=localhost
DB_PORT=1521
DB_SID=XE
CONNECT_STRING=$DB_HOST:$DB_PORT:$DB_SID

./rcu -silent -createRepository -connectString $CONNECT_STRING -dbUser sys -dbRole
sysdba -lockSchemas false -schemaPrefix D8B2 -component ESS

Alternatively, creating the schema by running scripts in SQL*Plus can be performed as
shown in Example 2–11

Example 2–11 Using SQL*Plus Scripts to Create Schema

cd $MW_HOME/rcu/rcu/integration/ess/sql
sqlplus sys/manager as sysdba;
@createuser_ess_oracle.sql oraess_d8b2 oraess_d8b2 SYSTEM TEMP;
connect oraess_d8b2/oraess_d8b2
@createschema_ess_oracle.sql oraess_d8b2

2.6.3 Post-Installation Checks
Perform these steps to make sure the ESS installation was successful.

2.6.3.1 Verifying the Temp Directory Location and Write Permissions
The ESSAPP (also known as the ESS Base application) is the deployed infrastructure
that supports the deployment of the product team Oracle Enterprise Scheduler
applications, known as hosted applications. By default, this application writes all
request log and output to a directory path known as the userFileDir, which is
configured in the ess.xml file.

The ESS application defaults to file persistence mode and writes all the request log and
output to a directory path known as the RequestFileDirectory, which is configured in
the ESSAPP connections.xml file. By default, the temp directory will point to
/tmp/ess/requestFileDirectory. Ensure that the directory exists and, if not, create it
as the user who will start the ESS managed server.

2.6.3.2 Verifying ESS Artifacts Deployment Targets
Make sure ESS datasources and shared libraries are targeted to clusters and managed
servers. Stop and Start WebLogic Servers as needed.

2.6.3.3 Checking ESS Health
Run ESS Health checks by accessing these links:

■ Checking health of an ESS Node:
http:/<hostName>:<port>/EssHealthCheck/checkHealth.jsp

■ Checking health of an ESS Cluster:
http:/<hostName>:<port>/EssHealthCheck/diagnoseHealth.jsp

Note: You should determine the appropriate TEMP tablespace by
reviewing the entries in dba_tablespaces before attempting to run
these scripts.

Testing Your Installation

Setting Up Your Development Environment 2-59

2.7 Testing Your Installation
To test your JDeveloper and Oracle ADF installation, perform the following steps to
create both a data model project and a user interface project, create an ApplicationDB
database connection, and create and run a simple page.

1. In JDeveloper, select the Application Navigator menu, then select New
Application to open the Create Application wizard. See Figure 2–42.

Figure 2–42 Naming Your Application

2. Complete the following:

Application Name: Enter Setuptest

Application Package Prefix: Enter oracle.apps.test

Application Template: Choose Fusion Web Application (ADF)

3. Click Next to access the Name Your ADF-Model Project dialog. See Figure 2–43.

You can enter a new name for your data model project or you can keep the default
name Model.

Tip: The name of the wizard changes according to the application
template that is selected.

Note: The system automatically will create data model and user
interface projects for you. The default names for these projects that
JDeveloper provides are Model and ViewController

Testing Your Installation

2-60 Developer's Guide

Figure 2–43 Naming Your Oracle ADF Model Project

4. Click Next to access the Configure Java Settings for the ADF-Model dialog.

This dialog displays the Java settings for your data model project. See Figure 2–44.

Figure 2–44 Configuring Java Settings for the ADF Model

5. Click Next to access the Name Your ADF ViewController Project dialog.

Note: The Project Technologies are automatically selected based on
the application template that was chosen. You can select additional
technologies if required.

Testing Your Installation

Setting Up Your Development Environment 2-61

You can enter a new name for your user interface project or you can keep the
default name ViewController. See Figure 2–45.

Figure 2–45 Naming Your Oracle ADF User Interface Project

6. Click Next to access the Configure Java Settings for the ViewC... dialog.

This dialog displays the Java settings for your user interface project. See
Figure 2–46.

Note: The Project Technologies are automatically selected based on
the application template that was chosen. You can select additional
technologies if required.

Testing Your Installation

2-62 Developer's Guide

Figure 2–46 Configuring Java Settings for the Oracle ADF User Interface Project

Click Finish to create your new application.

7. Add the Applications Core, Applications Core (Attachments Model), Topology Manager,
Functional Setup Model, BC4J Service Runtime, and Java EE 1.5 libraries to the data
model project. See Section 3.3, "Adding Necessary Libraries to Your Data Model
Project."

8. Add the Applications Core (ViewController) tag library to the user interface project.
See Section 3.4, "Adding the Applications Core Tag Library to Your User Interface
Project."

9. Add this option to the Model projects's Run options:

-Doracle.jdbc.createDescriptorUseCurrentSchemaForSchemaName=true

To add the option:

■ Right-click the Model project and select Project Properties.

■ Select Run/Debug/Profile.

■ In the Run Configurations list, select Default and click Edit.

■ Select Launch Settings.

As shown in Figure 2–47, enter the option string in the Java Options field.

Figure 2–47 Adding a Java Option to the Run Configuration

Testing Your Installation

Setting Up Your Development Environment 2-63

■ Click OK.

■ Click OK.

10. The ApplicationDB database connection is created automatically when the
Applications Core library is attached to the model project. However, you will need
to adjust the values that are defined in the connection to reflect the database you
want to use. See Section 3.6, "Creating a Database Connection." For this example,
enter these connection details:

Connection Type: Choose Oracle (JDBC)

Username / Password: Enter the username and password for your team's Fusion_
Runtime database schema.

Deploy Password: Select this option.

Host Name: Enter the host name, such as my.host.com

JDBC Port: Enter the port number for your database.

SID: Enter the database name, such as mydb.

11. Choose Application Navigator > Model. Right-click and choose New from the
menu to open the New Gallery.

12. Choose the Business Tier > ADF Business Components category. Select the
Business Components from Tables item to launch the Create Business
Components from Tables wizard. See Figure 2–48.

Figure 2–48 Create Business Components from Tables — Entity Objects

13. Complete the following to create your entity object:

a. Filter Types: Select only Tables to narrow your search for schema objects.

b. Filter Name: Enter a filter, such as %LOOK% to narrow your search to tables.

c. Query: Click this button to perform your search.

Testing Your Installation

2-64 Developer's Guide

d. Choose the required object, such as FND_LOOKUPS and click > to shuttle it
over to the Selected column.

e. Click Next to go to the next step in the wizard.

14. Choose the required entity object located in the Available column and click > to
shuttle it over to the Selected column. See Figure 2–49.

Figure 2–49 Create Business Components from Tables — Updatable View Objects

15. Click Finish to create your updateable view object and to close the Business
Objects wizard.

16. Ensure that your application module configuration is using JDBC data source.

This is required for your application module to run on the WebLogic Server.

To update your application module configuration:

a. Go to the Application Navigator and select your application module.
Right-click and select Configurations from the menu.

b. Choose the configuration <AM Name>Local, then choose Edit.

c. Change the Connection Type to JDBC DataSource and Datasource Name to
java:comp/env/jdbc/ApplicationDBDS. Click OK.

17. Validate your model with the Business Component Tester to make sure that the
ApplicationDBDS data source has been configured for the Integrated WebLogic
Server environment.

In the Navigator tree, right-click the application module and select Run, as shown
in Figure 2–50.

Note: The results of your search displays in the Available column.

Testing Your Installation

Setting Up Your Development Environment 2-65

Figure 2–50 Running the Application Module

If your installation is set up correctly, a dialog similar to that shown in Figure 2–51
displays. If an error message displays, you will need to re-check that the previous
steps have been performed correctly.

Figure 2–51 Application Module in Business Component Browser

In this example, right-click FndDemoEmp1 and select Show to display data, as
shown in Figure 2–52.

Figure 2–52 Showing Data in the Business Component Browser

18. Choose Application Navigator > ViewController. Right-click and select New
from the menu to open the New Gallery.

19. Choose the Web Tier > JSF category. Select the JSF Page item and click OK to
open the Create JSF Page dialog.

20. Complete the following:

■ File Name: Enter Setup.jsp

■ Select to create jspx file.

■ Click OK.

21. Go to the Data Controls panel and drag the collection onto the open Setup.jspx
window. See Figure 2–53.

Testing Your Installation

2-66 Developer's Guide

Figure 2–53 Data Controls Panel - FndDemoEmp1 Collection

22. Select to create Forms > ADF read-only from the context menu that displays. See
Figure 2–54.

Figure 2–54 Context Menu

23. Remove some of the rows that are displayed in the opened dialog so that your
page only lists a few fields. Select the Include Navigation Controls checkbox and
click OK. See Figure 2–55.

Using Best Practices for Setting Up the Development Environment

Setting Up Your Development Environment 2-67

Figure 2–55 Editing Form Fields

24. Click the Run button located on the toolbar to run your page.

When your page is displayed, you can use the buttons that appear at the bottom of
your page to view next and previous employees.

2.8 Using Best Practices for Setting Up the Development Environment
Implementing these best practices when using JDeveloper will significantly reduce
problems.

2.8.1 How to Implement Best Practices for JDeveloper
These recommendations are specific to improving the performance of JDeveloper.

Increase the Number of Lines in the Log Message Window
The default of 3000 lines generally is insufficient for Oracle Fusion applications, and
important errors and exceptions may be removed too quickly. The solution is to
increase the number of lines, such as to 30000. Whenever you create a new view and
run JDeveloper for the first time, increase the limit. Open Tools > Preferences
Environment > Log and edit the Maximum Log Lines setting.

Running JDeveloper in Verbose Mode
You can run JDeveloper in its default non-verbose mode, or in its verbose mode.

Note: Make sure the URL uses the full host name. For instance, if the
displayed URL is
http://127.0.0.1:7101/ApplCoreCRMDemo/faces/Region6UIShellPa
ge, you should edit it manually so it appears similar to
http://myhost.name.com:7101/ApplCoreCRMDemo/faces/Region6UIS
hellPage.

Using Best Practices for Setting Up the Development Environment

2-68 Developer's Guide

■ jdev: The default non-verbose mode limits the amount of information displayed to
the console. This helps you focus on the important information being displayed.

■ jdev -v: The verbose mode displays all the information to your console. Although
this information is not useful for everyday workflow, when something goes
wrong, more information can help you debug your problem.

Increase the minimum / maximum heap size for JDeveloper (and other Java
parameters)
This is specifically about increasing the heap size for JDeveloper, since JDeveloper
itself is a Java executable and runs in its own Java Virtual Machine (JVM). This will not
affect Integrated WebLogic Server; for that you set USER_MEM_ARGS, since it's a
separate process and therefore a separate JVM.

To change the values for minimum and maximum Java heap, modify the
corresponding parameters in $jdev_install/ide/bin/ide.conf.

Other parameters can be set in $jdev_install/jdev/bin/jdev.conf.

Do not set Xms or Xmx in the jdev.conf file because it will just result in duplicating
the parameter on the command line because it already is set in the ide.conf file. You
can add any other parameter than is not already passed on the command line in this
file, using the same format as the existing parameters.

Enable the JDeveloper Java heap meter
You can enable the JDeveloper heap monitor (that is, the heap, permgen, and dustbin
icon that forces garbage collection on the status bar of the main jdev window). Add
this line to the $jdev_install/jdev/bin/jdev.conf file.

 AddVMOption -DMainWindow.MemoryMonitorOn=true

The heap monitor shows the current size of the heap; not necessarily the maximum
size. The heap is originally created at the specified minimum size. When additional
space is required, and if garbage collection cannot free up enough space, the heap size
is increased. If the heap reaches its maximum and there still is not enough space after
garbage collection, an OutOfMemoryException is thrown.

2.8.2 How to Refresh the Oracle ADF Library Dependencies Library
The Oracle ADF Library Dependencies library is refreshed by doing the Refresh ADF
Library Dependencies.

■ There is a new library file per project in the project directory. This file will only
exist if the project has unresolved deployment dependencies required by the
directly-imported Oracle ADF JAR files in the project.

■ The file should be added to the project source-controlled file set.

■ The file should be included in all transactions where it was updated during the
design time.

■ If a runtime exception, such as No Def Found or No Class Def Found occurs, the
project menu command to refresh the Oracle ADF Library Dependencies should
be used to update the file. This could happen because of updated lower-level
dependency changes outside of the design time session.

Using Best Practices for Setting Up the Development Environment

Setting Up Your Development Environment 2-69

2.8.3 How to Manage OutOfMemory Exceptions (PermGen)
When you use Integrated WebLogic Server, make sure the USER_MEM_ARGS
environment variable is set before starting JDeveloper.

USER_MEM_ARGS=-Xms256m -Xmx1024m -XX:MaxPermSize=512m -XX:CompileThreshold=8000

■ The csh command is: setenv USER_MEM_ARGS "-Xms256m -Xmx1024m
-XX:MaxPermSize=512m -XX:CompileThreshold=8000"

■ The bash command is: export USER_MEM_ARGS="-Xms256m -Xmx1024m
-XX:MaxPermSize=512m -XX:CompileThreshold=8000"

Verify that it is set correctly.

$ env | grep USER_MEM_ARGS

$USER_MEM_ARGS is read by the WebLogic Server startup scripts, and is used to
override the default JVM memory settings. If using the default MaxPermSize=256M,
you will regularly get outOfMemoryExceptions due to exhausted permGen. Setting
permGen higher doesn't completely fix the problem, but it does mean you can work
longer before deployment fails with a permGen-related outOfMemoryException.

In the JDeveloper message log window, you will see this line when Integrated
WebLogic Server is started. Make sure it reflects the overridden values defined in
$USER_MEM_ARGS.

JAVA Memory arguments: -Xms256M -Xmx1024M -XX:CompileThreshold=8000
-XX:PermSize=64M -XX:MaxPermSize=512M

Remember that overriding the Java memory arguments is a balancing act, and if you
set them too high for your machine resources, either JDeveloper or WebLogic Server
may fail to start, may hang, or may fail with a resource-related exception. For example,
setting XX:MaxPermSize=1024m may be too high. If you experience problems after
increasing the permanent generation size, try unsetting $USER_MEM_ARGS to see if
it could be the cause. Session servers and workstations may respond differently.

Example exceptions

java.lang.OutOfMemoryError: PermGen space
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:621)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124)
at
weblogic.utils.classloaders.GenericClassLoader.defineClass(GenericClassLoader.java
:344)
Truncated. see log file for complete stacktrace

Sometimes deployment just becomes very slow before it eventually fails.

Once you hit OutOfMemoryExceptions, if you then try and close Integrated WebLogic
Server, the first attempt may fail because it is in a bad state. If you try a second time,
JDeveloper now does a kill -9, which should clear it. You should no longer need to kill
WebLogic Server by manually issuing the kill command from another terminal
session. However, if you ever do need to, try identifying the WebLogic Server process.
This command assumes that you are using the default port 7101.

$ "/usr/sbin/lsof -i -P | grep 7101"

If you have another instance of WebLogic Server running, and the port is already in
use, JDeveloper will use another port. Also, you may have changed the port in
fusion_apps_wls.properties.

Configuring Hierarchy Providers for Approval Management (AMX)

2-70 Developer's Guide

This command lists the Java processes with the full command line, which should help
you to identify the WebLogic Server process.

$ ps -elf | grep java | grep <userid>

2.8.4 How to Work with Oracle ADF Libraries at Design Time
Every data model or user interface project should have an Oracle ADF library
deployment profile. Service projects are the exception.

Oracle ADF libraries should be added to your project using the Resource Catalog by
creating a File connection. From there, you can right-click any of the libraries and
select Add to Project. Then all Oracle ADF libraries get managed under a Library
called ADF Libraries. Mixing and matching different methods of adding Oracle ADF
libraries can cause them to appear under different Libraries and sometimes under
multiple libraries. That makes it hard to manage.

All references to components contained in Oracle ADF libraries are resolved when the
workspace is loaded in JDeveloper. If a reference to a component or Java class in an
Oracle ADF library cannot be resolved because, for instance, it does not exist or is
incompatible with the existing reference, you probably will receive a compilation error.

Closing and restarting JDeveloper with a workspace open does not refresh the
references to Oracle ADF libraries. Closing the workspace, and re-opening it does.

If you have a specific project selected in the JDeveloper navigator pane, select View >
Refresh ADF Library Dependencies for *.jpr to refresh the references to Oracle ADF
libraries.

When you make any changes to the components in a project, where the components
are being referenced as an Oracle ADF library by your user interface project, you need
to redeploy the Oracle ADF library and refresh the Oracle ADF library dependencies
for your user interface project. The same applies to one model project referencing from
another model project.

If you are developing or debugging code in a data model project while running the
referencing user interface project to test it, it may be easier to add the model project as
a build output dependency, so you do not have to go through the cycle of redeploying
the Oracle ADF library or refreshing Oracle ADF library references each time you
make a change.

2.9 Configuring Hierarchy Providers for Approval Management (AMX)
Human Capital Management (HCM) maintains complex hierarchies and uses web
services to retrieve this information. These services are known as service extensions.
One of these extensions is the hierarchy provider, which allows you to walk up a
hierarchy to retrieve information about a manager or subordinate. A simple example
would be you, your manager, your manager's manager, and so on.

See "Using Approval Management" in Oracle Fusion Middleware Modeling and
Implementation Guide for Oracle Business Process Management.

Before you begin
Before you can configure hierarchy providers, you need to update the credential store
using the WebLogic Scripting Tool. Follow these steps:

1. Run the wlst.sh command from the current working directory and answer the
prompts.

■ wls:/offline> connect()

Configuring Hierarchy Providers for Approval Management (AMX)

Setting Up Your Development Environment 2-71

■ Please enter your username [weblogic]:weblogic

■ Please enter your password [weblogic]:password

■ Please enter your server URL [t3://localhost:7001]:t3://999.99.999.99:7101

■ Connecting to

t3://localhost:7101 with userid weblogic ...

2. Run these WLST commands (exactly as they are here) to create credentials within
the domain's credential store.

wls:/DefaultDomain/serverConfig> updateCred(map="oracle.wsm.security",
key="keystore-csf-key", user="owsm", password="password", desc="Keystore key")
wls:/DefaultDomain/serverConfig> updateCred(map="oracle.wsm.security",
key="enc-csf-key", user="orakey", password="password", desc="Encryption key")
wls:/DefaultDomain/serverConfig> updateCred(map="oracle.wsm.security",
key="sign-csf-key", user="orakey", password="password", desc="Signing key")
wls:/DefaultDomain/serverConfig> updateCred(map="oracle.wsm.security",
key="basic.credentials",user="weblogic",password="password",desc="User
credentials key")
wls:/fusion_domain/serverConfig> createCred(map="oracle.wsm.security", key="
FUSION_APPS_AMX_APPID-KEY ", user="FUSION_APPS_AMX_APPID", password="password",
desc="User credentials key")

After running the commands, a message similar to this displays:

desc=User credentials key, map=oracle.wsm.security, password=password,
user=FUSION_APPS_AMX_APPID, key=FUSION_APPS_AMX_APPID-KEY }

There are three types of hierarchy providers.

■ Supervisory: A hierarchy that allows you to walk up and down a user's
management chain.

■ Job-level: A supervisory hierarchy provider with additional job-level information
attached to each user.

■ Position: An HCM hierarchy in which a position's manager is another position.
Position has one or more users as its members. Because position is not a native
entity in Identity Service Management, you need to set up additional web services
to retrieve its data. These services are considered to be service extensions. Service
extensions include hierarchy-provider, position-lookup, and display-name-lookup
web services.

Each list builder may have a corresponding hierarchy provider.

A hierarchy principal is something that participates in the hierarchy. It has certain
parameters that the hierarchy provider uses to determine which hierarchy to walk up
to. These parameters are:

■ userID

■ assignmentID

■ effectiveDate (of the assignment)

■ hierarchyType (to use)

■ propertyBag (additional parameters map)

Note: Integration with Oracle HCM is native. That is, you provide
the WSDL URL for each hierarchy provider.

Configuring Hierarchy Providers for Approval Management (AMX)

2-72 Developer's Guide

Service extension is defined in the workflow-identity-config.xml file under
$ORACLE_HOME/user_projects/domains/soainfra/config/soa-infra/configuration.

The file location also may come from MetaData Services (MDS). The file could be
updated at the MDS location by using a WebLogic Scripting Tool command, such as
importMetadata and exportmetaData. For example:

./wlst.sh
connect('weblogic','weblogic1','t3://<your_host>:7001')
importMetadata(application='soa-infra',server='AdminServer',fromLocation='<your_
path>',docs='/soa/configuration/default/workflow-identity-config.xml')
exit()

■ Identity Service Configuration (tag ISConfiguration) has two sections:
configurations and service extensions.

■ Under configurations, service extension is specified using the
IdentityServiceExtension property.

■ Under service extensions (tag serviceExtensions), three hierarchy providers can be
specified: JobLevel hierarchy provider, Supervisory hierarchy provider, and
Position hierarchy provider. Two special service providers can be specified:
position-lookup and position-display-name. All are service providers. JobLevel
and Supervisory use the same Java class
oracle.bpel.services.identity.hierarchy.providers.hcm.HCMHierarchyProvi
der.

The position-lookup provider allows you to look up the members of a position
and all the positions that belong to a user. The position-display-name provider
allows you to retrieve the display names of a list of positions for a particular
language.

The sample Identity Service Configuration XML code shown in Example 2–12 specifies
a service extension, HCMIdentityServiceExtention, for JpsProvider. It then specifies
the providers in the service extension.

Example 2–12 Sample workflow-identity-config.xml File for Specifying HCM Providers

<?xml version = '1.0' encoding = 'UTF-8'?>
<ISConfiguration xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig" >
 <configurations>
 <configuration realmName="jazn.com">
 <provider providerType="JPS" name="JpsProvider" service="Identity">
 <property name="jpsContextName" value="default" />
 <property name="IdentityServiceExtension" value="HCMIdentityServiceExtension"/>
 </provider>
 </configuration>
 </configurations>
 <property name="caseSensitive" value="false"/>
<serviceExtensions>
 <serviceExtension name="HCMIdentityServiceExtension">
 <serviceProvider type="supervisoryHierarchyProvider"
classname="oracle.bpel.services.identity.hierarchy.providers.hcm.HCMHierarchyProvider">
 <initializationParameter name="wsdlUrl" value="HierarchyProviderService?WSDL"/>

Note: Within each provider, the attribute classname points to a Java
implementation of the service provider. The parameter wsdlURL points
to the URL of the concrete Web Service Description Language (WSDL)
for the provider's web service. You should replace this value with the
actual URL.

Configuring Hierarchy Providers for Approval Management (AMX)

Setting Up Your Development Environment 2-73

 <!-- Optional parameters. Depicts how the defaults could be overridden to specify
different values -->
 <initializationParameter name="policyFile" value="file://hcm-client-policy.xml"/> <!--
using different owsm policy, see below for sample policy file -->
 <initializationParameter name="csf-key-name" value="hcm-csf-key-other"/> <!-- using
different name for the csf-key-->
 <initializationParameter name="http-read-timeout" value="6000"/> <!-- Use this value to
specify HTTP read timeout in miliseconds, default is 5000 milisec-->
 <!-- securityPolicyName controls the local policy attachment to use. This value is used
along with csf-key-name to use elevated privileges See Bug 10368000 for more information-->
 <initializationParameter name="securityPolicyName" value="oracle/wss10_saml_token_client_
policy"/>
 </serviceProvider>
 <serviceProvider type="positionHierarchyProvider"
classname="oracle.bpel.services.identity.hierarchy.providers.hcm.HCMPositionHierarchyProvider">
 <initializationParameter name="wsdlUrl"
value="http://<host>/HierarchyProviderService?WSDL"/>
 </serviceProvider>
 <serviceProvider type="positionLookupProvider"
classname="oracle.bpel.services.identity.position.provider.hcm.PositionLookupServiceProvider">
 <initializationParameter name="wsdlUrl"
value="http://f<host>/positionLookupService?WSDL"/>
 </serviceProvider>
 <serviceProvider type="positionDisplayNameProvider"
classname="oracle.bpel.services.identity.position.provider.hcm.PositionDisplayNameProvider">
 <initializationParameter name="wsdlUrl"
value="http://<host>/HierarchyProviderService?WSDL"/>
 </serviceProvider>
 <serviceProvider type="jobLevelHierarchyProvider"
classname="oracle.bpel.services.identity.hierarchy.providers.hcm.HCMHierarchyProvider">
 <initializationParameter name="wsdlUrl"
value="http://<host>/HierarchyProviderService?WSDL"/>
 </serviceProvider>
 </serviceExtension>
 </serviceExtensions>
</ISConfiguration>

Configuring Hierarchy Providers for Approval Management (AMX)

2-74 Developer's Guide

3

Setting Up Your JDeveloper Application Workspace and Projects 3-1

3Setting Up Your JDeveloper Application
Workspace and Projects

This chapter describes how to set up your JDeveloper application workspace and
projects, add libraries to projects, integrate Oracle Fusion Middleware extensions,
create a database connection, implement Oracle Enterprise Crawl and Search (ECSF),
and deploy Oracle SOA Suite.

Whenever you create new projects, you must first create an application using the
Fusion Web Application (Oracle ADF) template. The system will then automatically
create the data model and user interface projects for you. The default names that
JDeveloper provides for these projects are Model and ViewController.

After your projects have been created, you must manually add the Applications Core
library to the data model project and the Applications Core Tag library to the user
interface project.

This chapter discusses:

■ Section 3.1, "Using Technology Scopes"

■ Section 3.2, "Provisioning the Application Workspace"

■ Section 3.3, "Adding Necessary Libraries to Your Data Model Project"

■ Section 3.4, "Adding the Applications Core Tag Library to Your User Interface
Project"

■ Section 3.5, "Integrating Oracle Fusion Middleware Extensions for Applications
(Applications Core) Setup UIs"

■ Section 3.6, "Creating a Database Connection"

■ Section 3.7, "Adding the Search Navigation Tab to the Overview Editor for Oracle
Enterprise Crawl and Search Framework (ECSF)"

■ Section 3.8, "Overriding the Default Resource Bundle"

■ Section 3.9, "Deploying Oracle SOA Suite"

■ Section 3.10, "Implementing Oracle Enterprise Scheduler Service Workspace and
Deployment"

■ Section 3.11, "Implementing Oracle Application Development Framework UI
Workspace and Projects"

Using Technology Scopes

3-2 Developer's Guide

3.1 Using Technology Scopes
Technology scopes are attributes on the project that can be used to identify the
different technologies used for that particular project. These attributes are used only
within JDeveloper to assist you as you work. With technology scopes, the choices
presented to you in the New Gallery and in the menus and palettes are filtered so that
you see only those items that are most relevant to you as you work. Technology scopes
have no effect on the data in the project itself.

The JDeveloper online Help has more information.

3.2 Provisioning the Application Workspace
The application's Enterprise Archive (EAR) will be available for developers to pick up
when creating a custom application workspace. An administrator that provisions the
environment will be responsible for providing developers with the following:

■ EAR locations for the various applications.

■ jazn-data for the various applications.

■ LDAP/credential store that the developer can set up for authentication.

In addition, the Oracle Fusion Applications Customization Application Wizard will
create a complete development environment for customizing existing Oracle Fusion
applications. See the online Help in the wizard, and "Using JDeveloper for
Customizations" in the Oracle Fusion Applications Extensibility Guide.

3.3 Adding Necessary Libraries to Your Data Model Project
Use these directions to add the Applications Core, Applications Core
(Attachments Model), Topology Manager, Functional Setup Model, BC4J Service
Runtime, Java EE 1.5, and Java EE 1.5 API libraries to the data model project. The
default name, provided by JDeveloper, for this project is Model.

To add the necessary libraries to a data model project:
1. Choose Application Navigator > Model project. Right-click and choose Project

Properties from the menu.

2. Choose the Libraries and Classpath category. Click Add Library to open the Add
Library dialog.

3. Select the Applications Core, Applications Core (Attachments Model),
Topology Manager, Functional Setup Model, BC4J Service Runtime, Java EE
1.5, and Java EE 1.5 API libraries from the list of available libraries. Click OK to
save your selection and close the Add Library dialog.

The libraries are now displayed in the Classpath Entries region of the Libraries
and Classpath dialog, as shown in Figure 3–1.

Adding the Applications Core Tag Library to Your User Interface Project

Setting Up Your JDeveloper Application Workspace and Projects 3-3

Figure 3–1 Project Properties — Libraries and Classpath Dialog

4. Click OK to save your changes.

3.4 Adding the Applications Core Tag Library to Your User Interface
Project

Use these directions to add the Applications Core Tag Library to the user interface
project. The default name provided by JDeveloper for this project is ViewController.

To add the Applications Core Tag library to the user interface project:
1. Choose Application Navigator > ViewController project. Right-click and choose

Project Properties from the menu.

2. Choose the JSP Tag Libraries category. Go to the Distributed libraries folder and
click Add to open the Add Library dialog.

3. Select the Applications Core (ViewController) 11.1.1.0.0 tag library from the list of
available libraries. Click OK to save your selection and close the Add Library
dialog.

The Applications Core (ViewController) 11.1.1.0.0 is now displayed under the
Distributed libraries folder on the JSP Tag Libraries dialog, as shown in
Figure 3–2.

Integrating Oracle Fusion Middleware Extensions for Applications (Applications Core) Setup UIs

3-4 Developer's Guide

Figure 3–2 Project Properties — JSP Tag Libraries Dialog

4. Click OK to save your changes.

5. Choose Application Navigator > ViewController project. Right-click and choose
Project Properties from the menu.

Choose the Dependencies category and select the Model.jpr.

6. Click OK to save your changes and close the Project Properties dialog.

3.5 Integrating Oracle Fusion Middleware Extensions for Applications
(Applications Core) Setup UIs

The most common use of Applications Core setup UIs is through Oracle Fusion
Functional Setup Manager tasks that invoke the UIs running on the Applications Core
Setup Java EE application. Applications Core setup UIs are part of the Applications
Core (Setup UI) shared library, which is hosted centrally in the Applications Core
Setup Java EE application. As a result, developers typically will not need to include
the shared library in their own Java EE applications.

3.5.1 What You May Need to Know About Setup UIs in Oracle Fusion Functional Setup
Manager

Every Oracle Fusion application registers ADF task flows with the Functional Setup
Manager, which provides a single, unified user interface that allows implementers and
administrators to configure all applications by creating set up data.

Note: Even if you are only using the user interface project you must
still initialize the data model project as they are dependent on each
other.

Integrating Oracle Fusion Middleware Extensions for Applications (Applications Core) Setup UIs

Setting Up Your JDeveloper Application Workspace and Projects 3-5

For example, a Human Resources application can register setup activities such as
"Create Employees" and "Manage Employee Tree Structure." See the Oracle Fusion
Applications Information Technology Management, Implement Applications Guide.

To make these task flows available to developers, implementers or administrators, a
developer integrates the desired Applications Core setup UI task flows with
Functional Setup Manager. For information about specific task flows, see:

■ Section 7.11, "Integrating Messages Task Flows into Oracle Fusion Functional
Setup Manager"

■ Section 8.3, "Integrating SetID Task Flows into Oracle Fusion Functional Setup
Manager"

■ Section 10.6, "Integrating Lookups Task Flows into Oracle Fusion Functional Setup
Manager"

■ Section 11.8, "Integrating Document Sequence Task Flows into Oracle Fusion
Functional Setup Manager"

■ Section 18.7, "Integrating Attachments Task Flows into Oracle Fusion Functional
Setup Manager"

■ Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion Functional Setup
Manager"

■ Section 54.2, "Integrating Profiles Task Flows into Oracle Fusion Functional Setup
Manager"

The most common use of setup UIs is through Oracle Fusion Functional Setup
Manager tasks. This is true even for product-specific tasks that invoke the task flows
with parameters that restrict the results to a single object or set of objects.

3.5.2 How to Integrate Setup UIs into Functional Setup Manager
To determine your requirements, familiarize yourself with these three scenarios and
decide which one best fits your needs. The first two patterns are the typical use cases.
The third is for approved exceptions only.

■ Scenario 1 is a generic setup task that invokes a setup task flow running in the
Applications Core Setup Java EE application. For example, you want to give your
product administrator roles access to the generic Manage Descriptive Flexfields
setup task.

■ Scenario 2 is a product team-specific setup task that invokes a setup task flow
running in the Applications Core Setup Java EE application and passes in
product-specific parameters to restrict the objects to only those relevant to this
specific task. For example, you want to give your product administrator roles
access to a Manage GL Descriptive Flexfields setup task that launches the Manage
Descriptive Flexfields setup UI for descriptive flexfields belonging to the GL
module only.

■ Scenario 3 is a product team-specific setup task that invokes a setup task flow
running in the product team's own Java EE application. This scenario is for
approved exceptions only. For example, you plan to embed the setup UI within
another UI in your own product team's Java EE application. For instance, the
Manage Item Categories UI in Product Information Management (PIM) embeds
the Manage Extensible Flexfields setup UI.

Follow the instructions in Table 3–1 that are relevant to your scenario to integrate
Applications Core setup UIs into Functional Setup Manager.

Creating a Database Connection

3-6 Developer's Guide

3.6 Creating a Database Connection
A connection to a valid database is necessary to run most, if not all, applications.

To create a database connection:
1. In JDeveloper, choose Application Resources > Connections. Right-click and

choose New Connection > Database from the menu.

2. Add the following connection details for the ApplicationDB connection name as
shown in Figure 3–3.

Table 3–1 Instructions for Each Scenario

Step Scenario 1 Scenario 2 Scenario 3

Follow Functional Setup Manager guidelines to create product-specific
setup tasks in the Application Design Repository. Tailor the behavior of
the setup UI by passing allowed values to the task flow parameters.
Decide what Applications Core setup UI task flows that you want to
incorporate and locate the chapter (see Section 3.5.1, "What You May
Need to Know About Setup UIs in Oracle Fusion Functional Setup
Manager") that describes each task flow and its parameter values.

X X

Product teams should set the value of the Enterprise Application field (in
the Application Design Repository) to the appropriate Java EE application
for any of their product-specific Functional Setup Manager tasks that use
Applications Core setup task flows. Typically, this should be set to the
Applications Core Setup Java EE application.

X X

Ensure product team roles inherit the appropriate Applications Core duty
role. The duty roles support securing the setup tasks so only authorized
users have access.

X X X

If you intend to integrate a product-team specific setup UI and it will run
in your product team's own Java EE application, your application will
need to include the Applications Core shared library.

X

For any of the duty roles and their associated privileges that your
application inherits, include permissions for those privileges in your
application's jazn-data.xml file. Permissions make it possible to grant
authorized users access to your setup tasks.

X

Creating a Database Connection

Setting Up Your JDeveloper Application Workspace and Projects 3-7

Figure 3–3 Create Database Connection Dialog

Connection Name: The value for the connection name must be ApplicationDB.

Connection Type: Choose Oracle (JDBC).

Username and Password: Enter the database username and password.

Deploy Password: Select this checkbox.

Host Name: This is the default host name if the database is on the same machine
as JDeveloper. If the database is on another machine, type the name (or IP address)
of the computer where the database is located.

JDBC Port: This is the default value for the port used to access the database. If you
do not know this value, check with your database administrator.

SID: This is the default value for the SID that is used to connect to the database. If
you do not know this value, check with your database administrator.

3. Click Test Connection. (Database listener Port). If the database is available and the
connection details are correct, the message Success! is displayed. If not, review and
correct the information that you entered.

4. Click OK. The connection now appears below the Application Resources
Connections folder as shown in Figure 3–4.

Adding the Search Navigation Tab to the Overview Editor for Oracle Enterprise Crawl and Search Framework (ECSF)

3-8 Developer's Guide

Figure 3–4 Application Resources — Connections

3.7 Adding the Search Navigation Tab to the Overview Editor for Oracle
Enterprise Crawl and Search Framework (ECSF)

ECSF provides developers a set of tools and a framework to quickly and efficiently
integrate Oracle Secure Enterprise Search (SES) into enterprise applications to expose
business objects for full text search.

For more information about ECSF, see Part V, "Using Oracle Enterprise Crawl and
Search Framework"

Developers use ECSF to integrate search functionality in Oracle Fusion applications by
defining searchable objects and searchable attributes. Defining searchable objects and
searchable attributes enables the corresponding view objects and view object attributes
for search, and creates the necessary metadata for ECSF. However, before you can
define searchable objects and searchable attributes, you must add the Search
navigation tab to the overview editor in JDeveloper.

For more information about defining searchable objects, see Chapter 27, "Creating
Searchable Objects."

3.7.1 How to Add the Search Navigation Tab to the Overview Editor
To add the Search navigation tab to the overview editor in JDeveloper, download the
JDeveloper extension for ECSF.

To download the JDeveloper extension for ECSF:

1. Launch JDeveloper.

2. In JDeveloper, choose Check for Updates from the Help menu.

3. In the Check for Updates dialog, click Next.

4. In the Source tab, select the Search Update Centers radio button, then select the
Internal Automatic Updates checkbox.

5. Click Next, then select the ECSF Design Time Extension checkbox.

6. Click Next, then click Finish.

7. When prompted to restart JDeveloper, click Yes.

Note: If you have trouble initializing Java Virtual Machine (JVM),
launch JDeveloper by entering jdeveloper.exe -J-Xmx125m at a
command prompt.

Deploying Oracle SOA Suite

Setting Up Your JDeveloper Application Workspace and Projects 3-9

3.7.2 What Happens When You Add the Search Navigation Tab to the Overview Editor
Once the Search navigation tab is added, the oracle.ecsf.dt.jar file appears in the
oracle_home/jdev/extensions directory and the following files appear in the oracle_
home/ecsf/lib directory:

■ ecsfSchema.sql

■ ecsfSysView.sql

■ search_admin_wsclient.jar

■ ecsf.jar

■ ecsf-dt_bundle.zip

■ search_client.jar

■ ecsfSeedData.sql

The Search navigation tab appears in the overview editor of JDeveloper, as shown in
Figure 27–3.

Use the Search navigation tab to configure the search-related properties.

For more information, see Chapter 27, "Creating Searchable Objects."

3.8 Overriding the Default Resource Bundle
In an Oracle Fusion application, strings are not hard-coded; they are placed in resource
bundles. An application can have multiple resource bundles.

However, you may need to change a specific string in all places where that string
appears without having to change it on a per-instance (page/ADF BC object) basis. For
instance, you may need to change "worker" to "employee," "activity" to "task," or
"expenditure" to "cost." The method to use is the override resource bundle.

In the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition), see:

■ "Internationalizing and Localizing Pages" for information about setting up
resource bundles.

■ "What You May Need to Know About Overriding Default Messages Globally" for
general instructions on overriding a resource bundle.

This bundle is specified in the adf-config.xml file and is created at runtime. For
Oracle Fusion applications, there are two important points:

■ This file must be named FusionAppsOverrideBundle.xlf

■ Although an application can have multiple resource bundles, it can have only one
override resource bundle.

3.9 Deploying Oracle SOA Suite
For information about deploying SOA, see:

■ "Deploying a SOA Composite Application" in the "Developing SOA Composite
Applications with Oracle SOA Suite" chapter of the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

■ Oracle Fusion Middleware Enterprise Deployment Guide for Oracle SOA Suite.

Implementing Oracle Enterprise Scheduler Service Workspace and Deployment

3-10 Developer's Guide

3.10 Implementing Oracle Enterprise Scheduler Service Workspace and
Deployment

Oracle Enterprise Scheduler Service applications, also known as Oracle Enterprise
Scheduler Service hosting applications, are deployed to an Oracle Enterprise Scheduler
Service-configured runtime or cluster that has been pre-deployed with the base
ESSAPP infrastructure Java EE application. Following standards, Oracle Enterprise
Scheduler Service workspaces exist one per product family and are responsible for
containing these supporting projects:

■ Oracle Enterprise Scheduler Service projects for containing Job, Job Set,
Incompatibility and Schedule Metadata as well as source files for any Java Job
implementation.

■ ADF data model projects for containing Parameter view object business
components.

■ ADF user interface projects for containing Parameter task flows.

■ Optional servlet or UI task flow projects for development-time testing.

■ SuperEss consolidating the Enterprise JavaBeans deployment descriptors for the
entire Oracle Enterprise Scheduler Service hosting application. See Section 3.11.2,
"How to Create the SuperEss Project in the ADF UI Workspace."

A typical Oracle Enterprise Scheduler Service workspace structure resembles
Figure 3–5.

Figure 3–5 Typical Oracle Enterprise Scheduler Service Workspace Structure in
JDeveloper

Note: All the projects in an Oracle Enterprise Scheduler Service
application, regardless of their content type, should have an ADF
Business Components Shared Library deployment profile.

Implementing Oracle Enterprise Scheduler Service Workspace and Deployment

Setting Up Your JDeveloper Application Workspace and Projects 3-11

3.10.1 How to Create the SuperEss Project
In Oracle Fusion Applications, all Oracle Enterprise Scheduler Service workspaces
must contain a SuperEss project that contains the EJB deployment descriptors to
register the hosted application with the ESSAPP base application, and to register both
the MetadataService and RuntimeService EJBs. This technique avoids having multiple
projects with conflicting deployment descriptors in a single deployment archive
(EAR).

RuntimeService and MetadataService beans are hosted by the ADF UI application and
the Oracle Enterprise Scheduler Service hosting application.

If you are creating a new Oracle Enterprise Scheduler Service workspace or your
Oracle Enterprise Scheduler Service workspace does not already have a SuperEss
project, create one using these steps:

1. In JDeveloper, create the SuperEss project by creating a new Generic Project
named SuperEss.

2. In the project properties, create a new EJB-JAR deployment profile.

3. In the File Groups Properties, click New to create a new file group.

4. Name it and set the directory path of both to src/META-INF.

5. In the source directory, create the src/META-INF directory.

6. Create the ejb-jar.xml and weblogic-ejb.jar.xml files. See "Assembling the
Scheduler Sample Application" in the Oracle Fusion Middleware Developer's Guide
for Oracle Enterprise Scheduler. Save the files in the src/META-INF directory.

After completing these steps, the SuperEss project will be complete. Follow
Section 3.10.2, "How to Build the EAR/MAR Profiles" to build the EAR/MAR
deployment profiles.

3.10.2 How to Build the EAR/MAR Profiles
Oracle Enterprise Scheduler Service-hosted applications are built into EAR files and
deployed as Java EE applications. The EAR archive must contain the SuperEss EJB
JAR, the MAR archive containing all Oracle Enterprise Scheduler Service metadata,
and all the Job and Job-related classfiles using JARs in the APP-INF/lib directory.
Follow these steps to create the appropriate deployment profiles.

3.10.2.1 Deploying a Project-level Metadata Archive (MAR)

To simplify patching of Oracle Enterprise Scheduler Service metadata artifacts and
align with code-level patching, it is essential to have project-level deployment artifacts.
To support this requirement, EARs with multiple MAR files can be deployed. This
section describes what must be done to properly build Oracle Enterprise Scheduler
Service workspaces to support project-level MARs.

3.10.2.1.1 How to Enable Your Application Workspace for Project-level MAR Deployment In
contrast to standard MAR deployment, in which a single .mar file is created as a
metadata aggregate from contributors defined from one or more projects in the
application workspace, this approach focuses on the creation of a JAR-based
deployment profile in each project where the target file is named with a .mar

Note: Oracle Enterprise Scheduler Service is used in the instructions
because it is the primary, but not only, use case.

Implementing Oracle Enterprise Scheduler Service Workspace and Deployment

3-12 Developer's Guide

extension. The resultant .mar files are then deployed into the application workspace's
jlib folder, which is added to the top-level directory of the EAR by the EAR
deployment profile.

Follow these steps to implement the project-level MAR deployment.

1. Prepare the Application Workspace EAR deployment profile.

a. Open your Oracle Enterprise Scheduler Service Workspace in JDeveloper.

b. Open the Application Properties, select the Deployment panel, choose your
application's EAR deployment profile and click Edit.

These steps will need to be repeated if you have multiple EAR deployments
for development or test purposes.

c. Select File Groups and click New to create a new file group. Leave the type as
Packaging and name this group MAR Group.

d. Leave the remaining values at their defaults and click OK.

e. Select the Contributors heading beneath the new MAR Group file group and
click Add.

f. Browse to find the application workspace-level jlib directory and click OK.

g. In the Filters heading beneath the MAR Group, remove all the filters and add
these two rules so they display in this order:

Include *.mar

Exclude *.*

2. Prepare each metadata project JAR(MAR) deployment profile.

These steps will need to be repeated if you have multiple projects containing
Oracle Enterprise Scheduler Service metadata.

a. Select the Oracle Enterprise Scheduler Service metadata containing project and
open the project properties.

b. Select the Deployment panel and click New.

c. If necessary, select the JAR File archive type and provide a meaningful profile
name, such as <ProjectName>_MAR.

d. In the JAR Options panel, change the JAR File destination to point to the
application workspace-level jlib directory, and change the file's .jar extension
to .mar.

e. Select File Groups > Project Output > Contributors and de-select Project
Output Directory and Project Dependencies.

f. Click Add to add a new contributor and browse to and select the essmeta
project-level directory.

g. Select File Groups > Project Output > Filters and confirm the addition of the
relevant Oracle Enterprise Scheduler Service metadata files.

h. Click OK.

i. Deploy as JAR and verify.

3. Complete the Application Workspace EAR deployment profile.

These steps will need to be repeated if you have multiple EAR deployments for
test or development purposes.

Implementing Oracle Enterprise Scheduler Service Workspace and Deployment

Setting Up Your JDeveloper Application Workspace and Projects 3-13

a. Open the Application Properties.

b. Select the Deployment panel and choose the EAR deployment profile for your
application.

c. In the MAR Group file group, select Filters and ensure that all of your project
level MAR archives are selected.

d. Select the Application Assembly heading and de-select the application
workspace-level MAR profile.

e. Click OK.

f. Select the Profile Dependencies in the left-hand side.

g. Check the boxes for each of the new JAR-based MAR profiles.

h. Click OK.

i. Deploy as EAR and verify.

3.10.2.2 Building the EAR Profile
The EAR profile pulls together all of the previously-created EJB and MAR profiles to
build the Oracle Enterprise Scheduler Service-hosted application. All the Oracle
Enterprise Scheduler Service workspace projects should have ADF library JAR
deployment profiles, and those with Job-supporting implementation classes should be
deployed to a directory that can be added to the Oracle Enterprise Scheduler Service
EAR's contributor list.

To create the EAR profile, follow these steps:

1. Open the Application Properties and select the Deployment panel.

2. Click New to create a new deployment, choose EAR File as the profile type, and
provide a unique name.

3. In the Application Assembly, choose the SuperESS EJB-JAR profile and nothing
else.

4. Select the File Groups menu entry and click New, giving the name APP-INF/lib
and assigning the target directory to ess workspace root path/jlib.

5. Under the APP-INF/lib File Group's contributors, add the directory that holds all
of the Job-supporting Implementation classes (not data model projects with ADF
Business Components for parameter view objects or parameter task flows).

6. Select the File Groups menu entry and click New, giving the name MAR Group
and leave the target directory empty. Under the MAR Group's contributors, add
the directory that holds all the project level mar files (such as Ess/jlib).

7. Click OK.

Note that the EAR profile should contain only the SuperEss EJB JAR, the MAR, and
the JAR files for the Job implementation classes. The Oracle Enterprise Scheduler
Service hosting application's EAR file must not contain JARs, descriptors or other
artifacts for UI, data model or services functionality. Should your application contain
projects with servlet or UI task flows for development testing, they must be bundled
into a separate, UI-specific, set of EAR/MAR deployment profiles.

3.10.2.3 Deploying an Oracle Enterprise Scheduler Service Hosting Application
When deploying an Oracle Enterprise Scheduler Service hosting application, the target
managed server must have the ESSAPP base application pre-deployed and configured
to run against a working Oracle Enterprise Scheduler Service database schema.

Implementing Oracle Application Development Framework UI Workspace and Projects

3-14 Developer's Guide

For deployment from JDeveloper, you will need to create an Application Server
connection in the JDeveloper resources palette before or as part of the deployment
activity using the New Connection feature. Once your Oracle Enterprise Scheduler
Service application is ready for deployment, including all requisite project and
application-level profiles, you can initiate deployment by following these steps:

1. Click Deploy > <ear profile name> from the Application menu.

2. Choose Deploy to Application Server and click Next.

3. If no application servers are defined, or the one to which you wish to deploy is not
defined, click Add an Application Server. Otherwise, select the server. Do not click
Next yet.

4. De-select the Deploy to all server instances in the domain option, because certain
libraries needed for deployment of the Oracle Enterprise Scheduler Service
hosting application will not be targeted to all the managed servers, and
deployment will fail.

5. Click Next.

6. Choose the appropriate managed server and click Next.

7. Click Finish to begin deployment.

JDeveloper will build the EJB JAR and the MAR, and bundle those archives, along
with the JAR files, in the APP-INF/lib contributor location. This packaged archive will
be sent to the managed server for deployment. During deployment, the Oracle
Enterprise Scheduler Service hosting application will register itself through the
ESSAPP base application using the ESSAppEndpoint descriptor in your ejb-jar.xml
file.

Once deployment is finished, jobs can be submitted programmatically or through the
Oracle Enterprise Scheduler Service UI submission task flows. These methods are
documented in the Oracle Fusion Middleware Developer's Guide for Oracle Enterprise
Scheduler.

3.11 Implementing Oracle Application Development Framework UI
Workspace and Projects

Before you can deploy your web project, you need to complete a number of
preliminary steps. These include setting up your web project and configuring your
user interface project; creating the SuperESS project; creating the appropriate
deployment profiles; and creating and setting up Oracle WebLogic Server.

3.11.1 How to Set Up Your Web Project
When you choose the Oracle Fusion Applications Developer role when starting
JDeveloper, many settings default automatically for you. However, there are still
certain options that you need to set manually to configure your project.

This section discusses the specific options that need to be set manually to configure
your user interface project. The default name for the project that JDeveloper provides
is ViewController.

3.11.1.1 Configuring Your User Interface Project
This section describes how to configure your user interface project in JDeveloper.

Implementing Oracle Application Development Framework UI Workspace and Projects

Setting Up Your JDeveloper Application Workspace and Projects 3-15

To configure your user interface project:
1. Choose Application Navigator > ViewController project. Right-click and choose

Project Properties from the menu.

2. Choose the Project Source Paths category to display the Project Source Paths
dialog.

3. In the Default Package field, enter the name of your default package, as shown in
Figure 3–6.

Figure 3–6 Project Properties — Project Source Paths Dialog

Many objects are generated automatically and are stored in the default package.

4. Choose the ADFm Sources category from the Project Source Paths hierarchy to
display the Project Source Paths: ADFm Sources dialog, as shown in Figure 3–7.

Implementing Oracle Application Development Framework UI Workspace and Projects

3-16 Developer's Guide

Figure 3–7 Project Properties — Project Source Paths: ADFm Sources Dialog

The location for all the ADF Metadata sources is the location that is entered in the
ADFm Source Directory field. You should not have to change the default location.

5. Choose the Web Application category from the Project Source Paths hierarchy to
display the Project Source Paths: Web Application dialog, as shown in Figure 3–8.

Figure 3–8 Project Properties — Project Source Paths: Web Application Dialog

The location for all the HTML content is the location that is entered in the HTML
Root Directory field. You should not have to change the default location.

Implementing Oracle Application Development Framework UI Workspace and Projects

Setting Up Your JDeveloper Application Workspace and Projects 3-17

6. Choose the ADF Model category to display the ADF Model dialog, as shown in
Figure 3–9.

Figure 3–9 Project Properties — ADF Model Dialog

The location of the page definition files is based on a combination of the PageDef
sub-package value, the default package location, and the ADFm Sources directory.

7. Choose the Deployment category to display the Deployment dialog.

8. Select New to open the Create Deployment Profile dialog, as shown in
Figure 3–10.

Implementing Oracle Application Development Framework UI Workspace and Projects

3-18 Developer's Guide

Figure 3–10 Project Properties — Deployment — Create Deployment Profile Dialog

9. Choose ADF Library Jar File from the Archive Type list.

Enter the Name as Adf<projName> in accordance with the Package Structure and
Naming Standards.

10. Click OK to save the new deployment profile and close the Create Deployment
Profile dialog.

11. Choose the JSP Tag Libraries category to display the JSP Tag Libraries dialog, as
shown in Figure 3–11.

Note: The new deployment profile is now listed on the Deployment
dialog.

Implementing Oracle Application Development Framework UI Workspace and Projects

Setting Up Your JDeveloper Application Workspace and Projects 3-19

Figure 3–11 Project Properties — JSP Tag Libraries Dialog

Verify that you have the following tag libraries listed under the Distributed
libraries folder:

■ Applications Core (ViewController) 11.1.1.0.0

■ Trinidad HTML Components 1.2

12. Choose the Libraries and Classpath category to display the Libraries and
Classpath dialog, as shown in Figure 3–12.

Note: You may have to include additional tag libraries for other
features, such as Data Visualization Tools (DVT) and WebCenter. For
more information about adding tag libraries to your user interface
project, see Section 3.4, "Adding the Applications Core Tag Library to
Your User Interface Project.".

Implementing Oracle Application Development Framework UI Workspace and Projects

3-20 Developer's Guide

Figure 3–12 Project Properties — Libraries and Classpath Dialog

Verify that the libraries listed in Figure 3–12 have been attached to your user
interface project. As with tag libraries, you may have to add additional libraries.

Important: The Applications Core library must be included to make the page's
design tab visual, instead of showing nesting boxes of XML elements. To add the
Applications Core library:

■ Click Add Library.

■ In the Add Library list, select the Applications Core entry, as shown in
Figure 3–13 and click OK.

Figure 3–13 Adding the Applications Core Library

■ Verify that the Applications Core library now is included in the Libraries and
Classpath list, as shown in Figure 3–14.

Implementing Oracle Application Development Framework UI Workspace and Projects

Setting Up Your JDeveloper Application Workspace and Projects 3-21

Figure 3–14 Showing Applications Core Library Added to List

13. Choose the Resource Bundle category to display the Resource Bundle dialog, as
shown in Figure 3–15.

Figure 3–15 Project Properties — Resource Bundle Dialog

Verify that the Resource Bundle Type is set to Xliff.

14. Choose the Technology Scope category to display the Technology Scope dialog, as
shown in Figure 3–16.

Note: The default settings will be correct when you start JDeveloper
using the Oracle Fusion Applications Developer role.

Implementing Oracle Application Development Framework UI Workspace and Projects

3-22 Developer's Guide

Figure 3–16 Project Properties — Technology Scope Dialog

Verify that the technology scopes that are selected in Figure 3–16 are selected for
your project.

3.11.2 How to Create the SuperEss Project in the ADF UI Workspace
Follow the steps in Section 3.10.1, "How to Create the SuperEss Project". The
differences are that the ejb-jar.xml file will have no ESSAppEndpoint MDB and the
weblogic-ejb.jar.xml file will be empty.

3.11.3 How to Deploy Your Web Project
Deployment is the process of packaging application files and artifacts and transferring
them to a target application server to be run. During application development using
JDeveloper, developers can test the application using Integrated WebLogic Server that
is built into the JDeveloper installation, or they can use JDeveloper to directly deploy
to a standalone application server.

After the application has been developed, administrators can deploy it to production
application servers.

Note: This selection is limited to what is available, by default, in the
New Gallery. To see other types of objects, choose All technologies from
the New Gallery.

Implementing Oracle Application Development Framework UI Workspace and Projects

Setting Up Your JDeveloper Application Workspace and Projects 3-23

To deploy the web project to Standalone Weblogic Server, you must:

■ Create a Web Application Archive (WAR) deployment profile. To create the WAR
deployment profile, see "How to Create Deployment Profiles" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

■ Once you have defined the WAR, create an EAR deployment profile that includes
the WAR profile, for the application. To create an EAR deployment profile, see
"Creating an Application-Level EAR Deployment Profile" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

■ Create, if necessary, and prepare the standalone application server for deployment.
To run ADF applications, you must install the standalone application server with
the ADF runtime. You can include the ADF runtime during a new application
server installation or you can install the ADF runtime into an existing application
server installation. See "How to Install the ADF Runtime to the Application Server
Installation" and "How to Create and Extend Oracle WebLogic Server Domains" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Application
Development Framework.

■ Deploy the application using one of these methods:

■ Oracle Enterprise Manager Fusion Middleware Control

■ WebLogic Scripting Tool (WLST) commands (see "Deployment Commands" in
the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference) or
WebSphere Application Server (wsadmin) commands

■ Command scripts and Ant scripts

■ Oracle WebLogic Administration Console or IBM WebSphere Administrative
Console

Note: This section assumes that you are deploying a web project to
Standalone WebLogic Server. Creating deployment profiles is not
necessary if you are running the project in Integrated WebLogic Server
from within JDeveloper. In this case, JDeveloper, behind the scenes,
creates an in-memory deployment profile.

For other deployment options, see "Deployment Techniques for
Development or Production Environments" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

Implementing Oracle Application Development Framework UI Workspace and Projects

3-24 Developer's Guide

Part II
Part II Defining Business Services

This part of the Developer's Guide discusses business services and service-oriented
development, defaulting and derivation logic, creating validation rules, and using
messages in Oracle Fusion Applications. It provides information about the Oracle
Fusion Middleware extensions for Oracle Applications base classes and describes how
to share reference data across organizations by using set IDs to partition the data into
different sets of values. Also included is how to implement lookups and simple
lookups.

The Getting Started with Business Services chapter provides overviews of ADF Business
Components, services, validators, list of values (LOVs), and data types. It also
discusses migrating PL/SQL to Java, batch processing, and extensibility and
reusability.

Service-oriented development is based on the concept of services. It is the realization
of business functionality via software that customers can use to compose new business
applications by using existing services in the context of new or modified business
processes. The Developing Services chapter describes how to design the service
interface, how to develop and invoke services. It also provides information about
service versioning.

Defaulting logic means assigning attribute values when a row or entity object is first
created or refreshed and is achieved either declaratively in the attribute's default field
or programmatically by adding code to the EOImpl file. Derivation logic means
assigning attribute values when some other attributes have changed. Derivation is
achieved either declaratively in the transient attribute's default field or by using a
validator, or programmatically by adding code to the EOImpl file. This chapter
provides the information you need to determine whether to implement defaulting or
derivation logic.

The Message Dictionary and Messages Resource Bundles are used to store messages for
display from your application without hard-coding them into your forms and
programs. By using the Message Dictionary and resource bundles you can define
standard messages that you can use in all your applications, provide a consistent look
and feel for messages within and across all your applications, define flexible messages
that can include context-sensitive variable text, and change or translate the text of your
messages without regenerating or recompiling your application code. The Defining and
Using Message Dictionary Messages chapter provides an overview of Message
Dictionary messages and discusses how to use them in Oracle Fusion Applications.

Oracle Fusion Middleware Extensions for Oracle Applications Base Classes provide
additional features that are not part of the standard ADF Business Components core
entity objects, view objects, and application modules. The Middleware extensions
support Oracle Applications features such as TL (translatable) table, WHO column,
PL/SQL entity, FND services, Unique ID, and document sequencing. In JDeveloper,

selecting the Oracle Fusion Applications Developer role automatically sets the
Middleware extensions for Oracle Applications base classes as the default classes for
ADF Business Components objects. The base classes become available when you add
the Applications Core library. This chapter describes the Oracle Fusion Middleware
extensions for Oracle Applications base classes that extend the features of standard
ADF Business Components classes.

Unique ID generation provides a mechanism to manage the key-generation process
and to ensure that it runs without interruption. The process efficiently generates
distinct sets of IDs in different databases for the same table, ensuring that the same key
is never used for two different records created in different systems.

SetIDs enable different organizations within a single company to use different sets of
reference data to serve the same purpose. For example, the job codes for one country
might be different from the job codes for another country. Each organization can
maintain its job code data in the same table, using a set of values that is specific to that
organization. You use set IDs to partition the table into different sets of values so that
each organization can identify and access its own data. In addition to tables, other
sources of reference data such as lookup types and views can also be partitioned and
shared using set IDs. These are all generically referred to as reference entities. This
chapter describes how to share reference data across organizations by using set IDs to
partition the data, implement shared reference entities, extract and expose set ID
metadata, and implement shared lookups.

Lookups in applications are used to represent a set of codes and their translated
meanings. For example, a product team might store the values 'Y' and 'N' in a column
in a table, but when displaying those values they would want to display "Yes" or "No"
(or their translated equivalents) instead. Each set of related codes is identified as a
lookup type. There are many different examples of these across Oracle applications.

A document sequence uniquely numbers documents generated by an Oracle
Applications product. Using Oracle Applications, you initiate a transaction by entering
data through a form and generating a document, for example, an invoice. A document
sequence generates an audit trail that identifies the application that created the
transaction, for example, Oracle Receivables, and the original document that was
generated, for example, invoice number 1234.

This part contains the following chapters:

■ Chapter 4, "Getting Started with Business Services"

■ Chapter 5, "Developing Services"

■ Chapter 6, "Defining Defaulting and Derivation Logic"

■ Chapter 7, "Defining and Using Message Dictionary Messages"

■ Chapter 8, "Managing Reference Data with SetIDs"

■ Chapter 9, "Using Fusion Middleware Extensions for Oracle Applications Base
Classes"

■ Chapter 10, "Implementing Lookups"

■ Chapter 11, "Setting Up Document Sequences"

4

Getting Started with Business Services 4-1

4Getting Started with Business Services

This chapter provides an overview of ADF Business Components, validators, list of
values (LOVs), and data types. It also discusses migrating PL/SQL to Java, batch
processing, and extensibility and reusability. Also included is an overview of services.

This chapter includes the following sections:

■ Section 4.1, "Introduction to Implementing Business Logic"

■ Section 4.2, "Understanding Validators"

■ Section 4.3, "Understanding List of Values (LOV)"

■ Section 4.4, "Understanding Batch Processing"

■ Section 4.5, "Understanding Extensibility and Reusability"

■ Section 4.6, "Understanding Services"

■ Section 4.7, "Using the Declarative Approach"

4.1 Introduction to Implementing Business Logic
The core business logic is implemented in one or more business components that are
provided in ADF Business Components. Entity objects, view objects, and application
modules are the key business components that are discussed in this section.

4.1.1 About Entity Objects
An entity object represents a row in a database table. It encapsulates the business logic
and database storage details of your business entities. It simplifies modifying its data
by handling Data Manipulation Language (DML) operations automatically. There are
two general classifications of business logic that are placed on the entity object:

■ Standard business and validation logic

■ Specialized business functions

4.1.1.1 Standard Business and Validation Logic
An entity has a life cycle; customized business rules can be added to an entity object at
various places to be executed in different phases of its life cycle.

The entity object should contain all logic that is invoked during entity object life cycle
events. This comprises logic for create, initDefaults, all validation (including attribute
validation, entity validation and cross entity validation), DML, and so on. In other
words, the entity object encapsulates the rules that ensure the entity object is created
and remains in a valid state.

Introduction to Implementing Business Logic

4-2 Developer's Guide

If a business rule can be defined declaratively, you should always use the declarative
approach. For example, if an attribute has a constant default value, then you should
specify it in the Entity Object wizard rather than coding it. You should also first
consider using declarative validators for your validation logic, which is explained in
Section 4.2, "Understanding Validators".

The life cycle of an entity object begins with being created as a new entity object or
fetched from the database as an unmodified entity object. The entity object can then be
modified or removed. Only new, modified, or removed entity objects are in the
transaction pending change list and are posted to the database when the transaction is
committed.

For more information about the key events in the entity objects life cycle and where
you can add entity object business logic programmatically, see the Introduction to
Programmatic Business Rules section in the "Implementing Validation and Business
Rules Programmatically" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

4.1.1.2 Specialized Business Functions
The entity object is the core business object that is used to encapsulate task-level
business logic. It is shared by both user interfaces (UIs) and services. Core business
functions and tasks should be placed on the entity object as custom methods for
maximum reusability. Corresponding methods on the view object and application
modules should delegate to these functions on the entity object. Examples of business
functions are approvePurchaseOrder and hireApplicant. Internally, these custom
methods can be implemented using Java or may invoke legacy PL/SQL.

Custom business functions that are not invoked during entity object life cycle events
should be placed in either the entity object or model application module. Generally
these are the custom business functions that are required by the UI and Service
application module.

4.1.2 About View Objects
A view object represents a SQL query and also collaborates with entity objects to
consistently validate and save the changes when end users modify data in the UI. The
relationships between view objects are captured using view links. View objects are
used to present your business data for the specific needs of a given application
scenario or task, and generally don't contain business logic.

However, view objects may have additional attributes that do not exist in the
underlying entity objects, which are used to store some calculated values. Usually you
define different view objects for supporting services and UIs:

■ Service view object: Represents an outfacing business object and contains only the
attributes in the business object. For example, it contains the foreign key ID
attribute such as SupplierID, but it does not contain foreign key reference
attributes such as SupplierName.

■ UI view object: This view object may contain addition UI flags and calculated
attributes that are used for a particular UI. In addition, the UI view object may join
to other tables for additional foreign key attribute references.

Note: All logic existing in one entity object Java class not required.
It's valid for the entity object to call utility classes for code modularity
purposes.

Understanding Validators

Getting Started with Business Services 4-3

4.1.3 About Application Modules
An application module encapsulates an active data model and the business functions
for a logical unit of work related to an end-user task. The active data model is defined
as a collection of view object instances.

The methods on the application module are used to encapsulate task-level business
logic, although these methods should delegate to the methods on entity objects
whenever possible. If you have an option to put your business logic either on an entity
object or an application module, then you should always put it on the entity object.
This is because the entity object owns the business object and also for better reusability.
The task-level validations that span multiple related parent-child entities, such as
purchase order header and lines, should be put on the parent entity. It is also
important that the entity object should not trust the incoming data and always
perform all validations.

Application modules can be used to support UIs or define services. Usually you want
to have two separate application modules for the two different purposes because:

■ UI application modules may contain additional view objects and context values
that are only required for a particular UI, but not needed by a business service.

■ Application modules that define public services are versioned, but internal UI
application modules are not.

UI application modules and service application modules share the underlying entity
objects as shown in Figure 4–1. A UI application module can also call a service.

Figure 4–1 UI Application Module and Service Application Module

4.2 Understanding Validators
In Fusion, you should use validators to implement the validation logic. Validators are
added declaratively, which provides visibility and personalizability to customers as
well as the benefit of being easy to use and maintain. Validation view objects can be
attached to entity objects declaratively as view accessors, which can then be used in
declarative validators.

For more information about how to use validators and Groovy (a Java-like scripting
language), see Chapter 6, "Defining Defaulting and Derivation Logic."

Note: A service view object must be versioned to support service
versioning. However, there is no versioning requirement for an
internal UI view object.

Understanding List of Values (LOV)

4-4 Developer's Guide

4.3 Understanding List of Values (LOV)
List of Values (LOV) is the mechanism to specify a list of valid values for an attribute
in a view object. There are basically two parts involved when a LOV is defined: the
base object and the LOV object. The base object is a view object, which contains the
attribute whose list of valid values need to be defined, such as a PurchaseOrder view
object containing a BuyerId attribute. The LOV object is a normal view object that
contains the list of valid values, such as a Buyer view object containing all the valid
buyers. You should use the view object design time wizard to add a List Value on the
BuyerId attribute to associate with the Buyer view object.

In Fusion, the LOV metadata is defined on the server using ADF Business
Components, and this drives and defaults the UI controls to automatically render the
LOV bound items accordingly when you define a page, such as LOV and poplist
controls.

It's important to define the LOV and entity validators to share the same view object
instance to avoid redundant database round-trips for validation. To achieve this, the
LOV view object should be added as a view accessor in the entity object, and the view
accessor should be used to define entity level validators. The same view accessor is
available at the view object level and should be used to define the LOV. When the user
picks up a row from LOV on the UI, the row is placed on the LOV view object cache.
The entity object validation then hits the cache instead of going against the database. A
LOV/validation view object can also be defined as a global data source that is shared
among all the users.

For more information, see the "Sharing Application Module View Instances" chapter,
in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

4.4 Understanding Batch Processing
Depending on the use case, different approaches should be considered to achieve the
best performance.

For the use case of complicated bulk processing, such as very high volume or multiple
step processing, then a combination of multiple techniques needs to be considered. For
example, ADF Business Components, C, PL/SQL, SOA, Oracle Enterprise Scheduler
(ESS), and so on.

For the other use cases, such as integration with third- parties or data migration, if the
data volume is low to medium, then ADF Business Components service should be
used. Internally, a combination of interface table and PL/SQL can be used to handle
large amount of data, complicated processing, and validation logic. The inbound data
is loaded into an interface table through a service and then the PL/SQL API is
executed to process the data

4.5 Understanding Extensibility and Reusability
Fusion web applications are extensible applications, which can be tailored to fit the
business practices specific to a customer, locale or an industry. Adaptation through
Business Editor enables you to extend Oracle applications declaratively, which satisfies
most of the extensibility requirements. You can also use the programmatic extensibility
feature to address additional use cases.

Note: You should still provide services for all objects, and double
code the high performance alternatives when necessary.

Using the Declarative Approach

Getting Started with Business Services 4-5

4.6 Understanding Services
A service is a set of operations defined by an interface that can be used by other
components. In Fusion, applications use both ADF Business Components services and
SOA services. ADF Business Components services should be created to manage
business objects and SOA services are for orchestration and business processes.

In Fusion, you make your data and business logic available via UIs and services. For
more information about services, see Chapter 5, "Developing Services."

4.7 Using the Declarative Approach
When building your model objects, you should use the declarative approach whenever
possible. For example, when defining your view objects, use declarative SQL mode
whenever possible, base your view objects on entity objects, and utilize view criteria.

4.7.1 How to Define View Objects Using the Declarative Approach
When you define your view objects, use declarative SQL mode wherever possible. The
next option is to use normal SQL mode.

When building your view objects, use declarative SQL mode wherever possible.
Reasons for not using declarative SQL include:

■ You have a complicated query and the WHERE clause cannot be implemented using
view criteria.

■ Your query includes derived attributes that cannot be implemented as calculated
attributes based on a SQL expression.

If you are unable to use declarative SQL mode, you should try and use normal SQL
mode, which gives you full control over the WHERE clause. Only use expert mode if
other modes do not work. However, you should still base the view object on an entity
object when the query supports it.

Non-expert mode view objects are metadata based and more declarative instead of
SQL based. The declarative approach gives you benefits such as:

■ Increased development productivity:

– Proven experience from PeopleSoft and Siebel.

– Removes the requirement for you to tune each view object.

■ Easier to perform dependency and impact analysis.

■ Can be extended more robustly.

Declarative SQL mode is recommended because it is an even more declarative
approach to defining the view object than normal mode.

■ The runtime query optimization feature is enabled only when you use declarative
SQL mode. ADF Business Components makes runtime changes to the SQL based
on usage such as column pruning to improve performance.

■ Declarative SQL optimization means you can consider creating view objects that
can be reused in multiple UIs without impacting runtime performance.

For more information about how to set the SQL mode, see the Working with View
Objects in Declarative SQL Mode section of the "Defining SQL Queries Using View
Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

Using the Declarative Approach

4-6 Developer's Guide

4.7.1.1 Using Entity Object Based View Objects
All view objects (including read-only view objects) should be based on entity objects
unless:

■ Entity object based view objects are not supported for the SQL statement you are
using, for example:

– Union

– Select Distinct

– Group By

■ Your data doesn't come from the database. For example, the data comes from
external files.

Even if you have to use expert mode view object, you should still base your view
object on top of entity objects because:

■ The attributes from the entity object are still declaratively defined so that you can
partially benefit from the declarative approach.

■ Multiple view objects based on the same entity object can automatically see
updates made by any one of them.

■ Updated reference information is reflected when foreign key attribute values are
changed.

■ Metadata, (UI hints, associations, and other attributes), are automatically
propagated up to the view objects from entity objects.

■ New row management, such as view link consistency, only works with an entity
object-based view object.

■ findByKey doesn't work for view objects with no entity usage unless you turn on
the key management at the view object level (and this will add significant
resources and CPU time). The findByKey method is a frequently invoked by any
operation that involves setting the current row, such as clicking a row on an ADF
Faces rich client table:

– findByKey does not find the matching view row in the view object cache if the
key management is not enabled.

– findByKey adds the row fetched from the database into view object cache even
if the view object already has the same row in cache if the key management is
not enabled.

■ Updatable view objects must be based on entity objects so that view objects can
coordinate with the underlying entity objects to perform DML.

4.7.1.2 Utilizing View Criteria
Instead of directly setting the WHERE clause, use declarative named view criteria
whenever possible. Named criteria can be re-used in the UI and in the service
interface. Also, it supports customization better and is required for declarative SQL
mode.

In parallel, always use named bind parameters. Define the named bind parameters
during design time if possible. Otherwise, add the named bind parameters
programmatically. Named bind parameters are much easier to understand and
manage than the indexed bind parameters so therefore, the code is easier to develop
and maintain. If the same bind parameter appear multiple times in the WHERE clause,
you only need to bind it once.

5

Developing Services 5-1

5Developing Services

Service-oriented development is based on the concept of services. It is the realization
of business functionality via software that customers can use to compose new business
applications by using existing services in the context of new or modified business
processes. This chapter describes how you should design and develop the services to
make them useful for both Oracle Fusion Applications and for customers. It also
covers how the services are consumed.

This chapter contains the following sections:

■ Section 5.1, "Introduction to Services"

■ Section 5.2, "Designing the Service Interface"

■ Section 5.3, "Developing Services"

■ Section 5.4, "Invoking Services"

5.1 Introduction to Services
A service is defined in terms of its interface, which is the way the service is exposed to
the outside world. The service interface includes a set of operations the service
supports, a set of parameters (defining data required for interaction with the service),
and communication protocol used for data transfer and actual service invocation.
Grouping of the methods in the service interface is defined by business functionality of
the service.

Services have the following characteristics:

■ Business-driven

■ Coarse-grained

■ Process-centric

■ Stateless invocation

■ Loosely coupled

■ Distributed

■ Standards-based

In Oracle Fusion, applications use both ADF Business Components services and
service-oriented architecture (SOA) services. ADF Business Components services
should be created to manage business objects and SOA services are for orchestration
and business processes. SOA services use business object services to encapsulate
business processes as illustrated in Figure 5–1:

Designing the Service Interface

5-2 Developer's Guide

Figure 5–1 SOA Service — Business Service

This chapter focuses on business object services that are implemented using ADF
Business Components services.

In Oracle Fusion, you make business objects and related business logic available via
user interfaces (UIs) and services. A single general-purpose service can satisfy
multiple use cases such as:

■ Programmatic application programming interface (API) calls required by external
customers, cross-pillar integration, or third-party integration.

■ Business Process Execution Language (BPEL) process flows and composite
applications

■ Business-to-business (B2B) integration through standardized documents

■ Foreign UI technologies such as Microsoft .NET framework

■ XML-based reporting

■ Desktop applications such as Excel and Access

5.2 Designing the Service Interface
A service is a public interface, and it requires careful design to make it useful. For ADF
Business Components services, on which this chapter focuses, the purpose of these
services is managing business objects, including the generic lifecycle of the objects
(create/update/delete/query), and special actions that can be applied to the objects.

Therefore, designing these services will start from identifying the business objects,
continue with identifying service operations on business objects, and grouping the
operations into services. Exceptions, warnings, or informational messages need to be
defined for each operation and service as part of the service interface design process.

5.2.1 Identifying Business Objects
Identify which business objects that you want to expose from the service interface.

5.2.1.1 Business Object Attributes
The shape of the business object is very important. You need to include all the
attributes that represent the objects, but exclude anything that is of no business value.

The business object must contain the following attributes:

Designing the Service Interface

Developing Services 5-3

■ Primary key attributes, including the system generated surrogate keys when
defined.

■ Attributes that are of business value to the consumer. This will include most
attributes of the physical tables.

5.2.2 Identifying Service Operations on the Business Objects
The service operations are the actions that can be performed on business objects, such
as create and delete.

5.2.2.1 Types of Operations
Standard operations and Custom operations are the two types of service operations that
are supported by ADF Business Components service.

Standard Operations
The primary purpose of standard service operations is to locate a business object and
handle its persistence. This includes storage, manipulation and retrieval of data,
locking, transaction management, business rule validation, and bulk processing. ADF
Business Components auto-generates the following groups of standard service
operations:

■ CRUD (Create, Read, Update, Delete) Operations:

– get<businessObjectName>: get a single business object by primary key.

– create<businessObjectName>: create a single business object.

– update<businessObjectName>: update a single business object.

– delete<businessObjectName>: delete a single business object by primary key.

– merge<businessObjectName>: update a business object if exists, otherwise
create new one.

■ Find Operation:

– find<businessObjectName>: find and return a list of business objects by find
criteria.

■ Bulk Processing Operations:

– process<businessObjectName>: process a list of business objects via a CRUD
command.

– processCS<businessObjectName>: process a list of business objects via a
change summary.

■ Control Hints Operations:

– List<AttrCtrlHints>

– getDfltCtrlHints(String viewName, String localeName): takes the view
object name and a locale and returns the base UI hints for that locale.

Custom Operations
Custom service operations encapsulate complex business rules and may coordinate
execution of two or more data-centric operations within one atomic transaction.

Designing the Service Interface

5-4 Developer's Guide

5.2.2.2 Identifying Operations
All core business functions should be exposed in services. When developing a list of
business object operations, consider the entire application life cycle from creation to
deletion. Also, consider potential use cases that are required by others. Typically, the
functionality exposed from UI should be achievable from services. For example, the
following list includes many of the operations associated with requisitions and
purchase orders:

■ Operations associated with Requisitions:

– create

– merge

– update

– delete requisition

– delete requisition line

– delete requisition distribution

– copy requisition

– get requisition

– cancel

– approve (including all approval states such as approve, reject, and
pre-approve)

– view approval history

■ Operations associated with Purchase Order:

– create

– delete purchase order

– delete purchase order line

– delete purchase order shipment

– delete purchase order distribution

– copy purchase order

– merge

– update (change)

– acknowledge

– get purchase order

– cancel purchase order

– cancel purchase order line

– approve (including all approval states)

– view approval history

– close

Typically, you should include all the standard operations, although the delete operation
should only be included if supported by the business object.

Designing the Service Interface

Developing Services 5-5

Custom operations must be coarse-grained and must reflect a business task to be
carried out. activateCustomerParty, suspendOrder, and closeServiceRequest are some
examples.

5.2.2.3 Defining Service Operations - General Guidelines
There are general guidelines you must follow when defining service operations.

Be generic where it makes sense
Since most Oracle Fusion services serve multiple use cases as listed in Section 5.2.2.2,
services should not be designed narrowly for only one use case at the exclusion of
others. Instead, services should be designed from the start to be general purpose and
contain APIs that can serve the widest use cases. This is especially important to
consider for common business functions that are initially required for the UI or to meet
enhancement requests from other products. It should be the conceptual essence of the
use case that drives the interface, not the fine-grained specifics of one consumer. A
consumer can be seen as a representative of a specific use case, but the provider should
always apply well-measured foresight when defining the interface details. Creating
general purpose APIs from the beginning will:

■ Prevent method explosion as other similar use cases are requested.

■ Increase reuse by multiple use case.

For example:

There is a requirement to return a person's name based on personId. To satisfy that
requirement, you might want to create an operation such as:

public String getPersonName(Long personId)

However, it is likely that this service will soon be adopted by more consumers, which
will require other attributes of a person. In this example, it makes sense to return the
person object instead of just the name into the first specification of the service
interface, such as:

public Person getPerson(Long personId)

Leverage standards wherever possible
When there is an existing industry standard that can be applied to your service,
leveraging the standard is definitely recommended to avoid costly negotiation of
proprietary interfaces.

However, in many situations either no standard exists or the standard does not
optimally support your business need. In this case you should make the interface as
generic as possible for your given group of consumers. This will make sure that the
interface stays stable as more consumers adopt it, while being highly useful for your
given business processes. With good strategic planning it is possible to define generic
interfaces for a defined subset of stakeholders.

Service operation granularity
Because it is possible to call services across a network, the service operations should be
generally coarse-grained. That is, a service operation should wrap a substantial body
of application logic, delivering value that justifies the latency cost of a network
request. Similarly, services should expose coarse-grained operations. Rather than
expose many operations that each manipulate small amounts of state, services should
expose fewer operations that allow a single request to perform a complete function.

Designing the Service Interface

5-6 Developer's Guide

Compensating service operations
For operations that involve data manipulation, a clear strategy for compensation must
be defined. Services are frequently distributed remotely and there is no central
transaction coordinator with sufficient control over all resources. This is inherent in
Simple Object Access Protocol (SOAP), which is predominantly used in the web
services space and therefore, a two-phase commit protocol cannot be enforced. Also,
two-phase commit implies resource locking, which may lead to scalability and
availability issues if locks are held for longer periods.

In order to allow for service operations to be undone, in certain business scenarios it
may be possible to offer compensating service operations. These operations are used to
revert the system back to the state before the original operation was invoked.
Providers and consumers must agree on the conditions under which an original
operation can be undone and what information is required to achieve the
compensating effect.

In most cases, the decision to provide a compensating operation is primarily
functional. It might technically be possible to delete an existing purchase order, but
functionally it is only correct to cancel it once it has been submitted for approval. Not
all operations should, by default, be paired with a compensating operation.
Compensating operations should be provided only if the business process demands
that the system can be rolled back into the original state.

If it is not possible to provide a compensating operation, you should strive to make the
service operations truly accomplishable (idempotent). Making the operations
idempotent means that the operation can be invoked multiple times with the same
payload but still the result will be the same with no undesirable effects. If neither
providing compensating service operations nor making the service operations
idempotent is feasible, processes should be designed in such a way that the service
operation would never be called more than once under any circumstances for a
specific request.

Service operation parameters
Each service operation can have zero or more parameters. Each parameter can be a
primitive type (String, Date, and so on), a complex type represented as a Service Data
Object (SDO), or a List of a primitive type or SDO. Complex types can in turn contain
nested complex types.

■ Long Parameter List or Complex Types?

You should consider using complex types in a service operation instead of using a
long list of individual parameters unless the parameter list can be reduced to a
short list of simple types (3-5).

For example:

A service operation updatePerson() takes a compound complex type of Person,
which includes several individual attributes such as BirthDate, a collection of
PersonName, and a collection of PersonAddress, and so on. The reasons are:

– Taking a list of individual parameters leads to a not so clean operation
signature:

Example 5–1 Service Operation on a List of Parameters

void updatePerson (Date BirthDate, PersonName[] Names, PersonAddress[] Addresses);

– Adding an optional attribute on a complex type doesn't break compatibility,
but adding a new parameter in a method does.

Designing the Service Interface

Developing Services 5-7

– In the updatePerson example, if the person's email address needs to be
updated, the operation that takes a Person can stay unchanged.

■ Complex Types or Primary Keys?

As an alternative to complex types, business object Primary Keys can be used in
operation signatures in certain cases.

Auto-generated data-centric standard operations, such as create, update, delete,
merge, and Bulk Processing take complex business object types as parameters.
Auto-generated get() takes primary keys.

Custom methods may take business object primary keys or developer key as
parameters, when the key attribute is used to look up the business object, such as
terminateEmployee. Complex business object documents should be passed
primarily to the data-centric custom methods: validatePerson(),
promoteEmployee(), formatPersonAddress(), and so on.

5.2.3 How to Identify Services
A service is a grouping of operations. Often this grouping is by the business object it
maintains, which is especially true for the CRUD operations. In most cases, one service
per business object provides a more manageable hierarchy. For example, the business
object Person could be offering all operations that can be performed on it as a service
called PersonService.

After you have identified your services and what business object(s) they include, the
list(s) of the corresponding operations that were identified in Section 5.2.2.2 provide
the list of candidate methods for each service.

Services from other products that may compliment this list are not included. For
example, a SupplierService and InvoiceService provide detailed information about
suppliers and invoices respectively. The procurement services should identify only
who the supplier is in various transactions and provide information on
procurement-specific supplier data such as, supplier price, quality and on-time
delivery performance. It should not provide core supplier operations like creating,
updating, deleting, and so on because that is the responsibility of the
SupplierService.

It's important that the Oracle Fusion services compliment one other. Therefore, once
you've identified your working list of services, coordinate with related products to
ensure that you have not duplicated efforts or created confusing and conflicting APIs.
Also, communicate any expectations that you have of their services.

5.2.4 How to Define Service Exceptions and Information
Services might throw exceptions or warnings when there is issue of processing
inbound request. Sometimes it is desirable to return informational messages along
with the response. It is an important step to define when to return exceptions,
warnings, and informational messages, and what messages should be returned. This is
especially true for the bulk processing operations with partial failure.

5.2.4.1 Defining Service Exceptions
Once the required criteria for successful execution of a service operation is agreed
upon, all stakeholders must then define a complete set of error conditions. You must
define which exceptions can happen and which information should be reported back
to the consumer due to an exception. Exception processing should be consistently
implemented across all operations in the application. If one operation throws an

Developing Services

5-8 Developer's Guide

exception while another returns an empty collection, the consumers perceive the
services as unstable and unpredictable. The reported exception should contain as
much information as possible so that the consumers can pinpoint the problem easily.

All service operations are delegated to the underlying ADF Business Components
objects and their methods. As a service provider, you just need to implement your
validation logic and business rules in your server side objects, define appropriate error
messages declaratively, or throw appropriate JboExceptions programmatically.

Oracle ADF has one generic exception or fault to handle all ADF Business
Components exceptions. Whenever an exception is thrown from the underlying ADF
Business Components object for one of the service standard or custom methods, the
exception is thrown as a Service Exception, which contains all of the information
available from the original thrown exception. This also includes support for bundled
exceptions.

5.2.4.2 Defining Partial Failure and Bulk Processing
Services can support partial failure during bulk processing of data, which can be very
useful. For example, if the client loads a large amount of data using batch load
applications, the occurrence of one or more failures does not prevent the continued
posting of other unrelated data.

During design of your services, you need to decide whether partial failure should be
enabled for a business object including details. For example, a purchase order business
object includes a header, lines for each header, and shipments for each line. The partial
failure switch is set on each level including header, line, and shipment. Usually the top
level object should allow partial failure, but the decision on the detail level depends on
whether it make sense to simply skip that object if it fails. You must ask yourself the
question: "Does it make sense to still post the other lines and the header if one line fails?" In
some cases, you may need to preserve the integrity of the business object and not
allow the object to be posted with partially populated children.

5.2.4.3 Defining Informational Messages
Informational messages are not exceptions and won't affect the current transaction.
However, these messages may be useful to the clients. For example, you may want to
know when the system automatically transfers money from your saving account to
your checking account because there may not enough funds in your checking account
when your check is cashed out.

The service provider needs to define a complete list of informational messages as well
as the conditions that these messages should be returned.

5.3 Developing Services
After you design the service interface, you now must implement those services.

Caution: The partial failure mode is only used in the processXXX API
and this API also uses a runtime partial failure flag in the
ProcessControl parameter. This means the partial failure feature is
only enabled when both the design time flag and the runtime flag are
enabled.

Note: This is from the service provider perspective.

Developing Services

Developing Services 5-9

For more information see "Implementing Business Services with Application Modules"
in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

5.3.1 How to Create Service Data Objects
In Oracle Fusion, service data objects (SDOs) are used to expose business objects in
services. SDO is an industry standard, and it provides a unifying API and architecture
that allows SOA applications handle data from heterogeneous sources, including
relational databases, Web services, and enterprise information systems. Oracle has
implemented it based on the SDO specification.

Each SDO must be backed by a view object. Hence, you don't create the standalone
SDO. Instead, you always start with a view object, and service-enable the view object
using the "Generate Service Data Object Class" option in the view object wizard's Java
panel to create SDO.

This implies that you might need to create transient view object when there is no
corresponding entity object. For example, you want to use a SDO to capture
parameters when number of parameters is big.

5.3.1.1 SDO Attributes
When you create the view object, make sure the attribute are properly defined. See
Section 5.2.1.1 for information about what attributes should be included in SDO. You
can hide view object attribute from SDO if you need to by navigating to the attribute
editor and de-selecting the SDO Property checkbox.

The SDO attribute name is derived from the view object attribute name, and you
cannot override it.

Attribute Type Consistency
In general, the SDO attribute type is defaulted from the view object attribute, and you
can just use the default value. However, there are several exceptions.

■ Boolean type

A SDO attribute in boolean domain (only have true/false value) must be of
Boolean type.

Oracle ADF provides a feature that maps between the view object attribute String
type and the SDO attribute Boolean type. This feature will allow you to continue
using String in the view object attribute, but use Boolean in SDO.

To expose a Boolean domain view object attribute of String type as Boolean type in
SDO, do the following:

1. Determine the possible values of the attribute. Since it is of Boolean domain,
there are only two possible values: Y/N, T/F, or 1/0.

2. If needed, create a property set. This property set is used to indicate how
Oracle ADF should convert between String and Boolean. Oracle ADF provides
property sets for Y/N or T/F or 1/0. If the possible values are not Y/N or T/F
or 1/0, then you will need to create a property set. Navigate to the New
Object Gallery, and select Property Sets under ADF Business Components.

Note: If a view object extends another one, then the subtype SDO
cannot hide or unhide an attribute that is defined in the base SDO.

Developing Services

5-10 Developer's Guide

3. Navigate to the Source view and add the following element as a child of the
Domain element:

<Domain>
 ……
 <Properties>
 <SchemaBasedProperties>
 <BooleanValueMapping>
 <ValueMapping JavaStringValue="true" StorageValue="A"/>
 <ValueMapping JavaStringValue="false" StorageValue="I"/>
 </BooleanValueMapping>
 </SchemaBasedProperties>
 </Properties>
</Domain>

This example assumes that the possible values are "A" and "I", where "A"
means true and "I" means false. You should replace these values with your
own.

4. Specify the property set for the attribute. If the view object attribute is
entity-object based, then go to the entity object. Otherwise, go to the view
object. Navigate to the Source view and, in the corresponding Attribute or
ViewAttribute section, add the TypeValueMapPropertySet attribute. For
example:

<Attribute
 Name="…Flag"
 ……
TypeValueMapPropertySet="oracle.jbo.valuemaps.BooleanYNPropertySet">
 ……
 </Attribute>

If your attribute is of Y/N domain, then use
oracle.jbo.valuemaps.BooleanYNPropertySet as the property set. If it is of
T/F domain, then use oracle.jbo.valuemaps.BooleanTFPropertySet. If it is
of 1/0 domain, then use oracle.jbo.valuemaps.Boolean10PropertySet.
Otherwise, you will need to use your own property set, which you created in
the previous step.

5. Navigate to View Object wizard > Java > Generate Service Data Object
Class and generate or regenerate the SDO.

■ AmountType

An SDO attribute storing a price or amount could use the AmountType datatype.
Examples are 100 USD or 35.3 RMB. A number and a currency code are always
present in this type of attribute. AmountType is a complex type and defined as:

<xsd:complexType name="AmountType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currencyCode" type="xsd:normalizedString"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Therefore, a SalePrice attribute of 100 USD will be represented in xml as:

<SalePrice currencyCode="USD">100</SalePrice>

Developing Services

Developing Services 5-11

Two attributes in view objects need to be present in order to use the AmountType:
One for the number/amount itself, and the other for the currency code. To use the
AmountType, do the following:

1. Navigate to View Object wizard >Attributes and select the specified Price or
Amount attribute. Then, click Edit.

2. In the View Attribute panel, select AmountType as the XSD Type.

3. In the corresponding CurrencyCode field, choose the attribute that is used to
determine the currency code. If the currency is not defined in the current view
object and derived from another place, first create a transient attribute and add
logic to populate the transient attribute value, for example, via a Groovy
expression. For the transient currency code, override the setter method of the
ViewRowImpl class, and validate that the new value is the same as the source
attribute. For example, if you have a currency code defined at the parent level,
then the transient currency code attribute at the child level should be always
the same as the parent level currency code value.

4. Keep the currency code in the SDO payload. In another words, always expose
the currency code attribute in SDO, and don't disable "SDO Property". This
will allow the consumer to change the currency code even if the price/amount
is not present.

During runtime, if the payload contains conflicting currency codes, then an
exception will be thrown from Oracle ADF. For example, an exception will be
thrown if the service payload is something like the following:

<SalePrice currencyCode="USD">100</SalePrice>
<ListPrice currencyCode="RMB">100</SalePrice>

Instead, both SalePrice and ListPrice should contain same value for the
currentCode attribute:

<SalePrice currencyCode="USD">100</SalePrice>
<ListPrice currencyCode="USD">100</SalePrice>

Or the currencyCode is specified in one element and omitted from the other:

<SalePrice currencyCode="USD">100</SalePrice>
<ListPrice>100</SalePrice>

■ MeasureType

An SDO attribute storing a quantity could use the MeasureType data type.
Examples of quantities are: 10 meters or 105.3 pounds. Two things are always
associated with a quantity: A number and a unit of measure. MeasureType is a
complex type and defined as the following:

<xsd:complexType name="MeasureType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="unitCode" type="xsd:normalizedString"
use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Therefore, a Length attribute of 10 meters will be represented in xml as:

 <Length unitCode="meter">10</Length>

Developing Services

5-12 Developer's Guide

In a view object, there are two attributes related to this one quantity: The number
attribute and the unit of measure attribute. To define the attribute as MeasureType,
do the following:

1. Navigate to View Object wizard >Attributes and select the specified Quantity
attribute. Then, click Edit.

2. In the View Attribute panel, select MeasureType as the XSD Type.

3. In the corresponding unitCode field, choose the attribute that is used to
determine the unit of measure. If the unit of measure is derived from another
place, create a transient attribute and add logic to populate the transient
attribute value, for example, via a Groovy expression. For the transient
currency code, override the setter method of the ViewRowImpl class, and
validate that the new value is the same as the source attribute.

4. Keep the unit of measure attribute in the SDO. In another words, always
expose the unit of measure attribute in SDO, and don't disable "SDO
Property". This will allow consumers to change the unit of measure even if the
quantity itself is not present.

As w with AmountType, an exception is thrown by Oracle ADF if the payload
contains conflicting unit codes.

5.3.1.2 Parent-Child Relationships
For parent-child relationships, you should define two view objects, one for the parent
and one for the child, and then define a view link between them. You must also have
the destination accessor generated so that the service framework is unable to query or
post the child along with the parent.

For composite object, you should create a composite association between the parent
entity object and the child entity object, and base the view link on the association.
However, in cases where composite associations cannot be defined you must add a
custom property, SERVICE_PROCESS_CHILDREN=true, to the entity association or view
link. This allows for the child objects to be processed along with the parent object (in
createXXX, updateXXX, mergeXXX, deleteXXX, and processXXX). Reasons for cases
where composite associations cannot be defined include:

■ A child has multiple parents but the relationship is really composite.

When there is an entity association and the association has the destination accessor
generated, then you should add the custom property in the association. When an
association doesn't exist such as flexfield or the association doesn't have the
destination accessor generated, then you must add the same property to the view link.

5.3.1.3 Enabling Partial Failure
The default setting for partial failure is not enabled. To enable partial failure, add the
PARTIAL_FAILURE_ALLOWED custom property on the view object and set the value to
true.

To determine if you should enable partial failure, see Section 5.2.4.2, "Defining Partial
Failure and Bulk Processing."

5.3.1.4 Enabling Support Warnings
There is a design time flag to indicate whether the informational messages are enabled
or not for each view object and service data object. The default setting for this flag is
off, and you need to go to the view object editor's Java tab and select the Support
Warnings field.

Developing Services

Developing Services 5-13

For the purchase order header, line, and shipment example, if your service includes
the processPurchaseOrders API that takes a list of purchase order headers, then you
must enable Support Warnings in the purchase order header view object. If your service
also includes the processLines API that takes a list of purchase order lines, then you
also need to enable Support Warnings in the line view object. For the other detail level
service data objects, you should take a more proactive approach and define your
business object as supporting informational messages if you think you will need this
feature in the future.

5.3.1.5 Defining a List of Values (LOV) to Resolve Foreign Key ID
In many cases, it is desirable to include developer key attributes for foreign keys. For
example, an employee service is used to process employees, and the employee has a
department associated with it. The department has a DepartmentId (surrogate
primary key) attribute and a DepartmentName (developer key) attribute.

When the consumer constructs the inbound payload, the consumer could choose to
provide DepartmentId or DepartmentName or both. If only DepartmentName is
provided, then logic needs to exist to resolve DepartmentId based on the name. If both
name and id are provided, then validation needs to be provided to make sure the two
matches. An LOV can be defined to resolve foreign key ID based on foreign alternate
key attributes.

An LOV is defined at attribute level, but it can be configured to be driven by multiple
attributes. When an LOV is driven by multiple attributes, the LOV query will use all
the driven attributes in the where clause. Service framework doesn't call individual
setters, instead, it calls setAttributeValues() method in the ViewRowImpl class, which
takes a list of attribute names and a second list of attribute values. LOVs will be fired
after the attribute values are populated. So, if a foreign key has a composite alternate
key, it will still work since the LOV fires after all the alternate key attributes are set.

When an attribute from a reference entity object is included in a view object, the
attribute is read-only. However, if there is an LOV defined on the attribute, then the
attribute is updateable in the sense that the attribute value can be used to drive the
LOV.

The following are several scenarios and the steps you must perform for each of them.

Scenario 1
Single attribute Foreign Key and single attribute Alternate Key (Example: PersonVO
has DeptId and Dname. DeptId is the foreign key ID, and Dname is the foreign
alternate key).

An LOV should be defined on the alternate key attribute, with the foreign key ID as a
derived attribute.

Note: Signatures of the service operations that ADF Business
Components generate vary depending on this Support Warnings flag. If
you change this flag in a future release, your service will no longer be
backward compatible. In addition, when partial failure is on, the
exceptions are not thrown from the service invocation. Instead, the
exceptions are reported as warnings, and the caller can only receive
these warnings if the Support Warnings flag on the service view object
is turned on. Therefore, you must turn on the Support Warnings flag
for the top-level service data objects that are exposed directly in the
process methods.

Developing Services

5-14 Developer's Guide

1. Create PersonVO based on PersonEO and a reference DeptEO. The foreign
alternate key (Dname) from the reference EO is included in the PersonVO.

2. Define the LOV view object (DeptVVO).

3. Define a view accessor on PersonEO/PersonVO pointing to DeptVVO.

4. Define an LOV on the foreign alternate key (Dname) using the above view
accessor, and configure the LOV to populate the foreign key ID (DeptId) as the
derived attribute.

Scenario 2
Single attribute Foreign Key and multiple attribute Alternate Key (Example: PersonVO
has OrganizationId as foreign key id, and OrganizationName+BusinessGroupName as
the composite alternate key).

Each alternate key attribute needs to have an LOV defined, and each LOV should have
all the alternate key attributes as the driving attribute and the foreign key ID as the
derived attribute.

1. Create PersonVO based on PersonEO and a reference OrganizationEO and another
reference BusinessGroupEO. The foreign alternate key (OrganizationName and
BusinessGroupName) from the reference entity objects are included in the
PersonVO.

2. Define the LOV view object (OrganizationVVO).

3. Define a view accessor on PersonEO/PersonVO pointing to OrganizationVVO.

4. Define an LOV on each of the foreign alternate key attributes (OrganizationName
and BusinessGroupName) using the above view accessor, and configure the LOV
to populate the foreign key ID (OrganizationId) as a derived attribute.

5. Modify PersonVO.xml to make the LOVs driven by all the foreign alternate key
attributes. For example:

 <ListBinding
 Name="LOV_OrganizationName"
 ListVOName="OrganizationVA"
 ListRangeSize="-1"
 NullValueFlag="none"
 NullValueId="LOV_OrganizationName_LOVUIHints_NullValueId"
 MRUCount="0">
 <AttrArray Name="AttrNames">
 <Item Value="OrganizationName"/>
 <Item Value="BusinessGroupName"/>
 </AttrArray>
 <AttrArray Name="DerivedAttrNames">
 <Item Value="OrganizationId"/>
 </AttrArray>
 <AttrArray Name="ListAttrNames">
 <Item Value="OrganizationName"/>
 <Item Value="BusinessGroupName"/>
 <Item Value="OrganizationId"/>
 </AttrArray>

Scenario 3
Single attribute Foreign Key and multiple attribute Alternate Key and one of the
alternate key attribute is another foreign key (Example: PersonVO has BirthOfCountry
as foreign key id, and BirthOfCity as another foreign key ID. BirthOfCity has
BirthOfCountry+CityName as a composite alternate key).

Developing Services

Developing Services 5-15

The first foreign key (BirthOfCountry) needs to be resolved first, either based on #1 or
#2. Then the second alternate key should filter by the first alternate).

1. Create PersonVO based on PersonEO and a reference EO CountryEO and another
reference EO CityEO. CountryName from CountryEO and CityName from CityEO
should be included. CityName should be listed after CountryName in the
PersonVO.

2. Define an LOV view object based on CountryEO.

3. Define an LOV view object based on CityEO. Define a view criteria to filter by
CountryId.

4. Define a view accessor on PersonEO/PersonVO pointing to CountryVVO.

5. Define a view accessor on PersonEO/PersonVO pointing to CityVVO, and bind
CountryId to BirthOfCountry.

6. Define an LOV on CountryName using CountryVVO view accessor, with
BirthOfCountry as a derived attribute from CountryId from CountryVVO.

7. Define an LOV on CityName using CityVVO view accessor, with BirthOfCity as a
derived attribute from CityId from CityVVO.

Scenario 4
Composite foreign key.

Each foreign key ID will be dealt with individually. For example, the foreign key id is
OrgId+SourceId, then orgId and SourceId should be resolved based on solution in #1
or #2 or #3 separately. Then a validator needs to be defined to make sure combination
of OrgId and SourceId is valid. This has the assumption that each individual attribute
are a primary key itself.

5.3.2 How to Create Services
The service interface is generated from an Oracle ADF application module. Go to the
Service Interface tab in the Application Module wizard to expose the service interface
for an application module..

5.3.2.1 What You May Need to Know About Design Time
This section discusses what happens during design time with application modules and
the runtime object.

No Service Data Object in the Application Module
The custom methods in the Application Module do not take Data Object or a Data
Object list as parameters. Instead, the Application Module's custom methods take
ViewRowImpl/AttributeList or a list of ViewRowImpl/AttributeList as parameters.
When you publish these methods in the service interface, ADF Business Components
service will convert these to Data Object or a list of Data Object in the service interface
during design time, and then performs conversion between Data Object and
ViewRowImpl/AttributeList during runtime.

Return Object
The informational messages (and warnings) are reported as part of the return object.
ADF Business Components generates appropriate wrappers as the return objects when
necessary, and the wrappers contain the actual method return as well as the
informational messages. Table 5–1 lists some examples:

Developing Services

5-16 Developer's Guide

If the Support Warnings design time flag is off, no informational messages are returned
(the first column in the above table). If the flag is on (the second column in the above
table), then:

■ getXXX returns the original object

■ create, update, mergeXXX, findXXX, and processXXX returns the wrapper object
that contains a list of the original object and a list of information messages

■ deleteXXX returns the informational message

■ Each custom method can be configured individually about whether to return
informational messages

Find Operation
When you include the standard operations in a service interface, you can enable the
generic find operation, or select a view criteria and expose a find operation that
utilizes the view criteria.

Oracle ADF has a default list of operators (such as =, contains, and so on) that can be
used in the find operation. You can enable more custom operators or disable an
operator in the default list.

5.3.3 How to Generate Synchronous and Asynchronous Service Methods
Each service method can be exposed as both synchronous version and asynchronous
version.

To generate synchronous and asynchronous service methods:
1. Go to the Application Module Design Time wizard.

Table 5–1 Return Objects Examples

Operation without
Informational Messages
(Support Warnings Flag is
off)

Operation with
Informational Messages
(Support Warnings Flag is
on) Comments

List<Person>
processPerson(String op,
List<Person> persons,
ProcessControl ctrl)

PersonResult
processPerson(String op,
List<Person> persons,
ProcessControl ctrl)

PersonResult contains a list
of Persons, and a list of
ServiceMessages.

Person
createPerson(Person
person)

PersonResult
createPerson(Person
person)

The list of Person in
PersonResult should contain
only one element.

void
terminateEmployee(BigDec
imal empId)

ServiceMessage
terminateEmployee(BigDec
imal empId)

String
getApplicationName(BigDe
cimal applicationId)

StringResult
getApplicationName(BigDe
cimal applicationId)

The StringResult contains a
String and a list of
ServiceMessages.

Note: Note that ServiceMessage is created by the framework based
on the warning or errors thrown during service execution. When you
develop your service, you don't throw ServiceMessage. Instead, you
throw JboException or ApplcoreException. See Section 5.2.4 for
information about error and informational messages.

Developing Services

Developing Services 5-17

2. Choose the Service Interface tab.

3. Choose the Service Interface category. See Figure 5–2.

Figure 5–2 Edit Service Interface Dialog

4. Select Generate Asynchronous Web Service Methods. Click OK.

5. Save your changes.

5.3.4 How to Expose Flexfields
Flexfields are used as an extension points. If your object has a flexfield defined, then
you might want to consider including the flexfield in the service interface so that your
customer can utilize flexfields through web service.

See Section 22.13, "Publishing Descriptive Flexfields as Web Services" and
Section 24.5.4, "How to Publish Key Flexfield Application Modules as Web Services"
for information about how to expose the flexfields in a service interface.

5.3.5 How to Enable Security
You need to enable security on your service to make sure only the granted people can
invoke the service.

5.3.5.1 Authentication
An authentication policy determines how the caller proves its identity. A simple case
could be user name and a password in clear text, which is simple but not very secure.
Or a token can be generated by an identity provider and then passed to the service
provider.

See Chapter 50, "Securing Web Services Use Cases" for information about the different
authentication policies supported. Once a security policy is chosen, you need to add it
as an annotation in your xxxServiceImpl class. For example:

@SecurityPolicy({ "oracle/wss11_saml_or_username_token_with_message_protection_
 service_policy"})
@CallbackSecurityPolicy("oracle/wss11_saml_token_with_message_protection_client_
 policy")

5.3.5.2 Authorization
Authorization determines who can invoke a service operation. To enable
authorization, do the following:

1. Add ServicePermissionCheckInterceptor as one of the EJB interceptors in your
xxxServiceImpl class. The result will be similar to this:

@Interceptors({ServiceContextInterceptor.class,
ServicePermissionCheckInterceptor.class})

Developing Services

5-18 Developer's Guide

2. Grant access to the service operations to desired roles in jazn-data.xml:

a. Add a web service resource type.

Navigate to Application Resources >Descriptors/META-INF/jazn-data.xml,
click the Resource Grants tab, and then add a new resource type. This is
shown in Figure 5–3.

Figure 5–3 Create Resource Type

The following xml snippet in jazn-data.xml will be generated:

<resource-type>
 <name>WebserviceResourceType</name>
 <display-name>WebserviceResourceType</display-name>
 <description>Webservice Resource</description>
 <provider-name/>
 <matcher-class>oracle.wsm.security.WSFunctionPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>invoke</actions>
</resource-type>

b. Add a resource, as shown in Figure 5–4.

– Add the privilege and specify which role can access the resource defined
above.

– Click Entitlement Grants in jazn-data.xml.

– Create a new entitlement or edit an existing one.

– Add the newly created resource.

– Choose the action.

Note: ADF Business Components service is implemented with EJB,
and the EJB interceptor is used here to authorize before any service
operation can be invoked.

Developing Services

Developing Services 5-19

Figure 5–4 Entitlement Grants

c. Add JpsInterceptor in ejb-jar.xml.

– Navigate to service project > Application Sources > META-INF/ejb-jar.xml
and add the following code snippet:

<ejb-jar…>
……
<interceptors>
 <interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-c
lass>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><application_name></env-entry-value>
 <injection-target>

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injectio
n-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-c
lass>
 </interceptor-binding>

Note: In the previous steps, the authorization is granted to the
application roles. The application roles are computed using
JpsInterceptor. Without the JpsInterceptor setting in ejb-jar.xml,
the application roles won't be computed and authorization will fail.

Developing Services

5-20 Developer's Guide

 </assembly-descriptor>
</ejb-jar>

Replace application_name with your application name, which is defined
under policy-store/applications/application/name element in your
jazn-data.xml.

d. Specify the applicationid in weblogic-application.xml:

<application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value><application_name></param-value>
</application-param>

Replace application_name with the application name you used in Step c.

5.3.6 Using the Java Transaction API
Java Transaction API (JTA) is used to handle ADF Business Components transactions.

5.3.6.1 Data Source
JTA manages distributed transactions across multiple resources. However, the
resources must participate in global transaction in order to be part of the JTA. All the
ADFbc services must use ApplicationServiceDBDS as the data source, and must not
use ApplicationDBDS. ApplicationDBDS doesn't participate global transaction.
ApplicationServiceDBDS supports global transaction using Oracle WebLogic Server
Emulate Two-Phase Commit emulation. (See "JDBC Data Source Transaction Options"
in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server for more information.)

To specify the data source used by the service, do the following:

1. Click the Configuration tab of Application Module wizard, then choose the
configuration with type "SI"., as shown in Figure 5–5

Developing Services

Developing Services 5-21

Figure 5–5 Edit Business Components Configurations

2. Select the appropriate data source for your service.

If you don't see the data source in the dropdown list, you will need to create the
database connection first.

3. Navigate to ejb-jar.xml and add ApplicationServiceDBDS as the resource-ref:

<ejb-jar ……>
 <enterprise-beans>
 <session>
 <ejb-name>……</ejb-name>
 <resource-ref>
 <res-ref-name>jdbc/ApplicationDBDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/ApplicationServiceDBDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 ……

Developing Services

5-22 Developer's Guide

5.3.6.2 Transaction Attributes
ADF Business Components service is implemented as a stateless session bean.
Transaction attributes can be specified at the class level or method level, and these
attributes determine the JTA behavior.

5.3.7 Deploying Services
The service can be deployed to an integrated or standalone Oracle WebLogic Server
service.

To deploy to an integrated Oracle WebLogic Server, right-click the xxxServiceImpl
class, and then select Run from the context menu.

To deploy to the standalone Oracle WebLogic Server, create a Business Component
Service Interface profile. The window is shown in

Figure 5–6 Create Deployment Profile

This profile is a compound profile and includes two child profiles: Common (JAR File)
and MiddleTier (EJB Jar File). The Common includes the service interface This .jar file
will be required by the consumer when the consumer uses ServiceFactory to invoke
the service. (See Section 5.4.1.1, "Using Service Factory" for more information.) The
MiddleTier .jar file contains the service implementation.MiddleTier profile has a
dependency on the common profile.

Include the MideleTier profile in your application's ear profile (Ear Deployment
Profile >Application Assembly) so that the service will be included in the application
ear file. Do not include the Common profile in the ear profile's Application Assembly.
The Common profile will be included via profile dependency.

5.3.7.1 Service Context Root
When the service is deployed, the service can be accessed through a service end point
URL, such as http://localhost:7101/mycontext/MyService. Note that the context
root of a service is defined at the service project (Project properties >Java EE
Application > Java EE Web Context Root, shown in Figure 5–7).

Note: Do not include connections.xml in the common .jar file.
There cannot be more than one connections.xml in one application,
otherwise whatever shows up first in the classpath will be picked up,
and this one might not be the right one. To prevent that, the service
interface common profile cannot include connections.xml.

Developing Services

Developing Services 5-23

Figure 5–7 Project Properties

5.3.8 Testing Services
You can test the service only after it has been deployed.

5.3.8.1 What to Test
An ADF Business Components service is based on ADF Business Components. These
components should have been already tested with junit, such as the defaulting and
validation logic, queries, and other business logic. One commonly asked question is:
Why should I test my service since my underlying application module/view object
has been tested already? The ADF Business Components service testing is not a
duplicate test of the ADF Business Components testing. Instead, the focus should be
on the service layer and what is not covered in the ADF Business Components testing.

Areas that are not covered in the ADF Business Components testing are the following:

■ Security: ADF Business Components service is authenticated and authorized at the
service layer, not the business components object layer.

■ Exception: The exception will come back as soap fault instead of JboException.
You should check it has all the details that you expected.

However, you do not need to repeat the tests that have been done in ADF Business
Components testing:

■ Data security is defined at the business components object layer, so you do not
need to repeat the data security testing at service layer.

■ You need to test each service method, but you do not need to test all permutations
of inbound parameters. Therefore, you probably just need to test a success case
and a couple of typical failure cases for each of your service methods.

The following is a list of items that you should validate during the service testing (both
the synchronous and asynchronous versions).

■ If the service is running

Invoking Services

5-24 Developer's Guide

■ If the service is responding within a reasonable amount time

■ For all service methods:

– Successful cases: Verify the response. You might also want to do a query after
a post to check the data is indeed committed.

– Failure cases: Verify the fault comes back, and with the expected content.

– Security: Test both authentication and authorization.

5.3.8.2 How to Test
For ad-hoc testing, use the browser test page, HTTP Analyzer, or Oracle Enterprise
Manager.

■ Web service test page

In a web browser, access the service endpoint URL. The service end point URL
follows the format of http://host:port/context_root/service_name. When the
service is deployed to integrated Oracle WebLogic Server, the service endpoint
URL is printed out in the Oracle JDeveloper console.

After you open up the web service test page, you can enter the inbound
parameters from the UI and submit the service request. For the service that is
secured with GPA, you will need to expand the WS-Security element, and provide
the user name and password there. For service that is secured with oracle/wss11_
saml_or_username_token_with_message_protection_service_policy, you cannot
invoke it from the web service test page.

■ HTTP Analyzer

You can access HTTP Analyzer within Oracle JDeveloper by navigating to Tools >
HTTP Analyzer, and then clicking on "Create New Request". You then can follow
the UI to invoke a service. Similarly, it doesn't really handle service secured with
oracle/wss11_saml_or_username_token_with_message_protection_service_policy.

■ Oracle Enterprise Manager

Use Oracle Enterprise Manager to invoke a service. See "Testing Web Services" in
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

For unit testing, you should write unit test code. For more information about
ApplicationTestFramework and how to create the tests, see
http://globaldc.oracle.com/perl/twiki/view/FusionSharedTools/App
licationsTestFramework.

5.4 Invoking Services
All ADF Business Components services have both synchronous and asynchronous
versions for the same method. The service consumer must decide which version of the
service method to use.

A service method can be invoked synchronously if all of the following conditions are
met:

■ The invoked method takes a simple payload, such as a single document or a fixed
number of documents, (including parent and children), and the payload is still
small.

■ The invoked method is expected to be finished in real time and takes no longer
than a few seconds.

Invoking Services

Developing Services 5-25

The consumer should consider invoking the method asynchronously if one of the
following conditions is met:

■ The method takes a flexible number of documents, such as a list of service data
objects.

■ The method may be long-running.

5.4.1 How to Invoke a Synchronous Service
You can invoke a synchronous service using service factory, service-based entity object
and view object, Java API for XML Web Services (JAX-WS) client, or from SOA.

5.4.1.1 Using Service Factory
If you need to invoke a synchronous service from a Java client, including an ADF
Business Components component, UI, or Oracle Enterprise Scheduler, then using a
service factory is recommended.

■ It is easier to write a service client using service factory than using JAX-WS.

■ The consumer side doesn't need to generate or maintain the source control of the
proxy code.

■ If the service is co-located, the service invocation is more performant because it
does not invoke XML serialization and de-serialization.

To to invoke a service using service factory, do the following:

1. Identify the common.jar file provided by the service provider team.

Service factory requires that the service interface common .jar file be in the
classpath of the consumer. (See Section 5.3.7 for information service deployment.)
Subsequently, the consumer needs to identify the name of the common .jar file
first from the provider team, and include it in the classpath.

2. Retrieve the service endpoint information from the connections.xml file.

Service Factory can be used to invoke a service via Remote Method Invocation
(RMI) or Simple Object Access Protocol (SOAP). RMI can only be used within one
domain, for example, receivables application invokes a service deployed in ledger
application. RMI cannot be used across an Oracle WebLogic Server domain due to
security constraint. For the cross Oracle WebLogic Server domain service
invocation, such as when receivables invokes a service hosted in Oracle Fusion
Human Capital Management, SOAP must be used.

Service Factory uses ADF Connection Architecture to retrieve the service endpoint
information from connections.xml. It creates a dynamic proxy to the remote
service using the designated protocol in connections.xml.

The following is a sample entry in connections.xml using RMI:

<Reference name="{http://xmlns.oracle.com/apps/sample/dtsvc/}WorkerService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.dtsvc.WorkerService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">

Invoking Services

5-26 Developer's Guide

<Contents>WorkerServiceBean#oracle.apps.sample.dtsvc.WorkerService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>WorkerService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/dtsvc/</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:7202</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

In the example, the serviceEndpointProvider is ADF Business Components,
which indicates that it is a RMI invocation.

You need to replace the code in bold with the service that you plan to invoke.
Table 5–2 lists the appropriate values:

Table 5–2 Service Property Values

Property Name Property Value Example

Reference/name The service qualified
name. It follows the
format of
{<targetNamespace>}<na
me>. The
targetNamespace and
name can be found in the
wsdl file of the service to
be invoked.

{http://xmlns.oracle.com/apps/sample/dt
svc/}WorkerService

serviceIntefaceNam
e

This is the service
interface name. You can
get it from the service
interface java class in the
common .jar file.

oracle.apps.sample.dtsvc.WorkerService

jndiName This is the EJB bean name.
ADF Business
Components service is
implemented by EJB. It
follows the format of
<ServiceName>Bean#<Ser
viceIntefaceName>

WorkerServiceBean#oracle.apps.sample.
dtsvc.WorkerService

serviceSchemaNam
e

The ADF Business
Components service
always has a schema file
generated for the service.
It follows the format of
<ServiceName>.xsd.

WorkerService.xsd

serviceShemaLocati
on

The path of the service
schema. It is basically the
service interface package
path.

oracle/apps/sample/dtsvc/

Invoking Services

Developing Services 5-27

For a SOAP invocation, two entries are required in connections.xml: a
ServiceFactory entry and a web service connection entry. The first entry is very
similar to the RMI entry except for the following:

■ The serviceEndPointProvider value is SOAP.

■ A webServiceConnectionName entry, which is used to link to the second entry,
is included. That is, the value of webServiceConnectionName must be the name
of the second connection.

■ There are no jndiFactoryInitial or jndiProviderUrl properties.

Example 5–2 and Example 5–3 show the two entries in connections.xml using
SOAP.

Example 5–2 Entry 1

<Reference name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.hrService.HrService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>SOAP</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="webServiceConnectionName">
 <Contents>HrServiceConnection</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>HrService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/hrService/</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>

Example 5–3 Entry 2

<Reference name="HrServiceConnection"
className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl"
xmlns="">
 <Factory
className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"
/>

jndiProviderUrl The host name and port
number where the service
is deployed. This is not
needed during design
time, but apparently
required during runtime.
This value will be
tokenized during
packaging and be
"replaced" with the server
URL during provisioning.

t3://localhost:7202

Table 5–2 (Cont.) Service Property Values

Property Name Property Value Example

Invoking Services

5-28 Developer's Guide

 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
description="http://rws65094fwks:7202/MySampleSvc/HrService?WSDL"
service="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <model
name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
xmlns="http://oracle.com/ws/model">
 <service
name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <port name="HrServiceSoapHttpPort"
binding="{http://xmlns.oracle.com/apps/sample/hrService/}HrServiceSoapHttp"
portType="http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
uri="oracle/wss11_saml_token_with_message_protection_client_policy" enabled="true"
id="oracle/wss11_saml_token_with_message_protection_client_policy" xmlns=""/>
 </policy-references>
 <soap
addressUrl="http://rws65094fwks:7202/MySampleSvc/HrService"
xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

The second connection is a standard web service connection. To generate the web
service connection entry in connections.xml, do the following:

a. Create a web service proxy. (See "Creating a Web Service Proxy Class to
Programmatically Access the Service" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition), for more information.)

b. Create a web service connection. (See "How to Create a New Web Service
Connection" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition) for more
information.)

c. Remove the web service proxy code.

3. Secure the service.

Note: The connections.xml file in source control contains the
concrete web service endpoint URL. This URL can be used for testing
in integrated Oracle WebLogic Server. As part of the ear generation,
these URLs will be looked up and replaced with abstract tokens. These
tokens will again be replaced when application is installed at
customer site with the customer's server URL.

There is a ServiceRepository.xml file that contains the list of
services produced by Oracle Fusion Applications. The token
replacement during ear generation uses this file to look up and replace
the concrete URL with abstract tokens.

Invoking Services

Developing Services 5-29

For RMI invocation, only identity propagation is supported. Subsequently, there is
nothing more that you need or can configure.

For SOAP invocation, remember that the client-side security policy is driven by
the server-side security policy, and the client-side policy must match the
server-side policy. In most cases, you can utilize GPA, which uses wss10_saml_
token_client_policy and propagates the identity from the caller to the service.
The following cases require the use of LPA:

■ The service is protected by message protection policy. Usually, this service is
an external service that can be accessed outside the Fusion Applications
firewall. In this case, you will need to add the security policy in the web
service connection of the connections.xml. For example:

<Reference name="HrServiceConnection"
className="oracle.adf.model.connection.webservice.impl.WebServiceConnection
Impl" xmlns="">
 <Factory
className="oracle.adf.model.connection.webservice.api.WebServiceConnectionF
actory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection …… >
 <model ……>
 <service ……>
 <port ……>
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
uri="oracle/wss11_saml_token_with_message_protection_client_policy"
enabled="true" id="oracle/wss11_saml_token_with_message_protection_client_
policy" xmlns=""/>
 </policy-references>
 <soap …… >
 ……

The following are the client-side policies that you can use to invoke a service
protected by message protection policy:

– wss_username_token_over_ssl_client_policy

– wss_saml_token_bearer_over_ssl_client_policy

– wss11_username_token_with_message_protection_client_policy

– wss11_saml_token_with_message_protection_client_policy

– wss_http_token_over_ssl_client_policy

■ Identity switch is required. If the service needs to be invoked with a different
user (usually using appid), then you need to specify LPA:

<port ……>
 <call-properties xmlns="http://oracle.com/adf">
 <call-property id="csf-key" xmlns="">
 <name>csf-key</name>
 <value>system1-key</value>
 </call-property>
 </call-properties>
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security" uri="oracle/wss_username_token_
client_policy" enabled="true" id="oracle oracle/wss_username_token_client_
policy" xmlns=""/>

Invoking Services

5-30 Developer's Guide

 </policy-references>
 ……
</port>

Replace system1-key with the csf-key holding the application identity user
name and password required by the user case. The actual application
identities and their corresponding csf-keys are centrally provided.

If the service is protected by message protection policy, then use
oracle/wss11_username_token_with_message_protection_client_policy.

4. Invoke the service.

Write your client code to invoke the service. For example,

OrganizationService svc=
(OrganizationService)ServiceFactory.getServiceProxy(OrganizationService.NAME);
DataFactory datafactory = ServiceFactory.getDataFactory(svc);
List orgs = new ArrayList(2);
Org org1 = (Org)datafactory.create(Org.class);
org1.setOrgName("OrgName");
org1.setName("TranslatedName");
org1.setDescription("Your org Description"); //... and set more attributes
orgs.add(org1);
svc.processOrganizatiion("Merge", orgs, null);

SDOs based on polymorphic view objects don't have Java classes generated. To
create these SDOs, use the generic DataObject class:

import commonj.sdo.DataObject;

DataObject emp = datafactory.create("http://xmlns.oracle.com/apps/fooService/",
"Bar");
emp.set("Empno", new Long(8080));
emp.set("Ename", "Oliver");
emp.set("Job", "MANAGER");

5. Perform runtime control for the query.

The standard find method API provides control over the query behavior.

■ Partial Attribute

By default, the find operation returns all the attributes including all details.
When you only need some attributes, you should set the partial attributes on
the FindCriteria parameter of the find method. Do this in the following
situations:

– SDO contains LOB, which can be very expensive to retrieve and transfer.

– SDO contains details that are not needed, such as translations. Querying
detail is also expensive.

Note: You will need to add "BC4J Service Client" library to your
client project.

Note: The standard getXXX function doesn't take a FindCriteria, so
this function always returns everything. You should use findXXX to
trim your return attributes.

Invoking Services

Developing Services 5-31

The following example shows how to set the partial attributes to include only
Dname, Loc from Dept, and exclude Empno from Emp:

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
List l = new ArrayList();
l.add("Dname");
l.add("Loc");
l.add("Emp");
fc.setFindAttribute(l);
List cfcl = new ArrayList();
ChildFindCriteria cfc =
(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
List cl = new ArrayList();
cl.add("Empno");
cfc.setFindAttribute(cl);
cfc.setExcludeAttribute(true);
cfcl.add(cfc);
fc.setChildFindCriteria(cfcl);
DeptResult res = svc.findDept(fc, null);

The following example shows how to set the partial attributes to exclude
PurchaseOrderLine from PurchaseOrder:

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
List l = new ArrayList();
fc.setExcludeAttribute(true);
l.add("PurchaseOrderLine");
fc.setFindAttribute(l);
PchaseOrderResult res = svc.findPurchaseOrder(fc, null);

■ Filter

The find API allows you to specify the WHERE clause of your query. The WHERE
clause can be set on any level of the SDO. The following example shows how
to retrieve only the departments with a department number greater than 10
and child employees whose names start with "A":

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
//create the view criteria item
List value = new ArrayList();
value.add(new Integer(10));
ViewCriteriaItem vci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
vci.setValue(value);
vci.setAttribute("Deptno");
List<ViewCriteriaItem> items = new ArrayList(1);
items.add(vci);
//create view criteria row
ViewCriteriaRow vcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
vcr.setItem(items);
//create the view criteria
List group = new ArrayList();
group.add(vcr);
ViewCriteria vc = (ViewCriteria)datafactory.create(ViewCriteria.class);
vc.setGroup(group);
//set filter
fc.setFilter(vc);

List cfcl = new ArrayList();

Invoking Services

5-32 Developer's Guide

//create the child find criteria
ChildFindCriteria cfc =
(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
//create the child view criteira
ViewCriteria cvc = (ViewCriteria)datafactory.create(ViewCriteria.class);
cfc.setFilter(cvc);
//create the view criteria item
List cvalue = new ArrayList();
cvalue.add("A%");
ViewCriteriaItem cvci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
cvci.setValue(value);
cvci.setAttribute("Dname");
cvci.setOperator("LIKE");
List<ViewCriteriaItem> citems = new ArrayList(1);
citems.add(cvci);
//create child view criteria row
ViewCriteriaRow cvcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
cvcr.setItem(citems);
List cgroup = new ArrayList();
cgroup.add(cvcr);
cvc.setGroup(cgroup);

DeptResult dres = svc.findDept(fc, null);

You also can query the parents with the children that satisfy certain criteria.
For example, use the following to retrieve the departments with employees
whose salary is greater than $10,000:

//create the view criteria item on the employees
List nvalue = new ArrayList();
nvalue.add(new BigDecimal(10000));
ViewCriteriaItem nvci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
nvci.setValue(nvalue);
nvci.setAttribute("Salary");
nvci.setOperation(">");
List<ViewCriteriaItem> nitems = new ArrayList(1);
nitems.add(nvci);
//create view criteria row
ViewCriteriaRow nvcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
nvcr.setItem(nitems);
//create the nested view criteria
List ngroup = new ArrayList();
ngroup.add(nvcr);
ViewCriteria nvc = (ViewCriteria)datafactory.create(ViewCriteria.class);
nvc.setGroup(ngroup);

//create the view criteria item on the department
ViewCriteriaItem vci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
vci.setAttribute("Emp");
vci.setNested(nvc);
List<ViewCriteriaItem> items = new ArrayList(1);
items.add(vci);
//create view criteria row
ViewCriteriaRow vcr = (ViewCriteriaRow)

Invoking Services

Developing Services 5-33

datafactory.create(ViewCriteriaRow.class);
vcr.setItem(items);
//create view criteria on department
ViewCriteria vc = (ViewCriteria)datafactory.create(ViewCriteria.class);
List group = new ArrayList();
group.add(vcr);
vc.setGroup(group);
//set filter
FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
fc.setFilter(vc);

DeptResult dres = svc.findDept(fc, null);

■ Paging

If you know that your query might return a large amount of data, you should
make multiple service invocations, and use FetchSize and FetchIndex to
control the amount of the data that you want to retrieve.

The following example shows how to retrieve only the second employee and
the employee's department:

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);

List cfcl = new ArrayList();
ChildFindCriteria cfc =
(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
cfc.setFetchStart(1);
cfc.setFetchSize(1);
cfcl.add(cfc);
fc.setChildFindCriteria(cfcl);
DeptResult dres = svc.findDept(fc, null);

6. Perform runtime control for post.

The process API provides a bulk operation that can handle multiple SDOs
simultaneously.

■ Return mode

Use ReturnMode on ProcessControl to specify whether you want to return a
list of SDOs with all attributes, or with primary key attributes, or return
nothing in processXXX method. You should only return the primary key or
nothing, unless you need the full SDO returned for further processing

■ Exception return mode

When an error occurs, the returned error message can contain just the primary
key of the failure SDO, or all attributes of the failure SDO. You can specify
which behavior you want using the ExceptionReturnMode attribute of the
ProcessControl parameter in the processXXX method.

■ Partial failure

For bulk load, it often makes more sense to commit as many records as
possible, and report the problematic data. By default, either all SDOs go
through or none goes through in processXXX method. However, you can call
setPartialFailureAllowed on ProcessControl and pass that
ProcessControl to the processXXX method. This will turn on the partial
failure feature.

7. Handle exceptions.

Invoking Services

5-34 Developer's Guide

All ADF Business Components services throw ServiceException. ServiceException
contains FaultInfo, and FaultInfo stores the error messages. (Based on JAX-WS
2.0, exceptions thrown from service operations need to have a property named
"FaultInfo".)

@WebFault(name="ServiceErrorMessage",
targetNamespace="http://xmlns.oracle.com/adf/svc/errors/",
 faultBean="oracle.jbo.service.errors.ServiceErrorMessage")
public class ServiceException extends RuntimeException
{
 public ServiceErrorMessage getFaultInfo()...
 public void setFaultInfo(ServiceErrorMessage faultInfo)...

}

The ServiceErrorMessage can contain one or more child error messages, and each
child can contain its own children. Basically it is a tree hierarchy. You could
consider ServiceErrorMessage as a counterpart of the JboException at the service
layer.

The ServiceErrorMessage has a few subclasses including
ServiceAttrValErrorMessage, ServiceRowValErrorMessage, and
ServiceDMLErrorMessage Their counterparts in ADF Business Components are
AttrValException, RowValException, and DMLException. Note that
ServiceException is an Exception, but all other classes above including
ServiceMessage, ServiceErrorMessage, ServiceAttrValErrorMessage,
ServiceRowValErrorMessage, and ServiceDMLErrorMessage are not exceptions.

As the consumer of a service, if you call a service and need to take different actions
based on the exceptions, you might need to walk through the message tree
structure.

The following is a simple example that walks through the message and converts to
JboException:

public static RuntimeException convertServiceException(ServiceException ex) {
 return convertToRuntimeException(ex.getFaultInfo());
 }

 public static RuntimeException convertToRuntimeException(ServiceMessage
svcMsg) {
 RuntimeException ret = null;
 String msgStr = svcMsg.getMessage();
 List d = svcMsg.getDetail();
 Throwable[] details = null;
 if(d != null && !d.isEmpty()) {
 details = new Throwable[d.size()];
 for(int i=0; i<d.size(); i++)
 {
 Object obj = d.get(i);
 if(obj instanceof ServiceMessage)
 details[i] =
(convertToRuntimeException((ServiceMessage)obj));
 else if(obj instanceof Throwable)
 details[i] = (Throwable)obj;
 else
 details[i] = new Throwable(obj.toString());
 }
 }
 if(svcMsg instanceof ServiceErrorMessage) {
 JboException ex = new JboException(msgStr);

Invoking Services

Developing Services 5-35

 ex.setExceptions(details);
 ret = ex;
 }
 else {
 JboWarning w = new JboWarning(msgStr);
 w.setDetails(details);
 ret = w;
 }
 return ret;
 }

8. Create informational messages.

Informational messages are not exceptions, and won't stop service from
committing the current transaction. However, these information might be very
useful to the clients. For example, you might want to know when there is not
enough money in your checking account and have the system automatically
transfer some from your savings account.

The service provides decides whether a service will possibly return informational
messages or not. If so, the informational message will be part of the return, as
shown below:

public EmployeeResult processEmployee(String changeOperation,
 List<Employee> employee,
 ProcessControl processControl) throws
ServiceException;
public interface EmployeeResult extends
oracle.jbo.common.service.types.MethodResult {
 public java.util.List getValue();
 public void setValue(java.util.List value);
}

As the service consumer, you should retrieve the informational message from the
return and perform appropriate actions such as converting it to JboException and
displaying it in the UI. An example might be:

ProcessControl pc = (ProcessControl)datafactory.create(ProcessControl.class);
pc.setPartialFailureAllowed(true);
EmployeeResult res = svc.processEmployee("Create", list, pc);
if(res != null) {
 List msgs = res.getMessage();
 if(svcMsgs != null && !svcMsgs.isEmpty()) {
 Exception[] exceptions = new Exception[svcMsgs.size()];
 for(int i=0; i<exceptions.length; i++)
 exceptions[i] = convertToRuntimeException(svcMsgs.get(i));
 JboException ex = new JboException(....., exceptions); //create a bundled
exception with the service errors as detail
 }
 throw ex;
}

For more information about invoking a service using service factory, see Chapter 41,
"Synchronously Invoking an ADF Business Components Service from an Oracle ADF
Application."

5.4.1.2 Using Service-Based Entity Object and View Object
When you need to work with output from a service in the format of an ADF Business
Components component, such as rendering the data in a UI table or creating a view
link to it, then you should consider using service-based entity objects and view objects.

Invoking Services

5-36 Developer's Guide

For more information about working with data from a remote ADF Business
Components service, see Chapter 39, "Working with Data from a Remote ADF
Business Components Service."

5.4.1.3 Using the JAX-WS Client
Generally, you should not use JAX-WS or Java APIs for XML-Based Remote Procedure
Call (JAX-RPC) client to access an ADF Business Components service. You can use
JAX-WS to access BPEL or a third-party service.

See "Creating a Web Service Proxy Class to Programmatically Access the Service" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition) for information about how to create a
JAX-WS proxy.

In summary, you need to do the following

■ Create the JAX-WS proxy client.

Navigate to New Gallery > Business Tier > Web Services > Web Service Proxy to
create proxy clients.

For the proxy code, it is recommended to have proxy in the package structure,
such as oracle.apps.<lbaTop>.<lbaCore>.<xyzService>.proxy. It is
recommended to generate the type in the "type" subpackage.

■ Create a web service connection.

The proxy generated in previous step hard coded the service end point. To
externalize the end point to connections.xml, you need to right-click on the
generated proxy object, and choose Create Web Service Connection. In the Edit
Web Service Connection dialog, provide the appropriate information, but don't
provide any value for user name or password.

This will create a connection entry in connections.xml. This entry can be changed
during deployment.

You can attach different security policies in the cconnections.xml file, as
described in the Section 5.4.1.1, "Using Service Factory."

■ Develop client-side code. For example:

ADFContext aDFContext = ADFContext.getCurrent();
WebServiceConnection con =
(WebServiceConnection)aDFContext.getConnectionsContext().lookup("YourConnection
NameHere");
YourService svc = con.getJaxWSPort(YourService.class);
//invoke your service below
……

Important: Perform the steps as listed when using the web proxy
wizard to create the JAX-WS proxy client, with the following
exceptions:

■ At the "Select Web Service Description" screen, deselect the Copy
WSDL into Project checkbox.

■ At the "Specify Default Mapping Options" screen, deselect the
Generate As Async checkbox.

Invoking Services

Developing Services 5-37

5.4.1.4 Using SOA
When you invoke an ADF Business Components service from BPEL, you usually use
the asynchronous version unless you are sure the service satisfies the synchronous
invocation condition that was discussed previously.

For more information, see Part VI, "Common Service Use Cases and Design Patterns".

5.4.2 How to Invoke an Asynchronous Service
In general, BPEL is used to invoke an asynchronous service. If you need to invoke an
ADF Business Components service from Java that does not meet the synchronous
condition, then you must use one of the following alternate approaches:

Asynchronous Invocation (The caller-side must wait for response)
■ If the caller is ADF UI: The UI must raise an event, which is received by a

mediator. The mediator invokes a BPEL process that invokes the asynchronous
service and then invokes a second service after receiving the callback. The second
service is responsible for notifying the UI side that the process has completed and
then the UI uses the Active Data Service to refresh the UI.

For information about how to enable the UI for dynamic update via Active Data
Service, see Chapter 42, "Implementing an Asynchronous Service Initiation with
Dynamic UI Update."

■ If the caller is Oracle Enterprise Scheduler Service: Oracle Enterprise Scheduler
Service Java Jobs can invoke the asynchronous service via a JAX-WS proxy, but
must set the asynchronous callback service to that of the Oracle Enterprise
Scheduler Service Web Service. During this time, the Job's status will be Running
and when the asynchronous callback comes through the Oracle Enterprise
Scheduler Service Web Service callback port, the Job code will be notified with the
response and can Complete.

One-way Invocation (The caller fires and forgets)
■ The caller must raise an event, which is received by a mediator. The mediator

invokes a BPEL process, which invokes the asynchronous service. A callback is
received from the asynchronous service.

Caution: Web Service data control is an anti-pattern that is not
allowed. Instead, build ADF Business Components components and
bind these components to the UI. If you are trying to invoke an ADF
Business Components service, then you can use service-enabled entity
objects and view objects.

For more information, see the "How to Create Service-Enabled Entity
Objects and View Objects" section in the "Integrating Service-Enabled
Application Modules" chapter of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition).

PL/SQL calling Web Service is also an anti-pattern that is not allowed
because of security issues.

Invoking Services

5-38 Developer's Guide

6

Defining Defaulting and Derivation Logic 6-1

6Defining Defaulting and Derivation Logic

This chapter describes how to define your defaulting and derivation logic, how to use
Groovy (a Java-like scripting language), and how to use Oracle Application
Development Framework (Oracle ADF) validators and convertor hints instead of
using messages.

This chapter includes the following sections:

■ Section 6.1, "Understanding Entity Object Defaulting and Derivation Logic"

■ Section 6.2, "Using Groovy Scripting Language"

■ Section 6.3, "Using Oracle ADF Validators and Convertor Hints"

6.1 Understanding Entity Object Defaulting and Derivation Logic
Defaulting logic means assigning attribute values when a row or entity object is first
created or refreshed. (The logic is not re-applied when the entity object is changed.)
Defaulting is achieved either declaratively in the default field of the attribute or
programmatically by adding code to the EOImpl.

Derivation logic means assigning attribute values when some other attributes have
changed. Derivation is achieved either declaratively in the default field of the transient
attribute or by using a validator, or programmatically by adding code to the EOImpl.

Figure 6–1, illustrates what you need to consider when determining whether to
implement defaulting or derivation logic.

Understanding Entity Object Defaulting and Derivation Logic

6-2 Developer's Guide

Figure 6–1 Defaulting and Derivation — Decision Tree

When implementing defaulting or derivation logic, you should also consider the
following factors:

■ Always assign a valid value to an attribute.

You should know what the valid values are and there is no reason why you would
want to assign invalid values. The end users do not set these values and would
have no idea why they would be invalid.

■ Always use initDefaultExpressionAttribute for calculations that cross
containerships. Use initDefault for literal or statically computed values.

■ Instead of writing code in one of the triggering points during validation or the
posting cycle to achieve derivation logic, you can use a method validator or an
expression validator.

When you want the derivation logic to be customizable, the validator approach is
preferable. When using this approach the validation result should always be true
because this is not really a validation logic. You should also make sure that the
attribute avoids an infinite loop due to validation.

■ You can call either setAttribute(setter) or populateAttribute to assign the
default or derived value to an attribute.

When you call setAttribute(setter), the logic in the setter is fired and the
validation logic is also executed. This does not happen when you call
populateAttribute.

In most cases, using populateAttribute is sufficient because you should always
assign a valid value and therefore do not need to fire validation logic. However,
you may want to call the setter if there is additional logic such as cascading
derivation in the setter.

Using Groovy Scripting Language

Defining Defaulting and Derivation Logic 6-3

■ You can call beforeCommit as well as setAttribute(setter), validateEntity,
and prepareForDML if your derivation logic involves multiple entities that are not
composite.

For composite object, you can just put your logic either in validateEntity or
prepareForDML of the parent EOImpl.

■ Oracle ADF handles the propagation of the foreign key ID if there is an association
between two entities. This is where the association is defined from the parent
entity object to the child entity object, and when the detail entity object is created
from the association accessor of the parent entity object. For example:

Row parentRow =RowIterator ri =
(RowIterator)parentRow.getAttribute("<childEOAccessorName>");
 Row childRow = r1.createRow();

Similarly, if there is a view link between two view objects, the framework also
handles the foreign key propagation when the child view row is created via the
view link accessor of the parent view row.

■ List of Values (LOVs) also perform derivation. However, this is at the view object
level and you should not place business logic (including derivation) at this level.

A LOV should only be used on the user interface (UI) to show a list of valid values
or as a service to derive the foreign key ID based on the foreign alternate key.

6.2 Using Groovy Scripting Language
ADF Business Components now provide integrated support for Groovy (a Java-like
scripting language), which is dynamically compiled and evaluated at run-time.
Because it is dynamically compiled, Groovy script can be stored inline in the XML and
is eligible for customization. Groovy also supports object access via dot-separated
notation, which means you can now use syntax such as empno instead of
getAttribute(EMPNO).

You can embed Groovy script into various declarative areas, including:

■ Validation - Use a Groovy script that returns true or false for declarative validation.

■ Validation Error Messages - Use Groovy expressions to substitute the tokens in
the error message.

■ Bind Variables - Define the value for a bind variable using a Groovy script
expression.

■ View Accessor Bind Variable Values - Supply bind variable values in a view
accessor using Groovy script.

■ Attributes - Base a transient attribute on a Groovy script. (No UI support at this
time).

■ Attribute Default Values - Define a default value expression on an attribute using
Groovy script. (No UI support at this time).

■ Variables - Define a variable on an entity whose value is computed using Groovy
script. (No UI support at this time).

Tip: When you call setAttribute(setter) make sure that you do
not cause an infinite loop. This may happen due to the attribute and
the entity becoming invalid and causing the validation logic to refire.

Using Groovy Scripting Language

6-4 Developer's Guide

6.2.1 Keywords and Available Names
As with the original Script implementation, the current object is passed into the script
as "this" object. Therefore, to refer to any attribute inside the current object simply use
the attribute name. For example, in an attribute or validator expression for an entity, to
refer to an attribute named Ename, the script may say return Ename.

There is one top-level reserved name, adf, which is used to get to objects that the
framework makes available to the Groovy script. Currently, these objects are:

■ ADFContext (adf.context)

■ Object on which the expression is being applied (adf.object)

■ Error handler that lets the validator generate exceptions or warnings (adf.error)

All other names come from the context in which the script is applied:

■ Variable - gets the Variable, structureDef in which it is contained via
getStructureDef method on VariableImpl.

■ Transient Attribute - gets the Entity or ViewRow as its context so that all
attributes in the entity are accessible by name. Any method on the entity may be
invoked by directly calling the entity method as if you were writing a method in
the entity subclass.

You also need to call the method using the "object" keyword, such as
adf.object.createUnqualifiedRowSet(). The "object" keyword is equivalent to
the "this" keyword in Java. Without it, in transient expressions, the method is
assumed to exist on the script object itself, which it does not.

■ Validator - gets the Validator context JboValidatorContext merged with the
Entity on which the validator is applied. This is done so that you can use:

– newValue and oldValue to get to the values being validated

– sourceRow to get to the Entity or ViewRow on which the validator is applied

– All attribute names in the Entity or ViewRow as top-level names

6.2.2 Scripting Logic
Groovy scripting logic is similar to Expression Language (EL) because you can use a "."
separated path to get to a value inside an object. Note that if a Java object implements
Map, only the map lookup is performed instead of the bean style property lookup.
However, for Maps that extend JboAbstractMap you get the same EL behavior, which
is map first followed by bean lookup. This is due to the implementation of get in
JboAbstractMap.

Consider the following information:

■ All Java methods, language constructs, and Groovy language constructs are
available in the script.

■ Aggregates are implemented by calling sum(expr), count(expr), or avg(expr) on
a RowSet object where expr can be any Groovy expression that returns a numeric
value or number domain.

■ The defaultRowSet reserved keyword has been removed. The method
EntityImpl.createUnqualifiedRowSet() replaces

Tip: Only public methods on the entity are available to call.

Using Groovy Scripting Language

Defining Defaulting and Derivation Logic 6-5

EntityImpl.getDefaultRowSet() and can be accessed like any other public
method in EntityImpl.

■ Use the return keyword as you would in Java to return a value. That is, unless it is
a single-line expression where the return is assumed to be the result of the
expression itself. For example, "Sal + Comm" or "Sal > 0".

■ Do not use {} to surround the entire script because Groovy interprets { to be the
beginning of a Closure object.

■ Any object that implements oracle.jbo.Row, oracle.jbo.RowSet, or
oracle.jbo.ExprValueSupplier is wrapped into a Groovy Expando object. This is
to extend the properties available for those objects to beyond the bean properties
and also as a way to avoid introspection for most used names.

6.2.3 Groovy Expression Examples
The following are some examples of Groovy.

6.2.3.1 Querying Based on the Current Locale
Instead of using the following SQL to achieve this:

SELECT C.ISO_COUNTRY_CODE
,C.COUNTRY_NAME
FROM COUNTRY_CODES C
WHERE LANGUAGE = SYS_CONTEXT('USERENV', 'LANG')
ORDER BY C.COUNTRY_NAME

Create a bind variable and base its default value on the
adf.context.locale.language expression:

6.2.3.2 Error Message Tokens
To get the attribute new value and label:

The above example uses the following two Groovy expressions:

newValue // This works because an attribute level validator has been created.
source.hints.ProductId.label

and

source.structureDef.name+" of type "+sourceFullName

6.2.3.3 Expression Validators
Example 6–1 is an example of an Object graph, custom error, and a warning:

Using Groovy Scripting Language

6-6 Developer's Guide

Example 6–1 Object Graph, Custom Error, and a Warning

if (EmpSal >= 5000)
{
 // If EmpSal is greater than a property value set on the custom
 // properties on the root AM
 // raise a custom exception else raise a custom warning
 if (EmpSal >= source.DBTransaction.rootApplicationModule.propertiesMap.salHigh)
 {
 adf.error.raise("ExcGreaterThanApplicationLimit");
 }
 else
 {
 adf.error.warn("WarnGreaterThan5000");
 }
}
else if (EmpSal <= 1000)
 {
 adf.error.raise("ExcTooLow");
 }
return true;

Example 6–2 is an example of how to average a collection.

Example 6–2 Averaging a Collection

attribute Number EmpSal : SAL
{
 expressionValidator(expression =
 "newValue <= source.createUnqualifiedRowSet().avg(\"EmpSal\") * 1.2");
}

Example 6–3 is an example of a built-in or custom method call on the sourceObject of
this validator (sourcObject being the Entity on which this validator is being run).
isAttributeChanged(String) is a public method on the EntityImpl:

Example 6–3 Built-in or Custom method Call

if (source.isAttributeChanged("EmpSal") || source.isAttributeChanged("EmpComm"))
 {
 return true;
 }
 return false;

Example 6–4 is an example of getting to oldValue / newValue of an attribute on which
this validator is applied:

Example 6–4 Getting to Old Value and New Value of an Attribute

return (oldValue == null || newValue < olValue * 1.2);

Example 6–5 is an example of accessing the Entity state relative to the database and
relative to the last post operation.

Use adf.object.entityState or adf.object.postState.

To get the old value of an attribute (this works in the context of a transient Entity
Object attribute):

Example 6–5 Getting the Old Value of a Transient Entity Object Attribute

index = object.getStructureDef().getAttributeIndexOf("Salary");

Using Groovy Scripting Language

Defining Defaulting and Derivation Logic 6-7

return object.getAttribute(index, oracle.jbo.server.EntityImpl.ORIGINAL_VERSION);

Example 6–6 is an example of the WHILE construct as well as calling an accessor (Emp):

Example 6–6 While Construct and Calling an Accessor

emps = Emp;
boolean alreadyfound = false;
emps.reset();
while (emps.hasNext())
{
 if (emps.next().Job == "CLERK")
 {
 if (alreadyfound)
 {
 adfError.raise("alreadyfound");
 }
 alreadyfound = true;
 }
}
return true;

6.2.3.4 Attribute Defaulting and Calculation
Example 6–7, Example 6–8, and Example 6–9 are examples of a simple transient
attribute, how to sum or count a collection, and how to create a complex calculation of
a bind variable value.

Example 6–7 Simple Transient Attribute

attribute transient Integer YearSal
{
 transientexpression = "EmpSal * 12";
}

Example 6–8 Sum or Count a Collection

attribute transient Integer TotalSal
{
 transientexpression = "object.createUnqualifiedRowSet().sum(\"EmpSal\")";
}
attribute transient Integer TotalCount
{
 transientexpression = "object.createUnqualifiedRowSet().count(\"EmpSal\")";
}

Example 6–9 Complex Calculation of a Bind Variable Value

query EmpView
{
 entity Emp EmpUsage *;
 where "SAL > :avgSal"
 orderby "1"
 bindingstyle "OracleName"

variables
 {
 Double avgSal
 kind (where)
 {
 transientexpression

Using Groovy Scripting Language

6-8 Developer's Guide

 {
 totSal = 0;
 empCount =0;
 fullVO = structureDef.getApplicationModule().createViewObject("_AvgSal",
 testp.kava.VO7.si33mt.EmpAllView");
 empCount = 0;
 while (fullVO.hasNext())
 {
 row = fullVO.next();
 sal = row.EmpSal; totalSal = totSal + sal; empCount = empCount + 1;
 }
 fullVO.remove();
 if (empCount > 0)
 {
 return (int)(totalSal / empCount);
 }
 else
 {
 return 0;
 }
 }
 }
 }
}

Example 6–10 is of an entity-attribute XML fragment where a transient expression is
used to provide a default value for that attribute. This expression is evaluated before
the protected create method of the entity is called. Example 6–11 is an example of an
attribute defaulting with a transient attribute calculation expression.

Example 6–10 Attribute Value Defaulting

<Attribute
 Name="EmpComm"
 ColumnName="COMM"
 Type="oracle.jbo.domain.Number"
 ColumnType="NUMBER"
 SQLType="NUMERIC"
 TableName="EMP" >
<TransientExpression><![CDATA[

 if (EmpSal == null)
 {
 return null;
 }
 if (EmpDeptNum == null)
 {
 return 0;
 }
 if (EmpDeptNum > 40)
 {
 retune 500;
 }

]]></TransientExpression>

Example 6–11 Attribute Defaulting with a Transient Attribute Calculation Expression

<ViewAttribute
 Name="Total"

Using Groovy Scripting Language

Defining Defaulting and Derivation Logic 6-9

 IsUpdateable="false"
 AttrLoad="Each"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="false"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="View_ATTR"
 SQLType="VARCHAR">
<TransientExpression>
<![CDATA[
 if (Sal != null && Comm != null)
 {
 return Sal + Comm;
 }
 else
 {
 return Sal;
 }
]]>
</TransientExpression>

6.2.4 Defining Expressions at Design Time
An expression for an attribute can be defined using either the Attribute Editor (see
Figure 6–2) or the Expression Editor (see Figure 6–3).

Figure 6–2 Entity Object — Attribute Editor

If you want to define a string literal instead of a Groovy expression, select Literal as
the Value Type and enter the value as "My Literal Value".

Using Oracle ADF Validators and Convertor Hints

6-10 Developer's Guide

Figure 6–3 Entity Object — Expression Editor

To access the Expression Editor, click the Edit button located next to the Value text
box.

6.3 Using Oracle ADF Validators and Convertor Hints
In some situations, you should consider using Oracle ADF validators or converter
hints instead of using messages.

To ensure that the user has supplied the correct sort of value or a value in a valid
range, input fields can be validated using an Oracle ADF validator. Values may be
converted by a converter, for example to convert a string of input characters into a
value of some other type such as a date or color.

Note: Recalculate Expression is used to determine whether or not the
expression needs to be recalculated as changes are made during
run-time. The Recalculate option is hidden for persistent attributes.
This is because Persistent attribute values are always updateable by
the user and therefore, the expression of the attribute should only act
as a default expression so recalculation is not necessary. For
non-persistent attributes, the user can choose to always recalculate,
never recalculate, or decide if recalculation is needed based on the
evaluation of the recalculate expression.

Caution: Oracle ADF validators and converter hints can only be
used with messages stored in the Strings resource bundles. They
cannot be used for messages stored in the Message Dictionary.

Using Oracle ADF Validators and Convertor Hints

Defining Defaulting and Derivation Logic 6-11

To validate or convert an input value, you add the input component to the page and
then add a validator or converter to that field. Each validator and converter has some
messages associated with it:

■ Hints to display to the user details of what sort of value they need to enter.

■ Error messages to display if the user enters an invalid value.

For an individual component, you can explain the error to a user in terms relating to
that specific input component by overriding the hints or by adding or overriding a
detailed error message.

How to override an Oracle ADF validator or converter message with new text
You may not see any messages when you follow these steps to select the Application
Messages resource bundle:

1. In JDeveloper, select the af validator tag in the UI page.

2. Open the Property Inspector.

3. Select the message attribute.

4. Select the text resource.

5. Select the Application Messages resource bundle.

In this case, you may need to override the default message from the validator. To do
so, follow the procedure in "Displaying Hints and Error Messages for Validation and
Conversion" in the Oracle Fusion Middleware Web User Interface Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

Using Oracle ADF Validators and Convertor Hints

6-12 Developer's Guide

7

Defining and Using Message Dictionary Messages 7-1

7Defining and Using Message Dictionary
Messages

This chapter provides a detailed overview of Message Dictionary messages and
discusses how to use them in Oracle Fusion Applications.

This chapter contains the following sections:

■ Section 7.1, "Introduction to Message Dictionary Messages"

■ Section 7.2, "Understanding Message Types"

■ Section 7.3, "Understanding Message Content"

■ Section 7.4, "About Grouping Messages by Category and Severity"

■ Section 7.5, "Understanding Incidents and Diagnostic Logs with Message
Dictionary"

■ Section 7.6, "Using Message Dictionary Messages in Oracle ADF Java Code"

■ Section 7.7, "Associating Message Dictionary Messages with Oracle ADF
Validation Rules"

■ Section 7.8, "Raising Error Messages Programmatically in PL/SQL"

■ Section 7.9, "Diagnosing Generic System Error Messages"

■ Section 7.10, "Formatting Message Dictionary Messages for Display in Oracle ADF
Applications"

■ Section 7.11, "Integrating Messages Task Flows into Oracle Fusion Functional
Setup Manager"

7.1 Introduction to Message Dictionary Messages
The Message Dictionary stores translatable Error and Warning messages for Oracle
Fusion Applications. These types of messages provide information about business rule
errors, such as missing or incorrect data, and how to resolve them, warn about the
consequences of intended actions, inform about the status of an application, pages, or
business objects, and indicate that processes and actions are performing or are
completed.

All other messages can be stored in resource bundles, with the exception of strings and
messages that need to be accessed by C or PL/SQL programs (resource bundles only
can be accessed by Java programs). These exceptions can be stored in the Message
Dictionary as Informational and UI String messages. Resource bundles also can be used
to store job output or log file messages for Oracle Enterprise Scheduler (ESS) Java
programs and test output messages for Java Diagnostic Testing Framework tests.

Understanding Message Types

7-2 Developer's Guide

The Error, Warning, Information, and UI String message types are described in detail in
Section 7.2, "Understanding Message Types."

By using the messages in the Message Dictionary, you can define standard messages
that you can use in all your applications, provide consistency for messages within and
across all your applications, define flexible messages, and change or translate the text
of your messages without regenerating or recompiling your application code.

Message Dictionary messages are composed of several message components, which
enable you to author different messages for different audiences, such as the end user
or help desk personnel, and for different conditions, such as when an action must be
performed before the user can continue. For more information, see Section 7.3.4,
"About Message Components."

Messages can be displayed to the UI and written to logs and incidents. Incidents are
collections of information about system errors for which end users might require
assistance from help desk personnel. An incident contains information about the state
of the system at the time the problem occurred. Help desk personnel can use incidents
to supply internal support personnel or Oracle support personnel with information
about problems that need to be resolved.

You can set up a Message Dictionary message such that an incident and an associated
log entry are created automatically. This is referred to as implicit incident creation.

For information on to how to generate incidents and log entries from Message
Dictionary messages, see Section 7.5, "Understanding Incidents and Diagnostic Logs
with Message Dictionary." For information about how incidents and log entries can be
used, see the "Managing Oracle Fusion Applications Log Files and Diagnostic Tests"
chapter and the "Introduction to Troubleshooting Using Incidents, Logs, QuickTrace,
and Diagnostic Tests" chapter in the Oracle Fusion Applications Administrator's Guide.

Use the Manage Messages task in the application's Setup and Maintenance work area
to create and maintain Message Dictionary messages. For more information, see the
Oracle Fusion Applications Common Implementation Guide.

Oracle Fusion applications provide some common messages in the Message
Dictionary with message names that begin with FND_CMN_. Do not modify or replace
these messages.

7.2 Understanding Message Types
All messages must have a message type. The message type indicates which message
components are applicable, determines whether implicit logging and incident creation
occurs, and determines the logging level if the message is logged. For information

Note: Because the messages are stored in Application Object Library
FND_MESSAGE_% tables, these types of messages are sometimes
referred to as FND messages.

Note: Non-message strings, such as labels, report headings, and
message fragments are typically stored in Oracle Application
Development Framework (ADF) resource bundles. However, because
Oracle ADF resource bundles only can be accessed by Java programs,
you can store these types of strings in the Message Dictionary if C or
PL/SQL programs need to access them.

Understanding Message Types

Defining and Using Message Dictionary Messages 7-3

about message components, see Section 7.3.4, "About Message Components." For
information about logging and incident creation, see Section 7.5, "Understanding
Incidents and Diagnostic Logs with Message Dictionary." For information about the
standard log settings and about logging profile options see the "Default System Log
Settings" section in the Oracle Fusion Applications Administrator's Guide.

The valid values for message types are fixed and therefore cannot be customized.

Error Messages
Use the Error message type for messages that alert the user to data inaccuracies when
completing a field, submitting or saving a page, navigating from the page, or when an
application or unknown failure occurs. An error message requires attention or
correction before the user can continue with their task.

Warning Messages
Use the Warning message type for messages that inform users about an application
condition or a situation that might require their decision before they can continue.
Warning messages describe the reason for the warning and potential consequence of
the selected or intended action by users. The warning requires the attention of users,
and a standard question might be posed with the warning, or the warning can take the
form of a statement.

Information Messages
The Information message type is intended for the following types of strings:

■ Non-error and non-warning text and messages that are accessed by C or PL/SQL
code or are used by Oracle Enterprise Scheduler (ESS) statuses or log files. Because
C and PL/SQL programs cannot access Java-based resource bundles, these strings
must be stored in the Message Dictionary.

An example of such a string is the completion text for an ESS program or process.

■ Strings that are written to ESS job log or output files, as shown in Figure 7–1.
These strings are used to provide a text record about request processing execution,
failures, and so on.

Figure 7–1 Processing Request Output Log File

■ Strings for information level diagnostic logging.

You can choose to use the Information message type in one of two ways:

■ Use the Information message type for all non-error and non-warning messages.

Understanding Message Content

7-4 Developer's Guide

■ Use the Information message type to store complete messages and use the UI
String message type, which is described in the next section, to store fragments. For
example, if your messages must pass a review process, you might choose to use
the UI String message type for messages that do not need to conform to message
guidelines.

UI String Messages
Use the UI String message type for non-error and non-warning strings that need to be
stored in the Message Dictionary but are not complete messages, such as prompts,
titles, or translated fragments. For example, "Upload Process Parameters." Note that UI
String messages are processed exactly as Information messages.

7.3 Understanding Message Content
Messages must have unique message names. Although message numbers are not
required, you should use them for error messages in order to make it easier for users
to identify the precise error in logs, and to enable users to find more information about
the error in various help sources, including those in different languages.

Translation Notes are not required, but can be used to store notes about context and use
of the message. Translation notes can also be used to provide information to help
translators understand how the message is used and thus provide a more accurate
translation.

Different combinations of information are provided depending on the nature of the
message and the intended audience, such as end user or help desk personnel. This is
accomplished using message components.

Tokens are also an important part of messages. Tokens are the programmatic parts of
message text that allow the substitution of other text or values into the message at run
time. They are used as a way include variable information in the same message. In
Oracle Fusion Applications, tokens are used for dates, numbers, and specific types of
text.

7.3.1 About Message Names
Every message must have a unique name. You should include a unique prefix that
makes it easier to find your custom messages and that helps to avoid name conflicts
with non-custom messages. Names that begin with FND_CMN_ are reserved for Oracle
Fusion Applications common messages.

7.3.2 About Message Numbers
A unique and persistent message number can be included with each message. The
message range 10,000,000 to 10,999,999 has been allocated for customers' own
messages.

When displayed, the number takes the format of (Application Shortname-Number). For
example:

Descriptive flexfields do not support unit of measure enabled segments.
(FND-2774)

If the message does not have a message number, the formatted number is not
displayed.

Understanding Message Content

Defining and Using Message Dictionary Messages 7-5

7.3.3 About Translation Notes
A translation note (message context) is a descriptive note to developers, translators,
and message customizers describing where and how the message is used. The note is
not translated and cannot contain tokens. It is never displayed to end users or help
desk personnel. The maximum size of this field is 4000 characters.

7.3.4 About Message Components
Message components enable you to define messages for different audiences and
address additional information needs. All messages require a value for the Message
Text component, the other components are optional.

Both help desk personnel and end users see the message text and cause components.
For the other components, you can use the Message Mode profile option, which has a
code of FND_MESSAGE_MODE, to configure whether the end user or help desk personnel
(or both) see each type of component. For example, you can set the profile option to
enable a particular user to see the Message Admin Detail component. You use the
Manage Administrator Profile Values task in the Oracle Fusion Applications Setup and
Maintenance work area to set the Message Mode profile option to Administrator or
User at the Site, Product, and User levels.

Message Text
Message text is required. This is a brief statement of the operation attempted and the
problem that occurred as a result, or information that the user needs to know. The text
is included in log and incident creation messages. The content in this field is
customizable and the text can contain tokens. The maximum field size for messages
stored in the Message Dictionary is 240 characters.

If the entire message, after tokens have been substituted, exceeds the 240 character
limit, the message text is truncated. To allow room for expansion in other languages,
the US version of any translated column should be no more than 70% of the maximum
possible length. (For example, 240 character short text becomes 160 characters in US).

The text appears in bold at the top of the message window region. In addition, the
message text is the only message component displayed in limited real estate UIs, such
as pagers and phones. Therefore, the message text should be clear enough to be
understood alone when used in this context.This is a required field for all message
types.

Note: Incidents contain all message components. For more
information about incidents, see Section 7.5, "Understanding Incidents
and Diagnostic Logs with Message Dictionary."

Caution: Tokens are just values substituted into the message at
runtime. Tokens must come from a translated source unless it is a
number, seed data, technical information, or a name that is not
translated. Extreme care must be taken with tokens when substituting
translatable data. You must make sure that it makes sense at run-time

For more information, see Section 7.3.5, "About Tokens."

Understanding Message Content

7-6 Developer's Guide

Message User Detail
This is a more detailed explanation of the problem identified in the short message and
its audience is the end user. This field includes the details that are appropriate and
meaningful to the end user and should outline exactly what caused the error to occur.
For example, in the case of an incident creation error message, this field can be used to
provide the user with information about the type of error. The content in this field is
customizable and the text can contain numerous tokens. The maximum field size is
4000 characters.

The text appears in normal letters just below the short message. This field is optional.

Message Admin Detail
Message Admin Detail text provides a detailed explanation of the problem identified
in the short message. This information is never seen by the end user. This field is for
technical details that are not meaningful to an end user. The content in this field is
customizable and the text can contain numerous tokens. The maximum field size is
4000 characters.

Although this component is optional, it should be used for errors that require help
desk processing, and should contain information to assist the help desk personnel to
resolve the issue, such as the technical background.

Message Cause
The message cause text provides for the end user a concise explanation of why the
error occurred. It lists reasons for the failure such as a prerequisite that is not met,
incorrect inputs, an anticipated but incorrect action, and so on. The content in this field
is customizable and the text can contain numerous tokens. The maximum field size is
4000 characters.

The word Cause (in bold) is prefixed automatically to the beginning of the cause text.
This text appears below the user detail, if available. This component is optional and is
only applicable for messages of type Error and Warning. The components Cause and
User Action are mutually required, meaning if you enter one you must enter both.

Message User Action
This component is for messages that state the action that the user must perform in
order to continue and complete the task. This is intended for and seen by the end user.
The content in this field is customizable and the text can contain tokens. The
maximum field size is 4000 characters.

The word Action (in bold) is prefixed automatically to the beginning of the action text.
This text appears below the cause text. This component is optional and is only
applicable for messages of type Error and Warning.

Message Admin Action
Message Admin Action messages state the action that must be performed in order to
resolve the error condition. This should contain the information that the help desk
personnel requires to resolve the error. The content in this component is customizable
and the text can contain tokens. The maximum field size is 4000 characters.

The word Action: (in bold) is prefixed automatically to the beginning of the action
text. This text appears below the cause text and is only applicable for messages of type
Error and Warning. This component is only enabled if Cause and User Action are
entered. If this is NULL and User Action information is available, then the User Action
information is displayed.

About Grouping Messages by Category and Severity

Defining and Using Message Dictionary Messages 7-7

7.3.5 About Tokens
Tokens are identified in the message text by their use of curly brackets and all
uppercase letters. The token values are supplied at runtime by the code that raises the
message. For example, the following token {MATURITY_DATE} is replaced by a date
when the user receives the error message on their screen:

"Enter an effective date that is the same as or later than {MATURITY_DATE}".

Becomes:

"Enter an effective date that is the same as or later than 25-APR-2010".

7.4 About Grouping Messages by Category and Severity
You can group messages by category and by severity. These groups are used to define
logging and incident policies. Otherwise, category and severity have no affect.
Category and severity values do not appear in logging entries, incidents, or the UI.

■ Message Category: This is a more generic attribute that is used to group messages.
For example, all the messages that relate to one functionality, such as a concurrent
program, can be grouped together into one category.

This is an optional field, but it must have a value to enable implicit incident
creation.

Message categories are defined by lookups (of type extensible) so that they can be
customized by an administrator. The maximum size of this field is 30 characters.
The following are seeded values, but you can add more if required.

– Product - This value refers to product functionality, setup and maintenance.
Such messages are typically routed to functional administrators or product
super users.

– System - This value refers to the system, database, technology stack, and so on.
Such messages are typically routed to technical users such as system
administrators or database administrators.

– Security - This value refers to issues concerning permissions, access,
compliance, passwords, and so on. Such messages are typically routed to
security administrators.

■ Message Severity: This grouping attribute is not generic and indicates the severity
of the message. You must set the severity to High to enable implicit incident
creation for the message. The following are seeded values, but you can add more if
required.

– High - This value can be used for serious messages that completely stop the
progress of an important business process or affect a large user community.

– Medium - This value can be used for less severe and more isolated messages.

– Low - This value can be used when it is unclear whether the message has a
negative impact on end users or business processes.

Valid message severity values are defined by lookups (of type extensible) so that
they can be customized by an administrator. The maximum size of this field is 30
characters.

Understanding Incidents and Diagnostic Logs with Message Dictionary

7-8 Developer's Guide

7.5 Understanding Incidents and Diagnostic Logs with Message
Dictionary

Incidents are collections of information about system errors for which the customer
might require assistance from help desk personnel. An incident contains information
about the state of the system at the time the problem occurred. Help desk personnel
can monitor and respond to incidents and send them to Oracle if further assistance is
necessary. For more information about how customers use incidents, see the
"Managing Oracle Fusion Applications Log Files and Diagnostic Tests" chapter and the
"Introduction to Troubleshooting Using Incidents, Logs, QuickTrace, and Diagnostic
Tests" appendix in the Oracle Fusion Applications Administrator's Guide.

Implicit incident creation and logging occurs when the Message Dictionary message is
retrieved in PL/SQL and C code, or when it is formatted in Java code, and the
message has the following settings:

■ Logging enabled (loggable_alertable): Y

■ Message type: ERROR

■ Message Category: not null

■ Message severity: For incident creation, it must be HIGH. For logging, it must be
not null.

Use the Message Dictionary APIs to retrieve a Message Dictionary message. The
PL/SQL methods are in the FND_MESSAGE package and the Java methods are in the
messageService package. For C code, use the methods in the fddutl package.

For more information about the Message Dictionary APIs, see the "Message
Dictionary" chapter in the Oracle E-Business Suite Developer's Guide. You can download
this soft-copy documentation as a PDF file from the Oracle Technology Network at
http://www.oracle.com/technetwork/indexes/documentation/

For Java code, implicit incident creation and logging occurs for qualifying messages
when the appropriate formatting methods are called from the MessageServiceAMImpl
class and the MessageServiceAM interface, such as the getUserXML(), formatMap(),
formatUserTextMap(), or formatAdminTextMap() methods. See the MessageServiceAM
and MessageServiceImpl Javadoc for information about which methods to call for
implicit logging. Implicit incident creation and logging also occur when exceptions are
created using the ApplcoreException classes.

 When implicit logging and incident creation occurs, additional information is
appended to the message, as follows:

■ If the incident is created in the middle tier using Java, a Business Process
Execution Language (BPEL) process, or C, the following note is appended:

An application error has occurred. Your help desk was notified. For more
information your help desk may refer to incident {incident number}, {application
server name}, {application server domain name}.

■ If the incident is created in the database tier using PL/SQL, the following note is
appended:

Note: Implicit incident creation occurs when logging is enabled.
Implicit logging only occurs if the SEVERE log level is enabled.

Using Message Dictionary Messages in Oracle ADF Java Code

Defining and Using Message Dictionary Messages 7-9

An application error has occurred. Your help desk was notified. For more
information your help desk may refer to incident {incident number_SID}, {database
server name}, {database instance name}.

To learn more about the information that is included with incidents and associated log
entries, see the "How the Diagnostic Framework Works" section in the Oracle Fusion
Middleware Administrator's Guide.

7.6 Using Message Dictionary Messages in Oracle ADF Java Code
You can use messages in the Message Dictionary in Java code to raise exceptions using
Oracle Fusion Middleware Extensions for Applications exception classes. You can also
retrieve the message text programmatically.

7.6.1 How to Raise Exceptions Using Oracle Fusion Middleware Extensions for
Applications Exception Classes

Exceptions from messages in the Message Dictionary should be raised using wrapper
classes that are provided in the oracle.apps.fnd.applcore.message package.
Wrappers that are provided correspond to the most commonly used Oracle ADF
exception classes. See Table 7–1.

In each of these classes, the message name is expected to be passed in the format: APP_
NAME:::MESSAGE_NAME (application short name, followed by exactly 3 colons, followed
by the message name). For example: "FND:::FND_CMN_POSITIVE".

Message tokens passed to most Message Dictionary Java APIs are expected to be
supplied as Map<String, Object> or as an array of alternating String/Object pairs.
With either style, the String is the name of the message token and the following
Object is an object representing the value of that token. The type of the Object is
expected to match the type of the token as shown in Table 7–2.

Exceptions that are raised using JboException or one of its subclasses with a severity
level of SEVERITY_ERROR, which is the default, or any java.lang.RuntimeException,
are treated as system errors, and the following occurs:

■ The error message is replaced with a generic message, such as "An application
error occurred. Your help desk was informed"

Table 7–1 Oracle ADF Exception Classes vs. Message Dictionary Classes

Exception Class Message Dictionary Class

JboException oracle.apps.fnd.applcore.messages.ApplcoreException

RowValException oracle.apps.fnd.applcore.messages.ApplcoreRowValExcepti
on

AttrValException oracle.apps.fnd.applcore.messages.ApplcoreAttrValExcept
ion

Table 7–2 Message Tokens and Data Types

Token Type Token Value Object Type

TEXT java.lang.String

NUMBER java.math.BigDecimal

DATE java.sql.Timestamp

Using Message Dictionary Messages in Oracle ADF Java Code

7-10 Developer's Guide

■ An incident is created for the system error

■ A stack trace is written to the log file for the system error

If you do not want the JboException to be treated as a system error, do one of the
following:

■ Convert the exception type to ApplcoreException

■ Set the severity level to other than SEVERITY_ERROR, such as SEVERITY_
RECOVERABLE_ERROR.

You should use the wrappers wherever possible. However, it is possible to also use
native Oracle ADF exceptions directly if there isn't a wrapper that exactly suits your
needs. If you do this, you must specify the FndMapResourceBundle resource bundle
class, and format tokens correctly.

Example 7–1 shows sample code that raises an ApplcoreException exception.
Example 7–2 shows an example of raising ApplcoreRowValException exception. Use of
the ApplcoreAttrValException exception is shown in Example 7–3. Example 7–4
illustrates how to throw a native JBOException.

To display more than one application error message, such as a series of validation
error messages, bundle the exceptions and throw the bundled exceptions, as shown in
Example 7–5. The exceptions in the bundle must be only application error exceptions,
such as ApplcoreException, JboException with SEVERITY_RECOVERABLE_ERROR, or
ValidationException. If you include any system error exceptions in the bundle, such
as NullPointerException, the bundle is processed as a system error. For example, if
you include a RuntimeException exception in the bundle, you cannot display the
bundled exception error messages in a popup dialog, because it will be processed as a
system error.

Example 7–1 ApplcoreException

import oracle.apps.fnd.applcore.messages.ApplcoreException;

// Construct and populate HashMap with token values
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT_TOKEN", "text token value");
tokens.put("NUMBER_TOKEN", new BigDecimal(10));
Calendar cal = Calendar.getInstance();
cal.set(1999, Calendar.DECEMBER, 31, 0, 0, 0);
tokens.put("DATE_TOKEN", new Timestamp(cal.getTimeInMillis()));

throw new ApplcoreException("MYAPP:::MY_MESSAGE_NAME", tokens);

Example 7–2 ApplcoreRowValException

import oracle.apps.fnd.applcore.messages.ApplcoreRowValException;

// Construct and populate HashMap with token values
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT_TOKEN", "text token value");
tokens.put("NUMBER_TOKEN", new BigDecimal(10));
Calendar cal = Calendar.getInstance();
cal.set(1999, Calendar.DECEMBER, 31, 0, 0, 0);
tokens.put("DATE_TOKEN", new Timestamp(cal.getTimeInMillis()));

Tip: If you need to see the original error message, you can run the
application with the -DAFERROR_MODE=debug parameter, as described
in Section 7.9, "Diagnosing Generic System Error Messages."

Using Message Dictionary Messages in Oracle ADF Java Code

Defining and Using Message Dictionary Messages 7-11

Key key = new Key(new Object[] { "Primary Key" });

ApplcoreRowValException ex = new ApplcoreRowValException("MYAPP:::MY_MESSAGE_
NAME", "MyEODefName",key, tokens);

Example 7–3 ApplcoreAttrValException

import oracle.apps.fnd.applcore.messages.ApplcoreAttrValException;

// Construct and populate HashMap with token values
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT_TOKEN", "text token value");
tokens.put("NUMBER_TOKEN", new BigDecimal(10));
Calendar cal = Calendar.getInstance();
cal.set(1999, Calendar.DECEMBER, 31, 0, 0, 0);
tokens.put("DATE_TOKEN", new Timestamp(cal.getTimeInMillis()));

ApplcoreAttrValException ex = new ApplcoreAttrValException("MYAPP:::MY_MESSAGE_
NAME",
 "MyEODefName","AttrName", "AttrValue", tokens);

Example 7–4 Native JBOException

import oracle.apps.fnd.applcore.messages.ApplcoreException;

// Construct and populate HashMap with token values
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT_TOKEN", "text token value");
tokens.put("NUMBER_TOKEN", new BigDecimal(10));
Calendar cal = Calendar.getInstance();
cal.set(1999, Calendar.DECEMBER, 31, 0, 0, 0);
tokens.put("DATE_TOKEN", new Timestamp(cal.getTimeInMillis()));

JboException ex = new JboException(FndMessagesUtil.getFndMapResourceBundleDef(),
 "MYAPP:::MY_MESSAGE_NAME", null);
ex.setErrorParametersMap(tokens);
throw ex;

Example 7–5 Throwing Bundled Exceptions

ApplcoreException error1 =
 new ApplcoreException("PON:::PON_NEG_REQ_TOTAL_WEIGHT_ERROR");
 ApplcoreException error2 =
 new ApplcoreException("PON:::PON_KNOCKOUT_CRITERIA_ERROR");

 ApplcoreException[] details = {error1, error2};
 ValidationException errorBundle = new ValidationException("");
 errorBundle.setExceptions(details);
 throw errorBundle;

7.6.2 How to Retrieve Message Text Programmatically
You can use static methods in the oracle.apps.fnd.applcore.messages.Message class
to retrieve translated, token substituted message text without raising exceptions. APIs
are provided to retrieve the fully formatted text of the user message, the administrator
message, or to retrieve the parts of the message (short message, cause, action, and so
on) individually, as shown in Example 7–6.

Associating Message Dictionary Messages with Oracle ADF Validation Rules

7-12 Developer's Guide

Example 7–6 Retrieving Messages

// Construct and populate HashMap with token values
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT_TOKEN", "text token value");
tokens.put("NUMBER_TOKEN", new BigDecimal(10));
Calendar cal = Calendar.getInstance();
cal.set(1999, Calendar.DECEMBER, 31, 0, 0, 0);
tokens.put("DATE_TOKEN", new Timestamp(cal.getTimeInMillis()));

// Get the token substituted message short text.
String shortText = Message.getShortText("MYAPP", "MY_MESSAGE", tokens);

// Get the token substituted full user message, in plain text format.
String userText = Message.getUserText("MYAPP", "MY_MESSAGE", tokens);

// Get the token substituted full user message, in HTML format.
String userHTML = Message.getUserHTML("MYAPP", "MY_MESSAGE", tokens);

// Get the token substituted full admin message, in plain text format.
String adminText = Message.getAdminText("MYAPP", "MY_MESSAGE", tokens);

// Get the token substituted full admin message, in HTML format.
String adminHTML = Message.getAdminHTML("MYAPP", "MY_MESSAGE", tokens);

7.7 Associating Message Dictionary Messages with Oracle ADF
Validation Rules

The easiest way to create and manage validation rules is through declarative
validation rules. Declarative validation rules are defined using the overview editor for
the entity object, and once created, are stored in the entity object's XML file. These are
known as declarative validation rules on entity objects.

For information about defining validation rules on entity objects, see the "Defining
Validation and Business Rules Declaratively" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

Oracle ADF provides built-in declarative validation rules that satisfy many of your
needs. You can also base validation on a Groovy expression, as described in
Section 6.2, "Using Groovy Scripting Language".

When you add a validation rule, you supply an appropriate error message. You can
also define how validation is triggered and set the severity level.

These messages can contain named message tokens for retrieving and displaying
context sensitive values.

7.7.1 How to Associate Error Messages with Oracle ADF Entity Object Validation Rules

To associate an error message with your validation rule:
1. Go to the Failure Handling tab of your declarative validation rule when you have

finished defining your rule. In the Validation Failure Severity field, Select Error.

Tip: When raising exceptions with the ADF Business Components
validation rules, the tokens must be formatted as {TOKEN_NAME} and
not (TOKEN_NAME).

Associating Message Dictionary Messages with Oracle ADF Validation Rules

Defining and Using Message Dictionary Messages 7-13

2. Click Select Message to open the Select Text Resource dialog. Choose Application
Messages from the Resource Picker dropdown list.

3. Use the Search area to filter your search results. For example, enter fnd_view in
the search text area to filter your results to messages whose key begins with FND_
VIEW.

4. Select the required error message from the list of results. The Select Text Resource
dialog closes and the selected error message displays in the Failure Message Text
area on the Failure Handling tab.

5. If your message contains tokens, bind them to Groovy expressions to retrieve
context sensitive values. Groovy script is a Java-like scripting language. For more
information about Groovy script, see Section 6.2, "Using Groovy Scripting
Language".

A validation rule's error message can contain embedded expressions that are
resolved by the server at runtime. To access this feature, simply enter a named
token delimited by curly braces (for example, {TOKEN_NAME} or {ERRORPARAM}) in
the error message text where you want the result of the Groovy expression to
appear.

The Token Message Expressions table at the bottom of the dialog displays a row
that allows you to enter a Groovy expression for the token. Figure 7–2 shows the
failure message for a validation rule in the PaymentOptionEO entity object that
contains message tokens.

Note: You can search for messages only by the message key. All
other types of searches have been disabled. Also notice from the
results that message keys are prepended with the application short
name.

Note: If the selected message contains tokens, a row for each token is
added into the Error Message Expressions table.

Raising Error Messages Programmatically in PL/SQL

7-14 Developer's Guide

Figure 7–2 Using Message Tokens in a Failure Message

Declarative validation is different from programmatic validation, which is stored in an
entity object's Java file. For more information about programmatic validation, see the
"Implementing Validation and Business Rules Programmatically" chapter in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

7.8 Raising Error Messages Programmatically in PL/SQL
Because they make calls to the database, both PL/SQL and C code require that the
message is stored in the Message Dictionary. PL/SQL and C code cannot reference
Java-based resource bundles. You can use PL/SQL to:

■ Raise exceptions in PL/SQL programmatically using messages from the Message
Dictionary

■ Retrieve those errors when PL/SQL is called from Java

■ Retrieve the message from the stack

7.8.1 How to Raise Exceptions Programmatically in PL/SQL
There are three packages that you can use to handle errors in PL/SQL using messages
in the Message Dictionary:

■ FND_MESSAGE: This package includes basic APIs to set messages on the error stack,
set tokens, retrieve token substituted message text, and so on.

■ APP_EXCEPTION: This package includes utilities to raise SQL exceptions with
messages in the Message Dictionary as the exception text.

Raising Error Messages Programmatically in PL/SQL

Defining and Using Message Dictionary Messages 7-15

■ FND_MSG_PUB: This package includes utilities to set messages on the error stack. In
Oracle Fusion Applications, the error stack also exists natively in the FND_MESSAGE
package; this package is primarily used for backward compatibility with existing
code. PL/SQL code that in EBS was primarily called from Framework usually uses
this method.

For more information about these packages, see the package headers.

7.8.2 How to Raise Errors in PL/SQL
The FND_MESSAGE PL/SQL package allows you to set one message and its tokens, as
shown in Example 7–7. It also allows you to set multiple messages in the stack by
explicitly pushing the current message onto the stack, as shown in Example 7–8. When
you need to retrieve the message from the stack, an explicit pop() is required, as
shown in Example 7–9.

Example 7–7 Getting Message and its Tokens

-- setting INVALID_USER as the current message
fnd_message.set.name('FND', 'INVALID_USER');
-- setting token value for NAME
fnd_message.set_token('NAME', '<USER>');
..........
-- get the current translated and token substituted message
-- then clear the message
msg := fnd_message.get;

Example 7–8 Receiving a Message Record and Clearing Message

-- setting INVALID_USER as the current message
fnd_message.set_name('FND', 'INVALID_USER');
-- setting token value for NAME
fnd_message.set_token('NAME', 'TESTUSER');
.......
-- receive a message record which contains everything about the
-- current message. The record contains message number, message category
-- message severity and translated and token substituted message text,
-- translated and token subsituted user message, user action, ...
-- Getting message record for current message will NOT clear the message
msg_rec := fnd_message.get_message_record;
-- clear the message
fnd_message.clear;

Example 7–9 Retrieving message from the Stack

-- setting INVALID_USER as the current message
fnd_message.set_name('FND', 'INVALID_USER');
-- setting value for token NAME for INVALID_USER message
fnd_message.set_token('NAME', 'TESTUSER');
-- saving the current message onto stack
fnd_message.push;
-- setting LOGIN_FAILED as the current message
fnd_message.set_name('FND', 'LOGIN_FAILED');
-- saving the current message onto stack
fnd_message.push;
.......
-- poping one message out of stack and set it as the current message
fnd_message.pop;
-- get the translated and token subsituted LOGIN_FAILED message
-- then clear the current message

Raising Error Messages Programmatically in PL/SQL

7-16 Developer's Guide

msg := fnd_message.get;
-- poping one message out of stack and set it as the current message
fnd_message.pop;
-- get the translated and token subsituted INVALID_USER message
-- then clear the message
msg := fnd_message.get;

7.8.3 How to Retrieve Errors when PL/SQL is Called from Java
You can use the OAExceptionUtil.CheckErrors() API to check for error messages
after calling PL/SQL from Java. The CheckErrors() API looks for errors on both the
new FND_MESSAGE and FND_MSG_PUB stacks, raises a bundled exception for each error
found on both stacks, and then clears both PL/SQL error stacks.

Where the call to OAExceptionUtil.CheckErrors() depends on which style of error
handling your PL/SQL code uses:

■ If your PL/SQL code uses FND_MESSAGE with FND_MSG_PUB, then errors will be left
on the PL/SQL error stack without raising any exceptions. The call to
OAExceptionUtil should go immediately after the PL/SQL call.

■ If your PL/SQL code uses APP_EXCEPTION.RAISE_EXCEPTION, or FND_
MESSAGE.RAISE, then errors will cause SQL exceptions to be raised. The call to
OAExceptionUtil.CheckErrors() should be in a SQLException catch block.

■ If you do not know what style of error handling your PL/SQL code uses, or there
could be a mixture of both, then you should include calls to
OAExceptionUtils.CheckError() in both places, as shown in Example 7–10.

Example 7–10 Calls to OAExceptionUtils.CheckError() — Unknown Error Handling Style

import oracle.apps.fnd.applcore.common.OAExceptionUtils;
 ...

 try
 {
 // Create and execute a plsql statement
 String mystmt = "BEGIN MY_PLSQL_PACKAGE.MY_PROCEDURE(); END;";

 DBTransaction txn = getDBTransaction();
 CallableStatement mystmt = txn.createCallableStatement(mystmt, 1);

 myStmt.executeUpdate();

 // Check for errors left on message stack without raising exception
 OAExceptionUtils.checkErrors(txn);
 }
 catch(SQLException sqlE)
 {
 // Check for FND Messages exception.
 // FND Messages exception always has error code -20001.
 if (sqlE.getErrorCode() == 20001)
 {
 OAExceptionUtils.checkErrors(txn);
 }
 else
 // Not a FND Messages exception, re-raise.
 throw sqlE;
 }

Formatting Message Dictionary Messages for Display in Oracle ADF Applications

Defining and Using Message Dictionary Messages 7-17

7.9 Diagnosing Generic System Error Messages
If you see an error message similar to one the following messages, it is because a
system error was raised and the original error message was replaced with a generic
message:

An application error occured. Your help desk was informed.

An application error occurred. See the incident log for more information.

When you receive these types of errors, you can look at the log file entry to find the
original error message.

You can also set one of the following debug options to allow you to see the error more
directly, without having to view the log file entry:

■ -DAFERROR_MODE=debug: Causes the original error to be displayed in the UI

■ -DAFLOG_ECHOED=true: Sends logging output to the console, as well as the log file

For information about finding the cause of an error and its corrective action and for
information about viewing and managing log files, see the "Managing Log Files and
Diagnostic Data" chapter and the "Introduction to Troubleshooting Using Incidents,
Logs, QuickTrace, and Diagnostic Tests" appendix in the Oracle Fusion Middleware
Administrator's Guide.

7.10 Formatting Message Dictionary Messages for Display in Oracle ADF
Applications

When raising an exception or attribute validation error by retrieving a message from
the Message Dictionary using a resource bundle interface, the exception message
returns in XML format.

You can convert XML formatted messages to HTML or plain text for display in Oracle
ADF applications, as shown in Figure 7–3.

Figure 7–3 Error Message Example

This can be done in one of two ways:

Note: When generic errors are raised, you will see
oracle.apps.fnd.applcore.messages.ExceptionHandlerUtil class
information at the top of the call stack. This is the code that is replaced
the unhandled exception with the generic error and should not be
mistaken for the original error from the Message Dictionary.

Formatting Message Dictionary Messages for Display in Oracle ADF Applications

7-18 Developer's Guide

■ Programmatically

■ By configuring the error format handler in the DataBindings.cpx file

7.10.1 How to Programmatically Convert XML Messages
When directly handling Oracle Fusion Applications resource bundle exceptions in Java
code, you can convert XML messages to HTML or plain text using utility APIs. The
utility APIs are found in oracle.apps.fnd.applcore.messages.model.util.Util.

Sample code is shown in Example 7–11.

Example 7–11 Converting XML Messages to HTML or Plain Text

Exception ex =
 new ApplcoreException("FND:::MY_TEST_MESSAGE");

 // Retrieve the HTML short message
 String htmlShort = Util.formatHTMLMessage(ex);

 // Retrieve the HTML message details.
 String htmlDetails = (Util.formatHTMLDetailMessage(ex)).getHTMLText();

 // Retrieve the plain text messge details
 String textDetails = (Util.formatHTMLDetailMessage(ex)).getText();

 // Retrieve the full plain text message
 String textMsg = Util.formatTextMessage(ex);

7.10.2 How to Convert XML Messages by Configuring the Error Format Handler
You can convert XML messages to HTML or plain text by configuring the error format
handler in the DataBindings.cpx file.

To convert XML messages to HTML by configuring the error format handler:
1. Under the user interface project, open the DataBindings.cpx file.

2. In the Property Inspector, set the ErrorHandlerClass field to the value shown in
Example 7–12 and Figure 7–4.

Example 7–12 The Value of the ErrorHandlerClass Field

oracle.apps.fnd.applcore.messages.MessageFormatHandler

Tip: JDeveloper names the user interface project ViewController by
default.

Integrating Messages Task Flows into Oracle Fusion Functional Setup Manager

Defining and Using Message Dictionary Messages 7-19

Figure 7–4 Setting the Value of the ErrorHandlerClass Field in the Property Inspector

7.11 Integrating Messages Task Flows into Oracle Fusion Functional
Setup Manager

Every Oracle Fusion application registers task flows with a product called Oracle
Fusion Functional Setup Manager. These task flows are available from the
application's Setup and Maintenance work area and enable customers and
implementers to set up and configure business processes and products. For more
information, see the Oracle Fusion Applications Common Implementation Guide.

Function Security controls your privileges to a specific task flow, and users who do not
have the required privilege cannot view the task flow. For more information about
how to implement function security privileges and roles, see Chapter 49,
"Implementing Function Security."

Table 7–3 lists the task flows and their parameters.

Table 7–3 Messages Task Flows and Parameters

Task Flow Name Task Flow XML
Parameters
Passed Behavior Comments

Manage
Messages

/WEB-INF/oracle/apps/fnd/
applcore/messages/ui/flow
/ManageMessagesTF.xml#Man
ageMessagesTF

mode='search'
[moduleType]
[moduleKey]

mode='edit'
messageName
applicationId
[pageTitle]

Search mode launches
the search page, with
optional parameters to
restrict to a particular
module.

Edit mode launches the
edit page for a particular
message. The
messageName and
applicationId
parameters are
mandatory as they
specify the message to
edit.

NA.

Integrating Messages Task Flows into Oracle Fusion Functional Setup Manager

7-20 Developer's Guide

8

Managing Reference Data with SetIDs 8-1

8Managing Reference Data with SetIDs

This chapter describes how to share reference data across organizations by using
setIDs to partition the data into different sets of values. Each organization can then
maintain its data in a common table, using a set of values specific to that organization.

This chapter includes the following sections:

■ Section 8.1, "Introduction to SetIDs"

■ Section 8.2, "Implementing SetID on Entity Objects"

■ Section 8.3, "Integrating SetID Task Flows into Oracle Fusion Functional Setup
Manager"

8.1 Introduction to SetIDs
Different organizations within a single company often need to use different sets of
reference data to serve the same purpose. For example, the job codes for one country
might be different from the job codes for another country. Different Oracle Fusion
Applications customers should be able to make their own decisions about how to
define the job codes, and be able to define a separate set for each organizational section
of the enterprise. They should also be able to define a common set or sets and instruct
the system which set should be used by which organizations. For example, job codes
for software engineers might be MTS, SMTS, PMTS; job codes for managers might be
M1, M2, M3. SetIDs enable them to accomplish this easily.

For information about set-enabling lookups, see Chapter 10, "Implementing Lookups".

SetID Implementation
Once you have completed the development process as discussed in this chapter, and
delivered your application with the ability to use set-enabled reference data,
application implementers and administrators must then be able to define and maintain
reference data sets and set assignments that are appropriate to the organization which
will use the application. They can accomplish these tasks using the Manage Reference
Data Sets and Manage Reference Data Set Assignments applications, respectively.

You make these setup applications available to implementers and administrators by
incorporating their task flows into Oracle Functional Setup Manager. For more
information, see Section 8.3, "Integrating SetID Task Flows into Oracle Fusion
Functional Setup Manager".

For information about how to use the setID setup applications, see the Oracle Fusion
Applications Common Implementation Guide

Introduction to SetIDs

8-2 Developer's Guide

8.1.1 Partitioning by SetID
SetIDs enable you to share a set of reference data across many organizations. Sharing
reference data is a method of limiting the set of available values to those that are
appropriate for a validated attribute. Some benefits of this include:

■ The list of values for a field in a user interface is reduced

■ An attribute passed into an API is validated against the limited set of values

The end goal is to save customers some effort in maintaining reference data by
enabling it to be shared between different parts of the organization that implements
applications. Reference data should not need to be maintained in multiple places at
multiple times. Reference data is data in tables that you do not regard as transactional
and high volume; for example, payment terms that can be used on a customer invoice.

By dividing the reference data into partitions appropriate to the organizational entities
that will use the data, setIDs enable you to share control table information and
processing options among business units. The goal is to minimize redundant data and
system maintenance tasks. For example, you can define a group of common job codes
that are shared between several business units. Each business unit that shares the job
codes is assigned the same setID for that record group.

SetIDs can be thought of as a striping technology to partition referenced data. All
shared reference tables can be striped with a setID column to enable partitions (or sets).
This does not require you to change the tables' primary keys.

With partitioning, a customer can choose to have reference data sets specific to each
organizational unit mapped one-to-one, or have several different organizational units
use the same set of reference data. Customers, rather than development, will have the
choice in determining what level of sharing or exclusivity they would like to maintain
in the reference data.

A setID is the means by which applications can filter reference data into subsets when
they are referenced by different transactional entities. The filtering is driven, indirectly,
by contextual values available in the referring transactional entity.

8.1.2 SetID Determinant Types
Use of the shared data partitions is facilitated by a context setting called the
determinant, which is usually a column on the referring transactional entity. The
purpose of the determinant is to identify an organizational subset; you use it to specify
which reference data is valid for use in a given business context. The determinant is
the value of a transactional column that is one of several designated determinant types.
If at least one column of the transactional table is a setID determinant type, data
sharing may make sense for the transaction.

For example, different business units may use the same office supply vendor, but have
different requirements for which supplies can be purchased. The determinant type and
value provide part of the criteria for selecting the appropriate office supply reference
data set.

In addition to the presence of a determinant on the transactional entity, the data that
you want to reference must be set-enabled as described later in this documentation.

The setID determinant type can be one of the following existing fields:

■ Asset Book — A book that contains assets belonging to a business unit or ledger. It
holds information about the asset's acquisition, depreciation, and retirement. An
asset may be assigned to one or more books; for example, the corporate, tax and
budget books.

Introduction to SetIDs

Managing Reference Data with SetIDs 8-3

■ Business Unit — This roughly corresponds to a department or organization. For
example, Virgin might have an airline, a store, and a recording label as different
business units.

■ Cost Organization — A cost organization groups inventory organizations within a
legal entity to achieve the following:

– Establish the cost accounting policies for the inventory organizations.

– Support cost accounting reporting.

– Allow the definition of defaults.

– Allow multiple inventory organizations to share cost calculation.

– Restrict role access to costing data.

Cost organization will likely map into a company's enterprise structure as a cost
department.

■ Project Unit — A logical organization within a company created to ensure and
enforce consistent project management practices.

■ Reference Data Set — For cases where shared reference data has references to
other shared reference entities.

Some Criteria for Selecting a Determinant Type
To help decide what determinant type to use for a given application, consider the
following:

■ If you cannot change the reference data for different parts of a deploying
enterprise, the reference data is global and partitioning is not required.

Examples of data suitable for partitioning include (but are not limited to) units of
measure, currency codes, country codes, or anything else governed by a standard.

■ If the values for the reference data will be decided by the general manager, the best
reference data set determinant is likely to be the Business Unit.

For more information about setID determinant types, see Section 8.2.3, "How to
Annotate Transactional Entity Objects for SetID".

8.1.3 Understanding SetID Machinery
SetID Machinery is the collection of Applications Core Technology software elements
that act in concert to facilitate the use of setIDs to partition, access and maintain
reference data. At a high level, the machinery is comprised of:

■ SetID configuration tables

■ SetID metadata for business objects and extensions to ADF Business Components
middleware

■ SetID design-time extensions

■ SetID summary tables

The following sections introduce the elements of setID machinery and the ways in
which they can be used to implement data sharing.

8.1.3.1 Partitioning Patterns
There are three setID partitioning patterns. Choose one of these patterns based on your
business requirements:

Introduction to SetIDs

8-4 Developer's Guide

■ Row striping (ROWSTRIPE) — This is the simplest pattern, and the default. In this
pattern the SET_ID column is just a striping column, and is not part of the set of
unique keys for the table. You can filter as follows:

WHERE SET_ID = :1

■ Row striping with common rows (COMMON) — This is exactly the same as the row
striping pattern, with the addition of a COMMON partition. You filter as follows:

WHERE SET_ID IN (:1, 0)

■ SetID subscription (SUBSCRIPTION) — The drawback of the first two patterns is
that if reference data needs to be in two different partitions (other than the
common one), it has to be copied and placed in both sets. To avoid that, a setID
subscription table can be introduced and used to list which sets include each row.
This will allow the same reference data to be in two different sets without the need
to copy the data for each set. You join your reference entity with the setID
subscription table and filter as follows:

SET_ID: WHERE PARENT.PK1=SUBSCRIPTION.PK1 AND SUBSCRIPTION.SET_ID = :1

For more information about partitioning patterns, see Section 8.2.1, "How to Annotate
Reference Entity Objects for Sharing".

8.1.3.2 Reference Groups
In addition to tables, other sources of reference data such as lookup types and views
can also be shared using setIDs. These are all generically referred to as reference entities.
Reference entities are generally considered to be setup data, and they may be
implementing business policies and legal rules. Reference entities in your application
are grouped into logical units called reference groups, based on the functional area and
the partitioning requirements they have in common. For example, all tables and views
that define Sales Order Type details might be part of the same reference group.

Figure 8–1 illustrates an example of a Worker Assignment transaction table with two
set-enabled references: a reference to Salary Codes with partitions determined by
Business Unit, and another reference to Labor Agreement with partitions determined
by Cost Organization.

Note: The set with setID of 0 is seeded as the common set. This set
will be available for assignment only if you select Row Striping With
Common Rows for the reference entity.

Introduction to SetIDs

Managing Reference Data with SetIDs 8-5

Figure 8–1 Example of a Table with Two SetID Reference Groups

8.1.3.3 Set Configuration Tables
There are five types of set configuration tables:

■ Sets

■ Reference groups

■ SetID assignments

■ Reference entities

Sets Table
The sets table, FND_SETID_SETS, lists all of the sets defined for Oracle Applications,
plus any new sets that you define. It includes the columns SET_ID and SET_NAME,
which enable you to select the proper SET_CODE.

Sets listed in this table include:

■ The two default seeded sets, COMMON and ENTERPRISE.

■ Default sets that map to existing transaction data, created as an upgrade to
Applications Unlimited.

■ New sets created by customers, to implement set-enabled reference entities
specific to their organizations.

Reference Groups Table
The reference groups table, FND_SETID_REFERENCE_GROUPS_B, captures the
default determinant type for all reference entities in each group. This table uses the
primary key of REFERENCE_GROUP_NAME. It also includes the APPLICATION_ID
column, which is used for filtering and managing ownership.

The available reference groups defined in the reference groups table will be populated
before you start creating entity objects. Reference group definitions are owned by the

Introduction to SetIDs

8-6 Developer's Guide

application that owns the reference entities in that group. Application development
teams are ultimately responsible for defining and delivering reference groups.

SetID Assignments Table
A transactional entity may have multiple sets of reference data that are treated in the
same manner. For this reason, reference data sets are assigned to a reference group,
then the setID assignment is configured for each determinant value, determinant type,
and reference group.

The setID assignments table, FND_SETID_ASSIGNMENTS, records which set to use in
every reference table for every determinant value. It is a SQL-joinable entity that can
be used to convert available context information into a setIDentifier suitable for
filtering rows from referenced entities. The context information serves as the table's
primary keys:

■ REFERENCE_GROUP_NAME

■ DETERMINANT_TYPE

■ DETERMINANT_VALUE

Based on these keys, you can determine a setID.

Reference Entities Table
The reference entities table, FND_SETID_REFERENCE_ENTITIES, contains the list of
all setID enabled non-lookup reference entities. The SET_ID_PATTERN column
indicates which setID pattern is being used by each reference entity. If the value of this
field is SUBSCRIBE (setID subscription), the column SET_ID_CHILD_TABLE will be
populated with the setID subscription table name.

8.1.3.4 SetID PL/SQL Utilities
The setID PL/SQL utilities are APIs that include the following packages:

Fnd_setid_sets_pkg package
This package contains table handlers for fnd_setid_sets table.

Fnd_setid_assignments package
This package contains table handlers for fnd_setid_assignments table.

Note: Only reference entities that might be referenced as setID
targets need to be captured here; this is not intended to be an
exhaustive inventory of all tables in the applications. For more
information about reference groups, see Section 8.1.3.2, "Reference
Groups".

Note: Although development may seed this table with default
values, it will be accessed by customers to implement set-enabled
reference entities specific to their organizations.

Note: For customers, this table is read-only.

Introduction to SetIDs

Managing Reference Data with SetIDs 8-7

Fnd_setid_reference_groups package
This package contains table handlers for fnd_setid_reference_groups table.

Fnd_setid_ref_entities_pkg package
This package contains table handlers for fnd_setid_reference_entities table.

Fnd_setid_set_groups package
This package contains table handlers for fnd_setid_set_groups and fnd_setid_set_
group_members tables.

Fnd_setid_utility package
This package contains the following utilities:

■ isValid

/**
 * Returns true if the given parameters are valid, false if not.
 *
 * @param referenceGroupName The reference group name
 * @param setIdDeterminantType The determinant type which could be:
 * BU, RR, LE...
 * @param setIdDeterminantValue The determinant value.
 * @param setId The setid value.
 * @return true or false.
 */
function isValid(X_REFERENCE_GROUP_NAME in varchar2,
 X_DETERMINANT_TYPE in varchar2,
 X_DETERMINANT_VALUE in varchar2,
 X_SET_ID in number) return boolean;

■ getSetId

/**
 * Returns the set ID corresponding to the specified determinant value, type,
 * and reference group name. This method implements an LRU cache to speed
 * up the lookup.
 *
 * @param setIdDeterminantValue The determinant value
 * @param setIdDeterminantType The determinant type which could be:
 * BU, RR, LE...
 * @param referenceGroupName the reference group name.
 * @return the corresponding set ID value.
 */
function getSetId(X_REFERENCE_GROUP_NAME in varchar2,
 X_DETERMINANT_TYPE in varchar2,
 X_DETERMINANT_VALUE in varchar2) return number;

■ getReferenceGroupName

/**
 * Returns the reference group name based on a given reference entity name.
 *
 * @param referenceEntityName The name of the table to obtain
 * the reference group for
 * @return the corresponding reference group name
 */
function getReferenceGroupName(X_REFERENCE_ENTITY_NAME in varchar2) return
varchar2;

Implementing SetID on Entity Objects

8-8 Developer's Guide

■ isValidSet

/**
 * Returns true if the set ID exists in the FND_SETID_SETS table,
 * false if not
 *
 * @param setId The setId value
 * @return Boolean
 */
function isValidSet(X_SET_ID in number) return Boolean;

8.2 Implementing SetID on Entity Objects
You define the following information to implement shared (that is, set-enabled)
reference entities:

■ On the reference entities to be shared —

– You provide the shared reference entity group name.

– You specify which setID pattern to use: row striping, row striping with
common rows, or setID subscription.

– In the case of the setID subscription pattern, you specify the subscription table
name.

– You make sure the attribute corresponding to setID is named SetId, and
specify the determinant type as SET.

– You make sure that any view objects built on the reference entity include the
SetId attribute.

For more information about setID partitioning patterns, see Section 8.1.3.1,
"Partitioning Patterns".

■ On the transactional entities that will use the shared reference data —

– You build entity associations to all shared reference entities.

– You specify which attributes are determinants by specifying the determinant
type.

– On foreign keys that point to shared reference entities, you indicate which
determinant attribute drives the set of that reference entity.

Before you begin:
Following are the activities that you should complete before you engage in
set-enabling references or lookups:

■ Determine which reference entities you want to partition for sharing, and
set-enable them by adding a SET_ID column.

■ Generate ADF Business Components entity objects for your set-enabled reference
entities and transactional entities. Make sure that your entity objects extend from
Oracle Applications base classes (if available) under
oracle.apps.fnd.applcore.oaext.model.

For more information, see the "Creating a Business Domain Layer Using Entity
Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

■ Generate ADF Business Components entity associations for all of your entity
objects.

Implementing SetID on Entity Objects

Managing Reference Data with SetIDs 8-9

The following setID metadata will be saved in ADF Business Components
metadata as properties:

– The reference group name of reference entities.

– The setID pattern used by each shared reference entity.

– The determinant attributes and their types in a transactional entity.

– The determinant on the transactional entity that controls the setID of a shared
reference entity.

■ The setID-related database tables and views should be available as described in
Section 8.1.3.3, "Set Configuration Tables".

■ Ensure that setID seed metadata has been configured as follows:

– The Reference Groups have been defined by teams and approved through the
SetID Design Intent Repository process, then seeded in the standard reference
groups table.

– All set-enabled lookup types have been identified and approved through the
SetID Design Intent Repository process, and then properly seeded in the
standard lookup types table.

For more information, see Section 8.1.3, "Understanding SetID Machinery".

8.2.1 How to Annotate Reference Entity Objects for Sharing

After building an entity object for a shared reference entity, you annotate the entity
object.

To annotate the reference entity object:
1. Double-click the entity object to access its properties, as shown in Figure 8–2.

Note: These annotations are required only for set-enabled non-lookup
reference entities. Lookup references and set-enabled lookup
references use a predefined lookups pattern; the reference group name
is retrieved directly from database by the lookup code and the view
application ID that are set on the foreign key reference of the
transactional reference.

Implementing SetID on Entity Objects

8-10 Developer's Guide

Figure 8–2 Entity Object SetID Properties

2. In the Applications section of the Property Inspector, specify the name of the setID
reference group to which the entity object belongs.

For more information, see Section 8.1.3.2, "Reference Groups".

3. Specify the setID pattern that the reference entity should use. There are three setID
partitioning patterns. Choose one of these patterns based on your business
requirements:

■ Row Striping (this is the default value)

■ Striping With Common Rows

■ Subscription

When you select the SUBSCRIPTION pattern, the SetID Reference Table Pattern
field appears. Specify the subscription table to use.

For more information about these options, see Section 8.1.3.1, "Partitioning
Patterns".

4. In the entity object attributes, ensure that the entity object setID attribute that
corresponds to the SET_ID database column is named SetId, as shown in
Figure 8–3.

Important: The primary key columns of the setID subscription table
must be named exactly the same as those in the reference entity, and
the setID column must be named SET_ID.

Implementing SetID on Entity Objects

Managing Reference Data with SetIDs 8-11

Figure 8–3 Entity Object SET_ID Attribute

8.2.2 How to Build Entity Associations for All Foreign References
After building an entity object for a transactional entity, you must create entity
associations for all foreign references, including FND lookups. Because SET_ID must
not be part of the primary key for any shared reference table (except FND_LOOKUP_
VALUES), there is nothing unusual about associations for shared references.

Follow these guidelines when creating the associations:

■ Make sure a destination accessor is generated for the association. ADF Business
Components will not honor the association if you do not generate a destination
accessor.

■ Because these reference entities are non-composite, you should not generate
source accessors.

8.2.3 How to Annotate Transactional Entity Objects for SetID
After you create entity associations for foreign references, you annotate the
transactional entity object.

To annotate the transactional entity object:
1. Double-click the entity object to access its properties, as shown in Figure 8–4.

Caution: If you cannot use the SET_ID column as your setID
attribute, you must ensure that the attribute you use is named SetId,
even if the database column is named differently. This applies to both
entity objects and view objects.

Implementing SetID on Entity Objects

8-12 Developer's Guide

Figure 8–4 Business Unit as the SetID Determinant Type

2. In the Applications section of the Property Inspector, designate which attributes
are setID determinants for the table. For more information, see Section 8.1.2, "SetID
Determinant Types".

For every attribute that you want to use as a setID determinant, specify the
corresponding determinant type.

To access setID determinant types programatically, use the following codes:

3. For foreign keys that are setID enabled, specify the determinant attribute that
drives each foreign key reference, as shown in Figure 8–5.

The default value of the setID determinant attribute is the default determinant
type of the reference entity group targeted by the association that is defined for the
foreign key.

Table 8–1 SetID Determinant Type Codes

Code Determinant Type

AB Asset Book

BU Business Unit

CST Cost Organization

PU Project Unit

SET Reference Data Set

Notes:

■ The attribute you need to use as a determinant might not exist on
the parent record where its value can be retrieved from some
context. In that case, you must create a transient attribute to
represent the determinant, set the SetId Determinant Type
property for it, then override the getter method of the transient
attribute to get the value from wherever it has been stored.

■ Once a SetId Determinant code is defined, you can change the
code in the EO.xml file.

Note: If the determinant value is not directly available on the
transaction table, you must create a transient attribute to model it, and
ensure that the attribute is correctly populated.

Implementing SetID on Entity Objects

Managing Reference Data with SetIDs 8-13

Figure 8–5 SetID Determinant Attribute for a Foreign Key

8.2.4 How to Define View Accessors for Shared Reference Entities
Create a view accessor from the transaction entity to the reference entity.

8.2.5 How to Define a Key Exists Validator for Shared Reference Entities
The key exists validator will include the mapping of the foreign key attributes in the
transactional entity to the corresponding attributes in the reference view accessor.

To define a key exists validator:
1. Open the entity object for editing.

2. On the Attributes tab, select the foreign key attribute and add a validation rule.
The Edit Validation Rule page appears, as shown in Figure 8–6.

3. At the top of the page, select a rule type of Key Exists.

Attention: If the reference data has a composite key, you must
specify the SetId Determinant Attribute property for the first
attribute of the composite key.

Caution: If an attribute in your transactional entity was defined with
null values allowed, the validator that you create will skip that
attribute, and the end user will receive no indication of any problem.
To ensure that the attribute is validated, you must edit the attribute
and select the Mandatory checkbox in the attribute properties.

Implementing SetID on Entity Objects

8-14 Developer's Guide

Figure 8–6 Foreign Reference Validation Rule Definition

4. On the Rule Definition tab, select ViewAccessor as the validation target type.

5. Select the entity object lookup code attribute on the left-hand list, and the
corresponding view accessor validation target lookup code attribute on the
right-hand list.

6. Click Add to include the attribute pair on the mapping list.

7. Select the Validation Execution tab, as shown in Figure 8–7.

Because the validation should be executed every time the determinant value
changes, it should be specified as a triggering attribute.

Implementing SetID on Entity Objects

Managing Reference Data with SetIDs 8-15

Figure 8–7 Foreign Reference Validation Triggering Attributes

8. In the Triggering Attributes section, select the determinant attribute from the
left-hand list and shuttle it to the right-hand list.

9. Optionally, on the Failure Handling tab, specify a failure error message.

10. Click OK to create the key exists validator.

To create a transient setID attribute:
1. Create a new transient setID attribute to map to the SetId attribute on the reference

entity, as shown in Figure 8–8.

Note: The foreign key attributes that were mapped on the Rule
Definition tab are by default added as triggering attributes.

Implementing SetID on Entity Objects

8-16 Developer's Guide

Figure 8–8 New Transient SetID Entity Attribute

2. Set the Type to Long.

3. Deselect the Persistent checkbox.

4. In the Updatable section, select Never, then click OK to create the transient
attribute.

5. On the Java tab, generate or edit a Java class for the transaction entity object.

6. Because the setID value is computed at runtime based on the values of the
reference group name, determinant type and determinant value, you must modify
the transaction entity object's Java code to return the setID value at runtime.

Open the transactional EOImpl class and edit the getter method of your transient
setID attribute to pass in the corresponding foreign key attribute name. For
example:

/** This method gets the attribute value for TransientSetIdAttr, using the
alias name TransientSetIdAttr.
*/
public Long getTransientSetIdAttr() {
 return this.getSetId("SalaryCode");
 //"SalaryCode" is the foreign key attribute name on the WorkerAssignments
transactional entity
}

In this example, you open the WorkerAssignmentsImpl.java class and edit
getTransientSetIdAttr() to pass in the attribute name "SalaryCode" so its value
will be returned at runtime.

8.2.6 How to Create LOVs for Shared Reference Entities
ADF Business Components supports defining LOVs at the attribute level in view
objects.

To build a lookups LOV for a set-enabled reference entity:

1. Create an LOV on the foreign key attribute in the attribute wizard.

Integrating SetID Task Flows into Oracle Fusion Functional Setup Manager

Managing Reference Data with SetIDs 8-17

The default LOV name is typically kept as LOV_attribute_name, as shown in
Figure 8–9.

Figure 8–9 LOV Definition for a Set-Enabled Reference Entity

2. Choose a view accessor from the list of available view accessors.

Typically you will choose the same view accessor which was defined for the
underlying entity object and used for the Key Exists validator.

3. Select an attribute from the view accessor to validate against, and ADF Business
Components will automatically add that attribute to the list of return values.

4. Optionally, you can specify additional attributes to be returned to the master row
when an LOV entry is selected.

5. Optionally, you can customize the LOVs UI hints by clicking Edit List UI Hints to
access the List UI Hints dialog.

8.3 Integrating SetID Task Flows into Oracle Fusion Functional Setup
Manager

Every application registers task flows with a product called Oracle Fusion Functional
Setup Manager. Functional Setup Manager provides a single, unified user interface that
enables implementers and administrators to configure all Oracle Fusion applications
by defining custom configuration templates or tasks based on their business needs.

The Functional Setup Manager UI enables customers and implementers to select the
business processes or products that they want to implement. For example, an HR
application can register setup activities like "Create Employees" and "Manage
Employee Tree Structure" with Functional Setup Manager.

There is an application task flow for managing reference data sets, and one for
managing reference data set assignments. To make these task flows available to
application developers, implementers or administrators, you can register the

Integrating SetID Task Flows into Oracle Fusion Functional Setup Manager

8-18 Developer's Guide

appropriate task flow with Functional Setup Manager, using the parameters listed for
each task flow in Table 8–2.

For more information about task flows, see the Oracle Fusion Applications Common
Implementation Guide.

Table 8–2 SetID Task Flows and Parameters

Task Flow
Name Task Flow XML Parameters Passed Behavior

Manage
Reference
Data Sets

/WEB-INF/oracle/apps/fnd/applcore
/setid/publicUi/flow/ManageSetIdS
etsTF.xml#ManageSetIdSetsTF

To optionally specify a page heading for the
task flow:

pageTitle='titlestring'

This task flow enables
you to create and update
reference data sets
(setIDs and codes).

Manage
Reference
Data Set
Assignmen
ts

/WEB-INF/oracle/apps/fnd/applcore
/setid/publicUi/flow/ManageSetIdA
ssignmentsTF.xml#ManageSetIdAssig
nmentsTF

To invoke the task flow:

determinantType=type

To optionally restrict the page to assignments
for a single reference group:

referenceGroupName=name

To optionally specify a page heading for the
task flow:

pageTitle='titlestring'

This task flow enables
you to manage reference
data set assignments for
a particular determinant
type.

9

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-1

9Using Fusion Middleware Extensions for
Oracle Applications Base Classes

This chapter describes the Fusion Middleware extensions for Oracle Applications base
classes that extend the features of standard ADF Business Components classes.

The chapter includes the following sections:

■ Section 9.1, "Introduction to Fusion Middleware Extensions for Oracle
Applications Base Classes"

■ Section 9.2, "Using Multi-Language Support Features"

■ Section 9.3, "Using WHO Column Features"

■ Section 9.4, "Using PL/SQL-Based Entities"

■ Section 9.5, "Accessing FND Services"

■ Section 9.6, "Using Unique ID"

■ Section 9.7, "Using Data Security"

■ Section 9.8, "Using Document Sequencing"

9.1 Introduction to Fusion Middleware Extensions for Oracle Applications
Base Classes

Fusion Middleware extensions for Oracle Applications base classes provide additional
features that are not part of the standard ADF Business Components core entity
objects, view objects, and application modules.

The Fusion Middleware extensions support the following standard Oracle
Applications features:

■ TL (translatable) table

■ WHO column

■ PL/SQL entity

■ FND services

■ Unique ID

■ Data security

■ Document sequencing

The base classes extend ADF Business Components Entity, EntityDef, ViewObject,
ViewRow, and ApplicationModule implementation classes.

Using Multi-Language Support Features

9-2 Developer's Guide

The base classes provided by Fusion Middleware extensions are the following:

■ OAApplicationModuleImpl

■ OAEntityImpl

■ OAEntityDefImpl

■ OAViewObjectImpl

■ OAViewRowImpl

■ OAViewCriteriaAdapter

They are found in oracle.apps.fnd.applcore.oaext.model.package and extend the
JBO classes with the same name (but without the OA prefix) in
oracle.jbo.server.package.

In Oracle JDeveloper, selecting the Oracle Fusion Applications Developer role
automatically sets the Fusion Middleware extensions for Oracle Applications base
classes as the default classes for ADF Business Components objects. The base classes
become available when you add the Applications Core library. For more information,
see Chapter 2, "Setting Up Your Development Environment."

9.2 Using Multi-Language Support Features
Multi-language support (MLS) gives Oracle the ability to ship its products in multiple
languages by setting standards and guidelines for translation.

In JDeveloper, multi-language entities are those that maintain one or more translated
attributes and require the storage of all relevant translations of these attributes. Such
entities have a base table that has attributes that are not translated and do not vary by
language (such as codes and IDs) and a TL table that has, in addition to the base table
primary key, the translatable attributes for that entity (such as Display Name, and
Application Name). Figure 9–1 illustrates this concept.

Figure 9–1 Multi-Language Entity Tables

For each row in the base table, there will be as many rows in the translation table as
there are installed languages. The translation table's primary key is made up of the
foreign key to the base table and a language column, which may be viewed as a
foreign key to the FND_LANGUAGES table.

The translation table is fully populated. This means that rows for all installed
languages are inserted even if the actual translations for these languages are not yet
available. The logic, which maintains multi-language entities, is responsible for
ensuring that the translation rows are inserted, updated, or deleted as required to meet
the "fully populated" requirement. Translations, which have not been supplied, must
be defaulted from one of the available translations. As updates occur to supply
missing translations, the default values will be converted to true translations.

Since applications are run in a single language for any given user session, a convenient
view is provided for the multi-language entities, which joins the base table and
translation table and filters translations to the runtime language. This is the
Multi-language View. This view uses the userenv ('LANG') expression to select the
correct translation based on the session language, which usually comes from the NLS_
LANG environment variable.

Using Multi-Language Support Features

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-3

The following extensions support TL tables:

■ OAEntityImpl

■ OAViewRowImpl

As a developer, you can use multi-language extensions to deal with only one entity
that contains both translatable and non-translatable attributes, instead of having to
deal with two entities, one for the base table and one for the translation table.

Whenever an entity is created, the extensions ensure that the TL entities are also
created for every installed language in the environment.

Whenever an insert is made into the base table or the table is updated, the same
operations must also be performed on the corresponding TL table. Behind the scenes,
the extensions override the appropriate ADF Business Components methods, such as
create() and setAttribute(), to ensure that the TL table is populated correctly.

The extensions also enable you to work with only one ADF Business Components
entity object at runtime for a multi-language database entity, and shield you from the
two underlying tables (base and multi-language) that hold the data. You will see no
inherent difference between a multi-language entity and a standard one. In addition,
the extensions allow you to define an entity as multi-language in a JDeveloper design
time environment, and provide any additional metadata for such that entity.

9.2.1 Using Utility APIs
In addition, the following utility APIs are provided in OAEntityImpl:

■ public boolean isTranslatable () - Returns true if this entity is a translatable
entity.

■ public boolean isTranslated () - Returns true if there is at least one translated
language other than the base language for this entity.

■ public String [] getTranslatedLanguages () - Returns an array of Language
codes for which actual translations exist. The list always returns the base language
as one of the translated languages. A record is considered translated if the
LANGUAGE and SOURCE_LANG columns are equal.

The same set of APIs also will be provided on the AViewRowImpl object, since it also
would have the same characteristics of a row.

9.2.2 How to Create a Multi-Language ADF Business Components Entity Object
Creating a multi-language ADF Business Components entity object consists of four
tasks:

■ Task 1, "Create an entity object for a _TL table"

■ Task 2, "Create an entity object for a base table"

■ Task 3, "Associate the _VL view and _TL table entity objects"

■ Task 4, "Create a view object that uses a translatable entity"

Task 1 Create an entity object for a _TL table
To create an entity object for translatable (_TL) tables, perform the following
procedure.

Using Multi-Language Support Features

9-4 Developer's Guide

1. Name the entity <Entity>TranslationEO.

For example, for a table named FND_ITEMS_DEMO_TL, you can name the entity
ItemsDemoTranslationEO.

2. Include all of the table's attributes.

Make sure the attribute for the LANGUAGE column is named Language, and the
attribute for the SOURCE_LANG column is named SourceLang.

If your TL table columns for LANGUAGE and SOURCE_LANG are named differently, it is
important that you still name the attributes Language and SourceLang.

3. Identify the table's primary keys, including the LANGUAGE column.

4. Verify that this extends OAEntityImpl like any other entity object.

5. Add whatever validation logic you need for this entity and its attributes.

The translatable values are unlikely to need any special validation.

Overriding the default attribute behavior:

By default, all the attributes in the _TL table will be considered translatable if they are:

■ not a primary key attribute

■ not an entity accessor

■ one of the following types: VARCHAR, CHAR, FIXED_CHAR, LONGVARCHAR,
CLOB

Task 2 Create an entity object for a base table
To create an entity object for a base table, perform the following procedure.

1. Name the entity object.

Use the regular entity object naming convention. For example, for the FND_
ITEMS_DEMO table, the corresponding entity would be named ItemsDemoEO.
The entity should be based on the _VL view.

2. Include all columns except the RowId pseudo-column in the view.

3. Identify your primary keys as you normally would.

4. Set the entity-level Oracle Fusion Middleware Extensions for Applications
schema-based ADF Business Components property named fnd:OA_BASE_
TABLE with a value that names the true base table of your translatable entity.

For example, for the FND_ITEMS_DEMO_VL view, this value would be set to
FND_ITEMS_DEMO_B.

You could use the entity Property Inspector to set this property, as shown in
Figure 9–2.

Note: This procedure does not apply to a _VL view. For information
about creating an entity object for a _VL view, see Task 2, "Create an
entity object for a base table".

Note: SourceLang and Language are special attributes and are
handled by Oracle Fusion Middleware Extensions for Applications.

Using Multi-Language Support Features

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-5

Figure 9–2 Entity Property Inspector

Oracle Fusion Middleware Extensions for Applications automatically overrides the
entity's doDML() method to ensure that all inserts, updates, and deletes are actually
performed on the base table identified by this property. All reads will be done against
the _VL view.

Task 3 Associate the _VL view and _TL table entity objects
To create the association between the _VL view and _TL table entity objects, perform
the following procedure.

1. Follow the standard association object naming convention that describes the entity
relationships. For example, ItemsToTranslation.

2. In the Structure window, choose the entity object. In this case, it is
ItemsToTranslation.

3. In the Overview window, choose the Relationship option.

4. Designate the association as a Composition Association with a 1:* cardinality, as
shown in Figure 9–3.

Using Multi-Language Support Features

9-6 Developer's Guide

Figure 9–3 Composition Association

When you select Composition Association, be sure to uncheck Implement
Cascade Delete and Cascade Update Key Attributes if they are selected.

5. Select the base entity as the source and the _TL entity as the destination.

Since the Applications Core OAEntityImpl class overrides the remove() method
on the EntityImpl class to handle Translation rows deletion, Cascade Delete is not
required.

6. Configure Source Accessor and Destination Accessor, as shown in Figure 9–4.

Note: Ensure that the Source Accessor has been created prior to
performing Step 6.

Using Multi-Language Support Features

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-7

Figure 9–4 Association Properties

Task 4 Create a view object that uses a translatable entity
When creating the view objects that will access your translatable tables, keep in mind
the following:

■ Always use the base entity object created for the _VL view. For example,
ItemsDemoEO.

■ Do not use the _Translation entity object ItemsDemoTranslationEO directly. For
the purpose of any code that needs to access your translatable entity, you should
treat the base entity object as the only entity object. Coordination between the base
and Translation entities is handled automatically and the Translation entity should
remain "invisible". Otherwise, you can treat your base entity object like any other
entity object.

For a _TL table with no corresponding _B table:

There may be a rare case where you have a _TL table and _VL view and no _B table,
because all of the attributes are translatable. If this occurs, do the following:

1. Define the base entity on the database view _VL.

2. Set the Applications Core schema-based property fnd:OA_BASE_TABLE to be the
_VL view name.

3. Override doDML() for the base entity to do nothing. This is going to be a virtual
entity that does not have an underlying database table.

4. Create the translation entity object and the composite association between the base
entity and the translation entity as you would in the regular scenario.

Using Multi-Language Support Features

9-8 Developer's Guide

The Translation EO in this scenario alone must also include the non-translatable
attributes because the base entity's doDML() does nothing. If the translation entity
does not include non-translatable attributes, you might get exceptions saying the
attribute is not populated

5. Mark all the non-translatable columns in the _TL entity, i.e., non-string fields and
non-primary keys, as explicitly translatable by setting OA Translatable to true in
the Applications section of the Property Inspector, as shown in Figure 9–5.

Figure 9–5 OA Translatable Setting

By default, only string fields (VARCHAR2 and its variants) are identified as
translatable automatically by the parent. Primary key changes on the entity are
also handled automatically by the framework. This means any numeric, date, or
other data type attributes that are not primary key need to have the OA
Translatable property set explicitly to true.

There is a slight downside to this approach as non-translatable columns (like
numbers and dates), technically, are being marked as translatable. However, this
approach is required in order to ensure attributes set on the base entity are
propagated to the TL entity; otherwise, you will get an "attribute not populated"
exception. This is needed because the base entity is virtual and the doDML()
method on the base entity is empty.

Using WHO Column Features

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-9

9.2.2.1 What You Need to Know About Overrides
If you happen to override the create(AttributeList attributeList) method on
your entity, do not forget to call super.create(attributeList) in the override
method before invoking custom code. This is true in all scenarios.

9.3 Using WHO Column Features
The WHO feature reports information about who created or updated rows in Oracle
Applications tables. Oracle Applications upgrade technology relies on WHO
information to detect and preserve customizations. ADF Business Components
provides the ability to track the creation of an entity or the changes made to one.

The OAEntityImpl populates the WHO columns automatically. In addition to the
standard history columns supported by ADF Business Components, the extension
provides support for Last Update Login field.

All WHO columns are updated based on the current User Session. Table 9–1 lists the
WHO columns and their descriptions.

9.3.1 How to Use the Extension
In order for Oracle Fusion Middleware Extensions for Applications to populate your
WHO columns automatically, ensure that your WHO column attributes are of the
appropriate History Column type by using the Entity Attribute Wizard, as shown in
Figure 9–6.

Table 9–1 WHO Column Summary

Column Name Type Null? Description

CREATED_BY VARCHAR2(64) NOT NULL Keeps track of which user
created each row.

CREATION_DATE DATE NOT NULL Stores the date on which each
row was created.

LAST_UPDATED_BY VARCHAR2(64) NOT NULL Keeps track of who last
updated each row.

LAST_UPDATE_DATE DATE NOT NULL Stores the date on which each
row was last updated.

LAST_UPDATE_LOGIN VARCHAR2(32) Stores the Session ID of the
user who last updated the row.

Using WHO Column Features

9-10 Developer's Guide

Figure 9–6 Entity Attribute Wizard: LastUpdateDate

In the example entity, the WHO column LastUpdateDate is identified as a modified
on History Column type.

Similarly, identify the following attributes as indicated:

■ LastUpdatedBy - modified by

■ CreationDate - created on

■ CreatedBy - created by

Ensure that the LAST_UPDATE_DATE and CREATION_DATE WHO columns have
the Type as Timestamp (java.sql.Timestamp), as shown in Figure 9–7.

Using PL/SQL-Based Entities

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-11

Figure 9–7 Timestamp (java.sql.Timestamp)

9.3.2 What Happens with WHO Column at Design Time and Runtime
WHO column features provide the following design time and runtime support:

■ The extension supports the LAST_UPDATE_LOGIN column and ensures that the
other columns are populated correctly.

■ The LAST_UPDATED_BY and CREATED_BY columns are populated with a value
based on the user name, and not with the user GUID, a user ID, or a session ID. To
obtain the value to populate these columns in PL/SQL, use FND_GLOBAL.WHO_
USER_NAME. In Java, the CreatedBy and LastUpdatedBy attributes will normally
be populated automatically with the correct value by the base classes, or you can
also obtain the value from OAEntityImpl.getWhoUser().

■ History is provided for the Session ID of the user who last updated the row.

■ Proper shaping in the Oracle Fusion Applications Developer role to make this
history available.

9.4 Using PL/SQL-Based Entities
PL/SQL entities are those that depend on PL/SQL packages to handle their Data
Manipulation Language (DML) operations (insert, delete, update, and lock). Since
Oracle Applications has a large amount of their business logic in PL/SQL and a lot of
teams still use it, they need a mechanism that will allow them to use their PL/SQL
code when building ADF Business Components entities. The Fusion Middleware
extensions provide the following:

■ A way to identify a PL/SQL entity using a custom property

■ TL table support and the ability to override the appropriate DML operation

Using PL/SQL-Based Entities

9-12 Developer's Guide

9.4.1 How to Use APIs to Facilitate DML Operations
In addition, the following APIs are provided in the OAEntityImpl class to facilitate the
insert, update, and delete DML operations in PL/SQL:

■ protected void insertRow ();

■ protected void updateRow ();

■ protected void deleteRow ();

The default implementations of these methods delegate to super.doDML (operation),
which will result in SQL insert/update/delete being called for the entity.

9.4.2 How to Use the Extensions
A PL/SQL-based entity object provides an object representation of the data from a
table or view and routes the DML operations to stored procedures in the database.

To identify an entity as a PL/SQL one, a custom attribute, OA_PLSQL_ENTITY, must be
set to Y (Yes). This allows the framework to identify this entity as PL/SQL based.

To identify an entity as a PL/SQL one:
1. From the Applications window, choose an entity object.

2. In the Structure window, highlight the entity object.

3. From the Property Inspector tab, choose the Applications option.

4. Under PL/SQL, select Y from the OA PLSQL Entity dropdown menu, as shown in
Figure 9–8.

Figure 9–8 OA PLSQL Entity Setting

Accessing FND Services

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-13

5. Override the following methods for its DML operations and provide JDBC calls
when applicable:

■ void insertRow();

■ void updateRow();

■ void deleteRow();

Use the PL/SQL entity objects only if you have legacy PL/SQL code that
maintains all your transactions and validations. If you are working on a new
product and/or do not have a lot of PL/SQL legacy code, Applications Core
recommends the use of Java entity objects over PL/SQL entity objects.

6. Call your PL/SQL insert, update, or delete procedure in your void insertRow();,
void updateRow();, or void deleteRow(); method without calling super().

7. Create a callable statement to invoke your PL/SQL method.

8. Validate your attributes. You can do this in either of two places:

■ In your insertRow() or updateRow() methods: Perform your validation in
Java in either of these two methods, or in PL/SQL stored procedures called
from the methods.

■ In your validateEntity() method: If validations are done in a separate
stored procedure in PL/SQL, you can call that stored procedure in this
method.

9.4.3 What Happens with PL/SQL Entities at Design Time and Runtime
The extensions provide the following design time and runtime support:

■ Provides the ability to identify PL/SQL-based entities.

■ Invokes PL/SQL for DML operations.

9.5 Accessing FND Services
Fusion Middleware extensions for Oracle Applications provide the following services:

■ Profile

■ Lookup

■ Message

■ Language

■ Application

■ Taxonomy

■ Data Security

■ Attachments

Fusion Middleware extensions provide an easy way to access these services and to
invoke them. Typically, the services are provided as application modules. An
application module serves as a container for the various view objects and provides
business-service-specific functionality.

The services listed above are provided as a service-specific application module. For
example, Profile functionality is made available in ProfileService.

Using Unique ID

9-14 Developer's Guide

Access to these services is provided as a getFNDNestedService (String service)
method in the OAApplicationModuleImpl class. The OAApplicationModuleImpl
extension is used to support access to the services.

See Section 9.5.1, "How to Use the Extension," for implementation information.

9.5.1 How to Use the Extension
The code in Example 9–1 shows how to provide access to an FND service. In this case,
it is ProfileService.

Example 9–1 Accessing an FND Service

ProfileService profileService = (ProfileService) myAM.getFNDNestedService
(OAConstants.PROFILE_SERVICE);
// now call profile specific methods on the ProfileService AM
String appsServletAgent = profileService.getProfile ("APPS_SERVLET_AGENT");

OAConstants exposes the various service names as a constant.

Note that the getFNDNestedService () is just a utility method that looks up the
rootAM and checks to see if an instance of the requested service already exists in the
rootAM as a nested AM. If one exists, it will return it; if it does not, it will instantiate a
new AM for that service that will be nested inside the rootAM and return it.

9.6 Using Unique ID
In order to avoid primary key collision issues when synchronizing with disconnected
clients, Oracle Applications standards require that an ADF Business Components
entity object's primary key be populated with a Unique ID.

Fusion Middleware extensions support Unique ID by allowing an entity attribute to be
populated with a globally unique value. The Fusion Unique ID Generator provided by
ADF Business Components does this. The Unique ID can be used to populate an entity
attribute of the BigDecimal and Long data types. The Unique IDs generated are of the
BigDecimal type and meet certain criteria for uniqueness across database instances.

9.6.1 How to Use the Extension
Fusion Middleware extensions provide both design time and runtime support for
Unique ID.

9.6.2 What Happens with Unique ID at Design Time
At design time, Fusion Middleware extensions provide the ability to identify if an
entity attribute needs a globally Unique ID. This is accomplished by setting
Application Unique ID to true in the entity attribute's Property Inspector section, as
shown in Figure 9–9.

Notes: The database table column data type that corresponds to the
entity attribute requiring a Unique ID must be large enough to hold
the uniquely generated value. Typically, it should be of type
NUMBER(18). NUMBER(15) may not be sufficient to hold the uniquely
generated values.

In addition, Oracle Applications coding standards require that the
entity attribute populated with a Unique ID be of type Long.

Using Data Security

Using Fusion Middleware Extensions for Oracle Applications Base Classes 9-15

Figure 9–9 Application Unique ID

9.6.3 What Happens with Unique ID at Runtime
Based on the design time setting, the framework populates the entity attribute with a
globally unique value at runtime. This is accomplished by setting the following
transient expression on the entity attribute's definition:

oracle.jbo.server.uniqueid.UniqueIdHelper.getUniqueId(adf.object.unwrapObject());

9.7 Using Data Security
Any custom view criteria adapter created by a product team will need to extend the
OAViewCriteriaAdapter class in order for Data Security to work correctly.

By setting custom ADF Business Components properties at runtime, the
OAApplicationModuleImpl class establishes the OAViewCriteriaAdapter class as the
standard view criteria adapter for the ADF Business Components container.

9.7.1 How to Use the Extension
Product teams can do the following to create and use a custom view criteria adapter:

1. Extend OAViewCriteriaAdapter and invoke super methods for use cases not
handled by the custom view criteria adapter.

2. Set the custom view criteria adapter by invoking the setViewCriteriaAdapter()
method in the create() method of the custom ViewObjectImpl class.

3. Set the custom view criteria adapter on the ViewObject.

Using Document Sequencing

9-16 Developer's Guide

9.8 Using Document Sequencing
Document sequencing is a way to uniquely identify all business documents and
business events belonging to a legal entity.

Document-sequence numbering has many country-specific requirements. It is a legal
requirement in many EMEA, Asia Pacific, and Latin American countries. In the United
States and the United Kingdom, it is used for internal control purposes and for
financial-statement and other audits.

For more information about ADF Business Components integration of this feature
provided by Fusion Middleware extensions, see Chapter 11, "Setting Up Document
Sequences."

10

Implementing Lookups 10-1

10Implementing Lookups

This chapter discusses how to use lookups for providing lists of values (LOVs) for
application end users to select from, and for performing validation of newly entered
data. It also discusses how to share lookup data across organizations by using setIDs
to partition the data into different sets of LOVs. Each organization can then maintain
its lookups in a common table, using LOVs specific to that organization.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Lookups"

■ Section 10.2, "Preparing Entities and Views for Lookups"

■ Section 10.3, "Referencing Lookups"

■ Section 10.4, "Defining Validators for Lookups"

■ Section 10.5, "Annotating Lookup Code Reference Attributes for Set-Enabled
Lookups"

■ Section 10.6, "Integrating Lookups Task Flows into Oracle Fusion Functional Setup
Manager"

10.1 Introduction to Lookups
Lookups in applications are used to represent a set of codes and their translated
meanings. For example, a product team might store the values 'Y' and 'N' in a column
in a table, but when displaying those values they would want to display "Yes" or "No"
(or their translated equivalents) instead. Each set of related codes is identified as a
lookup type. There are many different examples of these across Oracle Fusion
applications.

Lookups Implementation
Once you have completed the development process as discussed in this chapter, and
delivered your application with the ability to use lookups, application implementers
and administrators must then be able to define and maintain lookups that are
appropriate to the organization that will use the application. They can accomplish
these tasks using the Manage Standard Lookups, Manage Set-Enabled Lookups and
Manage Common Lookups applications.

You make these setup applications available to implementers and administrators by
incorporating their task flows into Oracle Fusion Functional Setup Manager. For more
information, see Section 10.6, "Integrating Lookups Task Flows into Oracle Fusion
Functional Setup Manager".

Introduction to Lookups

10-2 Developer's Guide

10.1.1 Overview of Lookups
Lookups are codes that are defined in the global FND_LOOKUP_VALUES table,
which is striped into multiple virtual tables using a VIEW_APPLICATION_ID column.
Each of these virtual tables is thus identified as a view application. Each view
application is exposed as a database view, and all have separate ADF Business
Components. It is the responsibility of the team who owns a particular view
application to provide both the database view and the necessary ADF Business
Components objects. Only these view definitions, and any validation code supporting
them, should access the underlying lookups tables directly. All other code that
references lookups should always go through the database views and their supporting
ADF Business Components objects, never directly referencing either the lookups tables
or their base classes.

Lookup codes are identified in an application by the following keys:

■ A lookup view, which defines a distinct set of lookup types.

Each lookup view is accessed through its own view, and may have different
attributes or different validation, almost as if it were a separate table.

■ A lookup type, which is a string identifier of a type that groups certain codes
together; for example, COLORS.

Within each lookup type, multiple lookup codes can be defined. Example 10–1
shows sample code for defining multiple lookup codes.

Example 10–1 Defining Multiple Lookup Codes

View Application = 0 (FND_LOOKUPS)
 Lookup Type = COLORS "Colors"
 Lookup Code = RED "Red"
 Lookup Code = YELLOW "Yellow"
 Lookup Code = GREEN "Green"

View Application = 3 (FND_COMMON_LOOKUPS)
 Lookup Type = COLORS "Colors"
 Lookup Code = MAGENTA "Magenta"
 Lookup Code = CHARTREUSE "Chartreuse"
 Lookup Code = AQUAMARINE "Aquamarine"

■ A lookup code, which is a string identifier for a code within a type; for example, RED.

■ A set or setID (for set-enabled lookups), which identifies the reference data set to
which the lookup code belongs.

For more information about setIDs, see Chapter 8, "Managing Reference Data with
SetIDs".

The FND_LOOKUP_TYPES table defines the lookup types available.

Note: If you have a custom view application, you need to prepare a
custom lookup view. For more information, see Section 10.2.1, "How
to Prepare Custom Lookup Views."

Introduction to Lookups

Implementing Lookups 10-3

A reference to a non set-enabled lookup can be implemented exactly like any other
foreign key reference, by specifying the lookup type in the view criteria. For set
enabled lookups, you must specify the following additional properties, but only to add
the indirection through the setID metadata:

■ Indicate the view application ID and lookup type for lookup code attributes.

■ Indicate the determinant attribute and determinant type, if the lookup type is
set-enabled.

The use of setID metadata allows for the use of generic lookup entity objects, because
the lookup type is automatically bound based on the metadata that you provide.

10.1.2 Standard, Set-Enabled, and Common Lookup Views
All lookups business objects exist in the publicEntity subpackage of the
oracle.apps.fnd.applcore.lookups.model package. They can be imported into any
Oracle JDeveloper application through Lookups-Model.jar. They are as follows:

Lookup Types
■ Entity Object: LookupTypePEO

■ View Object: LookupTypePVO

■ Base Table/View: FND_LOOKUP_TYPES_VL

Each lookup type defines a set of lookup codes, and describes the intended usage of
that set of codes. Note the FND_LOOKUP_TYPES_VL table and ADF Business Components
objects are only meaningful when a VIEW_APPLICATION_ID is specified to choose the
view application. You should never use either the table or the view without supplying
the VIEW_APPLICATION_ID.

Product teams that own a view application must expose a pre-defined view for lookup
types, exposing only the lookup types appropriate to their view application.

If your product has no special validation requirements, you can place your lookups in
one of the central lookup views such as FND_LOOKUPS. However, if you define your
own view application, you must supply a database view to match it.

Lookup Values
■ Entity Object: LookupValuePEO

■ View Object: none

■ Base Table/View: FND_LOOKUP_VALUES_VL

Note: When you register a lookup view application, you set a SET_
ENABLED flag to indicate that the lookup view is set enabled. For this
to be valid, every lookup type within that lookup view must have a
reference group defined. The reference group is part of the lookup
definition, and was defined when the lookup was defined. How that
happens is beyond the scope of this documentation.

Note: Product teams that own a view application also are
responsible for providing the service, the loader, the UI, and the
database view.

Introduction to Lookups

10-4 Developer's Guide

The FND_LOOKUP_VALUES_B table (along with FND_LOOKUP_VALUES_TL) is the primary
table that stores all the different lookup codes.

The FND_LOOKUP_VALUES_VL view is extended by the views in the three following
listings (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_LOOKUPS). If you want to
define your own product specific lookups, you should extend this view as well. This
object contains the subset of columns that are expected to be common to all views that
extend from this, with any additional columns required being added on an as-needed
basis.

These objects should only be referenced by lookup view application owners when
defining their own views and ADF Business Components objects. All other references
should go through the objects created for that lookup view. The three standard ones
that Oracle ships are FND lookups, common lookups, and setID lookups. If other
products have lookup views, you should use the entity objects and view objects
provided for them by the owning team.

(FND) Lookups
■ Entity Object: LookupPEO

■ View Object: LookupPVO

■ Base Table/View: FND_LOOKUPS

The naming of the lookup objects can get confusing; the Lookups object is intended to
refer specifically to FND lookups. The Lookup Values object in the previous listing is
the generic object. The FND_LOOKUPS view is primarily used to store FND-specific
lookup values but is also used to store lookup values that are common across multiple
applications. For example. the "Yes/No" example given in the overview might be used
by multiple product teams, so to avoid duplication that code can be stored centrally in
FND_LOOKUPS.

This view extends from the FND_LOOKUP_VALUES_VL view, but only selects rows that
have VIEW_APPLICATION_ID = 0 and SET_ID = 0.

Common Lookups
■ Entity Object: CommonLookupPEO

■ View Object: CommonLookupPVO

■ Base Table/View: FND_COMMON_LOOKUPS

This view extends from the FND_LOOKUP_VALUES_VL view, but only selects rows that
have VIEW_APPLICATION_ID = 3 and SET_ID = 0.

SetID Lookups
■ Entity Object: SetIdLookupPEO

■ View Object: SetIdLookupPVO

■ Base Table/View: FND_SETID_LOOKUPS

Note: This view also was used to store lookup codes that were
common to multiple applications, but it now exists only for the
purpose of backward compatibility.

Introduction to Lookups

Implementing Lookups 10-5

This view is used to store lookup codes that are set-enabled. The meanings
corresponding to the given lookup code will vary depending on the value of the setID
determinant.

This view extends from the FND_LOOKUP_VALUES_VL view, but only selects rows that
have VIEW_APPLICATION_ID = 2.

10.1.3 Lookup Customization Levels
Customization levels are defined on lookup types and can be used to enforce
pre-defined data security policies that restrict how and by whom lookup types and
their codes can be edited.

Valid values for CUSTOMIZATION_LEVEL are defined in the standard lookup type
'CUSTOMIZATION_LEVEL'. Table 10–1 lists these values.

10.1.3.1 What Happens to Customization Levels at Runtime
At runtime, the customization levels are interpreted as follows:

User
■ Insertion of new codes is allowed

■ Updating of start date, end date, and enabled fields is allowed

■ Deletion of codes is allowed

■ Updating of tag is allowed

Extensible
■ Deletion of lookup type is not allowed

■ Insertion of new codes is allowed

■ Updating of start date, end date, enabled fields, and tag is allowed only if the code
is not 'seed data'

■ Deletion of codes is allowed only if the code is not 'seed data'

■ Updating of module is not allowed

System
■ Deletion of lookup type is not allowed

■ Insertion of new codes is not allowed

■ Updating of start date, end date, and enabled fields is not allowed

■ Deletion of codes is not allowed

■ Updating of tag is not allowed

■ Updating of module is not allowed

Table 10–1 CUSTOMIZATION_LEVEL Lookup Codes

Lookup Code Description

U User

E Extensible

S System

Preparing Entities and Views for Lookups

10-6 Developer's Guide

In each of these scenarios, 'seed data' means LAST_UPDATED_BY = 'SEED_DATA_
FROM_APPLICATION'. Also, to allow seed data to be edited, these rules are not
enforced if the current user is 'SEED_DATA_FROM_APPLICATION'.

10.2 Preparing Entities and Views for Lookups
It is expected that the owner of a lookup view will produce entity objects and view
objects based on the entity objects for standard lookups database objects; for example,
HR_LOOKUPS, GL_LOOKUPS, OE_LOOKUPS and so on. These view objects will
typically be used for lookup validation as well as LOVs. If you put your lookups in the
standard lookup views, you do not have to define anything, but simply reference the
objects that are already provided.

Additionally, multiple ViewCriteria may be exposed on the lookups view object to
take care of date ranging the lookup by supplying bind parameters for start and end
active dates.

For a description of lookups tables and views provided by Oracle Fusion Middleware
Extensions for Applications and their corresponding public business objects, see
Section 10.1.2, "Standard, Set-Enabled, and Common Lookup Views".

10.2.1 How to Prepare Custom Lookup Views
If you have a simple lookup with no special requirements, you are free to define it in
the centrally provided lookup views. You do not have to create your own lookup view
just because you have lookups. However, if you have special validation requirements
that are not satisfied by the central lookup views, you might want to create a private
lookup view. If you do choose to create your own lookup view, you must take
responsibility for the additional work required to support your lookup view as
described in the following sections.

In preparing lookup views, you must perform several decision-based tasks.

To prepare lookup views:
1. Decide whether you really need a private lookup view.

If you have no need for special attributes, special validation, or a private
namespace for lookup types, you can use one of the centrally defined lookup
views (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_
LOOKUPS). All of these lookup views are available for any product to use. If none
of the central views meet your needs, you may define your own.

Lookup views are owned by applications (as determined by the view_application_
id). There can be only one lookup view per view_application_id. It is up to the
owner of the lookup view to make the view available for other applications to use,
or to designate the lookup view as private.

2. Decide whether your lookup view should be set enabled.

If so, you must expose set_id as part of the "primary key" of your lookup view, and
all references to it will have to include, either directly or indirectly, the set_id to
use.

Note: If you are using any of the three central lookup types (FND_
LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_
LOOKUPS), you can skip the rest of this section.

Preparing Entities and Views for Lookups

Implementing Lookups 10-7

3. Define a database view to expose the lookup types included in your lookup view.

At a minimum your view must select from the base FND_LOOKUP_TYPES_VL
view, expose the internal name and the display name, and include "where VIEW_
APPLICATION_ID = my_application_id" in the where clause. In addition, if your
view is set enabled, the lookup types view must include the REFERENCE_
GROUP_NAME column. You are free to join additional tables, add additional
attributes, or add additional filters to the where clause as desired. A template for
the view might be:

select LOOKUP_TYPE,
 MEANING DISPLAY_NAME,
 REFERENCE_GROUP_NAME, /* Only if set enabled */
 ...
from FND_LOOKUP_TYPES_VL
where VIEW_APPLICATION_ID = my_application_id
and ...

4. Define a database view to expose the lookup codes included in your lookup view.

At a minimum your view must select from the base FND_LOOKUP_VALUES_VL
view, expose the lookup type, the lookup code internal name, and the lookup code
display name, and include "where VIEW_APPLICATION_ID = my_application_id"
in the where clause. In addition, if your view is set enabled, the lookup values
view must include the SET_ID column as part of the primary key. You are free to
join additional tables, add additional attributes, or add additional filters to the
where clause as desired. A template for the view might be:

select LOOKUP_TYPE,
 LOOKUP_CODE,
 SET_ID, /* Only if set enabled */
 MEANING,
 ...
from FND_LOOKUP_VALUES_VL
where VIEW_APPLICATION_ID = my_application_id
and SET_ID = 0 /* Only if not set enabled */
and ...

5. Register your lookup view application and database views.

All view applications and the views used to reference them must be registered in
the FND_LOOKUP_VIEWS metadata table. To register your lookup views, write a
SQL script that calls the FND_LOOKUPS_UTIL.REGISTER_LOOKUP_VIEWS PL/SQL API.
For example:

begin
 fnd_lookups_util.register_lookup_views(
 p_view_application_short_name => 'FND',
 p_set_enabled => 'N',
 p_lookup_type_view => 'FND_STANDARD_LOOKUP_TYPES',
 p_lookup_code_view => 'FND_LOOKUPS');
end;

This script registers required seed data, and must be run on every database
instance.

6. Create ADF Business Components objects for your lookup view.

Each lookup view should have a separate entity object and view object (or PEO
and PVO) for both lookup types and lookup codes, extending from the base entity

Referencing Lookups

10-8 Developer's Guide

object and view object provided for FND_LOOKUP_TYPES and FND_LOOKUP_
VALUES.

For more information, see Section 10.1.2, "Standard, Set-Enabled, and Common
Lookup Views".

10.3 Referencing Lookups
You must create view accessors for all lookups data sources (FND_COMMON_
LOOKUPS, FND_SETID_LOOKUPS, HR_LOOKUPS, and so on) that are referenced in
the entity object.

10.3.1 How to Reference Lookups
Lookups that are referenced in the entity object must have view accessors.

To reference lookups:
1. Import the lookups standard view objects into your project and make sure they

can be referenced.

2. Open the entity object for editing.

3. On the View Accessors tab, add a view accessor. The View Accessors page
appears.

4. Select a view object from the left-hand list and shuttle it to the right-hand list, then
specify an accessor name.

5. Select the new view accessor and click Edit. The Edit View Accessor page appears.

6. Select the view criteria to use (if available), specify an order-by, and provide the
bind parameter value.

7. Click OK twice to finish creating the view accessor.

10.4 Defining Validators for Lookups
You must create a validator for every foreign reference in an entity object. For
set-enabled reference entities, the validator must be created at the entity object level,
not at the attribute level, because it has dependencies on other attribute values such as
the setID determinant attribute.

The type of validator to use depends on the expected size of the rowset for a given
lookup type:

■ For a lookup definition where the rowset returned for a lookup type or lookup
code is expected to be less than approximately 100 rows, use a list validator. See
Section 10.4.1, "How to Define a List Validator".

Note: All set-enabled view accessors are row sensitive (the
determinant on the master or transactional row affects the query);
therefore the Row-level bind values exist check box must always be
selected for set-enabled view accessors. For example, view accessors
to FND_SETID_LOOKUPS (set-enabled lookups cases) must have
Row-level bind values exist selected because the setID value may
change row by row and affect the validation result. Hence, the
ViewAccessor Row Set will need to be refreshed row by row.

Defining Validators for Lookups

Implementing Lookups 10-9

■ For a lookup definition where the rowset returned for a lookup type or lookup
code is expected to significantly exceed 100 rows, use a key exists validator. See
Section 10.4.2, "How to Define a Key Exists Validator".

10.4.1 How to Define a List Validator
You define a list validator for lookup definitions where the rowset returned for a
lookup type or lookup code is expected to be less than 100 rows.

To define a list validator:
1. Open the entity object for editing.

2. On the Validators tab, add a validation rule for the entity. The Edit Validation Rule
page appears, as shown in Figure 10–1.

3. At the top of the page, select a Rule Type of List.

Figure 10–1 Lookups List Validator Rule Definition

4. On the Rule Definition tab, select the foreign reference column that is the lookup
code (for example, SalaryCode) as the attribute.

5. Select In as the operator.

Caution: If an attribute in your transactional entity was defined with
null values allowed, the validator that you create will skip that
attribute, and the end user will receive no indication of any problem.
To ensure that the attribute is validated, you must edit the attribute
and select the Mandatory checkbox in the attribute properties.

Defining Validators for Lookups

10-10 Developer's Guide

6. Select View Accessor Attribute as the list type.

7. From the Select View Accessor Attribute list, select LookupCode as the view
accessor validation target lookup code attribute.

8. Select the Validation Execution tab, as shown in Figure 10–2.

Because the validation should be executed every time the determinant value
changes, it should be specified as a triggering attribute.

Figure 10–2 Lookups List Validator Execution

9. In the Triggering Attributes section, select the determinant attribute from the
left-hand list and shuttle it to the right-hand list.

10. Optionally, on the Failure Handling tab, specify a failure error message.

11. Click OK to create the list validator for this lookup.

10.4.2 How to Define a Key Exists Validator
The key exists validator will include the mapping of the foreign key attributes in the
transactional entity to the corresponding attributes in the reference view accessor.
There must be a foreign key attribute on the transactional entity for each primary key
attribute on the reference entity. First, you must provide missing foreign key attributes
in the form of transient attributes. Next, you can create the validator that uses those
attributes.

Note: The foreign key attributes that were mapped on the Rule
Definition tab are by default added as triggering attributes.

Defining Validators for Lookups

Implementing Lookups 10-11

To define a transient lookup type:
1. Open the transactional entity object for editing.

2. Create a new transient lookup type attribute to map to the LookupType attribute
on the reference entity, as shown in Figure 10–3.

Figure 10–3 New Transient Lookup Type Entity Attribute

3. Set the Type to String.

4. Set the Value Type to Expression, and provide a constant value for the attribute.

5. Deselect the Persistent checkbox.

6. In the Updatable section, select Never, then click OK to create the transient
attribute.

To create a key exists validator:
1. On the Validators tab, add a validation rule for the transactional entity. The Edit

Validation Rule page appears, as shown in Figure 10–4.

2. At the top of the page, select a Rule Type of Key Exists.

Defining Validators for Lookups

10-12 Developer's Guide

Figure 10–4 Lookups Key Exists Validator Rule Definition

3. On the Rule Definition tab, select a Validation Target Type of View Accessor.

4. Select the entity object lookup code attribute on the left-hand list, and the
corresponding view accessor validation target lookup code attribute on the
right-hand list.

Click Add to include the attribute pair on the mapping list.

5. Select the entity object transient lookup type attribute on the left-hand list, and the
corresponding view accessor validation target lookup type attribute on the
right-hand list.

Click Add to include the attribute pair on the mapping list.

6. Select the entity object transient setID attribute on the left-hand list, and the
corresponding view accessor validation target setID attribute on the right-hand
list.

Click Add to include the attribute pair on the mapping list.

7. Select the Validation Execution tab, as shown in Figure 10–5.

Because the validation should be executed every time the determinant value
changes, it should be specified as a triggering attribute.

Annotating Lookup Code Reference Attributes for Set-Enabled Lookups

Implementing Lookups 10-13

Figure 10–5 Lookups Key Exists Validator Execution

8. In the Triggering Attributes section, select the determinant attribute from the
left-hand list and shuttle it to the right-hand list.

9. Optionally, on the Failure Handling tab, specify a Failure Message.

10. Click OK to generate the key exists validator for this lookup.

11. Save your project.

10.5 Annotating Lookup Code Reference Attributes for Set-Enabled
Lookups

These properties are used only for set-enabled lookups, and only to do setID
indirection. The setID lookup type LOV will show only those lookup types that are
defined in your specified view application ID.

Do the following to annotate lookup code reference attributes:

1. Edit your set-enabled transaction table entity object.

2. Annotate each lookup code reference with setID machinery metadata, as shown in
Figure 10–6.

Note: The foreign key attributes (including transient attributes) that
were mapped on the Rule Definition tab are by default added as
triggering attributes.

Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager

10-14 Developer's Guide

Figure 10–6 Lookup Type and View Application ID for a Lookup Code Reference

To specify an attribute for use as a lookup code reference, select the attribute in the
entity object editor. On the Applications tab of the Property Inspector.

■ For a set-enabled lookup type, specify which determinant attribute on the
entity object drives the setID of this lookup reference.

■ For a set-enabled foreign key, you should also specify the setID determinant
attribute that drives the foreign key reference.

3. Specify the SetID View Application Id and SetId LookUp Type properties.

10.6 Integrating Lookups Task Flows into Oracle Fusion Functional Setup
Manager

Every Oracle application registers task flows with a product called Oracle Fusion
Functional Setup Manager. Functional Setup Manager provides a single, unified user
interface that enables implementers and administrators to configure all Oracle Fusion
applications by defining custom configuration templates or tasks based on their
business needs.

The Functional Setup Manager UI enables customers and implementers to select the
business processes or products that they want to implement. For example, an HR
application can register setup activities like "Create Employees" and "Manage
Employee Tree Structure" with Functional Setup Manager.

There are application task flows for managing common lookups, set-enabled lookups,
and standard lookups. To make these task flows available to application developers,
implementers or administrators, you can register the appropriate task flow with

Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager

Implementing Lookups 10-15

Functional Setup Manager, using the parameters listed for each task flow in
Table 10–2. These taskflows can be used to manage lookups in the centrally defined
lookup views (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_
LOOKUPS). All other lookup views (and any associated taskflows) are owned by
applications (as determined by the VIEW_APPLICATION_ID). Contact the owning
application for instructions on managing lookups in their lookup views.

Table 10–2 Lookups Task Flows and Parameters

Task Flow
Name Task Flow XML Parameters Passed Behavior

Manage
Standard
Lookups

/WEB-INF/oracle/apps/fnd/applcore
/lookups/publicUi/flow/
ManageStandardLookupsTF.xml#
ManageStandardLookupsTF

To invoke search mode to query and edit
lookup types and their codes in the
Standard Lookups view:

mode='search'

To restrict search mode to Standard
lookups belonging to a particular product
module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a single lookup
type and its lookup codes:

mode='edit'
lookupType='lookuptype'

To optionally specify a page heading for
the task flow:

pageTitle='titlestring'

This task flow enables you
to create and edit lookups in
the centrally owned
Standard view (view
application = 0).

Manage
Set-Enabled
Lookups

/WEB-INF/oracle/apps/fnd/applcore
/lookups/publicUi/flow/
ManageSetEnabledLookupsTF.xml#
ManageSetEnabledLookupsTF

To invoke search mode to query and edit
lookup types and their codes in the Set
Enabled Lookups view:

mode='search'

To restrict search mode to Set Enabled
lookups belonging to a particular product
module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a single lookup
type and its lookup codes:

mode='edit'
lookupType='lookuptype'

To optionally specify a page heading for
the task flow:

pageTitle='titlestring'

This task flow enables you
to create and edit lookups in
the centrally owned Set
Enabled view (view
application = 2).

Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager

10-16 Developer's Guide

For more information about task flows, see the Oracle Fusion Applications Common
Implementation Guide.

Manage
Common
Lookups

/WEB-INF/oracle/apps/fnd/applcore
/lookups/publicUi/flow/
ManageCommonLookupsTF.xml#
ManageCommonLookupsTF

To invoke search mode to query and edit
lookup types and their codes in the
Common Lookups view:

mode='search'

To restrict search mode to Common
lookups belonging to a particular product
module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a single lookup
type and its lookup codes:

mode='edit'
lookupType='lookuptype'

To optionally specify a page heading for
the task flow:

pageTitle='titlestring'

This task flow enables you
to create and edit lookups in
the centrally owned
Common Lookups view
(view application = 3).

Table 10–2 (Cont.) Lookups Task Flows and Parameters

Task Flow
Name Task Flow XML Parameters Passed Behavior

11

Setting Up Document Sequences 11-1

11Setting Up Document Sequences

This chapter describes how to set up document sequences, which uniquely number
documents, provide proof of completeness, and create audit trails.

This chapter contains the following sections:

■ Section 11.1, "Introduction to Document Sequences"

■ Section 11.2, "Defining Document Sequence Categories"

■ Section 11.3, "Assigning a Document Sequence"

■ Section 11.4, "Striping Document Sequence Assignments"

■ Section 11.5, "Defining a Document Sequence Audit Table"

■ Section 11.6, "Enabling Document Sequences in ADF Business Components"

■ Section 11.7, "Managing PL/SQL APIs"

■ Section 11.8, "Integrating Document Sequence Task Flows into Oracle Fusion
Functional Setup Manager"

11.1 Introduction to Document Sequences
A document sequence uniquely numbers documents generated by an Oracle Fusion
application. Using Oracle Fusion applications, you initiate a transaction by entering
data through a form and generating a document, for example, an invoice. A document
sequence generates an audit trail that identifies the application that created the
transaction, for example, Oracle Receivables, and the original document that was
generated, for example, invoice number 1234.

Document sequences can provide proof of completeness. For example, document
sequences can be used to account for every transaction, even transactions that fail.
Document sequences generate audit data, so even if documents are deleted, their audit
records remain.

Document sequences can also provide an audit trail. For example, a document
sequence can provide an audit trail from the general ledger into the subsidiary ledger,
and to the document that originally affected the account balance.

There are three types of document sequence numbering:

■ Automatic - Assigns a unique number to each document as it is generated.
Automatic numbering is sequential by date and time of creation.

■ Gapless - Automatically generates a unique number for each document, but
ensures that the document was successfully generated before assigning the

Defining Document Sequence Categories

11-2 Developer's Guide

number. With gapless numbering, no sequence numbers are lost due to incomplete
or failed document creation.

■ Manual - Requires a user to assign a unique number to each document before it is
generated. With manual numbering, numerical ordering and completeness is not
enforced. Users can skip or omit numbers when entering the sequence value.

 Table 11–1 defines document-sequence terminology.

11.2 Defining Document Sequence Categories
Document sequence categories organize documents into logical groups.

■ A document sequence category is one of the rules you use to define which
documents a sequence assigns numbers to.

■ You can separately number each document sequence category by assigning a
different sequence to each category.

A document sequence category identifies the database table that stores documents
resulting from transactions your users enter. When you assign a sequence to a
category, the sequence numbers the documents that are stored in a particular table.

11.3 Assigning a Document Sequence
Before you can assign a sequence to number documents, you must define which
documents are to be numbered.

Defining a sequence is different from assigning a sequence to a series of documents.

■ A sequence's definition determines whether a document's number is automatically
generated or manually entered by the user.

■ A sequence's assignment, that is, the documents a sequence is assigned to, is
defined in the Sequence Assignments form.

Note: It is recommend that you choose this type only when gapless
numbering is essential, as it may affect the performance of your
system.

Table 11–1 Document Sequence Terminology

Term Description

Document Sequences Document sequences are owned by a product and can be assigned to categories that
belong to the same product as the sequence. Sequences can be automatic, manual, or
gapless, and are effective within a date range.

Document Sequence
Categories

A document sequence category belongs to a table, which is owned by a product.
Document sequence categories are entered with either the System Administrator form
(Payables and Cash Management) or product forms (General Ledger and
Receivables).

Sequence Assignments The user assigns a sequence for each category. The assignments are owned by a set of
books and are effective within a date range. Manual document entry through a form
and automatic document creation through a batch process can have separate
sequence assignments. Currently, legal entities for the same set of books must share
document sequences. If each legal entity requires its own numbering sequence, a
separate set of books must be created for each legal entity.

Defining a Document Sequence Audit Table

Setting Up Document Sequences 11-3

11.4 Striping Document Sequence Assignments
Document sequences can optionally be given a determinant type when defined. This
determinant type specifies the context "dimension" that will be used to stripe
assignments of this document sequence. If a determinant type has been specified, then
each assignment of this document sequence must include a particular value (or
"determinant value") for this context. At runtime, only those document sequence
assignments with a determinant value matching the current value for this dimension
in the user's session context will be visible. If no determinant type is defined, then all
assignments are considered global and are always visible.

Table 11–2 shows the possible values for the determinant type.

For example, if a document sequence is defined with determinant type of "Ledger",
then each assignment of this document sequence must include a particular Ledger
value. At runtime, only assignments that match the current Ledger value will be
visible.

11.5 Defining a Document Sequence Audit Table
Each time a C or PL/SQL call is made to request the next document sequence value,
this audit data is inserted into the corresponding product team's document sequence
audit table.

Product teams using FND Document Sequence need to create an audit table with a
name whose format is application_short_name_DOC_SEQUENCE_AUDIT, where
application_short_name is the name of the application. For example, "AR_DOC_
SEQUENCE_AUDIT."

The audit table must contain the columns and types shown in Table 11–3.

Table 11–2 Determinant Type Values

Determinant Type Code Name

LEDGER Ledger

LE Legal Entity

BU Business Unit

Table 11–3 Audit Table Columns and Types

Name Null? Type

 DOC_SEQUENCE_ID NOT NULL NUMBER(18)

 DOC_SEQUENCE_VALUE NOT NULL NUMBER(15)

DOC_SEQUENCE_
ASSIGNMENT_ID

NOT NULL NUMBER(18)

CREATION_DATE NOT NULL TIMESTAMP(6)

CREATED_BY NOT NULL VARCHAR2(64 CHAR)

LAST_UPDATE_DATE NOT NULL TIMESTAMP(6)

LAST_UPDATED_BY NOT NULL VARCHAR2(64 CHAR)

 LAST_UPDATE_LOGIN VARCHAR2(32 CHAR)

ENTERPRISE_ID NOT NULL NUMBER(18)

Enabling Document Sequences in ADF Business Components

11-4 Developer's Guide

11.6 Enabling Document Sequences in ADF Business Components
This section focuses on ADF Business Components integration of document sequences
provided by Fusion Middleware extensions for Oracle Applications base classes.

11.6.1 Using the Document-Sequence Extension
The document sequence is generated and validated in the postChanges() method of
the OAEntityImpl class. In automatic mode, it is generated by calling the public API
Long getDocSequence(Long appId, String categoryCode, Long sobId, String
methodCode, Timestamp txnDate, Long seqVal, String suppressWarn, String
suppressError) in the OAEntityImpl class. In manual mode, it is validated by calling
public void validateDocSequence(Long appId, String categoryCode, Long
sobId, String methodCode, Timestamp txnDate, Long seqVal, String
suppressWarn, String suppressError) in the same class.

You do not need to do anything in order to get the default behavior of generation and
validation of a document sequence. However, if you require some special behavior,
such as additional validation or adding an additional prefix or suffix, you can override
these methods.

The Javadoc for the key methods in OAEntityImpl is shown in Example 11–1.

Example 11–1 Javadoc for OAEntityImpl

 /**
 * Override of EntityImpl.postChanges() to handle document sequencing.
 * If an entity attribute has been identified that it should be populated
 * using a document sequence (in the Applications Property Inspector panel),
 * then at this point in the entity life cycle, we will populate the attribute
 * with a document sequence based on the inputs, provided the sequence method
 * is automatic. If the document sequence is manual, we will validate the
 * document sequence.
 * See parent class for complete documentation
 * @param e this Entity Object's transaction event.
 * @see #validateDocSequence
 * @see #getDocSequence
 * @see EntityImpl#postChanges
 */
 public void postChanges(TransactionEvent e){...}

 /**
 * Will populate the entity attribute with a document sequence in Automatic
 * mode, based on the schema based properties being set on the attribute using
 * Applications Property Inspector in the Entity Attribute editor in JDev for
 * fnd:DOC_SEQUENCE (Document Sequence),
 * fnd:DOC_SEQ_APPLICATION_ID (Application Id),
 * fnd:DOC_SEQ_METHOD_CODE (Method Code),
 * fnd:DOC_SEQ_CATEGORY_CODE (Category Code),
 * fnd:DOC_SEQ_SET_OF_BOOKS_ID (Ledger Id),
 * fnd:DOC_SEQ_TXN_DATE (Transaction Date)
 * Application Id, Method Code, Category Code, Ledger Id and Transaction Code,
 * should be populated with valid Groovy expressions.
 * The Groovy expressions when evaluated should return a Long for Application
Id,
 * and Ledger Id, String for Method Code and Category Code, Timestamp for
Transaction Date fields.
 *
 * This method will be invoked by postChanges() method on the entity, when
 * posting the data to the database.

Enabling Document Sequences in ADF Business Components

Setting Up Document Sequences 11-5

 *
 * Override this if you want a different behavior/way of populating the document
sequence.
 *
 * @param appId Application Id
 * @param categoryCode Document Sequence Category Code
 * @param sobId Ledger Id to use for this Document Sequence.
 * @param methodCode Document sequence Method Code (Automatic ("A"), Manual
("M") or null for both modes).
 * @param txnDate Document Transaction Date
 * @param seqVal Document Sequence Value to use in Manual Mode
 * @param suppressWarn Suppress warning (Y/N/null)
 * @param suppressError Suppress Error (valid values are Y/N/null)
 * @return Document Sequence Value
 * @see #postChanges
 */
 public Long getDocSequence(Long appId, String categoryCode, Long sobId, String
methodCode, Timestamp txnDate, Long seqVal, String suppressWarn, String
suppressError)
 {...}

 /**
 * Will validate the entity attribute with a document sequence value to use in
Manual
 * mode, based on the schema based properties being set on the attribute using
 * Applications Property Inspector in the Entity Attribute editor in JDev for
 * fnd:DOC_SEQUENCE (Document Sequence),
 * fnd:DOC_SEQ_APPLICATION_ID (Application Id),
 * fnd:DOC_SEQ_METHOD_CODE (Method Code),
 * fnd:DOC_SEQ_CATEGORY_CODE (Category Code),
 * fnd:DOC_SEQ_SET_OF_BOOKS_ID (Ledger Id),
 * fnd:DOC_SEQ_TXN_DATE (Transaction Date)
 * Application Id, Method Code, Category Code, Ledger Id and Transaction Code,
 * should be populated with valid Groovy expressions.
 * The Groovy expressions when evaluated should return a Long for Application
Id,
 * and Ledger Id, String for Method Code and Category Code, Timestamp for
Transaction Date fields.
 *
 * This method will be invoked by postChanges() method on the entity, when
 * posting the data to the database.
 *
 * Exception will be raised if document sequence value validation fails.
 *
 * Override this if you want a different behavior/way of validating the
document sequence.
 *
 * @param appId Application Id
 * @param categoryCode Document Sequence Category Code
 * @param sobId Ledger Id to use for this Document Sequence.
 * @param methodCode Document sequence Method Code (Automatic ("A"), Manual
("M") or null for both modes).
 * @param txnDate Document Transaction Date
 * @param seqVal Document Sequence Value in Manual Mode
 * @param suppressWarn Suppress warning (Y/N/null)
 * @param suppressError Suppress Error (valid values are Y/N/null)
 * @see #postChanges
 */
 public void validateDocSequence(Long appId, String categoryCode, Long sobId,
String methodCode, Timestamp txnDate, Long seqVal, String suppressWarn, String

Enabling Document Sequences in ADF Business Components

11-6 Developer's Guide

suppressError)
 {...}

11.6.1.1 What Happens with Document Sequences at Design Time
Oracle Fusion Middleware extensions provide the ability to identify if an entity
attribute needs a document sequence. This is accomplished by setting Document
Sequence to true in the entity attribute's Property Inspector window, as shown in
Figure 11–1.

Figure 11–1 Property Inspector: Document Sequence

By default, the entity attribute property is not set because it is not a document
sequence field.

Fusion Middleware extensions also capture the additional metadata (as Groovy
expressions) needed to generate a document sequence. Table 11–4 lists the metadata
fields in the Property Inspector window and their descriptions.

Managing PL/SQL APIs

Setting Up Document Sequences 11-7

11.6.1.2 What Happens with Document Sequences at Runtime
Based on the design time setting and additional metadata, Fusion Middleware
extensions invoke document sequencing APIs and populate the attribute with a
document sequence (in automatic mode) and validate the document sequence (in
manual mode) in the postChanges() phase of the entity in ADF Business Components
lifecycle. Document sequence processing is done at this phase so that the document
sequence generation can be delayed as much as possible when in automatic mode.
This is to avoid the potential wasting of document sequence if generated earlier.

If Document Sequence is not set or is set to false, nothing is done. If Document
Sequence is set to true, Fusion Middleware extensions populate the entity attribute
with a document sequence value if the method code is automatic.

This is accomplished by doing the following.

■ Evaluating the Groovy expressions corresponding to the additional required
metadata

■ Invoking the document sequence PL/SQL APIs to do one of the following:

– Generate a document sequence value when invoked in automatic mode

– Validate the document sequence when invoked in manual mode

11.7 Managing PL/SQL APIs
Document sequence public PL/SQL APIs can be found in the FND_SEQNUM
package. The package can be used to retrieve information about document sequences
and assignments, create new document sequences or assignments, and to verify or
retrieve the next sequence value for a particular document sequence assignment.
Sample APIs are shown in the examples that follow. For complete documentation, see
comments in the package header.

Example 11–2 Define a New Document Sequence

declare
 ret number;
begin
 -- Define a new document sequence
 ret := fnd_seqnum.define_doc_seq(
 app_id => 222, -- Application ID
 docseq_name => 'MY_DOC_SEQUENCE', -- Unique Doc_Seq Name
 docseq_type => 'A', -- Sequence Type

Table 11–4 Additional Metadata

Field Description

Application Id The application ID. The Groovy expression should return an object of type Long.

Category Code The document sequence category code. The Groovy expression should return an
object of type String.

Method Code The document sequence method code. Select from the following: "A" (Automatic), "M"
(Manual), or null (both modes). The Groovy expression should return an object of
type String.

Ledger Id The ledger ID to use for this document sequence. The Groovy expression should
return an object of type Long.

Transaction Date The document transaction date. The Groovy expression should return an object of
type Timestamp.

Managing PL/SQL APIs

11-8 Developer's Guide

 ('A'=automatic,'G'=gapless,'M'=manual)
 msg_flag => 'Y', -- Message Flag
 init_value => 1, -- Initial sequence value
 start_date => sysdate, -- Effective Start date
 end_date => null); -- Effective End date
 if (ret <> FND_SEQNUM.SEQSUCC) then
 dbms_output.put_line('Fail: '||to_char(ret));
 end if;
end;

Example 11–3 Retrieve the Next Sequence Value for an Automatic Sequence

declare
 ret number;
 docseq_val number;
 docseq_id number;
begin
 -- Retrieve the next sequence value for an Automatic sequence
 ret := fnd_seqnum.get_seq_val(
 app_id => 222, -- Application ID
 cat_code => 'MY_CAT', -- Category code
 sob_id => 12345, -- Determinant value
 met_code => 'A', -- Method Code ('A'=automatic/batch,
 'M'=manual)
 trx_date => sysdate, -- Transaction date
 seq_val => docseq_val, -- Doc Seq value (output value for
 automatic)
 docseq_id => docseq_id); -- Doc Seq ID (output)
 if (ret <> FND_SEQNUM.SEQSUCC) then
 dbms_output.put_line('Fail: '||to_char(ret));
 else
 dbms_output.put_line('Next sequence value is '||to_char(docseq_val));
 end if;
end;

Example 11–4 Verify a Sequence Value for a Manual Sequence

declare
 ret number;
 docseq_val number;
 docseq_id number;
begin
 -- Verify a sequence value for an Manual sequence
 docseq_val := 54321;
 ret := fnd_seqnum.get_seq_val(
 app_id => 222, -- Application ID
 cat_code => 'MY_CAT', -- Category code
 sob_id => 12345, -- Determinant value
 met_code => 'A', -- Method Code ('A'=automatic/batch,
 'M'=manual)
 trx_date => sysdate, -- Transaction date
 seq_val => docseq_val, -- Doc Seq value (output value for
 automatic)
 docseq_id => docseq_id); -- Doc Seq ID (output)
 if (ret <> FND_SEQNUM.SEQSUCC) then
 dbms_output.put_line('Fail: '||to_char(ret));
 else
 dbms_output.put_line('Value '||to_char(docseq_val)||' is valid');
 end if;
end;

Integrating Document Sequence Task Flows into Oracle Fusion Functional Setup Manager

Setting Up Document Sequences 11-9

11.8 Integrating Document Sequence Task Flows into Oracle Fusion
Functional Setup Manager

Every Oracle application registers task flows with a product called Oracle Fusion
Functional Setup Manager. Functional Setup Manager provides a single, unified user
interface that allows customers and implementers to configure all Oracle applications
by defining custom configuration templates or tasks based on their business needs.

The Functional Setup Manager UI enables customers and implementers to select the
business processes or products that they want to implement. For example, an
Accounts Payable application can register a setup activity like "Create Invoice" with
Functional Setup Manager. After you define a category, for example, "Invoices," in the
Categories task flow, document sequence task flows then provide the mechanism that
allows you to define a sequence and specify its properties. You then can assign the
sequence to the "Invoices" category in the Assignments region in the same flow.

Table 11–5 lists the task flows and their parameters.

Integrating Document Sequence Task Flows into Oracle Fusion Functional Setup Manager

11-10 Developer's Guide

For more information about task flows, see Oracle Fusion Applications Common
Implementation Guide.

Table 11–5 Task Flow Parameters

Task Flow Name Task Flow XML
Parameters
Passed Behavior Comments

Manage Document
Sequence
Categories

/WEB-INF/oracle/apps/fnd/
applcore/docseq/ui/flow/Ma
nageDocSeqCategoriesTF.xml#
ManageDocSeqCategoriesTF

mode='search'
[moduleType]
[moduleKey]

mode='edit'
applicationId
code

[pageTitle]

Allows you to create
and edit document
sequence categories.
Search mode allows
you to search and edit
categories. The
moduleType and
moduleKey
parameters are
optional, and if passed
restrict the categories
that can be queried
and edited. Edit mode
allows you to query
and edit a single
category. The
applicationId and
code parameters are
required, and specify
the category to edit.

Search and edit
document
sequence
categories.

Manage Document
Sequences

/WEB-INF/oracle/apps/fnd/
applcore/docseq/ui/flow/Ma
nageDocSequencesTF.xml#Ma
nageDocSequencesTF

mode='search'
[moduleType]
[moduleKey]

mode='edit'
name

[pageTitle]

Allows you to search
and edit document
sequences, and
assignments of those
sequences. Search
mode allows you to
query and edit
sequences. The
moduleType and
moduleKey
parameters are
optional; if passed
they restrict the
sequences that can be
queried. Edit mode
allows you to edit a
single document
sequence and its
assignments. The
name parameter is
required, and specifies
the sequence to edit.

Search and edit
document
sequences (and
the assignments
belonging to a
sequence).

Part III
Part III Defining User Interfaces

This part of the Developer's Guide discusses some of the Oracle Application
Development Framework (Oracle ADF) user interface features that you can
incorporate into your Oracle Fusion Applications.

The Getting Started with your Web Interface chapter provides information about how to
create a page and what the wizard settings should be. It also presents the basic
information that is necessary before creating the Application User Interface.

The Implementing the UI Shell, Implementing Search Functions in the UI Shell and
Implementing Additional Functions in the UI Shell chapters provides information about
the UI Shell and Navigator Menu components used to implement user interface
features in JDeveloper. The UI Shell is a page template whose contents are determined
by the menu metadata held in the Navigator Menu.

The Implementing UIs in JDeveloper with Applications Tables, Trees, and Tree Tables chapter
discusses the Applications Tables, Trees and Tree Tables components used to
implement user interface features in JDeveloper. Applications tables are UI components
that already contain an ADF table, a menu bar, a toolbar, and related popups.
Developers do not need to create and assemble all these components separately. The
Applications Tree component provides the basic capabilities that satisfy the
requirements specified in the Application UX designs. These include tree toolbar with
default buttons, facets for adding ADF tree, custom toolbar buttons, and so on, and
default implementations for tree actions. The Applications Tree Table can be added to a
page or page fragment using either the Component First or the Data First approach.
Both approaches launch a wizard that is intended to help you quickly define the
appropriate tree layout that adheres to the Applications UX standards.

The Implementing Applications Panels, Master-Detail, Hover, and Dialog Details chapter
discusses the Applications Panels, Master-Detail, Detail on Demand, and Dialog
Details components used to implement user interface features in JDeveloper.
Applications panels help you create specific UI components as part of the UI
Applications patterns. You must use Applications panels to standardize layout and
appearance for all your page forms and buttons, including read-only pages. The
Master-Detail composite is used in situations where the information is too large,
dynamic or complex to show in a flat table. The user can see the Master, or summary,
information in one area, and the corresponding details in a separate area. Dialog details
are appropriate for use when information needs to be accessed quickly and then
dismissed. The details are shown in a modeless dialog window.

The Implementing Attachments chapter provides guidelines for implementing
Attachments at design time in a quick and simple manner using Oracle Fusion
Middleware components. The Attachment component provides a declarative and
simple programming mechanism for you to add attachments to the UI pages that you
create for web applications. Once added to a UI page, the component gives users the

ability to associate a URL, desktop file, repository file or folder, or text with a business
object, such as an expense report, contract, or purchase order.

The Organizing Hierarchical Data with Tree Structures chapter describes how to create,
update, and delete tree structures, trees, and tree versions, and how to develop
applications using trees. Oracle Fusion tree management allows data in Oracle
Applications to be organized into a hierarchical fashion, and allows Oracle
Applications customers to create tree hierarchies based on their specific data.

The Working with Localization Formatting chapter describes the Oracle applications
standards and guidelines for working with localization formatting. When developing
applications for international users, it is often necessary to format the display of
certain location-dependent data. In the context of JDeveloper and ADF, localization
requires implementing formatting patterns so as to properly display the data
according to local standards.

This part contains the following chapters:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 13, "Implementing the UI Shell"

■ Chapter 14, "Implementing Search Functions in the UI Shell"

■ Chapter 15, "Implementing Additional Functions in the UI Shell"

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details"

■ Chapter 18, "Implementing Attachments"

■ Chapter 19, "Organizing Hierarchical Data with Tree Structures"

■ Chapter 20, "Working with Localization Formatting"

12

Getting Started with Your Web Interface 12-1

12Getting Started with Your Web Interface

This chapter provides information that you may need before you begin developing
your web pages. It introduces the UI Shell page template and UI patterns and features
that are available in JDeveloper.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Developing a Web Application"

■ Section 12.2, "Oracle Fusion Guidelines, Patterns, and Standards"

■ Section 12.3, "Basic Building Blocks"

■ Section 12.4, "Introduction to the UI Shell"

■ Section 12.5, "Applications UI Patterns and Features"

12.1 Introduction to Developing a Web Application
To help you get started with your web interface, this chapter discusses information
about how to create a page, what the wizard settings should be, as well as information
about patterns, such as UI Shell.

For more information about how to get started with your web interface, see the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

12.2 Oracle Fusion Guidelines, Patterns, and Standards
There are some basic guidelines for defining how an Oracle Fusion application's web
interface is constructed. These guidelines are universally shared by all pages built for
Oracle Fusion Applications. There are two types of pages - Dashboards and Work
Areas. A dashboard is a collection of information summaries (high-level data views)
that enable users to monitor different objects and data within a subdomain or
functional area of interest. A Work Area is the complete set of tasks, reports, business
intelligence, searches and other content that a user needs to accomplish the tasks
associated with a business goal. Depending on the type of page you have, the
construction can differ.

For more information about Standards and Guidelines, see Chapter 1, "Getting Started
with Oracle Fusion Applications."

12.3 Basic Building Blocks
Dashboards and Work Areas define the basic structure of a page. Oracle Fusion
Guidelines, Patterns and Standards (GPS) defines a set of design patterns. Design

Basic Building Blocks

12-2 Developer's Guide

patterns are common flow or page designs that are used across all product families. By
using design patterns in all phases of product development, valuable development
time may be spent innovating other areas in the product, consistency is ensured across
the entire enterprise, and users only have to learn the interaction once with the
expectation that their experience will be the same in any product they encounter.

Dashboard
There are two types of dashboards: Home Based Dashboards and Transaction
Dashboards. A Home Based Dashboard consists of one or more tabs. Each tab is a
container for a set of configurable regions displaying content that a user may want to
monitor. Transaction Dashboards are built with a specific role in mind. The basic
building blocks are the individual regions. Every dashboard can choose which regions
it wants to include. In Figure 12–1, these are the Watchlist, Reports and Analytics,
Worklist, and Gallery. Each of these is built as Oracle Application Development
Framework (Oracle ADF) Bounded Task Flows.

Figure 12–1 Home Based Dashboard Example

Work Area
A Work Area, as shown in Figure 12–2, consists of a Regional Area, a Local Area and a
Contextual Area. Each area is intended to have content for a specific purpose.

Figure 12–2 Work Area example

The Regional Area is the collapsible region on the left of the page that contains a
column of panels that provides information and actions that drive the business process
that a work area supports. The Local Area is the focus of the users work. The contents
of it should contain all of the information and actions required to accomplish the task.

Applications UI Patterns and Features

Getting Started with Your Web Interface 12-3

The Contextual Area is the collapsible region on the right-hand side of the page that is
filled with a column of panels. It provides additional space above the fold of the page
to present actions and information, based on the information and state of the local
area, that can assist the user in the task.

Designing Your UI
Your web user interface will be designed using the Oracle Fusion GPS concepts and
design patterns. Many of these designs are delivered through the Oracle Fusion
Middleware Extensions for Applications (Applications Core). Dashboards and Work
Areas are built using the UI Shell. A set of design-time wizards and components that
help support many of the Oracle Fusion GPS design patterns is also provided. These
components, in conjunction with those provided by Oracle ADF and WebCenter,
provide the basis for all web interfaces.

12.4 Introduction to the UI Shell
The UI Shell is a page template containing default information, such as a logo, menus
and facets. To supplement the UIShell template, there also is a UIShellMainArea
template. Because you can load information into dynamic tabs, the Main area cannot
be a part of the page itself since it is loaded dynamically. The UIShellMainArea
template helps you create the flows that run within the tabs.

The UI Shell design supports task-based and user-based navigation and way-finding,
and organizes screen real estate more effectively by collating tasks, providing
dedicated spaces for primary-task supporting information, and maintains general
order and appropriate hierarchy between various elements on the screen.

The UI Shell for Applications User Experience (Applications UX) patterns provides a
system of containers that fulfill common layout and navigational requirements in a
structured, consistent manner. The UI Shell focuses on providing detailed design for
defining and organizing various types of navigation and other functionality such as
search and auxiliary information for Oracle Fusion alone.

In particular, the UI Shell template supports:

■ Global Search

■ Navigation menus

■ Cross-application navigation

For more information, see Chapter 13, "Implementing the UI Shell."

12.5 Applications UI Patterns and Features
Applications UI Patterns are high-level UI composite components that encapsulate
standards and guidelines for common layouts, behaviors and flows across Oracle
Fusion Applications, as set forth by the Applications User Experience group. The
objective is to provide applications development teams with a higher level starting
point and reduce duplication of effort in building the UI for their applications, while
adhering to Oracle Fusion standards. The standards and guidelines are tightly
integrated with JDeveloper.

Patterns can be implemented as custom components, declarative components or task
flows. Patterns that are implemented as declarative components wrap the mandatory
and pattern-specific UI components within the declarative component.

The UI patterns components provide several key benefits for developers when they are
building pages and fragments:

Applications UI Patterns and Features

12-4 Developer's Guide

■ Enforcement of patterns.

■ Faster development.

■ Changes can be made to one component definition rather than to each instance in
every application.

Supported patterns are:

■ Applications Tables

■ Applications Panels

■ Applications Master-Detail

■ Applications Detail On Demand

■ Applications Tree

■ Applications Tree Tables

■ Applications Dialog Details

■ Using the Custom Wizard with Applications Popups

Applications Tables
Applications tables are UI components that already contain an ADF table, a menu bar,
a toolbar, and related popups. Developers do not need to create and assemble all these
components separately.

Applications Panels
Applications Panels help you create the following UI components as part of the UI
applications patterns:

■ Page title

■ Form title

■ Page button bar (including navigation bar)

■ Facets for page-specific UI components

You must use Applications Panels to standardize layout and appearance for all your
page forms and buttons, including read-only pages.

Applications Master-Detail
Master-Detail refers to the interaction of selecting an object from a master list, and
refreshing the details in an adjacent area. It is not the relationship of the data.

The Master-Detail composite is used in situations where the information is too large,
dynamic, or complex to show in a flat table. The user can see the Master, or summary,
information in one area, and the corresponding details in a separate area. This can be
achieved using different master and detail components, such as table, tree table, and
tree.

For instance, when the user selects an employee from the master table, the
corresponding employee details are displayed in the region below in a label/data
format.

Applications Detail On Demand
Dialog details are appropriate for use when information needs to be accessed quickly
and then dismissed. The details are shown in a modeless dialog window.

Applications UI Patterns and Features

Getting Started with Your Web Interface 12-5

Dialog details are accessed by clicking a details icon in a row in a table.

Applications Tree
The Applications Tree component provides these basic capabilities:

■ Tree toolbar with default buttons

■ Facets for adding ADF tree, custom toolbar buttons, and so on

■ Default implementations for tree actions

Applications Dialog Details
The Applications Dialog Details component provides a user interface for launching a
popup that contains detail information. Popups are an option when editing rows. The
UI can be a detail icon, a link, or a button.

Using the Custom Wizard with Applications Popups
af:popup is a generic function documented in the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

While the standard af:popup component does not provide buttons or data binding, the
Applications Popup wizard provides the base af:popup with:

■ a title

■ standard buttons

■ customized button capability

■ data binding

■ code that developers can use to invoke the popup

■ design-time support

■ popup facets and properties that can be customized

Popups can be used as standalone components or with certain patterns.

Applications Tree Tables
The Application Tree Table component provides these basic capabilities:

■ Tree Table toolbar with default buttons

■ Facets for adding items such as ADF tree table and custom toolbar buttons

■ Default implementations for tree actions

For more information, see:

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables,"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details," and

Applications UI Patterns and Features

12-6 Developer's Guide

13

Implementing the UI Shell 13-1

13Implementing the UI Shell

This chapter discusses the UI Shell page template used to build web pages, and the
components used to implement user interface features in Oracle JDeveloper
(JDeveloper), such as menus and task flows.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Implementing the UI Shell"

■ Section 13.2, "Populating a UI Shell"

■ Section 13.3, "Implementing Application Menu Security"

■ Section 13.4, "Controlling the State of Main and Regional Area Task Flows"

■ Section 13.5, "Working with the Global Menu Model"

■ Section 13.6, "Using the Personalization Menu"

■ Section 13.7, "Implementing End User Preferences"

■ Section 13.8, "Using the Administration Menu"

■ Section 13.9, "Using the Help Menu"

 For more information about the features, see:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 14, "Implementing Search Functions in the UI Shell"

■ Chapter 15, "Implementing Additional Functions in the UI Shell"

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details"

13.1 Introduction to Implementing the UI Shell
The UI Shell is a page template containing default information, such as a logo, menus,
and facets. To supplement the UI Shell template, there also is a UIShellMainArea
template. Because you can load information into dynamic tabs, the Main Area (the
center and the right as shown in Figure 13–1) cannot be a part of the page itself
because it is loaded dynamically.

The UI Shell design supports task-based and user-based navigation, and organizes
screen real estate more effectively by collating tasks, providing dedicated spaces for
primary-task supporting information, and maintains general order and appropriate
hierarchy among various elements on the screen.

Introduction to Implementing the UI Shell

13-2 Developer's Guide

The UI Shell for Applications User Experience (Applications UX) patterns provides a
system of containers that fulfill common layout and navigational requirements in a
structured, consistent manner. The UI Shell focuses on providing detailed design for
defining and organizing various types of navigation and other functionality such as
search and auxiliary information for Oracle Fusion Middleware alone.

Before You Begin:
You should be familiar with JDeveloper, be able to create and run JavaServer Faces
(JSF) pages, and be able to create an Oracle Application Development Framework
(Oracle ADF) task flow.

13.1.1 Standard Related to the UI Shell
Almost all shipped Oracle Fusion Applications pages are built using the UIShell page
template. Exceptions include the login page, and the password preferences page.

13.1.2 UI Shell Description
The UI Shell is composed of four default, mandatory areas: global, regional, local, and
contextual, as shown in Figure 13–1.

Figure 13–1 UI Shell Areas

The basic information about the UI Shell includes:

■ The shell is optimized for a screen resolution of 1280x1024 pixels.

■ The four areas are:

– Global Area: The Global Area, across the full width at the top of the UI Shell,
is stable, consistent, and persistent for an individual user. It contains controls
that generally affect the contents of the other three areas. See Section 13.1.2.1,
"Global Area Standard Links."

Introduction to Implementing the UI Shell

Implementing the UI Shell 13-3

– Regional Area: The Regional Area is in the left-hand pane of the UI shell. It
has controls and content that generally affect the contents of the local and
contextual areas. Tasks lists in the Regional Area automatically are bulleted to
make it clear when a line item wraps to the next line.

– Local Area: The local area is in the center of the UI Shell where users do their
work. It is the main work area and typically contains the transaction form with
the menus and controls that enable users to be productive. Controls in, and the
content or state of, the local area generally affect the contents of the contextual
area.

* Main Area: This term designates the combination of the Local Area and
the Contextual Area.

– Contextual Area: The contextual area is in the right-hand pane of the UI Shell,
with controls and contents that generally are affected by controls in, or the
content or state of, the local area; although in specific cases the contextual area
can also affect the contents of the local area (causing a local-area reload).

■ Application designers, customers, and administrators can set the regional and
contextual areas as collapsed for specific applications. End users can expand those
areas at runtime.

■ If there is no content in the regional or contextual area, the area is collapsed and
the ability to expand it is disabled.

■ The contextual area is directly bound to the local area. The application developer
can bind the contextual area content to the local area such that each invocation of a
local area automatically causes a relevant contextual area in the correct state to
appear alongside the local area.

13.1.2.1 Global Area Standard Links
The Global Area incorporates a number of built-in indicators and links:

■ Home

Click this link to return to the defined Home page. See Section 15.3,
"Implementing the Oracle Fusion Home Page UI."

■ Navigator

The Navigator menu, shown in Figure 13–18, is rendered when the Navigator link
is clicked on the UI Shell. See Section 13.5.1.2, "Displaying the Navigator Menu."

■ Recent Items

The Recent Items link tracks a list of the last 20 task flows visited by a user. See
Section 14.2, "Implementing Recent Items."

■ Favorites

The Add to Favorites link takes the most recent task flow visited by a user (see
Section 14.2, "Implementing Recent Items") and adds it to the Favorites list.

■ Tags

Tagging is a service that allows users to add tags to selected resources in Oracle
Fusion Applications to contribute to resources other users have visited. See
Section 14.1, "Implementing Tagging Integration."

■ Watchlist

The Watchlist link is a user-accessible UI that provides a summary of items the
user can track using shortcuts. See Section 14.3, "Implementing the Watchlist."

Introduction to Implementing the UI Shell

13-4 Developer's Guide

■ Group Spaces

The Group Spaces link bundles all the collaboration tools and provides an easy
way for users to create their own dynamic collaborative groups around a project or
business task flow. See Section 14.4, "Implementing Group Spaces."

■ Personalization

The Personalization menu options let you set your preferences, edit the current
page, and reset the content and layout. See Section 13.6, "Using the Personalization
Menu."

■ Accessibility

The Accessibility link appears on all pages. It will allow users to set their
accessibility preferences because the Personalization menu, which includes
preferences, is hidden for anonymous users.

■ Administration

The Administration menu options allow you to customize the current page at a
multi-user level, to manage sandboxes, and to get access to the setup applications.
See Section 13.8, "Using the Administration Menu."

■ Help

The Help menu options let you control trace levels, run diagnostics, and provide
an About page that lists information about the application. See Section 13.9, "Using
the Help Menu."

■ Sign In / Sign Out

This list provides two possible scenarios during runtime:

■ The application is not secured. In this case, there is no concept of the user
being logged in (authenticated) or logged out (not authenticated).

– The commandLink displays the text Sign In and is disabled.

– There is no user name displayed next to the commandLink.

■ The application is secured with ADF Security.

If the user is logged in:

– The commandLink displays the text Sign Out and is enabled.

– The logged-in user name is displayed next to the Sign Out link.

– If Oracle WebLogic Server is configured to authenticate with Oracle
Internet Directory LDAP, the user name is the display name of the
authenticated user principal. The display name is indexed by a general
end user preference. See Section 13.7, "Implementing End User
Preferences."

If the user is logged out, the only way for an unauthenticated user to view a
page is if a page either has no databinding (no pagedef) or has databinding
but is granted to the anonymous role:

– The commandLink displays the text Sign In and is enabled.

Note: When signing in, users always are directed to the application's
home page.

Populating a UI Shell

Implementing the UI Shell 13-5

– No user name is displayed next to the Sign In link.

When the Sign Out link is clicked, the page is redirected to the application's default
home page if it is accessible. There are cases in which a default home page is not
available to the current user. In such cases, the user application should implement the
setLogoutUrl() API that is included in the
oracle.apps.fnd.applcore.common.ApplSession class of the Oracle Fusion
Middleware extensions for Applications Core API. This API is implemented as:

public void setLogoutURL(String pLogoutURL);

The UIShell's Sign Out logic will get the logout URL from ApplSession using the
getLogoutURL() API and redirect to it. This API is implemented as:

public String getLogoutURL();

If the logout URL was not set in ApplSession, the application will be redirected to the
default home page.

On clicking the Sign Out link, the user session is cleared from the cookie and
terminated. If the home page is secured, the login prompt will first appear. If the home
page is not secured, the page will appear and the Sign In link will be enabled.

13.2 Populating a UI Shell
The UIShell is a page template with some facets for content that may be placed directly
on the page, but it usually has its content inserted dynamically. The dynamic insertion
happens by reading metadata in the form of menu metadata. This informs the UI Shell
about which task flows to load and where. The UI Shell also can create a list of tasks,
from the same metadata, that, when clicked, can load into the Main Area. All task
flows and the page built by the UIShell template follow the standard ADF Security
framework.

When you create an application using the Oracle Fusion Web Application (ADF)
template, two projects automatically are created for you: the data model and the user
interface projects. The default names for these projects that JDeveloper provides are
Model and ViewController. You then add the Applications Core (ViewController) tag
library to the user interface project. See Section 3.4, "Adding the Applications Core Tag
Library to Your User Interface Project."

13.2.1 How to Create a JSF Page
Creating a page also creates your application's workspace, where you will later place
your page fragments and task flows. For more information about task flows, see the
"Getting Started with ADF Task Flows" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

For more information about starting JDeveloper, see Chapter 2, "Setting Up Your
Development Environment."

To create a JSF page:

1. Select the user interface project in the Application Navigator.

2. Choose File > New > Web Tier > JSF > JSF Page.

The Create JSF Page dialog is displayed, as shown in Figure 13–2.

Populating a UI Shell

13-6 Developer's Guide

Figure 13–2 Create JSF Page Dialog

3. In the dialog:

■ Enter a file name and directory path.

The file name should follow these patterns:

– [<Product Code><LBA Prefix>]<Role>Dashboard.jspx

– [<Product Code><LBA Prefix>]<Object>Workarea.jspx

■ From the Use Page Template list, select UIShell.

■ Select Create as XML Document (*.jspx).

■ Click OK.

4. The new JSF page is displayed in the editor. Note that the page headers in the
Design view do not display exactly as they will at runtime.

Note: The af:skipLinkTarget tag has been incorporated in the
UIShell.jspx template so developers do not need to code this
required accessibility feature in each page.

Specifically, <af:skipLinkTarget/> has been inserted before the
SingleObjectContextArea facet in the UIShell.jspx file:

<af:panelGroupLayout inlineStyle="width:100%;"
id="soContextParent">
 <af:skipLinkTarget/>
 <af:facetRef facetName="SingleObjectContextArea"/>
</af:panelGroupLayout>

Populating a UI Shell

Implementing the UI Shell 13-7

Now you can add components to the page. Table 13–1 lists the itemNode properties
that can be used for a JSF page. See Section 13.2.1.1, "Working with the Applications
Menu Model" for how to add a menu to the page.

Note: This JSPX page is just the container for the UI Shell template.
All other page content, such as the regional, local, and contextual area
flows, and the dynamic task flows, are defined independently. At
runtime, the menu definition assembles the various parts. All task
flows are loaded into a page created with the UI Shell template by
configuring the Menu file. This is done to control the behavior and the
dynamic loading of task flows at runtime. It also creates the Navigator
menu and Task List menu. See Section 13.5, "Working with the Global
Menu Model" and Section 13.2.1.1, "Working with the Applications
Menu Model."

Table 13–1 itemNode Properties of a JSF Page

ItemNode Property Property Value Description

action Name that has been
assigned to the action.

Go to the page defined by the action.

dataControlScope String The values are shared (the default) or isolated.

This is set at the page level itemNode. When
dataControlScope is set to isolated, the UI Shell
loads the Main Area and Regional Area task flows
with dataControlScope set to isolated. When
dataControlScope is set to shared, the UI Shell
loads the Main Area and Regional Area task flows
with dataControlScope set to shared.

For example:

<itemNode id="itemNode_AppsPanelTests_TabsWA"
label="label_AppsPanelTests_TabsWA"
action="AppsPanelTests_TabsWA"
focusViewId="/AppsPanelTests_TabsWA"
dataControlScope="isolated">

isDynamicTabNavigation True or False This property provides an option to suppress
dynamic tab navigation and just display one Main
Area at a time. To do this, add the following
property and value to the itemNode that represents
your JSPX:

isDynamicTabNavigation="false"

Other menu metadata stays the same. The Task List
menu will continue to render. Clicking a Task link
will replace the current Main Area task flow with
the new one.

Multiple defaultMain definitions are allowed and
will open multiple tabs on page load. The first one
with disclosed="true" will be the tab in focus.

If the property value is not defined, it defaults to
true.

id Unique identifier

Populating a UI Shell

13-8 Developer's Guide

13.2.1.1 Working with the Applications Menu Model
Page and task flow information are local to a particular JDeveloper application or
project and are exposed using the Applications menu model.

An Applications menu is related to a local JSPX file and includes the task lists,
defaultMain, and defaultRegional. A menu is created for each Java EE application.

13.2.1.1.1 How to Create an Applications Menu The following information describes how
to create an ADF menu to access page elements through the Navigator menu on JSF
pages or task flows that are based on the UI Shell template.

Select the JSPX page in the Application Navigator, then right-click and select the
Create Applications Menu option.

This step creates the menu file with one itemNode. The menu file will be named <view
id>_taskmenu.xml. For example, if there is a PageA.jspx, its view ID in the
adfc-config.xmlfile is PageA, and the menu file name is PageA_taskmenu.xml. This
step also should add the ApplicationsMenuModel managed bean entry into the
adfc-config.xml file. The managed bean entry should not have the topRootModel

label String This is what appears in the Work Area title.

Note: For all UIShell work area pages with Data
Visualization Tool (DVT) components in the default
Main Area task flow, and for Home pages with DVT
components, you must create the af:document title
as an Expression Language expression that sets the
title with the default Main Area task flow label, as
shown in this example:

 <af:document id="d1"

title="#{adfBundle['oracle.apps...resource.xy
zGenBundle']['Header.DefaultMain']} -

#{adfBundle['oracle.apps...resource.xyzGenBun
dle']['Header.WorkAreaLabel']} -

#{adfBundle['oracle.apps.common.acr.resource.
ResourcesGenBundle']['Header.OracleApplicatio
ns']}" >

For UI Shell pages with DVT components in their
dynamic Main Area task flows, the title is set on the
AdfRichDocument by UI Shell code for the
openMainTask, closeMainTask and tab switch.

focusId Name of the view activity.

formUsesUpload True or False (default) To set the UI Shell's af:formUsesUpload value to
"true," add the formUsesUpload="true" property to
the itemNode that represents the JSPX (similar to the
way isDynamicNavigation is set.)

regionalAreaWidth Numeric value See Section 13.4.2, "How to Control Regional Area
Task Flows".

isRegionalAreaCollapsed True or False See Section 13.4.2, "How to Control Regional Area
Task Flows".

Table 13–1 (Cont.) itemNode Properties of a JSF Page

ItemNode Property Property Value Description

Populating a UI Shell

Implementing the UI Shell 13-9

managed bean property set. Example 13–1 shows a sample of the generated content in
the PageA_taskmenu.xml file.

Example 13–1 Example of Generated Content in a taskmenu.xml

<?xml version="1.0" encoding="UTF-8" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <!-- This is the page level node -->
 <itemNode id="itemNode_PageA" label="label_PageA" action="adfMenu_PageA"
 focusViewId="/PageA">
 <!-- Optional itemNode for Regional Task List task flow. Your task
menu definition may omit this if your page does not display a Regional Task List.
-->
 <itemNode id="__myProduct_RegionalTaskList"
 focusViewId="/PageA"
 label="#{applcoreBundle.TASKS}" taskType="defaultRegional"

taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/Tasks
List.xml#TasksList"
 disclosed="true"

parametersList="fndPageParams=#{pageFlowScope.fndPageParams}"/>
 <!-- Typical itemNode entry for a task flow -->
 <itemNode id="__myProductTFId"
 focusViewId="/PageA"
 label="#{myBundle.myProductTFxyz}" taskType="defaultMain"
 taskFlowId="<fully qualified-TFid>"
 disclosed="true""/>
 <!-- .. Additional itemNodes for other task flows on PageA -->
 </itemNode>
</menu>

Creating ADF Menus for Multiple JSF Pages
Use this alternate method to create menus for multiple pages at once. This will create
an empty menu on each page.

1. Right-click the adfc-config.xml file and choose Open to display the file in the
JDeveloper editor.

The adfc-config.xml file is located in the following location: <project_name> >
WEB INF.

2. Drag pages from the Application Navigator to the adfc-config.xml file in the
editor.

View nodes that represent the pages or task flows are displayed in the editor.

When you drag the pages or task flows, they automatically are grouped into the
same menu.

3. Right-click the adfc-config.xml file and choose Create Applications Menus. An
empty panel, as shown in Figure 13–3, is displayed.

Figure 13–3 Initial Create Applications Menus Display

Populating a UI Shell

13-10 Developer's Guide

4. Click Find Pages to populate the display with all the JSPX pages that have been
added to the adfc_config.xml file. As shown in Figure 13–4, pages that do not yet
have a menu associated with them will have a checkbox that defaults to being
selected, and pages that already have an associated menu are shown with a
checkmark to the right.

Figure 13–4 Populated Create Applications Menus Display

5. Click OK to automatically create a menu file for each selected page and to update
the task flow with a managed bean.

When you create this menu file, the following occurs:

■ The menu file is generated and placed into the following directory:
ViewController/public_html/WEB-INF/menus

■ The following are generated and appear in the adfc-config.xml file:

– A new control-flow rule

– A managed bean entry

The new menu that contains your pages is now accessible from the Navigator
panel.

13.2.2 How to Add Default Main Area Task Flows to a Page
When a user opens an application, he or she expects something to be displayed
automatically. A task flow in the default Main Area accomplishes this.

To add a task flow to the default Main Area:
1. Choose File > New > Web Tier > JSF > JSF Page Fragment.

The Create JSF Page Fragment dialog shown in Figure 13–5 is displayed.

Note: Menu files will follow the <focusViewId>_taskmenu.xml
naming standard. For example, the menu file for the Example.jspx file
will be /WEB-INF/menus/Example_taskmenu.xml.

Populating a UI Shell

Implementing the UI Shell 13-11

Figure 13–5 Create New JSF Page Fragment Dialog

2. In the Create New JSF Page Fragment dialog:

a. Enter a page fragment name, for example, you might enter def_main.jsff.

The file name should follow these patterns:

– <Object><Function>.jsff

– <Object>.jsff

The page name should convey the object it presents (an employee, a supplier,
an item, a purchase order, an applicant, and so on), and the function being
performed (search, promote, hire, approve, view). For some pages, the object
is sufficient.

For update or create pages, just the object should be used (unless the create
and update pages are different as shown in the examples).

Never give pages step number names, such as PoCreateStep1.jsff or
PoCreateStep2.jsff. Always describe the page function, such as PoDesc.jsff
or PoLines.jsff.

b. From the Use Page Template list, select UIShellMainArea.

3. Click OK.

The Local and Contextual area facets of the page fragment appear in the editor.

4. Choose File > New > JSF > ADF Task Flow to create a default task flow.

The Create ADF Task Flow dialog shown in Figure 13–6 is displayed.

Note: The UIShellMainArea template is only for Main Area task
flows, not Regional Area task flows.

Note: Most applications will have multiple task flows for the
Regional, Local and Contextual areas. For instance, Figure 13–1, "UI
Shell Areas" shows 10 task flows.

Populating a UI Shell

13-12 Developer's Guide

Figure 13–6 Create ADF Task Flow Dialog

5. Ensure that the JSF page fragment file is selected in the Application Navigator and
is displayed in the Edit view.

a. In the Edit view, click the Source tab.

b. Locate the line that resembles <f:facet name="localArea"/>.

c. In the Application Navigator, select an applicable task flow, such as the one
you created in Step 4, to add to the localArea. This should be an XML file
located under ViewController > Web Content > WEB-INF > oracle > apps >
application_name > ui > flow.

d. Drag and drop the appropriate flow from the Navigator pane to immediately
following <f:facet name="localArea"/>.

e. From the Create menu that is displayed, select Region.

The <f:facet name="localArea"/> changes to <f:facet name="localArea">
and code resembling that shown in Example 13–2 will be inserted after it.

Example 13–2 Creating Region localArea Facet Added Code

<af:region value="#{bindings.EmpCreateUpdateFlow1.regionModel}"
 id="EmpCreateUpdateFlow1"/>
</f:facet>

In the Structure window, an af:region entry is added following the f:facet
- localArea entry.

f. Note: This step is optional. If you do not need a contextualArea, go to Step 6.

In the Structure window, select f:facet - contextualArea.

g. In the Component Palette, select ADF Faces > Layout.

h. Click Panel Accordian. An af:showDetailItem entry is created automatically
under af:panelAccordian.

i. In the Source view, find and highlight the new <af:showDetailItem ...>
entry.

Populating a UI Shell

Implementing the UI Shell 13-13

j. In the Application Navigator, select an applicable task flow, such as the one
you created in Step 4, and drag and drop it onto the highlighted entry in the
Source view.

k. From the Create menu that is displayed, select Region.

l. Click OK on the Edit Task Flow Binding dialog that is displayed.

Code resembling that shown in Example 13–3 will be inserted after
<af:showDetailItem ...> and the page fragment in the editor will resemble
Figure 13–7.

Example 13–3 Example Edit Task Flow Binding Code

<af:region value="#{bindings.EmpSummaryTF2.regionModel}"
 id="EmpSummaryTF2"/>

Figure 13–7 ADF Faces Components in Page Fragment Editor

Now that you have created the Main Area page fragment, you must wrap it in an
ADF task flow.

6. In the Create ADF Task Flow dialog:

a. Enter a descriptive name for the task flow.

For example, enter def_main_task-flow-definition.xml.

b. Ensure that the Create as Bounded Task Flow and the Create With Page
Fragments boxes are selected.

Do not change the other default settings.

7. Click OK.

The new task flow is displayed as a blank visual editor in the JDeveloper middle
section.

8. In the Application Navigator, select your recently created page fragment (.jsff
file), and drag and drop it onto the editor.

The page fragment itemNode appears in the editor, as shown in Figure 13–8.

Figure 13–8 Page Fragment itemNode

Populating a UI Shell

13-14 Developer's Guide

9. To load the menu metadata:

a. In the Application Navigator, select the test_menu_taskmenu.xml file that you
created using the ADF Menu Model dialog. For details about creating the
menu, see Section 13.2.1.1.1, "How to Create an Applications Menu."

b. In the test_menu_taskmenu.xml structure view menu tree, shown in
Figure 13–9, right-click the itemNode item and choose Insert inside itemNode
<task_flow_name> > itemNode.

Figure 13–9 Task-Flow Item Node Menu Choices

The Insert itemNode - Common Properties dialog, shown in Figure 13–10, is
displayed.

Figure 13–10 Insert itemNode - Common Properties Dialog

10. To the right of the focusViewId field, click the ellipsis to display the Edit Property
dialog.

In the dialog, choose the ADFc View Activity ID of the page under which you are
registering the task flow, then click OK.

Note: The menu data accomplishes several important jobs for you:

■ It defines properties of the page for you. For instance, it will be
displayed in no-tab mode or with dynamic tabs, and define the
width of the Regional Area.

■ It can create a task list menu for each page.

■ It can create labels for groups of tasks.

Populating a UI Shell

Implementing the UI Shell 13-15

11. Enter a unique ID using this standard format:

<pageID>_<taskFlowName>

This ID example consists of the concatenated page ID (or page name), an
underscore, and the task flow name, for example, ExpenseWorkArea_
CreateExpense.

12. Click Finish.

The new item node is displayed in the structure view, under the menu tree.

13. With the item node selected in the structure view, click the Property Inspector tab,
as shown in Figure 13–11.

Figure 13–11 Task Flow Property Inspector

14. In the label field, enter a label for the task flow, such as CreateExpense.

This label will be the title of the tab that is opened by the Task Type defaultMain.

15. Select test_menu_taskmenu.xml in the Project Navigator tree, and your task
flow in the structure view to display its Property Inspector, or select the Property
Inspector tab.

In the Advanced section of the Property Inspector, enter the following values:

■ Task Type: defaultMain (the task flow is displayed by default whenever the
page is rendered).

The Data Control Scope should have been set to isolated, inside the task flow
definition for any task flow in the menu (defaultMain or dynamicMain) or any
call from openMainTask. See dataControlScope in Table 13–1.

■ Task Flow Id: ID of the task flow to be loaded.

To enter the ID, click the ellipsis to display the Select Task Flow Id dialog,
shown in Figure 13–12, and browse to the task-flow definition location. By
default, following the standard naming structure, the location will be in path_
to_application directory\ViewController\public_html\WEB-INF.

Note: Do not leave this field null. This is the label that will appear in
the tab header when in a tabs page. Even if you are in a no-tabs page
(see Section 13.2.3.4, "Supporting No-Tab Work Areas"), do not leave it
blank because this label will be used in other ways, such as Add to
Favorites, or when the system tracks the Recent Items.

Populating a UI Shell

13-16 Developer's Guide

Figure 13–12 Select Task Flow Id Dialog

Click Open to automatically enter the location in the Task Flow field. The task
flow ID is a concatenation of the file location for the task-flow definition and
the task-flow name. It typically resembles
/WEB-INF/MyTaskFlow.xml#MyTaskFlow. The Property Inspector for the
itemNode should resemble the example shown in Figure 13–11, "Task Flow
Property Inspector".

16. To run the JSPX page, select the page in the Application Navigator, right-click the
page file, and choose Run.

The new page, shown in Figure 13–13, is displayed in a web browser.

Figure 13–13 Rendered Page in Browser

17. Check that the newly rendered page contains one tab whose content is the task
flow that you defined in this procedure.

Populating a UI Shell

Implementing the UI Shell 13-17

The available itemNode properties for Main Area and Regional Area task flows for
application menus are shown in Table 13–2.

Table 13–2 itemNode Properties for Main and Regional Task Flows for Application Menus

itemNode
Property Property Value What Happens on the Rendered Page

taskType Note: taskType can have four
values:

■ dynamicMain

■ defaultMain

■ defaultRegional

■ taskCategory

■ If the value is dynamicMain, the page contains a new link
in the Regional Area. When you click the link, a new tab
with the loaded task opens.

If the no-tabs model is used, no new tab is opened. Rather,
the current Main Area contents are replaced. (See
Section 13.2.3.4, "Supporting No-Tab Work Areas.")

■ If the value is defaultMain, the page contains a tab
already running this task in the Main Area.

If the no-tabs model is used, only one itemNode should be
defined as a defaultMain. (See Section 13.2.3.4,
"Supporting No-Tab Work Areas.")

■ If the value is defaultRegional, the task is loaded into the
Regional Area.

label String Note: When passing parameters, do not leave the label field
null. This is the label that would appear in the tab header
when in a tabs page. Even if you are in a no-tabs page (see
Section 13.2.3.4, "Supporting No-Tab Work Areas"), do not
leave it blank because this label will be used in other ways,
such as Add to Favorites, or when the system tracks the Recent
Items.

taskFlowId ID of the task flow to be
loaded.

The task flow ID is a
concatenation of the file
location for the task flow
definition, and the task flow
name. For example:

/WEB-INF/MyTaskFlow.xml#My
TaskFlow

reuseInstance
(optional)

True or False If True, when the link is clicked a second time, the tab is
brought to the top.

A False value means that clicking the corresponding task link
opens new tabs.

However, if the no-tabs model is used, no new tab is opened.
Rather, the current Main Area contents are replaced. (See
Section 13.2.3.4, "Supporting No-Tab Work Areas.")

Populating a UI Shell

13-18 Developer's Guide

keyList String Important: keyList is used with the task flow ID to identify
the target tab in the Main Area. As such, keyList is only
applicable in dynamic tabs mode, and is ignored in no-tabs
mode.

keyList provides a way to identify a task flow instance. When
reuseInstance is true, use the specified keyList in addition to
the task flow ID to identify the target tab.

The keyList parameter has been implemented for the
following FndUIShellController data control methods:

■ openMainTask

■ discloseRegionalTask

■ collapseRegionalTask

■ navigate

■ openSubTask

In dynamic tabs mode, when looking for a match of an existing
tab, these APIs will first look for any instances of the task flow
that is already open, which has the same task flow ID as the
one passed into them as the parameter. In addition, it will
compare the keyList values, such that the existing task flow
will be picked only if its keyList values match the ones
specified in the keyList parameter.

It does not matter if the task flow parameters are the same or
different. If the keyList is not set in the menu metadata, you
can reuse a tab only if you pass in a null keyList.

loadPopup True or False See Section 13.2.3.5, "Implementing the Task Popup."

This provides a way to load the task flow into a Popup when
the user clicks one of the Task List links.

loadDependentFl
ow

True or False The no-tab navigation mode can load a Main Area task flow
and a dependent task flow simultaneously, while displaying
only one flow at a time. (See Section 13.2.3.4, "Supporting
No-Tab Work Areas.")

The UI Shell is limited to 12 task flows: 10 tabs in tab mode; 1
tab in no-tab mode and 1 dependent in no-tab mode.

Dependent Flow is applicable only to the no-tab navigation
model. Instead of having only one region for the no-tab
navigation model, there are two regions: one for the main task
flow and another for the dependent flow. These regions are in
a switcher, so that only one is visible at a time. If a dependent
task flow is loaded, only the dependent task flow region is
shown, and the main task flow region is hidden. When the
dependent task flow is closed, the main task flow region is
redisplayed, with its state preserved.

When loadDependentFlow is true, the openMainTask API will
load the target task flow in the dependent region. Loading a
new task flow in the main task flow will close both the existing
main task flow and, if any, the existing dependent task flow.
Loading a new task flow in the dependent task flow will
replace only the existing dependent task flow, if any, and leave
the main task flow intact.

forceRefresh True or False If forceRefresh = true, the contents are refreshed. If
forceRefresh is set to false, if the task flow parameters are
identical, no refresh will occur, but if they are different, the
task flow is refreshed using the new parameters.

Table 13–2 (Cont.) itemNode Properties for Main and Regional Task Flows for Application Menus

itemNode
Property Property Value What Happens on the Rendered Page

Populating a UI Shell

Implementing the UI Shell 13-19

13.2.3 How to Add Dynamic Main Area and Regional Area Task Flows to a Page
Unless otherwise noted, follow the procedure outlined in Section 13.2.2, "How to Add
Default Main Area Task Flows to a Page," to insert the appropriate itemNode properties
listed inTable 13–2.

■ To add a dynamic Main Area task flow, set taskType="dynamicMain".

■ To add a default Regional Area task flow, set taskType="defaultRegional".

stretch True (default) or False When the UIShellMainArea stretch attribute is set to true,
contents under localArea will be stretched when rendered in
the Local Area. When set to false, contents under
localAreaScroll will not be stretched, but will be rendered
with a scroll bar, if necessary, in the Local Area. (This facet is
contained within an af:panelGroupLayout with
layout=scroll.)

disclosed
(optional)

True or False All the task flows will be rendered in the Main Area. The task
flow that has disclosed set to true will be in focus.

More than one defaultRegional task can have a true
disclosed value, because more than one detail item may be
disclosed at a time under a panelAccordion component. If the
disclosed value is true, the Regional Area is expanded. If the
disclosed value is false, the Regional Area is collapsed.

active True or False (default) Task flow definitions use conditional activation. There are a
number of cases in which Oracle Fusion Applications run with
the Regional Area collapsed by default. Unless the user
expands it, there is no need to activate the task flows for the
Regional Area. However, some use cases depend on the task
flow that is under the Regional Area being active even when
collapsed. In this case, the active attribute can be set in the
property inspector for the item node. active has three possible
values:

■ default <False>

■ False

■ True

If you require that your task flows be activated or run even
though they are not displayed, you must change the active
property on the itemNode to True.

taskFlow The Task List is exposed as a task flow. See Section 13.2.4,
"How to Pass Parameters into Task Flows from Tasks List."

destination String The destination attribute is supported on the item nodes for
Task List; that is, for item nodes that have the task type set to
dynamicMain. The destination attribute is intended only for
navigating to an external web site. When it is defined, it takes
precedence over all other attributes. Example of the menu
data:

<itemNode id="__ServiceRequest_itemNode_externalUrl"
 destination="http://www.yahoo.com"/>

Table 13–2 (Cont.) itemNode Properties for Main and Regional Task Flows for Application Menus

itemNode
Property Property Value What Happens on the Rendered Page

Populating a UI Shell

13-20 Developer's Guide

13.2.3.1 Adding the Tasks List Menu to the Page
A tasks list is not a default widget as part of the UI Shell Regional Area. A tasks list is
packaged as an ADF Controller task flow. You must manually add this task flow as you
would any other defaultRegional task.

Specify the tasks list task flow as a defaultRegional task explicitly. If you do not do
this, the tasks list does not render.

Add the following entry to your menu.xml file prior to the item node of tree structure
and tree versions:

<itemNode id="__YourPage_itemNode__FndTasksList"
 focusViewId="/YourPage" label="#{applcoreBundle.TASKS}"
 taskType="defaultRegional"

Note: The taskFlowId value path must appear in a single line to avoid an exception
during runtime.

 taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/patterns/
 uishell/ui/publicFlow/TasksList.xml#TasksList"
 disclosed="true"
 parametersList="fndPageParams=
 #{pageFlowScope.fndPageParams}"/>

■ Id must be unique within the menu metadata.

■ focusViewId is the focusViewId of your page.

■ Set label to the default label provided by the Oracle Fusion Middleware
Extensions for Applications (Applications Core).

■ taskType should be defaultRegional.

■ taskFlowId should point to the tasks list task flow provided by Applications Core.

■ The disclosed attribute is usually set to true. Although, it can be set to false if
you do not want to disclose tasks list by default.

■ parametersList should set fndPageParams as previously shown so that this object
is available in the pageFlowScope of the tasks list task flow. This context is
necessary for Single Object WorkArea. For more information, see Section 15.4,
"Using the Single Object Context Workarea."

13.2.3.2 Grouping Tasks in the Tasks Pane into a Category
The Task Category is a label that is used to group tasks in a task list.

1. In the Structure window for the menu, right-click the page itemNode whose
taskType value is dynamicMain and choose Surround with... .

The Surround dialog is displayed.

2. Select itemNode and click OK.

The Insert Item Node dialog page opens to the Common properties tab.

3. In the Common properties tab, enter these values:

■ id field: Concatenation of the page ID and a short category name, using the
following format, is suggested:

pageId_categoryName

For example, you might enter: ExpenseWorkArea_NewExpense.

■ focusViewId: Click the ellipsis to open the Advanced Editor.

Populating a UI Shell

Implementing the UI Shell 13-21

Select the focusViewId of the page.

4. Click Finish.

5. In the Property Inspector for itemNode - ExpenseWorkArea_NewExpense, enter
these values:

■ label: Name of the label, such as NewExpense.

Do not leave this field blank. This is the label that would appear in the tab
header when in a tabs page. Even if you are in a no-tabs page (see
Section 13.2.3.4, "Supporting No-Tab Work Areas"), do not leave it blank
because this label will be used in other ways, such as Add to Favorites or
when the system tracks the Recent Items.

■ Task Type: taskCategory

6. Run the page by right-clicking the JSPX page file in the Projects tree view and
choosing Run

Confirm that the page contains task links arranged by category. The Task List is in
the left Regional Area of the page. Items in the Task List are bulleted to make it
clear when a line wraps.

13.2.3.3 Linking to a Task Flow in a Different Page
The Tasks Pane can link to a task flow in a different JSPX and pass page-level and
task-level parameters.

The navigateViewId attribute supports this feature.

Example 13–4 shows a sample of the metadata for a link in a Task List that links to
another page.

Example 13–4 Example Metadata for a Link in a Task List that Links to Another Page

<itemNode id="__ServiceRequest_itemNode__toTestPage1"
 focusViewId="/ServiceRequest" label="Go to different page"
navigateViewId="/TestPage1"
 taskType="dynamicMain"
taskFlowId="/oracle/apps/fnd/applcore/patterns/demo/SRTree.xml#SRTree"/>

13.2.3.4 Supporting No-Tab Work Areas
You can suppress dynamic tab navigation and just display one Main Area at a time. To
do this, add isDynamicTabNavigation="false" to the itemNode that represents your
JSPX page, as shown in Example 13–5.

Example 13–5 Implementing a No-Tab Work Area

<itemNode focusViewId="/SelTestWorkarea" id="stp1" taskType="dynamicMain"
 taskFlowId="/WEBINF/oracle/.../ProductMainFlow.xml#ProductMainFlow"
 label="#{adfBundle
 ['oracle.apps....SelTestWorkarea_taskmenuBundle'].DEFINE_PRODUCT}"
 isDynamicTabNavigation="false"/>

Note that the default value of isDynamicTabNavigation is true.

Note: The label should be defined in a resource bundle so it can be
translated more readily.

Populating a UI Shell

13-22 Developer's Guide

You also can set the no-tab mode declaratively in the Property Inspector:

1. Select the itemNode from the Structure window.

2. Go to Property Inspector.

3. Select Advanced > Page > Dynamic Tab Navigation. Selecting the Page tab lets
you set attribute values for page-level item nodes.

4. Set the Dynamic Tab Navigation property to false.

Other menu metadata stay the same. Tasks List will continue to render. Clicking a
Tasks Link will replace the current Main Area task flow with the new one.

13.2.3.5 Implementing the Task Popup
The Task Popup provides a way for you to:

■ Load a task flow into a popup when the user clicks one of the Tasks List links.

■ Cancel from the popup or open a new Main Area task flow, passing in parameter
values from the popup.

Implementation Notes
The UI Shell provides an af:popup component with a modal af:panelWindow as its
immediate child, which would contain a dynamic region defined in it. When selected
by the user, the UI Shell will load the task flow into the dynamic region, and show the
modal af:popup panelWindow without any buttons. Therefore, the task flow must
include the OK and Cancel buttons that are used to open a dynamic tab and dismiss
the popup, respectively. The dialog title will be set according to the label mentioned in
the menu metadata of the dynamic task link. There is a refresh condition set on the
dynamic region that refreshes the task flow and reloads it each time the popup is
opened.

Implementation Notes
Remember the following when you implement the Task Popup feature:

■ For a dynamicMain task that you would like to load into the popup, specify the
loadPopup property as true. For example, as shown in Example 13–6, the ChooseSR
task flow would be loaded in a popup when the user clicks its link in the Tasks
List. The label that is mentioned will be displayed as the dialog title of the popup
that starts the task flow.

Example 13–6 Example Use of loadPopup Property

<itemNode id="__ServiceRequest_itemNode__ChooseSR"
 focusViewId="/ServiceRequest" label="Choose SR"
 taskType="dynamicMain" taskFlowId="/WEB-INF/ChooseSR.xml#ChooseSR"
 parametersMap="#{pageFlowScope.Mybean.Map}"
 loadPopup="true"/>

■ You can define any components within this task flow, except the af:popup and its
child components, such as af:dialog, af:panelWindow, and af:menu.

■ You cannot have a UIShellMainArea page template or any other templates inside
the popup task flow.

■ You must add the necessary buttons as part of the task flow. For example, if the
task flow has a simple .jsff file, it should contain OK and Cancel buttons, along
with other components.

Populating a UI Shell

Implementing the UI Shell 13-23

■ Create a managed bean to set the action listener for the Cancel button. See
Section 17.4.1.3, "Implementing OK and Cancel Buttons in a Popup."

■ Create another method for the OK button that calls the method in Example 17–5,
and any additional processing logic. The common use case would be opening a
new task in the Main Area by using the openMainTask API. For example, you can
bind the OK button to a managed bean and add your own action listeners. See
Section 17.4.1.3, "Implementing OK and Cancel Buttons in a Popup."

■ You then can pass the parameters directly from the managed bean to the
openMainTask API bindings for the popup task flow page to open a new dynamic
tab. The menu data entries for parameters will not have any bearing on the
dynamic taskFlow tab that they are loading in the Main Area. The details of that
task flow should come from the openMainTask API that is bound to the OK button.

13.2.4 How to Pass Parameters into Task Flows from Tasks List
Item nodes with a taskType of dynamicMain, defaultMain, and defaultRegional have
parameter support. In addition to specifying the taskFlowId to load when the user
clicks a task flow link, you can specify which parameters to pass into that task flow.
This is accomplished with the parametersList and methodParameters properties on
the itemNode.

For the itemNode where you would like to specify parameter passing, add the
parametersList property. The value of this property is a delimited list of parameter
name-value pairs that will resemble Example 13–7.

Example 13–7 Using the parametersList Property

<itemNode id="__ServiceRequest_itemNode__SRDefault" focusViewId="/ServiceRequest"
label="Pending Service Requests"
taskType="dynamicMain"
taskFlowId="/oracle/apps/fnd/applcore/patterns/demo/SRTable.xml#SRTable"
parametersList="param1=value1;param2=value2;param3=#{ELForValue3}"/>

The methodParameters parameter can be used to pass a Java object into the task flow
that is specified in the taskFlowId parameter. Use the setCustomObject() method in
FndMethodParameters to set the Java object.

Example of Passing a Java Object Using openMainTask
Bind the methodParameters parameter value to a managed bean property.
Example 13–8 shows the methodAction binding in the page definition of the page
fragment that calls openMainTask. Also see Table 13–2, " itemNode Properties for Main
and Regional Task Flows for Application Menus".

Example 13–8 methodAction Binding to Call openMainTask

 <methodAction id="openMainTask" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="openMainTask"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.openMainTask_
FndUIShellController_dataProvider_openMainTask_result">
 <NamedData NDName="taskFlowId"

NDValue="/WEB-INF/TestPanelSplitterTaskFlow#TestPanelSplitterTaskFlow"
 NDType="java.lang.String"/>
 <NamedData NDName="keyList" NDType="java.lang.String"/>
 <NamedData NDName="parametersList" NDValue="" NDType="java.lang.String"/>

Populating a UI Shell

13-24 Developer's Guide

 <NamedData NDName="label" NDValue="Test App Panel"
 NDType="java.lang.String"/>
 <NamedData NDName="reuseInstance" NDType="java.lang.Boolean"/>
 <NamedData NDName="forceRefresh" NDType="java.lang.Boolean"/>
 <NamedData NDName="loadDependentFlow" NDValue=""
 NDType="java.lang.Boolean"/>
 <NamedData NDName="methodParameters"
NDValue="#{TestOpenMainTaskMBean.fndMethodParams}"

NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.bean.FndMethodParameters"/>
 </methodAction>

Code in the managed bean for passing a hashmap to the task flow would resemble
Example 13–9. A hashmap is a data structure that uses a hash function to map
identifying values, known as keys (such as a person's name), to their associated values
(such as their telephone number).

Example 13–9 Example Code for Passing a Hashmap

private FndMethodParameters fndMethodParams;
 ...
 public void setRichCommandLink1(RichCommandLink richCommandLink1)
 {
 this.richCommandLink1 = richCommandLink1;
 FndMethodParameters methodParams = new FndMethodParameters();
 HashMap testHashMap = new HashMap();
 testHashMap.put("param1", "12345");
 testHashMap.put("param2", "67890");
 methodParams.setCustomObject(testHashMap);
 fndMethodParams = methodParams;
 }

Then, in the managed bean of the task flow, the Java object can be read, as shown in
Example 13–10.

Example 13–10 Reading Java Object in Managed Bean

public String getTestValue()
 {
 Map pageFlowScope =
 AdfFacesContext.getCurrentInstance().getPageFlowScope();
 Object custom = pageFlowScope.get("fndCustomObject");
 String outputTextString = "";
 if (custom != null && custom instanceof HashMap)
 {
 HashMap myHashMap = (HashMap)custom;
 String temp1 = (String)myHashMap.get("param1");
 String temp2 = (String)myHashMap.get("param2");
 outputTextString = temp1 + temp2;
 }
 testValue = outputTextString;
 return testValue;
 }

The testValue parameter is bound to an af:outputText value attribute, such as
<af:outputText value="#{TestPanelSplitter1MBean.testValue}"/>, in the page
fragment of the task flow.

Implementing Application Menu Security

Implementing the UI Shell 13-25

13.2.5 How to Open Data Files from a Tasks List Link
The UI Shell implements this feature by using the URLView activity that is a task flow
component of ADF. URLView generally is used to redirect the current request state of
the application to an external or internal URL. With UI Shell, this URLView activity is
only being used to open files that are internal to the current web application.

Therefore, the only input that the task list link will need is the internal path (within the
webApp) of the file. After the path is provided to UI Shell, it will determine the
current contextual root of the application and append it to the internal path of the file.
After the Universal Resource Identifier (URI) for the file is generated, this is set on the
URLView activity and an action expression is set on the task link to open the URL view.
UI Shell also must call an actionEvent JavaScript method on the client side that will
not allow the page to lose its current state upon redirection from the URLView activity.

Implementation Notes
For a dynamicMain task item that you would like to use to open the data file, there is a
property called filePath in the Menu panel for the UI Shell page XML file. To enable
this property in the Menu panel, during design time, the task type of the itemNode
must be dynamicMain. The file URI path then should be specified against the filePath
attribute in the Menu panel, as shown in Example 13–11.

Example 13–11 Specifying the File URI Path

<itemNode id="__ServiceRequest_itemNode__ChooseSR"
 focusViewId="/ServiceRequest" label="Download File"
 taskType="dynamicMain" filePath="/WEB-INF/oracle/apps/Accounts.xls" />

You can specify any file type, such as xls, doc, pdf, txt, rtf, and ppt, that is within the
application.

13.3 Implementing Application Menu Security
Security of menus has two parts: actual access to the page or task flow, and the
rendering of the menu itself. Any page or task flow is protected to run for a user only
if that user has access to run the page or task flow. Directions for setting this up are in
the "Adding Security to an Oracle Fusion Web Application" chapter in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

Application menus and task list menus will automatically have their page security
checked by the menu utilities. If the user does not have access, the menu entry will not
be rendered. If the following three conditions are true, security checks if a logged-in
user has view privilege for a given task flow:

■ The application has enabled authorization.

■ The taskType is dynamicMain for the itemNode.

■ The taskFlowId attribute is defined in the itemNode.

If any one of these conditions is not true, security is not checked and the itemNode will
be protected only by the rendered attribute.

Note: You can only open data files that are part of your webApp,
such as /oracle/apps/fin/acc/file1.xls. This feature supports only
opening data files through the task list. Any other URI paths, such as a
JSPX or a JSF page, are not supported.

Implementing Application Menu Security

13-26 Developer's Guide

Application menus can have a security Expression Language expression on the
rendered attribute that, if it returns false, will not render the menu entry. To do this, set
the rendered attribute of the menu entry to an expression that evaluates anything. For
instance, if the task list is to edit certain tax forms, this could be a business rule to hide
or show links based on whether or not the customer is a nonprofit company. If it
evaluates to false, the menu will not appear. For more information on all the security
expressions, see the "Adding Security to an Oracle Fusion Web Application" chapter in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

If your UI Shell pages are secured by ADF Security, you must add a policy similar to
that in Example 13–12 to the jazn-data.xml file and the system-jazn-data.xml file.

Example 13–12 Adding a Security Policy to the jazn-data.xml File

<grant>
 <grantee>
 <principals>
 <principal>

<class>oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl</class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>oracle.apps.fnd.applcore.uicomponents.view.pageDefs.oracle_apps_
fnd_applcore_templates_UIShellPageDef</name>
 <actions>view</actions>
 </permission>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>

<name>/oracle/apps/fnd/applcore/patterns/uishell/MainArea.xml#MainArea</name>
 <actions>view</actions>
 </permission>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>

<name>/oracle/apps/fnd/applcore/patterns/uishell/RegionalArea.xml#RegionalArea</na
me>
 <actions>view</actions>
 </permission>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>

<name>/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/TasksList.x
ml#TasksList</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

Task Flow Example
Bounded task flows are secure by default, and require the policy shown in
Example 13–13.

Controlling the State of Main and Regional Area Task Flows

Implementing the UI Shell 13-27

Example 13–13 Required Policy for Bounded Task Flows

<permission> <class>oracle.adf.controller.security.TaskFlowPermission</class>
<name>/WEB-INF/audit-expense-report.xml#audit-expense-report</name>
<actions>view</actions></permission>

If the policy is missing, then framework-level checks will prevent access to the task
flow (typically by throwing an error).

But how would a menu item or command link disable or hide itself based on a
preliminary check of the same permission? Example 13–14 shows the generic
Expression Language expression being used to perform a preliminary check of the
Task Flow Permission. Note that this is only needed for an itemNode with
taskType="defaultMain" or "defaultRegional". The security check is performed
automatically for an itemNode with taskType="dynamicMain" (that is, what is in the
tasks list).

Example 13–14 Generic Expression Language Expression Used for Task Flow
Permission Preliminary Check

rendered =
"#{securityContext.userGrantedPermission['permissionClass=oracle.adf.controller.se
curity.TaskFlowPermission;
 target=/WEB-INF/audit-expense-report.xml#audit-expense-report;
 action=view']}"

Example 13–15 shows the task flow-specific Expression Language expression.

Example 13–15 Task Flow-specific Expression Language Expression Used for Task Flow
Permission Preliminary Check

rendered="#{securityContext.taskflowViewable[/WEB-INF/audit-expense-report.xml#aud
it-expense-report]}"

Note that both of these checks actually go directly against the policy store; that is, they
do not query the task flow definition. This avoids the overhead of loading a large
number of ADF artifacts to render links and menus.

13.4 Controlling the State of Main and Regional Area Task Flows
UI Shell tasks to open or close a Main Area tab are exposed as data control methods so
that you can create such UI artifacts through drag and drop. You do not need to create
your own data control methods and manually raise Contextual Events.

13.4.1 How to Control Main Area Task Flows
Data control APIs are:

■ FndUIShellController.openMainTask

Note: When passing parameters, do not leave the label field null.
This is the label that would appear in the tab header when in a tabs
page. Even if you are in a no-tabs page (see Section 13.2.3.4,
"Supporting No-Tab Work Areas"), do not leave it blank because this
label will be used in other ways, such as Add to Favorites, or when
the system tracks the Recent Items.

Controlling the State of Main and Regional Area Task Flows

13-28 Developer's Guide

■ FndUIShellController.closeMainTask. See Section 13.4.1.1, "closeMainTask History"
for more information.

To open or close a Main Area tab, drag and drop the appropriate data control method
to create the UI functionality. Having specified the parameter values for these
methods, user clicks will prompt the UI Shell to react accordingly.

To use the openMainTask data control method:
1. Expand the Data Controls and select the openMainTask item, as shown in

Figure 13–14.

Figure 13–14 Selecting openMainTask from Data Controls

2. Drag openMainTask and drop it onto the page fragment. When you do, the
Applications Context menu shown in Figure 13–15 is displayed so you can choose
one of the three options.

Figure 13–15 Selecting an Open Option from the Applications Context Menu

To use the closeMainTask data control method:
1. Expand the Data Controls and select the closeMainTask item, as shown in

Figure 13–16.

Controlling the State of Main and Regional Area Task Flows

Implementing the UI Shell 13-29

Figure 13–16 Selecting closeMainTask from Data Controls

2. Drag closeMainTask and drop it onto the page fragment. When you do, the
Applications Context menu shown in Figure 13–17 is displayed so you can choose
one of the three options.

Figure 13–17 Selecting a Close Option from the Applications Context Menu

Two APIs shown in Example 13–16 open and close a Main Area tab.

Example 13–16 APIs Open and Close a Main Area Tab

/**
 * Opens a Main Area task.
 *
 * @param taskFlowId Task flow to open
 * @param keyList Key list to locate the task flow instance.
 * This is a semicolon-delimited key or key-value pair.
 * For example, "key1;key2=value2". If only the key is specified,
 * the value is picked up from parametersList with the same
 * name as the key.
 * @param parametersList Parameters list for the task flow.
 * This is a semicolon-delimited String
 * of name-value pairs. For example,
 * "param1=value1;param2=value2".
 * @param label Label for the task flow
 * @param reuseInstance Default true. If true, refocus an existing instance
 * of the task flow, if such exists, without
 * opening a new instance of the task flow. If false,
 * always open a new instance of the task flow.
 * @param forceRefresh Default false. If false, task flow reinitialization
 * depends on whether some parameters are passed into parametersList, where
 * the presence of parameter values causes reinitialization and the absence of
 * parameter values does not. forceRefresh true always causes reinitialization
 * of the task flow regardless of the value for parametersList.
 * @param loadDependentFlow Effective only in no-tab navigation model.
 * Defaults to false. When set to true, the specified
 * task flow is loaded into the dependent region
 * of the no-tab navigation model, preserving the
 * state of the main flow.

Controlling the State of Main and Regional Area Task Flows

13-30 Developer's Guide

 * @param methodParameters From Drop 6 Build 7, this can be used for passing
 * a Java object into the task flow that is specified
 * in the taskFlowId parameter. Use setCustomObject()
 * in FndMethodParameters for setting the Java object.
 * @return For internal Contextual Event processing
 */
 public FndMethodParameters openMainTask(String taskFlowId,
 String keyList,
 String parametersList,
 String label,
 Boolean reuseInstance,
 Boolean forceRefresh,
 Boolean loadDependentFlow,
 FndMethodParameters methodParameters)

 public FndMethodParameters closeMainTask(FndMethodParameters methodParameters)

Bind the methodParameters parameter value to a managed bean property.
Example 13–17 shows the methodAction binding in the page definition of the page
fragment that calls the openMainTask method.

Example 13–17 methodAction Binding in Page Definition of Page Fragment That Calls
openMainTask

 <methodAction id="openMainTask" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="openMainTask"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.openMainTask_
FndUIShellController_dataProvider_openMainTask_result">
 <NamedData NDName="taskFlowId"

NDValue="/WEB-INF/TestPanelSplitterTaskFlow#TestPanelSplitterTaskFlow"
 NDType="java.lang.String"/>
 <NamedData NDName="keyList" NDType="java.lang.String"/>
 <NamedData NDName="parametersList" NDValue="" NDType="java.lang.String"/>
 <NamedData NDName="label" NDValue="Test App Panel"
 NDType="java.lang.String"/>
 <NamedData NDName="reuseInstance" NDType="java.lang.Boolean"/>
 <NamedData NDName="forceRefresh" NDType="java.lang.Boolean"/>
 <NamedData NDName="loadDependentFlow" NDValue=""
 NDType="java.lang.Boolean"/>
 <NamedData NDName="methodParameters"
NDValue="#{TestOpenMainTaskMBean.fndMethodParams}"

NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.bean.FndMethodParameters"/>
 </methodAction>

Example 13–18 shows code in a managed bean for passing a hashmap to the task flow.

Example 13–18 Sample Code in a Managed Bean for Passing a Hashmap to the Task
Flow

private FndMethodParameters fndMethodParams;
 ...
 public void setRichCommandLink1(RichCommandLink richCommandLink1)
 {
 this.richCommandLink1 = richCommandLink1;
 FndMethodParameters methodParams = new FndMethodParameters();
 HashMap testHashMap = new HashMap();

Controlling the State of Main and Regional Area Task Flows

Implementing the UI Shell 13-31

 testHashMap.put("param1", "12345");
 testHashMap.put("param2", "67890");
 methodParams.setCustomObject(testHashMap);
 fndMethodParams = methodParams;
 }

Then, in the managed bean of the task flow, the Java object can be read, as shown in
Example 13–19.

Example 13–19 Reading Java Object in a Managed Bean

public String getTestValue()
 {
 Map pageFlowScope =
 AdfFacesContext.getCurrentInstance().getPageFlowScope();
 Object custom = pageFlowScope.get("fndCustomObject");
 String outputTextString = "";
 if (custom != null && custom instanceof HashMap)
 {
 HashMap myHashMap = (HashMap)custom;
 String temp1 = (String)myHashMap.get("param1");
 String temp2 = (String)myHashMap.get("param2");
 outputTextString = temp1 + temp2;
 }
 testValue = outputTextString;
 return testValue;
 }

The testValue parameter is bound to an af:outputText value attribute, such as
<af:outputText value="#{TestPanelSplitter1MBean.testValue}"/>, in the page
fragment of the task flow.

13.4.1.1 closeMainTask History
The dynamic tabs mode tracks the last tab that was displayed before the current tab.
When the current tab is closed, that last tab is brought back into focus.

In no-tabs mode, a stack of all the task flows that were opened is maintained, along
with the parameter values. When the current task is closed, the task flow (with its
original parameters) that was open before the current one, is reinitialized.

There are two ways in which the previous tab information is set for a given tab. When
a new tab is opened, the tab that was in focus is the new tab's previous tab. When the
user clicks a tab UI, the last tab that had the focus becomes the current tab's previous
tab.

The MainAreaHandler.handleOpenMainTaskEvent method has a mechanism to handle
the new tab. The managed bean for the tab adds an additional property for the
previous tab. When a new tab is configured to be opened, the current tab is set as the
previous tab for the managed bean for the new tab.

A disclosure listener, the MainAreaBackingBean.setLastDisclosedItem, handles user
clicks in the tab UI. When the user clicks a tab, two events occur: one for the tab that is
going out of focus, and one for the tab that is coming into focus. First, during the
out-of-focus event, the tab that is going out of focus is captured in the managed bean's
instance variable. Then, during the in-focus event, that instance variable's value is set
as the previous tab in the managed bean for the newly focused tab.

Through user clicks, it is possible to create a circular dependency in which TabA's
previous tab is TabB, whose previous tab is TabA. In this case, when TabA is closed,

Controlling the State of Main and Regional Area Task Flows

13-32 Developer's Guide

TabB would come into focus. However, when TabB is consequently closed, TabA
would have to be focused, but it has already been closed. This corner case is handled
by moving the focus to the first tab in the Main Area.

No-Tab Navigation
To keep track of all task flows that have been opened, a Stack instance variable is
introduced in the MainAreaHandler method. When a new task flow is opened, the task
flow ID and its associated parameter values are added to the stack.

Having this information, the call to closeMainTask pops the stack to get the last task
flow ID and its parameter values that were displayed, and reinitializes the Main Area
with that task flow and parameter information.

 See also Section 13.2.3.4, "Supporting No-Tab Work Areas."

13.4.2 How to Control Regional Area Task Flows
The UI Shell exposes the means to control the disclosure state of the Regional Area as a
whole, and the disclosure state of individual panels within the Regional Area panel
accordian.

Declarative support: Allows you to specify the initial state of the following on loading
a Work Area JSPX page.

■ Within the Regional Area, whether or not a Regional Area task panel is collapsed
or disclosed.

■ A given Regional Area panel that is disclosed on initial rendering of the page
should reflect its assigned pixel height to determine how much screen real estate it
occupies.

Programmatic support: Allows you to control the initial or subsequent state of the
following within a Work Area JSPX page.

■ By default, the disclosure state is driven by what is specified declaratively.
However, after initial page load, you can override the declarative default and, for
example, render the Work Area with the Regional Area collapsed (overriding the
declarative setting of rendering that Work Area with the Regional Area disclosed).

■ Disclosing a collapsed Regional Area splitter programmatically in response to a UI
action by the user (such as a button click or menu selection).

Declarative support is provided using attributes exposed on the respective item node
in the Menu Model.

For regional panels:

There are separate APIs that expose parameters to refresh the task flow and set the
disclosure state for the showDetail items in the panel accordian. The showDetail items
are identified by the task flow ID specified.

Implementation Notes
■ Specify the default values for the regional or main splitter position and collapsed

state in the menu for the item node that represents the page, using the
regionalAreaWidth and isRegionalAreaCollapsed properties. A sample entry in
the menu file resembles Example 13–20.

Example 13–20 Sample Menu File Entry

<itemNode id="itemNode_SvcCenter"
 label="#{adfBundle['oracle.apps.fnd.applcore.patterns.demo.patterns_

Controlling the State of Main and Regional Area Task Flows

Implementing the UI Shell 13-33

demo_menuBundle'].SERVICE_CENTER}"
 action="adfMenu_SvcCenter" focusViewId="/SvcCenter"
 isDynamicTabNavigation="false" regionalAreaWidth="250"
isRegionalAreaCollapsed="false">

■ If these properties are not set in the menu for the top-level item node that
represents the page, then these default values are used:

regionalAreaWidth="256"
isRegionalAreaCollapsed ="false"

■ For programmatic control, drag and drop one of the following corresponding
methods from the FndUIShellController data control.

– discloseRegionalArea

– collapseRegionalArea

– setRegionalAreaWidth

Two APIs shown in Example 13–21 are exposed as data control methods under
FndUIShellController data control.

Example 13–21 APIs Exposed as Data Control Methods Under FndUIShellController

/**
 * Discloses a Regional Area task.
 *
 * @param taskFlowId Task flow to disclose
 * @param keyList Key list to locate the task flow instance.
 * This is a semicolon-delimited keys or key-value pair.
 * For example, "key1;key2=value2". If only the key is specified,
 * the value is picked up from the parametersList with the same
 * name as the key.
 * @param parametersList Parameters list for the task flow.
 * This is a semicolon-delimited String
 * of name-value pairs. For example,
 * "param1=value1;param2=value2".
 * @param label Label for the task flow*
 * @param forceRefresh Default false. If false, task flow reinitialization
 * depends on whether some parameters are passed into parametersList, where
 * the presence of parameter values causes reinitializaiton and the absence of
 * parameter values does not. forceRefresh true always causes reinitialization
 * of the task flow regardless of the value for parametersList.

 * @return For internal Contextual Event processing
 */
 public FndMethodParameters discloseRegionalTask(String taskFlowId,
 String keyList,
 String parametersList,
 String label,
 Boolean forceRefresh,
 FndMethodParameters
methodParameters)

 /**
 * Collapses a Regional Area task.
 *
 * @param taskFlowId Task flow to collapse
 * @param keyList Key list to locate the task flow instance.
 * This is a semicolon-delimited list of key-value pairs.
 * For example, "key1=value1;key2=value2".

Controlling the State of Main and Regional Area Task Flows

13-34 Developer's Guide

 * @return For internal Contextual Event processing
 */
 public FndMethodParameters collapseRegionalTask(String taskFlowId,
 String keyList,
 FndMethodParameters methodParameters)

13.4.3 How to Control the State of the Contextual Area Splitter
The UI Shell provides the means to control the disclosure state of the Contextual Area
through either declarative or programmatic support.

Declarative support lets you specify the initial state when loading a Work Area JSPX
page. It determines whether or not the Contextual Area (as a whole) is collapsed or
disclosed.

Programmatic support lets you control the initial or subsequent state of the Contextual
Area within a Work Area JSPX page.

■ By default, the disclosure state is driven by what is specified declaratively.
However, after the initial page load, you can override the declarative default and,
for example, render the Work Area with the Contextual Area collapsed (overriding
the declarative setting of rendering that Work Area with the Contextual Area
disclosed).

■ Disclosing the collapsed Contextual Area splitter programmatically in response to
a UI action by the user, such as a button click or menu selection.

Samples of Expected Behavior
■ A Work Area JSPX page loads with the Contextual Area collapsed or disclosed

when the page renders, based on the declarative setting. If the Work Area is
loaded as a result of a Main Menu invocation, then declarative options always are
used for the disclosure state.

■ If a Work Area loads as a result of a page navigation from another Work Area,
programmatically set options may override declarative settings.

Implementing the Contextual Area Splitter
Follow these steps to implement the Contextual Area splitter:

Notes:

■ Declarative support allows the inflexibleHeight property to
control the pixel height of the Regional Area panel. Programmatic
support does not have this allowance.

■ Programmatic support allows the forceRefresh property to make
it possible to refresh a task without passing in any parameters.
Declarative support does not have this allowance.

■ Refreshing a Regional Area task without disclosing the task is not
supported.

■ Multiple Regional Area tasks are allowed to be disclosed at the
same time. A switch to force showing only one task at a time is
not provided.

■ Support for persisting any of these settings explicitly altered by
the user during a session, across sessions, is not a part of this
feature.

Controlling the State of Main and Regional Area Task Flows

Implementing the UI Shell 13-35

■ Extend the contextual-area-task-flow-template task flow template into the
page task flow, as shown in Example 13–22.

Example 13–22 Extending the Task Flow Template

<template-reference>

<document>/oracle/apps/fnd/applcore/patterns/uishell/templates/contextual-area-tas
k-flow-template.xml</document>
 <id>contextual-area-task-flow-template</id>
</template-reference>

■ Specify values for the Contextual Area splitter position and the collapsed state in
the menu for the item node that represents the page using the
contextualAreaWidth and contextualAreaCollapsed properties. A sample entry
in the menu file will resemble Example 13–23.

Example 13–23 Example of contextualAreaWidth and contextualAreaCollapsed
Properties

<itemNode focusViewId="<focus_view_id>" id="<page_id>" label="<page_label>"
 taskType="dynamicMain"

taskFlowId="/WEB-INF/page2-task-flow-definition.xml#page2-task-flow-definition"
 contextualAreaCollapsed="true"
 contextualAreaWidth="0"/>

■ If these properties are not set in the menu for the top-level item node that
represents the page, then these default values are used:

contextualAreaWidth="256"
contextualAreaCollapsed ="false"

■ For programmatic control, drag and drop one of the corresponding methods from
the FndUIShellController data control:

– collapseContextualArea

– contextualAreaWidthSelection

■ To set these values when opening a new task, drag and drop the openMainTask
method from FndUIShellController data control and pass in the
contextualAreaWidth and contextualAreaCollapsed parameters through
"methodsParameters > NamedData" as shown in Example 13–24.

Set the method in the page managed bean to set the contextualAreaWidth and
contextualAreaCollapsed values, as shown in Example 13–24.

Example 13–24 Setting the contextualAreaWidth and contextualAreaCollapsed Values
for openMainTask

<methodAction id="openMainTask" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="openMainTask"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.openMainTask_
FndUIShellController_dataProvider_openMainTask_result">
 <NamedData NDName="taskFlowId"
 NDValue="/WEB-INF/page6-task-flow-definition.xml#
 page6-task-flow-definition"
 NDType="java.lang.String"/>

Controlling the State of Main and Regional Area Task Flows

13-36 Developer's Guide

 <NamedData NDName="keyList" NDValue="" NDType="java.lang.String"/>
 <NamedData NDName="parametersList" NDType="java.lang.String"/>
 <NamedData NDName="label" NDType="java.lang.String"/>
 <NamedData NDName="reuseInstance" NDType="java.lang.Boolean"/>
 <NamedData NDName="forceRefresh" NDType="java.lang.Boolean"/>
 <NamedData NDName="loadDependentFlow" NDType="java.lang.Boolean"/>
 <NamedData NDName="methodParameters"
 NDValue="#{<ManagedBean.Method>}"
 NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.
 bean.FndMethodParameters"/>

■ To set these values using the Navigate API to navigate to a task flow, drag and
drop the navigate method from FndUIShellController and pass in the
contextualAreaWidth and contextualAreaCollapsed parameters through
"methodsParameters > NamedData" as shown in Example 13–25.

Set the method in the page managed bean to set the contextualAreaWidth and
contextualAreaCollapsed values, as shown in Example 13–25.

Example 13–25 Setting the contextualAreaWidth and contextualAreaCollapsed Values
for navigate

<methodAction id="navigate" RequiresUpdateModel="true" Action="invokeMethod"
 MethodName="navigate" IsViewObjectMethod="false"
 DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.navigate_
FndUIShellController_dataProvider_navigate_result">
 <NamedData NDName="viewId" NDType="java.lang.String"/>
 <NamedData NDName="webApp" NDType="java.lang.String"/>
 <NamedData NDName="pageParametersList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskFlowId" NDType="java.lang.String"/>
 <NamedData NDName="navTaskKeyList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskParametersList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskLabel" NDType="java.lang.String"/>
 <NamedData NDName="methodParameters"
 NDValue="#{<ManagedBean.Method>}"
 NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.
 bean.FndMethodParameters"/>
</methodAction>

13.4.4 Sizing Regional Area Panels
Multiple Regional Area panels can be open at the same time, instead of showing only
one panel at a time.

Because the desired size of each panel will be different, you can set the pixel height for
each of the panels by specifying the inflexibleHeight property in the item node that
represents a Regional Area panel, as shown in Example 13–26.

Example 13–26 Using inflexibleHeight to Set Panel Height

<itemNode id="__ServiceRequest_itemNode__SRSearch"
 focusViewId="/ServiceRequest" label="SR Search"
 taskType="defaultRegional"
 taskFlowId="/oracle/apps/fnd/applcore/patterns/demo/SRSearch.xml#SRSearch"
 inflexibleHeight="200"/>

Working with the Global Menu Model

Implementing the UI Shell 13-37

13.5 Working with the Global Menu Model
Menu metadata used in Oracle Fusion Applications is divided into global menu data,
consisting of the Home page tabs, the Navigator menu (also known as the Main
menu), and the Preferences menu.

The Navigator menu and Home page tabs contain information from different
applications, yet each application must be able to be developed independently. To
bring this information together, a Global Menu Model is provided.

Navigation to a page is accomplished by constructing and executing a URL. Matching
the application name from the distributed menu metadata to its deployment
information will dynamically create the host/port portion of the URL. Other page
parameters are held in the existing page-level menu metadata.

The Task Menu, create URL, and navigation API allow other declarative and
programmatic access to page navigation. The UI Shell Global Area also will support a
Home page link for page navigations.

Global Menu Model Service
This model:

■ Contains at least the label, the application name, and the viewID

■ Calls the Policy Store (optimized bulk authorization) to get the subset of these
menu items to be rendered for that user

Example of Global Menus
The Global Menu Model presents a cascading appearance, shown in Example 13–31.

Global Menu Behavior
■ Items to which the user does not have access will not be displayed.

■ A category is hidden if there is no child to display.

■ If a menu entry length is greater than 27 characters, ellipses (...)are displayed. The
entire entry will be displayed in a tool tip when the pointer hovers over the entry.

■ Parent and children categories will not be split into different columns.

13.5.1 How to Implement a Global Menu

These Global Menus span JavaEE applications.

■ Navigator Menu: This is the global menu that is displayed in the UI Shell Global
Area.

■ Home Page Menu: The Home page tabs are actually each a JSPX page assembled
using menu metadata.

■ Preferences Menu: The User Preferences page has a task list link to all other
preferences pages within Oracle Fusion Middleware. This is assembled using
menu metadata.

Note: Before you create menus, you first must create JSF pages using
the UI Shell template.

Working with the Global Menu Model

13-38 Developer's Guide

13.5.1.1 Menu Attributes Added by Oracle Fusion Middleware Extensions for
Applications (Applications Core)
Table 13–3, Table 13–4, and Table 15–1 (in Chapter 15, "Implementing Additional
Functions in the UI Shell") list the menu attributes added by Applications Core to the
menu XML in addition to what is provided by Oracle ADF.

13.5.1.2 Displaying the Navigator Menu
The Navigator menu, shown in Figure 13–18, is rendered when the Navigator link is
clicked on the UI Shell.

Table 13–3 <groupNode> Attributes

Attribute Data Type Required Description

labelKey xsd:string N Bundle key used for label; the key will be looked up in the
resource bundle specified by the resourceBundle attribute of
<menu>.

Table 13–4 <itemNode> Attributes for Global Menus

Attribute Data Type Required Description

webApp xsd:string Y The webApp attribute is used to look up the host and
port of the associated Work Area or Dashboard from
the Oracle Fusion Applications Functional Core (ASK)
deployment tables. These tables are populated at
deployment time through Oracle Fusion Functional
Setup Manager tasks.

focusViewId xsd:string N This is the page ID. This can be found by looking in the
adfc-config.xml file. The name under each page in the
diagram view is the page ID.

securedResourceName xsd:string N The resource name that is used for securing the item
node.

applicationStripe String N/A This attribute is used for pages. Check the security of
the page against the policies that are located in LDAP.
The applicationStripe name must be the same as the
stripe name of the LDAP policy store, which is the
same as the web.xml application.name attribute.

parametersList String N/A This is a task-level itemNode attribute that is a
parameters list to pass in to the task flow to open in the
target workspace. This is a semicolon-delimited string
of name-value pairs. For example,
"param1=value1;param2=value2"

pageParametersList String N/A This is a page-level itemNode attribute that is the
parameters list for the page. This is a
semicolon-delimited string of name-value pairs. For
example, "param1=value1;param2=value2". If the
Expression Language expression evaluates to an object,
the toString value of that object will be passed as the
value of the parameter.

destination String N/A The destination attribute is supported on the item
nodes for the Navigator menu. The destination
should be used only for navigating to an external web
site. When it is defined, it takes precedence over all
attributes. Example of the menu data:

<itemNode id="itemNode_otn"
destination="http://www.oracle.com/technology/i
ndex.html"/>

Working with the Global Menu Model

Implementing the UI Shell 13-39

Figure 13–18 Navigator Menu Example

13.5.1.3 Implementing a Global Menu

The Navigator menu metadata may be pointing to target work area pages in various
applications. To simplify the runtime behavior, one XML file contains all the menu
entries. An Applications Core application will deploy these menus to Oracle Metadata
Services (MDS). Each application will read these directly from MDS.

Each application must be configured so that the shared library can read the menus
from MDS.

To implement a Global Menu:
1. Verify that the web.xml file of the application has the correct Java Authentication

and Authorization Service (JAAS) filter to enable checking menu security against
Oracle Platform Security Services (OPSS), as shown in Example 13–27.

Example 13–27 Sample JAAS Filter

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>enable.anonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>remove.anonymous.role</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>crm</param-value>
 </init-param>
<init-param>
 <param-name>oracle.security.jps.jaas.mode</param-name>
 <param-value>subjectOnly</param-value>
 </init-param>
</filter>

Note: The Navigator menu is used as the example for how a
developer implements a Global Menu, but the steps will be similar for
the Preferences and Home menus.

Working with the Global Menu Model

13-40 Developer's Guide

The application.name parameter, as shown in the example, in the web.xml file is
the application family value. The choices are crm, fscm, and hcm. This value is
used to create the stripe in LDAP.

2. Update the weblogic-application.xml file. As shown in Example 13–28, set the
application-param that has the param-name jps.policystore.migration to OFF.

Example 13–28 Setting jps.policystore.migration to OFF

<application-param>
 <param-name>jps.policystore.migration</param-name>
 <param-value>OFF</param-value>
</application-param>

3. In the weblogic-application.xml file, ensure that the application-param that
has the param-name jps.policystore.applicationid is set to the correct stripe, as
shown in Example 13–29. This is the same as the application.name property of
the web.xml file.

Example 13–29 Setting jps.policystore.applicationid to the Correct Stripe

<application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>crm</param-value>
</application-param>

4. Add the following entry in the web.xml file:

<listener>
<listener-class>oracle.apps.fnd.applcore.menu.service.MenuFragmentServiceContex
tListener</listener-class>
</listener>

13.5.2 How to Set Up Global Menu Security
Global menu security depends on applications using a standalone LDAP server.

ADF Menu Security is enabled by default. If you need to disable menu security, such
as for testing, start WebLogic Server after setting the JAVA_OPTIONS environment
variable in the setDomainEnv.sh file:

JAVA_OPTIONS = -DAPPLCORE_TEST_SECURED_MENU=N

13.5.2.1 Enforcing User Privileges and Restrictions
Before you enforce user actions, define roles, principals, and actions in the database.

Functional security will always prevent a user from accessing a page or task flow for
which the user does not have privilege. To improve the user experience, global menus
can be hidden if the user does not have access to that page. There are two different
security features for this:

■ The global menus have a securedResourceName attribute, which should be the
value of the page resource against which security can be checked. For pages, this is
the page definition file.

■ The menus also have a rendered attribute. This can be used to evaluate an
Expression Language security expression. If rendered="false" (false being the

Note: Global security only works with standalone WebLogic Server.

Working with the Global Menu Model

Implementing the UI Shell 13-41

outcome of the expression), the menu item will be hidden even if the user has
access to the page. There are certain times you would want to do this. For instance,
consider a person working in HR as a consultant, not an employee. You might
want a menu entry for editing employee data under an HR category, without
showing an entry under the Employee Self-Service category that also leads to the
same page. See Example 13–30.

Example 13–30 Expression Language Expression to Evaluate a User's Access Rights

rendered="#{securityContext.userInRole['EMPLOYEE_ROLE']}"

The Expression Language expression should never check the page definition.
However, you can use the Expression Language expression to check security of a
person's role because that is in LDAP.

■ The applicationStripe attribute determines which LDAP stripe is checked for
the securedResourceName attribute.

13.5.3 How to Create the Navigator Menu
Menu files will be referenced through MDS. This means they can be located in a table
or in a file system directory. Determine where you want this directory to be located.
This is where your root_menu.xmlfile and other menu files will be located. For Global
menu attributes, see Section 13.5.1.1, "Menu Attributes Added by Oracle Fusion
Middleware Extensions for Applications (Applications Core)."

1. Create the Navigator menu.

Example 13–31 shows a sample Navigator menu.

Example 13–31 Example of a Navigator Menu

<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <groupNode id="groupNode_my_information"
 idref="_groupNode_my_information_"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].MY_INFORMATION}">
 <itemNode id="itemNode_my_information_my_portrait"
 label="#{bundleVar.MY_PORTRAIT}" focusViewId="/MyPortrait"
webApp="HcmCore"

securedResourceName="oracle.apps.hcm.people.portrait.ui.page.MyPortraitPageDef"
 <groupNode id="groupNode_my_information_compensation"
 idref="_groupNode_my_information_compensation_"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].COMPENSATION}">
 applicationStripe="hcm"
 </groupNode>
 <groupNode id="groupNode_my_information_career"
 idref="_groupNode_my_information_career_"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].CAREER}">
 <itemNode id="itemNode_my_information_goals"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].GOALS}"
 focusViewId="/ManageGoalsWorkArea" webApp="HcmTalent"

securedResourceName="oracle.apps.hcm.goals.core.publicUi.page.ManageGoalsWorkAreaP
ageDef"/>
 <itemNode id="itemNode_my_information_performance_management"

label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].PERFORMANCE}"
 applicationStripe="hcm"
 focusViewId="/PerformanceWorkArea" webApp="HcmTalent"

Using the Personalization Menu

13-42 Developer's Guide

securedResourceName="oracle.apps.hcm.performance.documents.publicUi.page.Performan
ceWorkAreaPageDef"/>
 </groupNode>
 <groupNode id="groupNode_my_information_procurement"
 idref="_groupNode_my_information_procurement_"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].PROCUREMENT}">
 <itemNode id="itemNode_my_information_purchase_requisitions"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].PURCHASE_
REQUISITIONS}"
 focusViewId="/PrcPorCreateReqWorkarea" webApp="Procurement"

securedResourceName="oracle.apps.prc.por.createReq.publicUi.page.PrcPorCreateReqWo
rkareaPageDef" applicationStripe="hcm"/>
 <itemNode id="itemNode_my_information_self_service_receipts"

label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].RECEIPTS}"
 applicationStripe="hcm"
 focusViewId="/RcvSelfServWorkarea" webApp="Logistics"

securedResourceName="oracle.apps.scm.receiving.selfService.workarea.ui.page.RcvSel
fServWorkareaPageDef"/>
 applicationStripe="hcm"/>
 </groupNode>
 </groupNode>
</menu>

2. Create the application's Navigator menu files.

The next files in the menu hierarchy can contain groupNodes that appear as
non-clickable categories, itemNodes that are clickable to start a page, or references
to more menu files. If itemNodes were included that were not deployed, they will
not appear because what was deployed is checked against the deployment tables.
Applications Core requires that if a groupNode has no child nodes, which could
happen through security enforcement, the groupNode itself will not be rendered.

13.5.3.1 Rendering the Navigator Menu as Dropdown Buttons
There are situations, particularly with simpler applications, when the default
enterprise-level menu structure is not suitable. In these cases, you may want to display
the Navigator menu as a series of dropdown buttons.

To switch the UI Shell rendering so the Navigator menu renders as dropdown buttons
in a horizontal row, set the isSelfService attribute to "true" on the .jspx page that
extends the UI Shell template. That is, inside the <af:pageTemplate> tag, add the
following:

<f:attribute name="isSelfService" value="true"/>

13.6 Using the Personalization Menu
The Personalization menu options shown in Figure 13–19 let you set your preferences,
edit the current page, and reset the content and layout. The menu is supplied
automatically by the UI Shell and requires no developer work.

Implementing End User Preferences

Implementing the UI Shell 13-43

Figure 13–19 Personalization Menu

The Preferences menu only appears if you have the ApplSession filter and mapping
set up. See Section 47.2, "Configuring Your Project to Use Application User Sessions.".

Set Preferences
You create the actual Preferences dialog, such as shown in Figure 13–22. See
Section 13.7 for the details of how to implement the Preferences menu.

Edit Current Page
This option is displayed only if the displayed page has been marked as able to be
user-edited (if the isPersonalizableInComposer attribute in af:pageTemplate is set to
true). Selecting this option will start the editing feature and the page will resemble
Figure 13–20. Click Close to return to the page. Click Customization Manager to
change the displayed page in Oracle Composer. For more information about the
Customization Manager, see the "Customization Manager" section in the "Extending
Runtime Editing Capabilities Using Oracle Composer" chapter, and the "Manage
Customizations" section of the "Introduction to Oracle Composer" chapter of the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter Portal. Note that changes are
for just this user and therefore are called personalization. See Chapter 61, "Creating
Customizable Applications".

Figure 13–20 Edit Current Page Display

Reset Content and Layout
Select this option to discard any personalization changes and return to the default
settings. Note that resetting layout and content is for that page. In particular, if any
task flows are personalized on that page using Oracle Composer, they are not reset by
this menu item.

13.7 Implementing End User Preferences
Set Preferences, shown in Figure 13–21, is a link in the Global Area for easy access to
setting preferences for the current application, general user preferences, or for any

Implementing End User Preferences

13-44 Developer's Guide

other application preference in Oracle Fusion Middleware. For more information
about this Global menu, see Section 13.5, "Working with the Global Menu Model."

Preferences are pages that can set system wide settings that applications can access.
There are general preferences that affect all applications, and there can be
application-specific preferences. General preferences include language, date format,
and currency. General preferences are stored in LDAP so they can be accessed from
any application. Application preferences are usually stored in the applications on
database tables, but they can be stored in LDAP also.

Figure 13–21 Preferences Menu Example

13.7.1 How to Use Preferences Link Navigation
The Preferences link from the Global Area will open a Work Area that shows the
preferences related to the currently displayed page.

Links in the left hand side will allow navigation to any Preferences Work Area page
within the entire Oracle Fusion product. This page will be rendered using Applications
Core menu federation abilities. As the developer, you will own the menu files.

If an application is not installed, or the user does not have access, the entry in the task
list menu should not appear. If a user does not have access to a particular setting
within a page, you must use the rendered property with a security expression behind
it.

For each application, there should be a preferences page. The preferences page uses
the same path of the current application, but it uses a page name of preferences.jspx.

If no associated preferences page exists, a default General Preferences page will be
shown. This page shows global Applications Core most-used preferences.

If there are several preference pages associated with an application, such as a Common
Setting page and more specific pages, only one preferences page as a target from the
global preferences link can be defined per application. (There will be a default name
for the target focusViewID of the preferences page for an application.) In the
preferences work area, other links are available from the task list to more specific
pages or task flows. (Links in the task list can contain other focusViewIDs that belong
to the same application as the default preference page.)

When the first application is deployed, it will become the location of the General
Preferences page.

Several pages of an application can all point to the same preferences page.

More than one application cannot point to the same preferences page. This implies that
each application can have its own preferences page, and if two applications want to
share a common preferences page, they can, but it can be navigated to only from the
task list. Therefore, from the Preferences link, the user always sees the more specific
preferences page of that application.

13.7.2 How to Use the Preferences Work Area Page
A preferences page will be like any other Work Area page. Preference values are not
supported in integrated Oracle Weblogic Server LDAP, only an external LDAP is

Implementing End User Preferences

Implementing the UI Shell 13-45

supported. The task list will be loaded as a defaultRegional task flow and the Main
Area will be a defaultMain task flow.

Work Area Title
Each preferences page should display a title similar to {Category_name:Page_name}.
This can be done though an Expression Language expression and will not be created
automatically from the framework.

The name that appears in the task list can be different from the page title. This is
allowed because the task list name is generated from the task list preference
distributed menu metadata, while the page title will be from the local page-level menu
metadata.

Tasklist and Navigation Pane
Each page needs its Application Menu metadata to specify that it wants the
Preferences task list menu in the defaultRegional area as well as in the defaultMain
task flow.

This menu can be a two-level menu having categories with links under each category.

Task List Federation
The task list will be a task flow that will contain links to all preference pages
throughout Oracle Fusion Middleware.

Each application will provide the preferences menu files that contain task list links to
preferences pages delivered by that application. The preferences task list should follow
the Navigator menu architecture recommendations where it uses sharedNode
references to bring in menus from each application so they can be patched
independently. Applications Core will automatically federate the menu metadata so
the task list that is rendered will contain all the entries from all applications (filtered by
security).

Individual menu files will have versions like other distributed menu files, so any
application can apply a patch and the new menu will take precedence over an older
version when federated.

Task List Can Link Only to Full Pages (Not to Specific Task Flows)
The task list will not start task flows dynamically, but will load a Preferences workarea
page. This is because the task list menu must be federated and only page-level entries
are allowed in a federated menu.

No-Tabs Mode
The Preferences page should use a no-tabs mode. This is a standard, not controlled
through any code. You can use tabs if all task flows are defaultMain. See
Section 13.2.3.4, "Supporting No-Tab Work Areas" for more information.

Task List Security
The task list will be filtered by functional page-level security for that user. If all entries
in a category are restricted, then the category should not appear either.

Preferences Settings
Settings will be a view activity in a task flow. It will follow other user experience
standards so it should be built using an Applications Panel. This means the action
buttons will appear at the top.

Implementing End User Preferences

13-46 Developer's Guide

Different preferences pages can change the same backend setting, depending upon
applications design. If this is needed, it should be stored in a common area, such as
LDAP, or be in the General Preferences page.

13.7.3 How to Deploy Preferences Pages and Design General Preferences Content
Application preferences pages are deployed with the corresponding product pages.

The design should be similar to that shown in Figure 13–22.

Figure 13–22 General Preferences Example

13.7.4 How to Configure and Implement End-User Preferences
After the WebLogic Server console is configured, follow these steps to create an Oracle
Fusion web application that uses UI Shell pages:

1. Create a UI Shell page that is used solely for the user preferences, such as
PreferencesUI.jspx.

2. Set the isDynamicTabNavigation property to false for the PreferencesUI page
entry in the menu.

3. Add the following task flow as a default Regional Area under the preferences page
entry:
"/WEB-INF/oracle/apps/fnd/applcore/pref/ui/mainflow/GeneralPreferencesF
low.xml#GeneralPreferencesFlow"

The final menu entries for the page will appear similar to those shown in
Example 13–32.

Example 13–32 Sample General Preferences Menu Entries

<itemNode id="itemNode_untitled2" label="Preferences"
 action="adfMenu_PreferencesUI" focusViewId="/PreferencesUI"
 isDynamicTabNavigation="false" webApp="Demo">
 <itemNode id="def1" focusViewId="/PreferencesUI" label="General Preferences"
 taskType="defaultRegional"
 taskFlowId=
"/WEB-INF/oracle/apps/fnd/applcore/pref/ui/mainflow/GeneralPreferencesFlow.xml#Gen
eralPreferencesFlow"/>
</itemNode>

The results of this example should display the basic Preferences menu entries in
the default Regional Area that can be opened to display subflows for each
preferences subtask (for instance, Accessibility and Appearance).

Implementing End User Preferences

Implementing the UI Shell 13-47

13.7.4.1 Using the Preferences Menu Model
The General Preferences task flow that is exposed also renders the Preferences Menu
Model links by using a call to the Menu Service API.

The Preferences menu will be part of a central Utility application (menu web service)
that will be deployed in the server. As a developer, you maintain the Preferences
menu.

On any UI Shell page, the Global Area contains a Personalization menu that contains a
Set Preferences link. This link will redirect the user to an application-specific
Preferences page, depending upon the entry in the menu data.

Example 13–33 shows sample Preferences menu data.

Example 13–33 Example Preferences Menu Data

<?xml version="1.0" encoding="UTF-8" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu" version="1">
 <itemNode id="preferences_node_a" label="Preferences Page A"
 action="preferences_node_a" focusViewId="/preferencesA"
 webApp="fnd" prefForApps="gl, hr" >
 <itemNode id="Flow 1" label="Service Flow"
 focusViewId="/preferencesA"
taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/finance/ServiceFlow.xml#ServiceFlow"
 parametersList="id=userName" />
 </itemNode>
 <itemNode id="preferences_node_b" label="Preferences Page B"
 action="preferences_node_b" focusViewId="/preferencesB"
 webApp="fnd" prefForApps="fn" >
 <itemNode id="Flow 2" label="Request Flow"
 focusViewId="/preferencesB"
taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/finance/RequestFlow.xml#RequestFlow"
 parametersList="id=userName" />
 </itemNode>
 <itemNode id="preferences_node_d" label="Preferences Page D"
 action="preferences_node_d" focusViewId="/PreferencesUI"
 webApp="Demo" prefForApps="Demo"
 <itemNode id="Flow 2" label="Request Flow"
 focusViewId="/preferencesB"
taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/finance/AcceptanceFlow.xml#Acceptanc
eFlow"
 />
 </itemNode>
</menu>

In the example menu XML file, each parent item node represents a Preferences UIShell
page. Its child nodes refer to the application-specific task flow in which the Preferences
page exists.

For example, the first itemNode entry refers to the preferencesA page that is part of the
FND webApp. The Service Flow child node is a task flow that belongs to the FND
webApp.

For each parent itemNode, there is an attribute called prefForApps that contains a list
of webApp names. This means that the itemNode is a common preferences page for
those listed webApps.

For example, the Preferences page is common for two webApps -- gl and hr. This
essentially means that all the Dashboards and Work Area UI Shell pages in the gl and
hr webApps will be redirected to this preferencesA page, which is in webApp FND,
when the Set Preferences link is clicked.

Implementing End User Preferences

13-48 Developer's Guide

All the task flows under each preferences page itemNode will be displayed in the
General Preferences task flow as navigation links. Therefore, all preferences pages will
have access to these task flows.

13.7.4.2 Configuring User Session and ADF Security
To test the general preferences task flows, configure user session and ADF Security for
the test application. See Chapter 47, "Implementing Application User Sessions."

When configuring ADF Security, there is no need to define users, because you already
are using an Oracle Internet Directory store that will authenticate the users existing in
the policy store.

13.7.4.3 Retrieving Preference Values and Checking Accessibility Mode by Using
an Expression Language Expression
See Chapter 20, "Working with Localization Formatting."

A use case exists where the UI must use an Expression Language expression to check
whether the accessibility mode is set to screenReader to render screen reader-friendly
components in screenReader mode. The recommended method to do this uses
#{requestContext.accessibilityMode} and is documented in "How to Configure
Accessibility Support in trinidad-config.xml" in "Developing Accessible ADF Faces
Pages" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

13.7.4.4 Implementing the Password Management Page
The Password link on the General Preferences page will point to the Password
Management page from the Oracle Identity Management administration application.
This page is maintained by the Oracle Identity Management team. For the Password
link to redirect to the pwdmgmt.jspx page, the deployment information of the current
application and the Oracle Identity Management administration application must be
populated correctly in the Oracle Fusion Applications Functional Core (ASK) tables.

13.7.5 How to Use the Most Common Preferences
The Preferences most end users want to set are Language, Accessibility, and Regional.
This section discusses how to configure these Preferences and what the default rules
are, such as what happens if you do not set the Language Preference.

See Chapter 20, "Working with Localization Formatting" for more information about
localization of Preferences.

13.7.5.1 Configuring the Language Preference
When a session is created, it will use the language provided in the ORA_COMMON_PREFS
cookie if it is set to a valid language. Inside the cookie, the fusionapps_language
attribute is used to determine the language. There also is a local attribute that is for
non-Oracle Fusion applications so that Oracle Fusion applications have their own
attribute in the cookie and allowing other applications to keep their own language
preference. Oracle Identity Management knows which to use based on a system value
oracle.fusion.appsmode that is set at provisioning time.

If it is not a valid language or if the cookie does not exist, the browser language is
used.

If for some reason the browser language is not valid, the seeded FND_LANGUAGE profile
option is checked to determine the default language, which defaults to American

Implementing End User Preferences

Implementing the UI Shell 13-49

English. If accessing a protected page, the login screen appears. This login screen may
allow the user to select a language for the session. If selected, this will override the
language. If the user does not select anything on login and if the user has a language
preference previously saved, this will override the language if it is an installed
language. If saved, it would be held in the LDAP settings for the Oracle Fusion
applications Language setting in the orclFALanguage attribute of the orclIDXPerson
object. This is controlled by Oracle Identity Manager.

Users can set the Language preference by selecting the Set Preferences link from the
Personalization menu in the Global Area. The Language option will look similar to
Figure 13–23.

Figure 13–23 Setting the User Preference Language Option

13.7.5.2 Configuring the Accessibility Preference
Oracle Fusion applications follow the Apache Trinidad standards for Accessibility.

Users can set the Accessibility preference by selecting the Set Preferences link from
the Personalization menu in the Global Area. The Accessibility option will look similar
to Figure 13–24.

Figure 13–24 Setting the Accessibility User Preference Options

13.7.5.3 Configuring the Regional Preferences
The default Regional settings are based on the selected Language setting unless the
Regional setting is saved explicitly. That is, no matter how the current language is
derived, whether it is from login, the browser or LDAP, if the Regional settings are not
yet set, they will default from the language. But if the user sets the Regional settings
and then sets the Language setting, the Regional settings will not be changed.

Users can set the Regional preferences by selecting the Set Preferences link from the
Personalization menu in the Global Area. The Regional options will look similar to
Figure 13–25.

Using the Administration Menu

13-50 Developer's Guide

Figure 13–25 Setting the Regional User Preferences Options

13.8 Using the Administration Menu
The Administration Menu, shown in Figure 13–26, is displayed only if the logged-in
user has the appropriate privileges. See Section 13.8.1, "How to Secure the
Administration Menu". The menu is supplied automatically by the UI Shell and
requires no developer work.

Figure 13–26 Administration Menu

Customize [name_of_page] Pages...
Select this option to customize the current page for multiple users using the
customization layer picker dialog.

For information about customization, see Chapter 61, "Creating Customizable
Applications" and "Customizing Existing Pages" in the Oracle Fusion Applications
Extensibility Guide.

Customize Global Page Template
Select this option to open the page in composer mode. All the global items can be
selected so you can customize them. Customization is done at the site layer so it will
apply to all pages, not just the one you are on. (When you use Customize [name of
page] Pages, all the content except the global content is available for customization.)

Manage Customizations...
Select this option to start the Customization Manager.

For information about customization, see Chapter 61, "Creating Customizable
Applications" and "Customizing Existing Pages" in the Oracle Fusion Applications
Extensibility Guide. For more information about the Customization Manager, see the
"Extending Runtime Editing Capabilities Using Composer" chapter, and the
"Introduction to Composer" chapter of the Oracle Fusion Middleware Developer's Guide
for Oracle WebCenter Portal.

Using the Administration Menu

Implementing the UI Shell 13-51

For information about defining and configuring namespaces when promoting a page
fragment to a label, see "Updating Your Application's adf-config.xml File" in the
"Performing Composer-Specific MDS Configurations" chapter of the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter Portal.

Manage Sandboxes...
Select this option to manage sandboxes on your system.

The Sandbox is built on top of the standard Sandbox feature from Oracle Metadata
Service. See "Using the Sandbox Manager" in the "Understanding the Customization
Development Lifecycle" chapter of the Oracle Fusion Applications Extensibility Guide.

Setup and Maintenance...
Select this option to start the Oracle Fusion Functional Setup Manager application. See
the Oracle Fusion Applications Information Technology Management, Implement Applications
Guide and the Oracle Fusion Applications Information Technology Management, Implement
Applications Developer Guide.

Highlight Flexfields
No separate implementation is required. This option is available to any user who has
the permission to view the Administration menu.

Select this option to highlight the Descriptive Flexfields (DFF) and Key Flexfields
(KFF) on the runtime page.

When this mode is on, the page displays an information icon by each DFF and KFF.
This will be displayed whether or not any Flexfield segments have been configured.

Hovering over the icon shows the Flexfield details. Administrators can note the DFF or
KFF code so they can search for it in the Manage Descriptive Flexfields setup task in
Oracle Fusion Functional Setup Manager.

The option changes to Unhighlight Flexfields so that administrators can return to the
normal view of the page.

For more information about Flexfields, see Chapter 21, "Getting Started with
Flexfields."

13.8.1 How to Secure the Administration Menu
If you need the Administration link, include the privilege and the permission in the
JAZN file as defined in Example 13–34. All administrator roles must inherit the
Applications Core "Administration Link View Duty" duty role. This duty role gives
access to the "View Administration Link" privilege.

Example 13–34 Required Privilege and Permission in JAZN File

<app-role>
 <name>FND_ADMINISTRATION_LINK_VIEW_DUTY</name>
 <display-name>Administration Link View Duty</display-name>
 <description>Provides access to the Administration Link on the UI
Shell</description>
 <guid>EA1D0BF0BC096F11B18BDEBD5F4BDB48</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole
 </class>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl
 </class>

Using the Help Menu

13-52 Developer's Guide

 <name>FND_APPLICATION_DEVELOPER_JOB</name>
 </member>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl
 </class>
 <name>FND_APPLICATION_ADMINISTRATOR_JOB</name>
 </member>
 </members>
</app-role>

Privilege

<app-role>
 <name>FND_VIEW_ADMIN_LINK_PRIV</name>
 <display-name>View Administration Link</display-name>
 <description>Privilege to view administration link in UI shell. This privilege
is available from Roles(s): Supply Chain Application Administrator,Cost
Accountant,Application Implementation Consultant,Application Developer,Application
Administrator</description>
 <guid>B14A48E74ECF633A3C6E4AF95816474D</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>FND_ADMINISTRATION_LINK_VIEW_DUTY</name>
 <guid>EA1D0BF0BC096F11B18BDEBD5F4BDB48</guid>
 </member>
 </members>
</app-role>

Permission and Grant to be included in JAZN file

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>FND_VIEW_ADMIN_LINK_PRIV</name>
 <guid>B14A48E74ECF633A3C6E4AF95816474D</guid>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=FNDResourceType,resourceName=FND_Administration_
Menu</name>
 <actions>launch</actions>
 </permission>
 </permissions>
</grant>

13.9 Using the Help Menu
The Help menu, shown in Figure 13–27, provides user access to the standard help
system and to troubleshooting and diagnostic tools. The menu is supplied
automatically by the UI Shell and requires no developer work.

Using the Help Menu

Implementing the UI Shell 13-53

Figure 13–27 Help Menu

User Productivity Kit
The User Productivity Kit (UPK) option will be available when the UPK has been
purchased, installed and configured.

This context-param entry must be added to the web.xml file:

<context-param>
 <description>This parameter notifies ADF Faces that the ExecutionContextProvider
service provider is enabled.
 When enabled, this will start monitoring and aggregating user activity
information for the client initiated
 requests. By default this param is not set or is false.
 </description>
 <param-name>oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_
PROVIDER</param-name>
 <param-value>true</param-value>
</context-param>
For recording, it may be necessary to turn on automation if all client components
need to be sent down. The following parameter should be present in the application
web.xml:

<context-param>
 <description>
 This parameter notifies ADF Faces that test automation is being used.
 When enabled, this will cause the ids of components with testId
 attributes to be set to the value of the testId and the client component
 attribute of the component to be forced to true.

 TestId attribute is now deprecated; use the 'id' attribute instead.
 </description>
 <param-name>oracle.adf.view.rich.automation.ENABLED</param-name>
 <param-value>true</param-value>
</context-param>

Also, "upk" must be provisioned by the System Administrator. That is, an entry with
DEPLOYED_MODULE_NAME = "upk" must be added in the ASK deployment tables. These
tables are populated at deployment time through Oracle Fusion Functional Setup
Manager tasks. Without the entry, the menu item "User Productivity Kit ..." will not be
shown in the Help menu.

Applications Help
Select this option to open the help system in a separate window.

Troubleshooting
When you select the Troubleshooting option, an additional menu, similar to
Figure 13–28, is displayed.

Using the Help Menu

13-54 Developer's Guide

Figure 13–28 Troubleshooting Menu

■ Troubleshooting Options

Select this option to display the Options dialog, as shown in Figure 13–29.

Figure 13–29 Troubleshooting Options Dialog

■ Enable all: Select this option to enable all other options on the dialog. When
Enable all is selected, removing the selection from any of the other check boxes
will deselect Enable all.

Applications logging, severity level and modules are stored as user-level
profile options in profile tables. The corresponding profile option names are
AFLOG_ENABLED, AFLOG_LEVEL, and AFLOG_MODULE. See "Configuring Settings
for Log Files and Incidents" in Oracle Fusion Applications Administrator's Guide
for information.

Because applications logging, severity level, and modules are profiles, when
users click Save and Close, user-specific profile values will be inserted into the
profiles. If users decide to revert the setting to the default site profile, they
must use the Functional Setup Manager to remove their own profile.

After making changes to any one of the options for applications logging,
severity level, or modules, the user must log out of the Oracle Fusion
application, close the browser session, and log back in for the new options to
take effect. These logging profiles are cached in the user session and initialized
when a user logs into an Oracle Fusion application.

■ Database trace: This option enables the SQL trace feature for all database
connections used by the current user session. See "Understanding SQL Trace
and TKPROF" in the Oracle Database Performance Tuning Guide.

For SQL trace, the trace file will have the FND session ID appended to the end.
For example, mysid_ora_4473_881497BF7770BEEEE040E40A0D807BB1.trc.

The trace file can be found on the database host in the directory specified by
the user_dump_dest init.ora parameter.

Using the Help Menu

Implementing the UI Shell 13-55

* Capture bind variables:

Select this option to enable the SQL trace option to also capture bind vari-
ables.

* Capture wait events:

Select this option to enable the SQL trace option to also capture wait
events.

■ PL/SQL profiler: This option enables the PL/SQL hierarchical profiler for all
the connections used by the current user session. See "Using the PL/SQL
Hierarchical Profiler" in the Oracle Database Advanced Application Developer's
Guide.

For the PL/SQL profiler, the output will be in the directory defined by
APPLLOG_DIR. The exact path for APPLLOG_DIR can be found on the database
host by using the SQL statement:

select directory_name, directory_path from dba_directories where
directory_name like 'APPLLOG%'

The file names would be PLS_<some number>_<FND session id>_
<timestamp>.txt, such as PLS_49774696_
88740EC94E3AAD2CE040E40A0D8036D8_100607104716.txt.

To process the collected PL/SQL profiles and view results, run the plshprof
command under the $ORACLE_HOME/bin directory.

■ Applications logging: Applications logging is selected by default. Disabling
logging will warn users that no logging will take place.

– Severity Level:

Use this option to set what types of information to log, and how much of it
to log.

For more information, see "Managing Oracle Fusion Applications Log
Files and Diagnostics Tests" and "Troubleshooting for Oracle Fusion
Applications Using Logs, QuickTrace, and Diagnostic Tests" in the Oracle
Fusion Applications Administrator's Guide.

– Modules:

This is the module filter for logging. This is a comma-separated list of
modules to be logged. The percent sign (%) is used as a wildcard. For
example, % or %financial%. The percent sign (%) is the default value and
if no other value is specified, then it means everything will be logged.

When a customer logs a service request with Oracle, the support person
will help the customer enter the values necessary to filter the diagnostic
logs for the needed information.

■ Run Diagnostics Tests

Selecting this option opens the Diagnostics Dashboard user interface in a new
window. For more information, see "Managing Oracle Fusion Applications Log
Files and Diagnostics Tests" and "Troubleshooting for Oracle Fusion Applications
Using Logs, QuickTrace, and Diagnostic Tests" in the Oracle Fusion Applications
Administrator's Guide.

Using the Help Menu

13-56 Developer's Guide

Privacy Statement
Select this option to display the privacy statement, which will appear in a new browser
window. This option is always inactive until it is implemented. To set up the privacy
statement, enter a fully-qualified URL in the PRIVACY_PAGE profile option. See
Section 54.3, "Setting and Accessing Profile Values."

About Applications
Select this option to display the Oracle copyright statement and information about the
application.

About This Page
Select this option to display information for the product and product family of the
current page. This makes it easier to know to which product the current page belongs
and makes it easy to log a Service Request or find a patch for the correct product.

14

Implementing Search Functions in the UI Shell 14-1

14Implementing Search Functions in the UI
Shell

This chapter discusses how to implement search functions in the UI Shell page
template that is used to build web pages.

This chapter includes the following sections:

■ Section 14.1, "Implementing Tagging Integration"

■ Section 14.2, "Implementing Recent Items"

■ Section 14.3, "Implementing the Watchlist"

■ Section 14.4, "Implementing Group Spaces"

■ Section 14.5, "Implementing Activity Streams and Business Events"

■ Section 14.6, "Implementing the Oracle Fusion Applications Search Results UI"

 For more information about the features, see:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 13, "Implementing the UI Shell"

■ Chapter 15, "Implementing Additional Functions in the UI Shell"

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details"

14.1 Implementing Tagging Integration
Tagging is a service that allows users to add tags to selected resources in Oracle
WebCenter Portal to contribute to the overall resources other users have visited.

For information about tagging as a component of WebCenter Portal, see the
"Integrating the Tags Service" chapter in the Oracle Fusion Middleware Developer's Guide
for Oracle WebCenter Portal.

This section assumes that:

■ Tagging is being enabled on a business object. The Model or View already exists
for the business object.

■ Your pages are using the UI Shell template.

■ You have identified the business objects that you want to Tag.

Implementing Tagging Integration

14-2 Developer's Guide

■ You have database connections to the ApplicationDB database and WebCenter
Portal.

■ You have enabled data security.

Important Considerations
When working with tags, keep these points in mind:

■ Tags are attached to objects, not task flows. When you click a link belonging to a
tagged object, you will go to a page and task flow to view that particular object.

■ You can enable tagging at the page level if it is clear that the page represents a
specific object.

■ If you have several pages in a task flow, all representing the same object, you can
enable tagging on every page.

■ You can enable tagging in a table if each row represents a specific object.

■ You can tag an object from several different places. You can give several target
navigation paths from the Tag Center. This allows different users to access the
same object from different work areas.

■ Oracle Fusion Applications Search allows only a single navigation path, but a
global search does allow alternate links as well as multiple service view objects for
alternate navigation paths. That is, you can tag an object from one work area, but
on navigation from the tagged object link in Tag Center or Oracle Fusion
Applications Search, the work area that it navigates to could be different.

■ Security will hide a tagged object in both Tag Center and Oracle Fusion
Applications Search based on the object's data security, not task flow security,
although page and task flow security are enforced after clicking the tag.

Preliminary Setup
The following steps are condensed from the Oracle Fusion Middleware Developer's Guide
for Oracle WebCenter Portal.

1. Open your current application in JDeveloper.

2. Ensure that your database connection has access to WebCenter Portal schema. If it
does not, create another connection to access WebCenter Portal schema. Name the
connection WebCenter. Tagging looks for this connection to access the data.

3. In the resource Palette, open My Catalog > Web Center Service Catalog > Task
Flows. Ensure that you see task flows similar to tagging-launch-dialog.

4. In the Component Palette, right-click your View Controller project and select
Project Properties > Technology Scope > Project Properties. Ensure that Tagging
Service is selected. In the Component Palette, search for tagging. You should see
Tagging Button and Tagging Menu Item.

5. Add users and roles, and configure security and authorization for the application;
this is highly recommended. Furthermore, it is required for implementing security
for tagging.

You now can enable tagging for your business objects.

Note: You should now see at least two connections in your
connections.xml file: WebCenter and ApplicationDB.

Implementing Tagging Integration

Implementing Search Functions in the UI Shell 14-3

14.1.1 How to Use the Delivered Oracle WebCenter Portal Tagging Components
Three pieces of information are needed to define tagging to a business object:

1. You need the unique key of the object that can identify the object. This is stored in
a field called RESOURCE_ID (VARCHAR2(200)) in the tagging schema. If you have
multiple fields that define the unique key, use a period as the separator. For
example, PK1.PK2. Additional restrictions include these:

■ There can be a maximum of only five columns as primary keys, such as
PK1.PK2.PK3.PK4.PK5.

■ If any primary key column is null, put "null" in the concatenated Resource Id
string. For example, if Resource Id is of type PK1.PK2.PK3, the value can be
123.ABC.null. Do not use just 123.ABC.

■ If your primary key consists of a date, although this is highly unlikely, ensure
that the date value that you use in string concatenation is formatted in Oracle
Database date format.

■ Developers cannot implement their own resource parser.

2. SERVICE_ID (VARCHAR2(200)): This is used to identify the object. The Oracle
Fusion Applications standard is to use the logical business object name.

3. NAME (VARCHAR2(200)): This is what will be displayed as the resource that is
tagged in the Tag Center, and it will be visible to the end users when they search
for a tagged item. Give it a meaningful name, such as <PO Number>+<PO Title>
or Invoice Description or Customer Name.

14.1.1.1 Tagging a Resource (Business Object)
Follow these steps to tag a resource:

1. From the Component Palette, select WebCenter Tagging Service. Drag and drop
the tagging button onto the page. (If you do not find the button, ensure that you
added the WebCenter Tagging JSP Tag Library to your user interface project.)

2. Open the Property Inspector for the tagging button. Enter the bound values for
resourceId, resourceName and serviceId, similar to Example 14–1.

Example 14–1 Entering Property Information for Tagging Button

<tag:taggingButton
resourceId="#{row.AuctionHeaderIdString}"
resourceName="#{row.AuctionTitle}"
serviceId="oracle.apps.pon.auctionheadersall"/>

3. From the Resource Palette, go to My Catalogs > WebCenter Services Catalog >
Task Flows, drag and drop the Tagging Dialog (as a Region). If you do not find the
Tagging Dialog, ensure that you added the WebCenter Tagging Service View to

Note: All fields are varchar2(200). Ensure that you are not
violating the constraint. Also note that if, for instance, your product
has three business objects that you are planning to tag, then you must
build three different services with the proper business object name as
the service ID.

Note: Ensure that all the values are of type String.

Implementing Tagging Integration

14-4 Developer's Guide

your user interface project (Properties > Libraries and classpath). Note that you
may drop multiple tagging buttons on your page depending upon your
requirement. You need to drop the tagging dialog only once on the page.
Whenever you click a tag icon (tagging button) on the page, it will call the same
tag dialog region.

The ability to tag an object is now enabled on the page. The code will look similar
to that shown in Example 14–2.

Example 14–2 Enabling Tagging

<af:region
value="#{bindings.tagginglaunchdialog1.regionModel}"
id="taggi1"/>

If you have multiple objects to tag, there will be multiple tagging buttons you will
drop on your page, whereas there will be only one tagging dialog.

Tagging is enabled, but to see the tagged resource in the Tag Center, you must create a
service definition.

To create a service definition:
1. Expand Application Resources > Descriptors > ADF Meta-INF. If you already

have the service-definition.xml file, open it. Otherwise, create the
service-definition.xml file. Important fields are:

– taskFlowId: The task flow where you want to go.

– resourceParamList: The list of parameters that you want to pass to the task
flow. For example, your task flow takes invoiceId and invoiceType. If the
RESOURCE_ID for the tagged item is 123.C45 where 123 is the invoiceId and
C45 is the invoiceType, in resourceParamList you should specify
invoiceId;invoiceType. The Applications Core class will parse the resource
ID 123.C45 and pass invoiceId=123,invoiceType=C45 to the task flow. To use
a different delimiter, use the customDelimiter attribute.

– taskParametersList: The parameters that can be passed to the task flow in
addition to the resourceParamList.

– navTaskKeyList: Do not specify this if it is not used. Otherwise, task flows
from Tag Center will always go to a specific tab while the same task flow
opened from the Tasklist or API will go to a different tab.

– navTaskLabel: If using tabbed workareas, this is needed to give a title to the
tab that opens showing the tagged object. An Expression Language expression
can be used. It will be evaluated when the page loads, so it can be an
Expression Language expression that the landing page can resolve.

– pageResourceParamList: If the RESOURCE_ID for the tagged item is, for
example, EastCoast.C45 where EastCoast will be a page level parameter
called Region and a task flow parameter called InvoiceType. It is assumed an
object will always need both composite keys to be identified as a unique entity.
So, the resourceParamList will always contain the same number of parameter
names as the composite keys. The task flow must take both EastCoast and C45

Note: If you are placing tags within rows of a table, the Tagging
Dialog region must be dropped outside of the table. Otherwise, it is
instantiated for every row, which will not work.

Implementing Tagging Integration

Implementing Search Functions in the UI Shell 14-5

as parameters. But the page-level parameters can be called out in the
pageParametersList. For example:

resourceParamList = "Region,InvoiceType"
pageResourceParamList = "Region"

– pageParametersList: Additional page parameters where the value is static,
such as pageParametersList = "Campaign=Sales"

– customDelimiter: This is optional. The default is a period ".". If you want
something different, add this parameter.

For ease of deployment, service definition files will be stored in Oracle
Metadata Service (MDS). Add the service-definition.xml file to the
Metadata Archive (MAR) file definition.

 A sample service-definition.xml file is provided in Example 14–3.

Example 14–3 Sample service-definition.xml

<service-definition id="FND_DEMO_DOC_TAG" version="11.1.1.0.0" >
 <resource-view taskFlowId="/WEB-INF/task-flow-1.xml#task-flow-1" >
 <parameters>
 <parameter name="viewId"
 value="RevenueWorkArea"/>
 <parameter name="webApp"
 value="ProjectsFinancials"/>
 <parameter name="pageParametersList"
 value="p1=viewContext"/>
 <parameter name="navTaskKeyList"
 value="ViewRevenueItem"/>
 <parameter name="taskParametersList"
 value="a=1;b=2"/>
 <parameter name="resourceParamList"
 value="invoiceId;invoiceType" />
 <parameter name="navTaskLabel"
 value="Details"/>
 <parameter name="customDelimiter"
 value="," />
 <resource-type-key>PAGE_OBJECT_NAME</resource-type-key>
 </parameters>
 </resource-view>
 <name-key>CUSTOM_NA_KEY_TYPE</name-key>
 <description-key>CUSTOM_TY_DESCRIPTION_KEY</description-key>
</service-definition>

Put the service-definition.xml file in a standard location so there are no
conflicts. Create or copy the file, which by default is located at .adf/META_
INF/service-definition.xml, to the new standard location. There are two
guidelines for where to put the service-definition.xml file:

– Make it unique so teams of developers are not trying to push files to the
exact same location in MDS.

– Standardize it to be in the meta/oracle/apps/meta directory. The
/oracle/apps/meta directory makes the location specific to Oracle
applications. The parent meta/ directory is used for MAR selection. The
directory structure and contents then resemble:

meta/ (this directory plus a specific sub-directory structure goes into
the MAR)
 oracle/apps/meta/ (namespace unique to MDS)

Implementing Tagging Integration

14-6 Developer's Guide

 <product-specific-directory-structure>/ (each team has a
unique name)
 service-definition.xml (located in the product
directory)

If you use an application-level or project-level service-definition.xml
file, you do not need to make any changes as long as your name will be
unique to other applications and projects. You should never have two
entries for the same SERVICE_ID, whether within the same service-defi-
nition.xml file or in separate service-definition.xml files.

That is, the service-definition.xml file should be under the data model
project that contains the entity objects and view objects used for the detail
page. If the view object is:

oracle.apps.scm.receiving.receipts.receiptSummary.protectedUiMo-
del.view.ReceiptSummaryHeaderVO,

the service-definition.xml location will be:

oracle.apps.scm.receiving.receipts.receiptSummary.protectedUiMod
el.meta.oracle.apps.meta.scm.receiving.receipts.receiptSum-
mary.service-definition.xml.

2. Add the directory, such as meta/oracle/apps/meta/<lba>/<product>/, into the
MAR.

■ Open Application > Application Properties > Deployment. Select the MAR
file and choose Edit.

■ In the Edit dialog, select User Metadata and choose Add. Browse to select the
meta directory you just added and click OK.

■ Select the meta directory (under oracle/apps/) and click OK.

■ Click OK in the Edit MAR dialog.

3. Add the namespace path /oracle/apps/meta to the adf-config.xml file, as shown
in Example 14–4.

Example 14–4 Adding the Namespace Path to adf-config.xml

<adf-config
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config"
 version="11.1.1.000">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/apps/meta"
 metadata-store-usage="WebCenterFileMetadataStore"/>
 </metadata-namespaces>
 <metadata-store-usage id="WebCenterFileMetadataStore"
 default-cust-store="true" deploy-target="true">
 <metadata-store
class-name="oracle.mds.dt.persistence.stores.file.SrcControlFileMetadataStore">
 <property name="metadata-path" value="../../mds"/>
 </metadata-store>
 </metadata-store-usage>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Implementing Tagging Integration

Implementing Search Functions in the UI Shell 14-7

4. Add the entry shown in Example 14–5 to your adf-config.xml file to enable the
default resource action handler from Applications Core.

Example 14–5 Enabling the Default Resource Action Handler

<wpsC:adf-service-config>
 <resource-handler
class="oracle.apps.fnd.applcore.tags.handler.FndResourceActionViewHandler"/>
</wpsC:adf-service-config>

Add this instruction in the header:

xmlns:wpsC="http://xmlns.oracle.com/webcenter/framework/service"

5. Run the page.

– The Tag icon will appear on the page. When you click the Tag icon, it will take
you to the UI where you can enter a new Tag.

– You can share the tag or not share it. Only shared tags are available to Oracle
Fusion Applications Search.

– After creating the tag for the first time, again hover the mouse over the icon. It
will display My Tags and Popular Tags.

– Clicking the Tag takes you to the Tag Center UI where you are shown all
resources that have been tagged by that word.

– Clicking a resource from Tag Center will take you to the task flow defined in
your service definition, passing the parameters you specified so you can view
the object.

14.1.1.2 Enabling Multiple Navigation Targets
Searchable and taggable objects are defined at the view object or logical business object
level. The same view object or business object can be viewed and tagged in more than
one workarea and task flow. The requirement is that all users must be able to go from
Tag Center to a detail task flow for which they have privileges. If this task flow is
available in the current workarea, use this target before any other.

This is implemented by supplying multiple navigation targets in the current
service-definition.xml file. Each target will have its parameter separated by a caret
(^).

Example 14–6 shows how to define a list of three targets:

Example 14–6 Defining a List of Three Targets

<resource-view

taskFlowId="/WEB-INF/dummy^/WEB-INF/dummy^/WEB-INF/Test1Frag2TF.xml#Test1Frag2TF">
 <parameters>
 <parameter name="viewId" value="DummyView^Region6UIShellPage^Test2"/>
 <parameter name="webApp"
 value="ApplCoreCRMDemo^ApplCoreCRMDemo^SimpleApplication1_application1"/>
 <parameter name="pageParametersList" value=""/>
 <parameter name="taskParametersList" value=""/>
 <parameter name="resourceParamList" value="val"/>
 <parameter name="navTaskLabel" value="My Employee Details^My Employee Details
2^My Employee Details"/>
 <parameter name="applicationStripe"
 value="ApplicationsCommon^ApplicationsCommon^AppStripe1"/>
 <parameter name="pageDefinitionName"

Implementing Tagging Integration

14-8 Developer's Guide

value="pageDef.not.exist^oracle.apps.view.pageDefs.Region6UIShellPagePageDef^oracl
e.apps.view.pageDefs.Test1PageDef"/>
 </parameters>
</resource-view>

The lists of taskFlowId, viewId, webApp, and so on, are specified as a delimited string,
with each value delimited by a caret. Two parameters, applicationStripe and
pageDefinitionName, are available for checking security when the target is in a
different webApp.

If the current view ID matches any one of the viewId values in the target list, you take
the corresponding task flow (that is, if the third viewId value matches the current view
ID, you take the third taskFlowId value) and open it in the current page, if the user
has view access to that task flow, which overrides the order of the list. Otherwise, you
check a list of link targets for the first target to which the current user has access. You
are responsible for making sure that all users who can access this object have at least
one match to a target task flow defined in the service-definition.xml file.

When the target is in a different webApp, the security check is performed by calling
checkBulkAuthorization API. Therefore, you must use a standalone Oracle WebLogic
Server and LDAP policy store. This requirement is optional when the lists of targets
are within the same webApp.

14.1.1.3 Tagging a Resource at the Row Level of a Table
To add row-level tagging to a table, add a new empty column to hold the Tag button
or link.

All other steps remain the same as described in Section 14.1.1.1, "Tagging a Resource
(Business Object).".

14.1.1.4 Searching for a Tag
 We recommend that you do not add the Tag Search in your page. The standard way to
perform a search is to start the Tag Center UI by clicking the Tag icon, or from Tags in
the UI Shell global area and do the search there.

14.1.1.5 Resource Viewer for Tagged Items
It can be handy for a user to be able to click a tag and open a document. To do this,
Web Center Tagging needs to know a resource viewer (a task flow) where it should
take the user to show the required information.

You can build a task flow where you can take the user for that resource and show the
desired additional information as follows:

1. Select or create a new task flow that will act as your resource viewer for a service
(business object):

a. In the task flow definition, define an input parameter that is called resourceId
(in this example), with class equal to java.lang.String, with value equal to
#{pageFlowScope.resourceId}, and with required set to enabled.

Note that the value for resourceId is set automatically when clicking a tagged
item link in Tag Center.

b. Create a method with a parameter of object ID in the application module for a
tagged item (named, for instance, setCurrentRow) to set the view object row
based on the passed resource ID parameter.

Implementing Tagging Integration

Implementing Search Functions in the UI Shell 14-9

c. Add the setCurrentRow method as the default activity in the task flow and
bind the method (right click the method in the task flow and go to page
definition) with the parameter value of #{pageFlowScope.resourceId}, type
java.lang.String, and name equal to the parameter variable name in the
setCurrentRow method signature.

d. Add the bounded task flow for the details or information page of the tagged
item to the new task flow.

e. Add a control flow case from the setCurrentRow method to the details or
information page task flow, as shown in Figure 14–1.

Figure 14–1 Adding A Control Flow to Details Task Flow

2. Register the new task flow in the service-definition.xml file. Register the
resource viewer for a particular service (business object) to its section in the service
definition file. See Example 14–3 for samples of the service-definition and
resource-view entries.

Basically, you have defined a task flow that takes the resource ID as input. Use the
resource ID to uniquely identify the business object and display any desired extra
detail. Note that clicking a tagged item in Tag Center displays the details or
information page for the tagged item in the Local Area of the workarea page for that
task flow.

14.1.2 Implementing Tagging Security
By default, tagging does not provide any security. To avoid this problem, implement
security for each service (business object) for which tagging is enabled:

■ For a business object, first implement data security.

■ Add the authorizerClass and dataSecurityObjectName parameters to the
service-definition.xml file, as shown in Example 14–7.

Example 14–7 Registering a New Class in service-definition.xml

<service-definition id="FND_DEMO_DOC_TAG" version="11.1.1.0.0" >
 <resource-view taskFlowId="/WEB-INF/task-flow-1.xml#task-flow-1" >
 authorizerClass="oracle.apps.fnd.applcore.tags.util.FndTagSecurity"/>
 <parameters>
 <parameter name="dataSecurityObjectName" value="FND_CRM_CASES"/>
 <parameter name="dataSecurityPrivilegeName" value="read"/>

FND_CRM_CASES is the object you want to secure that is found in the FND_OBJECTS
table. This is usually the object's main table name.

If the dataSecurityPrivilegeName parameter is not set, it defaults to read
privilege. This attribute is used in cases where a single table has different
privileges for different users.

■ Put the service definition into MDS. For ease of deployment, service definition
files will be stored in MDS.

Implementing Tagging Integration

14-10 Developer's Guide

14.1.3 How to Use Tagging in a UI Shell Application
The following describes examples of how tagging appears in the UI Shell:

■ Tagging an object by having the Tag button and tagging dialog in the task flow. On
clicking the Tag button, a tagging dialog is displayed and prompts the user to tag
the object with a name, as shown in Figure 14–2.

Figure 14–2 Tagging an Object with a Name

■ To see the tagged object in the Tag Center task flow, click the Tags link in the UI
Shell Global Area and the Tag Center task flow displays the list of tags available,
as shown in Figure 14–3.

Figure 14–3 Displaying the List of Available Tags

■ Click one of the tags in the tag cloud region of the Tag Center to view the tagged
items, as shown in Figure 14–4.

Implementing Recent Items

Implementing Search Functions in the UI Shell 14-11

Figure 14–4 Viewing Tagged Items

■ Click the tagged item to view the object in the task flow mentioned in the service
definition file, as shown in Figure 14–5.

Figure 14–5 View Object Listed In Service Definition File

■ To check whether or not the object is already tagged, hover over the Tag button to
see the tags. On clicking the tag link on the hover dialog, the Tag Center task flow
will be started with the selected tag, as shown in Figure 14–6.

Figure 14–6 Starting Flow with Selected Tag

14.2 Implementing Recent Items
Recent Items tracks a list of the last 20 task flows visited by a user. The Recent Items
list is persistent across user sessions and a task can be restarted from the Recent Items

Implementing Recent Items

14-12 Developer's Guide

list. The feature is automatically turned on and will be available automatically in pages
using the UI Shell template. Security must be disabled to turn Recent items off.

Before You Begin
For the Recent Items feature to work, you must configure the user session and ADF
Security. See Chapter 47, "Implementing Application User Sessions." Without security
enabled, recent items will not be captured because the data is recorded for each
authenticated user.

14.2.1 How to Choose Labels for Task Flows
Recent Items records the task flow labels for a task flow that has started. Therefore,
you must carefully choose the labels for task flows, and must provide task flow labels
for all task flows, even if they are meant to be used in no-tab mode (see
Section 13.2.3.4, "Supporting No-Tab Work Areas").

14.2.2 How to Call Sub Flows
The openMainTask method is used to open a new task in the Main Area of Oracle
Fusion web applications that use UI Shell templates. Besides opening a new tab,
openMainTask also pushes a new task flow history object onto a stack, which is used to
keep track of all task flows that have been opened. The task flow ID and its associated
parameter values are encapsulated in the task flow history object.

Having this information, the call to closeMainTask pops the stack to get the last task
flow ID and its parameter values that were displayed, and reinitializes the Main Area
with that task flow and parameter information.

When a task flow is called from the Local Area task flow using task flow call activity, it
is called a sub flow. By default, sub flows will not be recorded on the stack as
described. Two new APIs are exposed in FndUIShellController data control for
registering sub flows: openSubTask and closeSubTask.

14.2.2.1 Sub Flow Registration APIs
Use the openSubFlow and closeSubFlow APIs to record sub flows to Recent Items.
Whenever an ADF Controller task flow call takes place, no notification is raised to
Applications Core or UI Shell. So, unlike starting a task from a tasks list, you need to
explicitly notify the UI Shell for sub flow calls.

When the openSubTask API is called before a subflow is started, the sub flow ID and
its parameter values are pushed onto the stack. Applications Core also notifies the
Recent Items implementation with recorded task flow information. This essentially
makes a sub flow able to be bookmarked by Recent Items, and can be started directly
from the selection of menu items on Recent Items.

Note that registering sub flows to Recent Items is optional.

Implementation
This API is exposed as the data control methods FndUIShellController.openSubTask
and FndUIShellController.closeSubTask that can be dragged and dropped to page
fragments to create links to notify the UI Shell. The FndUIShellController data
control is automatically available to all Oracle Fusion applications that reference
Applications Core libraries.

Example 14–8 shows the signature and Javadoc of the method.

Implementing Recent Items

Implementing Search Functions in the UI Shell 14-13

Example 14–8 Recent Items API

/**
* Notify UIS hell to record a given sub flow on the stack and
* also notify Recent Items to include it on the list.
*
* @param taskFlowId Task flow to open
* @param parametersList Parameters list for the task flow.
* This is a semicolon delimited String
* of name-value pairs. For example,
* "param1=value1;param2=value2".
*
* @param label Label for the task flow.
* @param keyList Key list to locate the task flow instance.
* This is a semicolon delimited keys or key-value pairs.
* For example, "key1;key2=value2". If only the key is specified,
* the value is picked up from parametersList with the same
* name as the key.
*
* @param taskParametersList Parameters list to pass in to the task flow to open
* in the target workspace. This is a semicolon delimited String
* of name value pairs. For example,
* "param1=value1;param2=value2."
*
* @param methodParameters This can be used for passing
* Java object into the task flow that is specified
* in taskFlowId parameter. Use <code>setCustomObject() API</code>
* in FndMethodParameters for setting the java object.
*
* @return For internal Contextual Event processing
*/

public FndMethodParameters openSubTask(String taskFlowId,
String parametersList,
String label,
String keyList,
String taskParametersList,
String viewId,
String webApp,
FndMethodParameters methodParameters)

/**
* Closes the currently-focused sub-task and the focus moves to the
* task from which this sub-task was started.
*
* @param methodParameters For future implementation. No-op for now.
* @return For internal Contextual Event processing
*/
public FndMethodParameters closeSubTask(FndMethodParameters methodParameters)

All the parameters required to be passed in openSubTask are exactly same as used by
the Navigate API. For more information, see Section 15.1, "Introducing the Navigate
API."

14.2.2.2 openSubTask API Labels
The openSubTask API accepts the same set of parameters as used by the Navigate API.
If no label is specified in the openSubTask API, Recent Items will register it with the
name of the parent task flow's label. You should set a different label based on the
business use case in the openSubTask API. Failing to do so will register this flow with

Implementing Recent Items

14-14 Developer's Guide

the same label as the parent task flow's label and, therefore, will make it impossible to
distinguish between the parent flow and the sub flow entry in the Recent Items list.

14.2.2.3 Starting from Recent Items
Whatever task flow details are registered while invoking the openSubTask API will be
used by Recent Items to start it. Recent Items takes care of starting the task flow in the
right work area and web application. You do not need to do anything for that. Because
the openSubTask API supports parametersList, you can pass some
requirement-specific values to it while registering the task flow to Recent Items. On
starting, those passed values are available in the pageFlowScope. You can analyze these
values and make decisions, such as if you need to first initialize the parent flow, or if
you need to set Visible to False on some of the actions on the page.

14.2.3 How to Enable a Sub Flow to Be Bookmarked in Recent Items
To record sub flows into the Recent Items list, applications need to call the
openSubTask API right before sub flows are started. openSubTask takes parameters
similar to the Navigate API. One of these is task flow ID. For this, you need to specify
the parent flow's ID (or main task's ID). In other words, sub flows need to be executed
by using the parent flow, even though they are started from the Recent Items menu.

If your sub flow does not need to be bookmarked by Recent Items, you do not need to
change anything. Otherwise, you need to modify your parent flow and sub flow as
described in this section. After the changes, sub flows can be started in two ways:

■ From original flows

■ From Recent Items menu items using recorded information

Both will start the execution in the parent flow. Because the sub flow must be
piggybacked on the parent flow when it is started from the Recent Items menu, you
need to change the parent flow following these directions:

■ Add a new router activity at the beginning of the parent flow. Based on a test
condition, it will route the control to either the original parent flow or the task
flow call activity (that is, the sub flow).

■ Add an optional method call activity to initialize the sub flow before it is started
from the Recent Items menu. Product teams can code the method in such a way
that it can navigate to the sub flow after initializing the parent state. This allows
product teams to render the contextual area, navigating back to the parent flow
from the sub flow, and any other customizations.

■ Bind openSubTask to the command component (such as a link or button) which
causes the flow to navigate to the task flow call activity in the original parent flow.
The openSubTask API registers the parent flow details and input parameters to the
sub flow (to be started as a sub flow later) to the Applications Core task flow
history stack.

Usually, you do not need to modify your sub flow for this task. However, you can
consolidate the initialization steps from two execution paths in this way:

■ Remove initialization parts from both paths in the parent flow. Instead, set input
parameters in both paths only.

■ Modify the sub flow to take input parameters.

■ Add a new method call (such as initsubflow) at the beginning of the sub flow to
initialize states in the parent flow (for example, parent table) so that the sub flow
can be started in the appropriate context.

Implementing Recent Items

Implementing Search Functions in the UI Shell 14-15

Note that the design pattern also requires the application to be able to navigate back to
the parent flow from the sub flow. The initialization code should take this into
consideration, such as by setting up states to allow the sub flow to navigate back.

In this example, you will use an Employee sample implementation to demonstrate the
details of this design pattern.

Sub Flow Sample Application
As shown in Figure 14–7, users select Subflow Design Pattern from the task list. They
then specify some criteria to search for a specific employee or employees. From the list,
they can choose the employee for whom they want to show the details.

Figure 14–7 Example List of Employees

The Ename column in the search result table is a link that can be used to navigate to
the employee detail page of a specific employee. When this link is clicked, a sub flow
(or nested bounded task flow) is called to display the Employee Complete Detail page,
as shown in Figure 14–8.

Figure 14–8 Example Employee Complete Detail Page

Implementing Recent Items

14-16 Developer's Guide

14.2.3.1 Implementing the Sub Flow Design Pattern
The parent task flow named ToParentSFFlow is shown in Figure 14–9.

Figure 14–9 Example Parent Task Flow

The router activity decideFlow decides whether the control task flow should go to the
original parent task flow path (initParent) or to the sub task flow path (toChild). The
condition is defined as:

<router id="decideFlow">
 <case>
 <expression>#{pageFlowScope.Empno == null}</expression>
 <outcome id="__9">initParent</outcome>
 </case>

 <case>
 <expression>#{pageFlowScope.Empno != null}</expression>
 <outcome id="__10">toChild</outcome>
 </case>

 <default-outcome>initParent</default-outcome>
</router>

The test checks whether or not the Empno variable in the parent task flow's
pageFlowScope is null. #{pageFlowScope.Empno} is set using its input parameter Empno
when the parent task flow is called. The input parameters on the parent task flow (that
is, ToParentSFFlow) are defined as:

<input-parameter-definition>
 <name>Empno</name>
 <value>#{pageFlowScope.Empno}</value>
 <class>java.lang.String</class>
</input-parameter-definition>

When the parent task flow is started from the task list, the Empno parameter is not set
(that is, it is not defined in the application menu's itemNode). Therefore, the parameter
is null and the router will route it to the initParent path.

When the sub task flow is recorded through the openSubTask API, the Empno
parameter is set on parametersList as:

<methodAction id="openSubTask" RequiresUpdateModel="true"

Implementing Recent Items

Implementing Search Functions in the UI Shell 14-17

 Action="invokeMethod" MethodName="openSubTask"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.openSubTask_
FndUIShellController_dataProvider_openSubTask_result">
 <NamedData NDName="taskFlowId" NDType="java.lang.String"

NDValue="/WEB-INF/oracle/apps/xteam/demo/ui/flow/ToParentSFContainerFlow.xml#ToPar
entSFContainerFlow"/>
 <NamedData NDName="parametersList" NDType="java.lang.String"
 NDValue="Empno=#{row.Empno}"/>
 <NamedData NDName="label" NDType="java.lang.String"
 NDValue="#{row.Ename} complete details"/>
 <NamedData NDName="keyList" NDType="java.lang.String"/>
 <NamedData NDName="taskParametersList" NDType="java.lang.String"/>
 <NamedData NDName="viewId" NDType="java.lang.String"
 NDValue="/DemoWorkArea"/>
 <NamedData NDName="webApp" NDType="java.lang.String"
 NDValue="DemoAppSource"/>
 <NamedData NDName="methodParameters"

NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.bean.FndMethodParameters"/>
</methodAction>

You also set up:

■ taskFlowId to be the parent task flow's, not the sub task flow's

■ label to be the sub task flow's

When users click the link (the Ename) to which the openSubTask method is bound,
openSubTask will be called. This link component is defined as:

<af:column sortProperty="Ename" sortable="false"
 headerText="#{bindings.ComplexSFEmpVO.hints.Ename.label}"
 id="resId1c2">
 <af:commandLink id="ot3" text="#{row.Ename}"
 actionListener="#{bindings.openSubTask.execute}"
 disabled="#{!bindings.openSubTask.enabled}"
 action="toChild">
 <af:setActionListener from="#{row.Empno}"
 to="#{pageFlowScope.Empno}"/>
 </af:commandLink>
</af:column>

Note that when the link is clicked:

■ actionListener and the action specified on the link are executed, in that order.

■ openSubTask is called only from the original parent task flow path (that is,
initParent), not from the sub task flow path (that is, toChild).

The EmployeeDetails activity in Figure 14–9 is a Task Flow Call activity that invokes
the ToChildSFFlow sub task flow. Before the sub task flow is executed, add
initialization steps. These initialization steps could include, but are not limited to:

■ Set up parent states. For this example, set the selected employee's row to be the
current row.

■ Set up the Contextual Area state.

■ Set up states to allow the sub task flow to navigate back to the parent task flow.

There are two approaches to setting up the initialization steps:

Implementing Recent Items

14-18 Developer's Guide

■ In the parent task flow

■ In the sub task flow

For the first approach, you can add logic to initialize both paths before the task flow
call activity in the parent task flow. For the second approach, you initialize states in the
sub task flow by using input parameters of the sub task flow. For example, the sub
task flow will take an input parameter named Empno. In effect, the second approach
just postpones the initialization to the sub task flow.

The definition of input parameters in the task flow call activity is:

<task-flow-call id="EmployeeDetails">
 <task-flow-reference>

<document>/WEB-INF/oracle/apps/xteam/demo/ui/flow/ToChildSFFlow.xml</document>
 <id>ToChildSFFlow</id>
 </task-flow-reference>
 <input-parameter>
 <name>Empno</name>
 <value>#{pageFlowScope.Empno}</value>
 </input-parameter>
</task-flow-call>

Note that this means that the calling task flow needs to store the value of Empno in
#{pageFlowScope.Empno}. For example, from the original parent task flow path, it is
set to be #{row.Empno} using the setActionListener tag. For the sub task flow path, it
is set using the parent task flow's input parameter Empno. On the sub task flow, you
need to specify its input parameters as:

<task-flow-definition id="ToChildSFFlow">
 <default-activity>TochildSFPF</default-activity>
 <input-parameter-definition>
 <name>Empno</name>
 <value>#{pageFlowScope.Empno}</value>
 <class>java.lang.String</class>
 </input-parameter-definition>
 ...
</task-flow-definition>

Note that the name of the input parameter (Empno) must be the same as the parameter
name defined on the task flow call activity. When the parameter is available, Oracle
ADF will place it in #{pageFlowScope.Empno} to be used within the sub task flow.
However, this pageFlowScope is different from the one defined in the task flow call
activity because they have a different owning task flow (that is, parent task flow
versus sub task flow).

The definition of the sub task flow is shown in Figure 14–10:

Implementing Recent Items

Implementing Search Functions in the UI Shell 14-19

Figure 14–10 Example Sub Task Flow Definition

In the sample implementation, you implemented the initialization step in the sub task
flow. The Empno variable is passed as a parameter to the sub task flow and used to
initialize the parent state. When the sub task flow is started, the default view activity
(TochildSFPF) is displayed. Before it renders, the initPage method on the
ChildSFBean will be executed. The page definition of the default page is defined as:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel">
 <parameters/>
 <executables>
 ...
 <invokeAction id="initPageId" Binds="initPage" Refresh="always"/>
 </executables>
 <bindings>
 ...
 <methodAction id="initPage" InstanceName="ChildSFBean.dataProvider"
 DataControl="ChildSFBean" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="initPage"
 IsViewObjectMethod="false"
 ReturnName="ChildSFBean.methodResults.initPage_ChildSFBean_
dataProvider_initPage_result"/>
 ...
 </bindings>
</pageDefinition>

The initPage method is specified in the executables tag and will be invoked when
the page is refreshed. The initPage method itself is defined as:

public void initPage()
{
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExpressionFactory exp = facesContext.getApplication().getExpressionFactory();
 DCBindingContainer bindingContainer =
 (DCBindingContainer)exp.createValueExpression(

facesContext.getELContext(),"#{bindings}",DCBindingContainer.class).getValue(faces
Context.getELContext());
 ApplicationModule am =
bindingContainer.getDataControl().getApplicationModule();

 ViewObject vo = am.findViewObject("ComplexSFEmpVO");
 vo.executeQuery();

 Map map = AdfFacesContext.getCurrentInstance().getPageFlowScope();

Implementing Recent Items

14-20 Developer's Guide

 if(map !=null){
 Object empObj = map.get("Empno");
 if(empObj instanceof Integer){
 Integer empno =(Integer)map.get("Empno");// new Integer(empnoStr);
 Object[] obj = {empno};
 Key key = new Key(obj);
 Row row = vo.getRow(key);
 vo.setCurrentRow(row);
 }
 else
 {
 String empnoStr = (String)map.get("Empno");
 Integer empno = new Integer(empnoStr);
 Object[] obj = {empno};
 Key key = new Key(obj);
 Row row = vo.getRow(key);
 vo.setCurrentRow(row);
 }
 }
}

The initPage method takes the input parameter Empno from #{pageFlowScope.Empno}
as a key to select a row and set it to be the current row in the master Employee table.

14.2.4 How to Use Additional Capabilities of the Recent Items openSubTask API
The openSubTask API has additional capabilities. For example, consider an employee
search page in which you enter parameters such as department number and manager
ID, and search for the matching employee records. You can use the openSubTask API to
register a search page with search parameters. The next time the user can see the
search results by just starting it from the Recent Items menu. This is similar to using
parametersList to specify search parameters while registering the search task flow.
While starting, additional programming can be done to retrieve the search parameters
and execute the query with the parameter values.

Favorites
As soon as tasks are recorded on the Recent Items list, they are eligible for Favorites.
The Favorites menu is implemented on top of Recent Items. Any current task on the
Recent Items list can be bookmarked and placed in the Favorites folders. Currently,
only a one-level folder is supported. Similar to Recent Items, tasks on the Favorites list
can be started directly from the list. So, the description in this section for Recent Items
applies also to the Favorites implementation. For example, sub flows based on the
design pattern described in this section can be registered on the Favorites list as well as
the Recent Items list.

14.2.5 How to Implement Data Security for Recent Items and Favorites
Data security controls access to the data displayed on the target. When data security is
enforced on the target page, any changes to the access that the user has is properly
reflected on the data.

However, there are use cases in Oracle Fusion Applications where the Recent Items
and Favorites features may cause security issues. In some cases there is a
master/detail relationship between objects in which only the parent object has data
security implemented. The child object has no data security enforced and is expected
to inherit security from the parent. In such cases, the user can only navigate to the
child task flow through the parent task flow. But because the child task flow can be

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-21

added as a Recent Item or Favorite, users can navigate directly to the child through
Recent Items, whether or not they still have access to the parent.

Data security ensures that user access is properly enforced on all flows that can be
accessed from Recent Items or Favorites.

Implementation
Implementation consists of ensuring that security is enforced consistently in all
scenarios and that authorization exceptions are handled by the standard central
method.

Security Enforcement
For function security, no additional implementation is required. The recommendations
for data security are:

■ Data security should be applied on an appropriate level. For example, in a
master/detail relationship, security definitions should be created on both parent
and child objects and applied on a proper level.

■ If the child record inherits the security from its parent, then the parent's security
must be programmatically enforced on a sub flow. This should be done by adding
a default method activity on the task flow and calling the data security API to
check that the user has access to the parent. If the user does not have proper
access, an authorization exception is generated.

In addition, you should programmatically enforce the parent data security where
applicable. For instance, if a view object takes the parent primary key as a
parameter, before executing the query the code should check that the user has
access to the parent.

14.2.6 Known Issues
■ Recent Items are persistent across user sessions.

■ You may see a null pointer exception when all the task flow parameters are not
supplied values.

14.3 Implementing the Watchlist
The Watchlist is a portlet or menu, accessible to Oracle Fusion Applications users, that
provides a summary of items that a user wants to track. The Watchlist includes seeded
items (items that are provided out of the box) categorized by functional areas, and
items created by the user. Technically, the Watchlist presents a list of pre-queried
searches (saved searches or standard queries) of things the user wants to track. Each
item is composed of descriptive text followed by a count. Each item also is linked to a
page in a work area where the individual items of interest are listed.

The Watchlist is available both as a dashboard region in the Welcome tab of the Home
dashboard, and as a global menu. These are two views of the same content. The
dashboard region is available to users as soon as they log in, while the global menu is
accessible as they navigate through the suite.

The Watchlist will be refreshed to fetch new counts and items whenever the user
navigates to the Home page. The Watchlist can refresh the entire list or individual
categories as needed. Users can personalize the Watchlist to hide or show items.

Figure 14–11 shows an example of the Watchlist portlet and menu.

Implementing the Watchlist

14-22 Developer's Guide

Figure 14–11 Example Watchlist Portlet and Menu

You have these high-level tasks:

■ Code view objects with bind variables and default values for bind variables as
needed for calculating the Watchlist count. These view objects will be executed at
runtime by the Watchlist API to get the Watchlist count for the user.

■ Code task flows to enable drill-down from the Watchlist UI.

■ Seed FND deployments to specify host, port, and context root information for UI
drilldown and service invocation.

■ Seed FND standard lookups for each Watchlist category and item meaning.

■ Seed information to tell the Watchlist what counts to track, how to display them to
the user, which view objects to execute, and how to drill down to the work area
and tasks.

■ Import Watchlist JAR files as ADF libraries in service and UI projects.

■ Set up a service interface method so that product code and Watchlist code can
interact.

14.3.1 Watchlist Data Model Effects
Product teams will seed data into the ATK_WATCHLIST_CATEGORIES and ATK_
WATCHLIST_SETUP tables. Rows in the ATK_WATCHLIST_ITEMS will be managed by
Watchlist code, but you will query it for testing verification.

The only other data model effect will be in the creation of summary tables. These
summary tables help with retrieving the count of Watchlist items with data security.
See Section 14.3.4.3.1, "Summary Tables."

14.3.2 Watchlist Physical Data Model Entities
The Watchlist data model is supported by ATK. The tables are:

■ ATK_WATCHLIST_CATEGORIES: Represents the functional categories in which each
Watchlist item will fit. See Table 14–1, " ATK_WATCHLIST_CATEGORIES".

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-23

■ ATK_WATCHLIST_SETUP: Represents a type of count that a Watchlist item can track.
The primary key is a Watchlist item code. See Table 14–2, " ATK_WATCHLIST_
SETUP".

Table 14–1 ATK_WATCHLIST_CATEGORIES

Column Name Datatype Required Comments

WATCHLIST_CATEGORY_CODE VARCHAR2(100) Yes Primary Key - Unique code based on Product
Code Prefix. Ensure that this code begins with
<PRODUCT SHORT CODE>_, so that it does not
overlap with others.

CATEGORY_LOOKUP_TYPE VARCHAR2(30) Yes Reference to FND_STANDARD_LOOKUP_
TYPES.LOOKUP_TYPE

Product teams will seed the lookup type with
meaning for the category (VIEW_APPLICATION_ID
= 0 and SET_ID = 0). The translated lookup type
meaning is shown in the Watchlist UI for the
category.

OWNING_MODULE_NAME VARCHAR2(4000) Yes Reference to FND_APPL_TAXONOMY.MODULE_NAME
for the owning product or module. This is used
for seed data purposes.

OWNING_MODULE_ID VARCHAR2(32) Yes Reference to FND_APPL_TAXONOMY.MODULE_ID for
the owning product or module. This is used for
seed data purposes.

OWNING_APPLICATION_ID NUMBER Yes Reference to FND_APPL_TAXONOMY.ALTERNATIVE_
ID for the owning product or module. This is
used for seed data purposes.

REFRESH_SERVICE_ENDPOINT_
KEY

VARCHAR2(60) Yes The key to determine the host, port, context root,
and so on to construct the URL for the service
end point (wsdl location).

This will be based on the Applications Core
lookup API that will be used to determine the
end point.

REFRESH_SERVICE_NAME VARCHAR2(400) Yes The service that must be invoked for count
calculation (for refreshing this category).

REFRESH_SERVICE_METHOD_
NAME

VARCHAR2(400) Yes Obsolete. The hard-coded method name will be
refreshWatchlistCategory. Product teams will
create this hard-coded service method.

ENABLED VARCHAR2(1) Yes Defaults to Y. Defines if this Watchlist category is
enabled or active.

CREATED_BY VARCHAR2(64) Yes Standard WHO Column

CREATION_DATE TIMESTAMP Yes Standard WHO Column

LAST_UPDATED_BY VARCHAR2(64) Yes Standard WHO Column

LAST_UPDATE_DATE TIMESTAMP Yes Standard WHO Column

LAST_UPDATE_LOGIN VARCHAR2(32) Yes Standard WHO Column

Implementing the Watchlist

14-24 Developer's Guide

Table 14–2 ATK_WATCHLIST_SETUP

Column Name Datatype Required Comments

WATCHLIST_ITEM_CODE VARCHAR2(100) Yes Primary Key - Uses the Category
Code Prefix

ITEM_LOOKUP_CODE VARCHAR2(30) Yes if WATCHLIST_ITEM_
TYPE != USER_SAVED_
SEARCH

Reference to FND_LOOKUPS.LOOKUP_
CODE

Product teams will seed the lookup
code with the meaning for the
parent category lookup type. The
translated lookup meaning is
shown in the Watchlist UI with the
count appended.

CATEGORY_CODE VARCHAR2(30) Yes None

PRIVILEGE_BASED VARCHAR2(1) Yes Identification of a Watchlist item
that is created against a security
action instead of a specific user.

OWNING_PRIVILEGE_NAME Yes if

PRIVILEGE_BASED = Y

Defines if this item is created
against a security action. Users that
have this action will be able to view
this item.

FUNCTION_PRIVILEGE_NAME VARCHAR2(400) Defines the region action for this
item's drilldown work area. This is
the page definition for the
drilldown view or jspx that is part
of your jazn-data.xml file. The
user needs this permission policy
to view the item in the Watchlist
UI.

WATCHLIST_ITEM_TYPE VARCHAR2(30) Yes Defines the Watchlist item type and
maps to the lookup. Valid values
are:

SEEDED_QUERY (Seeded Query)

SEEDED_SAVED_SEARCH (Seeded
Saved Search)

USER_SAVED_SEARCH (User-created
Saved Search)

HUMAN_TASK (Worklist item)

HUMAN_TASK_DEF_ID VARCHAR2(200) Yes if WATCHLIST_ITEM_
TYPE = HUMAN_TASK

Human Task Definition Identifier

HUMAN_TASK_STATE VARCHAR2(100) Yes if WATCHLIST_ITEM_
TYPE = HUMAN_TASK

Human Task State Identifier.

REFRESH_AGE NUMBER(9) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK

Defines the time for a count in
seconds. After this many seconds
have passed since the last refresh
time, the Watchlist UI will issue a
count recalculation request

VIEW_OBJECT VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK

Complete path of the view object
that must be executed for count
calculation.

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-25

SUMMARY_VIEW_ATTRIBUTE VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK
and this is a summary
view object

Indicates the view object attribute
name if using a summary view
object for Watchlist count
calculation. On execution, this view
object returns only one row with
the Watchlist item count.

APPLICATION_MODULE VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK

Complete path of the application
module that contains the view
object instance that must be
executed for count calculation.

AM_CONFIG_NAME VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK

The application module
configuration name for creating an
instance of the application module
from code. This is typically
AMLOCAL.

VIEW_OBJECT_INSTANCE VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE != HUMAN_TASK

The instance name for the view
object in the application module.

VIEW_CRITERIA_ID VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE = SEEDED_SAVED_
SEARCH

The view criteria that must be
applied when executing the view
object.

NAVIGATION_URL_KEY VARCHAR2(60) Yes The key to determine the host, port,
and context root to construct the
URL for the UI drilldown for a
Watchlist item.

This will be based on the
Applications Core lookup API that
is used for UI navigation across
Java EE applications.

VIEW_ID VARCHAR2(400) Yes The view ID (as per the UI Shell
menu) for the workarea or page
that contains the task flow for this
Watchlist item's drilldown from the
Watchlist UI.

PAGE_PARAM_LIST_STRING VARCHAR2(400) No Parameters list for the page. If the
target workarea page accepts page
parameters, this is a
semicolon-delimited string of
name-value pairs.

TASKFLOW_ID VARCHAR2(400) Yes The task flow for this Watchlist
item's drilldown from the Watchlist
UI.

TF_KEY_LIST_STRING VARCHAR2(400) No Key list to pass into the task flow to
open in the target workspace. This
is a semicolon-delimited list of keys
or key-value pairs. For example,
"key1;key2=value2"

Table 14–2 (Cont.) ATK_WATCHLIST_SETUP

Column Name Datatype Required Comments

Implementing the Watchlist

14-26 Developer's Guide

14.3.3 Supported Watchlist Items
Supported Watchlist items are all asynchronous (that is, queries are executed on
demand when the user requests a refresh or just before the Watchlist UI is shown).
There are four types of asynchronous Watchlist items (watchlist_item_type):

■ Seeded queries (SEEDED_QUERY)

■ Seeded saved searches (SEEDED_SAVED_SEARCH)

■ User-created saved searches (USER_SAVED_SEARCH)

■ Human task-flow items (HUMAN_TASK)

14.3.3.1 Asynchronous Items Overview: Expense Reports Saved Search
For asynchronous Watchlist items, the count is updated only upon request. For
example, in Expenses, there is an expense reports search panel from which users can
make searches and save them in MDS for future use. Users should be able to promote
their saved searches to the Watchlist for tracking. This Watchlist item (of type USER_
SAVED_SEARCH) is asynchronous in that the Watchlist count will be updated only
upon request, and events that change the count will not be updating the Watchlist
simultaneously. In this case, Watchlist code is responsible for querying the count of an
asynchronous Watchlist item on demand.

For the Expense report saved search panel example:

■ Because this item is of type USER_SAVED_SEARCH, Watchlist items are created when
the user promotes a saved search on the search panel in Expenses. This invokes a

TF_PARAMETER_STRING VARCHAR2(400) Yes if WATCHLIST_ITEM_
TYPE IN (SEEDED_
SAVED_SEARCH, USER_
SAVED_SEARCH)

Parameters list to pass in to the task
flow to open in the target
workspace. This is a
semicolon-delimited string of
name-value pairs. For example,
"param1=value1;param2=value2"

For a user-created saved search, the
view criteria ID will be appended
to this string (the string must end
with <paramName>= for saved
search).

TASK_TAB_LABEL VARCHAR2(400) Yes Label for the task flow to open in
the target workspace.

ENABLED VARCHAR2(1) Yes Defaults to Y. A definition that
indicates if this Watchlist category
is enabled or active.

CREATED_BY VARCHAR2(64) Yes Standard WHO Column

CREATION_DATE TIMESTAMP Yes Standard WHO Column

LAST_UPDATED_BY VARCHAR2(64) Yes Standard WHO Column

LAST_UPDATE_DATE TIMESTAMP Yes Standard WHO Column

LAST_UPDATE_LOGIN VARCHAR2(32) Yes Standard WHO Column

Table 14–2 (Cont.) ATK_WATCHLIST_SETUP

Column Name Datatype Required Comments

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-27

Watchlist service on the Watchlist that does the Watchlist item creation. This is not
needed for Watchlist items of type SEEDED_QUERY or SEEDED_SAVED_SEARCH.

■ A request to refresh the Watchlist item count comes from the Watchlist portlet.
This will invoke an exposed service, which delegates the call to a method on a
provided Watchlist JAR file.

■ The method on the Watchlist JAR file will take care of rerunning the query (on the
expenses database) and taking the results to update the Watchlist item count (on
the Watchlist database).

14.3.3.2 Summary of Implementation Tasks
At a high level, for asynchronous Watchlist items, your development tasks are:

■ Determine or set up view objects to execute the query for Watchlist count. You
may want to include view criteria with bind variables and specify default values
for bind variables. (Not needed for Human Task)

For example, most view objects seeded for the Watchlist would filter by user to
show counts specific to the logged-in user. You could create a view criteria with a
bind variable called userId and specify the default value as a groovy expression to
determine the current user ID from the security context. You then would seed this
view criteria ID in the setup table along with the view object. The Watchlist API
would execute the view object by applying this view criteria to get the row count.
Example 14–9 shows code from the view object xml for a bind variable with a
default value.

Example 14–9 Example Code from the View Object XML for Bind Variable with Default
Value

<Variable
 Name="userId"
 Kind="where"
 Type="java.lang.String">
 <TransientExpression><![CDATA[return
adf.context.securityContext.userName;]]></TransientExpression>
 </Variable>

■ (Optional) Set up a summary view object to facilitate a refresh count and specify
the summary attribute in the Watchlist setup table. Watchlist code would use this
information to query the count instead of doing a rowcount on the executed view
object results.

■ Include Watchlist model JAR files in your service project and set up a
refreshWatchlistCategory service method. This method only will contain code
to delegate the call to the nested Watchlist application module method that
actually executes the view object queries by reading your Watchlist setup data.
This requires that all the corresponding model projects are included as JAR files in
this service project so view objects are available in the class path. This service
should be exposed so that the Watchlist UI can use it to start the refresh process.

■ Determine and code task flows for drilldown from the Watchlist UI. There is no
special coding required for these task flows; the key-value parameter string that
you specify in the setup table will be used as the input parameter list when
invoking the specified task flow for the UI drilldown on Watchlist items.

■ (Optional) Enable saved search promotion to the Watchlist. Include Watchlist
model JAR files in the corresponding project for the query panel and work with
the Watchlist API. For promotion and demotion of user-saved searches, code must

Implementing the Watchlist

14-28 Developer's Guide

invoke a method in the provided Watchlist JAR, which then will handle
interaction back to the Watchlist. Add promotion and demotion components on
the search panel so that saved searches can be used as Watchlist items.

■ Include Watchlist UI and Protected model JAR files in your UI SuperWeb project,
to enable Watchlist menu drilldown in the UI Shell Global Area, as shown in
Figure 14–12.

Figure 14–12 Example Watchlist Menu Drilldown

■ Create FND_LOOKUPS for the displayed Watchlist category and item meaning (FND_
STANDARD_LOOKUP_TYPES.LOOKUP_TYPE). Product teams must seed the lookup type
with the meaning for the category (VIEW_APPLICATION_ID = 0 and SET_ID = 0).
The translated lookup type meaning is shown in the Watchlist UI for the category,
while the corresponding lookup value meanings are shown in the Watchlist UI for
items (user saved search item meanings come from the saved search directly).
Product teams must create seed data for this lookup.

■ Example 14–10 presents sample code to create or update the lookup.

Example 14–10 Sample Code to Create or Update Watchlist Lookup

declare
begin
FND_LOOKUP_TYPES_PKG.CREATE_OR_UPDATE_ROW (
 X_VIEW_APPSNAME => 'FND',
 X_LOOKUP_TYPE => 'FIN_EXM_WATCHLIST_CATEGORY',
 X_APPLICATION_SHORT_NAME => 'EXM',
 X_MEANING => 'Expenses',
 X_DESCRIPTION => 'Expenses Watchlist Category',
 X_REFERENCE_GROUP_NAME => null
);
end;

declare
begin
FND_LOOKUP_VALUES_PKG.CREATE_OR_UPDATE_ROW (
 X_LOOKUP_TYPE => 'FIN_EXM_WATCHLIST_CATEGORY',
 X_VIEW_APPSNAME => 'FND',
 X_LOOKUP_CODE => 'SAVED_EXPENSE_REPORTS',
 X_MEANING => 'In Progress Expense Reports'
-- X_SET_CODE IN VARCHAR2 DEFAULT NULL,
-- X_DESCRIPTION IN VARCHAR2 DEFAULT NULL,
-- X_ENABLED_FLAG IN VARCHAR2 DEFAULT 'Y',
-- X_START_DATE_ACTIVE IN VARCHAR2 DEFAULT NULL,
-- X_END_DATE_ACTIVE IN VARCHAR2 DEFAULT NULL,
-- X_DISPLAY_SEQUENCE IN NUMBER DEFAULT NULL

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-29

);
end;

Seed Watchlist categories and setup information. Create your category in ATK_
WATCHLIST_CATEGORIES and then seed your items in the reference data table (ATK_
WATCHLIST_SETUP). The watchlist_item_type determines how the Watchlist code will
handle the item.

14.3.4 How to Use the Watchlist
Follow the procedures described in this section to use the Watchlist.

14.3.4.1 Making the Watchlist Link in the UI Shell Global Area Work
To ensure the Watchlist link works in your pages, complete these steps.

■ Add this ADF Library JAR file to the SuperWeb user interface project for your
application (the JAR file must be part of your Web Archive (WAR) in the
WEB-INF/lib directory):

fusionapps/jlib/AdfAtkWatchListPublicUi.jar

■ Add this dependent model ADF Library JAR file in your application (the JAR file
must be part of your Enterprise Archive (EAR) in the APP-INF/lib directory):

fusionapps/jlib/AdfAtkWatchListProtectedModel.jar

■ Add this dependent resource bundle ADF Library JAR file in your application (the
JAR file must be part of your EAR in the APP-INF/lib directory):

fusionapps/jlib/AdfAtkWatchListPublicResource.jar

■ Add these resource-ref entries to the web.xml file in your SuperWeb user
interface project:

<resource-ref>
 <res-ref-name>wm/WorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
</resource-ref>
<resource-ref>
 <res-ref-name>jdbc/ApplicationDBDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

14.3.4.2 Seed Reference Data (All items)
See Section 14.3.2, "Watchlist Physical Data Model Entities" for details of the entire
Watchlist data model. Seed only ATK_WATCHLIST_CATEGORIES and ATK_WATCHLIST_
SETUP.

14.3.4.3 Create a Summary View Object (SEEDED_QUERY)
■ By default, Watchlist code will access the application module or view object that is

specified in the setup table, and rerun the query to refresh the Watchlist count. The
summary view object is one way to get the count. Usually this will be for
efficiency reasons.

Note: HUMAN_TASK items only require seeding in the tables to work;
there are no view objects to create.

Implementing the Watchlist

14-30 Developer's Guide

■ The product team can signal that it wants the Watchlist code to use its summary
view object by seeding something in SUMMARY_VIEW_ATTRIBUTE of ATK_WATCHLIST_
SETUP. If this is not null, the Watchlist code will get the view object, but instead of
running the query, it will take only the first row and get the specified attribute.

■ Your task is to create a view object with the correct count in the attribute specified
in the setup table.

14.3.4.3.1 Summary Tables One common reason to use a summary view object is if the
seeded query is based on Multiple-Organization Access Control (MOAC) data
security. This is because you can calculate the count of this query for each Business
Unit ID (BUID). The count of a user is just the sum of the counts of the BUIDs that the
user can access.

For example, say you have a table (or query) that has three rows of BUID #1, three
rows of BUID #2, and three rows of BUID #3. The current user has access to BUIDs #1
and #2.

If you wanted to get the count, MOAC would filter the rows by BUID and return six
rows.

However, because you are interested only in the count, a more efficient way would be
to create a summary table for this table. The summary table keeps track of the count
for each BUID. For the example table, the summary table would resemble Table 14–3.

Now, instead of using MOAC to find a count for a particular user, you use MOAC to
find the sum of counts for the user. The example user would get the first two rows
returned, and you can calculate the total count by summing the count column.

You can use summary tables to populate the summary view object attribute.

14.3.4.4 Create Seeded Saved Searches in MDS (SEEDED_SAVED_SEARCH)
In addition to seeding seeded saved searches in the reference tables, the saved searches
need to be seeded in MDS so that when the user visits the saved search panel, the
saved search will show as one of the choices in the drop-down box. Saved searches in
MDS are stored in the file system as an XML file for each view object. The steps to
create this file are:

■ Ensure you have enabled MDS for your application.

■ Run the application and visit the desired search page.

■ Use the UI to create saved searches and name them. For each saved search, select
Run Automatically.

■ Examine the adf-config.xml file to determine where your file-based MDS
repository is located.

■ In a terminal, change to the directory:

<MDS repository>/persdef/oracle/apps/.../mdssys/cust/user/<user>/

Table 14–3 Example Summary Table

BUID Count

1 3

2 3

3 3

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-31

The <user> directory would be the user you used to save the search with, or
anonymous by default.

■ Inside that directory, there should be an xxxVO.xml.xml file that contains the
created saved searches. Keep that file.

■ In that XML file, note the saved search ID, which should match the View Criteria
ID in the reference data.

14.3.4.5 Creating Application Module and View Objects (All except HUMAN_TASK)
Refer to Section 14.3, "Implementing the Watchlist."

14.3.4.6 Setting Up Service (All except HUMAN_TASK)
For the same Watchlist items, the Watchlist portlet must be able to invoke a refresh.
You will set up and expose a service that includes local JAR files for this purpose. The
nested Watchlist JAR file can use those local JAR files in its refresh code.

The service will expose the refreshCategory method that will delegate the call to the
same method in the nested Watchlist application module. This method will be
provided in the Watchlist JAR file and will contain code to perform the category-wide
refresh.

14.3.4.7 Importing All Watchlist-Related Application Modules
Your Service project must import the other JAR files from your product that must be
used by the Watchlist code.

14.3.4.8 Nesting Watchlist Application Modules
Include AdfAtkWatchListProtectedModel.jar and AdfAtkWatchListPublicModel.jar
in your service project, and nest AdfAtkWatchListPublicUi.jar in your service
application module.

Set up the AppMasterDB connection that comes with it. Point it to the database where
you have seeded your data in the Watchlist tables. This usually is your development
database that is used for the ApplicationDB connection.

14.3.4.9 Using the refreshWatchlistCategory Method
This method, shown in Example 14–11, refreshes all Watchlist items in the
corresponding category.

Example 14–11 Refreshing Watchlist Items

public void refreshWatchlistCategory(String categoryCode) {
 AtkWatchlistPublicAMImpl wlAM = this.getAtkWatchlistPublicAMImpl();
 wlAM.refreshWatchlistCategory(categoryCode);
}

14.3.4.10 Importing Watchlist JAR Files into the Saved Search Project (USER_
SAVED_SEARCH)
For subsequent steps that require running Watchlist APIs from your code, you must
import the Watchlist JAR files. These also contain an AppMasterDB connection that
must point to the Watchlist database.

Note: This ID can be different than the display name that you
entered in the saved search UI.

Implementing the Watchlist

14-32 Developer's Guide

■ Add AdfAtkWatchlistProtectedModel.jar and
AdfAtkWatchlistPublicService.jar (fusionapps > jlib) as ADF libraries in
the appropriate data model projects, preferably in a model project that is visible to
both service and user interface model project application modules.

■ Add AdfAtkWatchlistPublicUi.jar as an ADF library to your user interface
project.

■ Configure the AppMasterDB connection.

14.3.4.11 Promoting Saved Search to the ATK Watchlist (USER_SAVED_SEARCH)
Every Watchlist-enabled saved search panel must include a component to let the user
control which of the saved searches to promote. The pre-seeded saved searches will be
shown as static, while the user can use checkboxes to determine which saved searches
should be promoted. There will be listeners to this component that will publish
business events to make the appropriate worklist changes.

Before You Begin
Ensure that the following steps have been performed.

■ Populate ATK tables with SEED watchlist category information. Product teams
need to provide information about the service that refreshes the watchlist item
count.

■ Populate ATK tables with appropriate watchlist setup information. There must be
a watchlist setup item of type USER_SAVED_SEARCH.

■ Ensure the application is MDS enabled so users can save their searches and that
the saved searches exist across sessions.

■ From the watchlist UI, users can drilldown to the transactional UI flows. Ensure
that the transactional UI flow is properly set up so that it can show the search page
when the user clicks the Watchlist item in the Watchlist UI.

■ In the application project, create a backing bean and register it as a
backingBeanScope bean. In the backing bean, create the Java method shown in
Example 14–12:

Example 14–12 Creating the Backing Bean

import oracle.adf.view.rich.model.QueryDescriptor;
import oracle.adf.view.rich.model.QueryModel;
..................

 public List<String> getWatchListUserSavedSearchList() {
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion: Entering
method getWatchListUserSavedSearchList", AppsLogger.FINEST);
 }
 List<String> WatchListUserSavedSearchList = new ArrayList<String>();
 QueryModel queryModel =

(QueryModel)evaluateEL("#{bindings.ImplicitViewCriteriaQuery.queryModel}");//See
next code sample for evaluateEL()
 if (queryModel != null) {
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion:
getWatchListUserSavedSearchList method: queryModel is not null",
AppsLogger.FINEST);
 }

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-33

 List userQueries = queryModel.getUserQueries();
 if (userQueries != null & userQueries.size() > 0) {
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion:
getWatchListUserSavedSearchList method: User Saved Searches exist",
AppsLogger.FINEST);
 }
 for (int i = 0; i < userQueries.size(); i++) {
 QueryDescriptor qd = (QueryDescriptor)userQueries.get(i);
 if(qd != null){
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion:
getWatchListUserSavedSearchList method: Adding user saved search name to the
watchListUserSavedSearchList using QueryDescriptor getName: " + qd.getName(),
AppsLogger.FINEST);
 }
 WatchListUserSavedSearchList.add(qd.getName());
 }
 }
 }
 }
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion: Exiting method
getWatchListUserSavedSearchList: returning watchListUserSavedSearchList: " +
WatchListUserSavedSearchList, AppsLogger.FINEST);
 }
 return WatchListUserSavedSearchList;
 }

14.3.4.11.1 How to Promote a User-Saved Search to the Watchlist Follow these steps to
integrate the ATK task flow to promote saved searches to the Watchlist.

1. Ensure the AdfAtkWathcListPublicUi.jar file is available (usually in the
fusionapps/jlib directory).

2. Start JDeveloper and open the .jspx or .jsff page containing the query region whose
saved searches have to be promoted.

3. In the query region, add a toolbar facet.

a. Right-click the component.

b. In the menu that opens, select Facets-Query.

c. From the submenu, select Toolbar, as shown inFigure 14–13.

Note: If you already have implemented promoting the user-saved
search to the Watchlist, see Additional Steps for Existing Consumers.

Implementing the Watchlist

14-34 Developer's Guide

Figure 14–13 Adding Toolbar Facet to Query Region

4. In the toolbar facet of the query region, drag and drop an ADF Toolbar
component, such as Toolbar (ADF Faces.Common Components) shown in
Figure 14–14, onto the page.

Figure 14–14 Adding an ADF Toolbar Component

The toolbar facet in the Source view will look similar to:

<f:facet name="toolbar">
 <af:group id="g1">
 <af:toolbox id="t1">
 <af:region
value="#{bindings.AtkWatchlistUserSavedSearchPromotionTF1.regionModel}"
 id="r7"/>
 </af:toolbox>
 <af:toolbar id="t2"/>
 </af:group>
</f:facet>

5. Open the Resource Palette and create a File System connection to the directory
containing the AdfAtkWatchListPublicUI.jar file, as shown in Figure 14–15.

Figure 14–15 Creating the File System Connection

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-35

6. Expand the connection node and the ADF library node in the Resource Palette as
shown in Figure 14–16.

Figure 14–16 Expanding the Connection Node

Once the ADF Task Flows node is expanded, you should see two task flows. The
task flow AtkWatchlistUserSavedSearchPromotionTF is the one to be used.

7. Drag and drop the AtkWatchlistUserSavedSearchPromotionTF task flow as a
region into the toolbar component (present in the query region toolbar facet),
created in the previous steps. As soon as the task flow is dropped onto the page,
the Edit Task Flow Binding dialog is displayed. Enter the following values for the
mandatory parameters.

■ categoryCode: Provide the WATCHLIST_CATEGORY_CODE that has been seeded in
the ATK tables.

■ watchlistItemCode: Provide the WATCHLIST_ITEM_CODE provided while
creating the Watchlist setup data.

■ userSavedSearchList: This represents the model object of the query region. To
populate this field:

a. Select the userSavedSearchList input field, click the small "v" icon present
at the end of the field and select the Expression Builder option.

b. Select the value from the Java method shown in Example 14–12. In this
case, the value is watchListUserSavedSearchList, found in ADF
Managed Beans > backingBeanScope >
searchOrderScheduleBackingBean > watchListUserSavedSearchList.

The Expression will be:

#{backingBeanScope.searchOrderScheduleBackingBean.watchListUserSavedSea
rchList}

c. Click OK to insert the value in the userSavedSearchList field.

■ internalCriteriaName: This represents the ViewCriteria Name of the search
binding executable of the query region present in the UI page. To populate this
field, follow the same steps as you did to populate the userSavedSearchList
field, but select internalCriteriaName. Also see Additional Steps for Existing
Consumers.

When you are finished, the Edit Task Flow Binding dialog will resemble
Figure 14–17.

Implementing the Watchlist

14-36 Developer's Guide

Figure 14–17 Completed Edit Task Flow Binding Dialog

8. Click OK. This creates a region component in the UI page, as shown in
Figure 14–18.

Figure 14–18 Created Region Component

9. Open the page definition file and select the executable associated with the
Watchlist-related task flow.

10. Open the Property Inspector and set the Refresh field to ifNeeded, as shown in
Figure 14–19. The ATK saved search promotion task flow has to be refreshed each
time the query model changes. This step ensures that the task flow is refreshed
whenever the query model changes.

Figure 14–19 Setting Refresh to ifNeeded

11. Add a task flow security permission to the
AtkWatchlistUserSavedSearchPromotionTF task flow in the jazn-data.xml file.

a. Open the jazn-data.xml file and select the ADF Policies tab.

b. From the Task Flow list, select AtkWatchlistUserSavedSearchPromotionTF,
grant it to an appropriate role, and select appropriate actions as shown in
Figure 14–20.

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-37

Figure 14–20 Adding Security Permissions to jazn_data.xml

12. Run the UI page. In the toolbar facet of the query region, there will be a Watchlist
Options button, as shown in Figure 14–21.

Figure 14–21 Watchlist Options Button in Toolbar Facet

When you click the button, a popup with the list of all saved searches is displayed,
as shown in Figure 14–22.

Figure 14–22 List of Saved Searches

Additional Steps for Existing Consumers
If you already have implemented promoting Saved Search to the ATK Watchlist, there
are four additional steps.

■ In your pageDef, change the WatchList task flow parameter called queryModel
from:

<parameter id="queryModel"
 value="#{bindings.ExistingCriteria.queryModel}"/>
to:

<parameter id="userSavedSearchList"
 value="#{backingBeanScope.YourBean.watchListUserSavedSearchList}"/>

■ Use the public List<String> getWatchListUserSavedSearchList() Java
method by passing the QueryModel binding of your af:query.

■ Change the old queryBinding parameter to the new internalCriteriaName
parameter. For example, change:

Implementing the Watchlist

14-38 Developer's Guide

parameter id="queryBinding" value="#{bindings.SearchPageVOCriteriaQuery}"

to:

parameter id="internalCriteriaName"
value="#{backingBeanScope.searchRelatedBean.internalCriteriaName}"

■ In someBackingBeanScopeBean.java, such as the one you created in
Example 14–12, add the two methods shown in Example 14–13.

Example 14–13 Additions to the backingBeanScopeBean

import javax.el.ExpressionFactory;
import javax.el.MethodExpression;
import javax.el.ValueExpression;
import javax.faces.context.FacesContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.jbo.uicli.binding.JUSearchBindingCustomizer;

 public Object evaluateEL(String expr)
 {
 FacesContext facesContext=FacesContext.getCurrentInstance();
 ExpressionFactory
exprFactory=facesContext.getApplication().getExpressionFactory();
 ValueExpression
valueExpr=exprFactory.createValueExpression(facesContext.getELContext(), expr,
Object.class);
 return valueExpr.getValue(facesContext.getELContext());
 }

 public String getInternalCriteriaName() {
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion: Entering method
getInternalCriteriaName", AppsLogger.FINEST);
 }
 String queryBinding = "#{bindings.SearchPageVOCriteriaQuery}";
 DCBindingContainer searchBinding =
(DCBindingContainer)evaluateEL(queryBinding);
 internalCriteriaName =
JUSearchBindingCustomizer.getCriteriaName(searchBinding);
 if (AppsLogger.isEnabled(AppsLogger.FINEST)) {
 AppsLogger.write(this, "Watchlist saved search promotion: Exiting method
getInternalCriteriaName with return value for internalCriteriaName: " +
internalCriteriaName, AppsLogger.FINEST);
 }
 return internalCriteriaName;
 }

Note: In someBackingBeanScopeBean.getInternalCriteriaName(), the
queryBinding variable in the first line is the one you see in af:query. For example,
af:query
queryListener="#{bindings.SearchPageVOCriteriaQuery.processQuery}" Just
take the QueryBinding, #{bindings.SearchPageVOCriteriaQuery}.

14.3.4.12 Code Task Flows to Accept Parameters (All except HUMAN_TASK)
If you have seeded the information properly, your normal task flows should work
when drilleddown to from the Watchlist portlet.

Implementing the Watchlist

Implementing Search Functions in the UI Shell 14-39

14.3.4.12.1 Saved Search For saved search Watchlist items, you will want the drilldown
to load a specific saved search by default.

One function of the Watchlist portlet will be to take a user to the corresponding action
area when the user clicks a Watchlist item. For saved searches, the desired
functionality is to open the task flow containing the saved search panel and by default,
show the clicked saved search.

On the portlet, upon clicking the link, code will put the proper ViewCriteria name
into the PageFlowScope with the parameter name vcName.

When loaded, the destination task flow will have two tasks:

■ Look into the PageFlowScope to retrieve the ViewCriteriaName.

■ Obtain the RichQuery object, and apply the ViewCriteriaName to it, if one is given.

You will be concerned with implementing the two steps for the destination task flow.
First, you can retrieve the ViewCriteriaName from the PageFlowScope with the code
shown in Example 14–14.

Example 14–14 Retrieving the ViewCriteriaName from the PageFlowScope

Map pfs = RequestContext.getCurrentInstance().getPageFlowScope(); String vcName =
(String) pfs.get("vcName");

Second, you can use the code shown in Example 14–15 to apply the ViewCriteria to
the search panel. If no ViewCriteria was passed, the code loads the default
ViewCriteria.

Example 14–15 Applying ViewCriteria to the Search Panel

if (vcName == null || vcName.equals("")) {
// If no ViewCriteria is given, load default VC
DCBindingContainer dcbc =
(DCBindingContainer)BindingContext.getCurrent()
.getCurrentBindingsEntry();
FacesCtrlSearchBinding fcsb =
(FacesCtrlSearchBinding)dcbc
.findExecutableBinding("ImplicitViewCriteriaQuery");
FacesCtrlSearchDef def = (FacesCtrlSearchDef)fcsb.getDef();
DCParameterDef paramDef =
(DCParameterDef)def.getParameterDef(
JUSearchBindingCustomizer.PARAMCRITERIA);
fcsb.evaluateParameter(paramDef.getExpression(),false));
} else {
QueryModel model = search_query.getModel();
QueryDescriptor selDescriptor = model.create(vcName, null);
if (selDescriptor != null) {
model.setCurrentDescriptor(selDescriptor);
}
BindingContainer bindings =
BindingContext.getCurrent().getCurrentBindingsEntry();
OperationBinding method = (OperationBinding)
bindings.getControlBinding("applyViewCriteriaByName");
method.getParamsMap().put("name", vcName);
method.execute();
}

This code should be run once upon loading the destination task flow. One solution is
to connect it to the rendered property of the search panel, and use a static variable to
ensure that it only runs once.

Implementing Group Spaces

14-40 Developer's Guide

14.3.4.13 Import Watchlist UI JAR File in User Interface Project
There is a link in the UI Shell for Watchlist in the Global Area. To make it work, the
user interface project must include these Watchlist UI JAR files:
AdfAtkWatchListPublicUI and its dependent model JAR file
AdfAtkWatchListProtectedModel.

14.3.4.14 Additional Entries for Standalone Deployment
These entries are required for the Watchlist service and UI to be able to work in a
standalone deployment.

■ Add this entry in the ejb-jar.xml file in your service project that contains the
watchlist service next to the similar entry for ApplicationDB. You need
resource-ref entries for both ApplicationDB and AppMasterDB:

<resource-ref>
 <res-ref-name>jdbc/AppMasterDBDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

■ Add this entry in the web.xml file in your SuperWeb project next to the similar
entry for ApplicationDB. You need resource-ref entries for both ApplicationDB
and AppMasterDB:

<resource-ref>
 <res-ref-name>jdbc/AppMasterDBDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

■ The connections.xml file should have a valid database entry for AppMasterDB.

14.4 Implementing Group Spaces
Group Spaces bundle all the collaboration tools and provide an easy way for users to
create their own ad hoc collaborative groups around a project or business artifact.

This section describes how to implement the Group Spaces functionality that is
available in UI Shell.

14.4.1 Assumptions
These assumptions are made:

■ The implementation is occurring in a label that is either dependent on ATGPF_MAIN
or uptakes ATGPF_MAIN on a regular basis.

■ The spaces application and the JDeveloper Standalone WebLogic Server that
would run the application have the requisite setup done.

■ The consuming applications are secure. Group Spaces functionality attempts to
retrieve the group spaces for the logged-on user. Without a secure application, this
functionality would fail.

14.4.2 How to Implement Group Spaces
Follow these steps to implement Group Spaces.

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-41

1. Ensure the Oracle WebCenter Portal Spaces Client library,
spaces-webservice-client.jar, has been added to the Project.

2. Define an application connection to point to the URL of the WebCenter Portal
Spaces WebService. To do this:

a. Right-click Connections in the Application Resource palette.

b. Choose New Connection > URL.

c. Enter the value $HOST:$PORT/webcenter/SpacesWebService, where $HOST
and $PORT are the hostname and the port on which the spaces application is
running.

d. Save this connection with the name SpacesWebServiceEndpoint.

3. To make a homepage tab appear within UI Shell, deploy the Functional Setup
Manager application.

14.4.3 Overview of Group Spaces Functionality
The Group Spaces functionality implements these features:

■ When the Group Spaces link is clicked, a popup displays the logged-in user's
Group Spaces.

■ When the user clicks a Group Space from the list, the Group Space's home page is
opened in an iFrame. This iFrame is rendered within a Home Page tab called
WebCenter. The Group Space is opened suppressing the WebCenter Portal chrome
but will still render all the tabs within that Group Space. (Note: Chrome is a term
for the visible graphical interface features of an application.) This chrome level
suppresses the WebCenter Portal chrome but will still render all the tabs within
that Group Space.

■ When the user clicks View All Group Spaces, the same UI as the My Group
Spaces in the spaces application is rendered. This is also rendered as an iFrame
within the WebCenter Portal HomePage tab where it suppresses the chrome as
well as the top level WebCenter Portal tabs.

14.4.4 How to Pass a Chromeless Template
When navigating to the WebCenter Portal home page, a WebCenter Portal template
that does not contain the header chrome is desired. This can be done by appending
&wc.pageTemplate=oracle.webcenter.spaces.siteTemplate.gsContent.

Pass this parameter when navigating to a Group Space from the Group Spaces global
dialog, Tag Center, Global Search, or an Activity Stream link.

Use a question mark (?) instead of an ampersand (&) if this is the only request
parameter for that URL.

14.5 Implementing Activity Streams and Business Events
Activity Streams is a feature provided by the WebCenter Portal. Use Activity Streams
to capture changes and publish Activity messages. Customer Relations Management
(CRM), in particular, makes heavy use of this feature to keep abreast of service
requests and opportunities. Users subscribe to Activity Streams by using the Activity
Streams user interface.

For business events, Activities are shown only to users who subscribe to the stream
and who have the necessary security access.

Implementing Activity Streams and Business Events

14-42 Developer's Guide

Activity Streams can be connected to:

■ Business Objects. At a high level, business objects correspond to a workarea, such
as Sales or Contacts.

■ Group Spaces. For example, a team lead can set up a Group Space that team
members can use to share information about a project.

■ People Connection. This is similar to the various social networking sites on the
Internet that let people interact with friends and business associates.

This section is concerned only with business objects.

14.5.1 Introduction to WebCenter Portal Activities
A WebCenter Portal Activity is comprised of the following:

■ Actors - The user who performed the action that triggered the business event. For
Oracle Fusion Applications, this will be the userid fetched from the user session.

■ ActivityType - The type of Activity to be published. This defines the format of the
Activity message.

■ Objects - The objects associated with the Activity. There could be multiple objects
associated with an Activity but for business events, only the event source is used
as an object.

WebCenter Portal Activities are defined in the service-definition.xml file. The
scope of service_definition.xml is per business object. The service ID attribute
should match the name of the entity object. The service-definition.xml file contains
ActivityTypes, ObjectTypes and resource-view definitions. An ActivityType must
be defined for every business event on the entity object. The type name should match
the business event's name. The messageFormatKey attribute in the ActivityType
element points to a message key in a Resource Bundle. It defines the format of the
message displayed in the Activity Stream UI. These tokens are supported in a
message.

■ {actor[0]}: Replaced by the display name of the user who triggered the event.

■ {object[0]}: Replaced by the value of the attribute in the event payload whose
attribute name matches the object type name.

■ {custom[attr1].value}: Replaced by the value of the attr1 attribute in the
event's payload.

The message format would look similar to:

{actor[0]} updated Opportunity {object[0]} status to {custom[status].value}

14.5.2 How to Publish Business Events to Activities
ADF Business Components business events are, by default, published to SOA Event
Delivery Network (EDN). Applications Core implements a BusinessEventAdapter to
listen to these events, transition them to Activities, and asynchronously publish them
to the ActivitiyStream Service. This adapter is a singleton per application and
publishes the business events raised to the ActivityService in the order they are
produced. A business event is published as an Activity only when an ActivityType
matching the name of the event is found in the service definition for the business
object.

While mapping a business event to an Activity, keep these notes in mind:

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-43

■ There is one-to-one mapping between an Activity Service definition and a
business object. The service ID attribute in the service-definition.xml file
should match the Entity name.

■ The ActivityType name should match the name of the business event.

■ Define an ObjectType with the name attribute matching an attribute name in the
payload. This attribute value will replace the {object[0]} token in the message
format. WebCenter Portal supports multiple object types for an Activity, but for
business events-related Activities, only one Object that corresponds to the event
source is supported. The Object type name should match the name of the attribute
whose value should be displayed in the hyper link for the object.

■ Define a message format using tokens for Actor, Object and customAttributes.
The custom attribute names used in the token should match the attribute names in
the payload.

■ In the Activity message displayed in the UI, only Actor and Object display values
will be rendered as hyper links. If an Activity involves multiple objects, hyper
links will be supported only for the event source object. Multiple attributes from
the event payload can be referenced in the message.

■ The hyper link for the object allows users to navigate to the business object's work
area. The target page for navigation can be configured through the resource-view
element in the service-definition.xml file.

14.5.3 How to Publish Activities Using a Programmatic API
For certain scenarios, Oracle Fusion Applications are required to publish Activities for
model changes that are not based on entity objects. Since Oracle ADF Business
Components business events are based on entity objects, it is not possible to use these
events for publishing Activities for non entity object-based model changes. For such
scenarios, product teams could use the Applications Core API shown in
Example 14–16 to programmatically publish Activities to the ActivityStream service.

BusinessActivityPublisher
This class provides the publishActivity API that can be used to publish Activities
asynchronously. This is a singleton per Java EE application. An instance of this class
can be obtained using the getInstance API. This lets product teams define such things
as ActivityTypes, ObjectTypes, and resource-view definitions, declaratively in the
service-definition.xml file, similar to business event-related activities.This would
allow product teams to follow the same mechanism to define and publish Activities
for both entity object and non-entity object-based model changes with very little code
changes.

Example 14–16 BusinessActivityPublisher.java

/**
 * This class is responsible for publishing business events as WebCenter Portal
Activities to
 * the ActivityStreaming service. This is a singleton per Java EE application.
 * An instance of this object is obtained using the getInstance() method. This
class
 * transforms business events into Activities and publishes them to Activity
 * Service asynchronously. Resources held by the class are released by using
 * release() method. In Java EE container, release is done by Applications Core
when
 * the application is undeployed or stopped.
 */

Implementing Activity Streams and Business Events

14-44 Developer's Guide

public class BusinessActivityPublisher
{
 /**
 * Returns and instance of BusinessActivityPublisher if one exists or
 * creates anew one.
 * @return
 */
 public synchronized static BusinessActivityPublisher getInstance()

 /**
 * Queues the Activity for publishing. The queued activities are published
 * to the Activity Streaming service asynchronously if there is a matching
 * ActivityType defined for the source business event. If no matching
 * ActivityType is found in the service-definition.xml corresponding to the
 * source entity object, the activity is ignored.
 * @param activity
 */
 public void publishActivity(BusinessActivity activity)

 /**
 * Should be called during App undeploy to stop the publisher thread.
 * In a Java EE container, this method is called by Applications Core
 * ServletContextListener.
 */
 public void release()

BusinessActivity Class
This is an abstract class that is used to represent an Activity corresponding to a
business event. BusinessActivityPublisher:publishActivity() takes an instance of
this class as a parameter. You would implement an instance of this class to encapsulate
the details of the Activity corresponding to the non entity object-based model changes
and invoke the publishActivity API with this as a parameter.
BusinessActivityPublisher will find the matching ActivityType and ObjectType
defined for this Activity in service-definition.xml and publish the Activity to the
ActivityStreaming Service asynchronously. Details of the API on this class are shown
in Example 14–17.

Example 14–17 BusinessActivity.java

/**
 * Name of the ActivityType defined in service-definition that
 * corresponds to serviceId returned by getServiceId().
 * @return Name of the ActivityType
 */
 public String getName()

 /**
 * ID of the service-definition containing the metadata for this
 * Activity.
 * @return serviceId
 */
 public abstract String getServiceId();

 /**
 * Array of GUIDs for Actors of the Activity.
 * @return array of guids for the Actors.
 */
 public abstract String[] getActors();

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-45

 /**
 * This api will return additional service ids
 * @return Array of ServiceIds
 */
 public String[] getAdditionalServiceIds(){ return null};

 /**
 * This attr provides a "," separated list of object type
 * names associated with a particular Activity.
 * @return
 */
 protected String getActivityObjectTypeNames(){
 return null;
 }

 **
 * Payload for the Activity. Every attribute that is part of this payload is
 * persisted in WC as custom attribute of the Activity Object so only
 * attributes needed for the Activity Message should be added to the payload
 * to avoid performance overhead.
 * The payload typically contains:
 * 1. Attribute(s) whose name matches the object-type name attribute in
 * service-definition. This value is used in generating the object-id
 * of the object referenced in the Activity Stream message.
 * 2. All the attributes referenced in the Message format using {custom}
 * token.
 * @return a map containing the attribute names and their values needed to
 * display the Activity Message for this Activity.
 */
 public abstract Map getPayload();

BusinessActivity
This is an abstract class that is used to represent an Activity corresponding to a
business event. BusinessActivityPublisher:publishActivity() takes an instance of
this class as a parameter. You would implement an instance of this class to encapsulate
the details of the Activity corresponding to the non entity object-based model changes
and invoke the publishActivity API with this as a parameter.
BusinessActivityPublisher will find the matching ActivityType and ObjectType
defined for this Activity in the service-definition.xml file and publish the Activity
to the ActivityStreaming Service asynchronously. Details of the API on this class are
shown in Example 14–18.

Example 14–18 BusinessActivity.java

/**
 * Name of the ActivityType defined in service-definition that
 * corresponds to serviceId returned by getServiceId().
 * @return Name of the ActivityType
 */
 public String getName()

 /**
 * ID of the service-definition containing the metadata for this
 * Activity.
 * @return serviceId
 */
 public abstract String getServiceId();

 /**

Implementing Activity Streams and Business Events

14-46 Developer's Guide

 * Array of GUIDs for Actors of the Activity.
 * @return array of guids for the Actors.
 */
 public abstract String[] getActors();

 /**
 * This api will return additional service ids
 * @return Array of ServiceIds
 */
 public String[] getAdditionalServiceIds(){ return null};

 /**
 * This attr provides a "," separated list of object type
 * names associated with a particular Activity.
 * @return
 */
 protected String getActivityObjectTypeNames(){
 return null;
 }

 **
 * Payload for the Activity. Every attribute that is part of this payload is
 * persisted in WC as custom attribute of the Activity Object so only
 * attributes needed for the Activity Message should be added to the payload
 * to avoid performance overhead.
 * The payload typically contains:
 * 1. Attribute(s) whose name matches the object-type name attribute in
 * service-definition. This value is used in generating the object-id
 * of the object referenced in the Activity Stream message.
 * 2. All the attributes referenced in the Message format using {custom}
 * token.
 * @return a map containing the attribute names and their values needed to
 * display the Activity Message for this Activity.
 */
 public abstract Map getPayload();

14.5.4 How to Implement Activity Streams
This section provides details about the steps involved in integrating this feature with
Oracle Fusion Applications.

14.5.4.1 Defining and Publishing Business Events in JDeveloper
To define a business event, follow these steps:

1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the business events navigation tab.

3. On the business events page, expand the Event Publication section and click the
Edit event publications icon.

4. In the Edit Event Publications dialog, click New to create a new event.

5. Double-click the new cell in the Event column, and select the appropriate event.

6. Double-click the corresponding cell in the Event Point column, and select the
appropriate event point action.

7. You optionally can define conditions for raising the event using the Raise
Conditions table.

8. Click OK.

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-47

An event definition in the Entity XML file would look similar to:

<EventDef Name="OpportunityStatusUpdate">
 <Payload>
 <PayloadItem AttrName="OpptyId"/>
 <PayloadItem AttrName="Status"/>
 <PayloadItem AttrName="Customer.CustomerId"/>
 </Payload>
</EventDef>

14.5.4.2 Overriding isActivityPublishingEnabled() to Enable Activity Publishing
By default, business events are not published as Activities. You should override the
isActivityPublishingEnabled() method to enable Activity publishing for an entity
object. Table 14–4 shows the details about the APIs exposed in OAEntityImpl that you
can override.

Note that, except for the isActivityPublishingEnabled() method, other methods
mentioned in Table 14–4 should be avoided in favor of transient attributes specified in
Section 14.5.4.3, "Defining Activity Attributes Declaratively."

Table 14–4 Overriding isActivityPublishingEnabled()

Method
Return
Type Description

Optional/
Required

Corresponding
Declarative
Transient Attribute
(See
Section 14.5.4.3)

isActivityPublishingEna
bled()

boolean By default the base class implementation
returns false. This will enable activity
publishing for this entity object.

Required None

getActivityActorsGUIDs(
)

String [] This can be overridden to provide an
array of GUIDs for the Actors involved
with the activity. By default, the
framework will use the GUID of the user
currently logged in when the business
event is raised.

Optional WCActivityActorGui
d1,
WCActivityActorGui
d2

Implementing Activity Streams and Business Events

14-48 Developer's Guide

14.5.4.3 Defining Activity Attributes Declaratively
Some of the attributes, such as Actor, Service Ids and Additional Service Ids, can
be passed as a part of the payload. The basic process steps are:

■ Define a transient attribute in the entity object.

■ Give a default value to the transient attribute.

■ Include the transient attribute as a part of the payload.

The different transient attributes that can be passed with the payload are shown in
Table 14–5.

getActivityStreamServic
eId()

String This returns the service ID to be used to
publish the activities for the business
events raised for this entity. By default
this returns null. When null is returned,
the service ID defaults to the full name
of the entity object.

Optional WCActivityServiceI
d

getAdditionalServiceIds
()

String [] Override this API to support publishing
multiple Activities in response to a
single event. So additional service IDs
can be passed for a single activity.

Optional WCAdditionalActivi
tyServiceId1,
WCAdditionalActivi
tyServiceId2

getActivityObjectTypeNa
mes()

String This API can be overridden to return
multiple object type names. Values
provided should be a comma-separated
list of object type names associated with
a particular Activity.

The first object-type in this string will be
used to create the custom attributes
needed for the primary object. When
creating the primary object for an
Activity, the object-type of the first object
listed in the service-definition.xml
file should be used even though the
custom attributes used to construct this
object are fetched from a different
object-type based on
getActivityObjectTypeNames() or
WCActivityObjectTypeNames. This is
necessary for the follow model to work.
The order of the objects in this array can
be used to reference the objects in an
Activity message format string.

Optional WCActivityObjectTy
peNames

Table 14–4 (Cont.) Overriding isActivityPublishingEnabled()

Method
Return
Type Description

Optional/
Required

Corresponding
Declarative
Transient Attribute
(See
Section 14.5.4.3)

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-49

14.5.5 How to Define Activities
Defining Activities requires:

■ Adding the ActivityStream UI task flow

■ Defining Activities in the service-definition.xml file

14.5.5.1 Adding the ActivityStream UI Task Flow
To add the ActivityStream task flow:

Table 14–5 Transient Attributes that Can Be Passed with the Payload

Attribute Type Description Sample Value

WCActivityServiceId String This attribute's value is used to
identify the business object service
to be associated with the Activity.

oracle.apps.crmdemo.model.OpportunityEO

WCAdditionalActivityServiceId
1

String This attribute's value is used to
identify any additional service that
must be associated with the Activity.

Values are similar to those of
WCActivityServiceId

WCAdditionalActivityServiceId
2

String This attribute's value is used to
identify any additional service that
must be associated with the Activity.

Values are similar to those of
WCActivityServiceId

WCActivityActorGuid1 String This attribute's value is used to
identify any actor that must be
associated with the Activity if the
default actor value must be
overridden. For instance, in the
message it can be accessed as
actor[0]

<User_GUID>

WCActivityActorGuid2 String This attribute's value is used to
identify any actor that must be
associated with the Activity if the
default actor value must be
overridden. For instance, in the
message it can be accessed as
actor[1]

<User_GUID>

WCActivityObjectTypeNames String This attribute should provide a
comma-separated list of object-type
names associated with a particular
Activity. Programmatically
getActivityObjectTypeNames()
API in the entity object's
EntityImpl.

The first object- type in this string
will be used to create the custom
attributes needed for the primary
object. When creating the primary
object for an Activity, the object type
of the first object listed in the
service-definition.xml file
should be used even though the
custom attributes used to construct
this object are fetched from a
different object type based on
getActivityObjectTypeNames() or
WCActivityObjectTypeNames. This is
necessary for the follow model to
work.

The order of the objects in this array
can be used to reference the objects
in the Activity message format
string.

Emp, Dept

Implementing Activity Streams and Business Events

14-50 Developer's Guide

1. Ensure your user interface project includes the Oracle WebCenter Portal Activity
Streaming Service library in the Libraries and Classpath section in the project
properties dialog.

2. From Resource Catalog > TaskFlows, drag and drop either an "Activity Stream" or
"Activity Stream Summary - View" task flow onto the page where you want to
display the Activity Stream UI.

3. Set the taskFlow resourceId parameter to #{securityContext.userName}. This
will tie the task flow to the current user at runtime.

4. For additional details about the Activity Stream task flow, see the chapters in the
"Working with the People Connections Service" partition in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter Portal.

14.5.5.2 Defining Activities in the service-definition.xml File
The default location of the service-definition.xml file is under META-INF in the
project. For Oracle Fusion Applications, this file will be stored in MDS so you need to
put it into a directory that can be added to your Metadata Archive (MAR) file.

The standardized location that all applications should use is:

<app>/<lba>/<product>/<*project*>/*meta/oracle/apps/meta*/<lba>/<product>/
service-definition.xml

The name must be unique, such as:

helpPortal/atk/helpPortal/model/meta/oracle/apps/meta/atk/helpPortal/servi
ce-definition.xml

To define Activities in the service-definition.xml file, follow these steps.

1. If necessary, add the directory to the application's MAR profile. To add a MAR,
select Application > Application Properties > Deployment. In the dialog that is
displayed, select the MAR file and click Edit.

2. In the Edit dialog, select User Metadata and click Add. Browse to the metadata
directory that was just added and click OK.

3. Set the id attribute on the service-definition element to the entity object name
for which you want to define the Activities.

<service-definition xmlns="http://xmlns.oracle.com/webcenter/framework/service"
 id="oracle.apps.crmdemo.model.OpportunityEO"
 version="11.1.1.0.0">

4. Define an activity type for every business event in the entity object for which you
want to display the Activities in the Activity Stream UI. Ensure the event name of
the entity object matches the activity-type name attribute value.

<activity-types>
 <generic-activity-category name="UPDATE">
 <activity-type name="OpportunityStatusUpdate"
 displayName="Opportunity Status Update"
 description="Opportunity Status Update"
 messageFormatKey="OPPTY_STATUS_UPDATED"
 iconURL=""
 defaultPermissionLevel="SHARED"/>
 </generic-activity-category>
</activity-types>

5. Set message format strings.

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-51

Each activity-type should have a message format defined. The message format
string can be translated and is stored in a Resource Bundle or an XLIFF bundle.
Oracle Fusion Applications uses XLIFF bundles to store the Activity message
format strings. The activity-type element in the service-definition.xml file
has messageFormatKey attributes that are used to refer to the format strings in the
XLIFF bundle.

Activity Stream supports only Java Resource Bundles. The Common String
Repository is used for the message format strings.

These attributes are supported on the activity-type element:

■ messageFormatKey - Used on the Activity Stream full view task flow.

■ summaryByListMessageFormatKey - Used in the summary view Activity
Stream task flow.

■ summaryByCountMessageFormatKey - Used in the summary view task flow.

messageFormatKey

The value of this attribute points to the key defined in the Resource Bundle. These
tokens are supported in the message format string.

■ {actor[0]}: Replaced by the display name of the user who triggered the
event.

■ {object[0]}: Replaced by the value of the attribute in the event payload
whose attribute name matches the object type name.

■ {custom[attr1].value}: Replaced by the value of the attr1 attribute in the
event's payload.

The following sample uses the Java Resource Bundle class:

<resource-bundle-class>oracle.apps.crm.OpportunityResourceBundle</resource-bund
le-class>
 <activity-types>
 <generic-activity-category name="OPPTYUPDATE">
 <activity-type name="OpptyStatusUpdate"
 displayName="OPPTY_UPDATE"
 description="OPPTY_UPDATE_DESCRIPTION"
 messageFormatKey="OPPTY_STATUS_UPDATED"
 defaultPermissionLevel="SHARED"/>
 </generic-activity-category>
 </activity-types>

In OpportunityResourceBundle, the OPPTY_STATUS_UPDATED key is defined as:

{"OPPTY_STATUS_UPDATED", "{actor\[0\]} updated {object\[0\]} status to
{custom\['status'\].value}"}

summaryByListMessageFormatKey and summaryByCountMessageFormatKey

These attributes are used only when the Activity Stream summarized view task
flow is used. The summarized view task flow is used on the portrait page in My
Activities and Network Activities mini cards. In summarized view, the Activity
messages are summarized or grouped based on an Activity Type. For instance, if
multiple Activities of the same type are published, they are combined and
displayed as a single Activity message. Within the group of Activities of the same
type, the following algorithm is used to generate summarized messages:

a. Summarize activities by finding a common object referenced in the Activity.

Implementing Activity Streams and Business Events

14-52 Developer's Guide

b. Summarize or aggregate the Actors either by listing them if there are three or
fewer, or by counting them if there more than three.

c. For remaining activities, summarize by finding a common Actor. Summarize
or aggregate the objects either by listing them if there are three or fewer, or by
counting them if there are more than three.

For example, note the following activities:

a. James updated Project Alpha tasks.

b. Viju updated Project Alpha tasks.

c. Ling updated Project Alpha tasks.

d. Monty updated Oppty 200 laptops status

e. Monty updated Oppty Solaris workstations status

f. Monty updated Oppty 2 DB machines status.

In the summarized view, the Activities are summarized as follows:

■ Activities a-c: James, Viju, Ling updated Project Alpha tasks.

■ Activities d-f: Monty updated 200 laptops, Solaris workstations, 2 DB
machines opportunities status.

Example 14–19 shows sample format strings for the preceding scenario.

Example 14–19 Sample Format Strings for a Summarized View

<resource-bundle-class>oracle.apps.crm.OpportunityResourceBundle</resource-bundle-
class>
 <activity-types>
 <generic-activity-category name="OPPTYUPDATE">
 <activity-type name="OpptyStatusUpdate"
 displayName="OPPTY_UPDATE"
 description="OPPTY_UPDATE_DESCRIPTION"
 messageFormatKey="OPPTY_STATUS_UPDATED"
 summaryByListMessageFormatKey="OPPTY_STATUS_UPDATED_SUMMARY_LIST"
 summaryByCountMessageFormatKey="OPPTY_STATUS_UPDATED_SUMMARY_CNT"
 defaultPermissionLevel="SHARED"/>
 </generic-activity-category>
 </activity-types>

In the OpportunityResourceBundle, the keys are defined as:

{"OPPTY_STATUS_UPDATED_SUMMARY_LIST", "{actor\[0\]} updated status for
opportunity {object\[0\]} }"}
{"OPPTY_STATUS_UPDATED_SUMMARY_CNT", "{actor\[0\]} updated {object\[0\].count}
opportunities status"}

6. Define an object type for the entity object that is the source of the events. Even
though Oracle WebCenter Portal supports multiple object types, for Oracle Fusion
Applications, only one object type that corresponds to the source of the events is
supported. The value of the name attribute should match the name of the attribute
in the business event's payload. This attribute's value will be used as the display
name of the object when displayed in the Activity message. The primary key of the
event source will be used as the object ID.

<object-types>
 <object-type name="OpptyId"
 displayName="Opportunity Object"
 description="Opportunity Object"

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-53

 iconURL="">
 </object-type>
</object-types>

7. The ObjectType custom attributes can be used to provide additional metadata for
handling business object references in Activity Stream messages. The custom
attributes shown in Table 14–6 will be used.

<object-type>
 <custom-attributes>
 <custom-attribute name="service-ref-id"
defaultValue="oracle.apps.crm.model.OpptyEO"/>
 <custom-attribute name="object-id-attr" defaultValue="opptyId"/>
 <custom-attribute name="display-name-attr" defaultValue="opptyName"/>
 </custom-attributes>
</object-type>

8. Define resource view handler parameters to allow custom navigation for links
rendered in the Activity message. Navigation from the Actor link in the Activity
message navigates to the user's portrait page. Custom navigation to the business
object workarea is supported. Important fields include:

■ taskFlowId: The task flow where you want to go.

■ resourceParamList: The list of parameters that you want to pass to the task
flow. For example, if a business object task flow takes the opptyId parameter,
in resourceParamList you should specify "opptyId". If multiple parameters
are required, the parameters should be separated by a semi-colon (;), for
example "opptyId;opptyType". When the hyper link is clicked, parameters
opptyId="oppty id value" and opptyType="type value" will be passed as
input parameters to the task flow.

<resource-view taskFlowId="/WEB-INF/OpportunityTF.xml#OpportunityTF">
 <parameters>
 <parameter name="viewId" value="Opportunity"/>
 <parameter name="webApp" value="CRMApp"/>
 <parameter name="pageParametersList" value=""/>
 <parameter name="taskParametersList" value=""/>
 <parameter name="resourceParamList" value="opptyId"/>
 </parameters>
</resource-view>

Custom navigation is handled by the Applications Core ResourceViewHandler
registered in the adf-config.xml file. You must add this entry to all
adf-config.xml files:

Table 14–6 ObjectType Custom Attributes

Name Description

service-ref-id ID of the service-definition of a business object referenced in the Activity message of
the current business object. This is used when an Activity message contains multiple
object references and is used to reference the serviceId of some other business object.

object-id-attr The name of the attribute in the business event payload that should be used as the
object-id for an Activity object. Typically this corresponds to the primary key attribute
of a business object. If this attribute is not specified, the object-type element's name
attribute is used as the default.

display-name-attr The name of the attribute in the business event payload that should be used as the
display name of the Activity object. This attribute's value will be used to replace the
{object} token in the Activity's message format.

Implementing Activity Streams and Business Events

14-54 Developer's Guide

<wpsC:adf-service-config
xmlns:wpsC="http://xmlns.oracle.com/webcenter/framework/service">
 <resource-handler
class="oracle.apps.fnd.applcore.tags.handler.FndResourceActionViewHandler"/
>
</wpsC:adf-service-config>

14.5.6 How to Implement Comments and Likes
Commenting allows users to comment on objects that are created or published by
various users on the site, and engage in discussions revolving around those objects
using replies to comments and comments upon comments. This feature in Activity
Stream allows users to comment on a specific Activity related to a object.

The Likes feature allows users to express their liking for any object in the system to
which they have access. This feature is exposed in message boards, Activity Streams,
doclib and replies on topics in discussion forums. In Activity Stream, this feature
allows users to indicate if they like a particular Activity.

To enable Comments and Likes for a service, add these Activity Types to the
service-definitio.xml file:

<activity-type name="postComment"
 messageFormatKey="ACTIVITY_COMMENT_STATUS"/>
<activity-type name="expressLike"
 messageFormatKey="ACTIVITY_LIKE_STATUS"/>

Ensure the activity-type names are as shown. The messageFormatKey values refer to
the ResourceBundle keys that provide strings displayed for "comments" and "likes"
links displayed in the Activity message.

14.5.7 How to Implement Follow for an Object
Users will be able to see Activity messages belonging to the business objects they are
following. Users should either explicitly follow a business object, or you should
provide a way for users to follow certain business objects implicitly. A business object
can be followed for a user by using the Oracle WebCenter Portal Follow API. A sample
implementation of the Follow model is shown in Example 14–20.

Example 14–20 Sample Implementation of the Follow Model

public void follow() {
 System.out.println("Follow method invoked!!!");
 try
 {
 OAViewObjectImpl vo = getCaseList1();
 Row row = vo.getCurrentRow();
 Object id = row.getAttribute("Id");
 System.out.println("Case Id in follow : " + id);

 ActivityStreamingService asService = ActivityStreamingServiceFactory
 .getInstance().getActivityStreamingService();
 FollowManager followManager = asService.getFollowManager();
 String serviceID = "oracle.apps.fnd.applcore.crmdemo.model.business.CasesEO";
 String userGUID = ApplSessionUtil.getSession().getUserGuid();
 ActivityActor actor = asService.createActor(userGUID);
 String objectTypeName = "Id";
 ServiceObjectType objectType = asService.findObjectType(serviceID,
objectTypeName);
 ActivityObject followedObject = asService.createObject(id.toString(),

Implementing Activity Streams and Business Events

Implementing Search Functions in the UI Shell 14-55

 objectType, "");
 System.out.println("Calling Follow for Case : " + id);

 followedObject.setServiceID(serviceID);
 followManager.followObject(actor, followedObject);
 }
 catch(ActivityException ae) {
 ae.printStackTrace();
 System.out.println("Case follow failed");
 }
}

14.5.7.1 Defining the Service Category
The Follow model is enforced for Activity messages when the category-id of a service
contains "business" in its name. A sample service-category-definition and its
reference in service-definition are provided in Example 14–21 and Example 14–22.

Note that the ID in the service-category-definition file matches the category-id in
the service-definition.xml file and it contains "business".

Example 14–21 Sample service-category-definition.xml File

<service-category-definition xmlns="http://xmlns.oracle.com/webcenter">
 <category id="oracle.apps.fnd.applcore.crmdemo.model.business.CasesEO"

resourceBundle="oracle.apps.fnd.applcore.crmdemo.BusinessActivityServiceResourceBu
ndle"
 titleKey="CASE_SERVICE_CATEGORY"
 icon="/a/s/g.gif"/>
</service-category-definition>

Example 14–22 Sample service-category-definition Reference

<category-id>oracle.apps.fnd.applcore.crmdemo.model.business.CasesEO</category-id>

14.5.7.2 Adding ActivityTypes for Follow and Unfollow
The Activity types shown in Example 14–23 should be added to the
service-definitions of all services that use the Follow model. These Activity types
are used to construct the message published when an object belonging to the service is
Followed or Unfollowed.

Example 14–23 Adding ActivityTypes for Follow and Unfollow

<activity-type name="followObject"
 displayName="Follow Object"
 messageFormatKey="ACTIVITY_FOLLOW_OBJECT_MSG"
 description="Follow Object">
</activity-type>

<activity-type name="unfollowObject"
 displayName="Unfollow Object"
 messageFormatKey="ACTIVITY_UNFOLLOW_OBJECT_MSG"
 description="Unfollow Object">
</activity-type>

Implementing Activity Streams and Business Events

14-56 Developer's Guide

14.5.8 How to Render Contextual Actions in Activity Streams
Contextual Actions are rendered for business objects or other resources referenced in
Activity Stream messages when contextInfoPopupId is configured in the
service-definition.xml file of the business object or resource. The Activity Stream
starts an Oracle ADF popup using the popup ID from the service-definition.xml
file. The contextInfoPopupId should provide the absolute ID of the popup used for
the Contextual Action. A popup with the specified ID should exist in the pages where
the Activity Stream is used. This is a requirement for all pages where Contextual
Actions-enabled objects are rendered. The Activity Stream will make the serviceId,
resourceId, and resourceType properties available to the started popup. The popup
should process these parameters and convert them to Contextual Actions-specific
parameters and make them available to the Contextual Actions task flow or another
component.

This element, which is the direct child of the service-definition element, is used to
configure the Contextual Actions popup ID in the service-definition.xml file.

<contextInfoPopupId>:pt1:r1:casePopup</contextInfoPopupId>

The popup sample shown in Example 14–24 uses the serviceId, resourceId, and
resourceType properties from the Activity Stream that are made available through the
launch variable, and makes them available to the popup.

Example 14–24 Sample Popup for ActivityStream

<af:popup id="casePopup" contentDelivery="lazyUncached"
 eventContext="launcher" launcherVar="source"
 clientComponent="true">
 <af:noteWindow id="nw" >
 <af:panelFormLayout id="pflTst">
 <af:inputText id="itSID"
 label="Service ID"
 value="#{pageFlowScope.serviceId}"
 readOnly="true"/>
 <af:inputText id="itRID"
 label="Resource ID"
 value="#{pageFlowScope.resourceId}"
 readOnly="true"/>
 <af:inputText id="itRType"
 label="Resource Type"
 value="#{pageFlowScope.resourceType}"
 readOnly="true"/>
 </af:panelFormLayout>
</af:noteWindow>
<af:setPropertyListener from="#{source.attributes.serviceId}"
 to="#{pageFlowScope.serviceId}"
 type="popupFetch"/>
<af:setPropertyListener from="#{source.attributes.resourceId}"
 to="#{pageFlowScope.resourceId}"
 type="popupFetch"/>
<af:setPropertyListener from="#{source.attributes.resourceType}"
 to="#{pageFlowScope.resourceType}"
 type="popupFetch"/>
</af:popup>

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-57

14.6 Implementing the Oracle Fusion Applications Search Results UI
The Oracle Fusion Applications Search Results UI starts a page using the UI Shell
template, that is used to query the Oracle Enterprise Crawl and Search Framework
(ECSF).

The minimum requirement is to implement and run a UI Shell template page. A page
using the UI Shell template automatically will contain the search components in the
Global Area and can be activated when running the page.

Where you have implemented ECSF for your product, you must ensure that you have
followed all of the instructions in Chapter 2, "Setting Up Your Development
Environment," Chapter 26, "Getting Started with Oracle Enterprise Crawl and Search
Framework," and Chapter 27, "Creating Searchable Objects" and in particular:

■ "How to Create a Database Connection" in Chapter 2, "Setting Up Your
Development Environment." The database connection must be defined inside the
project using the UI Shell template. The Oracle Fusion Applications Search Results
UI functionality uses the database connection SearchDB defined in this section to
connect to the Oracle database to query the results.

■ Chapter 27, "Creating Searchable Objects" to make your view objects searchable.
ECSF uses these search-enabled objects in the construction of the result set.

If you have implemented ECSF and defined the SearchDB connection, the saved
searches are saved to the Oracle database and are persisted across sessions.

Data Security Integration
Data security (limiting search results to only those items to which the user has
authorized access) is handled by the ECSF.

14.6.1 How to Disable Oracle Fusion Applications Search
There are occasions when you will want to disable Oracle Fusion Applications Search
for an application, such as for public (unauthenticated) pages. There are four ways to
disable the function:

■ Remove the ECSF libraries (oracle.ecsf shared lib). Oracle Fusion Applications
Search will detect the missing dependency and disable itself for all pages in the
current user session, even if the user opens a web application that does have the
ECSF libraries available.

■ Setup switch using a JVM system property.

-DFUSION_APPS_SEARCH_ENGINE_AVAILABLE=N

■ Use Customization by setting rendered to false on the panelGroupLayout with id
"_UISpg6" (the panel containing the Oracle Fusion Applications Search fields) in
the UI Shell Main Area. Note that by customizing the fields from the current page,
you are not disabling search; the Expression Language bindings on the fields are
still evaluated and if the user opens a non-customized page, Oracle Fusion
Applications Search will be available.

■ Setting the profile option Fusion Apps Search Enabled to 'N', either at site or user
level.

14.6.2 How to Use Basic Search
From the main page of the project in the Global Area, the Categories and Search terms
fields are displayed, as shown in Figure 14–23.

Implementing the Oracle Fusion Applications Search Results UI

14-58 Developer's Guide

Figure 14–23 Basic Search Fields in UI Shell

If you expand the Categories field, a list, similar to that shown in Figure 14–24, is
displayed:

Figure 14–24 Search Categories Field Expanded

Categories
The user can select from the list of Categories and enter a search string. Unchecking
the All category unchecks all of the categories. The subset of selected categories will be
displayed in the entry area of the dropdown list as a concatenated list separated by a
semicolon.

Search Term
This is a text field for the values on which to search. The field defaults to showing 20
characters, and can hold a maximum of 2048 characters.

The term is searched for in any of the crawled data, which includes the title, fixed and
variable content, attached documents, and tags. So if the search term is foo, the search
returns any data containing the word foo.

To find only items with the tag foo, enter ecsf_tags:foo as the search word. No data will
be returned if the word foo is in the transactional data but not in the tag.

Click the Play button to initiate the search.

Alternate Word List
Oracle Secure Enterprise Search (SES) will show alternate words to the user when they
do a search as suggestions to frequent typos, or better used terms. This list is based on
statically defined lists stored in SES.

Oracle Fusion Applications Search uses the ECSF APIs to mimic the SES search and
show the alternate words to the user, as shown in Figure 14–25. Clicking the alternate
word does a new search using the selected alternate word as the new keywords.

Figure 14–25 Alternate Word Suggestion

Note: Categories are not set up at design time by developers. They
should be set up either by customers or seeded by teams. Categories
are created and stored in ECSF schema, and ECSF provides an API to
get a list of categories to the UI for a given user.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-59

Saved Searches
Click the Saved Searches magnifying glass icon to open a list of saved searches. The
list shown in Figure 14–26 includes a Personalize… action item that will display the
Personalize Saved Searches dialog so that saved searches can be deleted or renamed.

Figure 14–26 Saved Searches List

■ Show Results of Last Search: Displays the output of the last search.

■ Personalize: Becomes active if there is a saved search. Click this link to rename or
delete a saved search, as shown in Figure 14–27.

Figure 14–27 Personalized Saved Searches Dialog

To rename a saved search, select it, enter a new name in the Name field, and click
OK.

To delete a saved search, select it and click Delete.

14.6.2.1 Search Results
After clicking Search, a modal dialog will display the results of the search. Hovering
over the main link will show the last crawled date. Figure 14–28 shows typical results.

Note: Entering a name in the Name field without selecting an existing
search will create a new Saved Search that uses the last search string
seen in the Search window as the search criteria.

Implementing the Oracle Fusion Applications Search Results UI

14-60 Developer's Guide

Figure 14–28 Search Results Example

To improve performance, the result set size is limited to 10.

The Search Results display consists of:

■ A repetition of the fields displayed in the Global Area.

■ A Filter Tree of Categories: Selected filter values will be applied to the search
results. A remove filter icon will appear next to a filter value that has been added.
Clicking this icon will remove the filter from the search criteria.

A category is a group of related objects. Examples include any Oracle Fusion
business object, and Oracle WebCenter Portal objects such as wikis and blogs.

A Searchable Object is the second level. A searchable object is the view object.

Facets are formed by the Lists of Values defined on an attribute in the Searchable
Object. There may be many facets for a Searchable Object, and the facets may be
hierarchical, such as is the case in Figure 14–28, where a State facet contains a City
facet, which contains a County facet. Only the name of the highest level facet in
the hierarchy is shown.

■ A Results section. On the initial query, all selected categories that have a non-zero
count will be displayed. That is, if a category has zero results, it will not be
displayed. This helps reduce clutter. Only the first category will be expanded. The
other categories must be manually expanded.

Each result found under a category provides a navigation link back to the record.

Note: If a search application, such as Finance or HCM, does not
respond to the search request within a predetermined period of time,
the search results will be displayed but there will be a notice that one
or more applications did not respond.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-61

Result Counts Do Not Add Up
It is possible when viewing the search results, and narrowing your selections using the
facet tree, to see counts against the nodes that do not add up. For example, a search on
Glasses might return 16. Then if you filter the result by color, you may find Blue (5)
and Red (10), which do not add up to 16. This count is the Oracle Secure Enterprise
Search (SES) Approximate count based on heuristics, and not an exact count. To make
the count exact, start SES and select Global Settings > Query Configuration, and click
the Exact count radio button, as shown in Figure 14–29. Note that SES warns against
this for performance reasons. See the Oracle Secure Enterprise Search Administration
Online Help.

Figure 14–29 Setting the Exact Hit Count in SES

Sort By
This function requires no developer implementation; it is built in.

Users can sort results in the results table. The sort may be done in ascending or
descending order, and may be switched using a toggle button.

The sort will be available in two forms, depending on the search parameters:

■ Multiple categories or a single category

The sort can be based only on Relevance (an implicit universal attribute) and
LastModifiedDate (a universal attribute).

■ A Single Searchable Object in a category

The sort can be based on Relevance, LastModifiedDate, and all other attributes for
that Searchable Object, as shown in Figure 14–30.

Implementing the Oracle Fusion Applications Search Results UI

14-62 Developer's Guide

Figure 14–30 Sorting on Searchable Object Attributes

The Search result will be expanded in the background from the initial 10 results
returned with the query, to 100 results returned by a background search started in a
separate thread as soon as the 10 results are successfully returned. This is to give a
reasonable result to sort. The sort UI will show a spinner and will be disabled until this
is finished, and the UI will poll for completion every two seconds and enable those
fields. This polling will stop when the background search is complete, or after a fixed
number of polls (to stop infinite polling in case of error).

In addition, if there are fewer than 100 results in total, the "About xx Results" header
will be replaced with "xx Results", indicating the exact number returned.

The default Sort is Relevance descending, which is the way that records are returned
by SES.

The sort is done in memory using a standard Java Collections.sort function, and a
comparator that takes into account the date type of the attribute
(Date/Number/String) and direction.

Common Filters
The Common Filters panel that is displayed below the Application Filters can be
expanded so that it appears similar to Figure 14–31.

Figure 14–31 Common Search Filters

The valid values are:

■ Today

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-63

LastModifiedDate equals "todays date."

■ This Week

LastModifiedDate >= "last Sunday" AND LastModifiedDate <= "this Saturday"

■ This Month

LastModifiedDate >= "first day of month" AND LastModifiedDate <= "last day of
month"

■ This Year

LastModifiedDate >= "first day of year" AND LastModifiedDate <= "last day of
year"

■ Last Year

LastModifiedDate >= "first day of last year" AND LastModifiedDate <= "last day
of last year"

■ Before Last Year

LastModifiedDate <= "last day 2 years ago"

■ Custom Date Range

As appropriate for the range. A date picker will be displayed.

Recent Searches
Recent Searches retains the last 10 searches conducted by each user over sessions and
makes them available to users to select and run. Keywords entered by the user serve as
the name of the recent search, with digits appended for uniqueness, as needed.

Recent Searches is accessed from the Saved Searches dialog by selecting the Recent
Searches tab, as shown in Figure 14–32.

Figure 14–32 Selecting the Recent Searches Tab

Clicking any linked portion of the recent search description runs the search and starts
the Oracle Fusion Applications Search dialog to display the results.

Recent searches are implemented using the ECSF recent searches feature. See
Section 31.5, "Managing Recent Searches."

A recent search is uniquely identified by its filters, such as search term, categories, and
facet selections.

Implementing the Oracle Fusion Applications Search Results UI

14-64 Developer's Guide

A search will be added to the front of the recent search list when performed. If it exists
in the list, it will be removed from its current place in the list and added to the front.

14.6.3 How to Implement the GlobalSearchUtil API
A public API is available to call Oracle Fusion Applications Search without requiring
the user to use the global search fields at the top of the UI Shell page template.

You can use this API within your UI, such as in a Main Area task flow, and bring up
the same UI. You must use the UI Shell.

The API shown in Example 14–25 is available from the
oracle.apps.fnd.applcore.globalSearch.ui package in the
jdev/oaext/adflib/UIComponents-Viewcontroller.jar file and is the only public
API supported by Oracle Fusion Applications Search.

Example 14–25 Oracle Fusion Applications Search API

/**
 * Run a search from a backing bean and have the search results ui component
 * display.
 * @param searchCategories A list of SearchCategory objects to search within.
 * Can be obtained by calling getCategories() from this class.
 * @param searchString The string to search on
 * @param callerContext a String which represents to the caller, the context
 * in which the search result will be called. This primarily relates to saved
 * searches, which will be saved with this context, and only saved searches
 * with this context shown to the user.
 * @param e The ActionEvent from the page UIComponent that triggered this
 * functionality.
*/
public static void runSearch(List<SearchCategory> searchCategories,
 String searchString,
 String callerContext,
 ActionEvent e)
/**
 * Run a search from a backing bean and have the search results ui component
 * display at a set size.
 * @param searchCategories A list of SearchCategory objects to search within.
 * Can be obtained by calling getCategories() from this class.
 * @param searchString The string to search on
 * @param callerContext a String which represents to the caller, the context
 * in which the search result will be called. This primarily relates to saved
 * searches, which will be saved with this context, and only saved searches
 * with this context shown to the user.
 * @param e The ActionEvent from the page UIComponent that triggered this
 * functionality.
 * @param popupDimension A Dimension object containing the height and width
 * to display the search results popup.
*/
 public static void runSearch(List<SearchCategory> searchCategories,
 String searchString,
 String callerContext,
 ActionEvent e,
 Dimension popupDimension)
/**
 * Get a list of all the SearchCategory objects.
 * @return A List of SearchCategory objects containing all possible search
 * categories.
*/

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-65

 public static List<SearchCategory> getCategories();

14.6.3.1 Using the Search API
To use the Search API, create the component and have an actionListener to a backing
bean, as shown in Example 14–26. Note that GlobalSearchUtilBean is just an example,
not a real bean.

Example 14–26 Creating a Component with actionlistener to Backing Bean

<af:commandButton text="commandButton 1"
 actionListener="#{backingBeanScope.GlobalSearchUtilBean.runSearch}">
</af:commandButton>

From that backing bean, you can call the Oracle Fusion Applications Search API to run
the search, as shown in Example 14–27.

Example 14–27 Calling Oracle Fusion Applications Search API to Run Search

public class GlobalSearchUtilBean {
 public GlobalSearchUtilBean()
 {
 }
 public void runSearch(ActionEvent actionEvent)
 {
 List<SearchCategory> categories =GlobalSearchUtil.getCategories();
 // manipulate search category list here
 String searchString = "some search string";
 GlobalSearchUtil.runSearch(categories, searchString, actionEvent);
 }
}

14.6.3.2 Running the Oracle Fusion Applications Search UI Under Oracle WebLogic
Server
For details of running the ECSF artifacts, such as the SearchFeedServlet, see
Chapter 27, "Creating Searchable Objects."

To run the UI Shell and Oracle Fusion Applications Search, follow the setup
instructions for running Applications Core under Oracle WebLogic Server in
Chapter 2, "Setting Up Your Development Environment" and the instructions on how
to set up a UI Shell page, menu entries and task flows from Section 13.1, "Introduction
to Implementing the UI Shell". This should give you a running UI Shell project.

Add the SearchDB database connection to the project. For more information about
creating the SearchDB connection, see Section 31.6.1, "How to Create the SearchDB
Connection on Oracle WebLogic Server Instance".

14.6.4 Introduction to the Crawled Objects Project
The Crawled Objects Project lets you crawl your Search view objects in Oracle
WebLogic Server, and set up Oracle Fusion Applications Search to use those crawled
view objects.

The business component objects you will create (specifically the Searchable view
object) will contain references to the Oracle Fusion Middleware Extensions for
Applications base classes.

Implementing the Oracle Fusion Applications Search Results UI

14-66 Developer's Guide

Update the ECSF command-line script (runCmdLinScript.sh) to reference the JAR files
containing the base classes. Example 14–28 shows the UNIX version; the DOS version
is similar.

Example 14–28 Updating ECSF Command-Line Script to Reference Applications Core
JAR Files

export APPLCORE_CP=${ORACLE_
HOME}/jdeveloper/jdev/oaext/adflib/Common-Model.jar:${ORACLE_
HOME}/jdeveloper/jdev/oaext/adflib/Tags-Model.jar
export ADMIN_CLASS=oracle.ecsf.cmdlineadmin.CmdLineAdmin

${JAVA_HOME}/java -cp ${ADMIN_CP}:${APPLCORE_CP} ${ADMIN_CLASS} ${CONNECT_INFO}

14.6.5 How to Implement Tags in Oracle Fusion Applications Search
A view object is available to reference Oracle WebCenter Portal Tags. This view object
is available in the ORACLE_HOME/jdeveloper/jdev/oaext/adflib/Tags-Model.jar
library JAR file.

You may use this view object using a view link and a predefined Search extension to
enable the crawling of Oracle WebCenter Portal Tags, both in initial and incremental
(someone has updated the tags) crawls.

Follow these steps:

1. Create your Searchable view object as usual. Example 14–29 uses a Searchable
view object over FND_LOOKUPS_VL in the query.

Example 14–29 Creating a Searchable View Object

SELECT LOOKUP_TYPE,
 VIEW_APPLICATION_ID,
 LANGUAGE,
 SOURCE_LANG,
 MEANING,
 DESCRIPTION,
 CREATED_BY,
 CREATION_DATE,
 LAST_UPDATED_BY,
 LAST_UPDATE_DATE,
 LAST_UPDATE_LOGIN,
 'oracle.apps.fnd.applcore.lookuptype' AS SERVICE_ID,
 lookup_type||'.'||to_char(view_application_id)||'.'||language||'.'||meaning
as RESOURCE_ID
FROM FND_LOOKUP_TYPES_TL

The SERVICE_ID specifically identifies your Searchable view object.

The RESOURCE_ID identifies the specific row for the SERVICE_ID. It is a
dot-separated primary key of the entity.

These two values will be used when setting up tags in your regular UI and must
match. For example, if you have a page with a form and a tag button, the Oracle
WebCenter Portal tag would be set up as shown in Example 14–30.

Example 14–30 Setting up the Oracle WebCenter Portal Tag

<af:panelFormLayout id="pfl1">
 <tag:taggingButton serviceId="oracle.apps.fnd.applcore.lookuptype"
 resourceName="#{bindings.Description.inputValue}"

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-67

resourceId="#{bindings.LookupType.inputValue}.#{bindings.ViewApplicationId.inputVa
lue}.#{bindings.Language.inputValue}.#{bindings.Meaning.inputValue}"/>
 <af:region value="#{bindings.tagginglaunchdialog1.regionModel}"
 id="r1"/>
 <af:panelLabelAndMessage label="#{bindings.LookupType.hints.label}"
 id="plam4">
 <af:outputText value="#{bindings.LookupType.inputValue}" id="ot9"/>
</af:panelLabelAndMessage>

See Section 14.1, "Implementing Tagging Integration" for setting up tags in your
UI. Figure 14–33 shows the attributes for lookup types.

Figure 14–33 Tags - Searchable View Object Lookup Types

Figure 14–34 shows the attributes for Searchable view object lookup types.

Note: Do not forget to mark your key columns and ensure the order
is consistent between the view object and the
tag:taggingButton.resourceId attribute.

Implementing the Oracle Fusion Applications Search Results UI

14-68 Developer's Guide

Figure 14–34 Tags - Lookup Types

2. Add a view link to the TagSVO (service view object) linking the Search view object
and the Applications Core Tag view object.

The view link should look similar to Figure 14–35.

Figure 14–35 View Link Example

3. Update the Body field to include the tags of the child view object in the relevant
position in the string as defined by your management.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-69

This will be an expression of the form <accessor Name>.Tag, such as tagSVO.Tag.

How to Do an Incremental Crawl
To do an incremental crawl:

1. Update the Searchable View Object Search Plugin field (see Figure 14–35, "View
Link Example") to "oracle.apps.fnd.applcore.search.TagSearchPlugin", or as shown
in Example 14–31, create a subclass so that you can incorporate your security rules.

Example 14–31 Creating a Subclass

package oracle.apps.fnd;
import oracle.apps.fnd.applcore.search.TagSearchPlugin;
public class WlsTestTagSearchPlugin
extends TagSearchPlugin
{
 // All implementation through super class, or override methods important to you.
 // Be careful if implementing
 // public Iterator getChangeList(SearchContext ctx, String changeType)
 // to call super(ctx, changeType) to get the applcore functionality.
}

Ensure you add a parameter passing the service ID of the Search view object. This
may be done by clicking the LOV symbol next to the Search Plugin field, shown in
Figure 14–34. See Figure 14–36.

Figure 14–36 Search Plugin

There are two parameters, shown in Table 14–7, that may be passed to the
extension.

Table 14–7 Parameters that can be passed to the plug-in

Parameter Required Description

TAG_SERVICE_ID Yes Service ID of the Searchable view object. This value must
match the value in the tag:taggingButton component
and the service_id of the Searchable view object query.

Implementing the Oracle Fusion Applications Search Results UI

14-70 Developer's Guide

2. Start the SearchFeedServlet in the user interface project.

You now can crawl using the command-line script. A full crawl will be done first, then
on subsequent crawls the incremental functionality will call the getChangeList()
method.

14.6.6 How to Use the Actionable Results API with Oracle Fusion Applications Search
This section details how to set up ECSF searchable objects to use with Oracle Fusion
Applications Search. For information about setting up your global search
infrastructure, see Chapter 26, "Getting Started with Oracle Enterprise Crawl and
Search Framework."

Figure 14–37 shows the result that will be produced (a single row in the search results
table).

Figure 14–37 Search Results Example

The terminology referred to in this result is:

■ Flat Table URL Action is the Action Link.

■ Title for Flat Table 1:Col1619:Col2619 is the Fixed Content.

■ Any other required information would be added later is the Variable Content.

■ Task Action 1 is Other Actions.

As shown in Figure 14–38, ECSF searchable objects support two distinct Action Types:
URL and Task. See also Figure 14–39 and Figure 14–40.

Most Oracle Fusion Applications will use the Task type with specific named
parameters to integrate with the UI Shell; however both types will work.

KEY_SPLITTER_CLASS No An optional class that extends
oracle.apps.fnd.applcore.search.BaseKeySplitter.

This is a strategy class for splitting the resourceId value
into individual primary key attribute values. By default,
oracle.apps.fnd.applcore.search.DefaultKeySplitte
r is used, which will split values based on a period
separator (the applications standard). The separated PS
attribute values are matched to the primary key columns
in the order the primary key columns are defined in the
view object flat table editor.

For more flexible arrangements, teams can implement
any scheme they want (such as name-value pairs) by
creating their own key splitter class and setting this
parameter.

Table 14–7 (Cont.) Parameters that can be passed to the plug-in

Parameter Required Description

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-71

Figure 14–38 Search Properties Example

Fixed Content
The Fixed Content is derived from the Search Properties Title field.

Variable Content
The Variable Content is derived from the Search Properties Body field.

14.6.6.1 Implementing the URL Action Type
Figure 14–39 shows a URL Action.

Implementing the Oracle Fusion Applications Search Results UI

14-72 Developer's Guide

Figure 14–39 Search Result Actions - URL Action

For URL Action Types, the Oracle Fusion Applications Search will open a new browser
tab or window containing the URL. To configure this type, add a URL Search Result
Action with these parameters.

■ A unique name

■ Action Type of URL

■ An Action Target to the required destination, including groovy substitution
parameters

■ A Title

No Parameters are required; however a single iconURL parameter may be defined if an
icon is required for the URL action. See Table 14–8.

The icon will be shown in the search results with the title given in the Title field. When
clicked, a new browser tab or window will open with this URL.

14.6.6.2 Implementing the Task Action Type
Figure 14–40 shows a Task Action.

Table 14–8 iconURL Parameter

Name Required Description

iconURL No URL of icon to show next to the Action. Can be a relative
reference such as /media/search/mime_doc.gif or a full URL
such as http://host:port/path/to/icon.gif.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-73

Figure 14–40 Search Result Actions - Task Action

For Action Types of Task, the Oracle Fusion Applications Search will open a UI Shell
tab in the current page, or a new page containing the task flow. To configure this type,
add a Task Search Result Action with these parameters.

■ A unique name

■ Action Type of Task

■ A Title

Parameters are shown in Table 14–9. Note that, although this table resembles
Table 14–10, it presents the use case that the majority of users will use. The information
in Table 14–10 is for a very small use case.

The action will be shown in the search results with the title given in the Title field.
When clicked, a new UI Shell tab window will open with this task flow. If the viewId
parameter is for the current page, the UI Shell tab will be in the current page;
otherwise the current page will be replaced with a new UI Shell page with the search
result.

Note: Do not enter double quotation marks around the groovy
expressions; use single quotation marks instead.

Implementing the Oracle Fusion Applications Search Results UI

14-74 Developer's Guide

14.6.6.2.1 How to Implement Preferred Navigation Oracle Fusion Applications Search
supports two parameters, applicationStripe and pageDefinitionName, in task search
actions that, if they are present, change the definition of the other task action
parameters used for navigation. These parameters all become "caret delimited." That
is, instead of having one value per parameter, they have multiple values, and they are
delimited by the caret "^" character. In this case, all parameters must have the same
number of delimited parts.

Table 14–9 Task Action Type Parameters

Name Required Description

viewId Y Name of the page. This is shown in the browser URL bar. For example,
in http://127.0.0.1:8989/context-root/faces/TestUIShellPage, it
would be /TestUIShellPage (Note the leading slash).

pageParametersList N Parameters list for the page. This is a semicolon delimited String of
name-value pairs. For example, "param1=value1;param2=value2"

taskFile Y Name of the task definition file. For example,
/WEB-INF/task-flow-definition.xml. See Section 14.6.6.3, "Passing
Parameters in Oracle Fusion Applications Search".

taskName Y The task flow definition ID. Available from the task definition file
<task-flow-definition> ID attribute. For example,
<task-flow-definition id='task-flow-definition'> would be
"task-flow-definition". See Section 14.6.6.3, "Passing Parameters in
Oracle Fusion Applications Search".

navTaskKeyList N Key list to pass into the task flow to open in the target workspace. This
is a semicolon delimited string of keys or key-value pairs. For example
"key1;key2=value2"

navTaskParametersList N Parameters list to pass in to the task flow to open in the target
workspace. This is a semicolon delimited string of name-value pairs.
For example "param1=value1;param2=value2"

iconURL N URL of an icon to show next to the Action. Can be a relative reference
such as /media/search/mime_doc.gif or a full URL such as
http://host:port/path/to/icon.gif.

toolTip N Tooltip of the action. This also is available for URL actions.

navTaskLabel N Label to show on the results tab. Set the tab title of the tab that is opened
after clicking a search result action. If not set, it will use the Action
Name (the value shown in the results).

webApp Y Attribute used to look up the host and port of the associated WorkArea
or Dashboard from the Oracle Fusion Applications Functional Core
(ASK) deployment tables. These tables are populated at deployment
time through Oracle Fusion Functional Setup Manager tasks.

Caution: If you have a searchable view object with a task search
action, the parameters passed to the task flow from
FndUIShellController.navigate(...) will be Strings, not the native
type of the view object attributes. You must ensure that these values
are converted from their native type to a String (in the
navTaskParametersList) and back correctly (in your task flow).

For Integer types, this is largely automatic (as long as you reference
the parameter as a String in the task flow), but use caution for dates
and decimals.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-75

This additional configuration allows you as the developer to set up different
navigation targets for the same action. The actual target followed will be determined
when the user clicks the result and will be based on a permissions check based on the
applicationStripe and pageDefinitionName parameters. If these two parameters are
not supplied, the other parameters will be used "as is," and navigation will be
performed based on their values.

If the applicationStripe and pageDefinitionName parameter values are supplied, the
algorithm used is the same as for tagging.

■ Divide all delimited parameters based at the caret, and produce an ordered list of
targets that can be opened.

■ If there is only one target defined, use it with no permission check.

■ For each target, determine if the user can open the page and task flow.

■ If a target that can be opened is in the current view, use it.

■ Take the first target that can be opened.

Whatever the outcome of the permissions check, you must ensure that at least one
target can be opened, otherwise users will be presented with a blank page when they
click the search result.

The parameters and descriptions for Preferred Navigation are shown in Table 14–10.
Note that, although this table resembles Table 14–9, it presents a more complicated use
case in which developers want to do a security check and direct the user to the most
secure end point (the first allowed one in the list). The meaning of these columns
changes with the caret delimitation; that is, a caret-delimited list of the old values, as
well as two new parameters. Most users need to use only the information in Table 14–9.

Table 14–10 Parameters for Preferred Navigation

Name Required
Delimited
by caret "^" Description

applicationStripe N Y (This attribute is used for pages.) Check security of the
page against the policies that are located in LDAP. The
applicationStripe name must be the same as the stripe
name of the LDAP policy store, which is the same as the
web.xml application.name attribute. If this parameter is
supplied, the pageDefinitionName parameter must be
supplied also. Example: crm^hcm

pageDefinitionName N Y A delimited string of page definition names. If this
parameter is supplied, the applicationStripe parameter
also must be supplied. Example:
oracle.apps.view.pageDefs.Test1PageDef^oracle.app
s.view.pageDefs.AnotherPageDef

viewId Y Y Name of the page for the pillar. This is shown in the
browser URL bar. For example, in
http://127.0.0.1:8989/context-root/faces/TestUISh
ellPage, it would be
"TestUIShellPage^AnotherUIShellPage".

webApp Y Y Attribute used to look up the host and port of the
associated Work Area or Dashboard from the ASK
deployment tables. These tables are populated at
deployment time through Functional Setup Manager
tasks.

Implementing the Oracle Fusion Applications Search Results UI

14-76 Developer's Guide

14.6.6.3 Passing Parameters in Oracle Fusion Applications Search
Ordinarily, taskFlowID uses the format <path><name>.xml#<name>; for instance
taskFlowID="/WEB-INF/CaseDetails.xml#CaseDetails". However, Oracle Fusion
Applications Search has taskFile and taskName attributes as shown in Figure 14–40.
The code will merge them, adding the "#," so they become <taskFile>#<taskName>.

Parameters always are passed as parameter name=value. Often, it is either a literal
value or an expression such as #{pageFlowScope.val}. Example 14–32 shows how to
pass four parameters.

Example 14–32 Parameter Passing in Oracle Fusion Applications Search

<SearchResultActions>
 <Action
 Name="View Lookup Type"
 ActionType="Task"
 DefaultAction="true">

pageParametersList N Y Parameters list for the page. This is a semicolon delimited
string of name-value pairs. For example,
"param1=value1;param2=value2^anotherParam1=value1
;anotherParam2=value2"

taskFile Y Y Name of the task definition file. For example,
"/WEB-INF/task-flow-definition.xml^/WEB-INF/anoth
ertask-flow-definition.xml". See Section 14.6.6.3,
"Passing Parameters in Oracle Fusion Applications
Search".

taskName Y Y The task flow definition ID that is available from the task
definition file <task-flow-definition> id attribute. For
example, <task-flow-definition
id='task-flow-definition'> would be
"task-flow-definition^another-task-flow-definitio
n". See Section 14.6.6.3, "Passing Parameters in Oracle
Fusion Applications Search".

navTaskKeyList N Y Key list to pass into the task flow to open in the target
workspace. This is a semicolon delimited string of keys or
key-value pairs. For example
"key1;key2=value2^anotherKey1;anotherKey2=value2"

navTaskParametersList N Y Parameters list to pass in to the task flow to open in the
target workspace. This is a semicolon delimited string of
name-value pairs. For example
"param1=value1;param2=value2^anotherParam1=value1
;anotherParam2=value2"

navTaskLabel N Y The label to show on the results tab. (Set the tab title of
the tab that is opened after clicking a search result action.)
If not set, it will use the Action Name (the value shown in
the results). For example: "Manage user^View User"
(Note: This will be shown on the UI, so use resource
bundles.)

iconURL N N The URL of the icon to show next to the Action.It can be a
relative reference, such as /media/search/mime_doc.gif
or a full URL, such as
http://host:port/path/to/icon.gif.

Tooltip N N A tooltip of action. This also is available for URL actions.

Table 14–10 (Cont.) Parameters for Preferred Navigation

Name Required
Delimited
by caret "^" Description

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-77

 <Title>
 <![CDATA["Lookup: " + Meaning]]>
 </Title>
 <ActionTarget>
 <![CDATA[null]]>
 </ActionTarget>
 <Parameters>
 <Parameter Name="navTaskParametersList">
 <Value>
 <![CDATA["lookupType=" + LookupType + ";viewApplicationId=" +
ViewApplicationId + ";language=US;meaning=" + Meaning]]>
 </Value>
 </Parameter>
 <Parameter Name="webApp">
 <Value>
 <![CDATA['GlobalSearch']]>
 </Value>
 </Parameter>
 <Parameter Name="TaskFile">
 <Value>
 <![CDATA["/WEB-INF/LookupTypeSearchResultsTaskFlow.xml"]]>
 </Value>
 </Parameter>
 <Parameter Name="navTaskKeyList">
 <Value>
 <![CDATA["meaning=" + Meaning]]>
 </Value>
 </Parameter>
 <Parameter Name="TaskName">
 <Value>
 <![CDATA["LookupTypeSearchResultsTaskFlow"]]>
 </Value>
 </Parameter>
 <Parameter Name="viewId">
 <Value>
 <![CDATA["TestUIShellPage"]]>
 </Value>
 </Parameter>
 </Parameters>
 </Action>

14.6.6.4 Ordering the Other Actions
In the ECSF search UI in JDeveloper, it is possible to define no action, or a single
default action.

If a default action is defined, it will be used. The other actions will be shown in sorted
order based on task title. If no default action is defined, the first sorted action will be
used as the default action.

This sorting mechanism is used because there is no way, using the current ECSF APIs,
to provide a stable order of actions.

Due to this sorting mechanism, it is strongly recommended to have stable, sortable
task titles (they may be groovy bound and therefore mutate based on an individual
search result) to prevent confusing the end user.

14.6.6.5 Using Click Path and the Saved Search
When the user is using Oracle Fusion Applications Search prior to saving a search, he
or she may perform a number of interactions with the UI including:

Implementing the Oracle Fusion Applications Search Results UI

14-78 Developer's Guide

■ Expanding the attribute filters by selection (performs searches)

■ Narrowing the search terms

■ Opening unsearched groups (which performs searches in those groups)

■ Scrolling through results in a group

This is called the click path of the user.

When a search is saved, some of this information (the structural part at the tip of the
click path) is saved, but prior actions and exact scroll positions are not. This means that
when running a saved search, the following items are not restored to the user:

■ Exact expanded groups in the result at the time of save

■ Scroll positions within a group

■ Full LOV expansion state of attribute filters

When ECSF returns facet information, it returns facet entries only for the level below
that which is selected. For example, if there are no filters, the facets will be shown
correctly with one level of detail. If a first-level facet is selected, that selection will be
shown, but not its siblings. If there are facets below that level, this next level will be
shown as these are returned. As the user starts to refine or expand the attribute filters,
the search filters will be filled in based on this new click path.

14.6.7 How to Integrate Non-Applications Data into Oracle Fusion Applications Search
Oracle Fusion Applications Search can also be used with non-standard ECSF
searchable view objects.

14.6.7.1 Oracle Business Intelligence Integration
Oracle Business Intelligence results will be shown in a results area separate from
Oracle Fusion Applications Search view object results. To implement this separation,
Oracle Fusion Applications Search shows results in a multiple-tab format.

The tabs are named Applications, where all Search view objects and WebCenter Portal
results will reside, as well as Business Intelligence. The split is performed at a category
(or searchable groups) level, so you will see a consolidated list of categories in the
multi-select category dropdown. These categories are split at search time.

The business rule that splits categories into the Oracle Business Intelligence table is a
lowercase category_name, such as bi_%.

Although the formatting of Oracle Business Intelligence results will be slightly
different, no developer action is required.

Oracle Secure Enterprise Search (SES) Setup
To set up SES, you need to set up these parameters:

■ Source

See the Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence
Enterprise Edition for how to create your Oracle Business Intelligence source.
Define a source based on the Oracle EBusiness Suite R12, and give the following
parameters:

SES Source Configuration:
Configuration URL:
http://10.156.30.40:9704/bisearch/crawler/oracle.biee.search.BISearchableTreeOb
ject/ConfigFeed?forceInitialCrawl=true

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-79

User ID: Administrator
Password: password

Authorization Tab:
HTTP endpoint for authorization:
http://10.156.30.40:9704/bisearch/crawler/SecurityService
User ID: Administrator
Password: password
Business Component: oracle.biee.search.BISearchableTreeObject
Display URL Prefix: http://10.156.30.40:9704/bisearch/urlbuilder

where the IP address is your Oracle Business Intelligence server installation,
and the user name/password are for a sufficiently authorized Oracle Business
Intelligence user.

Leave all other values at default.

■ Source Group

Create a source group (SES Searchtab then Source groups) and name it bi_<some
code name>.

It must start with bi_ so Oracle Fusion Applications Search can recognize it as an
Oracle Business Intelligence category.

You may go into Global Settings and translate the group name so the users see a
more recognizable name.

Import the group as an external category into ECSF. See "Importing Source Group
into ECSF".

■ Searching

When Searching, the Oracle Business Intelligence results will be displayed in a
separate tab, as shown in Figure 14–41.

Figure 14–41 Oracle Business Intelligence Search Results in New Tab

If there are only Oracle Business Intelligence, or only Oracle Fusion Applications
or WebCenter Portal categories selected, only the one tab appropriate to those
categories is displayed. Otherwise, you can search both and tab between the
results.

Implementing the Oracle Fusion Applications Search Results UI

14-80 Developer's Guide

When you click a link, you will be redirected to Oracle Business Intelligence. If
you do not have a consolidated Oracle Internet Directory (OID) setup, you will be
asked to log in again.

14.6.7.2 Integrating Oracle WebCenter Portal
To set up and crawl an Oracle WebCenter Portal environment, see the "Configuring
Search Parameters and Crawlers Using Fusion Middleware Control" section in the
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal and then
import the searchable objects into ECSF as external categories.

Importing Source Group into ECSF
The group now should be searchable from within the SES Search UI.

To allow the group to be searchable from Oracle Fusion Applications Search, it must be
imported using the cmdLineAdmin tool or Oracle Enterprise Manager Fusion
Middleware Control. Follow these steps if you use the tool:

1. Start the cmdLineAdmin tool. Its prompt will be displayed.

2. Issue this command at the prompt:

> manage instance 124 (where 124 differs for each developer).

The prompt will change to show that an instance is being managed.

3. Enter this command:

Instance: 124> list external categories

This information is displayed:

List of External Categories for Instance with ID 124:

ID | Name |

100000000013878 | bi_SearchableTreeDirectory |
100000000013879 | WebCenter |

4. Enter this command:

Instance: 124> import external categories

This command should return an Import successful message.

5. Enter this command:

Instance: 124> list external categories

This information is displayed:

List of External Categories for Instance with ID 124:
List of External Categories for Instance with ID 124:

ID | Name |

100000000014896 | bi_SearchableTreeDirectory |
100000000014897 | WebCenter Jive Forums |
100000000014898 | WebCenter Jive Announcements |
100000000014899 | WebCenter |

14.6.7.3 Ensuring Parity of Users
Users must be defined in multiple applications if you do not have a single
authentication store.

Implementing the Oracle Fusion Applications Search Results UI

Implementing Search Functions in the UI Shell 14-81

Ensure that you have a user defined that is common across both Oracle Fusion
Applications and Oracle WebCenter Portal.

For instance, you can create an fmwadmin user on the Oracle Fusion Applications side
by adding to the jazn-data.xml file.

With Oracle Secure Enterprise Search (SES) Authentication pointing to the ECSF
SearchFeedServlet, which is using the WebLogic Server container security, this user
will be verified by the SES authentication callbacks.

In a true enterprise environment, both the Oracle Fusion Applications web container
and WebCenter Portal would be set up with the same OID.

Using two different authentication stores will mean you get multiple logins when
clicking results.

Implementing the Oracle Fusion Applications Search Results UI

14-82 Developer's Guide

15

Implementing Additional Functions in the UI Shell 15-1

15Implementing Additional Functions in the UI
Shell

This chapter discusses additional functions, such as the Navigate API and how to
implement the Home Page UI, that are included in the UI Shell page template used to
build web pages.

This chapter includes the following sections:

■ Section 15.1, "Introducing the Navigate API"

■ Section 15.2, "Warning of Pending Changes in the UI Shell"

■ Section 15.3, "Implementing the Oracle Fusion Home Page UI"

■ Section 15.4, "Using the Single Object Context Workarea"

■ Section 15.5, "Implementing the Third-Party Component Area"

■ Section 15.6, "Developing an Activity Guide Client Application with the UI Shell"

■ Section 15.7, "Troubleshooting UI Shell Issues"

 For more information about the features, see:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 13, "Implementing the UI Shell"

■ Chapter 14, "Implementing Search Functions in the UI Shell"

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details"

15.1 Introducing the Navigate API
You can create a link in the task flow to open a different UI Shell page. Because
navigation can occur across different web applications, a single consistent API
performs browser redirect. See Table 15–1. This API is exposed as the
FndUIShellController.navigate Data Control method.

Introducing the Navigate API

15-2 Developer's Guide

15.1.1 How to Use the Navigate API Data Control Method
Drag and drop the Data Control method on page fragments to create links to start
navigation.

1. Expand the Data Controls and select the navigate item, as shown in Figure 15–1.

Figure 15–1 Selecting navigate from Data Controls

2. Drag navigate and drop it onto the page fragment. When you do, the
Applications Context menu shown in Figure 15–2 is displayed so you can choose
one of the options.

Figure 15–2 Selecting a Navigate Option from the Applications Context Menu

You can specify a task flow to load on the target page. Page level parameters also can
be specified.

Note: When opening a new window, whenever possible, you should
use the Navigate API instead of using the ADF Controller sub-flow
calls. This is because the UI Shell has no information about sub flows.
For instance, if you perform a search that returns clickable results and
use sub flows to display the results, and if you then choose to save the
page to your Favorites, the search page is saved; not the results page
you want. If you use the Navigate API, however, the UI Shell knows
about the opened results page and saving the page to your Favorites
works as you expect.

Table 15–1 Navigate API Parameters

Navigate API Parameter Attribute Name

viewId navigateViewId

Introducing the Navigate API

Implementing Additional Functions in the UI Shell 15-3

webApp Attribute used to look up the host and port of the associated
Workarea or Dashboard from the Oracle Fusion Applications
Functional Core (ASK) deployment tables. These tables are
populated at deployment time through Oracle Fusion Functional
Setup Manager tasks.

You need to pass the deployed module name to the webApp
parameter.

requestContextPath Obsolete. Replaced by webApp.

pageParametersList navigateParamsList

navTaskFlowId Equates to the openMainTask taskFlowId parameter.

This is the ID of the task flow to be loaded.

The task flow ID is a concatenation of the file location for the
task flow definition, and the task flow name. For example:

/WEB-INF/MyTaskFlow.xml#MyTaskFlow

navTaskKeyList Equates to the openMainTask keyList parameter.

Important: navTaskKeyList is used with the task flow ID to
identify the target tab in the Main Area. As such,
navTaskKeyList is applicable only in dynamic tabs mode, and is
ignored in no-tabs mode.

navTaskKeyList provides a way to identify a task flow instance.
When reuseInstance is true, use the specified navTaskKeyList
in addition to the task flow ID to identify the target tab.

The navTaskKeyList parameter has been implemented for the
following FndUIShellController data control methods:

■ openMainTask

■ discloseRegionalTask

■ collapseRegionalTask

■ navigate

■ openSubTask

In dynamic tabs mode, when looking for a match of an existing
tab, these APIs will first look for any instances of the task flow
that is already open, which has the same task flow ID as the one
passed into them as the parameter. In addition, it will compare
the navTaskKeyList values, such that the existing task flow will
be picked only if its navTaskKeyList values match the ones
specified in the navTaskKeyList parameter.

It does not matter if the task flow parameters are the same or
different. If the keyList is not set in the menu metadata, you can
reuse a tab only if you pass in a null keyList.

navTaskParametersList You can load the task flow specified in the navTaskFlowId
parameter of the Navigate API as a dependent flow if the
destination page is in no-tab mode by adding a name-value pair
of "loadDependentFlow=true" to navTaskParametersList. For
example: "customerId=123;loadDependentFlow=true"

navTaskLabel Equates to the openMainTask label parameter.

Note: When passing parameters, do not leave the navTaskLabel
field null. This is the label that would appear in the tab header
when in a tabs page. Even if you are in a no-tabs page (see
Section 13.2.3.4, "Supporting No-Tab Work Areas"), do not leave
it blank because this label will be used in other ways, such as
Add to Favorites, or when the system tracks the Recent Items.

Table 15–1 (Cont.) Navigate API Parameters

Navigate API Parameter Attribute Name

Introducing the Navigate API

15-4 Developer's Guide

Certain parameters, summarized in Table 15–2, can be passed using the Navigate API's
argument list.

Table 15–2 Parameters Passed Using Navigate API Arguments

Parameter Name Passed Using Description

fndNavForceRefresh pageParametersList Default: false

The Navigate API is used to navigate from one
work space to another. If the current view ID is the
same as the viewId parameter, and if navTaskFlow
is null, the current page will be refreshed. If the
current view ID is the same as the viewId
parameter, and if navTaskFlowId is not null, the
current page will not be refreshed, and the
Navigate API will delegate to the openMainTask
API to open the task flow in the Main Area. This
can be overridden by passing in
fndNavForceRefresh=true in pageParametersList
to force the page refresh so that openMainTask
would not be used.

Example:

pageParametersList =
"fndNavForceRefresh=true;param2=value2";

Details:

pageParametersList is a semicolon delimited
string of name-value pairs.

ContextualAreaCollapsed methodParameters Default: false

Example:

FndMethodParameters methodParameters = new
FndMethodParameters();
methodParameters.setContextualAreaCollapsed(
Boolean.TRUE);
methodParameters.setContextualAreaWidth(200)
;

contextualAreaWidth methodParameters Default: 256

Example:

FndMethodParameters methodParameters = new
FndMethodParameters();
methodParameters.setContextualAreaCollapsed(
Boolean.TRUE);
methodParameters.setContextualAreaWidth(200)
;

loadDependentFlow navTaskParametersList Default: false

Example:

navTaskParametersList =
"loadDependentFlow=true;param2=value2";

Note that the value for loadDependentFlow is case
sensitive.

Details:

navTaskParametersList is a parameter list to pass
in to the task flow to open in the target workspace.
This is a semicolon delimited string of name-value
pairs.

Introducing the Navigate API

Implementing Additional Functions in the UI Shell 15-5

The signature and Javadoc of the method are shown in Example 15–1.

Example 15–1 Navigating from One Work Space to Another

/**
* Navigate from one work space to another. If the current view id is the
* same as the viewId parameter, and if navTaskFlow is null, the current page
* will be refreshed. If the current view id is the same as the viewId
* parameter and if navTaskFlowId is not null, the current page will not
* be refreshed. The Navigate API will delegate to openMainTask API to open the
* task flow in the Main Area. This can be overriden by passing in
* fndNavForceRefresh=true in pageParametersList to force the page refresh so
* that openMainTask would not be used.
*
* @param viewId viewId of the target workspace
* @param webApp Deployed Module Name of the target workspace.
* It only must be set when the target workspace is in a different
* deployed module than the origin workspace. When this is null, it means
* the target workspace is in the same deployed module of the origin
* workspace. The webApp attribute is used to look up the host and port of
* the associated Workarea or Dashboard from the ASK deployment
* tables. These tables are populated at deployment time through
* Functional Setup Manager tasks.
* @param pageParametersList Parameters list for the page. This is a semicolon
* delimited String of name value pairs. For example,
* "param1=value1;param2=value2"
* If the Expression Language expression evaluates to an Object,
* toString value of that Object will be passed as the value of
* the parameter.
* @param navTaskFlowId ID of the taskFlow to open in the target workspace
* @param navTaskKeyList Key list to pass into the task flow to open in the
* target workspace. This is a semicolon delimited
* keys or key-value pairs. For example,
* "key1;key2=value2"
* @param navTaskParametersList Parameters list to pass in to the task flow to open
* in the target workspace. This is a semicolon delimited String
* of name value pairs. For example,
* "param1=value1;param2=value2."
* @param navTaskLabel Label for the task flow to open in the target workspace.
* @param methodParameters Construct FndMethodParameters object for setting the
* width of the contextual area, and/or setting the disclosed
* state of the contextual area.
* @throws IOException
*/
 public void navigate(String viewId, String webApp,
 String pageParametersList, String navTaskFlowId,
 String navTaskKeyList,
 String navTaskParametersList,
 String navTaskLabel,
 FndMethodParameters methodParameters)

Note: When passing parameters, do not leave the label field null.
This is the label that would appear in the tab header when in a tabs
page. Even if you are in a no-tabs page (see Section 13.2.3.4,
"Supporting No-Tab Work Areas"), do not leave it blank because this
label will be used in other ways, such as Add to Favorites, or when
the system tracks the Recent Items.

Introducing the Navigate API

15-6 Developer's Guide

The main navigation is driven by two attributes: viewId and webApp.

■ webApp determines which web application to open.

■ viewId determines the view activity within the target web application.

pageParametersList defines custom URL parameters that you can define.

The three parameters navTaskFlowId, navTaskParametersList, and navTaskLabel,
provide support for loading a task flow on the target page, in addition to the default
Main Tasks of the target page.

FndMethodParameters are placed as a future extension mechanism. The parameters
that can be set through FndMethodParameters are: contextualAreaWidth and
contextualAreaCollapsed. Example 15–2 shows how to set up these two parameters.

Example 15–2 Setting contextualAreaWidth and contextualAreaCollapsed Parameters

FndMethodParameters methodParameters = new FndMethodParameters();
 methodParameters.setContextualAreaCollapsed(Boolean.FALSE);
 methodParameters.setContextualAreaWidth(200);

15.1.2 How to Implement Navigation Across Web Applications
Navigating across web applications requires the webApp parameter in the menu meta
data. For this parameter to work properly, the ApplicationDB and the AppMasterDB
connections must be set. The webApp parameter must be specified for each parent node
in the menu meta data. Child nodes inherit the value of this parameter from the parent
node if not specified. The Navigate API is also modified to add the webApp parameter.
Similarly, when using the openSubTask API, you must specify the webApp parameter
correctly. There are no design or compile time checks that can catch an invalid value
for the webApp parameter. It will throw null pointer exceptions at runtime only.

Note that you need to pass the DEPLOYED_MODULE_NAME in the ASK_DEPLOYED_MODULES
table as the webApp parameter. The DEPLOYED_MODULE_NAME, by standard, should be the
same as the context root of the application you are trying to open.

Notes:

■ The task flow to be opened in the target Work Area does not need
to be pre-registered as a defaultMain or dynamicMain task for that
page. The TaskFlow ID, parameters for it, and the label are all
explicitly passed to the target page, and the target page does not
perform any validation.

■ The webApp value that is passed into the Navigate API is used to
look up the host and port of the associated WorkArea or
Dashboard from the Oracle Fusion Applications Functional Core
(ASK) deployment tables. These tables are populated at
deployment time through Functional Setup Manager tasks.

■ Because the Navigate API is based on URL redirect, only string
representations of the parameter values can be passed to the target
page. It is not possible to pass an object as a parameter value. For
example, a Java map cannot be passed as a parameter.

■ When navigating using this API, the ADF Controller state of the
source page is not cleaned up.

Warning of Pending Changes in the UI Shell

Implementing Additional Functions in the UI Shell 15-7

15.2 Warning of Pending Changes in the UI Shell
When there are pending changes in the UI Shell Main Area, and the user is leaving the
page, or is refreshing the tab or task flow, or is closing the tab, the UI Shell will provide
a modal confirmation dialog to the user. If confirmed, the operation will be allowed to
proceed. Otherwise, the user will remain on the original page or tab.

Cases where pending changes are checked in the UI Shell Main Area include:

■ TaskList links in Regional Area relaunch a task flow in the Main Area (with
reuseInstance=true and either forceRefresh=true or with different parameters).

■ Closing a tab by clicking the Close icon on the tab.

■ Closing the currently focused tab by using closeMainTask.

■ Relaunching a task flow by using openMainTask (with reuseInstance=true and
either forceRefresh=true or with different parameters).

■ Relaunching a task flow using navigate (navigating within the same web
application and viewId).

■ Opening a different work area or web application using navigate.

Search Panel and Warning of Pending Changes
Search is treated as a special case and no warning for pending changes is shown when
a user enters some data in a query panel provided by the Oracle Application
Development Framework. But, from the search results page, drilling down to a sub
flow and making the flow dirty marks the sub flow as a candidate for warn about
changes.

15.2.1 How to Implement Warning of Pending Changes
To implement warning of pending changes, developers need to follow these steps.

■ All the main taskflows that render in MainArea should have the
data-control-scope set to isolated.

<data-control-scope id="dc">
 <isolated/>
</data-control-scope>

■ Make changes to the Main Area.

Note that inner taskflows and regions inside the main flow can have the
data-control-scope set to shared.

Other than tasklist, if developers are using Data Control APIs, such as
openMainTask, closeMainTask or navigate, to relaunch or close a flow in the
MainArea, they should add the clientListener to post the changes. Adding the
clientListener on a commandButton that is bound to closeMainTask to post
pending changes before the currently focused tab/flow is closed is shown in
Example 15–3.

Example 15–3 Adding the clientListener on a commandButton

<af:commandButton actionListener="#{bindings.closeMainTask.execute}"
 text="closeMainTask- with - CL"
 disabled="false"
 id="cb1">
 <af:clientListener method="queueActionEventOnMainArea" type="action"/>
</af:commandButton>

Warning of Pending Changes in the UI Shell

15-8 Developer's Guide

When a command link/button invokes Data Control APIs programmatically,
developers should add a client listener on the command link/button, as shown in
Example 15–4.

Example 15–4 Adding a client listener when a command link/button invokes Data
Control APIs programmatically

<af:commandButton text="Calling datacontrol api programmatically"
 binding="#{backingBeanScope.backing_Navigateviaprogramatically.cb1}"
 id="cb1" action="go">
 <af:clientListener method="queueActionEventOnMainArea" type="action"/>
</af:commandButton>

In addition to adding the clientListener, when Data Control APIs are executed
from within the MainArea, developers must add the methodAction shown in
Example 15–5 to their main page fragment's pageDef whose taskflow is attached
to the tab in MainArea.

Example 15–5 Adding the checkDataDirty methodAction

<methodAction id="checkDataDirty"
 InstanceName="FndUIShellController.dataProvider"
 DataControl="FndUIShellController" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="checkDataDirty"
 IsViewObjectMethod="false"
 ReturnName="FndUIShellController.methodResults.checkDataDirty_
FndUIShellController_dataProvider_checkDataDirty_result"/>

The Data Control API shown in Example 15–5 lets you check for data dirty from
within the child region and identify any pending changes in the child region.

After adding above API to the main page fragment's pageDef, developers should
let the UI Shell know about that by sending the parameter
"fndCheckDataDirty=true" in the parametersList or navTaskParametersList.

15.2.2 How to Suppress Warning of Pending Changes
Developers can suppress warning of pending changes for a particular flow by sending
the parameter "fndWarnChanges=false" to the parametersList or
navTaskParametersList, as shown in Example 15–6.

Example 15–6 Suppressing warning of pending changes for a flow

<methodAction id="openMainTask" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="openMainTask"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName="FndUIShellController.methodResults.openMainTask_
FndUIShellController_dataProvider_openMainTask_result">
 <NamedData NDName="taskFlowId"
NDValue="/WEB-INF/task-flow-definition.xml#task-flow-definition"
NDType="java.lang.String"/>
 <NamedData NDName="keyList" NDType="java.lang.String"/>
 <NamedData NDName="parametersList" NDValue="fndWarnChanges=false"
NDType="java.lang.String"/>
 <NamedData NDName="label" NDValue="Suppress Warn About Msg"
NDType="java.lang.String"/>
 <NamedData NDName="reuseInstance" NDValue="true" NDType="java.lang.Boolean"/>
 <NamedData NDName="forceRefresh" NDValue="true" NDType="java.lang.Boolean"/>

Implementing the Oracle Fusion Home Page UI

Implementing Additional Functions in the UI Shell 15-9

 <NamedData NDName="loadDependentFlow" NDType="java.lang.Boolean"/>
 <NamedData NDName="methodParameters"
 NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.bean.FndMethodParameters"/>
</methodAction>

15.3 Implementing the Oracle Fusion Home Page UI
The Oracle Fusion Home Page UI consists of a series of JSPX pages, each of which
provides product- or role-specific content, that are visually tied together using a
tabbed navigation interface.

Terms
Home page: any one of these JSPX pages.

Oracle Fusion Home: the overall Oracle Fusion Home Page UI.

15.3.1 Supported Behavior
The following key requirements are supported by the Oracle Fusion UI Shell:

■ To conform to Oracle Fusion Applications modularity requirements, the Oracle
Fusion Home provides a common entry point across multiple Java EE web
applications. A given home page can be hosted on any one of these distinct Java
EE web applications. A tab click on a given home page therefore must issue a
request for another home page that may be hosted on a different web app. When
the new page is displayed, its tab must be visually selected.

■ Each home page should display content that includes navigation means to
resources that may be hosted on a different web application. For example, a
command navigation link on a home page may target a bounded task flow located
on a different web application and designed to run on a Workarea or Dashboard
page located on that web application.

■ A given home page may include content from a bounded task flow (presumably
displayed within an ADF region or portlet) that has command navigation links
within its view activities. These links or other navigation means must work
correctly on the home page. For example, on click, navigate to the correct
Workarea page and launch the intended task flow.

■ The Home link in the Global Area will be disabled on all home pages.

■ By default, the Home link will go to the Welcome tab and, if a different tab is
selected, the Home link will go back to the last tab that was selected for that
session. If, however, the user navigates to any Oracle Fusion page through a direct
URL navigation, such as an email that contains a link to a Workarea, the Home
link will again return to the Welcome tab. By default, the Welcome tab will be the
first itemNode defined.

■ A home page will display the same layout and content in the Global Area and for
the page footer as other pages that extend the UI Shell page template. Unlike a
Workarea page, however, the intervening content and its layout between the
Global (top) and footer (bottom) sections of the page will be determined and
provided by product teams.

15.3.2 How to Create a Home Page
To create a home page, follow these basic steps.

1. Create a JSPX page that extends UIShell.jspx.

Using the Single Object Context Workarea

15-10 Developer's Guide

2. From the JSPX page, select the <af:pageTemplate> tag. On the property inspector,
set the isHomePage attribute to true. Note that when isHomePage is set to true, the
Regional, Local and Contextual Areas of the UI Shell will not be rendered.

3. Add content to the HomePageContent facet, following the ADF Layout Basics
guideline for laying out the components.

4. Drop the JSPX to adfc-config.xml.

5. Repeat Steps1 through 4 for all home page JSPX pages.

6. Create the Home Page menu. See Section 13.5, "Working with the Global Menu
Model."

7. When running a home page JSPX, the page should look similar to Figure 15–3.

Figure 15–3 Home Page Example

15.3.3 Getting the URL
There are two APIs located in the UIShellContext class that you can use to return a
URL without actually performing the navigation to the URL:

■ getURL: getURL is the same as a navigate call, but it returns the URL as a string
instead of doing the navigation. See Example 15–7.

Example 15–7 Example Use of getURL

public java.lang.String getURL(java.lang.String viewId,
 java.lang.String webApp,
 java.lang.String pageParametersList,
 java.lang.String navTaskFlowId,
 java.lang.String navTaskKeyList,
 java.lang.String navTaskParametersList,
 java.lang.String navTaskLabel,
FndMethodParameters methodParameters)
throws java.io.IOException

■ getURLForCurrentTask: getURLForCurrentTask, shown in Example 15–8, is good
for getting the URL of the Main Area flow in focus so you could send it in an email
to someone else. When clicked, it would open the correct workarea (.jspx page)
and the correct flow with the correct parameters. If you did have other dynamic
tabs open when you called getURLForCurrentTask, it would not open those when
clicked.

Example 15–8 Example Use of getURLForCurrentTask

public java.lang.String getURLForCurrentTask()
throws java.io.IOException

15.4 Using the Single Object Context Workarea
The Single Object Context Workarea is a facet that defines an area between the Global
Area and the Main and Regional areas into which developers can add what they want.

Using the Single Object Context Workarea

Implementing Additional Functions in the UI Shell 15-11

If the facet is empty, the area does not appear. You also can create a view scope
parameter so other flows on the page can get the context. See Figure 15–4.

Figure 15–4 Context Area Example

This area is useful for creating Single Object Workareas, which are particularly useful
in tabbed page mode. A Single Object Workarea is a page that is devoted to one object
so the information of that one object can be put above the Workarea.

Single Object Workareas provide a context for addressing the tasks and processes for
the business process of a single complex object instance at a time. Usually, single object
workareas will use multiple defaultMain flows. Each flow can be about a different
aspect of the same object. For instance, you could have one tab showing recent activity,
and another tab showing payments.

15.4.1 Implementation Notes
The SingleObjectContextArea facet has been added to the UI Shell template for
Context Area task flow.

A managed bean entry, shown in Example 15–9, has been added to adfc-config.xml for
viewScope Hashmap.

Example 15–9 Managed Bean viewScope Hashmap Entry in adfc-config.xml

<managed-bean>
 <managed-bean-name>fndPageParams</managed-bean-name>
 <managed-bean-class>java.util.HashMap</managed-bean-class>
 <managed-bean-scope>view</managed-bean-scope>
 </managed-bean>

Support for URL parameters defined in the view activity for the page (JSPX) in
adfc-config is to be set in the fndPageParams Hashmap defined in viewScope. This
Hashmap is also passed onto the pageFlowScope of the task flows in the context area,
Regional Area and Main Area.

Using the Single Object Context Workarea

15-12 Developer's Guide

This is accomplished by enabling the Bookmarkable property on the view activity for
the page and specifying the URL parameter names with the value set to be added to
the fndPageParams Hashmap defined in viewScope. See the "How to Create a
Bookmarkable View Activity" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

Product team task flows running in the Single Object Context Workarea must be
designed to take in the appropriate context values as input parameters. The
pageFlowScope values must be passed to the appropriate input parameters through
the parametersList for the item node in the menu or the openMainTask API.

Product teams can cause URL navigation (using the navigate data control method
provided by UI Shell by passing required parameters in the pageParametersList) for
changing context or updating context information. This will cause the entire page to be
refreshed based on new context parameter values.

Product teams can also check for the input parameter values (the context) within the
context area task flow. If invalid, a modal dialog can be launched for the end user to
choose a context (rendered as links based on the navigate data control method
provided by UI Shell) before proceeding.

15.4.1.1 Developer Implementation
Enable the Bookmarkable property on the view activity for the single object context
page and specify the URL parameter names with the corresponding fndPageParams
viewScope Hashmap key where the value should be stored. See the "How to Create a
Bookmarkable View Activity" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

Example 15–10 shows a sample entry in adfc-config.xml for such a view activity.

Example 15–10 Sample Entry in adfc-config.xml for a View Activity

<view id="SingleDeptContextPage">
 <page>/oracle/apps/empdeptdemo/ui/page/SingleDeptContextPage.jspx</page>
 <bookmark>
 <url-parameter>
 <name>Deptno</name>
 <value>#{viewScope.fndPageParams.Deptno}</value>
 </url-parameter>
 </bookmark>
</view>

Product teams must create a bounded task flow for the Context Area that appears at
the top of the page. This task flow must accept the context values as input parameters.
This task flow is dropped as a static region onto the Context Area facet in the JSPX
page based on the UI Shell template. In the task flow binding, set the input parameter
values to the corresponding key in fndPageParms viewScope Hashmap.

Example 15–11 shows a sample entry in the page definition for the JSPX file for
passing the viewScope values into the Context Area task flow as input parameter.

Example 15–11 Sample Page Definition for Passing viewScope Values into Context Area
Task Flow

<taskFlow id="ContextDeptSummary1"

taskFlowId="/WEB-INF/oracle/apps/empdeptdemo/ui/flow/ContextDeptSummary.xml#Contex
tDeptSummary"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">

Implementing the Third-Party Component Area

Implementing Additional Functions in the UI Shell 15-13

 <parameters>
 <parameter id="Deptno" value="#{viewScope.fndPageParams['Deptno']}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>

The UI Shell code passes this viewScope Hashmap onto the pageFlowScope of the Main
Area and Regional Area task flows. Product team task flows, which are initialized in
the Regional Area and Main Area, can access this in pageFlowScope (of a Main Area or
Regional Area container task flow owned by Applications Core) for the appropriate
input parameters through the menu model and openMainTask API.

Example 15–12 shows a sample entry for a child item node for defaultMain task in the
menu.xml to pass the appropriate deptno in the single object context to a task flow that
is initialized based on this input value.

Example 15–12 Sample Child Item Node for defaultMain Task

<itemNode id="SingleDeptContextPage_EmpListingDefaultTab"
 focusViewId="/SingleDeptContextPage"
 label="#{adfBundle['oracle.apps.empdeptdemo.ui.test_
menuBundle'].EMPLOYEE_LISTING}"
 taskType="defaultMain" reuseInstance="false"

taskFlowId="/WEB-INF/oracle/apps/empdeptdemo/ui/flow/ContainerTF.xml#ContainerTF"
 parametersList="Deptno=#{pageFlowScope.fndPageParams['Deptno']}"/>

Product teams can cause URL navigation (through the navigate data control method
provided by UI Shell) for changing context or after updating context information. This
will cause the entire page to be refreshed based on new context parameter values.

Product teams can also check for the input parameter values within the
pageFlowScope of the context area task flow. If invalid, a modal dialog can be
launched for the end user to choose a context (by providing links based on the
navigate data control method provided by the UI Shell by passing required parameters
in the pageParametersList) before proceeding. This can be achieved by defining an
invoke action executable in the page def for the context area page fragment which
checks for existence of the pageFlowScope value and programmatically shows a modal
dialog for the user to choose the context. The other alternative is to use this approach
to cause navigation to a completely different page where the user can select the
context.

Also, it is important to note that all the bounded task flows that will be initialized in
the Single Object Context Workarea need to check for input parameter values and
show/query data ONLY if the input parameter values are passed. Basically, if the
input parameter values are empty, the task flows handle that, such as in a router
activity, and avoid showing any transaction data to the end user.

15.5 Implementing the Third-Party Component Area
The Third-Party Component Area, shown in Figure 15–5, is a facet in the UI Shell
template for showing content just above the Single Context Workarea in the global
area. Although originally designed to contain a Call Telephony Interface (CTI)
showing incoming calls in a call center operation, the facet can contain anything.

Developing an Activity Guide Client Application with the UI Shell

15-14 Developer's Guide

Figure 15–5 Third Party Component Area Facet Containing A CTI

15.5.1 How to Implement the ThirdPartyComponentArea Facet Developer
The ThirdPartyComponentArea facet should be added within a flexible layout
component that will allow you to control the amount of screen real estate that the
content added to the facet can consume.

■ A facet reference is under the global area content with its width set to 100 percent.

■ Add content to this facet.

■ You should create a bounded task flow with page fragment for the content and
drop it into this facet as a static region. This supports personalization through web
composer since the content is within a page template.

■ The height property of the panelStretchLayout in the UI Shell template defaults
to 33 px. To view or enable the third party component area (see the dark blue area
at the top of Figure 13–1), specify the globalAreaHeight property as auto in the
pageTemplate property Inspector.

When the height of the top facet is specified as a CSS length or as auto, this facet
will no longer be stretched and instead will consume the initial offsetHeight
given to its children by the browser. It is important to note that in an average page,
a switch to a layout using automatic heights exhibited a 5- to 10-percent
degradation in initial layout speed. Also, an automatic height will cause the facet
child to not be stretched both vertically and horizontally.

■ You can set the height of the root layout component within the facet to auto to
ensure auto-resizing of contents within the facet. Consider a showDetailHeader
that is the root element within the facet (in the default view activity for the
bounded task flow dropped in as a region). If the height property for this
showDetailHeader component is set to auto, collapsing the header would resize
the contents and open more real estate in the screen for showing other components
in the page.

15.6 Developing an Activity Guide Client Application with the UI Shell
The Oracle UI Shell can be used to develop an Activity Guide client application.

Before you begin:
Copy the file oracle.bpm.activityguide-ui_11.1.1.jar to a local directory from the
following location in the bpm-jdev-extension.zip file:

jdev_install/jdeveloper/soa/modules/oracle.bpm.activityguide-ui_11.1.1.jar

To develop an activity guide client application using Oracle UI Shell:
1. Create a new application. In the Application Package Prefix field, enter oracle.ag.

Developing an Activity Guide Client Application with the UI Shell

Implementing Additional Functions in the UI Shell 15-15

Figure 15–6 Filling-in the Application Package Prefix Field

When prompted to create a new project, click Cancel.

2. In the new application, create a new project using the Web Project template by
right-clicking the application and selecting New Project > Project > Web Project.
Select Servlet 2.5/JSP 2.1 (Java EE 1.5). Click through the wizard, accepting all
default values.

3. Add the ADF Faces and ADF Page Flow technologies to the client application
project. Right-click the project and select Project Properties > Technology Scope.
Shuttle ADF Faces and ADF Page Flow from the Available Technologies list to the
Selected Technologies list.

Make sure the following technologies are also selected: HTML, Java, JSP and JSF
and Servlets.

Developing an Activity Guide Client Application with the UI Shell

15-16 Developer's Guide

Figure 15–7 Adding the ADF Faces and ADF Page Flow Technologies to the Client
Application

4. Right-click the client application and select Project Properties > JSP Tag Libraries.
Select the Distributed Libraries folder and click Add. In the Choose Tag Libraries
window, select the tag library Applications Core (ViewController) 11.1.1.0.0 and
click OK.

Figure 15–8 Select the Tag Library Applications Core (ViewController) 11.1.1.00

Developing an Activity Guide Client Application with the UI Shell

Implementing Additional Functions in the UI Shell 15-17

5. In the Project Properties window, select Libraries and Classpath and click the Add
Library button. From the window that is displayed, select the Applications Core
library and click OK.

Figure 15–9 Add the Applications Core Library to the Project

6. In the Project Properties window, click the Add JAR/Directory button and browse
for the file oracle.bpm.activityguide-ui_11.1.1.jar. The file is located under
jdev_install/jdeveloper/soa/modules/oracle.bpm.activityguide-ui_
11.1.1.jar.

Click Select to add the JAR to the project classpath.

7. Add Activity Guide runtime libraries or JAR files to the classpath. Use either
shared libraries or JAR files; do not use both.

a. Using shared libraries for Activity Guide runtime JAR files

Add the shared library references oracle.soa.bpel and oracle.soa.workflow.wc
to the weblogic-application.xml file.

<library-ref>
 <library-name>oracle.soa.bpel</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.soa.workflow.wc</library-name>
</library-ref>

b. Using JAR files for Activity Guide runtime

Add the following JAR files to the classpath:

FMW_home/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar
FMW_home/AS11gR1SOA/soa/modules/oracle.soa.bpel_11.1.1/orabpel-common.jar
FMW_home/AS11gR1SOA/soa/modules/oracle.soa.bpel_11.1.1/orabpel.jar
FMW_home/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
FMW_home/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/fabric-runtime.jar
FMW_home/oracle_common/modules/oracle.webservices_11.1.1/wsclient.jar
FMW_home/oracle_common/modules/oracle.xdk_11.1.1/xml.jar

Developing an Activity Guide Client Application with the UI Shell

15-18 Developer's Guide

8. Create a file called Config.jar using the wf_client_config.xml file and add it to
the application classpath. The wf_client_config.xml file should include the host
name and port of the WLS instance running the Activity Guide instances.

9. Create a JSF page. Right-click the application name and click New. In the New
Gallery, select JSF > JSF Page and click OK. Use UIShell as a page template and
select the checkbox Create as XML Document (*.jspx).

If a dialog box displays the message "Confirm Add Form Element," click No.

10. Create Application menu metadata. See Section 13.3, "Implementing Application
Menu Security.".

To add a task flow to the Oracle UI Shell client application:
1. Open the menu metadata menu XML file created in "To develop an activity guide

client application using Oracle UI Shell:".

2. Right-click itemNode_<JSF page name> and select Insert inside itemNode_<JSF
page name> > itemNode.

3. In the Common Properties window, browse for the name of the JSF page and enter
a unique ID for the itemNode using the standard format <pageID>_
<taskFlowName>. For example: ItemNode_MainArea_TaskFlow.

4. Click the Browse button to the right of the focusViewId field. In the Edit Property
window that is displayed, select the focusViewId of the page under which you are
registering the task flow. Click OK.

5. In the Property Inspector, select the Applications tab and enter a label for the
itemNode such as Main Taskflow.

6. From the Project Navigator, select the menu metadata XML file. In the Structure
view, select the task flow itemNode – Main Taskflow. In the Property Inspector,
enter the following values under the Advanced section:

■ Task Type: defaultMain

■ Task Flow ID: Click the Browse button to display the Select Task Flow ID
window and select the location of the task flow definition:
/WEB-INF/oracle/bpel/activityguide/ui/taskflows/ag-humantask-task-f
low.xml#ag-humantask-task-flow. This is the ID of the Main Area task flow.

■ Disclosed: Optionally, set this value to false. This property enables opening a
new tab when clicking the relevant task link at run time. For tabs, the first
defaultMain with disclosed=true is the one that will be in focus.

7. Repeat Steps 1 through 6 for the regional task flow, naming the label and ID
accordingly. Provide the following values for the regional task flow in step 6:

■ Task Type: defaultRegional

■ Task Flow ID: Click the Browse button to display the Select Task Flow ID
window and select the location of the task flow definition:
'/WEB-INF/oracle/bpel/activityguide/ui/taskflows/ag-tasktree-task-f
low.xml#ag-tasktree-task-flow. This is the ID of the Regional Area task
flow.

■ Disclosed: Set this value to true for the regional task flow. This property
enables opening a new tab when clicking the relevant task link at run time.

8. Create a file called activityguide.properties. See the table of Activity Guide
properties, and the sample properties file, in the "Developing a Guided Business

Developing an Activity Guide Client Application with the UI Shell

Implementing Additional Functions in the UI Shell 15-19

Process Client Application with Oracle ADF" section of Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management.

If using identity propagation to secure the Activity Guide, the properties
WorkflowAdminUser and WorkflowAdminPassword are not required.

9. In the page definition of Oracle UI Shell JSF fragment page, navigate to
pageTemplateBinding and set the Refresh property to ifNeeded.

10. Open the file adfc-config.xml.

11. Edit the file adfc-config.xml to include the location of the activity.properties
file. This should be the absolute path to the activityguide.properties file.

An example adfc-config.xml is shown in Example 15–13.

Example 15–13 adfc-config.xml File with Reference to activityguide.properties
File

<managed-bean>
<managed-bean-name>agProps</managed-bean-name>
<managed-bean-class>
 oracle.bpel.activityguide.ui.beans.model.AGProperties
</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>
<property-name>absAgPropsFileName</property-name>
<property-class>java.lang.String</property-class>
<value> <!---absolute path on your machine should be given
here-->/activityguide.properties</value>
 <!-- For example:
 Windows: C:\AG\activityguide.properties
 Linux: /scratch/<user>/AG/activityguide.properties
 -->
</managed-property>
</managed-bean>

12. To enable a task flow popup with summary information, add the property
AGTasksPopupTaskFlowID to the activityguide.properties file.

Use this parameter to display a task flow summary in dynamic regions. Enter the
relevant task flow ID. If this parameter is not set, the value of OutputText is shown
as the default task summary.

13. Create a Workflow Service client configuration file. An example is shown in
Example 15–14.

Example 15–14 Workflow Services Client Configuration File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
xmlns="http://xmlns.oracle.com/bpel/services/client">
 <server default="true" name="default">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 t3://host:port

<initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactor
y>
 <participateInClientTransaction>false</participateInClientTransaction>

Troubleshooting UI Shell Issues

15-20 Developer's Guide

 </remoteClient>
 <soapClient>
 http://host:port
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

14. Deploy the Acitivity Guide client application with Oracle UI Shell as described in
"To deploy an Activity Guide client application with Oracle UI Shell to the
integrated Oracle WebLogic Server:" or in "To deploy an Activity Guide client
application with Oracle UI Shell to a standalone Oracle WebLogic Server:".

To secure the Activity Guide Oracle UI Shell client application:
Securing the Activity Guide client application ensures that only users with proper
credentials can complete the tasks outlined in the Activity Guide. Security features
include authentication, authorization, realm verification and policy enforcement.

Follow the instructions for securing a Web application as described in the "Enabling
ADF Security in an Oracle Fusion Web Application" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

To deploy an Activity Guide client application with Oracle UI Shell to the
integrated Oracle WebLogic Server:
You can deploy an Activity Guide client application with Oracle UI Shell directly from
JDeveloper or to the standalone Oracle WebLogic Server.

From the Application Navigator, right-click the JSF page created in "To develop an
activity guide client application using Oracle UI Shell:" and select Run.

To deploy an Activity Guide client application with Oracle UI Shell to a
standalone Oracle WebLogic Server:
1. Create a connection to the standalone Oracle WebLogic Server.

2. From the Application Navigator, right-click the project created in step 2 of "To
develop an activity guide client application using Oracle UI Shell:"

3. Select Project Properties.

From the Project Properties dialog, select Deployment.

4. Create a new WAR deployment profile.

5. Right-click the project and select Deploy. Deploy the project to the standalone
Oracle WebLogic Server connection created in step 1.

6. Launch the client page from a browser.

15.7 Troubleshooting UI Shell Issues
This section presents the more-common problems, with their solutions, that may be
experienced by Oracle Fusion applications developers. Also see the Oracle Fusion

Troubleshooting UI Shell Issues

Implementing Additional Functions in the UI Shell 15-21

Applications Administrator's Troubleshooting Guide and "Troubleshooting
Customizations" in the Oracle Fusion Applications Extensibility Guide.

15.7.1 ApplSession Is Not Created

Problem
When ApplSession is not created, these problems occur:

■ User Language settings are not set.

■ Data security policies are not applied.

■ Webservice requests are run as anonymous users instead of named users.

Solution
To resolve this problem:

■ Check that the JpsFilter section is correct in web.xml: Applcore Session code
depends on the JPS subject. The entry must appear exactly as shown in
Example 15–15.

■ Check that the ApplSessionFilter section is correct in web.xml: ApplSession must
be configured immediately after JpsFilter. The entry must appear exactly as shown
in Example 15–15.

Example 15–15 ApplSessionFilter and JpsFilter Configuration in web.xml

<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>ApplSessionFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

■ If the issue is with the ApplSession not being created over a web service request
using SOA, check how the ApplSession context interceptor is configured.

ApplSession information is preserved over SOA/Web Service requests through
the use of context interceptors that fire when requests are sent and received. The
ApplSessionContext interceptor, in particular, will handle propagating all session
attributes from the caller to the web service, and will even attempt to reuse the
same session ID if running against the same database. To enable the context
interceptor, the weblogic-application.xml on both the caller and the called should
include the oracle.applcore.config shared library:

<library-ref>
 <library-name>
 oracle.applcore.config
 </library-name>
 </library-ref>

Troubleshooting UI Shell Issues

15-22 Developer's Guide

If the context interceptor has not been enabled, the prepareSession() of the root
application module call should still be able to create the session as the right user,
so long as the Subject has been established correctly in the Oracle Web Services
Manager layer. But in that case, no other session attributes will be propagated, and
the session cannot be reused.

■ Obtain the session ID from the cookie. The cookie is located in the browser's
cookies folder.

The session cookie is obtained so that subsequent queries can be run to verify the
session's existence and obtain additional info about the session. Note that it is the
session cookie that is stored in the browser cookie location, not the session ID.
They represent the same session, but the actual session ID is internal.

Cookie name: ORA_FND_SESSION_<db_instance_name>

The session cookie value will appear similar to: DEFAULT_
PILLAR:wvlu8CUiH4FYjySCPQtwaEphBOyiUTZwexYd1fYXh5VwV9i9koUL8L3Qhm0bNrZ8
:1282160020177

To retrieve the actual session id, run this SQL statement: select session_id from
fnd_sessions where session_cookie=value_obtained_from_cookie_value.

Note: The value_obtained_from_cookie_value is the alpha-numeric string
between the two colons. In the example, it is
wvlu8CUiH4FYjySCPQtwaEphBOyiUTZwexYd1fYXh5VwV9i9koUL8L3Qhm0bNrZ8. This
value will always be different.

15.7.2 Navigator Shows a Little White Box

Problem
Clicking the Navigator in the global area shows a little white box.

This is an issue that developers would see.

Solution when in a production environment
■ Make sure that you are signed in as a user that has access to some pages in the

Navigator menu. You can type the full URL of the page directly into the browser
and see if the user can access it.

■ Make sure there is a valid connection to the LDAP server. This is needed to check
the policies of each entry in the Navigator menu.

■ Use Enterprise Manager to make sure the Applications are registered in the
topology tables.

■ Make sure the Applications Core Setup application is deployed. (From JDeveloper,
run .../atgpf/applcore/applications/FndSetup/FndSetup.jws.) This contains the
Navigator menu file and usually is deployed to the Oracle Fusion Applications
Global domain.

■ Check that the menus are in MDS. Check for entries with the path
oracle/apps/menu.

Solution when in a development environment
■ You usually should run without menu security. The first thing to check is if you

have started your web server with this parameter to turn off security checking:

-DAPPLCORE_TEST_SECURED_MENU=N

Troubleshooting UI Shell Issues

Implementing Additional Functions in the UI Shell 15-23

■ Then check steps 3 through 5 in the solution for a production environment.

15.7.3 Navigator Shows Unfiltered Entries

Problem
The Navigator menu is showing all entries, rather than being filtered by what the user
has access to, and the Welcome page has all tabs exposed.

Solution
This is caused by menu security being turned off. This should happen only in
development environments.

Because menu security is on by default, check that the web server was not started with
-DAPPLCORE_TEST_SECURED_MENU=N.

15.7.4 Other Navigation Issues

Problem
Customizers and developers may encounter a URL that is not working.

Solution
Make sure the URL does not end with ".jspx."

Problem
A message such as "webApp <value> not defined" is displayed. This means the
application is not listed in the topology tables.

Solution
Check that the application is registered.

Troubleshooting UI Shell Issues

15-24 Developer's Guide

16

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-1

16Implementing UIs in JDeveloper with
Application Tables, Trees and Tree Tables

This chapter discusses the Applications Tables, Trees and Tree Tables components used
to implement user interface features in JDeveloper.

This chapter includes the following sections:

■ Section 16.1, "Implementing Applications Tables"

■ Section 16.2, "Implementing the Applications Tree"

■ Section 16.3, "Implementing Applications Tree Tables"

■ Section 16.4, "Using the Custom Wizard with Applications Popups"

For basic information, see:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 13, "Implementing the UI Shell"

■ Chapter 17, "Implementing Applications Panels, Master-Detail, Hover, and Dialog
Details"

16.1 Implementing Applications Tables
Applications tables are UI components that already contain an Oracle ADF table, a
menu bar, a toolbar, and related popups. Developers do not need to create and
assemble all these components separately.

Tables include the following:

■ Table toolbars with default buttons

■ Elements, such as an ADF table and custom toolbar buttons

■ Default table actions

■ Create actions, such as Create Inline and Create a Duplicate.

■ Edit actions, such as Table Row Edit (Dialog Window) and Table Row Edit (Page)

You must use Applications tables to standardize layout and appearance consistency
for all your page tables, including read-only pages. Once you create an Applications
table, you can add table components that allow users to select the table's contents.

Before you begin:
Before you can use Applications tables, you must be familiar with JDeveloper and be
able to create JSF pages.

Implementing Applications Tables

16-2 Developer's Guide

16.1.1 Understanding Applications Tables Facets and Properties
Each table has properties and facets. Properties include table qualities, such as the
unique identification number and the type of pattern exposed in the table. Facets are
locations for table data, such as locations where you can add toolbars or menu bars.
This section describes Applications table properties and facets.

Table 16–1 describes Applications table facets and facet contents.

Note: Any buttons or menu items added in a facet render with a
separator because adding more than one component to a facet requires
having <af:group> around the element. By default, having a group
component introduces a separator as an ADF rule.

Table 16–1 Applications Table Facets

Facet Name Description Values

table Holds ADF table. ADF Table

additionalToolbar
Buttons

Holds toolbar buttons. ADF command toolbar buttons under an ADF
toolbar

additionalActionI
tems

Holds menu items to be added to
default Action pulldown menu
items.

ADF menu item component

appsTableSecondar
yToolbar

Facet for adding more
commandToolbar button
components to secondary toolbar.
(Adds more icons.)

Icons usually perform the same
actions as menus, but you put the
most common as icons so you do not
need to pull down the menu.

ADF Command Toolbar Buttons

appsTableStatusba
r

Holds components that contain
status bar items. These status bar
items are merged with standard
items provided by the
panelCollection property.

ADF menu item component

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-3

Table 16–2 describes Applications table properties (including properties that are part
of the default managed bean), their allowable values, and default actions.

appsTableViewMenu Holds menu items to be added to
default View pulldown menu items
of the panelCollection. To add
multiple menu items to the view
menu, add af:group components
containing af:menuItems.

ADF menu item component

appsTableAfterToo
lbar

Facet for adding more
commandToolbar button
components after toolbar. In this
facet, any toolbar buttons added
appear in a separate row below the
normal group of toolbars.

af:toolbar or af:groups of af:toolbars

popup Holds popups. See Section 16.4,
"Using the Custom Wizard with
Applications Popups."

Important: When a popup is used to
create or duplicate a row in an
Applications Table, you need to
write your own logic behind the
popup's Cancel button
(Action/ActionListener) to remove
the newly-created row.

This can be done by either:

■ A managed bean method that
removes the newly-created row.

■ Setting the Cancel button's
Action property to the rollback
method defined in the pageDef
file. This method would be
defined in the pageDef file if the
"rollback" from the operations of
the dataControl is dragged and
dropped onto the page.

Popups under a layout component.

Table 16–2 Applications Table Properties

Property Description Values

id Unique identification number for
this applications table.

string

rendered Whether the applications table is
rendered (that is, converted from an
object-based description into a
graphical image for display).

boolean expression

tableId Unique identification number of the
underlying ADF table corresponding
to this applications table.

string

Table 16–1 (Cont.) Applications Table Facets

Facet Name Description Values

Implementing Applications Tables

16-4 Developer's Guide

createPatternType Whether a Create pattern is enabled
and, if so, which pattern.

User action: Click Create.

<default>, inline, secondaryWindow, page

<default>: No rows are created. You might choose
this value if your table is read-only.

inline: New row is created at the top of the current
table. If you choose this value, the
createpartialTriggers property on the ADF table is
set automatically.

secondaryWindow: Popup is displayed, allowing
users to enter values into a new table row. The new
row is added to the top of the table. If you choose
this value, you must also set the corresponding
Create Popup Id.

In addition, you must create the popup UI that
shows input fields.

page: An ADFc Controller outcome is returned such
that navigation to the next view activity occurs.

editPatternType Whether an Edit pattern is enabled
and, if so, which pattern.

User action: Click Edit.

<default>, secondaryWindow, page

<default>: No rows become editable. You might
choose this value if your table is read-only.

secondaryWindow: Popup is displayed, allowing
users to edit values in the currently selected table
row. If you choose this value, you must also set the
corresponding Edit Popup Id.

page: A standard outcome is returned. In this case,
users can edit the values in the currently selected
table row.

duplicatePatternT
ype

Whether a Duplicate pattern is
enabled and, if so, which pattern.

This pattern lets you create an object
by duplicating an existing object. The
duplication helps you by pre-filling
some values. You have full control
and can change any of the values
during the creation process.

User action: Click Duplicate.

<default>, inline, secondaryWindow, page

<default>: No rows are duplicated.

inline: Selected row is duplicated. If you choose this
value, you must also set the partialTriggers property
on the ADF table to:

<Applications_Table_Id>:duplicate

secondaryWindow: Popup is displayed, allowing
users to duplicate the currently selected table row
but not its contents. If you choose this value, you
must also set the Duplicate Popup Id.

page: Currently selected row is duplicated, but not
the values it contains.

If the applications table is part of an applications
panel, set the partialTriggers property on the ADF
table to:

<Applications_Panel_Id>:<Applications_Table_
Id>:duplicate

deleteEnabled Whether a Delete pattern is enabled.

User action: Click Delete.

boolean

Selected row is deleted.

createActionListe
ner

Action binding for the Create button. method expression

If defined, this property can be used to supplement
the default action specified by the Pattern Type
property or completely override it.

Table 16–2 (Cont.) Applications Table Properties

Property Description Values

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-5

editActionListene
r

Action binding for the Edit button. method expression

If defined, this property can be used to supplement
the default action specified by the Pattern Type
property or completely override it.

duplicateActionLi
stener

Action binding for the Duplicate
button.

method expression

If defined, this property can be used to supplement
the default action specified by the Pattern Type
property or completely override it.

deleteActionListe
ner

Action binding for the Delete button. method expression

If defined, this property can be used to supplement
the default action or completely override it.

createPopupId Id assigned to the popup to be
invoked when users click the Create
button.

string

cditPopupId Id assigned to the popup to be
invoked when users click the Edit
button.

string

duplicatePopupId Id assigned to the popup to be
invoked when users click the
Duplicate button.

string

createText Value that overrides the default label
for Create menu item. It also will be
shown as the short description for
the Create button.

expression

editText Value that overrides the default label
for Edit menu item. It also will be
shown as the short description for
the Edit button.

expression

duplicateText Value that overrides the default label
for Duplicate menu item. It also will
be shown as the short description for
the Duplicate button.

expression

deleteText Value that overrides the default label
for Delete menu item. It also will be
shown as the short description for
the Delete button.

expression

attachText Value that overrides the default label
for Attach menu item.

This attribute is deprecated.

expression

featuresOff List of default features to turn off for
the panelCollection

string

inlineStyle The CSS styles to use for the
panelCollection component inside
Applications Table component. This
is intended for basic style changes.

Note: Do not set the width using the
inlineStyle attribute on either
Applications Table or
panelStretchLayout. Applications
Table can be stretched by placing it
in the center facet of an ADF
panelStretchLayout component.

string

Table 16–2 (Cont.) Applications Table Properties

Property Description Values

Implementing Applications Tables

16-6 Developer's Guide

styleClass styleClass to use for the
panelCollection component inside
Applications Table component.

string

exportEnabled Rendered attribute for Export button
and menu item.

boolean / expression

 createImmediate Sets immediate attribute value of
"Create" toolbar button and "Create"
menu item.

boolean / expression

 deleteImmediate Sets immediate attribute value of
"Delete" toolbar button and "Delete"
menu item.

boolean / expression

duplicateImmediat
e

Sets immediate attribute value of
"Duplicate" toolbar button and
"Duplicate" menu item.

boolean / expression

editImmediate Sets immediate attribute value of
"Delete" toolbar button and "Delete"
menu item.

boolean / expression

attachImmediate Sets immediate attribute value of
"Attach" toolbar button and "Attach"
menu item.

Note: This attribute is deprecated.

boolean / expression

primaryToolbarRen
dered

Sets the rendered attribute value of
the primary toolbar. When Create,
Duplicate, Update, Delete actions,
attach, export are not turned on, the
primaryToolbarRendered should be
set to false so that an empty toolbar
will not be displayed.

boolean / expression

secondaryToolbarR
endered

Sets rendered attribute value of the
secondary toolbar. When no
af:commandToolbarButton is added
to appsTableSecondaryToolbar
facet, secondaryToolbarRendered
should be set to false so that an
empty toolbar will not be displayed.

boolean / expression

Table 16–2 (Cont.) Applications Table Properties

Property Description Values

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-7

<button_
name>PartialTrigg
ers

For example:
deletePartialTrig
gers

Partial triggers attribute for the
<button_name> toolbar button.

The partial triggers property of the
Create, Edit, Duplicate and Delete
buttons, and menu items are
exposed. Users can enable and
disable buttons according to rows
selected or other actions carried out
on the page. The same partialTrigger
attribute for each one is used both
for the commandToolbarButton and
the menu item. For example, when
the createPartialTriggers is set in the
Applications Table, the value for this
attribute is set on the partialTrigger
property of both the create command
toolbar button and create menu item.

String of IDs.

Important: The PartialTriggers attribute must be
entered manually by the developer. This is because,
at design time, the JDeveloper Property Inspector
can:

■ Select the incorrect ID.

■ Append square brackets around the selected id,
such as [id1 id2].

Example 1:

To disable the Edit, Delete and Duplicate buttons
when the table is empty, set this property on the
editDiabled, deleteDisabled or duplicateDisabled
property of the Applications Table.

#{bindings.VOiterator.estimatedRowCount == 0
? true: false} where VOiterator is your
iterator name

Example 2:

Disable any of the buttons in the Applications Table
according to the functional rules or by setting
disable=false once create is selected on an empty
table (considering these buttons were disabled
following Example 1).

To do this, create an attribute binding on the view
object attribute that will decide whether or not the
row can be deleted/edited/duplicated. For example,
you can use a binding similar to this example on the
disable property of a button:

#{bindings.MyAtttrBinding.inputValue ==
'compare value' ? true : false}

Add Partial Page Refresh (PPR) on the button to the
table ID of the af:table. This does not require any
change in the selectionListener of the table. Keep the
default one.

createAction Action binding for the Create icon. method expression

editAction Action binding for the Edit icon. method expression

duplicateAction Action binding for the Duplicate
icon.

method expression

deleteAction Action binding for the Delete icon. method expression

createEnabled Rendered attribute for create Boolean value or Expression Language expression

duplicateEnabled Rendered attribute for duplicate Boolean value or Expression Language expression

editEnabled Rendered attribute for edit Boolean value or Expression Language expression

createPartialSubm
it

PartialSubmit attribute for create Boolean value or Expression Language expression

createDisabled Disabled attribute for create Boolean value or Expression Language expression

editDisabled Disabled attribute for edit Boolean value or Expression Language expression

duplicateDisabled Disabled attribute for duplicate Boolean value or Expression Language expression

Table 16–2 (Cont.) Applications Table Properties

Property Description Values

Implementing Applications Tables

16-8 Developer's Guide

Model
The Applications Table does not expose any bindings to the model. However,
components within the Applications Table, like the ADF table, will be bound to the
model.

Controller
The Applications Table component ships a default managed bean that performs the
following functions that only work with rowSelection="single" on the ADF table:

■ Default event handlers for all toolbar button action events. Event handler
delegates to custom action method if set on the button action property.

– A new row is added into the table when the Create icon is clicked, and the
Create Pattern Type is inline.

deleteDisabled Disabled attribute for delete Boolean value or Expression Language expression

confirmDelete Set this value if you want delete
confirmation to be displayed.

The default message is The selected
record(s) will be deleted. Do you
want to continue? To change this,
use the deleteMsg attribute.

Boolean value or Expression Language expression

deleteMsg Provide a customized delete
confirmation message that can be
shown in the popup.

String value or Expression Language expression

actionsMenuRender
ed

Rendered attribute for Actions menu Boolean value or Expression Language expression

actionsContentDel
ivery

ContentDelivery attribute for
Actions menu. This attribute can take
two values.

■ lazy

■ immediate

The default value is immediate.

Setting the attribute value to lazy:

■ Provides better performance.

■ Does not allow for
enabling/disabling of the menu
items based on client actions,
such as current row selected.

String value

toggleEditRendere
d

The toggleEditRendered feature is
used to render the editAll or
clickToEdit choices for Applications
Table. See Section 16.1.2.2.3, "Toggle
Click to Edit / Edit All in
Applications Table."

Boolean. Default value is False.

Note: If you choose secondaryWindow as the pattern type for any
property, and you have set the popup Id for that button, selecting the
button invokes the popup.

Table 16–2 (Cont.) Applications Table Properties

Property Description Values

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-9

– A new row is added into the table and a popup is invoked with the
newly-created row available for inserting values (the UI for the popup to show
input fields for the new row has to be created separately by the developer),
when the Create Pattern Type is secondaryWindow.

– A new row is not added when the Create Pattern Type is Page. The developer
is responsible for wiring the navigation to the page when the icon or menu
item is clicked. Only a standard outcome is returned from the default handler.
The developer could use this default outcome to define a navigation rule.

– The selected row is made available for editing in a popup when the Edit icon
is clicked, and Edit Pattern Type is secondaryWindow.

– When the Edit icon is clicked, and Edit Pattern Type is Page, only a standard
outcome is returned.

– The Duplicate icon is handled the same way as Create. All attribute values
except the primary key values are duplicated.

– Clicking the Delete icon deletes the selected row.

■ If the secondaryWindow option is chosen for any pattern type, and the
corresponding popup Id is set for that button (mandatory), selecting the button
invokes the popup.

■ If Page is chosen for any pattern type, a standard outcome is returned on clicking
the button. Standard outcomes are create, edit, duplicate and delete for the four
respective toolbar buttons.

To allow Applications developers access to some of the implementation, the
Applications Table exposes a public class
oracle.apps.fnd.applcore.patterns.ApplicationsTableEventHandler that contains
default event handlers for all the buttons. The button methods are named as
process<buttonName>, such as processCreate and processEdit. Application
developers writing custom action handlers can also use the default implementation by
calling these methods.

Use
For example, to attach a custom button handler to the Create button, follow these
steps:

1. Define a managed bean class, as shown in Example 16–1.

Example 16–1 Defining a Managed Bean Class to Attach a Custom Handler to a Button

import oracle.apps.fnd.applcore.patterns.ui.ApplicationsTableEventHandler;
import oracle.apps.fnd.applcore.patterns.ui.util.PatternUtils;

public class CustomEventHandler
{
 public String processCreate()
 {
 // Custom code
 ...

 // Call default event handler if required. It will return a standard outcome
for this button click.
 ApplicationsTableEventHandler appTableHandler =
ApplicationsTableEventHandler.getInstance();
 String outcome = appTableHandler.processCreate();

Implementing Applications Tables

16-10 Developer's Guide

 // If popup is required to be invoked after event handling
 PatternUtils.invokePopup(popupId);

 return outcome;
 }
}

2. Register the managed bean in the faces-config of the project.

3. Bring up the Property Inspector for the Applications Table, and choose the Create
Action property. Set #{CustomEventHandler.processCreate} as the expression for
the property.

16.1.2 How to Create an Applications Table
You can create and add Applications tables to pages or page fragments. Using the
wizard will create a working table without you having to hand-code every step. Once
the table is created, you can change any parameters from the Property Inspector.

16.1.2.1 Adding Applications Tables to JSF Pages or Page Fragments
You create Applications tables in the Applications Tables wizard, which is displayed
when you add the tables to your JSF pages (or page fragments) from the Component
Palette or the Data Controls panel.

To start the Applications Table wizard from the Component Palette:
1. Open the Component Palette.

2. In the list, choose Applications.

3. In the list, click Table. JDeveloper will attempt to place the table at the current
cursor location. If the current location is not appropriate, an error message
displays. You also can drag the Table icon to the page in either the Design or the
Source view. A plus + sign will be added to the arrow when it is over a location in
which a table can be inserted.

The Applications Table wizard is displayed.

To start the Applications Table wizard using the Data First method:
1. In the Application Navigator, open the Data Control panel.

2. Navigate to the data source that you want to bind to the Applications table. The
data source must represent a rowset; that is, it must be a view object.

3. Drag and drop the data control to the JSF page.

4. In the Create context menu that is displayed, choose Applications > Table.

The Applications Table wizard is displayed.

16.1.2.2 Adding Applications Table Components Using the Applications Table
Wizard
This section explains how to use the Applications Table wizard to add components to
your table.

In the Applications Table wizard you can:

■ Bind your table to a data source

■ Create placeholder columns and define their attributes

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-11

■ Enable table ADF behaviors

■ Select table default actions

The Applications Table wizard has two dialogs. Click Cancel in either dialog to cancel
your actions and exit the wizard. Click Next to accept the defaults.

To add an Applications Table using the Applications Table wizard:
When the Applications Table wizard is launched, the Create Applications Table dialog
is displayed, as shown in Figure 16–1.

Figure 16–1 Create Applications Table Dialog

1. In the Create Applications Table dialog:

a. Select Read-only Table to prevent users from modifying the data. If you select
Read Only, the options in the Component To Use column will change from
Input to Output components.

b. Bind data to the table (optional):

– Select the Bind Data Now box to bind a data control to the table.

– In the Table Data Collection section, click Browse to choose from a list of
data sources available for binding.

This step might take a few minutes.

The Select Table Data Collection dialog is displayed, as shown in
Figure 16–2.

Implementing Applications Tables

16-12 Developer's Guide

Figure 16–2 Select Table Data Collection Dialog

– Select the data source to bind to your table and click OK.

When you bind the data, the table creates placeholder columns that can be
used for layout purposes.

c. When you choose a data source to bind to your table, these options become
available.

Row Selection

Select None to disable row selection by users.

Select Single to allow users to be able to select individual rows in the table.
This will set the rowSelection attribute to single. Selecting this option means
that instead of the UI component determining the selected row, the iterator
binding will access the iterator to determine the selected row. This is
recommended when using ADF Model data binding.

Select Multiple to allow users to be able to select multiple table rows.

Sorting

Select to allow users to be able to sort columns. Selecting this option means
that the iterator binding will access the iterator which will perform an
order-by query to determine the order. This is recommended when using ADF
Model data binding. Only keep this checkbox unselected if you do not want to
allow column sorting.

Filtering

Select to allow users to be able to filter the table based on given criteria.
Selecting this option allows the user to enter criteria in text fields above each
column. That criteria is then used to build a query-by-example search on the
collection, so that the table will display only the results returned by the query.

d. The Columns section is used to set the behavior of the table's columns.

Group

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-13

Select two or more columns then click this link to group the columns together
in the table. The selected columns will be grouped together under a parent
column.

Ungroup

Select columns that are grouped then click this link to ungroup the columns.

Display Label

By default, the label is bound to the labels property for the attribute on the
table binding. You can instead enter text or an Expression Language
expression to bind the label value to something else, for example, a key in a
resource file.

Value Binding

Shows the attribute to which the value is bound. Use the drop-down list to
choose a different attribute. If you simply want to rearrange the columns, you
should use the order buttons. If you do change the attribute binding for a
column, the label for the column also changes.

Component to Use

Shows the component used to display the value. Use the drop-down list to
choose a different component. By default, output text components are selected
for read only tables. Input text components are selected for all other tables.
Input date components are used for attributes that are dates. If you want to
use a different component, such as a command link or button, you need to use
this dialog to select the outputText component, and then in the Structure
window, replace the component with the desired UI component (such as a
command link). By default, only ADF Faces components are shown in the
menu. You can allow JSF Implementation components to also be chosen.

Add Column

Select a column name from the attributes list and click + to add the column
name to your table. Repeat this step for all your table column names.

Delete Column

Click X to delete a column name.

Sort Column Order

Click the up or down arrows to sort the order of the columns.

e. Click Continue.

The Configure Table Patterns dialog is displayed, as shown in Figure 16–3.

Implementing Applications Tables

16-14 Developer's Guide

Figure 16–3 Configure Table Patterns Dialog

2. In the Configure Table Patterns dialog, select default actions for your
Applications table (optional):

■ Create / Pattern: Creates a table row.

– Once you have chosen to enable row creation, choose a pattern from the
list to invoke an action.

– If you choose the Popup pattern, click Configure Popup to display the
Applications Popup wizard (see Section 16.4, "Using the Custom Wizard
with Applications Popups") and follow the instructions to configure the
popup associated with this pattern. See Table 16–1, " Applications Table
Facets" for important information about the popup's Cancel button.

■ Duplicate / Pattern: Duplicates the row.

– Once you have chosen to enable row duplication, choose a pattern from
the list to invoke an action.

– If you choose the Popup pattern, click Configure Popup to display the
Applications Popup wizard (see Section 16.4, "Using the Custom Wizard
with Applications Popups") and follow the instructions to configure the
popup associated with this pattern. See Table 16–1, " Applications Table
Facets" for important information about the popup's Cancel button.

■ Edit / Pattern: Enables row modification.

– Once you have chosen to enable row editing, choose a pattern from the list
to invoke an action.

– If you choose the Popup pattern, click Configure Popup to display the
Applications Popup wizard (see Section 16.4, "Using the Custom Wizard
with Applications Popups") and follow the instructions to configure the

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-15

popup associated with this pattern. See Table 16–1, " Applications Table
Facets" for important information about the popup's Cancel button.

■ Export: Export the data to a Microsoft Excel-compatible file.

■ Delete: Allows users to delete the row.

Confirm Delete: Select this option so that the default The selected record(s)
will be deleted. Do you want to continue? prompt displays in a popup when
the delete row function is used.

When you set the confirmDelete attribute to true, the confirmation popup
displays and the row is deleted when you click Yes. For this to work correctly,
the partialTriggers on the af:table inside the fnd:applicationsTable
should include ::confirm, and the ::delete and ::deleteConfirm ids must
be removed so the partialRefresh happens only when you click Yes in the
popup. Developers can choose to set the immediate property on the Yes button
by using the deleteImmediate attribute. The No button has immediate set to
true by default. See Section 16.1.2.2.1, "Manually Enabling Delete
Confirmation."

Confirmation Message: If you want to replace the default confirmation
message with a custom one, enter the string here. The string will be converted
to a text resource and added to the default resource bundle.

If you already have a confirmation message defined in a resource bundle, click
the ellipsis and choose from the list, as shown in Figure 16–4.

Figure 16–4 Selecting an Existing Delete Confirmation Message

Implementing Applications Tables

16-16 Developer's Guide

If you need to manually create or edit the Delete Confirmation parameter, see
Section 16.1.2.2.1, "Manually Enabling Delete Confirmation."

For more information on pattern types, see Table 16–2, " Applications Table
Properties".

3. Click OK to save your choices and create the Applications table, or click Cancel to
delete your choices.

4. If you click OK, the table and its components appear in the editor, as shown in
Figure 16–5.

Figure 16–5 Applications Table and Its Components in the Editor

16.1.2.2.1 Manually Enabling Delete Confirmation This section describes how to enable
Delete Confirmation, or add or edit the custom confirmation message, if you have an
existing table.

When you set the confirmDelete attribute to true, the confirmation popup displays
and the row is deleted when you click Ok. For this to work correctly, the
partialTriggers on the af:table inside the fnd:applicationsTable should include
::confirm, and the ::delete and ::deleteConfirm ids must be removed so the
partialRefresh happens only when you click Ok in the popup. Setting
deleteImmediate="true" when enabling delete confirmation sets the immediate
attribute of the Ok button in the confirmation popup to true. The Cancel button of the
delete confirmation popup has immediate set to true by default.

See Example 16–2 for sample code that shows both the delete confirmation enabled
and the custom message.

Example 16–2 Sample Code Showing Delete Confirmation and Custom Message

<fnd:applicationsTable tableId="ATt2" id="AT2" confirmDelete="true"
 deleteMsg="#{viewcontrollerBundle.ARE_YOU_SURE_YOU_WANT_TO_DELET}"
 deleteEnabled="true" createPatternType="inline"
 duplicatePatternType="inline" editPatternType="inline"
 exportEnabled="true"
 createText="#{viewcontrollerBundle.NEW}">
 <f:facet name="additionalToolbarButtons"/>
 <f:facet name="additionalActionItems"/>
 <f:facet name="appsTableSecondaryToolbar"/>
 <f:facet name="appsTableStatusbar"/>
 <f:facet name="appsTableViewMenu"/>
 <f:facet name="table">
 <af:table var="row" rowBandingInterval="0" id="ATt2"
 partialTriggers="::confirm ::create ::createMenuItem
 ::duplicate ::duplicateMenuItem">

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-17

With af:table selected in the Structure view, Figure 16–6 shows the PartialTriggers
entries in the Property Inspector view.

Figure 16–6 Delete Confirmation PartialTriggers in Property Inspector

With fnd:applicationsTable selected in the Structure view in JDeveloper, the
Property Inspector showing the custom message settings will appear similar to
Figure 16–7.

Figure 16–7 Message Settings in Property Inspector

16.1.2.2.2 Multiple Row Selection on Table If multiple row selection is enabled, editing
functions will behave as shown in Table 16–3.

Table 16–3 Function Behavior with Multiple Row Selection Enabled

Function Behavior

Delete Selecting more than one row and selecting Delete deletes all the selected rows.

Create Selecting more than one row and selecting Create will create a new row as the
first row.

Edit Selecting more than one row and selecting Edit will show an alert window
asking you to select a single row to edit.

Implementing Applications Tables

16-18 Developer's Guide

Enabling Multiple Row Selection Manually
If multiple row selection is selected in the Create Applications Table wizard (see
Figure 16–1), this step is not required.

You can not change pages created with single row selection to multiple row selection
by just changing the rowselection attribute on the ADF table inside the Applications
Table. This is because multiple row selection does not work with the selectedrowkeys
attribute. To enable multiple row selection on existing tables, set
rowselection="multiple" and remove the selectedrowkeys attribute, as shown in
Example 16–3.

Example 16–3 Example of Enabling Multiple Row Selection

<fnd:applicationstable tableid="att3" id="at3" deleteenabled="true"
 createpatterntype="inline"
 duplicatepatterntype="inline"
 editpatterntype="inline"
 createtext="#{viewcontrollerbundle.new}">
 <f:facet name="additionaltoolbarbuttons"/>
 <f:facet name="additionalactionitems"/>
 <f:facet name="table">
 <af:table value="#{bindings.gsflattable1.collectionmodel}"
 selectionListener="#{bindings.gsflattable1.collectionModel.makeCurrent}"
 var="row" rows="#{bindings.gsflattable1.rangesize}"
 emptytext="#{bindings.gsflattable1.viewable ? applcorebundle.table_empty_
text_no_rows_yet :
 applcorebundle.table_empty_text_access_denied}"
 fetchsize="#{bindings.gsflattable1.rangesize}"
 rowbandinginterval="0" id="att3"
 partialtriggers="::delete ::deletemenuitem ::create ::createmenuitem
::duplicate ::duplicatemenuitem ::selectionlistener ::selectedrowkeys"
 rowselection="multiple">

16.1.2.2.3 Toggle Click to Edit / Edit All in Applications Table The Applications Table toolbar
has an icon that can be clicked to toggle the Click to Edit and Edit All functions, and
the View Menu on the toolbar includes the same toggle feature. Figure 16–8 shows the
Edit All menu option and icon when the table is in the Click to Edit mode.

Figure 16–8 Table Edit All Menu Option and Icon

Duplicate Selecting more than one row and selecting Duplicate will show an alert
window asking you to select a single row to duplicate.

Table 16–3 (Cont.) Function Behavior with Multiple Row Selection Enabled

Function Behavior

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-19

Figure 16–9 shows the Click to Edit menu option and icon when the table is in the Edit
All mode.

Figure 16–9 Table Click to Edit Menu Option and Icon

The toggle mode should only display if the table is editable. If it contains only output
components, there should be no toggle button. This is a true/false property (see
toggleEditRendered in Table 16–2) on the Applications Table and does not happen
automatically.

16.1.3 Introduction to Selected Elements in the Table Property Inspector
When a table is added to a page, code similar to that shown in Example 16–4 is
inserted and displayed in the Source view.

Example 16–4 Sample Code Added When a Table Is Added

<fnd:applicationsTable tableId="ATt1" id="AT1" confirmDelete="true"
 deleteMsg="#{viewcontrollerBundle.DO_YOU_WANT_TO_DELETE_THIS_ROW}"
 deleteEnabled="true" createPatternType="inline"
 duplicatePatternType="secondaryWindow"
 editPatternType="inline" exportEnabled="true"
 createText="#{viewcontrollerBundle.NEW}"
 duplicatePopupId="Afp2">
 <f:facet name="additionalToolbarButtons"/>
 <f:facet name="additionalActionItems"/>
 <f:facet name="table">
 <af:table value="#{bindings.ServiceRequests1.collectionModel}"
 var="row" rows="#{bindings.ServiceRequests1.rangeSize}"
 emptyText="#{bindings.ServiceRequests1.viewable ? applcoreBundle.TABLE_
EMPTY_TEXT_NO_ROWS_YET : applcoreBundle.TABLE_EMPTY_TEXT_ACCESS_DENIED}"
 fetchSize="#{bindings.ServiceRequests1.rangeSize}"
 rowBandingInterval="0"
 selectedRowKeys="#{bindings.ServiceRequests1.collectionModel.selectedRow}"

selectionListener="#{bindings.ServiceRequests1.collectionModel.makeCurrent}"
 rowSelection="single" id="ATt1"
 partialTriggers="::confirm ::create ::createMenuItem">

Many of these settings are easily changed using the Table Property Inspector, which
contains these sub-sections: Common, Patterns, Style, Customization, and Other. This
section discusses certain selected settings.

16.1.3.1 Common Properties Section
The Common properties section of the Table Property Inspector resembles
Figure 16–10.

Implementing Applications Tables

16-20 Developer's Guide

Figure 16–10 Common Properties Section

The selected Common settings are:

■ Primary Toolbar Rendered: Set this to False if no default actions or buttons will be
used. If this is set to True and there will be no actions or buttons, the separators
around buttons will display even if no button displays.

■ Secondary Toolbar Rendered: Set this to False if no default actions or buttons will
be used. If this is set to True and there will be no actions or buttons, the separators
around buttons will display even if no button displays.

■ Actions Menu Rendered: If no default actions were selected in the wizard, set this
to False to avoid doubled separator lines.

■ ActionsContentDelivery: Sets the Content Delivery attribute on the actions menu
of the table. The options are Immediate (the default) and Lazy. Immediate
populates the action menus as soon as the page is displayed. Lazy only populates
an action menu when it is selected. There will be a slight delay the first time the
menu is selected; there will be no delay the next time the menu is selected because
the menu items are cached. You should set the ActionsContentDelivery to Lazy
when you do not have any partialTriggers set on the items in the Actions menu
because setting the value to Immediate affects the performance.

16.1.3.2 Patterns Properties
The Patterns properties section of the Table Property Inspector resembles Figure 16–11.
The properties for Create, Duplicate, Edit, and Delete are the same.

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-21

Figure 16–11 Patterns Properties Section

The selected Patterns settings are:

■ Disabled: Sets whether or not the button is disabled (shown as grayed). This does
not determine if the button is displayed; it only sets its appearance and
functionality.

■ Enabled: Sets the rendered attribute on the Create/Duplicate/Edit/Delete button
icon and menu item. If you are using the default action, a string called create (or
duplicate/edit/delete) is returned.

■ Immediate: Sets whether or not data validation - client-side or server-side - should
take place when events are generated by the button. When immediate is set to
true, the default ActionListener provided by the JavaServer Faces implementation
should be executed during the Apply Request Values phase of the request
processing lifecycle, rather than waiting until the Invoke Application phase.

■ Partial Triggers: A partial trigger affects only the selected item, rather than the
entire page. For instance, Example 16–5 sets the partialTrigger attribute value on
the Create button icon and Create menu item

Example 16–5 Example of a Partial Trigger

<af:inputComboboxListOfValues id="ledgerIdId"
 popupTitle="Search and Select: #{bindings.LedgerId.hints.label}"
 value="#{bindings.LedgerId.inputValue}"
 label="#{bindings.LedgerId.hints.label}"
 model="#{bindings.LedgerId.listOfValuesModel}"
 required="#{bindings.LedgerId.hints.mandatory}"
 columns="#{bindings.LedgerId.hints.displayWidth}"
 shortDesc="#{bindings.LedgerId.hints.tooltip}">
 <f:validator binding="#{bindings.LedgerId.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.LedgerId.format}"/>
</af:inputComboboxListOfValues>
<fnd:applicationsTable tableId="ATt1" id="AT1" deleteEnabled="true"
 createPatternType="inline"
 duplicatePatternType="inline"
 editPatternType="inline"

Implementing Applications Tables

16-22 Developer's Guide

 createText="#{viewcontrollerBundle.NEW}"
 createDisabled="#{bindings.LedgerId.inputValue == null}"
 createPartialTriggers=":::ledgerIdId">

16.1.3.3 Other Properties
The Patterns properties section of the Table Property Inspector resembles Figure 16–12.

Figure 16–12 Other Properties Section

■ AttachImmediate and AttachText: Do not use. These have been deprecated.

16.1.4 How to Modify Applications Table Components and Properties
Once you create an Applications table in the Applications Table wizard, you can add
data controls to the table and icons and menu actions to the table menu bar.

16.1.4.1 Adding Data Controls to Tables
To add Data Controls to tables:

1. Find the data source in the Data Controls panel.

2. Drag and drop either the entire data source or individual fields:

■ To the table in the page Design view.

Use the context menu that is displayed when you drag to the Design view to
choose which component to use for this attribute.

For example, you might drag and drop the data control component
TimezoneServiceAMDataControl > Timezone > Name, then choose Create >
Texts > ADF Input Text w/ Label from the context menu, as shown in
Figure 16–13.

Figure 16–13 Example of Context Menu Choices in Design View

■ To the page Structure view.

Implementing Applications Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-23

For example, to add a field from a data source to a table, drag the field from
the data source to this path: fnd:applicationsTable > f:facet – table > af:table
<tableId>. When you drop the field on the component, you are prompted to
choose which component to use for this attribute. Using the example in
Figure 16–14, you would choose either the ADF Read-only Column, or the
ADF Column, depending on whether the fields need to be read-only or not.

Figure 16–14 Example of Context Menu Choices in Structure View

16.1.4.2 Working with Table Menus and Icons
To add buttons, icons and menu items to the table menu bar, in the Component
Palette, drag and drop any component (such as an icon component) to the menuBar
facet to add the component.

If you have multiple buttons added to the additionalToolbarButton facet, they may
display vertically, instead of horizontally, at runtime. To correct this display, surround
the toolbar buttons with an af:toolbar, as shown in Example 16–6:

Example 16–6 Surrounding the Toolbar Buttons with af:toolbar

<f:facet name="additionalToolbarButtons">
 <af:toolbar>
 <af:commandToolbarButton text="Button1"/>
 <af:commandToolbarButton text="Button2"/>
 </af:toolbar>
</f:facet>

Note: The Format menu is part of Applications Table. It provides
several functions, including move rows and sort selection. Rows have
to be selectable to enable this.

For tables and treeTables with selectable columns, the default top level
menu items are View and Format. To turn off the Format menu, the
af:table should not have selectable columns.

Implementing the Applications Tree

16-24 Developer's Guide

16.1.4.3 Increasing Table Width to Fill 100% of Its Container
Applications Table can be stretched by placing it in the center facet of an ADF
panelStretchLayout component. Do not set the width using the inlineStyle attribute
on either Applications Table or panelStretchLayout. For more information about basic
page layout and the inlineStyle attribute, see the "Organizing Content on Web
Pages" and the "Customizing the Appearance Using Styles and Skins" chapters in the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

16.1.4.4 Using an Applications Table with a Query Component

When using an Applications Table as a resultant table that shows the results from a
search on a query component, follow these steps to set the resultComponentId
attribute on af:query:

1. In the JSF page that contains the query component and the Applications Table,
select the query component.

2. In the Property Inspector, select the resultComponentId property and then Edit.

3. From the edit panel, select the af:table (the ADF table that is present in the
"table" facet of the Applications Table).

The resultComponentId would follow this format:

::<applicationsTableId>:_ATp:<tableId>

and would appear similar to:

resultComponentId="::AT1:_ATp:ATt7"

16.1.5 What Happens When You Add an Applications Table
When you add an Applications Table to your JSF page, components of the
Applications Table, such as the ADF table, are bound to the model.

16.2 Implementing the Applications Tree
The Applications Tree component provides the following basic capabilities that satisfy
the requirements specified in the user experience designs:

■ Tree toolbar with default buttons

■ Facets for adding ADF tree, custom toolbar buttons, and so on

■ Default implementations for tree actions

16.2.1 How to Add an Applications Tree to Your Page
You can add an Applications Tree to your page in two ways.

■ You can select the Applications Tree from the Applications component palette and
drag and drop it on your page.

Note: If you use just the ApplicationTable ID in the
resultComponentId of the ADF Query component, the underlying
table is not refreshed with the results of the search.

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-25

■ You can drag and drop a data collection from the data control palette to your page
and select the Applications Tree from the list of available UI components.

The facets shown in Table 16–4 are exposed on the Applications Tree.

The properties shown in Table 16–5 are exposed on the Applications Tree.

Table 16–4 Applications Tree Facets

Facet Description Allowed Children

tree Facet for holding the ADF tree ADF Tree

additionalToolbarB
uttons

Facet for adding toolbar button icons by the
developer.

ADF Command
Toolbar Buttons

additionalActionIt
ems

Facet for adding more menu items to default
menu items.

ADF menu item
component

appsTreeSecondaryT
oolbar

Facet for adding more commandToolbar
components to secondary toolbar.

ADF Command
Toolbar Button
component

appsTreeStatusbar Facet for adding component containing
statusbar item(s). These statusbar items are
merged with standard items provided by the
panelCollection.

ADF component

appsTreeViewMenu Facet for adding Menu Item(s) to added to the
default view menu of the panelCollection. To
add multiple menuItems into the view menu
please add af:group component containing
af:menuItems.

ADF menu item
component

appsTreeAfterToolb
ar

Facet for adding more commandToolbar
button components to after toolbar. In this
facet any toolbar buttons added appear in a
separate row below the normal group of
toolbars.

"af:toolbar" or
"af:groups" of
"af:toolbars"

popup Facet for adding popups. See Section 16.4,
"Using the Custom Wizard with Applications
Popups."

Important: When a popup is used to create or
duplicate a row in an Applications Tree, you
need to write your own logic behind the
popup's Cancel button
(Action/ActionListener) to remove the
newly-created row.

This can be done by either:

■ A managed bean method that removes
the newly-created row.

■ Setting the Cancel button's Action
property to the rollback method defined in
the pageDef file. This method would be
defined in the pageDef file if the "rollback"
from the operations of the dataControl is
dragged and dropped onto the page.

Any number of
popups under a
layout component

Implementing the Applications Tree

16-26 Developer's Guide

Table 16–5 Exposed Applications Tree Properties

Property Description Allowed Values

id The unique ID for this Applications Tree string

rendered Whether the Applications Tree is rendered or not boolean / expression

treeId The unique ID of the ADF tree underneath this
Applications Tree

string

createPatternType Whether any Create pattern is enabled, and if yes,
which pattern

none, secondaryWindow (then
Create Popup Id must also be
set), page

editPatternType Whether any Edit pattern is enabled, and if yes, which
pattern

none, secondaryWindow (then
Edit Popup Id must also be set),
page

duplicatePatternTy
pe

Whether any Duplicate pattern is enabled, and if yes,
which pattern

none, inline (see "Inline
Duplicate Pattern Type"),
secondaryWindow (then
Duplicate Popup Id must also be
set), page

createEnabled Rendered attribute for create string

editEnabled Rendered attribute for edit boolean value or Expression
Language expression

duplicateEnabled Rendered attribute for duplicate boolean value or Expression
Language expression

deleteEnabled Rendered attribute for delete boolean value or Expression
Language expression

createAction Action binding for the Create icon method expression

editAction Action binding for the Edit icon method expression

duplicateAction Action binding for the Duplicate icon method expression

deleteAction Action binding for the Delete icon method expression

createActionListen
er

Action listener binding for the Create icon method expression

If defined, this property can be
used to supplement the default
action specified by the Pattern
Type property or completely
override it.

editActionListener Action listener binding for the Edit icon method expression

If defined, this property can be
used to supplement the default
action specified by the Pattern
Type property or completely
override it.

duplicateActionLis
tener

Action listener binding for the Duplicate icon method expression

If defined, this property can be
used to supplement the default
action specified by the Pattern
Type property or completely
override it.

deleteActionListen
er

Action listener binding for the Delete icon method expression

If defined, this property can be
used to supplement or override
the default action.

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-27

createPopupId ID of the popup to be invoked when Create button is
clicked

string

editPopupId ID of the popup to be invoked when Edit button is
clicked

string

duplicatePopupId ID of the popup to be invoked when Duplicate button is
clicked

string

createText Overrides default label for Create menu item. This value
will also be shown as the short description for the
Create button.

expression

editText Overrides default label for Edit menu item. This value
will also be shown as the short description for the Edit
button.

expression

duplicateText Overrides default label for Duplicate menu item. This
value will also be shown as the short description for the
Duplicate button.

expression

deleteText Overrides default label for Delete menu item. This value
will also be shown as the short description for the
Delete button.

expression

exportEnabled Whether export is enabled boolean / expression

featuresOff A list of default features to turn off for the
panelCollection, such as detach (see featuresOff
attribute of panelCollection for more details)

string

inlineStyle The CSS styles to use for the panelCollection component
inside the Applications Tree component. This is
intended for basic style changes.

Note: Do not set the width using the inlineStyle attribute
on either Applications Tree or panelStretchLayout.
Applications Tree can be stretched by placing it in the
center facet of an ADF panelStretchLayout component.

string

styleClass styleClass to use for the panelCollection component
inside Applications Tree component.

string

createImmediate Sets immediate attribute value of "Create" toolbar
button and "Create" menu item.

boolean / expression

deleteImmediate Sets immediate attribute value of "Delete" toolbar
button and "Delete" menu item.

boolean / expression

duplicateImmediate Sets immediate attribute value of "Duplicate" toolbar
button and "Duplicate" menu item.

boolean / expression

editImmediate Sets immediate attribute value of "Edit" toolbar button
and "Edit" menu item.

boolean / expression

actionsMenuRendere
d

Sets rendered attribute value of the Actions menu.
When CRUD actions are not turned on, and no
af:commandMenuItem is added to the
additionalActionItems facet, then
actionsMenuRendered should be set to false so that an
empty Actions menu would not be displayed.

boolean / expression

primaryToolbarRend
ered

Sets rendered attribute value of the primary toolbar.
When CRUD actions, attach, export are not turned on,
and no af:commandToolbarButton is added to
additionalToolbarButtons facet, then
primaryToolbarRendered should be set to false so that
an empty toolbar would not be displayed.

boolean / expression

Table 16–5 (Cont.) Exposed Applications Tree Properties

Property Description Allowed Values

Implementing the Applications Tree

16-28 Developer's Guide

Inline Duplicate Pattern Type
For inline patterns, the ADF tree underneath the Applications Tree should get
refreshed once the icon or the menu item is clicked. For this to happen, the ADF tree
needs to know that it should partially refresh itself. For this, set the partialTriggers
attribute on the ADF tree to the ids of the menu item and the icon. For example, to
refresh the tree when the Delete menu item or icon is clicked, set
partialTriggers="delete deleteMenuItem" on the ADF tree. The partialTriggers attribute
is set by the Applications Tree Creation wizard automatically; Applications developers
should not need to set it explicitly. Example 16–7 shows a sample markup that is
generated by the Applications Tree Creation wizard.

Example 16–7 Sample Markup Generated by the Applications Tree Creation Wizard

<fnd:applicationsTree treeId="tree1" id="appsTree1"
 createPatternType="secondaryWindow"
 createPopupId="create1,create2"
 duplicatePatternType="inline"
 deleteEnabled="true">
 <af:tree value="#{bindings.ServiceRequestsView1.treeModel}"
 var="node" rowSelection="single"

selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"
 id="tree1"
 partialTriggers="::duplicate ::duplicateMenuItem ::delete
::deleteMenuItem">

Model
The Applications Tree does not expose any bindings to the model. However,
components within the Applications Tree, like the ADF tree, will be bound to the
model.

secondaryToolbarRe
ndered

Sets rendered attribute value of the secondary toolbar.
When no af:commandToolbarButton is added to
appsTableSecondaryToolbar facet, then
secondaryToolbarRendered should be set to false so that
an empty toolbar would not be displayed.

boolean / expression

createDisabled Disabled attribute for create Boolean value or Expression
Language expression

editDisabled Disabled attribute for edit Boolean value or Expression
Language expression

duplicateDisabled Disabled attribute for duplicate Boolean value or Expression
Language expression

deleteDisabled Disabled attribute for delete Boolean value or Expression
Language expression

confirmDelete Set this value if you want delete confirmation to come
up.

The default message is The selected record(s) will be
deleted. Do you want to continue? To change this, use
the deleteMsg attribute.

Boolean value or Expression
Language expression

deleteMsg Provide a customized delete confirmation message that
can be shown in the popup.

String value or Expression
Language expression

Table 16–5 (Cont.) Exposed Applications Tree Properties

Property Description Allowed Values

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-29

Controller
The Applications Tree component ships a default managed bean that performs the
following functions:

■ Default event handlers for all toolbar button/menu item action events. Event
handler delegates to custom action method if set on the button/menu item action
property.

– A new row is created in the data collection, a popup invoked with the newly
created row available for inserting values (the UI for the popup to show input
fields for the new row has to be created separately by the developer), when
Create Pattern Type is secondaryWindow. After the popup is dismissed, the
tree is refreshed to display the newly-created node:

* If No Node is selected when the Create button or menu item is clicked:
The new node is created in the first-level of the Tree.

* If Leaf Node or Expanded Parent Node is selected when the Create
button or menu item is clicked: The new node is created as a child of the
selected node, and placed directly below it.

* If Collapsed Parent Node is selected: The parent is expanded to show the
newly created child node placed directly below it.

– A new row is not added when the Create Pattern Type is page, and the
developer is responsible for wiring the navigation to the page when the icon
or menu item is clicked. Only a standard outcome is returned from the default
handler. The developer could use this default outcome to define a navigation
rule.

– The selected row is made available for editing in a popup when the Edit icon
is clicked, and Edit Pattern Type is secondaryWindow.

– When the Edit icon is clicked, and Edit Pattern Type is page, only a standard
outcome is returned.

– When the Duplicate icon or menu item is clicked: A new node is added into
the tree when the Create icon is clicked, and Create Pattern Type is inline. All
non-primary key values of the selected node are copied to the new node.

– If Duplicate Pattern Type is inline, the newly created node is placed next to the
selected node.

– If Duplicate Pattern Type is popup, a popup invoked with the newly created
row is available for modifying the duplicated values (the UI for the popup to
show input fields for the new row has to be created separately by the
developer).

– Clicking the Delete icon deletes the selected node. It currently does not
perform a cascade delete when a parent node is selected for delete.
Applications developers need to handle deleting the child nodes if it is
necessary.

■ If the secondaryWindow option is chosen for any pattern type, and the
corresponding popup id is set for that button (mandatory), then selecting the
button invokes the popup.

■ If page is chosen for any pattern type, then a standard outcome is returned on
clicking the button. Standard outcomes are: create, edit, duplicate and delete for
the four respective toolbar buttons.

■ A default selection listener for the ADF tree is provided (the markup shows
selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"). If you

Implementing the Applications Tree

16-30 Developer's Guide

need to add custom logic to the selection listener, you should call this default
selection listener from the custom logic. The treeSelectionHandler method of the
ApplicationsTreeBean provides the following behavior:

– When xxxxPatternType="secondaryWindow" and when there is no popup
configured for the level where the node needs to be created, the icon and the
menu item are disabled by default. But this behavior can be overridden by the
xxxxDisabled attribute, where "xxxx" could be create, edit or duplicate.

– Calls the ADF default tree listener:
#{bindings.xxxx.treeModel.makeCurrent}

Example 16–8 shows sample code for calling the default selection listener from the
custom selection listener.

Example 16–8 Calling the Default Selection Listener from the Custom Selection Listener

String defaultListener = "#{ApplicationsTreeBean.treeSelectionHandler}";
FacesContext fc = FacesContext.getCurrentInstance();
ExpressionFactory ef = fc.getApplication().getExpressionFactory();
MethodExpression me =
 ef.createMethodExpression(fc.getELContext(), defaultListener,
 String.class, new
Class[]{SelectionEvent.class});
me.invoke(fc.getELContext(), new Object[] {selectionEvent});

To allow developers access to some of the implementation, the Applications Tree
exposes a public class,
oracle.apps.fnd.applcore.patterns.ApplicationsTreeEventHandler, that contains
default event handlers for all the buttons. The button methods are named as
process<buttonName>, such as processCreate and processEdit. Applications developers
writing custom action handlers can also use the default implementation by calling
these methods.

Use
For example, to attach a custom button handler to the Create button, follow these
steps.

1. Define a managed bean class, as shown in Example 16–9:

Example 16–9 Defining Managed Bean Class to Attach Custom Handler to a Button

import oracle.apps.fnd.applcore.patterns.ui.ApplicationsTreeEventHandler;
import oracle.apps.fnd.applcore.patterns.ui.util.PatternUtils;

public class CustomEventHandler
{
 public String processCreate()
 {
 // Custom code
 ...

 // Call default event handler if required. It will return a standard outcome
for this button click.
 ApplicationsTreeEventHandler appTreeHandler =
ApplicationsTreeEventHandler.getInstance();
 String outcome = appTreeHandler.processCreate();

 // If popup is required to be invoked after event handling
 PatternUtils.invokePopup(popupId);

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-31

 return outcome;
 }
}

2. Register the managed bean in the faces-config of the project.

3. Select the Property Inspector for the Applications Tree, and choose the Create
Action property. Set #{CustomEventHandler.processCreate} as the expression for
the property.

16.2.1.1 Adding the Applications Tree
The Applications Tree can be added to a page or page fragment using either the
Component First or the Data First approach. Valid drop locations in the page or page
fragment include ADF Form, and ADF Layout components and the Applications Panel
(jsp:root, af:form, af:root, fnd:applicationsPanel, af:group,
af:panelBorderLayout, af:panelBox, af:panelCollection, af:panelFormLayout,
af:panelGroupLayout, af:panelHeader, af:panelStretchLayout,
af:showDetailItem, af:panelWindow, af:popup, af:showDetail, af:subform,
f:facet, f:panelGrid, f:panelGroup, af:pageTemplateDef,
af:pageTemplate#<localArea_Facet>).

The Applications Tree can be added to a page or page fragment using either the
Component First or the Data First approach. Both approaches launch a wizard that
helps you quickly define the appropriate tree layout which adhere to the user
experience standards. Once you complete this wizard, you can further refine the tree
definition by editing the resulting tree component as needed.

Component First
Navigate to the Component Palette. Click the list of libraries and select Applications.
Drag the Applications Tree from the list of components and drop it onto the page. The
wizard will launch after dropping the Applications Tree on the page.

Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel by
clicking its bar, then navigate through the hierarchy to locate the data source that you
would like to include in the Applications Tree. Select that data source and drag it on to
the page. A context menu will appear with a list of components. Move the mouse over
the Applications category list. Select Tree under the Applications menu to launch the
Applications Tree wizard, as shown in Figure 16–15.

Figure 16–15 Data First Method

Implementing the Applications Tree

16-32 Developer's Guide

16.2.1.2 Applications Tree Create Wizard
The Applications Tree Create wizard consists of two panels: Create Applications Tree
and Configure Tree Patterns.

Create Applications Tree Panel
The Create Applications Tree panel will vary depending on the approach used to
launch the Applications Tree creation process.

Using the Data First approach the Bind Data Now properties are hidden. The selected
data source is automatically bound to the tree.

With the Component First approach, it is up to the developer to decide whether to
bind a Data Collection to the tree component. You can skip the data control binding
step when creating the Applications Tree. In this case, the Applications Tree will create
an ADF tree without data binding.

If you wish to bind a data control to the tree component using the Component First
approach, check the Bind Data Now checkbox. This will enable the Browse button for
the Data Source property. Click Browse to display a list of data sources available for
binding. Navigate through the list, select the desired data source, and click OK, as
shown in Figure 16–16.

Figure 16–16 Create Applications Tree Data Source

Once the Data Source is selected, you can configure the ADF tree. Use the Add icon to
add one of the children of the selected Data Source to be the next level of the tree, as
shown in Figure 16–17.

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-33

Figure 16–17 Configuring the ADF Tree

■ Tree Level Rules: This pane displays rules that control the display order of the
hierarchical tree or tree table UI components. The tree binding populates the tree
UI component starting from the top of the Tree Level Rules list and continues until
it reaches the last rule or until it encounters a rule whose accessor cannot find a
target attribute. The more rules you choose, the more nodes you can display in the
tree or tree table UI component.

■ Folder Label: Specify an Expression Language expression that selects labels to
display in the tree, such as #{label.countryLabel}.

You also can use the Expression Language expression #{node.accessorLabel} to
obtain information that allows you to traverse up and down a tree of data, not
necessarily starting at the logical root node of the tree. This is useful if you want to
access a parent node rather than the root node of the tree.

■ Enable Filtering: Select to filter the data that displays in the tree or tree table.
After you select this checkbox, you can select an attribute on the data collection
that will be used to filter the table data that display in the tree or tree table.

■ Available Attributes and Selected Attributes: The shuttle at the bottom of the
Create Applications Tree panel allows you to control the attributes at each tree
level you wish to display as a tree node in the tree. When finished, click Continue
to proceed to the Configure Tree Patterns Dialog. Select Cancel to abort the
creation of the Applications Tree.

Implementing the Applications Tree

16-34 Developer's Guide

Configure Tree Patterns Panel
Use the Configure Tree Patterns panel to select the default actions offered by your
Applications Tree. See Figure 16–18.

Figure 16–18 Configure Tree Patterns

You may select any or all of the following five actions for your Applications Tree:
Create, Duplicate, Edit, Delete and Export. If you enable Create, Duplicate, or Edit,
you must choose the appropriate pattern that will be used to invoke that action (Inline,
Popup, or Page).

■ Inline - Perform the action on the current table row (only available for the
Duplicate action)

■ Popup - Bring up a div modal window on top of the current page for the
requested action

■ Page - Replace the current page or page fragment with a completely separate page
or page fragment to perform the action. Page fragments are used when using
bounded task flows.

The Add button for configuring the Popup button is enabled when the Popup pattern
is selected. When you click Add, a dropdown of the data collection name of each tree
level is displayed. You need to choose the tree level that needs the popup to be
configured. When a data collection name is selected, the Applications Popup wizard is
displayed. (See Section 16.4, "Using the Custom Wizard with Applications Popups.")
This same data collection will automatically be bound to the Applications Popup. The
Popup will also be defaulted as having Editable Content on the Window Buttons page
in the wizard.

Export: Export the data to a Microsoft Excel-compatible file.

Delete: Allows users to delete the row.

Implementing the Applications Tree

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-35

■ Confirm Delete: Select this option so that the default The selected record(s) will
be deleted. Do you want to continue? prompt displays in a popup when the
delete row function is used.

When you set the confirmDelete attribute to true, the confirmation popup
displays and the row is deleted when you click Ok. For this to work correctly, the
partialTriggers on the af:tree inside the fnd:applicationsTree should include
::confirm, and the ::delete and ::deleteConfirm ids must be removed so the
partialRefresh happens only when you click Ok in the popup. See
Section 16.1.2.2.1, "Manually Enabling Delete Confirmation."

■ Confirmation Message: If you want to replace the default confirmation message
with a custom one, enter the string here. The string will be converted to a text
resource and added to the default resource bundle.

If you already have a confirmation message defined in a resource bundle, click the
ellipsis and choose from the list, as shown in Figure 16–4.

When finished, click OK to complete creation of the Applications Tree. Selecting
Cancel will abort the creation of the Applications Tree.

16.2.1.3 Working with the Applications Tree
This section discusses modifying settings in the JDeveloper Property Inspector. For
more information, see Section 16.1.3, "Introduction to Selected Elements in the Table
Property Inspector."

Editing - Properties
Once you have created the Applications Tree, you can modify the property values by
using the Property Inspector. You can select the Applications Tree in one of three ways:

■ Select the component in the Design view of the page.

■ Select the <fnd:applicationsTree ...> line in the Source view of the page.

■ Select fnd:applicationTree from the hierarchy in the Structure View.

All the components created as part of the Applications Tree are editable using this
same approach, as shown in Figure 16–19.

Figure 16–19 Tree Property Inspector

Implementing Applications Tree Tables

16-36 Developer's Guide

Adding a Data Source
Once you have created the Applications Tree, you can add data controls to the facets /
content containers within that tree using the following steps:

1. Navigate to the Data Controls panel of the Application Navigator.

2. Open the hierarchy to find the data source.

3. Drag and drop either the entire data source or individual fields into the correct
location on the page. The correct location is dependent on the component.

Adding UI Content
To achieve the final goals for a page design, you will likely need to add other
components to the Applications Tree. Common facets are provided to help you achieve
these goals. The facet names and use are documented in the Facet tree of the
Component Structure and Functions. For example, your tree may require an additional
action beyond the standard actions that are provided by the Applications Tree. You can
navigate to the Component Palette and drag and drop a commandToolbarButton
component on to the additionalToolbarButtons facet to add a new icon to the Tree
toolbar.

Increasing Tree Width to Fill 100% of Its Container
An Applications Tree can be stretched by placing it in the center facet of an ADF
panelStretchLayout component. Do not set the inlineStylewidth on
panelStretchLayout. For more information about basic page layout and the
inlineStyle attribute, see the "Organizing Content on Web Pages" and the
"Customizing the Appearance Using Styles and Skins" chapters in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

16.3 Implementing Applications Tree Tables
The Application Tree Table component implements the tree table portion of the user
experience pattern.

The Application Tree Table component provides these basic capabilities to satisfy the
requirements specified in the user experience designs:

■ Tree Table toolbar with default buttons.

■ Facets for adding items such as ADF tree table and custom toolbar buttons.

■ Default implementations for tree actions.

Adding an Application Tree Table to Your Page
You can add the Application Tree Table to your page in two ways.

■ Select the Application Tree Table from the Applications component palette and
drag and drop it on your page.

■ Drag and drop a data collection from the data control palette to your page and
select the Applications Tree Table from the list of available UI components.

The properties shown in Table 16–6 are exposed on the Applications Tree Table:

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-37

Table 16–6 Applications Tree Table Properties

Property Description Allowed Values

id Unique ID for this Applications Tree Table. string

rendered Whether the Applications Tree Table is
rendered or not.

boolean / expression

treeTableId Unique ID of the ADF tree table underneath
this Applications Tree Table.

string

createPatternType Whether any Create pattern is enabled, and
if yes, which pattern.

none, inline, secondaryWindow
(then Create Popup Id must also be
set), page

editPatternType Whether any Edit pattern is enabled, and if
yes, which pattern.

none, inline, secondaryWindow
(then Edit Popup Id must also be
set), page

duplicatePatternType Whether any Duplicate pattern is enabled,
and if yes, which pattern.

none, inline (see Note),
secondaryWindow (then Duplicate
Popup Id must also be set), page

deleteMsg Provide a customized delete confirmation
message that can be shown in the popup.

Boolean value or Expression
Language expression

deleteEnabled Whether any Delete pattern is enabled. boolean

createEnabled Whether any Create pattern is enabled. boolean

duplicateEnabled Whether any Duplicate pattern is enabled. boolean

editEnabled Whether any Edit pattern is enabled. boolean

confirmDelete Set this value if you want delete
confirmation to come up.

The default message is The selected
record(s) will be deleted. Do you want to
continue? To change this, use the deleteMsg
attribute.

Boolean value or Expression
Language expression

createAction Action binding for the Create icon. method expression

editAction Action binding for the Edit icon. method expression

duplicateAction Action binding for the Duplicate icon. method expression

deleteAction Action binding for the Delete icon. method expression

createActionListener Action listener binding for the Create icon. method expression

editActionListener Action listener binding for the Edit icon. method expression

duplicateActionListener Action listener binding for the Duplicate
icon.

method expression

deleteActionListener Action listener binding for the Delete icon. method expression

createPopupId ID of the popup to be invoked when the
Create button is clicked.

string

editPopupId ID of the popup to be invoked when the Edit
button is clicked.

string

duplicatePopupId ID of the popup to be invoked when the
Duplicate button is clicked.

string

deletePopupId ID of the popup to be invoked when the
Delete button is clicked.

string

createText Overrides the default label for the Create
menu item.

expression

Implementing Applications Tree Tables

16-38 Developer's Guide

editText Overrides the default label for Edit menu
item.

expression

duplicateText Overrides the default label for Duplicate
menu item.

expression

deleteText Overrides the default label for Delete menu
item.

expression

exportEnabled Whether export is enabled. boolean / expression

featuresOff A list of default features to turn off for the
panelCollection, for instance detach (see
featuresOff attribute of panelCollection for
more details)

string

inlineStyle The CSS styles to use for the panelCollection
component inside the Applications Tree
Table component. This is intended for basic
style changes.

Note: Do not set the width using the
inlineStyle attribute on either Applications
Tree Table or panelStretchLayout.
Applications Tree Table can be stretched by
placing it in the center facet of an ADF
panelStretchLayout component.

string

styleClass styleClass to use for the panelCollection
component inside the Applications Tree
Table component.

string

createImmediate Sets immediate attribute value of Create
toolbar button and Create menu item.

boolean / expression

deleteImmediate Sets immediate attribute value of Delete
toolbar button and Delete menu item.

boolean / expression

duplicateImmediate Sets immediate attribute value of Duplicate
toolbar button and Duplicate menu item.

boolean / expression

editImmediate Sets immediate attribute value of Delete
toolbar button and Delete menu item.

boolean / expression

createDisabled Disabled attribute for Create. Boolean value or Expression
Language expression

deleteDisabled Disabled attribute for Delete. Boolean value or Expression
Language expression

editDisabled Disabled attribute for Edit. Boolean value or Expression
Language expression

duplicateDisabled Disabled attribute for Duplicate. Boolean value or Expression
Language expression

actionsMenuRendered Sets the rendered attribute value of the
Actions menu. When CRUD actions are not
turned on, and no af:commandMenuItem is
added to the additionalActionItems facet,
actionsMenuRendered should be set to False
so that an empty Actions menu will not be
displayed.

boolean / expression

Table 16–6 (Cont.) Applications Tree Table Properties

Property Description Allowed Values

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-39

primaryToolbarRendered Sets the rendered attribute value of the
primary toolbar. When CRUD actions,
attach, export are not turned on, and no
af:commandToolbarButton is added to the
additionalToolbarButtons facet,
primaryToolbarRendered should be set to
False so that an empty toolbar will not be
displayed.

boolean / expression

Table 16–6 (Cont.) Applications Tree Table Properties

Property Description Allowed Values

Implementing Applications Tree Tables

16-40 Developer's Guide

secondaryToolbarRendered Sets the rendered attribute value of the
secondary toolbar. When no
af:commandToolbarButton is added to the
appsTableSecondaryToolbar facet,
secondaryToolbarRendered should be set to
False so that an empty toolbar will not be
displayed.

boolean / expression

toggleEditRendered The toggleEditRendered feature is used to
render the editAll or clickToEdit choices for
Applications Tree Table. See
Section 16.3.1.2.4, "Toggle Click to Edit /
Edit All in Applications Tree Table."

Boolean. Default value is False.

Table 16–6 (Cont.) Applications Tree Table Properties

Property Description Allowed Values

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-41

<button_
name>PartialTriggers

For example:
deletePartialTriggers

Partial triggers attribute for the <button_
name> toolbar button.

The partial triggers property of the Create,
Edit, Duplicate and Delete buttons, and
menu items are exposed. Users can enable
and disable buttons according to rows
selected or other actions carried out on the
page. The same partialTrigger attribute for
each one is used both for the
commandToolbarButton and the menu item.
For example, when the createPartialTriggers
is set in the Applications Tree Table, the
value for this attribute is set on the
partialTrigger property of both the create
command toolbar button and create menu
item.

String of IDs.

Important: The PartialTriggers
attribute must be entered manually
by the developer. This is because, at
design time, the JDeveloper
Property Inspector can:

■ Select the incorrect ID.

■ Append square brackets
around the selected id, such as
[id1 id2].

Example 1:

To disable the Edit, Delete and
Duplicate buttons when the table is
empty, set this property on the
editDiabled, deleteDisabled or
duplicateDisabled property of the
Applications Tree Table.

#{bindings.VOiterator.estimated
RowCount == 0 ? true: false}
where VOiterator is your
iterator name

Example 2:

Disable any of the buttons in the
Applications Tree Table according to
the functional rules or by setting
disable=false once create is selected
on an empty table (considering
these buttons were disabled
following Example 1).

To do this, create an attribute
binding on the view object attribute
that will decide whether or not the
row can be
deleted/edited/duplicated. For
example, you can use a binding
similar to this example on the
disable property of a button:

#{bindings.MyAtttrBinding.input
Value == 'compare value' ? true
: false}

Add Partial Page Refresh (PPR) on
the button to the table ID of the
af:table. This does not require any
change in the selectionListener of
the table. Keep the default one.

Table 16–6 (Cont.) Applications Tree Table Properties

Property Description Allowed Values

Implementing Applications Tree Tables

16-42 Developer's Guide

Example 16–10 Sample Markup Generated by the Applications Tree Table Creation
Wizard

<fnd:applicationsTreeTable treeTableId="treeTable1" id="appsTree1"
 createPatternType="secondaryWindow"
 createPopupId="create1,create2"
 duplicatePatternType="inline"
 deleteEnabled="true">
 <f:facet name="treeTable">
 <af:treeTable value="#{bindings.ServiceRequestsView1.treeModel}"
 var="node" rowSelection="single"

selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"
 id="treeTable1"
 partialTriggers="::duplicate ::duplicateMenuItem ::delete
::deleteMenuItem">

Table 16–7 shows the facets that are exposed on the Applications Tree Table.

Note: For inline patterns, the ADF tree table beneath the
Applications Tree Table should be refreshed once the icon or the menu
item is clicked. For this to happen, the ADF tree table needs to know
that it should partially refresh itself. To do this, set the
partialTriggers attribute on the ADF tree table to the Ids of the
menu item and icon. For example, to refresh the tree table when the
Delete menu item is selected or the icon is clicked, set
partialTriggers="delete deleteMenuItem" on the ADF tree table.
The partialTriggers attribute is set by the Applications Tree Table
Creation wizard automatically. Applications developers should not
need to set it explicitly. Example 16–10 shows a sample markup that is
generated by the Applications Tree Table Creation wizard.

Table 16–7 Applications Tree Table Facets

Facet Description Allowed Children

treeTable Facet for holding the ADF tree table. ADF Tree Table

additionalToolba
rButtons

Facet for adding toolbar icons by the developer. ADF Command Toolbar Buttons

additionalAction
Items

Facet for adding more menu items to default menu items. ADF menu item component

appsTreeTableAft
erToolbar

Facet for adding an af:toolbar or af:groups of af:toolbars
that appear in a separate row below the normal group of
toolbars.

ADF Toolbar or ADF Groups of
Toolbar

appsTreeTableSec
ondaryToolbar

Facet for adding more commandToolbar components to the
secondary toolbar.

ADF Command Toolbar Button
component

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-43

Model
The Applications Tree Table does not expose any bindings to the model. However,
components within the Applications Tree Table, such as the ADF tree table, will be
bound to the model.

Controller
The Applications Tree Table component ships a default managed bean (internal to the
Oracle Fusion Middleware Extensions for Applications team) that performs the
following functions that will only work with rowSelection="single" on the ADF tree
table:

■ Default event handlers for all toolbar button/menu item action events. Event
handler delegates to custom action method if set on the button/menu item action
property.

– When Create Pattern Type is secondaryWindow, a new row is created in the
data collection and a popup is invoked with the newly-created row available
for inserting values. (The UI for the popup to show input fields for the new
row has to be created separately by the developer.) After the popup is
dismissed, the tree table is refreshed to display the newly-created row:

– If no row is selected when the Create button or menu item is clicked, the
new row is created in the first-level of the Tree.

– If Leaf Node or Expanded Parent Node is selected when the Create
button/menu item is clicked, the new row is created as a child of the
selected node and placed directly below it.

– If the Collapsed Parent Node is selected, the parent is expanded to show
the newly-created child node that placed directly below it.

– A new row is not added when the Create Pattern Type is page. Only a
standard outcome is returned

appsTreeTableSta
tusbar

Facet for adding component containing statusbar items.
These statusbar items are merged with standard items
provided by the panelCollection.

ADF component

appsTreeTableVie
wMenu

Facet for adding Menu Items to the default view menu of
the panelCollection. To add multiple menuItems to the view
menu, add an af:group component containing
af:menuItems.

ADF menu item component

popup Facet for adding popups. See Section 16.4, "Using the
Custom Wizard with Applications Popups."

Important: When a popup is used to create or duplicate a
row in an Applications Tree Table, you need to write your
own logic behind the popup's Cancel button
(Action/ActionListener) to remove the newly-created row.

This can be done by either:

■ A managed bean method that removes the
newly-created row.

■ Setting the Cancel button's Action property to the
rollback method defined in the pageDef file. This
method would be defined in the pageDef file if the
"rollback" from the operations of the dataControl is
dragged and dropped onto the page.

Any number of popups under a
layout component.

Table 16–7 (Cont.) Applications Tree Table Facets

Facet Description Allowed Children

Implementing Applications Tree Tables

16-44 Developer's Guide

– A new row is added into the tree table when the Create icon is clicked,
and Create Pattern Type is inline.

– The selected row is made available for editing in a popup when the Edit
icon is clicked, and Edit Pattern Type is secondaryWindow.

– When the Edit icon is clicked and Edit Pattern Type is page, only a
standard outcome is returned.

– When the Duplicate icon or menu item is clicked, a new node is added
into the tree when the Create icon is clicked, and Create Pattern Type is
inline. All non-primary key values of the selected node are copied to the
new node.

– If Duplicate Pattern Type is inline, the newly-created row is placed above
the selected row.

– If Duplicate Pattern Type is popup, a popup invoked with the
newly-created row is available for modifying the duplicated values (the UI
for the popup to show input fields for the new row has to be created
separately by the developer).

– Clicking the Delete icon deletes the selected row. It currently does not
perform cascade delete when a parent node is selected for delete. The
Applications developer needs to handle deleting the child nodes if it is
necessary.

■ If the secondaryWindow option is chosen for any pattern type, and the
corresponding popup id is set for that button (mandatory), selecting the button
invokes the popup.

■ If page is chosen for any pattern type, a standard outcome is returned on clicking
the button. Standard outcomes are Create, Edit, Duplicate and Delete for the four
respective toolbar buttons.

■ The Oracle Fusion Middleware Extensions for Applications (Applications Core)
provides a default selection listener for the ADF tree (the markup shows:
selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"). If a
developer needs to add custom logic to selection listener, the developer should call
this default selection listener from the custom logic. The treeSelectionHandler
method of ApplicationsTreeBean provides the following behavior:

– When xxxxPatternType="secondaryWindow" and when there is no popup
configured for the level where the node needs to be created, the icon and the
menu item are disabled by default. But this behavior can be overridden by
xxxxDisabled attribute ("xxxx" could be "create", "edit" or "duplicate").

– Calls the ADF default tree listener:
#{bindings.xxxx.treeModel.makeCurrent} See Example 16–11.

Example 16–11 Sample Code for Calling the Default Selection Listener from a Custom
Selection Listener

String defaultListener = "#{ApplicationsTreeBean.treeSelectionHandler}";
FacesContext fc = FacesContext.getCurrentInstance();
ExpressionFactory ef = fc.getApplication().getExpressionFactory();
MethodExpression me =
 ef.createMethodExpression(fc.getELContext(), defaultListener,
 String.class, new
Class[]{SelectionEvent.class});
me.invoke(fc.getELContext(), new Object[] {selectionEvent});

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-45

To allow Applications developers access to some of the implementation, the
Applications Tree Table exposes a public class
oracle.apps.fnd.applcore.patterns.ApplicationsTreeEventHandler that contains
default event handlers for all the buttons. The button methods are named as
process<buttonName>, such as processCreate and processEdit. Developers writing
custom action handlers can also use the default implementation by calling these
methods.

Example
To attach a custom button handler to the Create button:

1. Define a managed bean class, as shown in Example 16–12.

Example 16–12 Define a Managed Bean Class to Attach Custom Handler to a Button

import oracle.apps.fnd.applcore.patterns.ui.ApplicationsTreeEventHandler;
import oracle.apps.fnd.applcore.patterns.ui.util.PatternUtils;

public class CustomEventHandler
{
 public String processCreate()
 {
 // Custom code
 ...

 // Call default event handler if required. It will return a standard outcome
for this button click.
 ApplicationsTreeEventHandler appTreeHandler =
ApplicationsTreeEventHandler.getInstance();
 String outcome = appTreeHandler.processCreate();

 // If popup is required to be invoked after event handling
 PatternUtils.invokePopup(popupId);

 return outcome;
 }
}

2. Register the managed bean in the faces-config of the project.

3. Open the Property Inspector for the Applications Tree Table and choose the Create
Action property. Set #{CustomEventHandler.processCreate} as the expression for
the property.

16.3.1 How to Add an Applications Tree Table
The Applications Tree Table can be added to a page or page fragment using either the
Component First or the Data First approach. Both approaches launch a wizard that is
intended to help you quickly define the appropriate tree layout that adheres to the
user experience standards. Once you complete this wizard, you can further refine the
tree definition by editing the resulting tree component as needed.

Valid drop locations in the page or page fragment include: ADF Form, ADF Layout
components and the Applications Panel (jsp:root, af:form, af:root,
fnd:applicationsPanel, af:group, af:panelBorderLayout, af:panelBox,
af:panelCollection, af:panelFormLayout, af:panelGroupLayout,
af:panelHeader, af:panelStretchLayout, af:showDetailItem, af:panelWindow,
af:popup, af:showDetail, af:subform, f:facet, f:panelGrid, f:panelGroup,
af:pageTemplateDef, and af:pageTemplate#<localArea_Facet>).

Implementing Applications Tree Tables

16-46 Developer's Guide

Component First
Navigate to the Component Palette. Click the list of libraries and select Applications.
Drag the Applications Tree Table from the list of components and drop it onto the page
to launch the wizard.

Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel and
navigate through the hierarchy to locate the data source that you would like to include
in the Applications Tree Table. Select that data source and drag it to the page. A
context menu will display a list of components. Select Tree under the Applications
menu to launch the Applications Tree Table wizard, as shown in Figure 16–20.

Figure 16–20 Data First Method to Add a Tree Table

16.3.1.1 Applications Tree Table Create Wizard
The Applications Tree Table Create wizard consists of four panels: Create Applications
Tree Table, Select Tree Table Columns, Configure Tree Table Patterns, and Summary.

Create Applications Tree Table Panel
This step creates a tree binding and node definitions of the tree. The Create
Applications Tree Table Panel will vary depending on the approach used to launch the
Applications Tree Table creation process.

Using the Data First approach, the Bind Data Now properties are hidden. The selected
data source is automatically bound to the tree.

With the Component First approach, the developer must decide whether to bind a
Data Collection to the tree table component. You can skip the data control binding step
when creating the Applications Tree Table. In this case the Applications Tree Table will
create an adf tree table without data binding.

If you wish to bind a data control to the tree component using the Component First
approach, select the Bind Data Now checkbox. This will enable the Browse button for
the Data Source property. Click Browse to display a list of data sources available for
binding. Navigate through the list and select the desired data source. Click OK, as
shown in Figure 16–21.

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-47

Figure 16–21 Create Applications Tree Table

Once the Data Source is selected, you can configure the ADF tree. Click the Add icon
to add one of the children of the selected Data Source to be the next level of the tree, as
shown in Figure 16–22.

Figure 16–22 Adding a Child of the Data Source

The shuttle at the bottom of the Create Applications Tree Table panel allows you to
select the attributes at each tree level you wish to display as a tree node or columns in
the tree table, as shown in Figure 16–23.

Implementing Applications Tree Tables

16-48 Developer's Guide

Figure 16–23 Selecting Attributes

When finished, click Next to proceed to the Select Tree Table Columns panel. Select
Cancel to abort the creation of the Applications Tree Table.

Select Tree Table Columns Panel
The Select Tree Table Columns panel shown in Figure 16–24 allows you to select an
attribute for displaying as node stamp and select an attribute for displaying as path
stamp. You can also configure the columns to be displayed inside the tree table here.
When finished, click Next to proceed to the Configure Tree Table Patterns Dialog.
Selecting Cancel will abort the creation of the Applications Tree Table.

Figure 16–24 Select Tree Table Columns

Implementing Applications Tree Tables

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-49

Configure Tree Table Patterns Panel
The Configure Tree Table Patterns panel allows you to select the default actions offered
by your Applications Tree Table, shown in Figure 16–25.

Figure 16–25 Configure Tree Table Patterns

You may select any or all of the following five actions for your Applications Tree Table:
Create, Duplicate, Edit, Delete and Export. If you enable Create, Duplicate, or Edit,
you must choose the appropriate pattern that will be used to invoke that action (Inline,
Popup, Page).

■ Inline - Perform the action on the current table row.

■ Popup - Bring up a div modal window on top of the current page for the
requested action.

■ Page - Replace the current page or page fragment with a completely separate page
or page fragment to perform the action. (Page fragments are used when using
bounded task flows.)

The Add button for configuring the Popup button is enabled when the Popup pattern
is selected. When you click Add, a dropdown of the data collection name of each tree
level is displayed. You need to choose the tree level that needs the popup to be
configured. When a data collection name is selected, the Applications Popup Wizard is
displayed. (See Section 16.4, "Using the Custom Wizard with Applications
Popups.")This same data collection will automatically be bound to the Applications
Popup. The Popup will also be defaulted as having Editable Content on the Window
Buttons page in the wizard. Refer to Section 16.4, "Using the Custom Wizard with
Applications Popups."

Export: Export the data to a Microsoft Excel-compatible file.

Delete: Allows users to delete the row.

Implementing Applications Tree Tables

16-50 Developer's Guide

■ Confirm Delete: Select this option so that the default The selected record(s) will
be deleted. Do you want to continue? prompt displays in a popup when the
delete row function is used.

When you set the confirmDelete attribute to true, the confirmation popup
displays and the row is deleted when you click Ok. For this to work correctly, the
partialTriggers on the af:treetable inside the fnd:applicationsTreeTable
should include ::confirm, and the ::delete and ::deleteConfirm ids must be
removed so the partialRefresh happens only when you click Ok in the popup. See
Section 16.1.2.2.1, "Manually Enabling Delete Confirmation."

■ Confirmation Message: If you want to replace the default confirmation message
with a custom one, enter the string here. The string will be converted to a text
resource and added to the default resource bundle.

If you already have a confirmation message defined in a resource bundle, click the
ellipsis and choose from the list, as shown in Figure 16–4.

Click Finish to complete creation of the Applications Tree Table. Select Cancel to abort
the creation of the Applications Tree Table.

16.3.1.2 Working with the Applications Tree Table
Once you have created the Applications Tree Table, you can modify the property
values by using the Property Inspector editor. The Property Inspector for the
Applications Tree Table component can be viewed by selecting the component in the
page. You can select the Applications Tree Table in one of three ways:

■ Select the component in the Design view of the page.

■ Select the <fnd:applicationsTreeTable...> line in the Source view of the page.

■ Select fnd:applicationTreeTable from the hierarchy in the Structure View. All of
the components created as part of the Applications Tree Table are editable using
this same approach, as shown in Figure 16–26.

Figure 16–26 Tree Table Property Inspector

Using the Custom Wizard with Applications Popups

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-51

16.3.1.2.1 Adding a Data Source

Once you have created the Applications Tree Table, you can add data controls to the
facets and content containers within that tree table using the following steps:

1. Navigate to the Data Controls panel of the Applications Navigator.

2. Expand the hierarchy to find the data source.

3. Drag and drop either the entire data source or individual fields into the correct
location on the page. The correct location depends on the component.

16.3.1.2.2 Adding UI Content

To achieve the final goals for a page design, you probably will need to add other
components to the Applications Tree Table. Common facets are provided to help you
achieve these goals. The facet names and use are documented in the Facet table of the
Component Structure and Functions. For example, the tree table may require
additional actions beyond the standard actions that are provided by the Applications
Tree Table. You can open the Component Palette and drag and drop a
commandToolbarButton component onto the additionalToolbarButtons facet to add a
new icon to the Tree Table toolbar.

16.3.1.2.3 Increasing Tree Table Width to Fill 100% of Its Container An Applications Tree
Table can be stretched by placing it in the center facet of an ADF panelStretchLayout
component. Do not set the inlineStylewidth on panelStretchLayout. For more
information about basic page layout and the inlineStyle attribute, see the
"Organizing Content on Web Pages" and the "Customizing the Appearance Using
Styles and Skins" chapters in the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

16.3.1.2.4 Toggle Click to Edit / Edit All in Applications Tree Table The Applications Tree
Table toolbar has an icon that can be clicked to toggle the Click to Edit and Edit All
functions, and the View Menu on the toolbar includes the same toggle feature. This
functions the same as described for the Applications Table in Section 16.1.2.2.3, "Toggle
Click to Edit / Edit All in Applications Table."

16.4 Using the Custom Wizard with Applications Popups

Popups are an option when editing rows. While the standard af:popup component
does not provide buttons or data binding, the Applications Popup wizard provides the
base af:popup with:

■ a title

■ standard buttons

■ customized button capability

■ data binding

■ code that developers can use to invoke the popup

Note: af:popup is a generic function documented in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). This section
discusses using the Popup wizard in JDeveloper Oracle Fusion design
time.

Using the Custom Wizard with Applications Popups

16-52 Developer's Guide

■ design-time support

■ popup facets and properties that can be customized

Popups can be used as standalone components or with the patterns shown in
Table 16–8.

16.4.1 Creating a Popup
You create Applications Popups in the wizard that is displayed when you add the
popups to your previously-created JavaServer Faces (JSF) pages (or page fragments)
from the Data Controls panel. You also can create popups from within other
applications component wizards, such as Applications Table.

16.4.1.1 How to Add Applications Popups to JSF Pages or Page Fragments
Before you can add popup components, you must add the Applications Popup to your
pages from the Data Controls panel.

To add a Popup using a data control:
1. In the Application Navigator, open the Data Controls panel.

Table 16–8 Patterns That Require Popups

Pattern Set Patterns Description/User Action

Attachments Attachments Field,
Attachments Column

When users display attachments, the
resulting popup displays the current
attachment, and also allows users to
add new attachments to an entity.

Compare Objects Configure Comparison, One
to Many, Configure and
Compare

When users select objects to compare
and click Compare, the resulting
popup display allows users to choose
comparison criteria and the objects to
be compared. Users can change
comparison criteria after each
comparison is displayed.

Create Create Multiple Objects When users click Create Multiple
Objects or make a choice from a menu
or toolbar, the resulting popup allows
users to create multiple objects.

Detail On Demand Popup Details When users select a table row and
click an information button, the
resulting popup displays information
about the selected row.

Edit Secondary Window Edit When users select records and click
Edit on a table toolbar, the resulting
popup allows users to edit those
records.

Information Entry
Form

Secondary Window When users click a button, the
resulting popup allows users to enter
data into the popup.

Record Navigation Secondary Window Detail When users navigate through data
records, the resulting popup allows
users to edit the records.

Transactional
Search/Results

Popup Window When users click Search within an
application and enter search criteria,
the popup displays the search results.

Using the Custom Wizard with Applications Popups

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-53

2. Navigate to the data source that you want to bind to the popup.

3. Drag and drop the data control to the JSF page, as shown in Figure 16–27.

Figure 16–27 Dragging a Data Control to the JSF Page

4. In the Create context menu that is displayed, choose Applications > Popup.

The Popup wizard is displayed.

To add an applications popup from a table:
1. Launch the Applications Table wizard, such as by selecting the Applications

option from the Component Palette and then clicking the Table option.

2. In the Configure Table Patterns dialog, set the Create, Duplicate or Edit Pattern
to Popup.

3. Click Configure Popup to display the Popup wizard.

4. Follow the steps in Section 16.4.1.2, "How to Add Applications Popup
Components Using the Wizard."

16.4.1.2 How to Add Applications Popup Components Using the Wizard
This section explains how to use the Popup wizard to add components to your
popups.

In the Popup wizard you can:

■ Create titles and related layout.

■ Add, move, or delete components.

■ Define buttons.

■ Create a preview.

All mandatory fields in the wizard contain default values, allowing you to accept the
defaults and work through the steps quickly. Clicking Cancel on any of the dialogs
cancels the popup creation and discards any values you entered.

Clicking Finish on any of the dialogs has the following effects:

■ Displays a preview of the popup.

■ Creates the popup with the values you provided on that screen and any previous
screens, and default values for the remaining screens.

Note: The data source for the table becomes the default data source
for the popup.

Using the Custom Wizard with Applications Popups

16-54 Developer's Guide

Using the Applications Popup Wizard:
When the Popup wizard launches, the Set Title and Panel Layout dialog is displayed,
as shown in Figure 16–28.

Figure 16–28 Set Title and Panel Layout Dialog

1. Choose title and panel properties:

■ Enter a popup Id. The Id is a string that must be unique to the page fragment.
It is used when other components want to be related to this component. For
example, if you have a table with Create in Popup, the Create button needs to
include this popup Id so it can call it.

■ Enter a title for the popup window.

The title is prepopulated with the Oracle Fusion Applications Standard for the
title, which is a combination of the action of the task, the type of object, and
the specific object name:

[Action] [Object Type]: [Object Name]

The title should be a reference to a single message with appropriate tokens,
because, according to Oracle internationalization standards, you should not
concatenate translatable messages in the code. See the "Internationalizing and
Localizing Pages" chapter in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition), and the expanded information in "To add an Applications
Table using the Applications Table wizard:" .

So, in this example, the title reference in the JSF page fragment source would
resemble: #{af:formatNamed(bundle.EDIT_INVOICE,'INVOICE_
NUMBER',bindings.Invoices.InvoiceNumber)}

Caution: Each wizard dialog contains a Messages field that displays
errors for that step. Do not proceed to the next wizard step without
correcting the errors in the present step.

Using the Custom Wizard with Applications Popups

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-55

but in the resource bundle, it would be defined as:

<trans-unit id="EDIT_INVOICE">

 <source>Edit Invoice: {INVOICE_NUMBER}</source>

 <target/>

</trans-unit>

■ [Optional] Enter a title icon location or click Browse to navigate to the icon's
location.

■ Select the number of layout columns -- 2 or 3 -- for the popup. This affects the
data you bind to. For instance, if you are showing an address with name,
street, and town, you could put this information in two or three columns.

2. Click Next to display the Select Components to Display dialog, as shown in
Figure 16–29.

Figure 16–29 Select Components to Display Dialog

■ The Components table is automatically populated with the data source fields.

■ In the Fields section:

– Click X to delete the selected component.

– Click + to add a component.

– Click the Reorder icons to change the position of the selected component
in the list.

– Click an entry in the Display Label column to enter a new label, such as
Dept. Number instead of DeptNo.

– Click an entry in the Component to Use column to choose a component
from the list, as shown in Figure 16–30.

Using the Custom Wizard with Applications Popups

16-56 Developer's Guide

Figure 16–30 Components to Use List

See the description of "Components to Use" in the "Using Attributes to Create
Text Fields" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

■ Click Next to display the Enable Window Buttons dialog, as shown in
Figure 16–31.

Figure 16–31 Enable Window Buttons Dialog

3. In the Enable Window Buttons dialog, you can perform the following actions:

■ If the popup requires navigation workflow, such as when choices within the
popup lead users to another window:

– Check the Enable Record Navigation box.

– Choose linear or non-linear navigation from the Navigation Type menu.

■ Choose View Only Content to create a read-only popup, or choose Editable
Content to allow users to edit the popup.

When you choose View Only Content, you automatically enable Slots 1 and 2.
When you choose Editable Content, you automatically enable Slots 1, 2, and 3,
as shown in Figure 16–32.

Using the Custom Wizard with Applications Popups

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-57

Figure 16–32 Editable Content Slots

■ Click Next to display the Review Panel Configuration dialog, as shown in
Figure 16–33.

Figure 16–33 Review Panel Configuration Dialog

4. The dialog displays a list of your choices.

In the dialog:

■ Click Back to revise your choices.

■ Click Finish to save your choices and create the popup.

■ Click Cancel to delete the popup information and exit the wizard.

5. When you click Finish, the af:popup component is displayed in the page, as
shown in Figure 16–34.

Using the Custom Wizard with Applications Popups

16-58 Developer's Guide

Figure 16–34 Page Displaying Popup and Popup Components

16.4.2 How to Modify Popup Components and Properties
This section describes how to bind data sources to the popup, and edit popup
components and properties after you create the popup in the Popup wizard.

16.4.2.1 Accessing the Popup on a JSF Page
Before you can edit the popup components and properties or bind the popup to a data
source, you must access the popup in the Property Inspector section of your JSF page.

To Access the Popup on a JSF Page
1. Make the JSF page the active file.

2. Access the popup by double-clicking one of the following on the JSF page:

■ af:popup component in the Design view.

■ <af:popup...> line in the Source view.

■ af:popup entry in the Structure view hierarchy.

When you select the popup, the Popup - Property Inspector is displayed
below the page.

16.4.2.2 Adding a Data Source to an Existing Popup
This section describes how to add a data source after you have created a popup in the
Popup wizard.

To add a data source to an existing popup:
1. In the Application Navigator, expand the Data Control panel.

2. Navigate to the data source you want to bind to the af:popup.

3. Drag and drop the entire data source, or individual fields, to the JSF page in
Design mode.

Data-source fields are bound to popup components. Components are stored in the
contents facet under the af:panelFormLayout hierarchy.

16.4.2.3 Adding User-Interface Content to an Existing Popup
To add components to an existing popup, drop the new components into facets.

Using the Custom Wizard with Applications Popups

Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables 16-59

To add UI content to existing popups:
1. Open the Component Palette.

2. In the list, choose the ADF Faces library.

3. Drag and drop the component to the appropriate popup facet.

For example, to add a new button, drag and drop the icon to the buttonBar facet.

16.4.2.4 Adding action and actionListener Methods to the Popup Buttons
Either method bindings or managed bean methods can be assigned to the action and
actionListener attributes to provide functionality for the buttons that were selected for
the popup at design time.

Using the Custom Wizard with Applications Popups

16-60 Developer's Guide

17

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-1

17Implementing Applications Panels,
Master-Detail, Hover, and Dialog Details

This chapter discusses the Applications Panels, Master-Detail, Hover and Dialog
Details components used to implement user interface features in JDeveloper.

This chapter includes the following sections:

■ Section 17.1, "Implementing Applications Panels"

■ Section 17.2, "Implementing Applications Master-Detail"

■ Section 17.3, "Implementing Hover"

■ Section 17.4, "Implementing Applications Dialog Details"

For basic information, see:

■ Chapter 12, "Getting Started with Your Web Interface"

■ Chapter 13, "Implementing the UI Shell"

■ Chapter 16, "Implementing UIs in JDeveloper with Application Tables, Trees and
Tree Tables"

17.1 Implementing Applications Panels
Applications panels help you create the following user interface (UI) components as
part of the UI Applications patterns:

■ Page title

■ Form title

■ Page button bar (including navigation bar)

■ Facets for page-specific UI components

You must use Applications panels to standardize layout and appearance for all your
page forms and buttons, including read-only pages.

Before you begin:
Before you can use Applications panels, you must be familiar with JDeveloper and be
able to create JavaServer Faces (JSF) pages.

17.1.1 Overview of Applications Panel Components
Applications panels provide a button bar containing these buttons:

■ Canceling processes: Cancel, Revert

Implementing Applications Panels

17-2 Developer's Guide

■ Data-saving processes: Save, Submit, Save and Continue, Save and Next, Save
and Create Another, Continue, Create Another, Save and Close

■ Navigational processes: Next, Previous, Back

The buttons are organized into four slots, as shown in Figure 17–7.

All panel buttons have attributes, and some buttons have facets. Button attributes
include button qualities, such as the title string and the button name. Button facets are
locations that contain panel data, such as content locations and button information
locations.

Table 17–1 contains attributes that are exposed for the buttons.

Table 17–1 Attributes of Standard Panel Buttons

Property Description Data Type

id Unique identification number for the panel. string

rendered Whether the panel is rendered (that is, converted
from an object-based description into a graphical
image for display).

boolean or expression

title Panel title. string or expression

navigationType Type of navigation for that panel. Navigation types:

■ linear - sends users to an
adjacent or contiguous window.
This commonly is used when a
series of actions or steps need to
be followed in a sequential
order.

■ nonLinear - sends users to a
non-adjacent or non-contiguous
window. This is used when an
action does not need to take
place in a specific sequence.

■ none - navigation is disabled.

<button_name>Visible

For example:
submitVisible

Whether the button is visible in the UI. boolean or expression

<button_
name>Rendered

For example:
submitRendered

Whether the button is rendered in the UI (that is,
converted from an object-based description into a
graphical image for display).

boolean or expression

<button_name>Action Type of action that the button performs. EL expression

<button_name>PopupId

For example:
submitPopupId

ID of the popup that appears when users press
the button.

string

<button_
name>ShortDesc

For example:
previousShortDesc

Tooltip text for the button. string

<button_
name>Disabled

For example:
submitDisabled

Next and Previous buttons only: Whether the
button should be disabled in the UI.

boolean or expression

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-3

submitText Submit button text: Text associated with the OK
button.

string or expression

scrollable Sets to true when scroll bar needs to be enabled.
When scrollable is set to true, it sets
layout="scroll" on the af:panelGroupLayout
component inside Applications Panel. Thus, the
developer does not need to place
af:panelGroupLayout with layout="scroll"
directly under the Applications panel.

boolean / expression

saveOptionsStyle Sets the appearance of the Save button. The Save
button can be rendered as a normal button, or as a
drop button, depending on the value of this
attribute. When it is set to dropButton, the
developer is expected to have other save options
turned on (such as saveAndContinue or
saveAndClose), or add af:commandMenuItem to
the saveButtonMenu facet.

button or dropButton

instructionText The instructionText attribute places instruction
text for the Applications Panel title. This
instruction text appears right below the title if the
collaborationToolbar facet and scalingInfo
facet are empty. If they are not empty, the
instructionText is placed under the
scalingInfo that appears after the collaboration
toolbar.

The instructonText attribute can
take a String value or an
ELExpression. A helpTopicID can be
passed to this attribute as an
ELExpression. For example:

instructionText="#{adfFacesConte
xt.helpProvider'helpTopicId'].in
structions}"
or
instructionText="#{adfFacesConte
xt.helpProvider['helpTopicId'].d
efinition}"
or
instructionText="#{adfFacesConte
xt.helpProvider['helpTopicId'].e
xternalUrl}"

panelToolbarRendered If no default buttons that are provided by the
Applications Panel are used, set this value to false
to avoid displaying unnecessary separators.

Boolean

revertImmediate Sets the immediate attribute on the Revert button.

Sets whether or not data validation - client-side or
server-side - should take place when events are
generated by this component. When immediate is
true, the default ActionListener provided by the
JavaServer Faces implementation should be
executed during the Apply Request Values phase
of the request processing lifecycle, rather than
waiting until the Invoke Application phase.

Boolean. Default is false.

submitStyle Sets the appearance of the Submit button. The
Submit button can be rendered as a normal
button, or as a drop button, depending on the
value of this attribute. When it's set to
dropButton, the developer is expected to have
other submit options turned on, or add
af:commandMenuItem to the submitButtonMenu
facet.

String. The two values are button
(the default) and dropButton.

previousPartialSubmi
t

Sets the partialSubmit attribute on the Previous
button.

True or false (default)

Table 17–1 (Cont.) Attributes of Standard Panel Buttons

Property Description Data Type

Implementing Applications Panels

17-4 Developer's Guide

By default, a managed bean that ships with the Applications Panel enables certain
actions when certain conditions exist. For example, default actions occur when users
click buttons, and when developers set certain Applications Property values. These
default actions are overridden if you change the value of the default button action
property.

Table 17–2 contains facets that are exposed for each panel button.

nextPartialSubmit Sets the partialSubmit attribute on the Next
button.

True or false (default)

saveAndCreateAnother
Text

Sets the text that is displayed on the
saveAndCreateAnother button.

String

createAnotherText Sets the text that displays on the createAnother
button.

String

<button_name>Action Sets the action attribute on the button with
<button_name>. Users must provide their own
action; there is no default action.

String or EL Expression.

<button_
name>ActionListener

Sets the actionListener attribute on the button
with <button_name>. Users must provide their
own actionListener; there is no default
actionListener.

EL Expression.

<button_
name>PartialTriggers

For example:
saveAndClosePartialT
riggers

partialTriggers attribute for <button_name>
button.

String or EL Expression.

Important: The PartialTriggers
attribute must be entered manually
by the developer. This is because, at
design time, the JDeveloper Property
Inspector can:

■ Select the incorrect ID.

■ Append square brackets around
the selected id, such as [id1 id2].

Table 17–2 Facets of Standard Panel Buttons

Facet Description Allowed Children

contents Facet for holding developer-defined content
or content generated at design time.

Any ADF component.

navigationBar Facet for holding the navigation choice list if
the chosen Record Navigation Type is
non-linear.

ADF selectOneChoice

actionButtonBar Facet for holding custom action buttons. ADF commandButtons and
commandToolbarButtons under some
ADF layout components.

saveButtonMenu Facet for holding the custom menu and menu
items for the Save button.

af:commandMenuItem or af:group

submitButtonMenu Facet for holding the custom menu and menu
items of the Submit button.

None

popup Facet for holding any popups required for any
of the buttons.

Applications popups under some
ADF layout components.

appsPanelLegend Facet for displaying legend information on
the header.

Table 17–1 (Cont.) Attributes of Standard Panel Buttons

Property Description Data Type

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-5

appsPanelContext Facet for displaying context information next
to the header. The contextual information is
displayed next to the header text.

customSaveDropButton Facet for adding custom Save drop button. This facet should contain <af:group>
with <af:commandToolbarButton>
under it. The Design Time handles
this for you. See Figure 17–8 and its
description.

localContext Facet for adding content into local context
region.

taskStamp Facet for adding a task stamp.

There are three styles: one applied to the right
side of the data, one to the left, and one to the
container having these values.
(AFStampContainer, TaskStampTextLabel,
AFTaskStampTextValue) For every row of data
in the taskStamp, a panelGroupLayout and
two outputText components need to be
added.

Example:

<af:panelGroupLayout
 layout="vertical"
 valign="top"
 styleClass="AFStampContainer"
id="ptpgl5">
 <af:panelGroupLayout
 layout="horizontal"
 halign="end" id="ptpgl6">
 <af:outputText
 value="Last Updated"

styleClass="TaskStampTextLabel"
id="ptot8"/>
 <af:outputText
 value="08-Nov-2007"

styleClass="AFTaskStampTextValue"
id="ptot9"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout
 layout="horizontal"
 halign="right" id="ptpgl7">
 <af:outputText
 value="Budget Remaining"

styleClass="TaskStampTextLabel"
id="ptot10"/>
 <af:outputText
 value="$20,000.00"

styleClass="AFTaskStampTextValue"
id="ptot11"/>
 </af:panelGroupLayout>
</af:panelGroupLayout>

Table 17–2 (Cont.) Facets of Standard Panel Buttons

Facet Description Allowed Children

Implementing Applications Panels

17-6 Developer's Guide

collabrationToolbar Facet for adding collaboration toolbar
buttons.

Example:

<f:facet
name="collaborationToolbar">
 <af:toolbox>
 <af:toolbar>
 < af:commandImageLink
text="One" icon="/image1"
id="mycmd1"/>
 < af:commandImageLink
text="Two" icon="/image2"
id="mycmd2"/>
 < af:commandImageLink
text="Three" icon="/image3"
id="mycmd3"/>
 </af:toolbar>
 </af:toolbox>
</f:facet>

scalingInfo Facet for adding scaling information. Example:

<af:panelGroupLayout
layout="vertical"

styleClass="AFStampContainer"
id="pgl3">
 <af:outputText value="AUD =
Australian Dollar" id="ot5"/>
</af:panelGroupLayout>

Example for scalingInfo with more
than one value:

<af:panelGroupLayout
layout="vertical"
 styleClass="AFStampContainer"
id="pgl3">
 <af:outputText value="AUD =
Australian Dollar | Amounts in
thousands" id="ot5"/>
</af:panelGroupLayout>

submitButtonMenu Facet for holding the custom menu and menu
items for the Submit button.

af:commandMenuItem or af:group

Table 17–2 (Cont.) Facets of Standard Panel Buttons

Facet Description Allowed Children

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-7

contentsStretch The contents facet is a child of the
panelGroupLayout so that scrolling can be
enabled around the contents. But the
panelGroupLayout does not allow its children
to be stretched.

The contentsStretch facet is not a child of
the panelGroupLayout. Components placed
inside this do not need to use an inlineStyle
to set width and with declarative components
placing them inside a panelStretchLayout
will stretch the components.

Note: The Applications Panel can be stretched
by placing it in the center facet of an ADF
panelStretchLayout component. Do not set
the width using the inlineStyle attribute on
either Applications Panel or
panelStretchLayout.

To use this facet, place your components
inside the contentsStretch facet and set the
attribute contentsFacet="stretch" on the
Applications Panel. The user needs to trade
between using scrollable or stretchable
contents.

A switcher reads the contentsFacet attribute
from the ApplicationsPanel component to
decide which facet to use. The default facet is
scroll; to use the contentsStretch facet, set
contentsFacet="Stretch" on the
Applications Panel.

Example:

<fnd:applicationsPanel id="AP1"
title="#{viewcontrollerBundle.APPLICATI
ONS_PANEL__STRETCH_FA}"
 scrollable="true"
navigationType="none"
 cancelVisible="true"
cancelRendered="true"
 submitVisible="true"
submitRendered="true"
contentsFacet="stretch">
 <f:facet name="contentsStretch">
 <af:panelStretchLayout id="psl1">
 <f:facet name="bottom"/>
 <f:facet name="center">
 <fnd:applicationsTable
tableId="ATt2" id="AT2"
 deleteEnabled="true"
 createPatternType="inline"
 duplicatePatternType="inline"
 editPatternType="inline"
 createText=
 "#{viewcontrollerBundle.NEW}">

Scroll (the default) or Stretch.

appsPanelTrain Facet for adding a horizontal train above
header.

Table 17–2 (Cont.) Facets of Standard Panel Buttons

Facet Description Allowed Children

Implementing Applications Panels

17-8 Developer's Guide

Model
The Applications panel does not expose any bindings to the model. However,
components within the panel can be bound to the model.

Controller
The Applications Panel component ships with a default managed bean (internal to the
Oracle Fusion Middleware Extensions for Applications team) that performs the
following functions:

■ Default event handlers for all button action events. Event handler delegates to
custom action method if set on the button action property. Each button event
handler simply returns a standard outcome which is the name of the button
clicked. For example, clicking the Cancel button will return an outcome "cancel".

■ If popup ID is set for any button, selecting the button invokes the popup.

To allow developers access to some of the implementation, the Applications Panel
exposes a public class
oracle.apps.fnd.applcore.patterns.ApplicationsPanelEventHandler that contains
default event handlers for all the buttons. The button methods are named as
process<buttonName> such as processSave and processCancel. Application
developers writing custom action handlers can also use the default implementation by
calling these methods.

Custom Button Handling
Follow these steps to attach a custom button handler to the Cancel button.

1. Define the managed bean class, as shown in Example 17–1.

Example 17–1 Example of Attaching a Custom Handler to a Button

import oracle.apps.fnd.applcore.patterns.ui.ApplicationsPanelEventHandler;
import oracle.apps.fnd.applcore.patterns.ui.util.PatternUtils;

public class CustomEventHandler
{
 public String processCancel()
 {
 // Custom code
 ...
 // Call default event handler if required. It will return a standard outcome
 // for this button click.
ApplicationsPanelEventHandler appPanelEventHandler =
ApplicationsPanelEventHandler.getInstance();
String outcome = appPanelEventHandler.processCancel();

 // If popup is required to be invoked after event handling
 PatternUtils.invokePopup(popupId);

 return outcome;
 }

contentsFacet This can be either scroll (the
default) or stretch. Set to stretch
when using the contentsStretch
facet.

Table 17–2 (Cont.) Facets of Standard Panel Buttons

Facet Description Allowed Children

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-9

}

2. Register the managed bean in your project's faces-config file.

3. Open the Property Inspector for the Applications panel and choose the Cancel
Action property. As shown in the example in Figure 17–1, set
#{CustomeEventHandler.processCancel} as the expression for the property.

Figure 17–1 Table Property Inspector

4. Click the Create tab.

5. In the Create Action expression field, enter the following expression:

#{CustomEventHandler.processCreate}

6. Click Set.

17.1.2 How to Create an Applications Panel
You create Applications panels in the Applications Panel wizard, which is displayed
when you add panels to your JSF pages (or page fragments) from the Component
Palette or the Data Controls panel.

To Add an Applications Panel Using the Component Palette:
1. Open the Component Palette.

2. In the list, choose Applications.

3. In the list, click Panel. JDeveloper will attempt to place the panel at the current
cursor location. If the current location is not appropriate, an error message
displays. You also can drag the Panel icon to the page in either the Design or the
Source view. A plus (+) sign will be added to the arrow when it is over a location
in which a panel can be inserted.

The Applications Panel wizard is displayed.

To Add an Applications Panel Using the Data Control Dialog:
1. In the Application Navigator, open the Data Control panel.

2. Navigate to the data source that you want to bind to the Applications panel.

3. Drag and drop the data control to the JSF page.

4. In the Create context menu that is displayed, choose Applications > Panel.

The Applications Panel wizard is displayed.

Implementing Applications Panels

17-10 Developer's Guide

17.1.2.1 Adding Applications Panels Using the Applications Panel Wizard
This section explains how to use the Applications Panel wizard to add panels to your
page.

In the Applications Panel wizard you can:

■ Specify panel titles and subsections

■ Select panel components

■ Bind a data source to the panel

■ Arrange panel components

■ Select panel buttons

In any Applications Panel wizard dialog, click Cancel to cancel your actions and exit
the wizard. Click Finish on any dialog to accept the defaults and exit the wizard.

To Add an Applications Table Using the Applications Panel Wizard:
When the Applications Panel wizard is launched, the Title and Subsections dialog is
displayed, as shown in Figure 17–2.

Figure 17–2 Specifying the Panel Title and Subsections

1. In the dialog:

■ Enter the panel title. In the example, LABEL should be predefined in a bundle
as "Edit Journal: ID {OBJ_ID}".

The title is prepopulated with the Oracle Fusion Applications Standard for the
title, which is a combination of the action of the task, the type of object, and
the specific object name:

[Action] [Object Type]: [Object Name]

The Object Name usually is something specific so you can identify a specific
object. For instance, if you were dealing with part numbers, the Object Name

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-11

could be a specific part number; if you were dealing with customer
information, it could be the customer's name.

The title should be a reference to a single message with appropriate tokens,
because, according to Oracle internationalization standards, you should not
concatenate translatable messages in the code. See "Internationalizing and
Localizing Pages" in the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

■ Click the Add icon (+) to add Panel Subsections, or click the Delete icon (X) to
delete the highlighted subsection.

Each subsection has editable title fields, panel type fields (Panel Header for a
basic view or Show Detail Header for a more detailed view), and number of
columns (1-3) fields.

The Panel Subsections is used to divide the Applications Panel facet (contents)
with other layout components, such as panelHeader, show detail header, and
panelGroupLayout. This lets the developer decide the layout during Design
Time without needing to add each of these layouts manually after the panel
creation. Of course, the user can add more or new layouts as needed after the
panel is created.

Use the up or down arrows to change row order.

2. Click Next.

The Select an initial set of panel components dialog is displayed, as shown in
Figure 17–3.

Figure 17–3 Selecting an Initial Set of Panel Components

3. In the Panel Components dialog:

Implementing Applications Panels

17-12 Developer's Guide

a. Click Read-only Form to create a read-only form. (optional) If you select
Read-only, the choices in the Component to Use column will change from
Input Text to Output Text types.

b. If you have added the panel from the Component Palette, the Bind Data Now
field displays. To bind a data source to the panel component:

– Select Bind Data Now.

– Click Browse to display the Data Source dialog, shown in Figure 17–4.

Figure 17–4 Data Source Dialog

Select the data source, then click OK to add it to the component. Option-
ally, you can bind the component to a data source at a later time.

When you choose a data source, the component fields in the dialog are
automatically populated with the data source fields, which contain
panel-component information.

c. To reorder component fields, click the up and down arrows. To delete
component fields, click the Delete icon (X). You will be able to add more
component fields later. See Section 17.1.3.4, "Adding a Data Source to an
Existing Panel."

d. Display Label: In general, the labels defined in the selected Data Control will
be what you want and you can leave this value at the default <Default>
setting. Otherwise, enter a new label name.

e. Value Binding: In general, the label and the Value Binding will match and you
can accept the displayed value. Otherwise, you can click in the field to display
a drop-down list of the values available in the selected Data Control.

f. Component To Use: Data in Dialog Details can be read-only or updatable.
Component to Use is similar to what Component does while creating a table.
Clicking it reveals a choice list of values, and the dialog details popup would
then at runtime show that particular column from the datacontrol as the
selected component to use. The choice list is changed according to whether or
not you choose read-only. If you selected Read-only, the choices will change
from Input Text to Output Text types.

4. Click Next. The Components Layout dialog is displayed, as shown in Figure 17–5.

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-13

Figure 17–5 Layout Components In Available Subsections Dialog

5. Drag components from their default locations to your previously defined
subsections. The result will appear similar to Figure 17–6.

Figure 17–6 Example of Component Layout

6. Click Next. The Page Buttons dialog is displayed, as shown in Figure 17–7.

Implementing Applications Panels

17-14 Developer's Guide

Figure 17–7 Select Page-Level Buttons Dialog

7. In the Page Level Buttons dialog:

■ To enable panel navigation (optional):

– Select Enable Navigation.

– Choose a navigation type (Linear or Non-Linear).

Linear sends users to an adjacent or contiguous window. This commonly
is used when a series of actions or steps need to be followed in a sequen-
tial order.

Non-Linear sends users to a non-adjacent or non-contiguous window. This
is used when an action does not need to take place in a specific sequence.

■ To disable editing of panel contents, select View Only Content.

■ To enable editing of panel contents:

– Select Editable Content.

– Choose the transactional buttons to display in each panel slot from the
respective slot dropdown menus.

Note that Slot 3 defaults to Continue. However, as shown in Figure 17–7, if
you select Submit, a text input field displays to the right. You can enter
alternate text that makes more sense in your application for the submit
action, such as OK or Purchase.

You can create a Save or Submit pull down menu. When you choose Save
in Slot 2, or Save and Close in Slot 3, an Add Menu option will appear.
Click it to display a list similar to Figure 17–8.

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-15

Figure 17–8 Add Menu List

These are options that can appear in a pull down menu at runtime under
Save. To select, click the option you want. To add more than one, select
Add Menu again and choose a second option. As they are chosen, check
marks will appear next to each selected item, shown in Figure 17–9.

When an item is selected from the Add Menu of Slot 3, the selection of the
drop-down in Slot 3 will become the label of af:commandToolbarButton
and the selections in the Add Menu will become the af:commandMenuItem
under af:menu in the popup facet of the af:commandToolbarButton. The
af:commandToolbarButton will be added to the customSaveDropButton
facet (see Table 17–2).

Figure 17–9 Add Menu List Showing Multiple Selections

If an option is chosen in the Add Menu of Slot 2, it will be grayed-out as
an option for Slot 3 to prevent you from making the same choice multiple
times, as shown in Figure 17–10.

Figure 17–10 Add Menu List Selection Effect on Slot 3 Choices

8. Click Next. The Summary dialog is displayed, as shown in Figure 17–11.

Implementing Applications Panels

17-16 Developer's Guide

Figure 17–11 Reviewing the Panel Structure Dialog

9. Check to make sure your panel choices are correct.

10. Click Finish to create the panel. When you run this page, it will appear similar to
Figure 17–12.

Figure 17–12 Example Page Running In Browser

17.1.3 How to Modify Applications Panels Components and Properties
This section describes how to edit Applications Panel properties and components, how
to add a data source to the panel, and how to add more UI content.

17.1.3.1 Stretching the Applications Panel
The Applications Panel can be stretched by placing it in the center facet of an ADF
panelStretchLayout component. Do not set the width using the inlineStyle attribute
on either Applications Panel or panelStretchLayout. For more information about

Implementing Applications Panels

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-17

basic page layout and the inlineStyle attribute, see "Organizing Content on Web Pages"
and "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition).

17.1.3.2 Accessing the Applications Panel on a JSF Page
Before you can edit the panel properties and components or bind the panel to a data
source, you must access the panel in the Property Inspector section of your JSF page.

To access the panel on a JSF page:
1. Make the JSF page the active file.

2. Access the panel by double-clicking one of the following on the JSF page:

■ Applications Panel component in the Design view.

■ Applications Panel line in the Source view:

fnd:applicationsPanel...

■ Applications Panel entry in the Structure view hierarchy:

fnd:applicationsPanel

When you select the panel as described in this section, the Applications Panel -
Property Inspector is displayed.

17.1.3.3 Editing Applications Panel Properties and Components
This section describes how to edit Applications Panel properties and components.

To edit an application panel property:
1. Access the panel as described in Section 17.1.3.2, "Accessing the Applications

Panel on a JSF Page."

2. Select the Applications Panel to display the Property Inspector.

3. Follow the instructions in the Property Inspector to modify the panel property.

To edit an application panel component:
1. Access the panel as described in Section 17.1.3.2, "Accessing the Applications

Panel on a JSF Page."

2. Select, then double-click the component or subsection. For example, to select a
panel header, select af:panelHeader in the Source view.

3. When you double-click the component, the Property Inspector for the component
is displayed. Edit the component in the Inspector.

For example, to edit a subsection display name, select the subsection and edit the
Text property in the Property Inspector for that subsection.

17.1.3.4 Adding a Data Source to an Existing Panel
This section describes how to add a data source after you create a panel in the
Application Panel wizard.

To add a data source to an existing panel:
1. In the Application Navigator, open the Data Control panel.

2. Navigate to the data source to bind to the Applications panel.

Implementing Applications Master-Detail

17-18 Developer's Guide

3. Drag and drop the data source itself (or its individual fields) to the JSF page in
Design mode.

Data-source fields are bound to panel components. Components are stored in the
contents facet as af:panelFormLayout components, and in the various subsections.

For example, Figure 17–13 shows a panel's Structure view, which contains added
components.

Figure 17–13 Panel Structure View

To create an additional field in a subsection, drag an attribute from the data source
to the corresponding container. For example, drag the attribute to
fnd:applicationsPanel > f:facet - contents > af:panelGroupLayout >
af:panelFormLayout. When prompted for the component to associate with the
attribute, choose ADF Input Text w/Label.

17.1.3.5 Adding User-Interface Content to Applications Panels
Although Applications panels already provide common layout components, your JSF
page might require additional UI elements, such as additional action buttons. When
you add new components to a panel, you drop the new components into facets.

To add UI content to existing panels:
1. Open the Components Palette.

2. Drag and drop the button component on to the appropriate popup facet.

For example, to add a new button, drag and drop the button to the
actionButtonBar facet.

For more information on facets, see Table 17–2, " Facets of Standard Panel Buttons".

17.2 Implementing Applications Master-Detail

The Master-Detail composite is used in situations where the information is too large,
dynamic or complex to show in a flat table. The user can see the Master, or summary,
information in one area, and the corresponding details in a separate area. This can be

Note: Master-Detail refers to the interaction of selecting an object
from a master list, and refreshing the details in an adjacent area. It is
not the relationship of the data.

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-19

achieved using different master and detail components, such as table, tree table, and
tree.

For instance, when the user selects an Employee from the master table, the
corresponding employee details are displayed in the region below in a label/data
format.

For more information, see the "Displaying Master-Detail Data" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

17.2.1 Component Structure and Functions
You should review and understand the Applications Table before proceeding to
implement the Applications Master-Detail in your development pages.

Facets
Table 17–3 shows the facets that are exposed on the Applications Master-Detail.

View Properties
See Table 16–2, " Applications Table Properties" in Section 16.1, "Implementing
Applications Tables" for a list of properties exposed on the Applications Table. These
properties can be used to configure the Applications Table under either the Master or
Detail section of the Applications Master-Detail component.

Model
The Applications Master-Detail does not expose any bindings to the model on its own,
but the ADF tables or formLayout components that are encapsulated within the
Applications Table under the master or detail section will be bound to the model.

Controller
The Applications Master-Detail ships a default managed-bean (internal to the Oracle
Fusion Middleware Extensions for Applications (Applications Core) team) that
currently supports translation functions. You can access the implementation of the
Applications Table managed bean which will be exposed as either the Master or the
Detail section of the component. For use and implementation information, see
Controller in Section 16.1, "Implementing Applications Tables."

17.2.2 Introduction to Master-Detail Components
The Master-Detail can exist at the page level, or at the subheader level in a page. The
Master-Detail component will support these layouts:

■ Panel over FormLayout

■ Panel over TreeTable

■ Panel over Heterogeneous

Table 17–3 Applications Master-Detail Facets

Facet Description Allowed Children

Master facet for holding the
Applications table

formLayout and Applications
Table

Detail facet for holding the
Applications Table

Applications Table

Implementing Applications Master-Detail

17-20 Developer's Guide

■ Panel over Subtabs

■ Panel over Table

■ Tree over LevelSpecific

■ Table over Table

■ Table over Form Layout

■ Table over sub tabs

■ Table over Heterogeneous (every row can have a different detail section)

■ Table over Tree (available via Table over Heterogeneous)

■ Form Layout over Table

■ Form Layout over Form Layout

■ Form Layout over sub tabs

■ Form Layout over Heterogeneous

■ Form Layout over Tree (available via Form Layout over Heterogeneous)

■ Table over Tree Table

■ Tree Table over Table

■ Tree Table over Sub tabs

■ Tree Table over Form Layout

Tables are the most common master component. When a table row is selected, the
details appear in the area below the table. A table is also a very common detail
component.

A Tree Table is a layout option in a Master-Detail composite for either a Master or a
Detail (not both). When a Tree Table row is selected, the details appear in the area
below the Tree Table.

Sub tabs are a detail layout option in a Master-Detail composite.

Form Layout is a detail layout option in a Master-Detail composite.

17.2.3 How to Create a Master-Detail
The Applications Master-Detail can be added to a page or page fragment using the
Data First approach. Valid drop locations in the page or page fragment include ADF
Form, and ADF Layout components and the Applications Panel (jsp:root, af:form,
af:root, fnd:applicationsPanel, af:group, af:panelBorderLayout,
af:panelBox, af:panelCollection, af:panelFormLayout, af:panelGroupLayout,
af:panelHeader, af:showDetailItem, af:panelWindow, af:popup,
af:showDetail, af:subform, f:facet, f:panelGrid, f:panelGroup,
af:pageTemplateDef, af:pageTemplate#<localArea_Facet>.

For more information on creating a JSF page, see the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

Be sure to save your work after you create each component.

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-21

17.2.3.1 Adding a Master-Detail to JSF Pages or Page Fragments
You create a Master-Detail in the Applications Master-Detail wizard, which is
displayed when you add the details to your JSF pages (or page fragments) from the
Data Controls panel.

To add a Master-Detail from the Data Control panel:
For Master-Detail to work, you need to define the model-layer such that the Master
and Detail are linked by a ViewLink that establishes a relationship from the Master to
the Detail.

1. In the Application Navigator, open the Data Control panel.

2. Navigate to the data source that you want to bind to the Master-Detail.

3. Drag the detail data-source onto the page.

4. In the Create context menu that is displayed, choose Applications >
Master-Detail. Figure 17–14 shows the parent-child relationship of the selected
Data Control, how the child is dragged to the page, and the Master-Detail option
on the Create menu.

Figure 17–14 Example of Master-Detail Relationships

The Applications Master-Detail wizard is displayed.

17.2.3.2 Adding Master-Details Components Using the Applications Master-Details
Wizard
This section explains how to use the Applications Master-Detail wizard to add
Master-Details to your pages.

All mandatory fields in the wizard contain default values, allowing you to accept the
defaults and work through the steps quickly. Clicking Cancel on any of the dialogs
cancels the creation of the Master-Detail and does not save the values you entered.

When you click Finish on any of the dialogs, the software:

■ Displays a preview of the Master-Detail.

■ Creates the Master-Detail with the values you provided on that screen and any
previous screens, and default values for the remaining screens. However, not all
wizards have a Finish button, or they only appear in a wizard once you have
enough information to default the rest of the steps. For example, in almost all

Implementing Applications Master-Detail

17-22 Developer's Guide

wizards, the last step is the Summary. This step often is omitted, so there is almost
always a Finish button on the step before the Summary step.

Creating a Master-Detail Using Tables
When the Create Applications Master-Detail wizard launches, the Select Pattern Type
dialog displays, shown in Figure 17–15.

Figure 17–15 Select Pattern Type Dialog

Enclose Master Detail in
If the Pattern Type supports either the Panel Splitter or the Master Header Label, this
option becomes active and a list, shown in Figure 17–16,offers these choices.

Figure 17–16 Enclose Master Detail Choices

■ <none>: This is the default selection. No special action will be performed.

■ Panel Splitter: Select this option to activate the Splitter Position field and set the
position, in pixels, of the horizontal position of the split. Figure 17–17 shows an
example of a Splitter in use at the default position.

Caution: Each wizard dialog contains a Messages field that displays
errors for that step. Do not proceed to the next wizard step without
correcting any errors in the present step.

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-23

Figure 17–17 Example of Panel Splitter

■ Panel Header / Show Detail Header: Select one of these options to activate the
Master Header Label field to enclose the Master-Detail with a header. There are
basically two types of headers:

■ with a hide/show icon

■ without the hide/show icon

 In the example in Figure 17–18, the Edit Element Entries text is the Panel Header
and the Basic Information text with the expand/collapse icon is the Show Detail
Header. The picture, Name and Social Security Number are the content, which is
enclosed by the Show Detail Header. Then everything is enclosed by the Panel
Header, shown in Figure 17–18.

Figure 17–18 Example of Panel and Detail Headers

■ Master Header Label: Enter the label to be used by either the Panel Header or the
Show Detail Header.

Select the Pattern Type (the example uses Table/Table) and any options and click Next.

The Configure Master dialog displays, shown in Figure 17–19.

Implementing Applications Master-Detail

17-24 Developer's Guide

Figure 17–19 Table/Table Configure Master Dialog

To create your Master-Detail for your Master table columns:

1. Click Read-only Table to create a read-only Master table. (optional) If you select
Read-only, the choices in the Component to Use column will change from Input
Text to Output Text types.

2. In the Enable ADF Behavior section, choose whether to allow users to Select, Sort,
and Filter rows.

3. In the Columns field:

■ Click the Display Label field to enter a column label.

■ Click the menu arrow to select value bindings for each value.

■ Choose what component to associate with the column.

■ After selecting a component, click the Delete icon (X) to delete it, the Add icon
(+) to edit it, and the Reorder icons to change its position in the field.

Click Next to display the Configure Master Table Patterns dialog, shown in
Figure 17–20.

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-25

Figure 17–20 Configuring Master Table Patterns

4. Choose the patterns to be enabled in your table.

5. Click Next to display the Configure Detail Header dialog, shown in Figure 17–21.

Figure 17–21 Configure Detail Header Dialog

6. Enter a Detail header name and choose a corresponding attribute.

7. Click Next to display the Configure Details dialog:

Configuring the Details table is the same as configuring the Master table; see
Figure 17–19 and steps 1 through 4.

8. Click Next to display the Configure Detail Table Patterns dialog.

Implementing Applications Master-Detail

17-26 Developer's Guide

Configuring the Details Table Patterns is the same as configuring the Master Table
Patterns; see Figure 17–20 and step 5.

9. Click Next to display the Review panel configuration dialog, shown in
Figure 17–22.

Figure 17–22 Reviewing the Panel Configuration

When you click Finish, the Table/Table Master-Detail is added to the editor, and
appears similar to Figure 17–23 in Design mode.

Figure 17–23 Table/Table Master-Detail Example

Creating a Master-Detail Using Forms
When the Create Applications Master-Detail wizard launches, the Select Pattern Type
dialog displays, shown in Figure 17–15.

To create your Master-Detail for your Master form fields or Detail table columns:

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-27

1. To create a Master-Detail consisting of two forms, select FormLayout/FormLayout
and click Next to display the Configure Master dialog, shown in Figure 17–24.

Figure 17–24 FormLayout /FormLayout Configure Master Dialog

This configure dialog is the same as the one for creating a Table, except that it does
not have the Enable ADF Behavior settings, as shown in Figure 17–19.

2. Click Next to display the Configure Navigation Buttons dialog, shown in
Figure 17–25.

Figure 17–25 Form/Form Configure Navigation Buttons Dialog

Implementing Applications Master-Detail

17-28 Developer's Guide

Select the navigation buttons you want to appear on the Main form.

3. Click Next to display the Detail Header dialog, shown in Figure 17–21 for details.

4. Click Next to display the Configure Details dialog, shown in Figure 17–26.

Figure 17–26 Form/Form Configure Details Dialog

Use this dialog to create as many tabs on the Details form as you need. To create a
new tab, enter a name in the Name field and click the Add icon. The tab is added
in the area beneath the Name field.

Each tab is the same as the dialog for creating a Table, except that it does not have
the Enable ADF Behavior settings, shown in Figure 17–19.

5. Click Next to display the Configure Navigation Buttons for the Detail section
dialog, shown in Figure 17–25.

6. Click Next to display the Summary dialog.

7. Click Finish to save your changes.

Your new Master-Detail displays in the JSF Page editor, shown in Figure 17–27.

Implementing Applications Master-Detail

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-29

Figure 17–27 Form/Form Master-Detail in Page Editor

17.2.4 Master-Detail Guidelines for Creating New Records
Developers should follow these guidelines to use the updatable Master-Detail task
flow and to investigate some solutions for creating a detail record for a newly-created
master record. Several cases have been identified for using Master-Detail. The master
and the detail can be a form, table, tree, or tree table.

17.2.4.1 Master-Detail without a Default Primary Key Generator
If you have a Master-Detail in your page and the primary key for the master is not
generated using a sequence, the best way to create a detail row for a freshly-created
master row is to have a page-level Submit or Save button that needs to be clicked to
save the master data before creating detail data.

17.2.4.2 Master-Detail with a Default Primary Key Generator
In this case there are two solutions:

1. Have a page-level Submit or Save button that would save the newly-created
master record before creating a detail record.

2. Set the autoSubmit property on all the elements (components) of the master to
true. For example, if the master is a table, set autoSubmit="true" on all the
components inside the af:column.

17.2.4.3 Master-Detail with a Composite Primary Key
In this case, you need to provide a page-level Submit or Save button and click it to
commit the master record before creating a detail record.

17.2.4.4 Any Other Case
The preferred solution is to have a page-level Submit or Save button that can commit
the master record before creating a detail record.

Implementing Hover

17-30 Developer's Guide

17.2.5 How to Modify Master-Detail Components and Properties
To modify Master-Detail components and properties, double-click a Master-Detail
component in the page editor.

17.3 Implementing Hover
Hover is a subset of Detail On Demand that presents the same information when the
user hovers over a link.

This is a Design Time (DT) only pattern, no component has been created. For this
reason there is no UI First creation option.

The Design Time works when dragging a collection from the Component palette onto
an allowed drop component, shown in Figure 17–28.

Figure 17–28 Dragging from the Component Palette onto a Drop Component

The allowed drop components are:

■ af:commandLink

■ af:commandImageLink

■ af:commandToolbarButton

The DT will check to see whether the component is in a table already bound, and if
that binding is for the collection being dropped.

■ If so, it will create additional table bindings for the attributes selected.

■ If not, it will create form bindings for the collection.

If it is not dragged into an allowed table component, it will create additional bindings
for that collection.

If the allowed component already has a showPopupBehavior component child, the
menu option will not show. This behavior helps prevent double adding of hovers.

A dialog displays so you can select the attributes to see in the hover popup, and the
alignment of the popup over the "hovered" component, shown in Figure 17–29.

Implementing Hover

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-31

Figure 17–29 Hover Popup Attributes

The valid values for alignment are:

■ afterEnd

■ afterStart (default value)

■ beforeEnd

■ beforeStart

■ endAfter

■ endBefore

■ startAfter

■ startBefore

All JSF components created in the popup will be read-only.

When the OK button is clicked:

■ The drop component will be given an Id if it does not have one already, and have
the clientComponent attribute set to true.

■ The drop component will have a <af:showPopupBehavior> component added as a
child.

■ A popup (<af:popup>) will be added as the previous sibling of the drop
component, shown in Example 17–2 for the sample markup, and Figure 17–30 for
a sample of the result.

Example 17–2 Example Markup for a Form-based Layout

<af:popup id="popup1">
 <af:panelFormLayout labelAlignment="start">
 <af:panelLabelAndMessage label="#{bindings.MasterId.hints.label}">
 <af:outputText value="#{bindings.MasterId.inputValue}">
 <af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="#{bindings.Col1.hints.label}">
 <af:outputText value="#{bindings.Col1.inputValue}"/>
 </af:panelLabelAndMessage>

Implementing Hover

17-32 Developer's Guide

 <af:panelLabelAndMessage label="#{bindings.Col2.hints.label}">
 <af:outputText value="#{bindings.Col2.inputValue}">
 <af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="#{bindings.Col3.hints.label}">
 <af:outputText value="#{bindings.Col3.inputValue}">
 <af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
</af:popup>
<af:commandLink actionListener="#{bindings.Last.execute}"
 text="#{applcoreBundle.LAST}"
 disabled="#{!bindings.Last.enabled}"
 id="rolloverComponent2" clientComponent="true">
 <af:showPopupBehavior triggerType="mouseOver" popupId="popup1"
 alignId="rolloverComponent2"
 align="afterStart"/>
</af:commandLink>

Figure 17–30 Example of a Form-based Layout

Example 17–3 shows the sample markup for a table-based layout and Figure 17–31
shows an example of how the result appears.

Example 17–3 Example Markup for a Table-based Layout

<af:table value="#{bindings.Master1.collectionModel}" var="row"
 rows="#{bindings.Master1.rangeSize}"
 emptyText="#{bindings.Master1.viewable ? applcoreBundle.TABLE_
EMPTY_TEXT_NO_ROWS_YET : applcoreBundle.TABLE_EMPTY_TEXT_ACCESS_DENIED}"
 fetchSize="#{bindings.Master1.rangeSize}">
 <af:column sortProperty="MasterId" sortable="false"
 headerText="#{bindings.Master1.hints.MasterId.label}">
 <af:outputText value="#{row.MasterId}">
 <af:convertNumber
pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 <af:popup id="popup1">
 <af:panelFormLayout>
 <af:panelLabelAndMessage
label="#{bindings.Master1.hints.MasterId.label}">
 <af:outputText value="#{row.MasterId}">
 <af:convertNumber
pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage
label="#{bindings.Master1.hints.Col1.label}">
 <af:outputText value="#{row.Col1}"/>
 </af:panelLabelAndMessage>

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-33

 <af:panelLabelAndMessage
label="#{bindings.Master1.hints.Col2.label}">
 <af:outputText value="#{row.Col2}">
 <af:convertDateTime
pattern="#{applCorePrefs.dateFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage
label="#{bindings.Master1.hints.Col3.label}">
 <af:outputText value="#{row.Col3}">
 <af:convertNumber
pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:popup>
 <af:commandLink ="hover over me" id="rolloverComponent2"
 clientComponent="true">
 <af:showPopupBehavior triggerType="mouseOver" popupId="popup1"
 alignId="rolloverComponent2"
 align="afterStart"/>
 </af:commandLink>

 </af:column>

Figure 17–31 Example of a Table-based Layout

Links in the Popup
It is possible to add command links / buttons into the popup so the user can navigate
to a separate page/page flow. Adding these links is up to the developer, because it is
not a valid option in the Design Time, as command links are not an available
component in any binder GUI. The developer must ensure the popup is closed after
navigation in this case, although the default behavior may do this.

17.4 Implementing Applications Dialog Details
The Applications Dialog Details component provides a user interface for launching a
popup that contains detail information. The UI can be a detail icon, a link, or a button.

17.4.1 How to Add Applications Dialog Details to Your Page
You can add the Applications Dialog Details to your page in two ways:

■ Select the Applications Dialog Details from the Applications component palette
and drag and drop it on your page.

■ Drag and drop a data control to your page and select the Applications Dialog
Details from the list of available UI components.

Implementing Applications Dialog Details

17-34 Developer's Guide

View
Table 17–4 shows the properties that are exposed on the Applications Dialog Details.

Model
The Applications Dialog Details does not expose any bindings to the model. However,
components within the Applications Dialog Details, like the layout inside ADF popup,
will be bound to the model.

Controller
The Applications Dialog Details component does not ship a default managed bean.

17.4.1.1 Adding Applications Dialog Details
The Applications Dialog Details can be added to a page or page fragment using either
the Component First or the Data First approach. Valid drop locations in the page or
page fragment include ADF Form, and ADF Layout components and the Applications
Panel (jsp:root, af:form, af:root, fnd:applicationsPanel, af:column,
af:form, af:group, af:panelBox, af:panelFormLayout, af:panelGroupLayout,
af:panelHeader, af:showDetailItem, af:panelWindow, af:showDetail, f:facet,
f:panelGrid, f:panelGroup, af:pageTemplateDef, af:pageTemplate#<localArea_
Facet>).

The Applications Dialog Details can be added to a page or page fragment using either
the Component First or the Data First approach. Both approaches launch a wizard
which helps you to quickly define the appropriate attribute values. Once you complete
this wizard, you can further refine the dialog details definition by editing the resulting
component as needed.

Component First
Navigate to the Component Palette. Click the list of libraries and select Applications.
Drag the Applications Dialog Details from the list of components and drop it onto the
page. The wizard will launch after dropping the Applications Dialog Details on the
page.

Table 17–4 Applications Dialog Details Properties

Property Description Allowed Values

Id (id) The unique ID for this Applications
Table

string

Rendered (rendered) Whether the Applications Table is
rendered or not

boolean / expression

Detail Pattern Type
(detailPatternType)

Detail pattern type image, link or button

Popup Id (popupId) ID of the popup to be invoked when
Detail image/link/button is clicked

string

Text (text) Overrides default label for Detail
button, or defines link text for Detail
link

expression

Short Description
(shortDesc)

Overrides default roll-over text for
detail image/button

expression

Disabled (disabled) Sets whether the component needs to be
disabled

boolean / expression

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-35

Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel by
clicking its bar, then navigate through the hierarchy to locate the data source that you
would like to include in the Applications Dialog Details. Select that data source and
drag it on to the page. A context menu will appear with a list of components. Move the
mouse over the Applications category list. Select Applications > Dialog Details to
launch the Applications Dialog Details wizard, shown in Figure 17–32.

Figure 17–32 Launch the Applications Dialog Detail Wizard

Applications Dialog Details Create Wizard
The Applications Dialog Details Create wizard consists of only one panel.

Create Applications Dialog Details Panel
The Create Applications Dialog Details Panel will vary depending on the approach
used to launch the Applications Dialog Details creation process.

Using the Data First approach, the Bind Data Now and Data Source properties are
hidden. The selected data source is automatically bound to the components in the
formLayout of the popup.

Using the Component First approach, it is up to the developer to decide whether to
bind a Data Source to the dialog details component, shown in Figure 17–33.

Implementing Applications Dialog Details

17-36 Developer's Guide

Figure 17–33 Create Applications Dialog Details Panel

You can skip the data control binding step when creating the Applications Dialog
Details. In this case, the Applications Dialog Details will create several default
placeholder outputText fields that you can use for layout purposes in the popup. You
can decide how many placeholder columns you wish to display. Once you have
selected the appropriate number of fields, click OK to finish the creation process.

If you wish to bind a data control to the table component using the Component First
approach, check the Bind Data Now checkbox. This will enable the Browse button for
the Data Source property. Click the Browse button to display a list of data sources
available for binding. Navigate through the list, select the desired data source, and
click OK.

Once the Data Source is selected, the developer can enter the title for the popup and
choose the Detail Pattern Type.

When link is selected for the Detail Pattern Type, you will need to select an attribute of
the data source that binds to the Text attribute. This is the displayed text of the link.
When image or button is selected for Detail Pattern Type, choosing an attribute is not
needed, as shown in Figure 17–34.

Figure 17–34 Select a Data Source Attribute

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-37

Title
■ If the dialog will be read-only:

The format should be <Object Type> <Object Name> (such as Expense Report
WBJ3008D)

■ If the dialog contains editable fields:

The format should be <Action> <Object Type>: <Object Name> (such as
Approve Expense Report: WBJ3008D)

If you want a new Title, enter the string here. The string will be converted to a text
resource and added to the default resource bundle.

If you already have a Title defined in a resource bundle, click the ellipsis and choose
from the list, as shown in Figure 17–35.

Figure 17–35 Select Text Resource for Dialog Details Title

■ Resource Bundle: Select the bundle containing the string you want to use. You can
select a single bundle or all available bundles. The strings will display in the
Matching Text Resources field.

■ Display Value: You can enter a new string for a title here.

■ Key: Each resource must have a unique Key. This generally is, in all upper-case
characters, the words of the Display Value separated by an underscore character.

Implementing Applications Dialog Details

17-38 Developer's Guide

■ Description: This is an optional entry.

■ Matching Text Resources: This field displays the entries of the selected resource
bundle. Select an existing title from the list.

When a title is selected from the list, the Title field will appear similar to
Figure 17–36.

Figure 17–36 Dialog Details Title Field Using Resource Bundle

Detail Pattern Type
The Detail Pattern Type is how the data control is shown; it can be an image, a link or a
button.

■ Image: Shows the Dialog Details component as an image. The image is the same as
in the component palette. Clicking the image will open the Dialog Details popup.

■ Button: Shows the Dialog Details component as a button that opens the Dialog
Details popup when clicked.

■ Link: In this case, you will need to select the Text Attribute, which is a list of
columns in the Data Control you have selected (or dragged). This column data is
used as the link text.

Use of a specific pattern type is your choice and does not affect the way Dialog Details
behaves.

■ To display what the popup would show, you can choose a link that shows data
from the selected data control, such as a column in a table. For instance, in the
Employee table, to show more employee data, you can use the employee name as
the text attribute. Clicking an employee name then would open more data about
that employee.

■ A button can be used if there is only one Dialog Details popup for the page.
Clicking it gives more information about the data on the page.

■ Image could be used the same way as button, or on pages with form data.

Text Attribute
This setting is available only if the Detail Pattern Type is link. The text entered here is
shown as the Dialog Details link. This helps give the user an idea about the data
contained in the popup.

Read-only Form
■ If content in the dialog is read-only, the window should be non-modal.

■ If content in the dialog contains editable fields, the window should be modal.

■ If you select Read-only, the choices in the Component to Use column will change
from Input Text to Output Text types.

If this option is not selected; that is, the form can be edited by the user, two buttons
automatically are added to the form: Save and Close, and Cancel. Figure 17–37 shows
the default buttons in the form in the JDeveloper Design view.

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-39

Figure 17–37 Default Buttons Added to non Read-only Form

If this option is selected; that is, the form cannot be edited by the user, only an OK
button automatically is added to the form, as shown inFigure 17–38.

Figure 17–38 Default Button Added to Read-only Form

Fields
■ Display Label: This value will be displayed for the column heading. The default

value is the text that is displayed in the Value Binding field.

■ Value Binding: This field lists the names of the columns from the selected data
control. Clicking an entry opens a list of the columns so you change the order in
which they appear.

■ Component To Use: Data in Dialog Details can be read-only or updatable.
Component to Use is similar to what Component does while creating a table.
Clicking it reveals a choice list of values, and the dialog details popup would then
at runtime show that particular column from the datacontrol as the selected
component to use. The choice list is changed according to whether or not you
choose read-only. If you selected Read-only, the choices will change from Input
Text to Output Text types.

Implementing Applications Dialog Details

17-40 Developer's Guide

17.4.1.2 Working with the Applications Dialog Details
This section discusses how to edit Dialog Details properties.

Editing - Properties
Once you have created the Applications Dialog Details, you can modify the property
values by using the Property Inspector. There are three ways to select the Applications
Dialog Details:

■ Select the component in the Design view of the page.

■ Select the <fnd:applicationsDialogDetails ... > line in the Source view of the
page.

■ Select fnd:applicationDialogDetails from the hierarchy in the Structure View.

All components created as part of the Applications Dialog Details are editable using
this same approach, shown in Figure 17–39.

Figure 17–39 Dialog Details Property Inspector

Adding a Data Source
Once you have created the Applications Dialog Details, you can see that an af:popup
has also been created above fnd:applicationsDialogDetails. You can add data
controls to the facets / content containers within that popup using the following steps:

1. Navigate to the Data Controls panel of the Application Navigator.

2. Open the hierarchy to find the data source.

3. Drag and drop either the entire data source or individual fields into the correct
location on the page. The correct location is dependent on the component.

For example, inside the popup that the Applications Dialog Details wizard generates,
the fields of the data source are bound to components. Figure 17–40 shows the
Structure view of a page with components already added.

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-41

Figure 17–40 Page Structure View

To add a field from a data source to the af:panelFormLayout inside the popup, drag
the field from the data source to the following path: up > af:dialog >
af:panelFormLayout. As is the case with the data first approach, you will be prompted
to choose which ADF component to use for this attribute.

Adding UI Content
To achieve the final goals for a page design, you will likely need to add other
components to the af:dialog inside af:popup.

17.4.1.3 Implementing OK and Cancel Buttons in a Popup
A product team's task flow must include the OK and Cancel buttons that are used to
launch a dynamic tab and dismiss the popup, respectively. Once the buttons have been
added, create a managed bean to set each button's action listener. Use the method in
Example 17–4 as the Cancel button's action listener.

Example 17–4 Example Method to Create a Managed Bean to Be the Cancel Button's
Action Listener

import org.apache.myfaces.trinidad.render.ExtendedRenderKitService;
import org.apache.myfaces.trinidad.util.Service;
import javax.faces.component.UIComponent;

public void closePopup(ActionEvent actionEvent)
 {
 UIComponent source = (UIComponent) actionEvent.getSource();
 String sourceId =
 source.getClientId(FacesContext.getCurrentInstance());
 ExtendedRenderKitService service =
 Service.getRenderKitService(FacesContext.getCurrentInstance(),
 ExtendedRenderKitService.class);
 String popup =

Note: This example uses the Structure view because it provides an
efficient overview of the page. The field could also be dropped onto
the page in Design or Source view to achieve the same result.

Implementing Applications Dialog Details

17-42 Developer's Guide

 "AdfPage.PAGE.findComponent('" + sourceId +
"').findComponent('::TaskPopup').hide();";
 service.addScript(FacesContext.getCurrentInstance(), popup);
 }

Create another method for the OK button that calls the method in Example 17–4, and
any additional processing logic. The common use case would be opening a new task in
the Main Area by using the openMainTask API. For example, you can bind the OK
button to a managed bean and add your own action listeners, as shown in
Example 17–5.

Example 17–5 Example Method to Create a Managed Bean to Be the OK Button's Action
Listener

import javax.el.ExpressionFactory;
import javax.el.MethodExpression;
import javax.faces.event.MethodExpressionActionListener;

public void setOkButton(RichCommandButton okButton) {
 this.okButton = okButton;
 if(okButton.getActionListeners().length==0){
 FacesContext context = FacesContext.getCurrentInstance();
 ExpressionFactory ef =
context.getApplication().getExpressionFactory();

 String methodLink = "#{bindings.openMainTask.execute}";
 MethodExpression me =
 ef.createMethodExpression(context.getELContext(), methodLink,
 null, new Class[]
 { ActionEvent.class });
 MethodExpressionActionListener methodActionListener =
 new MethodExpressionActionListener(me);
 okButton.addActionListener(methodActionListener);

 methodLink = "#{pageFlowScope.PopupBean.closePopup}";

 me =
 ef.createMethodExpression(context.getELContext(), methodLink,

Note: Although the closePopup() implementation shown in
Example 17–4 closes the popup properly, if you reopen the popup by
clicking the tasklist link, it shows the previously-entered values. If you
do not want to show previously-entered values, you need to add a
taskflow return activity, navigate to it, and then close the popup.
However, after adding this taskflow return activity to the example
closePopup() implementation, the popup is closed only partially. This
is a side effect of the Javascript hide that is used. A solution is to use
this closePopup() method, which works whether or not you have the
taskflow return activity.

public void closePopup()
{
 FacesContext facesCtx = FacesContext.getCurrentInstance();
 String taskPopupId =
PatternsUtil.findComponentById(facesCtx.getViewRoot(),
"TaskPopup").getClientId(facesCtx);
 PatternsPublicUtil.hidePopup(taskPopupId);
}

Implementing Applications Dialog Details

Implementing Applications Panels, Master-Detail, Hover, and Dialog Details 17-43

 null, new Class[]
 { ActionEvent.class });
 methodActionListener =
 new MethodExpressionActionListener(me);
 okButton.addActionListener(methodActionListener);

 }
 }

Implementing Applications Dialog Details

17-44 Developer's Guide

18

Implementing Attachments 18-1

18Implementing Attachments

This chapter provides guidelines for implementing attachments at design time in a
quick and simple manner using Oracle Fusion Middleware components.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Attachments"

■ Section 18.2, "Creating Attachments"

■ Section 18.3, "Displaying Attachments for Multiple Entities in the Same Table"

■ Section 18.4, "Configuring the Attachments Component UI"

■ Section 18.5, "Working with Attachments Programmatically"

■ Section 18.6, "Setting Up Miscellaneous Attachments Features"

■ Section 18.7, "Integrating Attachments Task Flows into Oracle Fusion Functional
Setup Manager"

■ Section 18.8, "Securing Attachments"

■ Section 18.9, "Using Attachments (Runtime)"

For general information about Oracle Fusion Middleware user interface (UI)
components, see:

■ "Introduction to Oracle ADF Applications" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition)

■ "Introduction to ADF Faces Rich Client" chapter in the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition)

18.1 Introduction to Attachments
The Attachment component provides a declarative programming mechanism for you
to add attachments to the user interface (UI) pages that you create for Fusion web
applications. Once added to a UI page, the component gives users the ability to
associate a URL, desktop file, repository file or folder, or text with a business object,
such as an expense report, contract, or purchase order. The component can be
displayed in a UI page in any of the following ways:

■ Attachment field in a page or page segment:

The following elements are rendered on the page or page segment:

Introduction to Attachments

18-2 Developer's Guide

– A link to the most recently attached document or URL. Hovering your mouse
on a link supplies a detail window with attachment information. The detail
window contains the following information about the most recent attachment:

* Type - File/URL

* Last Updated By

* Last Updated Date

When clicked, the link opens the attachment in a new browser tab or window
depending on the browser settings.

If there are no attachments the value of this field will be None.

– When there are more attachments, a link will be displayed in the format "<# of
additional attachments> more...". Clicking this link opens the Attachments
window, which displays the full list of attachments in a table.

Hovering over this link will display a small dialog with a list of up to the next
three most recent attachments. When clicked, these links opens the attachment
in a new browser tab or window depending on the browser settings. If there
are more than four attachments the last bullet is a link with the format " <# of
remaining attachments> more...". The number of attachments shown in the
small dialog list is configurable. Clicking this link opens the Attachments
window, which displays the full list of attachments in a table.

– The Manage Attachments icon. When clicked, the Attachments window is
launched showing any existing attachments as well as a new empty row at the
top of the list to allow the user to add new attachments.

– The Delete Attachments icon. Only shown when there is only one attachment
added. Allows the one attachment to be deleted without having to launch the
Attachment window.

Figure 18–1 shows an example of an attachment field in a page or page segment
with attachments.

Figure 18–1 Attachment Field in a Page or Page Segment

■ Attachment column in a table:

Note: The Attachment label originates from outside the Attachment
component to allow the Attachment component to correctly align with
the other components in the page layout.

Introduction to Attachments

Implementing Attachments 18-3

The following elements are rendered in the table:

– A column header titled Attachments

– A link to the most recently attached document or URL. Hovering your mouse
on a link supplies a detail window with attachment information. The detail
window contains the following information about the most recent attachment:

* Type - File/URL

* Last Updated By

* Last Updated Date

When clicked, the link opens the attachment in a new browser tab or window
depending on the browser settings.

If there are no attachments the value of this field will be None.

– When there are more attachments, a link will be displayed in the format "<# of
additional attachments> more...". Clicking this link opens the Attachments
window, which displays the full list of attachments in a table.

Hovering over this link will display a small dialog with a list of up to the next
three most recent attachments. When clicked, these links opens the attachment
in a new browser tab or window depending on the browser settings. If there
are more than four attachments the last bullet is a link with the format " <# of
remaining attachments> more...". The number of attachments shown in the
small dialog list is configurable. Clicking this link opens the Attachments
window, which displays the full list of attachments in a table.

– The Manage Attachments icon. When clicked, the Attachments window is
launched showing any existing attachments as well as a new empty row at the
top of the list to allow the user to add new attachments.

– The Delete Attachments icon. Only shown when there is only one attachment
added. Allows the one attachment to be deleted without having to launch the
Attachment window.

Figure 18–2 shows an example of an attachment column in a table.

Figure 18–2 Attachment Column in a Table

■ Attachment table:

The Attachment table can be shown in:

– A page or page segment

Introduction to Attachments

18-4 Developer's Guide

This occurs when you choose to display all attachments for the current record
in a table.

– A dialog

This occurs when the user clicks the Manage Attachments icon associated
with an attachment field either on a page or page segment, or an attachment
column in a table.

The following elements are rendered in the Attachment table:

– Table Toolbar

* Add button, which adds a new row at the top of the table

* Delete button, which deletes the selected rows from the table

– Type (required field that determines the type of Attachment)

* File (default)

* Text

* URL

* Repository File/Folder

– Category

Category values are defined at implementation time. Make sure to use
functionally relevant category names. If two or more categories are defined,
the category column is displayed. If only one category is defined, the column
is not displayed.

– File Name or URL (required field)

If the value is an existing attachment, a link is shown that opens the
attachment when selected. The link opens in a new browser tab or window
depending on the browser settings. For new rows:

* If Type is File, will show a file upload field

* If Type is Text, will show a text field

* If Type is URL, will show a text field

* If Type is Repository File/Folder, will show a text field and browse button.
Clicking on Browse will launch a document picker for finding files in the
repository.

– Title

The user name for the attachment, as the file name or URL may not
adequately convey the contents of the attachment. If users do not enter a title,
it defaults to the value in the File Name or URL field.

– Description

The field to include additional information on the attachment.

– Last Updated By

Shows the name of the user that last updated the attachment relationship.

– Last Updated Date

Shows the date on which the attachment relationship was updated.

Creating Attachments

Implementing Attachments 18-5

Figure 18–3 is an example of an Attachments table with the repositoryMode
attribute set to false.

Figure 18–3 Attachments Table

18.2 Creating Attachments
This section provides information about creating attachments and describes how to set
up your model project for attachments, how to create an attachment field or an
attachments table, and an attachments column in an Applications table. Also included
is how to set up required properties, as well as information about what happens when
you implement attachments and what happens at runtime.

Before you begin:
1. Add the Applications Core (Attachments Model) library to your Model project:

2. After adding the library to your model, navigate to Application Navigator
>Application Resources >Descriptors >META-INF and add the following xml
snippet to your jazn-data.xml file:

Example 18–1 Snippet for jazn-data.xml File

<grant>
 <grantee>
 <codesource>
 <url>file:${atgpf.oracle.home}/atgpf/modules/oracle.applcore.attachments_
 11.1.1/Attachments-Model.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore
 .CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.wsm.security,
 keyName=keystore-csf-key</name>
 <actions>read</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore
 .CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.wsm.security,
 keyName=enc-csf-key</name>
 <actions>read</actions>
 </permission>
 </permissions>
</grant>

Creating Attachments

18-6 Developer's Guide

3. Create the view object representation of the business object that requires
attachments in your model project.

4. Create a Content Repository connection in JDeveloper.

For information about how to create a Content Repository connection in
JDeveloper, see Section 53.1, "Creating a Content Repository Connection".

For additional information see the "Integrating Content" chapter of the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter Portal.

5. Log onto the Content Repository and confirm that the following has been created:

■ Attachments folder under the Contribution Folders folder

■ Attachments security group used for unshared attachments

■ SharedAttachments security group used for shared attachments

■ AttachmentsUser role with no permissions set

■ AttachmentsRead user role with read (R) permission to the Attachments
security group for unshared attachments

■ AttachmentsWrite user role with write (W) permission to the Attachments
security group for unshared attachments

■ AttachmentsDelete user role with delete (D) permission to the Attachments
security group for unshared attachments

■ AttachmentsAdmin user role with read, write, delete, and admin (RWDA)
permissions to the Attachments security group for unshared attachments

■ SharedAttachmentsWrite user role with write (W) permission to the
SharedAttachments security group - for shared attachments

■ SharedAttachmentsDelete user role with delete (D) permission to the
SharedAttachments security group - for shared attachments

■ SharedAttachmentsAdmin user role with read, write, delete, and admin (RWDA)
permissions to the SharedAttachments security group - for shared
attachments.

Note: Be aware that the URLs and <class> entries cannot contain any
spaces or line breaks.

Notes:

■ Attachments can support multiple Content servers.

■ Attachments stores the name of the Content Repository
connection used when creating a new attachment. This value is
then used when retrieving the attachments. It is important to
co-ordinate the naming and registration of Content Repository
connections. So that the Attachments code can connect to the
correct server to retrieve the requested file.

■ Developers need to create a Content Repository connection with
the name "FusionAppsContentRepository". This connection
should used jaxws as the socket type and Identity Propagation for
Authentication.

Creating Attachments

Implementing Attachments 18-7

Also, be aware that there is an enforced maximum size for the files you can upload.
You can modify the default setting, but doing so will affect any application deployed
to the server that uses a multi-part form to upload from the desktop to Oracle
WebLogic Server. For more information, see "Setting Parameters to Upload Files to
Content Repositories" in Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter Portal.

18.2.1 How to Set Up Your Model Project for Attachments
The Model project must be set up correctly before you can add attachments to your
page.

Part of the Model setup involves creating an attachment view link between the
business object view object and the attachments view object. When defining this
attachment view link, you must select Primary Key values and enter an Attachment
Entity Name. This unique name is used to identify all attachments for your business
object.

The first time you create an attachment view link for your business object, the unique
attachment entity name is stored in the database. If you need to link the same set of
attachments to another view object on a different page, reselect the existing attachment
entity name when creating the attachment view link.

After creating the attachment view link, you will need to assign a set of categories to
your attachment entity. When creating the attachment view link, you can choose to
show all of the categories assigned to your entity in your UI, or a subset of these
categories. If you do not need to reduce the list of categories that will be displayed in
your UI, you can select to "Show All Categories" on the Categories step in the
Attachment View Link Wizard. This will make all categories that are assigned to your
attachment entity available in your UI. For more information, see Section 18.2.2, "How
to Create Attachment View Links."

Once you have finished setting up your Model project, you must decide how you
would like to display the attachments in your page: As an attachment field, as a table
of attachments, or as an attachment column in an applications table. This design-time
setup is performed in your ViewController project. For more information about setting
up your ViewController project for attachments, see Section 18.2.6, "How to Create an
Attachments Field or an Attachments Table," Section 18.2.8, "How to Create an
Attachments Column in an Applications Table," and Section 18.3, "Displaying
Attachments for Multiple Entities in the Same Table."

After adding attachments to your UI page, you must complete the required steps to
ensure that the attachments functionality works correctly at runtime. For more
information about these setup steps, see Section 18.2.7, "What Happens When You
Implement Attachments" and Section 18.2.10, "What Happens at Runtime."

Note: This setup is required for Attachments to function correctly.
You must log in to the Content Server as a user with System
Administrator privileges in order to see the above information. If you
cannot see these details in your Content Server, please contact your
system administrator to ensure that they have enabled the
FusionAppsAttachments component in the Content Server. For more
information, see "Security Groups, Roles and Permissions" in Oracle
WebCenter Content System Administrator's Guide for Content Server.

Creating Attachments

18-8 Developer's Guide

18.2.2 How to Create Attachment View Links
Attachment view links are used to establish master-detail relationships between your
view objects and the attachments view object. Attachment view links are created using
the Attachment View Link wizard.

To create an attachment view link:
1. In JDeveloper, choose Application Navigator > Model Project. Right-click and

choose New from the menu to open the New Gallery.

2. Choose the Business Tier > ADF Business Components category. Select the
Attachment View Link item, as shown in Figure 18–4.

Figure 18–4 New Gallery Dialog

3. Click OK to access Step 1 of the Create Attachment View Link wizard, as shown in
Figure 18–5.

4. Complete the following information:

a. Select the name of the application that your view object belongs to.

b. Select the package where the attachment view link will reside.

c. Enter a unique name for the attachment view link.

Creating Attachments

Implementing Attachments 18-9

Figure 18–5 Create Attachment View Link Wizard — Name (Step 1)

5. Click Next to access Step 2. The View Object dialog appears, as shown in
Figure 18–6.

6. Enter the name for the view link accessor that will be added to the data control of
selected view object. Then, from the Available column, select the view object that
you want to create attachments for.

Figure 18–6 Create Attachment View Link Wizard — View Object (Step 2)

Tip: There is no need for you to select a destination view object
because the Attachment view link always uses the Attachments view
object as the destination view object.

Creating Attachments

18-10 Developer's Guide

7. Click Next to access Step 3. The Attachment Entity dialog appears, as shown in
Figure 18–7. The Attachment Entity is used to uniquely identify your business
object.

Figure 18–7 Create Attachment View Link Wizard — Attachment Entity (Step 3)

8. Complete the following information:

Use Existing Attachment Entity: When checked, the Available / Selected columns
are automatically populated with the stored primary key values for the selected
entity. When unchecked, the new entity is created in the FND_DOCUMENT_ENTITIES
and FND_DOCUMENT_ENTITIES_TL tables.

Entity Name: Enter a unique name for the entity you are adding attachments to.

Available / Selected: Select only those columns that make up the primary key of
the entity object by shuttling them from the Available column to the Selected
column.

9. Click Next to access Step 4. The Categories dialog appears, as shown in
Figure 18–8. (The Display All Available Categories checkbox is not selected when
you first enter this page.)

Choose the categories that will be made available to the user in the Attachments
runtime UI. The categories you select here must be assigned to your attachment
entity. If they are not, they will not be visible in your UI.

Categories that you create using this wizard are inserted into the FND_DOCUMENT_
CATEGORIES and FND_DOCUMENT_CATEGORIES_TL tables against the Application that
you selected in Step 1 of the Attachment View Link wizard. Categories that you
edit are updated in the FND_DOCUMENT_CATEGORIES and FND_DOCUMENT_
CATEGORIES_TL tables.

Note: The entity name is used to map a business object to its
attachments.

Creating Attachments

Implementing Attachments 18-11

Figure 18–8 Create Attachment View Link — Categories (Step 4)

Select the categories to be made available for this entity in the runtime UI.

Select Display All Available Categories to show all categories that are assigned to
your attachment entity.

When you select Display All Available Categories, all other fields are
automatically removed from the dialog. You will no longer see a list of categories
and therefore, you will not be able to add, edit, or delete them. This selection,
however, does not override the document category to entity mapping.

You should select this option if you want Categories, assigned to your attachment
entity in the future, to appear in the Categories dropdown list at runtime. Selecting
this option will ensure that customers can create and use their own Categories in
your UI with minimal effort.

Notes:

■ You can only add, edit or delete categories for the Application that
you selected in Step 1 of the Attachment View Link wizard.

■ The categories that you create here are not assigned automatically
to their attachment entity. You must ensure that all categories you
select in Step 9 are assigned to their Attachment Entity. For more
information, see Section 18.2.5, "How to Assign Categories to the
Attachment Entity."

Note: Use the Add, Edit, and Delete buttons to add, edit, or delete
existing categories for the Application that you selected in Step 1. You
are not able to edit or delete the seeded Miscellaneous FND category.

Tip: The end-user display name for the Category (USER_NAME from
the FND_DOCUMENT_CATEGORIES_TL table) is shown in the shuttle.

Creating Attachments

18-12 Developer's Guide

Deselect the Display All Available Categories checkbox to select a subset of
categories that are used to further restrict the list of Attachments returned in the
UI. Only the Attachments that are assigned to the selected categories will be
retrieved in the UI. To select the required categories, highlight them in the
Available column and shuttle them over to the Selected column.

The selected list of categories will be stored as a custom property on the newly
created attachment view link. The value will consist of a concatenated string of
values. All the selected categories are concatenated in a comma-separated list.

10. Click Next to access the Application Module page. The Application Module dialog
appears, as shown in Figure 18–9. Select Application Module to create a new
instance of the view object that you selected on the View Object page, and create
an instance of the attachments view object as a child of the new instance.

Figure 18–9 Create Attachment View Link — Application Module (Step 5)

11. Click Next to access the Summary page, which is shown in Figure 18–10. Review
your selections and click Finish to create your attachment view link.

Note: If you did not select the Display All Available Categories
checkbox, you must select at least one category before proceeding to
the final step in the wizard.

Note: It is recommended that you choose the Display All Available
Categories option to allow for customization of the Category list
without code changes. Additionally, please be aware that the list of
available categories, and the list of Attachments displayed can be
further controlled using Category data security. For more information,
see Section 18.8.1, "Attachment Category Data Security."

Creating Attachments

Implementing Attachments 18-13

Figure 18–10 Create Attachment View Link — Summary (Step 6)

12. If you chose to keep the Application Module option unselected in Step 10, you
need to add your newly created attachments view link to your application module
data model as follows:

a. Choose Application Navigator > AM name. Right-click and choose to open
the application module in the editor.

b. Choose Data Model from the list of categories to open the Data Model
Components dialog.

c. Select the newly created Attachment View Link located in the left column and
select the view object that you created the view link for in the right column.
Shuttle the Attachment View Link over to the right column.

d. Save your changes.

18.2.3 What Happens When You Create an Attachment View Link
Once you have completed all the steps in the wizard by clicking Finish to create your
Attachment view link:

■ The Attachment view link is created, including generating the Accessor in the
source view object.

■ All new or changed category information is stored to the FND_DOCUMENT_
CATEGORIES and FND_DOCUMENT_CATEGORIES_TL tables.

■ A custom property (OAF_ATTACHMENT_CATEGORY) is created on the Attachments
view link, which is a list of all the categories that you select in Step 4 of the wizard.

The custom property stores an empty list when you select the Display All
Available Categories checkbox. When this checkbox is not selected, the custom
property stores a comma-separated list of categories (using the CATEGORY_NAME
from the FND_DOCUMENT_CATEGORIES table) that you manually selected from the list
of available categories.

Creating Attachments

18-14 Developer's Guide

■ The AttachmentEntityName transient attribute is created on the Entity view object.
Its value is the entity name that you entered in Step 3 of the wizard.

■ New Attachment Entity information is stored to the FND_DOCUMENT_ENTITIES and
FND_DOCUMENT_ENTITIES_TL tables.

The WHERE clause that links the Entity view object to the Attachments view object is
derived based on the selected entity primary key columns. For example, if the entity
primary key for the PO_INVOICES entity is made up of the columns INVOICE_HEADER_ID
and INVOICE_LINE_ID then the view link query would be as follows:

Example 18–2 Source WHERE Clause

(:Bind_InvoiceHeaderId = PK1_VALUE) AND
(:Bind_InvoiceLineId = PK2_VALUE) AND
(:Bind_AttachmentEntityName = ENTITY_NAME)

Example 18–3 Destination WHERE Clause

(:Bind_Pk1Value = PoInvoiceLines.INVOICE_HEADER_ID) AND
(:Bind_Pk2Value = PoInvoiceLines.INVOICE_LINE_ID) AND
(:Bind_EntityName = PO_INVOICES)

where PO_INVOICES is the value that you entered in the Entity Name field in Step 3 of
the wizard.

18.2.4 How to Delete the Business Object
Deleting the business object from the database does not automatically apply to any of
its Attachments. Subsequently, if your business functionality calls for the deletion of
the business object (as opposed to a programmatic deletion, where the record is
flagged as deleted but is kept around for auditing purposes), you also must delete all
of its Attachments. Otherwise, these records will continue to persist in the
Attachments tables. If another business object for your entity is created with the same
primary key values, these Attachments will immediately be attached to the new
record.

What you do depends on the method or methods you used to delete the business
object in your own functionality. The programmatic method to delete the attachments
will be the same. Typically, overriding the remove() method of the business object
view object will allow you to programmatically access the Attachments detail
collection via the View Link Accessor. Once you have access to this collection, you can
loop through calling the remove() method of the collection, shown in Example 18–4.

Example 18–4 remove() Method

public void remove() {
 Row currRow = this.getCurrentRow();
 RowSet attachedItems = (RowSet) currRow.getAttribute("Attachments1");
 while (attachedItems.hasNext()) {
 Row currAttachment = attachedItems.next();
 currAttachment.remove();
 }
 super.remove();
 }

Note: This transient attribute should not be included in your UI.

Creating Attachments

Implementing Attachments 18-15

18.2.5 How to Assign Categories to the Attachment Entity
It is necessary to assign one or more attachment categories to your attachment entity.

The "Manage Attachment Categories" setup UI can be used to create and update the
relationships between your categories and entities. You can search for a particular
attachment category, then search and select the attachment entities to assign to the
category. For more information, see Section 18.7, "Integrating Attachments Task Flows
into Oracle Fusion Functional Setup Manager." Relationships between categories and
entities can also be maintained using the Manage Attachment Entities setup UI.

The Entity-Category relationships are stored in the FND_DOC_CATEGORIES_TO_ENTITIES
table. There is a many-to-many relationship between Entities and Categories, allowing
one category to be assigned to multiple Entities.

The relationships stored in this table are striped by MODULE_ID for seeding
purposes, and the seed data loader can be used to seed this data for your product.

See the " Available Seed Data Loaders" table in Chapter 55 for information about
Attachments Seed Data Loaders.

18.2.6 How to Create an Attachments Field or an Attachments Table
This section describes how to create an Attachments field or table.

To create an Attachments field or an Attachments table:
1. Create a page, page segment, or an applications panel that is bound to the

attachments-enabled Master Data Collection (your business object data collection).

2. Drag the Detail Data Collection (the Attachments data collection) onto a
databound drop target. The Create context menu appears.

3. Select Applications > Attachments to display the Create Attachments dialog, as
shown in Figure 18–11.

Figure 18–11 Create Attachments

Choose either Attachment Field or Attachment Table. Click OK to display the
Edit Taskflow Binding dialog.

The ConnectionName parameter is automatically set to
#(AttachmentsTaskflowListener.connectionName) on the

Note: It is important to ensure that you seed your attachment entities
and attachment categories before you seed the data in the FND_DOC_
CATEGORIES_TO_ENTITIES table when extracting and uploading the
data.

Creating Attachments

18-16 Developer's Guide

attachmentRepositoryBrowseTaskFow1 taskflow in the page bindings for your
page. This parameter is used to derive the connection name of the content server
connection to be used when the Document Picker taskflow is used in the
Attachments UI at runtime.

4. Click OK. Do not make any changes On the Edit Taskflow Binding dialog.

Based on the selection that you made in Step 3, either an Attachment Field or an
Attachment Table is created and bound to the Detail Data Collection. The mode
attribute is automatically set to link or table on the Attachment Component.

When using attachments in link mode, the Attachment component must be displayed
inside a panelLabelAndMessage component and a partialTrigger needs to be added
as an attribute. You must then add the IDs for the appropriate events on the page to
the partialTriggers that cause the underlying business object record to change,
which in turn requires the Attachments data to change. For example, the navigation
buttons Next and Previous as shown here:

Example 18–5 Adding Event IDs to the PartialTriggers

<af:panelLabelAndMessage label="Attachment"
 partialTriggers="btnNext btnPrevious">
 <fnd:attachment mode="link" repositoryMode="true"
 attachmentModel="#{bindings.Attachments1}/>
</af:panelLabelAndMessage>

18.2.7 What Happens When You Implement Attachments
The following are examples of the generated source code:

Example 18–6 Source Code for an Attachment Field

<fnd:attachment mode="link"
 attachmentModel="#{bindings.AttachmentsIterator}"/>

Example 18–7 Source Code for an Attachment Table

<fnd:attachment mode="table"
 attachmentModel="#{bindings.AttachmentsIterator}"/>

Example 18–8 Source Code for an Attachment Column

<af:column sortable="false"
 headerText="#{applcoreBundle.ATTACHMENTS_COLUMN_HEADER}"
 width="200">
<fnd:attachment mode="columnLink"
 attachmentModel="#{bindings['Attachments1']}"
 columnModel="#{row.children}"/>
 columnLinkTableModel="#{bindings.AuEmployee1.collectionModel}"/>
</af:column>

18.2.8 How to Create an Attachments Column in an Applications Table
You can create an attachments column in an applications table by dragging a Master
Data Collection (your business object data collection) onto your drop target.

Note: The bindings, as shown above, only show when the
Attachments are bound to a data control.

Creating Attachments

Implementing Attachments 18-17

You can create an attachments column in an existing applications table by dragging a
Detail Master Collection (the Attachments data collection) onto your drop target.

To create an attachments column when creating your applications table:
1. Drag your Master Data Collection (your business object data collection) onto your

drop target (Page, Page Segment, or Applications Panel). The Create Context
Menu is displayed.

2. Select Create, Applications Table to open the Applications Table wizard,
Configure Table Patterns dialog.

3. Select the Attachments option.

4. Click OK. Do not make any changes on the Edit Taskflow Binding dialog.

An Applications Table is created with an Attachments column located in the
rightmost position.

5. Manually add the columnLinkTableModel attribute to the attachments
component. This attribute must be set to the value that identifies the Master Data
Collection Model and must match the value set for the value property of the
af:table component that contains the Attachment column. For example:

columnLinkTableModel="#{bindings.AuEmployee1.collectionModel}"

To create an attachments column in an existing applications table:
1. Drag your Detail Data Collection (the Attachments data collection) onto your drop

target (af:table within the table facet of the Applications table). The Create Context
Menu is displayed.

2. Select Create, Applications, Attachments Column. The Edit Taskflow Binding
dialog is displayed.

3. Click OK. Do not make any changes on the Edit Taskflow Binding dialog.

4. Manually add the columnLinkTableModel attribute to the attachments
component. This attribute must be set to the value that identifies the Master Data
Collection Model and must match the value set for the value property of the
af:table component that contains the Attachment column. For example:

columnLinkTableModel="#{bindings.AuEmployee1.collectionModel}"

18.2.9 How to Set Up Required Properties
To implement your attachments successfully you must set the following required
properties:

■ usesUpload for a standard JSPX page

■ usesUpload on the UI Shell

■ RefreshCondition for the task flow

To set the usesUpload property for a standard JSPX page:
To be able to upload files from the desktop to the Content Server, you must set the
usesUpload property to true.

Note: The mode attribute is automatically set to columnLink on the
Attachment component when creating an attachment column.

Creating Attachments

18-18 Developer's Guide

For a standard JSPX page, you must set the usesUpload property on the af:form that
contains your attachment component. For example:

<af:form usesUpload="true">

To set the usesUpload property on the UI Shell:
To set the usesUpload property value on the UI Shell's af:form, you need to set the Form
Uses Upload property on the itemNode that represents the JSPX in the appropriate
menu XML file.

1. Go to the Application Navigator and select the menu XML file.

2. Go to the Structure pane and select the item node representing the JSPX page.

3. Go to the Property Inspector > Advanced Properties > Page tab and set the Form
Uses Upload property to true.

4. Save your changes.

To set the RefreshCondition property for the taskflow:
Setting the RefreshCondition property is only required when the repositoryMode
property is set to true on the Attachment component. Setting this property for the
taskflow allows the Document Picker to be used more than once within the
Attachments table or popup in the same session.

1. Go to the Bindings tab for that page.

2. Click on the link to the Page Definition File, which is located at the top of the
page.

3. Select the attachmentRepositoryBrowseTaskFlow1 task flow from the list of
Executables.

4. Go to the Property Inspector and set the RefreshCondition property to
#{AttachmentsTaskflowListener.refreshTaskflow}.

5. Save your changes.

18.2.10 What Happens at Runtime
Users have the ability to associate a URL, desktop file, repository file or folder, or text
with a business object, such as an expense report, contract, or purchase order.

When a user chooses to attach a repository file or folder, they are presented with the
Document Picker dialog from which they can select one or more repository files or
folders. Once a repository file or folder has been attached, the type is displayed as
either File or Folder.

The ability for a user to add, update, view, or delete an attachment is
programmatically controlled using the addAllowed, updateAllowed, viewAllowed, and
deleteAllowed attributes on the Attachment component.

The ability to control what type of attachments can be added in the Attachments UI is
controlled by the following attributes on the Attachment component:
fileTypeEnabled, textTypeEnabled, urlTypeEnabled, and attachFolderAllowed.

Note: The ability to associate repository files or folders is available
when the repositoryMode property is set to true.

Displaying Attachments for Multiple Entities in the Same Table

Implementing Attachments 18-19

The type of attachment that is used determines how the attachment is displayed when
the user clicks the attachment link. The browser and client configuration determines
what desktop application is used to display the attachment.

Repository files are viewed in the same way as desktop files. However, if you click the
link in the File Name/URL column in the Attachments table for an attached folder, a
browser window/tab opens and displays the list of files and folders within the
attached folder.

18.3 Displaying Attachments for Multiple Entities in the Same Table
For a user interface that shows information for more than one business object, the
Attachments component can be configured to display the attachments for two or more
of these business objects.

For example, when opening up the Attachments from the Department section of your
UI page, you might want to display attachments for all Employees that exist in that
Department. This example will be used throughout this section to help clarify the
instructions.

This configuration is only possible when the underlying view object for your page
contains the primary keys for each of the business objects whose attachments you
want to show in your page. For example, the DeptEmpVO would need to include
attributes for both the Department primary key and the Employee foreign key. In this
example, the Department is considered to be the primary business object and the
Employee is the secondary business object. The example uses only two business
objects, but it is possible to display the attachments for more than two business objects
using this feature.

Your primary business object is the one that you linked to the AttachmentsVO at
design time, when you created your Attachment view link. Attachments can only be
added to the primary business object when using this feature.

The actionEntity property can be used to set the primary business object and controls
which attachments can be updated and deleted. When set, any document attached to a
different entity is displayed for reference purposes only. It cannot be updated or
deleted.

18.3.1 How to Configure the Attachments Component to Display Attachments for
Multiple Entities

The following steps provide details on how to configure your data model to display
attachments for two or more business objects. These instructions assume that you have
already created the Attachments view link between one business object view object
and the Attachments view object, as described in Section 18.2.2, "How to Create
Attachment View Links."

To configure your data model to display attachments for two or more business
objects:
1. Open the view object for your business object.

2. Navigate to the Attributes tab. Add a new transient attribute for the secondary
business object for which you want to display attachments. Use the existing
AttachmentEntityName attribute as an example, naming the new attribute
AttachmentEntityName1.

Displaying Attachments for Multiple Entities in the Same Table

18-20 Developer's Guide

3. Change the Expression value in the View Attribute screen to be the Attachment
ENTITY_NAME as defined for your business object in the FND_DOCUMENT_ENTITIES
and FND_DOCUMENT_ENTITIES_TL tables

4. Repeat Steps 2 and 3 for any subsequent business objects for which you want to
show attachments. Make sure that you modify the attribute name and expression
value for each.

Close the view object.

5. Open the attachment view link.

6. Link your secondary business object to the Attachments view object.

a. Navigate to the Relationship tab and click the Attributes Edit icon.

b. Select the foreign key reference column in your view object from the Source
Attribute list and then select the corresponding PknValue column in the
Attachments view object (starting with Pk1Vlaue) from the Destination
Attribute list. Click Add to add this pair.

Repeat this for each column that makes up the foreign key, which identifies
your secondary business object.

c. Select the EntityName attribute (created in Step 2) in the Attachments view
object from the Destination Attribute list. Click Add to add this pair.

Repeat this for each of the AttachmentEntityName transient attributes.

d. Navigate to the Query tab, and click the Source Edit icon.

e. Modify the auto-generated Source and Destination queries to match the
appropriate Entity Names and Primary Key values Put parentheses around the
criteria that pertain to one business object and change the AND to an OR in
between each business object. Make sure your parentheses are matched
correctly, as shown in examples Example 18–9 and Example 18–10.

Example 18–9 Source Query

((:Bind_EmployeeId = PK1_VALUE) AND (:Bind_AttachmentEntityName = ENTITY_NAME))
OR
((:Bind_DeptNum = PK1_VALUE) AND (:Bind_AttachmentEntityName1 = ENTITY_NAME))

Example 18–10 Destination Query

((:Bind_Pk1Value = FndDemoDeptEmpEO.EMPLOYEE_ID) AND (:Bind_EntityName = 'FND_
DEMO_EMP'))
OR
((:Bind_Pk1Value = FndDemoDeptEmpEO.DEPT_NUM) AND (:Bind_EntityName = 'FND_DEMO_
DEPT'))

7. Navigate to the Source view for the view link and edit the source XML to include
the extra attributes in the Destination array. Make sure you include attributes for
each additional business object for which you want to display attachments.

The AttrArray for the destEnd ViewLinkDefEnd must map to the AttrArray for
the sourceEnd ViewLinkDefEnd.

The design time code inserts an array of unique items where the runtime code
needs a matching item list, as shown in Example 18–11. (The added items are in
bold).

Configuring the Attachments Component UI

Implementing Attachments 18-21

Example 18–11 Source and Destination Attribute Arrays

<ViewLinkDefEnd
 Name="sourceEnd"
 Cardinality="1"
 Owner="oracle.apps.model.FndDemoDeptEmpVO"
 Source="true">
 <AttrArray Name="Attributes">
 <Item Value="oracle.apps.model.FndDemoDeptEmpVO.DeptNum"/>
 <Item Value="oracle.apps.model.FndDemoDeptEmpVO.AttachmentEntityName"/>
 <Item Value="oracle.apps.model.FndDemoDeptEmpVO.AttachmentEntityName1"/>
 <Item Value="oracle.apps.model.FndDemoDeptEmpVO.EmployeeId"/>
 </AttrArray>
</ViewLinkDefEnd>
<ViewLinkDefEnd
 Name="destEnd"
 Cardinality="-1"
 Owner="oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO">
 <AttrArray Name="Attributes">
 <Item
Value="oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO.Pk1Value"/>
 <Item
Value="oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO.EntityName"
/>
 <Item
Value="oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO.EntityName"
/>
 <Item
Value="oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO.Pk1Value"/>
 </AttrArray>

8. Navigate back to the General tab and expand the Custom Properties section.
Modify the value of the OAF_ATTACHMENT_CATEGORY custom property to control the
attachments that are displayed in your page, based on category and to control the
Category droplist values.

9. Save all your changes.

To configure your Attachments component to display attachments for two or
more business objects:
1. Open the page that contains the Attachment component that is bound to the

ViewLink modified above.

2. Select the Attachment component.

3. Set the actionEntity property to the ENTITY_NAME of the primary business object.
By setting this property, you are allowing users to update and delete attachments
belonging to the primary business object whilst disabling the ability for users to
update and delete attachments for the secondary and all subsequent business
objects.

18.4 Configuring the Attachments Component UI
The default behavior of the Attachments component can be changed by setting the
properties on the component using the Property Inspector.

Note: This can be further controlled using data security.

Configuring the Attachments Component UI

18-22 Developer's Guide

Following is a list of some of the properties that are supported by the Attachment
component. Refer to Table 18–1 for basic descriptions of why and how each property is
used.

The most important properties to take note of are:

■ mode - This property drives the UI that is rendered. It is automatically set when
you add attachments to your page and should not be changed. Mode values
include link, table, and columnLink.

■ repositoryMode - This property indicates whether or not a user is aware of the
content repository. A more advanced UI is displayed to users who are aware of the
content repository (repositoryMode=true) allowing them to perform advanced
functions such as selecting repository files and folders to attach to the business
object, and checking in and checking out attached files.

Table 18–1 Attachment Component Properties

Property Description Default Value

Mode String. Acceptable values are link,
columnLink, and table.

The mode property is
set automatically at
the time the
component is created.

RepositoryMode Boolean: true / false.

True: Repository related functionality
is enabled, including: the ability to
select and attach a document/folder
from the Content Server, and version
control.

False

AttachFolderAllowed Not used. N/A

AttachLatestVersion Not used. N/A

ApprovalEnabled Boolean: true / false. True: Adds the
Status column to the Attachments
table.

False

DeleteMessage String. Message to be displayed on
Delete Attachment confirmation page.

Are you sure you
want to delete the
selected
attachment(s)?

Rows Number. Maximum number of rows
to display in a single range of rows in
attachment table. Some ranges may
have fewer than the number specified
here, i.e. the last range when there is
an insufficient number of rows. To
display all rows at once, set this
attribute value to 0.

10

FileTypeEnabled Boolean: true / false. True: Display
attachment type of "File" in the Type
choice list.

False: the component is hidden.

True

TextTypeEnabled Boolean: true / false. True: Display
attachment type of "Text" in the Type
choice list.

True

UrlTypeEnabled Boolean: true / false. True: Display
attachment type of "URL" in the Type
choice list.

True

Configuring the Attachments Component UI

Implementing Attachments 18-23

NumAttachmentsDisplayed Number. Maximum number of
attachments displayed as links in the
hover popup when mode is set to link
or columnLink.

3

AddAllowed Boolean: true / false. Enables/disables
the "Add" icon in the attachments
table toolbar.

True: enables the icon in the toolbar.

False: disables the icon in the toolbar.

True

AddEnabled Boolean: true / false.

True: shows the icon in the toolbar.

False: hides the icon in the toolbar.

True

ActionEntity String. This must be an Attachment
Entity Name. For use when showing
the attachments for multiple entities in
the Attachments table/popup. Setting
this property indicates that update
and delete actions will only be
possible on this entity.

UpdateAllowed Boolean: true / false. Enables/disables
the update icons in the attachments
table toolbar. These include the "Check
In", "Check Out" and "Cancel Check
Out" icons. This property also
enables/disables the users' ability to
update the Category, Title and
Description of the Attachments.

True: enables the icons and makes the
Category, Title and Description
columns editable for existing
attachments.

False: disables the update icons and
makes the Category, Title and
Description columns read-only for
existing attachments.

True

UpdateEnabled Boolean: true / false. Controls
show/hide of the update icons in the
attachments table toolbar. These
include the "Check In", "Check Out"
and "Cancel Check Out" icons.

True: shows the update icons in the
toolbar.

False: hides the update icons in the
toolbar.

True

InsertMultiple Boolean: true / false. Determines
whether more than one attachment
can be assigned.

False: User can only add a one
attachment.

True

Table 18–1 (Cont.) Attachment Component Properties

Property Description Default Value

Configuring the Attachments Component UI

18-24 Developer's Guide

DeleteAllowed Boolean: true / false. Enables/disables
the "Delete" icon in the attachments
toolbar and inline for link and
columnLink modes. True: Deleting
attachments is allowed.

True: enables the icon.

False: disables the icon.

True

DeleteEnabled Boolean: true / false. Controls
show/hide of the "Delete" icon in the
attachments table toolbar.

True: shows the icon in the toolbar.

False: hides the icon in the toolbar
preventing users from deleting
attachments.

True

ViewAllowed Boolean: true / false. True: Viewing
attachments is allowed.

False: Links for viewing documents in
Attachments tables are disabled.

True

DefaultCategory String. Value selected as the default in
the Category poplist when adding
new attachments.

Rendered Boolean: true / false. True: Component
is rendered in the page.

False: the component is not rendered.

True

Id String. The identifier of the
component.

Auto-generated

Visible Boolean: true / false.

True: the component is displayed in
the page.

False: the component is hidden.

True

ShortDesc String. The short description of the
component. This text is commonly
used by user agents to display tooltip
help text.

Label String. Specifies the title for the
Attachment popup.

Attachment

AutoHeightRows Number. Sets the maximum number
of rows that the table height will
automatically adjust to depending on
the amount of data in the table.

10

ContentDelivery String. This property is only used in
conjunction with the AutoHeightRows
property. If AutoHeightRows is not
set, this property should be not be set
either.

Immediate

RowBandingInterval Number. The interval between which
the row banding occurs. This value
controls the display of the row
banding in the table. For example,
rowBandingInterval=1 would display
alternately banded rows in the grid.

Table 18–1 (Cont.) Attachment Component Properties

Property Description Default Value

Working with Attachments Programmatically

Implementing Attachments 18-25

18.5 Working with Attachments Programmatically
To support headless or automated processing of Attachments, methods have been
provided in the
oracle.apps.fnd.applcore.attachments.attachmentService.applicationModule.A
ttachmentServiceAM class.

Before you begin:
■ If the Application or Project has not already been configured to use Attachments,

follow the instructions in "Before you begin:" in Section 18.2, "Creating
Attachments."

■ Find or create an instance of the AttachmentServiceAM:

Example 18–12 AttachmentServiceAM

// Enable the Attachments Service AM
AttachmentServiceAMImpl attachmentServiceAMImpl =
 (AttachmentServiceAMImpl) am.findApplicationModule("attachmentsServiceAM");
if (attachmentServiceAMImpl == null)
{
 attachmentServiceAMImpl =
 (AttachmentServiceAMImpl)am.createApplicationModule("attachmentsServiceAM",
 "oracle.apps.fnd.applcore.attachments.attachmentService.applicationModule.
 AttachmentServiceAM");
}

18.5.1 Creating New Attachment Types
Methods have been provided for programmatically creating the File, Text and URL
types. There is also an additional type, ManagedURL.

ColumnBandingInterval Number. The interval between which
the column banding occurs. This value
controls the display of the column
banding in the table. For example,
columnBandingInterval=1 would
display alternately banded columns in
the grid.

ShowCategory Boolean: true / false. Controls
show/hide of the Category column in
the Attachments table.

True

UpdateCategoryList String. Stores a comma-separated list
of Category Names that will be used
at run time to populate Category LOV
when a user adds new attachments or
attempts to update the Category of an
existing attachment. This list must be a
subset of the Categories that are
assigned to your Entity.

SecondaryToolbarRendered Boolean: true / false.

True: shows the secondary toolbar.

False: hides the icon in the toolbar.

False

Table 18–1 (Cont.) Attachment Component Properties

Property Description Default Value

Working with Attachments Programmatically

18-26 Developer's Guide

A managed URL attachment is intended for use with pages that are hosted on internal
servers that are administered by Topology Manager. Since changes made by the
Topology Manager might invalidate the scheme://domain:port portion of a URL
resulting in a dead link, support for this variation of the URL type was created. To the
end-user, this link will still appear as a URL. Internally, however, this Attachment will
be created with a different Attachment type, TMURI.

There currently are no methods for attaching files that are already uploaded to the
content server (Repository File or Folder). How a required file would be located and
then added still needs to be determined. If the required file is already attached to
another record, use the copyAttachments method to attach the file to the required
record. Table 18–2 summarizes the available methods for Attachments APIs.

All methods are overloaded, providing two options for creating a new Attachment.
The first option creates the new Attachment row from the Attachment collection
linked to the parent view object. This is illustrated in Example 18–13.

Table 18–2 Method Summary for Attachment APIs

Class Method

void attachFile(AttachmentsVORowImpl row, java.lang.String
fileName, java.lang.String contentType,
java.io.InputStream fileStream)

Updates the supplied attachments row with the information to
attach a file.

AttachmentsVORowImpl attachFile(java.lang.String fileName, java.lang.String
contentType, java.io.InputStream fileStream)

Creates a new row from the internal attachments view object
and populates the attributes to attach a file.

void attachManagedUrl(AttachmentsVORowImpl row,
java.lang.String entAppShortName, java.net.URI uri)

For the given attachment row, it populates the attributes for the
attachment type AttachmentsConstants.TMURI_TYPE.

 AttachmentsVORowImpl attachManagedUrl(java.lang.String entAppShortName,
java.net.URI uri)

Creates a new row from the internal attachments view object
and calls attachManagedUrl(AttachmentsVORowImpl row,
String entAppShortName, URI uri) to populate.

void attachText(AttachmentsVORowImpl row, java.lang.String
text)

Updates the supplied attachments row with the information to
attach text.

AttachmentsVORowImpl attachText(java.lang.String text)

Creates a new row from the internal attachments view object
and populates the attributes to attach text.

void attachUrl(AttachmentsVORowImpl row, java.lang.String
url)

Updates the supplied attachments row with the information to
attach a static URL.

AttachmentsVORowImpl attachUrl(java.lang.String url)

Creates a new row from the internal attachments view object
and populates the attributes to attach URL.

Working with Attachments Programmatically

Implementing Attachments 18-27

Example 18–13 Code for Creating a New Attachment Row: Option 1

// Retrieve the department for adding the new Attachment row to
ViewObject vo = am.findViewObject("FndDemoDept1");
vo.setWhereClause("DEPT_NUM = :deptNum");
vo.defineNamedWhereClauseParam("deptNum", null, null);
vo.setNamedWhereClauseParam("deptNum", departmentNumber);
vo.executeQuery();
Row currDepartment = vo.next();
// Retrieve the Attachments Collection
RowSet attachments = (RowSet) currDepartment.getAttribute("Attachments");
// Create new Attachment Row
AttachmentsVORowImpl newAttachment = (AttachmentsVORowImpl)
 attachments.createRow();
// Add Managed Link
attachmentServiceAMImpl.attachManagedUrl(newAttachment,
 textEntAppShortName, textURI);
// Set the Category Value
newAttachment.setCategoryName("MISC");

The second option is to allow the method to create the Attachment row at the same
time, as shown in Example 18–14.

Example 18–14 Code for Creating a New Attachment Row: Option 2

// Add Managed Link
newAttachment =
attachmentServiceAMImpl.attachTopologyManagedUrl(textEntAppShortName, textURI);
newAttachment.setEntityName("FND_DEMO_DEPT");
newAttachment.setPk1Value(departmentNumber);
// Set the Category Value
newAttachment.setCategoryName("MISC");

If you use the second option, it is essential for the Entity and Primary Key values to be
set programmatically as well. Getting any of these values wrong may result in the
Attachment being lost or assigned to the wrong record. While the second type looks
like less work it would be a better practice to use the first approach for creating new
Attachments.

It will also be necessary to set the Category value for the new row before committing
the transaction as shown in both examples. The value expected is the CATEGORY_NAME
from the FND_DOCUMENT_CATEGORIES table. Since the value is not validated, use the
following method to ensure that you are providing a category value that is mapped to
your Document Entity Name:

newAttachment.setCategoryName("MISC");

18.5.2 Retrieving Attachments
The InputStream and OutputStream methods have been supplied for retrieving
Attachment types of FILE or TEXT. The URL or TMURI types are not stored on the
content server. Their URL values can be retrieved with the getAttachmentUrl()
method, which is described in Table 18–3.

Warning: Assigning an Attachment to the wrong record could allow
an end-user to view a document they would not normally be able to
view.

Working with Attachments Programmatically

18-28 Developer's Guide

18.5.3 Using Attachment Utilities
One utility method that is provided enables a list of Attachments to be copied to
another record as identified by the unique combination of the Document Entity Name
and Primary Key values. The list is constructed of the Attachment rows from one or
more other records.

This copyAttachments utility does not duplicate the files on the content server. When
the method is complete, the destination record will point to the same files in the
content server as the source record.

When constructing the list of Attachments to copy, consider whether Category Data
Security has been implemented (see Section 18.8.1, "Attachment Category Data
Security"). If implemented, the list of Attachments available may not be the full list
depending on the permissions granted to the current user. If the full list is required for
the copy it will be necessary to bypass Category Data Security by setting the
dataSecurityDisabled flag on AttachmentsVOImpl to true, as shown in
Example 18–15.

Example 18–15 AttachmentsVOImpl

AttachmentsVOImpl attachmentVO = attachmentServiceAMImpl.getAttachments1();
attachmentVO.setDataSecurityDisabled(true);
// assign where clause conditions
attachmentVO.executeQuery;

Table 18–3 getAttachmentUrl() Method

Class Method

java.io.InputStream getAttachmentInputStream(AttachmentsVORowImpl row)

Retrieve the attachment content for the supplied attachment row
as a stream.

java.io.OutputStream getAttachmentStream(AttachmentsVORowImpl row)

Retrieve the attachment content for the supplied attachment row
as a stream.

java.lang.String getAttachmentUrl(AttachmentsVORowImpl row)

Retrieve URL for the attachment content for the supplied
attachment.

Note: If order is important, the list is processed in the order it is
received. Based on the default ordering the UI, this would place the
first attachment in the list last when viewed.

Table 18–4 AttachmentsVORowImpl

Class Method

java.util.List<Attachmen
tsVORowImpl>

copyAttachments(java.util.List<AttachmentsVORowImpl>
attachments, java.lang.String entityName,
java.lang.String pk1Value, java.lang.String pk2Value,
java.lang.String pk3Value, java.lang.String pk4Value,
java.lang.String pk5Value)

Create copies of the supplied attachment rows assigning them to
the entity values as provided.

Setting Up Miscellaneous Attachments Features

Implementing Attachments 18-29

18.6 Setting Up Miscellaneous Attachments Features
When the repositoryMode property is set to true, the following features become
available:

■ Custom Actions

■ Approvals

18.6.1 Custom Actions
Four facets (placeholders) are provided on the Attachment component for product
teams to add toolbar buttons to the toolbar and actions to the Action menu of the
Attachments Table.

The facet tableAppsTableSecondaryToolbar is provided to add toolbar buttons to the
Attachments Table toolbar.

The facet linkAppsTableSecondaryToolbar is provided for Link mode.

The facet tableAdditionalActionItems is provided to add action items to the Action
menu in the Attachments Table menus.

The facet linkAdditionalActionItems is provided for Link mode.

18.6.2 Approvals
Approval functions are added to the Attachments component using the Custom
Actions feature, which is documented in the previous section of this chapter.

The approvalEnabled property on the Attachments component can be used to control
whether the Status column (from the FND_DOCUMENTS_TL table) is displayed in the
Attachments Table. This column indicates the status of the attachment relationship
between the business object and the file, not the status of the file in the content
repository.

Product teams are responsible for programmatically setting the status as necessary, but
are required to set this value using a lookup code provided in the FND_ATTACHMENT_
STATUSES lookup. The following table has the full list of valid values found in this
lookup table. (Null is also a valid value):

Note: When using the tableAppsTableSecondaryToolbar or
linkAppsTableSecondaryToolbar facets, you must also set the
SecondaryToolbarRendered property on the attachments component
to true to expose this facet in the Attachments table.

Lookup Code Meaning

APPROVED Approved

REJECTED Rejected

REVIEWED Reviewed

SUBMITTED_FOR_APPROVAL Submitted for Approval

SUBMITTED_FOR_REVIEW Submitted for Review

UNAPPROVED Unapproved

Integrating Attachments Task Flows into Oracle Fusion Functional Setup Manager

18-30 Developer's Guide

18.7 Integrating Attachments Task Flows into Oracle Fusion Functional
Setup Manager

Every application registers task flows with a product called Oracle Fusion Functional
Setup Manager. The Functional Setup Manager provides a single, unified user interface
that allows customers and implementers to configure all Oracle Fusion applications by
defining custom configuration templates or tasks based on their business needs.

The Functional Setup Manager UI enables customers and implementers to select the
business processes or products that they want to implement.

Function Security controls your privileges to a specific task flow, and users who do not
have the required privilege cannot view the task flow. For more information about
how to implement function security privileges and roles, see Chapter 49,
"Implementing Function Security."

Table 18–5 lists the task flows and their parameters.

For more information about task flows, see Oracle Fusion Applications Common
Implementation Guide.

18.8 Securing Attachments
All attachments users must be assigned the "AttachmentsUser" role in order to use
attachments. This role gives users read access to all shared file attachments.
Depending on the security defined for attachments, further access privileges will be
assigned to users on a per-file basis at the time of accessing the attachments.

Attachments can be secured using the following two types of security:

■ Attachment Category data security

A user can choose whether to Share a file when creating a file attachment. File sharing
impacts the way in which files are secured. For more information, see Section 18.8.2,
"File Sharing."

Note: The Status column is a read-only column when displayed in
the Attachments Table.

Table 18–5 Attachments Task Flows and Parameters

Task Flow
Name Task Flow XML

Parameters
Passed Behavior Comments

Manage
Attachment
Entities

/WEB-INF/oracle/ap
ps/fnd/applcore/attac
hments/publicUi/flow
/ManageAttachmentE
ntities.xml#ManageAtt
achmentEntities

[moduleType]
[moduleKey]
[pageTitle]

Search and
edit
Attachment
entities.

NA

Manage
Attachment
Categories

/WEB-INF/oracle/ap
ps/fnd/applcore/attac
hments/publicUi/flow
/ManageAttachmentC
ategories.xml#Manage
AttachmentCategories

[moduleType]
[moduleKey]
[pageTitle]

Search and
edit
Attachment
categories.

NA

Securing Attachments

Implementing Attachments 18-31

18.8.1 Attachment Category Data Security
Attachments can be secured using attachments categories. This security determines
which attachments a user has access to, and what actions they can perform on that
attachment, based on the Category that is assigned to it. Uptaking this security is not a
mandatory requirement for product teams.

Before uptaking category data security, ensure you have assigned one or more
categories to the attachment entity defined for your business object. For more
information, see Section 18.2.5, "How to Assign Categories to the Attachment Entity."

To incorporate category data security, you need to seed data security for your
attachment categories to control which roles have access to each of the categories.

The following seed data has been provided and must be used when you set up
category data security:

■ "FND_DOCUMENT_CATEGORIES": The seeded database resource for
attachment categories data security

■ Three actions (form functions) seeded for attachments. These are listed in
Table 18–6.

18.8.1.1 How to Set Up Category Data Security
Do the following to set up category data security:

1. Define the conditions (object instance sets) that identify the category or set of
categories you are securing. The CATEGORY_ID, CATEGORY_NAME, or USER_NAME
condition items can be used in your condition definitions.

2. Ensure the Roles to which you want to assign data security have been created in
Oracle Platform Security Services (OPSS).

3. Grant the actions that you will allow a user to perform on the set of Categories
identified by your condition in Step 2. You can grant one or more of the seeded
actions: read, update, and delete (see Table 18–6) to a role, but a role must be
assigned the read action in order to view attachments from the Attachments UI.

The "Manage Database Resources and Policies" setup UI in the FndSetup
application can be used to create these grants once you have defined your
conditions in the database.

4. (Optional) The "Applications Common Reference Data Review Duty" role (GUID:
7BC1484030A9EE43499AB0EBBE17B104) provides users with read, update, and
delete actions for all attachments that are assigned the "Miscellaneous" category.

To setup your own category data security for the "Miscellaneous" category, you
will need to follow Steps 1 to 4.

Table 18–6 Actions Seeded for Attachments

Action FUNCTION_NAME USER_FUNCTION_NAME

Seeded Read Action FND_READ_APPLICATION_
ATTACHMENT_DATA

Read Application Attachment

Seeded Update Action FND_UPDATE_APPLICATION_
ATTACHMENT_DATA

Update Application Attachment

Seeded Delete Action FND_DELETE_APPLICATION_
ATTACHMENT_DATA

Delete Application Attachment

Using Attachments (Runtime)

18-32 Developer's Guide

The following condition (object instance set) is seeded with Oracle Fusion
attachments and can be reused by using the "Miscellaneous" category for your
product:

■ INSTANCE_SET_NAME: FNDDOCUMENTCATEGORIESFND214

■ PREDICATE: category_name = 'MISC'

5. Using the Manage Attachment Entities Setup UI, "switch on" category data
security for your attachment entity.

For more information, see Chapter 48, "Implementing Oracle Fusion Data Security."

18.8.2 File Sharing
File sharing impacts the way in which your files are secured. Files are stored on the
Content Server as either Shared or Not Shared. Users can choose which option to use
when they attach files to their business objects. For more, see Section 18.9.1, "How to
Use Attachments File-Level Security."

Shared files are files that are stored in virtual folders within the Content Server and are
available to all attachments users. An attachments user is any user who has been
assigned the "AttachmentsUser" role. Shared files are exempt from data security.

Unshared files are only available to those users who have access to the file via data
security. Therefore, if an Oracle Fusion Applications user has privileges to access to an
attachment through a business object instance and they have privileges to access
attachments with a particular category, then they have access to the file in the Content
Server.

Users are defined on a single Lightweight Directory Access Protocol (LDAP) server.
Each of these users can log in to both Oracle Fusion Applications and Oracle Content
Server using the same username and password. Users will be given appropriate
privileges to each system based on their assigned roles.

18.8.3 Attachments SaaS
Software as a Service (SaaS) support has been added for Oracle Fusion attachments to
ensure that the attachments belonging to organizations using the same environment
are all kept completely separate to each other.

18.9 Using Attachments (Runtime)
This section discusses how to use Attachments file-level security, update attachments,
use the Attachments update functions, and how to check file attachments out and in.

18.9.1 How to Use Attachments File-Level Security
With Oracle Fusion Applications attachments, users have the ability to set attachments
to be either Shared or Not Shared using the Shared option, as shown in Figure 18–12.

Using Attachments (Runtime)

Implementing Attachments 18-33

Figure 18–12 Attachment Table with Shared Column

The Shared column is only shown in the Attachments table when the repositoryMode
property is set to true. The default state for this option is Not Shared for both Text and
File type attachments.

All repository File or Folder attachments are shared by default. This is because only
shared files are visible in the Document Picker, which is used to select the Repository
Files or Folders.

If the user hovers the mouse pointer over the Shared check box, the following hint
displays: Checking this box will make this file available to other users.

If the user attempts to change a File type attachment from Shared to Not Shared, the
system checks to see if the file is attached to any other business object instances. If the
file is attached to other business object instances, the following message is displayed
and the file attachment remains shared: This change cannot be made as this file is attached
to other business objects.

18.9.2 How to Update Attachments
Users have the ability to update attachments within the Attachments table or popup.

 As well as being able to update the category, title, and description of an attachment,
users can update existing URL and Text attachments and replace the file of existing
File attachments with a new version of the file.

Note: The option is not available for all URL and Folder type
attachments, as shown in Figure 18–12. By default, all Folder type
attachments are shared, and all URL type attachments are not shared.
Therefore, the check box is hidden because these default values cannot
be changed by the user.

Note: Only one attachment can be updated at any one time.

Icon Function File Property

Check Out versioncheckout_ena.png repositoryMode = true

Check In versioncheckin_ena.png repositoryMode = true

Using Attachments (Runtime)

18-34 Developer's Guide

The updateAllowed and repositoryMode properties on the Attachments component,
and the Checked Out status of the Content Repository files, control how the update
functionality works for a particular user.

18.9.2.1 Attachments Update Functions
The Attachments update functions are available in the Attachments table toolbar and
Actions menu.

The rendering of the update buttons in the Attachments table toolbar and the
corresponding actions in the Actions menu are controlled in the following way using
the updateAllowed property on the Attachments component:

updateAllowed = true:

■ The Category, Title, and Description columns in the Attachments table are
updateable.

The title and description values are kept in sync with the corresponding values
stored in the Content Server. When a user updates the title or description, the
values are updated in the Content server when the changes are saved.

■ If repositoryMode = true:

– The Check In, Check Out, and Cancel Check Out buttons are rendered in the
Attachments table toolbar, as shown in Figure 18–13.

These buttons are enabled or disabled based on the type of attachment and the
checked out status of File and Text type attachments.

Figure 18–13 Attachment Table with Update Functions set to True

■ If repositoryMode = false:

– The Check In, Check Out, and Cancel Check Out buttons are not rendered in the
Attachments table toolbar.

Cancel Check Out versionrollback_ena.png repositoryMode = true

Icon Function File Property

Using Attachments (Runtime)

Implementing Attachments 18-35

Figure 18–14 Attachment Table with Update Functions set to False

updateAllowed = false:

■ None of the fields in the table are updateable when this property is set to false.

■ If repositoryMode = true:

– The Check In, Check Out, and Cancel Check Out buttons are rendered and
disabled in the Attachments Table toolbar.

■ If repositoryMode = false:

– The Check In, Check Out, and Cancel Check Out buttons are not rendered in the
Attachments table toolbar.

18.9.2.2 Determining the Checked Out Status of File and Text-Type Attachments
The Checked Out By column indicates the checked-out status in the Attachments table.
this column is only rendered when the repositoryMode is set to true.

This column is always empty for URL and Folder type attachments.

For File and Text attachments, this column is either:

■ Empty, indicating that the file is not checked out.

■ Displays the Oracle Fusion Applications username of the user who currently has
the file checked out.

The user name is derived from the Checked Out By value that is stored against the
file in the Content server. The stored Content Server username is mapped to the
appropriate Oracle Fusion Applications username. If the value cannot be mapped,
the Content server username is displayed in the column. This value is never stored
in the Attachments Table.

18.9.2.3 Enabling or Disabling Attachments Update Functions
The update functions apply to a single selected row in the Attachments table. If no
rows are selected or more than one row is selected in the Attachments table, all of the
update buttons and the corresponding actions in the Actions menu are disabled.

When a single row is selected in the Attachments table, the enabling or disabling of the
update buttons in the Attachments table toolbar and the corresponding actions in the
Actions menu are controlled using the following rules when the updateAllowed
property is set to true:

Using Attachments (Runtime)

18-36 Developer's Guide

URL attachments
The following rules apply regardless of the repositoryMode value:

■ The Category, Title, and Description fields are updateable.

■ The Check Out, Check In, and Cancel Check Out functions are always disabled.

Folder attachments
If repostoryMode = true:

■ The Category, Title, and Description fields are updateable.

■ All of the update functions are disabled.

Text and File attachments
If repositoryMode = true:

■ The Category, Title, and Description fields are updateable.

■ All of the update functions are disabled when the file is checked out by a user
other than the current user.

■ The Check Out function is disabled, and the Check In, and Cancel Check Out
functions are enabled when the file is checked out by the current user.

■ The Check Out function is enabled, and the Check In and Cancel Check Out
functions are disabled when the file is not checked out.

18.9.3 How to Check Out and Check In File Attachments
This section describes how to check out and check in file attachments.

To check out and check in file attachments:
1. Highlight the File attachment in the Attachments table. Click the Check Out

button located on the toolbar.

The file is immediately checked out in the Content Repository. The Checked Out
By column is updated to show your user name.

2. Go to your local file system and make the necessary updates to this file.

3. Return to the Attachments table and highlight the checked out file. Click the
Check In button located on the toolbar to open the Check In File dialog, as shown
in Figure 18–15.

Figure 18–15 Check In File Dialog

Tip: Clicking the Cancel Check Out button cancels the check out
without making any updates to the file. The check out is cancelled
immediately in the Content Repository.

Using Attachments (Runtime)

Implementing Attachments 18-37

4. Click Browse to browse your local file system. Select the updated file that you
want to upload.

5. Click OK to save your changes and close the dialog.

The selected file is uploaded to the content server. The Checked Out By column is
cleared.

6. Click Save on the Attachments Table page to commit your transaction.

Tip: If you cancel the entire transaction, the checked out status
returns to the state that it was in before the transaction took place.

Using Attachments (Runtime)

18-38 Developer's Guide

19

Organizing Hierarchical Data with Tree Structures 19-1

19Organizing Hierarchical Data with Tree
Structures

This chapter describes how to create, edit, and delete tree structures, trees, and tree
versions, and how to develop applications using trees.

The chapter includes the following sections:

■ Section 19.1, "Introduction to Trees"

■ Section 19.2, "Configuring the Trees Application Launch Page"

■ Section 19.3, "Working with Tree Structures"

■ Section 19.4, "Working with Trees"

■ Section 19.5, "Working with Tree Versions"

■ Section 19.6, "Managing Labels in the Generic Label Data Source"

■ Section 19.7, "Using the Applications Hierarchy Component to Develop
Applications"

■ Section 19.8, "Integrating Custom Task Flows into the Applications Hierarchy
Component"

■ Section 19.9, "Using the fnd:hierarchy Property Inspector to Specify Tree Versions"

■ Section 19.10, "Using the Expression Builder to Bind TreeCode, TreeStructureCode,
and TreeVersionId Properties"

■ Section 19.11, "Embedding the Tree Picker Component in a User Interface"

■ Section 19.12, "Setting Bind Variables and View Criteria"

■ Section 19.13, "Using Service APIs to Manage Trees"

■ Section 19.14, "Advanced Topics"

19.1 Introduction to Trees
Oracle Fusion tree management allows data in applications to be organized into a
hierarchical fashion, and allows you to create tree hierarchies based on specific data.

Here are some of the advantages of how using tree hierarchies to develop applications
can help you:

■ Reusable code that results in a one-time-only implementation of many
tree-management features, and can be used immediately by every type of
application hierarchy.

Introduction to Trees

19-2 Developer's Guide

■ Open metadata that can be read by any application that needs to use
tree-management hierarchies. This does the following:

– Minimizes the number of application programming interfaces (APIs) that need
to be written for accessing hierarchies

– Allows the sharing and understanding of hierarchies across Oracle Fusion
applications

– Allows the sharing of hierarchies with Oracle Business Intelligence reporting
and analytics systems

■ Tree structures that capture the business rules the data must adhere to.

■ ADF Business Components view objects that are used as data sources, eliminating the
need to build new types of data sources.

■ Hierarchical relationships between entities that are external to the entity itself, allowing
multiple hierarchical views to be implemented for the same set of entities. Each of
these hierarchies can be used to implement a different business function.

■ Data flattening that improves query performance against the hierarchical data,
especially for hierarchical queries such as roll-up queries.

■ Business events that can be consumed by any application requiring additional
processing on specific tree operations.

■ Tree and node-level access control that eliminates the need for product teams to write
their own access-control code.

■ Well-defined APIs available for metadata and data that make it easy for the Oracle
Fusion Upgrade Office to write migration tools for existing hierarchies in
E-Business Suite, PeopleSoft, and Siebel.

As a developer, you will work mostly with tree structures. The task of working with
trees and tree versions normally will fall to customers. However, since you probably
also will be required to work with trees and tree versions, both types of tasks are
described in this chapter.

19.1.1 Understanding Tree Structures, Trees, and Tree Versions
A tree structure is a way of describing a hierarchy. A tree is an instance of this hierarchy.
Every tree structure contains a tree. Trees may have one or more versions. Each tree
version contains at least one root node; that is, a member that has no superior.
(Occasionally, a tree version may have more than one root node.) The lines connecting
elements in a tree structure are branches; the elements themselves are nodes.

The names of relationships are modeled after family relations:

■ A node is a parent of another node if it is one step higher in the hierarchy and
closer to the root node.

■ Sibling nodes share the same parent node.

For example, in Figure 19–1, XYZ Corp. is the parent of Marketing and Finance, which
are its children. Accounts Receivable and Accounts Payable are siblings, and are the
children of Finance.

Introduction to Trees

Organizing Hierarchical Data with Tree Structures 19-3

Figure 19–1 Example of a Tree

In Oracle Fusion tree management, a tree structure defines a group of common
business rules for a family of trees, for example, Department, Account, or Project, and
allows an application to select and enable a subset of trees to fulfill a specific purpose
in that application.

A tree contains data that is organized in a hierarchy, allowing the creation of groupings
and rollups of information that already exist within an organization. A tree can have
one or more tree versions. Typically, when changes are made to an existing tree, a new
version is created and published.

A tree structure data source supplies the data for a tree through its nodes. Multiple data
sources can be associated with a tree structure and can have well-defined relationships
among them. Using the example in Figure 19–1, the Accounts Receivable data source is
a child of the Finance data source. Data sources also support business rules that define
how the data from a data source participates in a tree.

Table 19–1 lists other commonly used tree terms and their descriptions.

Table 19–1 Common Tree Terminology

Term Description

Depth The depth of a node is the length of the path from the root to the node. The root
node is at depth zero.

Label Allows for a storage of "tags" that can be used on each tree node in a tree. There are
three labeling schemes:

■ Level - Labels that are automatically assigned based on the data source that the
tree node belongs to. A level label points to a specific data source.

■ Group - Labels that a user can assign to tree nodes arbitrarily.

■ Depth - Labels that are automatically assigned based on the depth of the tree
node within the tree. No manual assignment is performed. Note that in an
unbalanced hierarchy, a level may not be equal to depth.

Labels can be stored in any table and the label data source is registered with the tree
structure.

Tree label When a labeling scheme is used for trees, the selected labels are stored in the tree
label entity and each tree node references a tree label. See "Label."

Node A logical term that refers to the actual data, whatever that may be. Technically, the
node may be stored either in a product-specific table or in an entity that has been
established by the Tree Management solution as the default storage mechanism.
However, since all data in Oracle Applications usually already has a storage home,
only customers should store the node in an entity.

Tree node A node that is included in a tree.

Configuring the Trees Application Launch Page

19-4 Developer's Guide

19.2 Configuring the Trees Application Launch Page
Before you can manage tree structures, trees, and tree versions using the
web-browser-based trees application, you must create the application launch page in
Oracle JDeveloper. The launch page contains links to the Tree Structures, Trees and
Tree Versions, and Manage Labels applications, which contain the management task
flows you will use.

You also will need to perform additional steps that are required to schedule the
concurrent processes that the trees application uses for audit and flattening.

Tree node type A tree node has a node type. Node types can be any one of the following:

■ Single - Indicates that the node is a value by itself. For example, a tree node for
Employee "Larry Ellison" or Employee "Steve Jobs" in an employee hierarchy.

■ Range - Indicates that the node represents a range of values and possibly could
have many children. For example, a tree node representing account numbers
10000 to 99999.

■ Referenced Tree - Indicates that the tree node is actually another tree whose
nodes are not physically stored in this tree. For example, a geographic hierarchy
for the United States can be referenced in a World geographic hierarchy.

Tree levels Provide a way to organize tree nodes. In most trees, all nodes at the same level
represent the same kind of information. For example, in a tree that reflects the
organizational hierarchy, all division nodes appear on one level and all department
nodes on another. Similarly, in a tree that organizes a user's product catalog, the
nodes representing individual products might appear on one level and the nodes
representing product lines on the next higher level.

When levels are not used, the nodes in the tree have no real hierarchy or reporting
structure but do form a logical summarization structure. Strictly enforced levels
mean that the named levels describe each node's position in the tree. This is natural
for most hierarchies.

Loosely enforced levels mean that the nodes at the same visual level of indentation
do not all represent the same kind of information, or nodes representing the same
kind of information appear at multiple levels. With loosely enforced levels, users
assign a level to each node individually; the level is not tied to a particular visual
position.

Tree structure access The set of rules that control access to a tree structure.

Tree access The set of rules that control access to a tree.

Tree node access The set of rules that control access to a particular node (and its subtree) within a
given tree version.

Effective dates Enable users to specify new objects, departments, reporting relationships, or
organizational structures in advance and have them take effect automatically. Users
also can use trees with past, present, or future effective dates when reporting on
current or historic data.

Reference data set
determinant (external)

A value that determines which reference data set will be used for each reference data
object. Business units, regulatory regions, and reference data sets all can determine
which reference data sets are valid for the creation of a transaction or reference data
object.

Audit A process that runs a series of tests against tree metadata and tree data to validate its
integrity.

Table 19–1 (Cont.) Common Tree Terminology

Term Description

Configuring the Trees Application Launch Page

Organizing Hierarchical Data with Tree Structures 19-5

Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for
Applications. For more information, see Chapter 2, "Setting Up Your Development
Environment."

To create the launch page:
1. Configure a UIShell launcher page for your ViewController project using the

procedure described in Section 13.2, "Populating a UI Shell."

2. Add a taskflow entry in the ADF menu as a node with the following properties:

■ focusViewId - /<jspx file>

■ id - tree_<jspx file>

■ Label - Trees and Tree Versions

■ Task Type - dynamicMain taskFlowId
-/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/TreeStructureS
ummary.xml#TreeStructureSummary

3. Repeat Steps 1 and 2 to create a second itemNode with the following properties:

■ focusViewId - /<jspx file>

■ id - tree_<jspx file>

■ label - Trees and Tree Versions

■ Task Type - dynamicMain

■ taskFlowId -
/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/TreeSummary.xml
#TreeSummary

4. Repeat Steps 1 and 2 to create a third itemNode with the following properties:

■ focusViewId - /<jspx file>

■ id - tree_<jspx file>

■ label - Manage Labels

■ Task Type - dynamicMain

■ taskFlowId -
/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/FndLabelSummary
.xml#FndLabelSummary

5. Ensure you have an itemNode for defaultRegional. If you do not, define one with
the following properties:

■ focusViewId - /<jspx file>

■ id - __<jspx file>_itemNode__FndTasksList

■ label - #{applcoreBundle.TASKS}

■ Task Type - defaultRegional

Note: Use double underscores where indicated.

Configuring the Trees Application Launch Page

19-6 Developer's Guide

■ taskFlowId -
/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/Ta
sksList.xml#TasksList

■ Disclosed - true

6. Click OK in the Set Run Configuration window.

The trees application launch page opens in a browser window, as shown in
Figure 19–2.

Figure 19–2 Trees Application Launch Page

7. Do one of the following:

■ Click the Tree Structures link to open the Tree Structure summary page.

■ Click the Trees and Tree Versions link to open the Trees summary page.

■ Click the Central Labels link to open the Central Labels summary page.

■ Click the Trees Picker link to open the Trees Picker application.

Figure 19–3 shows the launch page with all applications open, and the Tree
Structure application's summary page displayed.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-7

Figure 19–3 Trees Application Launch Page with Applications Open

19.3 Working with Tree Structures
Working with tree structures includes the following tasks:

■ Managing tree structure data sources

■ Specifying data source parameters

■ Searching for, creating, duplicating, editing, or deleting tree structures

■ Setting tree structure status

■ Auditing tree structures

19.3.1 How to Manage Tree Structure Data Sources
Tree structure data sources provide the data items for a hierarchy. In the
tree-management infrastructure, these are ADF Business Components view objects.
You should define view objects for all the intended data sources before setting up a
tree structure. For each view object attribute that is to be displayed in the hierarchy
column of an ADF Faces Tree or ADF Faces TreeTable, the Application property
HierarchyDisplay is set to true, as shown in Figure 19–4.

Working with Tree Structures

19-8 Developer's Guide

Figure 19–4 View Object Attributes: HierarchyDisplay Property

Tree management provides a generic data source for holding nodes:
oracle.apps.fnd.applcore.trees.model.view.FndNodeVO. This data source may be
used for tree-only nodes, that is, nodes that do not exist in any other entity in the
system. Likewise, a generic label data source has also been provided:
oracle.apps.fnd.applcore.trees.model.view.FndLabelVO.

19.3.2 How to Specify Data Source Parameters
Tree data sources have optional data source parameters with defined view criteria and
associated bind variables. You can specify view criteria as a data source parameter
when creating a tree structure, and edit the parameters when creating a tree.

The parameters will be applied when performing node operations, and the display of
the nodes in the hierarchy, for any tree version under that data source. Data source
parameters also provide an additional level of filtering for different tree structures.

Tree management supports three data source parameter types:

■ VIEW_CRITERIA - Used to capture the view criteria name, which will be applied
to the data source view object

■ BOUND_VALUE - Used to capture any bound value, which will be used as part of
the view criteria condition

■ VARIABLE - Used to capture and bind variable that is being used by the data
source view object, particularly for WHERE clause support

In addition to parameter values provided by the customer, tree management provides
support for those special parameters whose values for any bind variable are seeded at
runtime by tree management.

For example, to use the effectiveStartDate attribute of a tree version that a data source
uses as one of the bind variables from which the value for the effectiveStartDate bind
variable will be retrieved from the trees effective start date, you can specify a data
source parameter effectiveStartDate with the value
#{treeVersion.effectiveStartDate}. You would then need to expose an

Note: Parameter values customized at the tree level will override the
default values specified at the tree-structure level.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-9

effectiveStartDate bind variable for the data source view object either in view criteria or
a WHERE clause.

You can specify parameters using the syntax for value and name shown in Table 19–2.

19.3.2.1 Implementing Use Cases
This section includes an example use case and discusses basic use cases and their
settings.

19.3.2.1.1 Example Use Case The data source DemoEmpVO has the view criteria
DemoEmpVC1, which is based on the bound values DemoEmpBV1 and
DemoEmpBV2. These are to be applied to the data source view object for tree versions
under the DEMO_EMP_TS tree structure, with varying bound values DemoEmpBV1
and DemoEmpBV2 for trees under this tree structure.

When creating the tree structure FND_DEMO_EMP_TS, the following parameters
must be added to the tree structure data source that corresponds to DemoEmpVO:

■ Parameter name: VIEW_CRITERIA_NAME

■ Parameter type: View Criteria

■ Parameter value: <name of the view criteria to be applied>, in this case
DemoEmpVC1

The following two bindings also must be added:

■ Parameter names: DemoEmpBV1 and DemoEmpBV2

■ Parameter type: Bound Value

■ Parameter value: <actual value, which can be overridden at tree level>

Table 19–2 Parameter Syntax

Attribute Syntax

Tree Structure #{treeStructure.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE}

For example, #{treeStructure.treeStructureCode}.

Tree #{tree.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE}

For example, #{tree.treeCode}.

Tree Version #{treeVersion.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE}

For example, #{treeVersion.treeVersionId}.

Notes: Binding parameters are supported for String, Number, and
Date data types only.

In 11gR1, tree management does not support View Criteria and
Variable when used in combination, or multiple View Criteria as data
source parameters.

Note: Binding parameters are supported for String and Number
data types only.

Working with Tree Structures

19-10 Developer's Guide

19.3.2.1.2 Basic Use Cases and Their Settings The following are examples of use cases
and settings that you can implement using the parameter infrastructure for tree
structure data sources.

Data source having a view criteria defined with a bind variable:

Figure 19–5 View Object Setup Wizard

Figure 19–6 Parameters in Data Source Parameter UI

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-11

Data source has a WHERE clause using a bind variable:

Figure 19–7 View Object Setup Wizard

Figure 19–8 Parameters in Data Source Parameter UI

Working with Tree Structures

19-12 Developer's Guide

Data source has a view criteria defined with a bind variable for special
parameters:

Figure 19–9 View Object Setup Wizard (View Criteria)

Figure 19–10 Parameters in Data Source Parameter UI

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-13

Data source has a WHERE clause using a bind variable for special parameters:

Figure 19–11 View Object Setup Wizard (WHERE Clause)

Figure 19–12 Parameters in Data Source Parameter UI

19.3.3 How to Search for a Tree Structure
If you wish to duplicate, edit, or delete an existing tree structure and it is not currently
visible in the results list, you can search for it using the following procedure. The
procedure assumes that the Tree Structure summary page is open in your web
browser.

To search for an existing tree structure:
1. In the Search area of the page, construct a search using any or all of the following

search criteria:

■ Code

■ Name

■ Status

Working with Tree Structures

19-14 Developer's Guide

2. Click Search.

All tree structures matching your search criteria appear in the Results area of the
page.

Click Advanced to perform an advanced search by specifying additional options for
search. You also can save your search criteria for future use.

19.3.4 How to Use the Search Field
Throughout the trees application you will see a search field located to the right of
many field names, as shown in Figure 19–13.

Figure 19–13 Search Field

Click the down arrow to display a dropdown list that contains the available values for
that field. You can select from the list, or search for other values. For example,
Figure 19–14 shows the dropdown list that displays when you click the down arrow
associated with the Application search field found on the Create Tree Structure:
Specify Definition page.

Figure 19–14 Search Field Dropdown List

From each search field dropdown list, you can do one of the following:

■ Select a value from the list that displays.

■ Click the Search link to search for a value that does not exist in the list.

If you select a value from the list, the dropdown list closes and that value appears in
the search field.

If you click the Search link, a search-and-select window similar to the one shown in
Figure 19–15 opens:

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-15

Figure 19–15 Search-and-Select Window

You now can search for a value and then click OK to select it.

19.3.5 How to Create a Tree Structure
The following procedure explains how to create a new tree structure. The procedure
assumes that the Tree Structure summary page is open in your web browser.

To create a tree structure:
1. Click the Create icon, or choose Create from the Actions dropdown menu.

The Create Tree Structure: Specify Definition page, shown in Figure 19–16, opens.

Working with Tree Structures

19-16 Developer's Guide

Figure 19–16 Create Tree Structure: Specify Definition Page (1)

2. Enter a code for the tree structure.

The code can be any combination of alphanumeric characters, but cannot contain
more than 30 characters. Codes are used in APIs to work with trees, and uniquely
identify the tree structure metadata.

3. Enter a name for the tree structure.

The name is a user-friendly name for a tree structure. It appears only in graphical
user interfaces (GUIs), and cannot contain more than 80 characters

4. Enter the name of an appropriate application, or click the down arrow to select or
search for one.

5. Enter a description.

6. Enter the name of an appropriate tree node table, or click the down arrow to select
or search for one.

If you enter the name of a custom tree node table or select a tree node table other
than the FND_TREE_NODE default, the page re-displays with a new (optional) field
asking you to enter a view object definition name for that custom tree node table.
This field is shown in Figure 19–18.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-17

Figure 19–17 Create Tree Structure: Specify Definition Page (2)

7. Select a tree-sharing method.

■ Open - indicates that the tree will be associated with all Set IDs

■ Set ID - indicates that the tree will be associated with a specific Set ID.

8. Select a creation mode:

■ Customer - indicates that the customer is creating the tree structure

■ Oracle - indicates that an Oracle developer is creating the tree structure.

9. Select Customizable if the tree structure can be customized by the customer.

10. Select Allow Multiple Active Tree Versions to allow two or more tree versions to
be in an ACTIVE state for the same date range.

11. Select a versioning type for editing tree versions to specify whether the user is
allowed to edit an active tree version or must create a new one.

12. Click Next.

The Create Tree Structure: Data Sources page, shown in Figure 19–18, opens.

Working with Tree Structures

19-18 Developer's Guide

Figure 19–18 Create Tree Structure: Specify Data Sources Page

13. Select a labeling scheme:

■ None - Specifies that no labeling scheme will be used.

■ Level based - Specifies a label that points to a specific data source.

■ Group based - Specifies a label that the user can assign arbitrarily.

■ Depth based - Specifies a label that the depth-from-top parent decides to
display. No manual assignment is performed.

If you choose a level-based, depth-based, or group-based labeling scheme, the
Labeling Scheme area of the page changes, displaying additional options, as
shown in Figure 19–19.

Figure 19–19 Additional Labeling Scheme Options

14. Select any or all of the following:

■ Date Range - Specifies whether a selection of nodes should be restricted to the
same date range as the tree version.

■ Allow Multiple Root Nodes - Allows you to add multiple root nodes when
creating a tree version.

■ Set ID - Specifies whether a selection of nodes should be restricted to the same
set as the tree. (All versions belong to the same set.)

■ Allow Ragged Nodes (for Labeling Schemes Level based, Depth based, or
Group based only) - Specifies whether a hierarchy can be unbalanced; that is,
if it can contain nodes that are not leaf nodes and contain no children. In

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-19

Figure 19–20, "ICs" does not have any children, making its rooted path shorter
than all the others in the hierarchy.

Figure 19–20 Example of a Ragged Hierarchy

■ Allow Skip-Level Nodes (for Labeling Schemes Level based, Depth based, or
Group based only) - Specifies whether a hierarchy can have two nodes at the
same level with parent nodes at different levels. In Figure 19–21, Washington,
DC, does not have a node at the State level.

Figure 19–21 Example of a Skip-Level Hierarchy

■ Optional Label Enforcement - Specifies whether label is enforced in the audit
of the tree structure. By default, this option is not selected and specifying a
label data source is enforced while adding a data source for the tree structure.
Alternatively, if this option is selected, Label Data Source in the Add Data
Source page is not an optional field.

15. Click the Add icon.

The Add Data Source window, shown in Figure 19–22, opens.

Working with Tree Structures

19-20 Developer's Guide

Figure 19–22 Add Data Source Window

If you chose a level-based, depth-based, or group-based labeling scheme, the top
portion of the page changes, displaying an additional Label Data Source field, as
shown in Figure 19–23. The Label Data Source will be optional if Optional Label
Enforcement option is selected, else this is a mandatory field.

Figure 19–23 Additional Add Data Source Field

16. Enter the name of the view object.

17. Optionally, enter a name.

18. If you do not enter a name, the same name as that of the view object is copied to
this field and is used.

19. Select a maximum depth value from the dropdown list.

Maximum depth specifies how many levels are allowed. For example, in
Project[max depth=2] > Task[max depth=infinite], one project, one sub-project, and an
infinite number of tasks are allowed.

20. Enter the name of the label data source (for Level based, Depth based, or Group
based labeling schemes only).

The view object oracle.apps.fnd.applcore.trees.model.view.FndLabelVO can
be used as an ad-hoc label data source. For more information about label data
sources, see Section 19.6, "Managing Labels in the Generic Label Data Source."

21. Select any or all of the following:

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-21

■ Use non defined primary key columns - indicates that you can specify other
attributes as primary key columns. If not selected, existing primary keys
defined as primary key columns for a data source view object will be used.

If selected, the additional fields shown in Figure 19–24 display.

Figure 19–24 Primary Key Columns

■ Allow use as leaves - indicates that data from the data source can form a leaf

■ Allow duplicates - indicates that a data item can exist multiple times in the
same hierarchy. For example, in an "Item" hierarchy for an automobile, a
particular bolt may appear multiple times in the hierarchy.

■ Use as free node - indicates that this node can be used as a free node.

■ Select a Usage Limit:

– None - Specifies that there are no restrictions.

– Use all values - Specifies that all available nodes must be included in the
tree version.

– Select a Child Definition:

■ Allow range children - indicates that the hierarchy supports nodes that are a
range of values.

■ Allow linked foreign key children - indicates that the relationship is external
to Tree Management.

If you select this option, you also can select a View Link Accessor value from
the dropdown list that displays, as shown in Figure 19–25.

Figure 19–25 View Link Accessor Dropdown List

22. Click Add under Data Source Parameters.

The window now displays data source parameters text-entry fields, as shown in
Figure 19–26.

Working with Tree Structures

19-22 Developer's Guide

Figure 19–26 Data Source Parameters Text-Entry Fields

23. Enter a parameter, select a parameter type, and enter a value.

When specified, a parameter applies to every version under that tree. Parameter
values also can be overridden at the tree level. For more information, see
Section 19.3.2, "How to Specify Data Source Parameters."

24. Select Mandatory if the parameter is to be required.

25. Click OK.

The Create Tree Structure: Specify Data Sources page refreshes, displaying the
view object, as shown in Figure 19–27.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-23

Figure 19–27 Create Tree Structure: Specify Data Sources Page with View Object

26. Click Next.

The Create Tree Structure: Specify Performance Options page opens, as shown in
Figure 19–28.

Figure 19–28 Create Tree Structure: Specify Performance Options Page

Working with Tree Structures

19-24 Developer's Guide

27. Enter the name of an appropriate row-flattened table or click the down arrow to
select or search for one.

28. Enter the name of an appropriate column-flattened table or click the down arrow
to select or search for one.

29. Enter the name of an appropriate column-flattened entity object if the field does
not already contain one.

30. Enter the name of an appropriate BI View Object.

31. Click Next.

The Create Tree Structure: Specify Access Rules page opens.

32. Click Submit.

33. Click OK to close the Confirmation window.

The Create Tree Structure Confirmation Window opens, as shown in Figure 19–29.

Figure 19–29 Create Tree Structure Confirmation Window

19.3.6 How to Duplicate a Tree Structure
Duplicating a tree structure simply copies the metadata definition from an existing tree
structure to the duplicate. This operation does not copy the underlying tree and tree
versions defined for the source tree structure.

To duplicate a tree structure:
1. Select the tree structure you want to duplicate.

See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you
want to duplicate is not in the current Results list.

2. Click the Duplicate icon, or choose Duplicate from the Actions dropdown menu.

The Create Tree Structure window opens, as shown in Figure 19–30:

Figure 19–30 Create Tree Structure Window

Note: The Create Tree Structure: Specify Access Rules page is not yet
implemented.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-25

3. Enter a new name for the duplicate tree structure if you want to replace the name
that already displays in the field.

4. Enter a duplicate tree structure code if you want to replace the code that already
displays in the field.

5. Click Save and Close to create the duplicate.

19.3.7 How to Edit a Tree Structure
When you edit an existing tree structure, you simply step through many of the same
pages you used to create a tree structure.

To edit an existing tree structure:
1. Select the tree structure you want to edit.

See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you
want to duplicate is not in the current Results list.

2. Do one of the following:

■ Click the Edit icon.

■ Choose Edit from the Actions dropdown menu.

■ Click the tree-structure name.

3. Edit the appropriate data on the Edit Tree Structure: Specify Definition page.

4. Click Next.

5. Do any of the following:

■ Edit the data on the Edit Tree Structure: Specify Data Sources page.

■ Click Add to add another view object.

■ Select an existing view object and click Edit to edit it.

■ Select an existing view object and click the Delete icon to delete it.

6. Click Next.

7. Edit the appropriate data on the Edit Tree Structure: Specify Performance Options
page.

8. Click Next.

The Edit Tree Structure: Specify Access Rules page opens.

9. Click Submit.

10. Click OK to close the Confirmation window.

19.3.8 How to Delete a Tree Structure
Deleting a tree structure also deletes all associated tree and tree versions defined under
that specific tree structure.

Note: The Edit Tree Structure: Specify Access Rules page is not yet
implemented.

Working with Tree Structures

19-26 Developer's Guide

To delete a tree structure:
1. Select the tree structure you want to delete.

See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you
want to delete is not in the current Results list.

2. Click Delete, or choose Delete from the Actions dropdown menu.

The Delete Tree Structure warning window opens, as shown in Figure 19–31:

Figure 19–31 Delete Tree Structure Warning Window

3. Do one of the following:

■ Click No to cancel the operation.

■ Click Yes to delete the tree structure.

19.3.9 How to Set Tree Structure Status
Changing the status of a tree structure also changes the status of the trees and tree
versions contained in that tree structure. You can set the status of a tree structure to
any one of the following:

■ Draft

■ Active

■ Inactive

Setting a tree structure's status to Active automatically triggers an audit of that tree
structure. See Section 19.3.10, "How to Audit a Tree Structure," for more information
about auditing.

To set the status of a tree structure:
1. Select a tree structure.

See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure is not
in the current Results list.

2. Choose the appropriate status option from the Actions > Set Status dropdown
menu.

3. Click OK to close the Warning window. The Warning window appears only when
you want to set the status as Draft or Inactive.

4. Click OK to close the Confirmation window.

19.3.10 How to Audit a Tree Structure
Auditing tree-structure metadata verifies that it conforms to all rules and ensures data
integrity. Running an audit allows you to view audit details and messages, and to
correct any validation errors that the audit detects.

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-27

Setting a tree structure's status to Active automatically triggers an audit of that tree
structure. You also can audit a tree structure manually.

Table 19–3 describes what each validator checks for, as well as possible reasons why
each validator might fail.

Table 19–3 Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Restrict by
SetID Validator

If the tree structure has
Restrict Tree Node List
of Values Based on
SetID flag set to Yes,
each of its data source
view objects must have
a SetID attribute.

This restriction does not
apply when the flag is
set to No.

The tree structure has Restrict
Tree Node List of Values Based
on SetID flag = Y, but one or
more of its data source view
objects do not contain a SetID
attribute.

Consult the owning developer. If
SetID restriction is desired for this
tree structure, ensure your
developer has included a SetID
attribute on all data sources. If SetID
restriction is not desired, ensure
your developer sets the flag to No.

Row Flattened
Table Name
Validator

A valid "Row Flattened
Table" should be
specified for the tree
structure on the
"Specify Performance
Options" page. It can be
the standard row
flattened table FND_
TREE_NODE_RF, or a
custom table can be
specified.

■ No table is specified in "Row
Flattened Table" on the
"Specify Performance
Options" page of the
Manage Tree Structures UI.

■ The specified table does not
exist in the database.

■ The specified table does not
contain the same columns
that FND_TREE_NODE_RF table
contains.

Consult the owning developer to
correct the row flattened table
definition.

Available Label
Data Sources
Validator

If the tree structure has
a Labeling Scheme
specified, the label data
source view object
specified for each data
source must be
accessible and the
primary keys must be
valid.

This restriction does not
apply when the
Labeling Scheme has
been set to None.

■ Any of the specified label
data source view objects do
not exist.

■ Any of the specified label
data source view objects do
not have primary keys.

■ At the time a label data
source view object is initially
defined, the backend
registers the primary keys
for the view object at that
time. If the view object is
later modified such that its
primary keys no longer
match the primary keys that
were registered earlier, this
validator will fail.

■ Consult the owning developer
to correct the label data source
view object specified.

■ Consult the owning developer
to correct the primary keys of
the label data source view object
specified.

■ Consult the owning developer
to either correct the primary
keys in the label data source
view object to match the
primary keys that were earlier
registered in FND_TS_DATA_
SOURCE, or correct the primary
keys registered in that table to
match the new view object
definition.

Working with Tree Structures

19-28 Developer's Guide

Available Data
Sources
Validator

Each data source view
object specified for the
tree structure must be
accessible and all its
primary key attributes
should be valid.

■ Any of the specified data
source view objects do not
exist.

■ At the time a data source
view object is initially
defined, the backend
registers the primary keys
for the view object at that
time automatically if "Use
non-defined primary key
columns" is not selected. If it
is selected, the backend
registers the primary keys
specified explicitly by the
user on the Add Data Source
page. The validator will fail
if the registered primary
keys contain any duplicates.

■ "Use non defined primary
key columns" is checked in a
data source, but the list of
specified primary key
columns does not match the
primary keys defined in the
corresponding data source
view object.

■ Any common attributes that
exist in both the data source
view object and the tree
node view object are not of
the same data type in both
view objects.

■ Consult the owning developer
to correct the data source view
object specified.

■ Consult the owning developer
to correct the duplicate column
in the registered primary keys.

■ Consult the owning developer
to correct the primary keys of
the data source view object
specified.

■ Consult the owning developer
to correct any mismatch in data
types.

Column
Flattened Table
Name
Validator

A valid "Column
Flattened Table" should
be specified for the tree
structure on the
"Specify Performance
Options" page. It can be
the standard row
flattened table FND_
TREE_NODE_CF, or a
custom table can be
specified.

■ No table is specified in
"Column Flattened Table"
field on the "Specify
Performance Options" page
of the Manage Tree
Structures UI.

■ The specified table does not
exist in the database.

■ The specified table does not
contain the same columns
that FND_TREE_NODE_CF
table contains.

Consult the owning developer to
correct the column flattened table
definition.

Table 19–3 (Cont.) Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Working with Tree Structures

Organizing Hierarchical Data with Tree Structures 19-29

To audit a tree structure manually:
1. Select a tree structure.

See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure is not
in the current Results list.

2. Choose Audit from the Actions dropdown menu.

The Tree Structure Audit Result page opens, as shown in Figure 19–32. The table
displays a list of validations run against the selected tree structure.

Figure 19–32 Tree Structure Audit Result Page

The audit table contains the following columns:

Restrict by
Date Validator

If the tree structure has
Restrict Tree Node List
of Values Based on Date
flag set to Yes, each of
its data source view
objects must have
Effective Start Date and
Effective End Date
attributes.

This restriction does not
apply when the flag is
set to No.

The tree structure has Restrict
Tree Node List of Values
Based on Date flag = Y, but
one or more of its data source
view objects do not contain
EffectiveStartDate and
EffectiveEndDate attributes.

Consult the owning developer. If the
date restriction is desired for this
tree structure, ensure your
developer has included an
EffectiveStartDate and
EffectiveEndDate attribute on all
data sources. If the date restriction is
not desired, ensure your developer
sets the flag to No.

Tree Node
Table Name
Validator

A valid "Tree Node
Table" should be
specified for the tree
structure on the
"Specify Performance
Options" page. It can be
the standard row
flattened table FND_
TREE_NODE, or a custom
table can be specified.

■ No table is specified in "Tree
Node Table" field when
editing a Tree Structure.

■ The specified table does not
exist in the database.

■ The specified table does not
contain the same columns
that the standard FND_TREE_
NODE table contains.

Consult the owning developer to
correct the tree node table definition.

Allow Node
Level Security
Validator

If "Allow Node Level
Security" flag is set to N
for the tree structure,
the same flag cannot be
set to Y on any of its
data sources. This is a
backend setting that is
not viewable through
the Manage Tree
Structures page.

"Allow Node Level Security" flag
is set as No for the tree structure,
but one or more associated data
sources have that flag set to Yes.

Consult the owning developer to
correct the "Allow Node Level
Security" flags in the tree structure
and/or its data sources.

Table 19–3 (Cont.) Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Working with Trees

19-30 Developer's Guide

■ Validator Name - Displays the name of the validator

■ Validation Result - Displays either a green check mark (success) or a red "X"
(failure)

■ Validation Message - When clicked, displays a validation message and a
description

■ Execute Validator - When clicked, reruns the selected validator.

■ Corrective Action - When clicked, opens the Edit Tree Structure: Specify
Definition page, allowing you to fix a validation error

3. Click Done to return to the Tree Structure summary page.

19.4 Working with Trees
When you work with trees, you can do any of the following:

■ Search

■ Create

■ Duplicate

■ Edit

■ Delete

You also can audit trees. For more information, see Section 19.5.9, "How to Audit Trees
and Tree Versions."

19.4.1 How to Search for a Tree
If you wish to duplicate, edit, or delete an existing tree and it is not currently visible in
the results list, you can search for it using the following procedure. The procedure
assumes that the Tree summary page is open in your web browser.

To search for an existing tree:
1. In the Search area of the page, construct a search using any or all of the following

search criteria:

■ Tree Structure Code

■ Tree Code

■ Tree Name

2. Click Search.

All trees matching your search criteria appear in the Results area of the page.

Click Advanced to perform an advanced search by specifying additional options for
search. You also can save your search criteria for future use.

19.4.2 How to Create a Tree
The following procedure explains how to create a tree. You will also need to create a
tree version with a root node. For more information, see Section 19.5.1, "How to Create
a Tree Version."

To create a tree:
1. Click Create, or choose Create Tree from the Actions dropdown menu.

Working with Trees

Organizing Hierarchical Data with Tree Structures 19-31

The Create Tree: Specify Definition page opens, as shown in Figure 19–33.

Figure 19–33 Create Tree: Specify Definition Page

2. Enter a name for the tree.

3. Enter a code for the tree.

4. Enter a tree-structure name or click the down arrow to select or search for one.

If the tree structure has data sources and parameters defined for it, the Data Source
Parameters area also displays, allowing you to edit the parameter values at the
tree level.

5. Enter a description of the tree.

6. Enter an image name or click the down arrow to select or search for one.

The image appears in the Preview area.

7. Click Next.

The Create Tree: Specify Labels page displays. The information that appears on the
page depends on whether or not a labeling scheme has been selected previously.
Figure 19–34 and Figure 19–35 show examples of both pages.

Note: Parameter values customized at the tree level will override the
default values specified at the tree-structure level.

Working with Trees

19-32 Developer's Guide

Figure 19–34 Create Tree: Specify Labels - No Labeling Scheme

Figure 19–35 Create Tree: Specify Labels - Labeling Scheme Selected

If the page shown in Figure 19–34 opens, click Next and skip to Step 11.

If the page shown in Figure 19–35 opens, click Add in the Specify Labels area.

The Select and Add: Labels window opens, as shown in Figure 19–36.

Figure 19–36 Select and Add: Labels Window

8. Choose a data source from the dropdown list.

Working with Trees

Organizing Hierarchical Data with Tree Structures 19-33

9. Select the appropriate available labels and use the arrows to move them back and
forth between the Available Labels and Selected Labels areas.

10. Click OK to accept your selections and close the window.

11. Do one of the following:

■ Click Cancel to abort the operation and return to the top-level Manage Trees
and Tree Versions page.

■ Click Back to return to the previous page.

■ Click Next to continue to the Create Tree: Specify Access Rules page.

12. Do one of the following:

■ Click Cancel to abort the operation and return to the Manage Trees and Tree
Versions page.

■ Click Back to return to the previous page.

■ Click Submit to save the tree without creating a tree version and return to the
top-level Manage Trees and Tree Versions page.

■ Click the down arrow next to Submit and select Submit and Add Version to
save the tree and begin creating a tree version. For more information, see
Section 19.5.1, "How to Create a Tree Version."

19.4.3 How to Duplicate a Tree
Duplicating a tree copies only the selected tree. The operation does not copy any of the
underlying tree versions.

To duplicate a tree:
1. Select the tree you wish to duplicate.

See Section 19.4.1, "How to Search for a Tree," if the tree you want to duplicate is
not in the current Results list.

2. Click Duplicate, or choose Duplicate from the Actions dropdown menu.

The Duplicate Tree window opens, as shown in Figure 19–37.

Figure 19–37 Duplicate Tree Window

3. Enter a duplicate tree code.

4. Do one of the following:

■ Click Cancel to cancel the operation.

■ Click Save and Close to create the duplicate.

Note: The Create Tree: Specify Access Rules page is not yet
implemented.

Working with Trees

19-34 Developer's Guide

5. Click OK to close the Confirmation window.

19.4.4 How to Edit a Tree
When you edit an existing tree, you step through many of the same pages you used to
create a tree.

To edit a tree:
1. Select the tree you wish to edit.

See Section 19.4.1, "How to Search for a Tree," if the tree you want to edit is not in
the current Results list.

2. Click Edit, or choose Edit from the Actions dropdown menu.

The Edit Tree: Specify Definition page opens.

3. Do any of the following:

■ Edit the name of the tree.

■ Edit the description

■ Choose another icon image

■ Edit data-source-parameter values, if this option is available

4. Click Next.

The Edit Tree: Specify Labels page opens. The page that displays depends on
whether or not the tree structure used while creating the tree has a labeling
scheme associated with it.

5. Do either of the following:

■ Click Add to open the Select and Add: Labels window and add a new label.

For more information, see Section 19.4.2, "How to Create a Tree."

■ Select a label and click Delete to delete it.

6. Click Next.

The Edit Tree: Specify Access Rules page opens.

7. Review the data and then do one of the following:

■ Click Submit and then click OK to close the Confirmation window.

Note: If you change any parameter values, ensure that you click
Actions > Save before clicking Next.

Note: This procedure assumes that a labeling scheme is present. Skip
to Step 6 if the tree you are editing has no labeling scheme associated
with it.

Note: The Edit Tree: Access Rules page is not yet implemented.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-35

■ Click the arrow to the right of Submit and select Submit and Add Version
from the dropdown list to display the Create Tree Version: Specify Definition
page.

Follow the steps in Section 19.5.1, "How to Create a Tree Version," to create a
new tree version.

19.4.5 How to Delete a Tree
When you delete a tree, you also delete the tree versions the tree contains.

To delete a tree:
1. Select the tree you wish to delete.

See Section 19.4.1, "How to Search for a Tree," if the tree you want to delete is not
in the current Results list.

2. Click Delete, or choose Delete from the Actions dropdown menu.

3. Click Yes to confirm the deletion.

19.5 Working with Tree Versions
When you work with tree versions, you can do any of the following:

■ Search

■ Create

■ Add nodes to a tree version

■ Edit existing nodes

■ Drag and drop nodes to move them

■ Perform CRUD Operations on Tree Nodes using APIs

■ Perform Sub-tree Node Operations using PL/SQL APIs

■ Create a new record for a data source

■ Duplicate

■ Edit

■ Delete

■ Set tree version status

■ Audit tree versions

19.5.1 How to Create a Tree Version
Trees require tree versions. You can create a tree with no tree version, but you must
add at least one tree version to the tree after it has been created. You either can create
the tree version during the tree-creation process, or by editing an existing tree.

To create a tree version:
This procedure assumes you are editing an existing tree.

1. Select the tree to which you want to add a tree version from the list of trees that
appears in the Results list.

Working with Tree Versions

19-36 Developer's Guide

See Section 19.4.1, "How to Search for a Tree" if the tree is not in the current Results
list.

2. Do one of the following:

■ Select Actions > Create Tree Version.

■ Choose Create Tree Version from the Create dropdown list

The Create Tree Version: Specify Definition page, shown in Figure 19–38,
opens.

Figure 19–38 Create Tree Version: Specify Definition Page

3. Enter a name for the tree version.

4. Enter a description of the tree version.

5. Enter a note, if you have one.

6. Enter an effective start date or click on the calendar icon to select one.

7. Enter an effective end date or click on the calendar icon to select one.

8. Click Next.

A tree version with no nodes is created automatically at this point. Procedures for
adding nodes to the tree version are described in Section 19.5.2, "How to Add Tree
Nodes to a Tree Version".

9. Click OK to close the Confirmation window.

The Create Tree Version: Specify Nodes page displays, as shown in Figure 19–39.

Note: Since tree versions are time based, you must select a start date.
Selecting an end date is optional.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-37

Figure 19–39 Create Tree Version: Specify Nodes Page

10. Do one of the following:

■ Click Add to add a tree node.

■ Click Create to create a new node in the data source and add it to the
hierarchy. For more information, see Section 19.5.3, "How to Create a Record
for a Data Source."

The Add Tree Node window opens, as shown in Figure 19–40.

Working with Tree Versions

19-38 Developer's Guide

Figure 19–40 Add Tree Node: Specific Values

11. Select a node type:

■ Specific Value - Indicates that a data source and label will be specified for the
node. A data source is required for all labeling schemes. A label is required
only if the labeling scheme is set to something other than None. If the labeling
scheme is None, a label is not required.

To configure this page's options, see Section 19.5.2.1, "How to Configure the
Add Tree Node: Specific Values."

■ Values within a range - Indicates that the node represents a range of values.

If you select this option, the window shown in Figure 19–41 replaces the
default Add Tree Node window.

Note: This is the default window that appears while adding a node.

Note: This option appears only if Children Definition: Allow range
children has been selected on the Choose Data Source and Parameters
window.

If you are adding a root node that you want to specify as range-based
node, make sure you have selected Allow Multiple Root Nodes for
the underlying tree structure on the Create Tree Structure: Data
Sources page.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-39

Figure 19–41 Add Tree Node: Values Within a Range

To configure this page's options, see Section 19.5.2.2, "How to Configure the
Add Tree Node: Values Within a Range."

■ Values from referenced hierarchy - Indicates that the node is a referenced tree
node. This option creates a pointer to a tree and node that already exist.
Referenced tree nodes do not require a data source and do not allow labeling.

If you select this option, the window shown in Figure 19–42 replaces the
default Add Tree Node window.

Figure 19–42 Add Tree Node: Referenced Hierarchy

To configure referenced-tree options, see Section 19.5.2.3, "How to Configure
the Add Tree Node: Referenced Hierarchy."

12. Click Save and Close to add the node(s).

13. Click Submit to add the new tree version.

19.5.2 How to Add Tree Nodes to a Tree Version
Tree nodes are elements in a tree structure. A tree version must contain at least one
root node. If specified, a tree version also can contain multiple root nodes. A node can
be the parent of another node if it is one step higher in the hierarchy and closer to the
root node.

There are three types of tree nodes:

■ Those with specific values

■ Those that have a range of values

■ Those that have values from a referenced tree

Working with Tree Versions

19-40 Developer's Guide

Each type of node has its own configuration options. In addition, you can add tree
nodes using a custom Search UI, use drag-and-drop to move nodes once they have
been added, and edit existing nodes.

The procedures used to perform these tasks are described in the sections that follow.

19.5.2.1 How to Configure the Add Tree Node: Specific Values
The following procedure explains how to configure the Add Tree Node options when
the Specific Value node type has been selected.

To configure specific values:
This procedure assumes that the Add Tree Node window shown in Figure 19–40 is
open.

1. Select a data source.

2. If applicable, select a label.

3. Select an option from the Node Navigator. The navigator enables you to access
other available nodes.

4. Select a root node from the Available Nodes list.

5. Click the single Move arrow to move the node to the Selected Nodes area.

6. Click Save and Close.

The Add Tree Node window closes.

Figure 19–43 shows the root node that has been created.

Note: If the tree structure allows multiple root nodes to be selected,
use the single or double Move arrows to move additional nodes.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-41

Figure 19–43 Root Node

7. Optionally, do one of the following:

■ Highlight the root node and click Add to add a child node, using the same
steps listed in this section.

■ Click Create to create a new node in the data source. For more information,
see Section 19.5.3, "How to Create a Record for a Data Source."

8. Review the data and click Submit.

9. Click OK to close the Confirmation window.

19.5.2.2 How to Configure the Add Tree Node: Values Within a Range
The following procedure explains how to configure the Add Tree Node options when
the Values within a range node type has been selected.

To configure values within a range:
This procedure assumes that the Add Tree Node window shown in Figure 19–41 is
open.

1. Select a data source.

2. Enter a range of values.

3. Click Save and Close.

The Add Tree Node window closes.

Figure 19–44 shows data based on a range of values.

Working with Tree Versions

19-42 Developer's Guide

Figure 19–44 Example of Range Data

4. Review the data and click Submit.

5. Click OK to close the Confirmation window.

19.5.2.3 How to Configure the Add Tree Node: Referenced Hierarchy
The following procedure explains how to configure the Add Tree Node options when
the Values from a referenced hierarchy node type has been selected.

To configure values from a referenced hierarchy:
This procedure assumes that the Add Tree Node window shown in Figure 19–42 is
open.

1. Select a referenced tree.

2. Select a referenced tree version.

3. Optionally, click the Preview link to ensure you have specified the correct
referenced tree version for the selected referenced tree. Figure 19–45 shows the
window that displays. Confirm the data and click OK to close the window.

Figure 19–45 Preview Referenced Tree Version

4. Click Save and Close.

Note: The referenced tree and tree version must belong to the same
tree structure.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-43

The Add Tree Node window closes and the Create Tree Version: Specify Nodes
page refreshes with the referenced-node data, as shown in Figure 19–46.

Figure 19–46 Referenced Node

5. Review the data and click Submit.

6. Click OK to close the Confirmation window.

19.5.2.4 How to Use Drag-and-Drop to Move Nodes
Once you have added value-based nodes to a tree version, you can move these nodes
around simply by dragging and dropping them.

You can move individual nodes, an entire range of nodes, or an entire referenced node.
You cannot, however, move a single node in a range of nodes or a single node in a
referenced node.

19.5.2.5 How to Add a Node Using a Custom Search UI
If the Search UI is not registered for a data source, the default behavior for all nodes
displayed in the Add Tree Node window will be used. However, if you register your
own Search UI, it will be used to add and select value nodes instead of the default
Search UI.

To add a node using a custom Search UI:
The procedures for adding a node using a custom Search UI are the same as those
found in Section 19.5.2, "How to Add Tree Nodes to a Tree Version." However, the Add
Tree Node window that displays will be the registered custom Search UI rather than
the default UI. An example of such a UI is shown in Figure 19–47. Note that Select
Value Nodes has replaced the default Node Navigator, Available Nodes, and Selected
Nodes options.

Working with Tree Versions

19-44 Developer's Guide

Figure 19–47 Custom Search UI: Specific Values

19.5.2.6 How to Edit a Tree Node
You can edit any existing tree node's details.

To edit a tree node:
This procedure assumes that the Manage Trees and Tree Versions page is open.

1. Select a tree version and do one of the following:

■ Click Edit.

■ Choose Edit from the Actions dropdown list.

2. Click Next on the Edit Tree Version: Specify Definition page to skip to the Edit Tree
Version: Specify Nodes page.

3. Highlight the node you wish to edit and click Edit. The Edit Tree Node window,
shown in Figure 19–48, opens.

Figure 19–48 Edit Tree Node: Specific Value

4. Select a data source and click Edit Node. The Edit Node window, shown in
Figure 19–49, opens.

Note: The window opens with the default Specific value tree node
type selected. You also can edit the node using the other tree node
types. For more information, see Section 19.5.2, "How to Add Tree
Nodes to a Tree Version."

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-45

Figure 19–49 Edit Node Window

5. Edit the appropriate details and click Submit.

19.5.3 How to Create a Record for a Data Source
You can create a record for a data source "on the fly" and add it to the hierarchy. Doing
so calls the custom UI you registered with the data source.

You can create a record either when creating a tree version or when editing an existing
one.

To create a new data-source record:
This procedure assumes the following:

■ You are editing an existing tree version

■ The tree version does not allow multiple root nodes

1. Select the tree version for which you want to create the record and click Edit.

2. Click Next to access the Edit Tree Version: Specify Nodes window.

3. Highlight an existing node and click Create. The Create Tree Node window
displays, as shown in Figure 19–50.

Figure 19–50 Create Tree Node Window

Note: The actual name of the window depends on the node being
edited.

Working with Tree Versions

19-46 Developer's Guide

4. Select a data source and click Continue. The Create New Record window, shown
in Figure 19–51, opens.

Figure 19–51 Create New Record for Data Source

5. Enter the appropriate information and click Submit.

The Create Tree Node confirmation window, shown in Figure 19–52, displays.

Figure 19–52 Create Tree Node Confirmation

6. Click OK to close the window.

19.5.4 How to Duplicate a Tree Version
The following procedure explains how to duplicate a tree version.

To duplicate a tree version:
1. Select a tree version.

2. Click Duplicate, or choose Duplicate from the Actions dropdown menu.

The Duplicate Tree Version window, shown in Figure 19–53, opens.

Note: The actual name of the window depends on the node being
created.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-47

Figure 19–53 Duplicate Tree Version Window

3. Enter a duplicate tree version name.

4. Do one of the following:

■ Click Cancel to cancel the operation.

■ Click Save and Close to duplicate the tree version.

5. Click OK to close the Confirmation window.

19.5.5 How to Edit a Tree Version
The following procedure explains how to edit a tree version.

To edit a tree version:
1. Select a tree version.

2. Click Edit, or choose Edit from the Actions dropdown menu.

The Edit Tree Version: Specify Definition page, shown in Figure 19–54, opens:

Figure 19–54 Edit Tree Version: Specify Definition Page

3. Use the steps in Section 19.5.1, "How to Create a Tree Version" as a guide to editing
the tree version.

19.5.6 How to Perform CRUD Operations on Tree Nodes Using APIs
This section describes the APIs that allow you to perform Create, Read, Update, and
Delete (CRUD) operations on the Tree Nodes. These APIs do not commit for each
CRUD operation, but give you the control to decide whether to commit or not.

The APIs are listed below:

Working with Tree Versions

19-48 Developer's Guide

■ add_value_tree_node

This API allows you to add a primary key value based tree node.

■ add_range_tree_node

This API allows you to add a primary key range based tree node.

Table 19–4 add_value_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_parent_tree_
node_id

ID of the parent tree
node

VARCHAR2 Mandatory

p_data_source_id ID of the data source VARCHAR2 Mandatory

p_pk1_value Value of PK1 VARCHAR2 Mandatory

p_pk2_value Value of PK2 VARCHAR2 Mandatory

p_pk3_value Value of PK3 VARCHAR2 Mandatory

p_pk4_value Value of PK4 VARCHAR2 Mandatory

p_pk5_value Value of PK5 VARCHAR2 Mandatory

p_tree_label_id ID of the tree label VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

x_tree_node_id ID of the tree node VARCHAR2 Optional

Table 19–5 add_range_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_parent_tree_
node_id

ID of the parent tree
node

VARCHAR2 Mandatory

p_data_source_id ID of the data source VARCHAR2 Mandatory

p_pk1_start_value Start value of PK1 VARCHAR2 Mandatory

p_pk2_start_value Start value of PK2 VARCHAR2 Mandatory

p_pk3_start_value Start value of PK3 VARCHAR2 Mandatory

p_pk4_start_value Start value of PK4 VARCHAR2 Mandatory

p_pk5_start_value Start value of PK5 VARCHAR2 Mandatory

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-49

■ add_tree_tree_node

This API allows you to add a reference tree-based tree node.

■ delete_tree_node

This API allows you to delete a node. All children of the node that is being deleted
are promoted as children of its parents node.

p_pk1_end_value End value of PK1 VARCHAR2 Mandatory

p_pk2_end_value End value of PK2 VARCHAR2 Mandatory

p_pk3_end_value End value of PK3 VARCHAR2 Mandatory

p_pk4_end_value End value of PK4 VARCHAR2 Mandatory

p_pk5_end_value End value of PK5 VARCHAR2 Mandatory

p_tree_label_id ID of the tree label VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

x_tree_node_id ID of the tree node VARCHAR2 Optional

Table 19–6 add_tree_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_parent_tree_
node_id

ID of the parent tree
node

VARCHAR2 Mandatory

p_reference_tree_
code

Code of the reference
tree

VARCHAR2 Mandatory

p_reference_tree_
version_id

ID of the reference tree
version

VARCHAR2 Mandatory

p_tree_label_id ID of the tree label VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

x_tree_node_id ID of the tree node VARCHAR2 Optional

Table 19–5 (Cont.) add_range_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

Working with Tree Versions

19-50 Developer's Guide

■ update_tree_node

This API allows you to update a tree node.

Table 19–7 delete_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

Table 19–8 update_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_parent_tree_
node_id

ID of the parent tree
node.

As of now, this API
does not allow you to
change the parent
node. Hence, this
parameter is ignored.

VARCHAR2 Mandatory

p_data_source_id ID of the data source VARCHAR2 Mandatory

p_pk1_start_value Start value of PK1 VARCHAR2 Mandatory

p_pk2_start_value Start value of PK2 VARCHAR2 Mandatory

p_pk3_start_value Start value of PK3 VARCHAR2 Mandatory

p_pk4_start_value Start value of PK4 VARCHAR2 Mandatory

p_pk5_start_value Start value of PK5 VARCHAR2 Mandatory

p_pk1_end_value End value of PK1 VARCHAR2 Mandatory

p_pk2_end_value End value of PK2 VARCHAR2 Mandatory

p_pk3_end_value End value of PK3 VARCHAR2 Mandatory

p_pk4_end_value End value of PK4 VARCHAR2 Mandatory

p_pk5_end_value End value of PK5 VARCHAR2 Mandatory

p_reference_tree_
code

Code of the reference
tree

VARCHAR2 Mandatory

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-51

■ move_tree_node

This API allows you to move a tree node under a new parent.

19.5.7 How to Perform Sub-tree Node Operations Using PL/SQL APIs
PL/SQL APIs allow you to move, copy, and remove sub-tree nodes. The following are
the PL/SQL APIs that allow you to perform the operations:

■ move_sub_tree_node

This API allows you to move a given node along with its descendants from one
hierarchy version to another hierarchy or within the same hierarchy tree version.
The destination hierarchy can belong to same tree code or a different tree code
belonging to same tree structure. When move_sub_tree_node operation happens
across the hierarchy or within the same hierarchy, flattening logs will be reset to
ensure that next run of flattening generates accurate flattening data. A tree node id
pointing to details of new subtree in destination hierarchy will be returned.

p_reference_tree_
version_id

ID of the reference tree
version

VARCHAR2 Mandatory

p_tree_label_id ID of the tree label VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

Table 19–9 move_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_dest_parent_tree_
node_id

ID of the destination
parent tree node

VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

Table 19–10 move_sub_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

Table 19–8 (Cont.) update_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

Working with Tree Versions

19-52 Developer's Guide

■ copy_sub_tree_node

This API allows you to copy a given node along with its descendants within the
same hierarchy tree version. The tree version must allow duplicates for the copy
operation to be successful. The destination hierarchy can belong to same tree code
or a different tree code belonging to same tree structure. When copy_sub_tree_
node operation happens, flattening logs will be reset to ensure that next run of
flattening generates accurate flattening data. A tree node id pointing to details of
new subtree in destination hierarchy will be returned.

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_dest_parent_tree_
node_id

ID of the destination
parent tree node

VARCHAR2 Mandatory

p_dest_tree_
version_id

ID of the destination
parent tree version

VARCHAR2 Mandatory

p_dest_tree_code Destination tree code VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

x_tree_node_id ID of the tree node VARCHAR2 Optional

Table 19–11 copy_sub_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_dest_parent_tree_
node_id

ID of the destination
parent tree node

VARCHAR2 Mandatory

p_dest_tree_
version_id

ID of the destination
parent tree version

VARCHAR2 Mandatory

p_dest_tree_code Destination tree code VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

x_tree_node_id ID of the tree node VARCHAR2 Optional

Table 19–10 (Cont.) move_sub_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-53

■ remove_sub_tree_node

This API allows you to remove a given node along with its descendants from any
hierarchy. When remove_sub_tree_node operation happens, all the descendants
will be deleted.

19.5.8 How to Set Tree Version Status
Although trees do not have status, tree versions do. You can set tree version status to
any one of the following:

■ Draft

■ Active

■ Inactive

To activate a tree version, the tree version's tree structure must already be in Active
status.

Setting a tree version's status to Active automatically triggers an audit of that tree
structure. For more information, see Section 19.5.9, "How to Audit Trees and Tree
Versions."

To set the status of a tree version:
1. Select a tree version.

2. Choose the appropriate status option from the Actions > Set Status dropdown
menu.

3. Click OK to close the Confirmation window.

19.5.9 How to Audit Trees and Tree Versions
Auditing tree and tree version data verifies that it conforms to all rules and ensures
data integrity. Running audits allow you to view audit details and messages, and to
correct any validation errors that the audit detects. There are three ways to run an
audit:

■ Run an immediate audit

■ Schedule an audit

■ Trigger an audit through a service API

Table 19–12 remove_sub_tree_node API Parameters

Parameter Description Datatype Mandatory/Optional

p_tree_structure_
code

Code of the tree
structure

VARCHAR2 Mandatory

p_tree_code Code of the tree VARCHAR2 Mandatory

p_tree_version_id ID of the tree version VARCHAR2 Mandatory

p_tree_node_id ID of the tree node VARCHAR2 Mandatory

p_commit_flag Commit flag VARCHAR2 Optional

Default value is Yes.

If commit flag is passed
as "N", the control to
commit is handed over
to the API call.

Working with Tree Versions

19-54 Developer's Guide

Table 19–13 describes what each validator checks for, as well as possible reasons why
each validator might fail.

Table 19–13 Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Effective Date
Validator

The effective start and
end dates of the tree
version should be valid.

Effective end date is set to a
value that is not greater than
effective start date.

Modify the effective start and/or
end dates so that effective start date
falls before effective end date.

Root Node
Validator

If Allow Multiple Root
Nodes flag on the tree
structure has been set to
No, the tree version
must contain exactly
one root node if it is not
empty.

If the flag has been set
to Yes, this restriction
does not apply.

Allow Multiple Root Nodes flag
has been set to No at the tree
structure, but the tree version has
multiple root nodes.

Modify the tree version so that there
is exactly one root node.

Data Source
Max Depth
Validator

For each data source in
the tree structure, if the
data source is
depth-limited, the data
in the tree version must
adhere to the specified
depth limit.

This restriction does not
apply to data sources
that have no depth
restriction (depth = -1
means unlimited
depth).

Tree version has data at a depth
greater than the specified depth
limit on one or more data
sources.

Modify the tree version so that all
nodes are at a depth that complies
with the data source depth limit.

Duplicate
Node Validator

If Allow Duplicate
Nodes flag on the data
source has been set to
No, the tree version
should not contain
more than one node
with the same primary
key from the data
source.

If the flag has been set
to Yes, duplicate nodes
are permitted.

Your tree version contains
duplicate nodes with the same
primary key.

Remove any duplicate nodes from
the tree version.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-55

Available Node
Validator

All the nodes in the tree
version should be valid
and available in the
underlying data source.

■ A node in the tree version
does not exist in the data
source. Deletion of data
items from the data source
without removing the
corresponding nodes from
the tree version can result in
orphaned nodes in the tree
version.

For example, if you have
added node A into your tree
version, but node A was
subsequently deleted from
your data source but not
from the tree version, it will
fail this validation.

■ Your tree version contains a
tree reference node, which
references another tree
version that does not exist.

■ Remove any orphaned nodes
from the tree version.

■ Correct any tree reference nodes
so they reference existing tree
versions.

Node
Relationship
Validator

All nodes should
adhere to the
relationships mandated
by the data sources
registered in the tree
structure.

The tree structure has data
sources arranged in a
parent-child relationship, but the
nodes in the tree do not adhere to
the same parent-child
relationship.

For example, if the tree structure
has a Project data source with a
Task data source as its child, Task
nodes should always be under
Project nodes in the tree version.
This validator will fail if there are
instances where a Project node.
has been added as a child of a
Task node.

Modify the tree version so that the
nodes adhere to the same
parent-child relationships as the
data sources.

SetID
Restricted
Node Validator

For each data source
that has Restrict Tree
Node List of Values
Based on SetID flag set
to Yes, for each tree
node, the underlying
node in the data source
must belong to the
same set as the tree
itself.

This restriction does not
apply when the flag is
set to No.

The data source has Restrict Tree
Node List of Values Based on
SetID flag set to Y, but the tree
version has nodes whose data
source values belong to a
different set than the tree.

Modify the tree version so that all
nodes in the tree have data sources
with SetID matching that of the tree.

Label Enabled
Node Validator

If the tree structure has
a Labeling Scheme
specified, all nodes
should have labels.

This restriction does not
apply when the
Labeling Scheme is set
to None.

The tree structure has a labeling
scheme but the tree version has
nodes without labels.

Assign labels to any nodes that do
not have labels.

Table 19–13 (Cont.) Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Working with Tree Versions

19-56 Developer's Guide

Date Restricted
Node Validator

If Restrict Tree Node
List of Values Based on
Date Range flag on the
tree structure has been
set to Yes, each node in
the underlying data
source must have date
effectivity during the
date effectivity range of
the tree version.

If the flag is set to No,
this restriction does not
apply.

Restrict Tree Node List of Values
Based on Date Range flag has
been set to Y, but there are data
source nodes that are not have
effective during the tree version's
effective date range.

For example, if the tree version is
effective from Jan-01-2012 to
Dec-31-2012, all nodes in the tree
version must be effective from
Jan-01-2012 to Dec-31-2012 at a
minimum. It is acceptable for the
nodes to be effective for a date
range that exceeds the tree
version's effective date range (for
example, the node data source
value is effective from
Dec-01-2011 to Mar-31-2012).

It is not acceptable if the nodes
are effective for none or only part
of the tree version's effective date
range (for example, the node
data source value are only
effective from Jan-01-2012 to
June-30-2012).

Ensure that for all nodes in the tree
version, they have date effectivity at
least for the effective date range for
the tree version.

Multiple
Active Tree
Version
Validator

If Allow Multiple
Active Tree Versions
Flag on the tree
structure has been set to
No, there should not be
more than one active
tree version under a
tree at any time.

If Allow Multiple
Active Tree Versions is
set to No, this restriction
does not apply.

Allow Multiple Active Tree
Versions has been set to N, but
there is more than one active tree
version in the tree for the same
date range.

Make no more than one tree version
Active within the same date range
and set the others to Inactive or
Draft.

Table 19–13 (Cont.) Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-57

To run an immediate audit:
The following procedure assumes the Manage Trees and Tree Versions page is open.

1. Select the tree or tree version you wish to audit.

Selecting a tree runs an audit on all tree versions in that tree. Selecting a specific
tree version runs an audit only on that tree version.

2. Choose Audit from the Actions dropdown menu.

The audit runs and the Trees Audit Result page, shown in Figure 19–55, opens.

Range Based
Node Validator

If Allow Range
Children on the data
source has been set to
No, range-based nodes
are not permitted from
that data source.

If the flag is set to Yes,
this restriction does not
apply.

There are range-based nodes
from a data source that has
Allow Range Children set to N.

Ensure that any range nodes in your
tree version are from a data source
that has Allow Range Children set to
Y.

Terminal Node
Validator

If Allow Usage as
Leaves flag is set to N at
the data source level,
values from that data
source cannot be added
as leaves (terminal
nodes) to the tree
version.

If Allow Usage as
Leaves flag is set to Y,
this restriction does not
apply.

There are leaf nodes (terminal
nodes) whose values come from
a data source marked with Allow
Usage as Leaves flag set to N.
Only data sources with Allow
Usage as Leaves set to Y can have
their values used as leaves.

Modify the tree version so that all
terminal nodes come from data
sources with Allow Usage as Leaves
set to Y.

Usage Limit
Validator

If Usage Limit is set to
Use All Values at
the data source
level, every value in
the data source must
appear as a node in the
tree.

If Usage Limit is set to
None, this restriction
does not apply.

The data source has Usage Limit
set to Use All Values, but there
are values in the data source that
are not in the tree version.

Add nodes to the tree version for
each data source value that is not yet
present.

Table 19–13 (Cont.) Validator Descriptions

Validator Checks for...
Validation may have failed
because... To correct...

Working with Tree Versions

19-58 Developer's Guide

Figure 19–55 Trees Audit Result Page

The page contains two sections:

■ Audit Results - displays a list of all previously run audits

■ Validation Details - displays validation results and messages and allows you
correct validation errors

The Audit Results section contains the following columns:

■ Audit Request - displays the audit request ID number

■ Tree Version Name - displays the name of the tree version

■ Audit Result - displays either a green check mark (success) or a red "X"
(failure)

■ Tree Structure Code - displays the tree structure code

■ Tree Code - displays the tree code

■ Start Time - displays the date and time the audit began

■ End Time - displays the date and time the audit was completed

The Validation Details section contains the following columns:

■ Name - displays the names of the tree or tree version and the audit validators

■ Validation Result - displays either a green check mark (success) or a red "X"
(failure)

■ Validation Message - when clicked, displays a validation message and a
description

■ Corrective Action - when clicked, opens the appropriate trees application task
flow page, allowing you to fix a validation error

To schedule an audit:
1. Click Schedule Audit.

The Schedule Audit window, shown in Figure 19–56, opens.

Working with Tree Versions

Organizing Hierarchical Data with Tree Structures 19-59

Figure 19–56 Schedule Audit Window

2. Do any of the following:

■ Configure the basic options.

■ Click Process Options to configure language, territory, timezone, and other
options.

■ Click Advanced to configure detailed schedule, output, and notification
options.

3. Click Submit and then click OK to close the confirmation dialog.

To trigger an audit through a service API:
 Use the service API shown in Example 19–1.

Example 19–1 Audit Service API

/**
 * Processes the audit scheduled for any tree or tree version.
 * @param requestId Request ID for scheduled audit (for online can be
 defaulted as -1)
 * @param auditType Auditing mode wheere audit invoked for tree/tree
 version(pass as TREE_AUDIT for tree and
 * TREE_VERSION_AUDIT for tree version.
 * @param tsCode Tree Structure Code
 * @param treeCode Tree Code
 * @param treeVersionId Tree Version Id
 */
 public void processAudit(Long requestId, String auditType, String tsCode,
 String treeCode, String treeVersionId)

19.5.10 How to Flatten Rows and Columns
The tree-flattening process filters an implicit tree structure into a simple sequence of
leaves. It coalesces nodes so that each sub-tree has a single cache list representing all of
its children at one transformed level. Figure 19–57 shows an example of a flattened
tree structure.

Working with Tree Versions

19-60 Developer's Guide

Figure 19–57 Example of a Flattened Tree Structure

Tables that store flattened data are either row or column flattened. By eliminating
recursive queries, row flattening is particularly useful for efficiently performing
operations across an entire sub-tree.

Understanding Row Flattening
Row flattening is a technique where parent-child information is optimized for
run-time performance by storing additional rows in a table (as compared to just
normalized parent-child rows) to instantly find all descendants to a parent value,
without initiating a Connect By SQL statement.

Normalized data, for example, might be the following:

Corporation - Sales Division

Sales Division - Region

In a row flattened table, the above rows are still stored but one additional row is
added:

Corporation - Region

In addition, additional columns are added to store the "depth" from top parent.

Understanding Column Flattening
Column flattening is a technique where parent-child information is optimized for
run-time performance by storing additional column in a table for all parents of a child.

Normalized data, for example, might be the following:

Corporation - Sales Division

Sales Division - Region

Sales Division

In a column-flattened table, the above data is converted to rows and columns, as
shown in Table 19–14.

Usually, the number of levels (possible parents) are pre-defined to a maximum number
and may also have additional "dummy" values on levels where real values are
missing.

To flatten a row or column:
The following procedure assumes the Manage Trees and Tree Versions page is open.

1. Select the tree version you want to flatten.

Table 19–14 Rows and Columns in a Column-Flattened Table

Column 1 Column 2 Column 3

Region Sales Division Corporation

Managing Labels in the Generic Label Data Source

Organizing Hierarchical Data with Tree Structures 19-61

2. Choose Column Flattening or Row Flattening from the Actions dropdown menu.

The Flattening page, shown in Figure 19–58, opens.

Figure 19–58 Schedule Flattening Page

3. Click Schedule Flattening.

4. The Schedule Flattening page opens. Configure the options and click Submit.

5. Click Online Flattening or Force Flattening. Either of these actions will flatten the
row.

6. Click OK to close the confirmation window, shown in Figure 19–59.

Figure 19–59 Flattening Confirmation

7. Click Done to return to the Manage Trees and Tree Versions page.

19.6 Managing Labels in the Generic Label Data Source
When a label is chosen for a tree structure, the label data source can be either of the
following:

■ A custom, product-team-owned label data source

■ The generic data label source.

This section describes how to use the Central Labels tab of the trees application launch
page to create, edit, and delete values in the generic label data source.

All procedures assume that the Manage Labels summary page is open in your web
browser.

19.6.1 How to Search for a Label
If you wish to edit or delete an existing label and it is not currently visible in the
results list, you can search for it using the following procedure.

To search for a label:
1. In the Search area of the page, construct a search using any or all of the following

search criteria:

■ Tree Structure Code

Managing Labels in the Generic Label Data Source

19-62 Developer's Guide

■ Name

■ Short Name

2. Click Search.

All labels matching your search criteria appear in the Results area of the page.

Click Advanced to perform an advanced search by specifying additional options. You
also can save your search criteria for future use.

19.6.2 How to Create a Label
The following procedure explains how to create a new label.

To create a label:
1. From the Manage Labels summary page, click Create, or choose Create Label from

the Actions dropdown menu.

The Create Label page displays, as shown in Figure 19–60. An additional field Set
Name will appear if it is used by the selected tree structure.

Figure 19–60 Create Label Page

2. Enter a tree structure code or click the down arrow to select or search for one.

The page refreshes and the Data Source field populates with an appropriate value.

3. Enter a short name for the label.

4. Enter a name for the label.

5. If you wish, enter a description.

6. If you wish, enter an icon name.

7. Enter an effective start date, or click the calendar icon to select one.

8. Enter an effective end date, or click the calendar icon to select one.

9. Enter a Set Name or click the down arrow to select or search one.

10. Click Save and Close to create the label.

Managing Labels in the Generic Label Data Source

Organizing Hierarchical Data with Tree Structures 19-63

11. Click OK to close the Confirmation window.

The Manage Labels summary page displays showing the new label in the Results
list.

19.6.3 How to Edit a Label
The following procedure explains how to edit an existing label.

To edit a label:
1. Select the label you want to edit.

See Section 19.6.1, "How to Search for a Label," if the label is not in the current
Results list.

2. From the Manage Labels summary page, click Edit, or choose Edit from the
Actions dropdown menu.

The Edit Label page displays as shown in Figure 19–61.

Figure 19–61 Edit Label Page

3. Edit the appropriate data.

4. Do one of the following:

■ Click Save and Close to save your changes and exit the editing session.

■ Click Cancel to cancel the operation.

19.6.4 How to Delete a Label
The following procedure explains how to delete an existing label.

To delete a label:
1. Select the label you want to delete.

See Section 19.6.1, "How to Search for a Label," if the label is not in the current
Results list.

Using the Applications Hierarchy Component to Develop Applications

19-64 Developer's Guide

2. From the Manage Labels summary page, click Delete, or choose Delete from the
Actions dropdown menu.

The warning page shown in Figure 19–62 displays.

Figure 19–62 Delete Label Warning Page

3. Do one of the following:

■ Click No to cancel the operation.

■ Click Yes to delete the label.

19.7 Using the Applications Hierarchy Component to Develop
Applications

Now that you have worked with tree structures, trees, and tree versions, you can start
developing applications in JDeveloper using the Applications Hierarchy component.

The Applications Hierarchy component is denoted by the fnd:hierarchy tag and
contains two facets: hierarchy and toolbar. The hierarchy facet holds the af:tree or
af:treeTable; the toolbar facet can hold action buttons used with items within the
tree or treeTable.

Figure 19–63 shows an example of the Applications Hierarchy component in
JDeveloper.

Figure 19–63 Applications Hierarchy Component

You can add any JSF or ADF Faces component to these facets, even with the generated
af:tree or af:treeTable. The fnd:hierarchy tag supports the TreeCode and TreeVersionId
properties to display specific trees or tree versions.

Using the Applications Hierarchy Component to Develop Applications

Organizing Hierarchical Data with Tree Structures 19-65

You can create two types of Hierarchy applications: Tree and Tree Table.

19.7.1 How to Create a Tree Application
The following section explains how to create a tree application using the Applications
Hierarchy component.

Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for
Applications. For more information, see Chapter 2, "Setting Up Your Development
Environment."

To create a Tree application:
1. Create a new JSF/JSPX page.

2. From the ADF Faces page in the Component Palette, select Applications.

3. From the Applications page in the Component Palette, select Hierarchy and drag
it to your.jspx file's visual editor.

The Initialize Applications Connection window opens, as shown in Figure 19–64:

Figure 19–64 Initialize Applications Connection Window (1)

4. Choose a connection from the dropdown menu and click OK.

If there is no existing connection, click Add to create a new one.

A second Initialize Applications Connection window, shown in Figure 19–65,
opens.

Using the Applications Hierarchy Component to Develop Applications

19-66 Developer's Guide

Figure 19–65 Initialize Applications Connection Window (2)

5. Choose a tree structure from the dropdown list.

6. Select Tree.

7. Select Read-only if you want the application to be read only.

8. Click OK.

The tree appears in the visual editor, as shown in Figure 19–66.

Figure 19–66 Visual Editor with Tree

9. Do one of the following:

■ Run the .jspx file from the Application Navigator.

■ Run the .jspx file from the visual editor.

A browser window opens and the application runs. Figure 19–67 shows an
example of a tree application.

Using the Applications Hierarchy Component to Develop Applications

Organizing Hierarchical Data with Tree Structures 19-67

Figure 19–67 Example of Tree Application Style

19.7.2 How to Create a Tree Table Application
The following section explains how to create a tree table application using the
applications Hierarchy component.

Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for
Applications. For more information, see Chapter 2, "Setting Up Your Development
Environment."

To create a Tree Table application:
1. Follow Steps 1 through 5 in Section 19.7.1, "How to Create a Tree Application."

2. Select Tree Table.

The Initialize Applications Connection window redisplays with additional fields,
as shown in Figure 19–68.

Figure 19–68 Initialize Applications Connection Window (3)

3. Select Read-only if you want the application to be read only.

4. Select the available attributes to display at each tree level.

5. Click OK.

The tree table appears in the visual editor, as shown in Figure 19–69.

Integrating Custom Task Flows into the Applications Hierarchy Component

19-68 Developer's Guide

Figure 19–69 Visual Editor with Tree Table

6. Run the .jspx from either the Application Navigator or the visual editor.

A browser window opens and the application runs. Figure 19–70 shows an
example of a tree table application.

Figure 19–70 Example of Tree Table Application Style

19.8 Integrating Custom Task Flows into the Applications Hierarchy
Component

The Applications Hierarchy component supports six node operations – Add, Create,
Duplicate, Edit, Remove, and Delete – which are performed in a standard popup
window in the user interface. Since all nodes in a tree come from their data sources,
you must create a custom task flow for each operation that requires one, and register it
in your data source before you can use it.

Node operations that only manage data in the tree table do not require custom task
flows. For example, adding a node affects only the data in the tree table. However,
searching for a node requires access to the data source. Subsequently, you must create
and register a custom task flow that will enable node searches.

In addition, since removing a node affects only the data in the tree table, you do not
need to create and register a custom task flow for this operation.

Integrating Custom Task Flows into the Applications Hierarchy Component

Organizing Hierarchical Data with Tree Structures 19-69

For more information about task flows, see "Getting Started with ADF Task Flows" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

19.8.1 Registering Custom Task Flows
You use the Property Inspector in Oracle JDeveloper to register custom task flows, as
shown in Figure 19–71.

Figure 19–71 Data Source Properties

The full code used to register each custom task flow in the data-source view object is
shown in the examples that follow.

Example 19–2 Search Task Flow for the Add Node Operation

<Properties>
 <SchemaBasedProperties>
 <fnd:SEARCH_PAGE Value="/WEB-INF/EmpSearch.xml#EmpSearchTF"/>
...
...

Example 19–3 Create Task Flow

<Properties>
 <SchemaBasedProperties>
 <fnd:CREATE_PAGE Value="/WEB-INF/CreateEmpNode.xml#CreateEmpNode"/>
...
...

Example 19–4 Duplicate Task Flow

<Properties>
 <SchemaBasedProperties>
 <fnd:DUPLICATE_PAGE Value="/WEB-INF/DupEmpNode.xml#DupEmpNode"/>
...
...

Integrating Custom Task Flows into the Applications Hierarchy Component

19-70 Developer's Guide

Example 19–5 Edit Task Flow

<Properties>
 <SchemaBasedProperties>
 <fnd:UPDATE_PAGE Value="/WEB-INF/EditEmpNode.xml#EditEmpNode"/>
...
...

Example 19–6 Delete Task Flow

<Properties>
 <SchemaBasedProperties>
 <fnd:DELETE_PAGE Value="/WEB-INF/DelEmpNode.xml#DelEmpNode"/>
...
...

19.8.2 Creating Custom Task Flows
This section discusses how to create custom task flows for the Search, Create,
Duplicate, Edit, and Delete node operations.

19.8.2.1 How to Create a Search Task Flow for the Add Node Operation
The Search task flow provides a shortcut to select nodes. In the task flow, you specify
the Search page fragment, task-flow parameters, back-end Java bean, and task-flow
activities.

To create the Search task flow:
1. Define a task-flow parameter, searchHierParamBean, to pass values between the

Hierarchy component and the registered Search task flow in pageFlowScope.

<input-parameter-definition>
 <name>searchHierParam</name>
 <value>#{pageFlowScope.searchHierParam}</value>
 <class>oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean</class>
</input-parameter-definition>

2. Define Search task-flow return activities and use them as the ends of the task flow.
For example, to define the Submit and Cancel task-flow return activities:

<task-flow-return id="Submit">
 <outcome>
 <name>Submit</name>
 </outcome>
</task-flow-return/>

<task-flow-return id="Cancel">
 <outcome>
 <name>Cancel</name>
 </outcome>
</task-flow-return/>

Normally, Cancel is a free event. However, you must pass values back when Submit
is triggered. Therefore, you can have a submit() actionListener mapping to it.

3. In your back-end bean, use the following code to get the task-flow parameter:

import oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean;
...

HierParamBean searchParam =

Integrating Custom Task Flows into the Applications Hierarchy Component

Organizing Hierarchical Data with Tree Structures 19-71

(HierParamBean)AdfFacesContext.getCurrentInstance().getPageFlowScope().get
("searchHierParam");
...

For the Search task flow, you do not need any input parameters from the
Hierarchy component. The only thing this task flow does is to return the search
results. Therefore, after looking up tree nodes in Search task flow, you must pass
back the primary keys of the selected nodes by calling the HierParamBean method
setSelectedNodes(List) when the Submit return activity is invoked:

public void submit(ActionEvent event)
{
// The inner list is the list of primary keys for each node. Trees supports
// up to five primary keys.
// The outer list is the list of selected nodes
 List<List<String>> nodes = ...
 ...
 searchParam.setSelectedNodes(nodes);
}

4. In the page definition file of the page using the Hierarchy component, add the
following task-flow entry in the "executables" section:

<taskflow id="searchTaskflow"
 taskFlowId="#{backingBeanScope.AddNodeBean.searchTaskflow}"
 activation="deferred"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="searchHierParam"
xmlns="http://xmlns.oracle.com/adfm/uimodel"
 value="#{pageFlowScope.searchHierParam}"/>
 <parameters>
</taskflow>

19.8.2.2 How to Create a Create Task Flow
The Create task flow is used to create a new node in the data-source table. In the task
flow, you specify the Create page fragment, task-flow parameters, back-end Java bean,
and task-flow activities.

To create the Create task flow:
1. Define a task-flow parameter, createHierParamBean, to pass values between the

Hierarchy component and the registered Create task flow in pageFlowScope.

<input-parameter-definition>
 <name>createHierParam</name>
 <value>#{pageFlowScope.createHierParam}</value>
 <class>oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean</class>
</input-parameter-definition>

2. To capture the event of dismissing the Create popup window, define Create
task-flow return activities and use them as the ends of the task flow. For example,
to define the Submit and Cancel task-flow return activities:

<task-flow-return id="Submit">
 <outcome>
 <name>Submit</name>
 </outcome>
</task-flow-return/>

Integrating Custom Task Flows into the Applications Hierarchy Component

19-72 Developer's Guide

<task-flow-return id="Cancel">
 <outcome>
 <name>Cancel</name>
 </outcome>
</task-flow-return/>

Normally, Cancel is a free event. However, you must pass values back when Submit
is triggered. Therefore, you can have a submit() actionListener mapping to it.

3. In your back-end bean, use the following code to get the task-flow parameter:

import oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean;
...

HierParamBean createParam =
(HierParamBean)AdfFacesContext.getCurrentInstance().getPageFlowScope().get
("createHierParam");
...

For the Create task flow, you do not need any input parameters from the
Hierarchy component. The only thing this task flow does is to return the new
node. Therefore, you must pass back its primary keys by calling the
HierParamBean method setNewPkValue() after creating the node. The Hierarchy
component will get the new node's primary keys after the Create task-flow is
dismissed. For example, in the submit() actionListener that maps to the Submit
return activity, you pass new primary keys back:

public void submit(ActionEvent event)
{
 List<String> newPk = ...
 ...
 createParam.setNewPkValue(newPk);
}

4. In the page definition file of the page using the Hierarchy component, add the
following task-flow entry in the "executables" section:

<taskFlow id="createTaskflow"
 taskFlowId="#{backingBeanScope.CreateNodeBean.createTaskflow}"
 activation="deferred"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="createHierParam"
xmlns="http://xmlns.oracle.com/adfm/uimodel"
 value="#{pageFlowScope.createHierParam}"/>
 </parameters>
</taskFlow>

19.8.2.3 How to Create a Duplicate Task Flow
The Duplicate task flow is used to duplicate a node in the data-source table. In the task
flow, you specify the Duplicate page fragment, task-flow parameters, back-end Java
bean, and task-flow activities.

To create the Duplicate task flow:
1. Define a task-flow parameter, dupHierParamBean, to pass values between the

Hierarchy component and the registered Duplicate task flow in pageFlowScope.

<input-parameter-definition>

Integrating Custom Task Flows into the Applications Hierarchy Component

Organizing Hierarchical Data with Tree Structures 19-73

 <name>dupHierParam</name>
 <value>#{pageFlowScope.dupHierParam}</value>
 <class>oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean</class>
</input-parameter-definition>

2. To capture the event of dismissing the Duplicate popup window, define Duplicate
task-flow return activities and use them as the ends of the task flow. For example,
to define the Submit and Cancel task-flow return activities:

<task-flow-return id="Submit">
 <outcome>
 <name>Submit</name>
 </outcome>
</task-flow-return/>

<task-flow-return id="Cancel">
 <outcome>
 <name>Cancel</name>
 </outcome>
</task-flow-return/>

Normally, Cancel is a free event. However, you must pass values back when Submit
is triggered. Therefore, you can have a submit() actionListener mapping to it.

3. In your back-end bean, using the following code to get the task-flow parameter:

import oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean;
...

HierParamBean dupParam =
(HierParamBean)AdfFacesContext.getCurrentInstance().getPageFlowScope().get
("dupHierParam");
...

For the Duplicate task flow, you need to know the selected node from the
Hierarchy component. In the Duplicate popup window, the selected node's
attributes are shown by default so that users can create another tree node. After
creating a new node, you pass back its primary key. You can perform all of these
tasks by calling HierParamBean methods.

For example, in the task-flow initializer, you can use the following code to get the
primary keys of the selected node:

List<String> pkValue = dupParam.getPkValue();

In the submit() actionListener that maps to the Submit return activity, you pass the
new primary keys back:

public void submit(ActionEvent event)
{
 List<String> newPk = ...
 ...
 dupParam.setNewPkValue(newPk);
}

4. In the page definition file of the page using the Hierarchy component, add the
following task-flow entry in the "executables" section:

<taskflow id="dupTaskflow"
 taskFlowId="#{backingBeanScope.DupNodeBean.dupTaskflow}"
 activation="deferred"
 Refresh="ifNeeded"

Integrating Custom Task Flows into the Applications Hierarchy Component

19-74 Developer's Guide

 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="dupHierParam" xmlns="http://xmlns.oracle.com/adfm/uimodel"
 value="#{pageFlowScope.dupHierParam}"/>
 <parameters>
</taskflow>

19.8.2.4 How to Create an Edit Task Flow
The Edit task flow is used to edit an existing node in the data-source table. In the task
flow, you specify the Edit page fragment, task-flow parameters, back-end Java bean,
and task-flow activities.

To create the Edit task flow:
1. Define a task-flow parameter, editHierParamBean, to pass values between the

Hierarchy component and the registered Edit task flow in pageFlowScope.

<input-parameter-definition>
 <name>editHierParam</name>
 <value>#{pageFlowScope.editHierParam}</value>
 <class>oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean</class>
</input-parameter-definition>

2. To capture the event of dismissing the Edit popup window, define Edit task-flow
return activities and use them as the ends of the task flow. For example, to define
the Submit and Cancel task-flow return activities:

<task-flow-return id="Submit">
 <outcome>
 <name>Submit</name>
 </outcome>
</task-flow-return/>

<task-flow-return id="Cancel">
 <outcome>
 <name>Cancel</name>
 </outcome>
</task-flow-return/>

Normally, Cancel is a free event. However, you must pass values back when Submit
is triggered. Therefore, you can have a submit() actionListener mapping to it.

3. In your back-end bean, using the following code to get the task-flow parameter:

import oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean;
...

HierParamBean editParam =
(HierParamBean)AdfFacesContext.getCurrentInstance().getPageFlowScope().get
("editHierParam");
...

For the Edit task flow, you need to know the current node from the Hierarchy
component. In the Edit popup window, the current node's attributes are shown by
default so that users can update the tree node. After updating the node, you must
indicate whether or not the update was successful. You can perform all of these
tasks by calling HierParamBean methods.

For example, in the task-flow initializer, you can use the following code to get the
primary keys of the selected node:

Integrating Custom Task Flows into the Applications Hierarchy Component

Organizing Hierarchical Data with Tree Structures 19-75

List<String> pkValue = editParam.getPkValue();

In the submit() actionListener that maps to the Submit return activity, you specify
the result:

public void submit(ActionEvent event)
{
 ...
 editParam.setUpdated(true);
}

4. In the page definition file of the page using the Hierarchy component, add the
following task-flow entry in the "executables" section:

<taskflow id="editTaskflow"
 taskFlowId="#{backingBeanScope.EditNodeBean.editTaskflow}"
 activation="deferred"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="dupHierParam" xmlns="http://xmlns.oracle.com/adfm/uimodel"
 value="#{pageFlowScope.editHierParam}"/>
 <parameters>
</taskflow>

19.8.2.5 How to Create a Delete Task Flow
The Delete task flow is used to delete an existing node in the data-source table. In the
task flow, you specify the Delete page fragment, task-flow parameters, back-end Java
bean, and task-flow activities.

To create the Delete task flow:
1. Define a task-flow parameter, delHierParamBean, to pass values between the

Hierarchy component and the registered Delete task flow in pageFlowScope.

<input-parameter-definition>
 <name>delHierParam</name>
 <value>#{pageFlowScope.delHierParam}</value>
 <class>oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean</class>
</input-parameter-definition>

2. To capture the event of dismissing the Delete popup window, define Edit
task-flow return activities and use them as the ends of the task flow. For example,
to define the Submit and Cancel task-flow return activities:

<task-flow-return id="Submit">
 <outcome>
 <name>Submit</name>
 </outcome>
</task-flow-return/>

<task-flow-return id="Cancel">
 <outcome>
 <name>Cancel</name>
 </outcome>
</task-flow-return/>

Normally, Cancel is a free event. However, you must pass values back when Submit
is triggered. Therefore, you can have a submit() actionListener mapping to it.

3. In your back-end bean, using the following code to get the task-flow parameter:

Using the fnd:hierarchy Property Inspector to Specify Tree Versions

19-76 Developer's Guide

import oracle.apps.fnd.applcore.trees.ui.managed.HierParamBean;
...

HierParamBean delParam =
(HierParamBean)AdfFacesContext.getCurrentInstance().getPageFlowScope().get
("delHierParam");
...

For the Delete task flow, you need to know the selected node from the Hierarchy
component. In the Delete popup window, delete the node and confirm the
deletion. After deleting the node, you must indicate whether or not the deletion
was successful. You can perform all of these tasks by calling HierParamBean
methods.

For example, in the task-flow initializer, you can use the following code to get the
primary keys of the selected node:

List<String> pkValue = delParam.getPkValue();

In the submit() actionListener that maps to the Submit return activity, you specify
the result:

public void submit(ActionEvent event)
{
 ...
 delParam.setDeleted(true);
}

4. In the page definition file of the page using the Hierarchy component, add the
following task-flow entry in the "executables" section:

<taskFlow id="delTaskflow"
 taskFlowId="#{backingBeanScope.DelNodeBean.delTaskflow}"
 activation="deferred"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="delHierParam" xmlns="http://xmlns.oracle.com/adfm/uimodel"
 value="#{pageFlowScope.delHierParam}"/>
 </parameters>
</taskFlow>

19.9 Using the fnd:hierarchy Property Inspector to Specify Tree Versions
Using the Hierarchy component to develop applications in JDeveloper requires you to
specify a tree structure in the Property Inspector.

To access the Hierarchy-Property Inspector, highlight fnd:hierarchy in the Structure
window and select the Hierarchy-Property Inspector tab. Figure 19–72 shows the
Hierarchy-Property Inspector.

Using the fnd:hierarchy Property Inspector to Specify Tree Versions

Organizing Hierarchical Data with Tree Structures 19-77

Figure 19–72 Hierarchy-Property Inspector

The Hierarchy component has facets and properties, which are listed in Table 19–15
and Table 19–16.

Table 19–15 Hierarchy Facets

Facet Description Values

hierarchy Holds ADF Tree or TreeTable af:tree or af:treeTable

toolbar Additional toolbar buttons to be
added for custom use

ADF command toolbar buttons under an
ADF toolbar

Table 19–16 Hierarchy Properties

Property Description Values

id Unique identification number for hierarchy string

rendered Indicates if the hierarchy is rendered boolean

readOnly Indicates if the hierarchy will render in
read-only mode

boolean

treeStructureCode Code for the tree structure to be used for the
hierarchy

string

tree Code Code for the tree to be used for the hierarchy string

treeVersionId ID for the tree version to be used for the
hierarchy

string

actionsMenuRendered Controls if action menu needs to be rendered boolean

toolbarRendered Controls if toolbar needs to be rendered boolean

addVisible Controls if add action is visible boolean

addRendered Controls if add action is rendered boolean

addDisabled Controls if add action is disabled boolean

Using the fnd:hierarchy Property Inspector to Specify Tree Versions

19-78 Developer's Guide

The data that displays in your application depends on the tree structure you specify in
the Property Inspector. The tree structure automatically determines the following at
run time:

■ The tree available under this particular tree structure. If there are multiple trees,
the first one is chosen.

■ The active tree version (for the current date) available under the tree. If there are
multiple tree versions, the first one is chosen.

addText Custom text to be used for add action string

createVisible Controls if create action is visible boolean

createRendered Controls if create action is rendered boolean

createDisabled Controls if create action is disabled boolean

createText Custom text to be used for create action string

duplicateVisible Controls if duplicate action is visible boolean

duplicateRendered Controls if duplicate action is rendered boolean

duplicateDisabled Controls if duplicate action is disabled boolean

duplicateText Custom text to be used for duplicate action string

editVisible Controls if edit action is visible boolean

editRendered Controls if edit action is rendered boolean

editDisabled Controls if edit action is disabled boolean

editText Custom text to be used for edit action string

removeVisible Controls if remove action is visible boolean

removeRendered Controls if remove action is rendered boolean

removeDisabled Controls if remove action is disabled boolean

removeText Custom text to be used for remove action string

deleteVisible Controls if delete action is visible boolean

deleteRendered Controls if delete action is rendered boolean

deleteDisabled Controls if delete action is disabled boolean

deleteText Custom text to be used for delete action string

registerTaskflow Specifies whether to use task flow (true)
or.jspx file (false).

For example:

<fnd:hierarchy registerTaskflow="true"
...
</fnd:hierarchy>

boolean

Note: Since only customers create tree versions, you must use service
APIs to generate lists of tree versions or active tree versions.

Table 19–16 (Cont.) Hierarchy Properties

Property Description Values

Embedding the Tree Picker Component in a User Interface

Organizing Hierarchical Data with Tree Structures 19-79

19.10 Using the Expression Builder to Bind TreeCode,
TreeStructureCode, and TreeVersionId Properties

You also can use the Expression Builder to bind some of the properties mentioned in
Section 19.9. They are the following:

■ TreeCode

■ TreeStructureCode

■ TreeVersionId

Use the following expressions:

TreeCode expression:
#{HierarchyHandler.treeModelsList[hierarchyId].treeCode}

TreeStructureCode expression:
#{HierarchyHandler.treeModelsList[hierarchyId].treeStructureCode}

TreeVersionId expression:
#{HierarchyHandler.treeModelsList[hierarchyId].treeVersionId}

19.11 Embedding the Tree Picker Component in a User Interface
Tree Picker is a reusable Oracle ADF task flow, similar to a date picker, that enables
you to select tree data from a list of values. It is found in the Trees-View.jar section of
the Component Palette.

To add a Tree Picker component to your user interface:
1. On the page from which the Tree Picker will be launched, create an icon or button

with Action set to launch.

2. Drag and drop the Tree Picker from Component Palette > Trees-View.jar onto
your task flow.

3. Connect the launch page to the Tree Picker using an appropriate Control Flow
Case with from-outcome set to launch and run-as-dialog set to true.

4. In the Property Inspector > Parameters section for the task flow, enter the
appropriate parameters for the following:

■ treeStructureCode (required) - The code assigned to the tree structure. For
example, FND_DEMO_EMP_TS.

■ treeCode (optional) - The code assigned to the tree. For example, FND_
DEMO_EMP_T.

■ treeVersionId (optional) - String representation of an automatically generated
binary value (Raw) identifier. You cannot hard code a TreeVersionId.

■ selectMode (optional) - A parameter to control the row selection behavior of
tree table on a user interface page. Acceptable values are single and
multiple. The default is single.

The Tree Picker returns a list of TreeNodes:

Note: The hierarchyId variable is the ID of the Hierarchy
component.

Embedding the Tree Picker Component in a User Interface

19-80 Developer's Guide

■ If the Tree Picker is launched as a popup window, the return value can be obtained
in the returnListener of the icon or button using:

List<TreeNode> =
selectedTreeNodes(List<TreeNode>)event.getReturnValue();

■ If the Tree Picker is launched in place, the return value can be obtained from the
pageFlowScope using:

Map pageFlow = AdfFacesContext.getCurrentInstance().getPageFlowScope();

List<TreeNode> selectedNodes = (List<TreeNode>)
pageFlow.get("returnTreeNodes");

Figure 19–73 shows an example of a Tree Picker user interface.

Figure 19–73 Example Tree Picker

Figure 19–74 shows the results window that displays when you enter a
tree-structure-code value and click Select Tree Node.

Figure 19–74 Tree Picker Results Window

Using Service APIs to Manage Trees

Organizing Hierarchical Data with Tree Structures 19-81

19.12 Setting Bind Variables and View Criteria
Every data source requires a view object. If the data source view object has bind
variables and view criteria that tree management needs to apply, you must set them
manually in JDeveloper.

19.12.1 How to Set Bind Variables and View Criteria
Use the following procedure to set bind variables and view criteria.

1. In JDeveloper, click on the appropriate data source view object. (Ensure that it is
highlighted in the Structure window.)

2. Select the Query option from the Overview tab. Figure 19–75 shows the Bind
Variables and View Criteria sections after the Query option is selected.

Figure 19–75 Bind Variables and View Criteria Settings

3. Do any of the following:

■ Click the Bind Variables Add icon to add any necessary bind variables.

■ Click the View Criteria Add icon to add any necessary view criteria.

19.13 Using Service APIs to Manage Trees
An application programming interface, or API, is a source code interface that a library
provides to support requests for services to be made of it by computer programs. In
other words, APIs provide the building blocks that make it easier to develop these
programs. Although an API specifies an interface and the behavior of the identifiers
specified in that interface, it does not specify how the behavior might be implemented.

Using Service APIs to Manage Trees

19-82 Developer's Guide

There are three service application modules that you can use to interact with the tree
management infrastructure:

■ TreeStructureService

■ TreeService

■ TreeNodeService.

19.13.1 How to Use TreeStructureService
The TreeStructureService application module is defined in
oracle.apps.fnd.applcore.trees.service.applicationModule.TreeStructureServ
ice and allows access to tree structure metadata. This application module exposes the
TreeStructureVO under the name "TreeStructure" as well as the hierarchy of ADF
Business Components objects accessible through the TreeStructureVO. This application
module does not include any of the tree or tree version entities. The Javadoc for the
available APIs is included with JDeveloper. To access the Javadoc in JDeveloper, do the
following:

1. Choose the Go to Java Class... option from the Navigate dropdown menu.

The Go to Java Class window opens.

2. Enter TreeStructureService in the Name: field.

3. Choose Go to: > Javadoc and click OK.

This application module is considered a public API to work with tree structure
metadata and exposes the APIs shown in Table 19–17.

Note: No Service Data Objects (SDOs) are provided and these
application modules must be instantiated and invoked in a co-located
mode.

Table 19–17 TreeStructureService APIs

API Description

getTreeStructure FndTreeStructureVORow getTreeStructure(String treeStructureCode)

This API is used to retrieve the FndTreeStructureVORow corresponding to a
particular tree structure code.

getRootDataSourceRels RowIterator getRootDataSourceRels(String treeStructureCode)

This API gets a row iterator over FndTsDataSourceRelVORow rows representing the
root data sources of the given tree structure.

getAllTreeColumns List<AttributeDef> getAllTreeColumns(String treeStructureCode)

This API returns a list of VO attributes that are available for use from the various data
sources associated with the tree structure. This is a cumulative list across all the data
sources.

getAllDataSources oracle.jbo.RowIterator getAllDataSources(String treeStructureCode)

Returns a row iterator over FndTsDataSourceVORow rows corresponding to all data
sources for the given tree structure.

Using Service APIs to Manage Trees

Organizing Hierarchical Data with Tree Structures 19-83

19.13.2 How to Use TreeService
The TreeService application module is defined in
oracle.apps.fnd.applcore.trees.service.applicationModule.TreeService and
provides access to trees and tree versions. TreeService also provides flattening APIs.
The Javadoc for the available APIs is included with JDeveloper.

To access the Java Doc:
1. Choose the Go to Java Class... option from the Navigate dropdown menu.

The Go to Java Class window opens.

2. Enter TreeService in the Name: field.

3. Choose Go to: > Javadoc and click OK.

This application module is considered a public API to work with trees and tree
versions and exposes the APIs shown in Table 19–18.

getTreeNodeTable String getTreeNodeTable(String treeStructureCode)

Returns the name of the tree node table in use by a given tree structure.

duplicateTreeStructure void duplicateTreeStructure(String treeStructureCode, String duplicateTreeStructureCode)

This API is a Java front end to the PL/SQL API FND_TREE_UTILS.duplicate_tree_
structure and is used to duplicate a tree structure. It does not duplicate any
underlying trees or tree versions associated with the tree structure.

deleteTreeStructure void deleteTreeStructure(String treeStructureCode)

This API is a Java front end to the PL/SQL API FND_TREE_UTILS.delete_tree_
structure and is used to delete a tree structure. This deletes all underlying trees and
tree versions associated with this tree structure (including flattened data, if any).

Table 19–18 TreeService APIs

API Description

getTreeRows RowIterator getTreeRows(String treeStructureCode);

This API returns all trees associated with a given tree structure.

getTreeCodes List<String> getTreeCodes(String treeStructureCode);

This API returns a list of tree codes associated with a given tree structure.

findTree FndTreeVORow findTree(String treeStructureCode, String treeCode);

This API is used to find a specific tree given its tree structure code and tree code.

duplicateTree void duplicateTree(String treeStructureCode, String treeCode, String duplicateTreeCode);

This API duplicates a specific tree and assigns a specified tree code to the duplicate.
It is a front end to the FND_TREE_UTILS.duplicate_tree PL/SQL API.

deleteTree void deleteTree(String treeStructureCode, String treeCode);

This API deletes a tree, all its associated tree versions, including flattened data. It is a
front end to the FND_TREE_UTILS.delete_tree PL/SQL API.

getAllTreeVersions List<String> getAllTreeVersions(String treeStructureCode, String treeCode);

This API returns a list of all tree versions associated with a given tree.

Table 19–17 (Cont.) TreeStructureService APIs

API Description

Using Service APIs to Manage Trees

19-84 Developer's Guide

19.13.3 How to Use TreeNodeService
The TreeNodeService application module is defined in
oracle.apps.fnd.applcore.trees.service.applicationModule.TreeNodeService
and provides the core node operations such as adding and deleting nodes. The APIs
support three types of nodes:

■ value nodes

■ range nodes

■ tree-in-tree nodes.

The Java APIs are covers to the PL/SQL APIs that are provided in the FND_TREE_
UTILS PL/SQL package.

To access the Java Doc:
1. Choose the Go to Java Class... option from the Navigate dropdown menu.

The Go to Java Class window opens.

2. Enter TreeNodeService in the Name: field.

3. Choose Go to: > Javadoc and click OK.

This application module is considered a public API to work with tree nodes and
exposes the APIs shown in Table 19–19.

getTreeVersions List<String> getTreeVersions(String treeStructureCode, String treeCode, Timestamp
asOfDate);

This API returns a list of tree versions associated with a given tree as of a particular
date.

getCurrentTreeVersions List<String> getCurrentTreeVersions(String treeStructureCode, String treeCode);

This API returns a list of tree versions associated with a given tree as of the current
date.

findTreeVersion FndTreeVersionVORow findTreeVersion(String treeStructureCode, String treeCode, String
treeVersionId);

This API is used to locate a specific tree version given its tree structure code, tree
code and tree version ID.

duplicateTreeVersion String duplicateTreeVersion(String treeStructureCode, String treeCode, String
treeVersionId, String treeVersionName);

This API is a front end to the PL/SQL API FND_TREE_UTILS.duplicate_tree_
version and duplicates a specific tree version. The API returns the auto-generated ID
of the duplicate tree version.

deleteTreeVersion void deleteTreeVersion(String treeStructureCode, String treeCode, String treeVersionId);

This API is a front end to the PL/SQL API FND_TREE_UTILS.delete_tree_version
and deletes a tree version including its flattened data (if any).

rowFlatten void rowFlatten(String treeStructureCode, String treeCode, String treeVersionId);

This API row-flattens a specific tree version.

columnFlatten void columnFlatten(String treeStructureCode, String treeCode, String treeVersionId);

This API column-flattens a specific tree version.

Table 19–18 (Cont.) TreeService APIs

API Description

Using Service APIs to Manage Trees

Organizing Hierarchical Data with Tree Structures 19-85

Table 19–19 TreeNodeService APIs

API Description

addValueTreeNode String addValueTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String dataSourceId, String pk1Value, String pk2Value, String
pk3Value, String pk4Value, String pk5Value);

String addValueTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String dataSourceId, String pk1Value, String pk2Value, String
pk3Value, String pk4Value, String pk5Value, String treeLabelId);

This API adds a value-based tree node to a specific tree version. It is a front end to the
PL/SQL API FND_TREE_UTILS.add_value_tree_node. It returns the tree node ID of
the newly added node. The API has two signatures - one that takes in a tree label to be
associated with the tree node and one that does not.

addRangeTreeNode String addRangeTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String dataSourceId, String pk1StartValue, String pk2StartValue,
String pk3StartValue, String pk4StartValue, String pk5StartValue, String pk1EndValue,
String pk2EndValue, String pk3EndValue, String pk4EndValue, String pk5EndValue);

String addRangeTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String dataSourceId, String pk1StartValue, String pk2StartValue,
String pk3StartValue, String pk4StartValue, String pk5StartValue, String pk1EndValue,
String pk2EndValue, String pk3EndValue, String pk4EndValue, String pk5EndValue, String
treelabelId);

This API adds a range-based tree node to a specific tree version. It is a front end to the
PL/SQL API FND_TREE_UTILS.add_range_tree_node. It returns the tree node ID of
the newly added node. The API has two signatures - one that takes in a tree label to be
associated with the tree node and one that does not.

addTreeTreeNode String addTreeTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String referenceTreeCode, String referenceTreeVersionId);

String addTreeTreeNode(String treeStructureCode, String treeCode, String treeVersionId,
String parentTreeNodeId, String referenceTreeCode, String referenceTreeVersionId, String
treeLabelId);

This API adds a tree node that references another tree version. It is a front end to the
PL/SQL API FND_TREE_UTILS.add_tree_tree_node. It returns the tree node ID of the
newly added node. The API has two signatures - one that takes in a tree label to be
associated with the tree node and one that does not.

deleteTreeNode void deleteTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String
treeNodeId);

This API is a front end to the PL/SQL API FND_TREE_UTILS.delete_tree_node and
deletes a specific tree node. Any children of that node are automatically promoted up
the hierarchy.

updateTreeNode void updateTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String
treeNodeId, String parentTreeNodeId, String dataSourceId, String pk1StartValue, String
pk2StartValue, String pk3StartValue, String pk4StartValue, String pk5StartValue, String
pk1EndValue, String pk2EndValue, String pk3EndValue, String pk4EndValue, String
pk5EndValue, String referenceTreeCode, String referenceTreeVersionId, String treeLabelId);

This API is a front end to the PL/SQL API FND_TREE_UTILS.update_tree_node and is
used to update the data associated with a specific tree node. It cannot be used to move
the tree node.

moveTreeNode void moveTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String
treeNodeId, String destinationParentNodeId);

This API is used to move a tree node within the hierarchy. The entire sub-tree rooted at
the node being moved is moved. This API is a front end to the PL/SQL API FND_
TREE_UTILS.move_tree_node.

Advanced Topics

19-86 Developer's Guide

19.14 Advanced Topics
This section includes information about the following advanced topics:

■ Tree data model

■ PL/SQL APIs

■ Incremental flattening

■ Trees business events

■ WebLogic Scripting Tool (WLST) Commands for Flattening

19.14.1 Using the Tree Data Model
The following are new or modified tables and views that are used by and relevant to
the Tree Management infrastructure. They are set up in the FUSION schema.

Tables:
■ FND_TREE_STRUCTURE

■ FND_TREE_STRUCTURE_TL

■ FND_TS_DATA_SOURCE

■ FND_TS_DATA_SOURCE_REL

■ FND_TS_DATA_SOURCE_PARAMS

■ FND_LABEL

■ FND_LABEL_TL

■ FND_TREE

■ FND_TREE_TL

■ FND_TREE_DATA_SOURCE_PARAMS

■ FND_TREE_VERSION

■ FND_TREE_VERSION_TL

■ FND_NODE

■ FND_NODE_TL

■ FND_TREE_LABEL

■ FND_TREE_NODE

findValueTreeNodes RowIterator findValueTreeNodes(String treeStructureCode, String treeCode, String
treeVersionId, String[] pkValues);

This API is used to find all value tree nodes with the specified primary key.

findRangeTreeNodes RowIterator findRangeTreeNodes(String treeStructureCode, String treeCode, String
treeVersionId, String[] pkStartValues, String[] pkEndValues);

This API is used to find all range tree nodes with the specified range.

findRefTreeNodes RowIterator findRefTreeNodes(String treeStructureCode, String treeCode, String treeVersionId,
String refTreeCode, String refTreeVersionId);

This API is used to find all tree nodes that reference the specified tree version.

Table 19–19 (Cont.) TreeNodeService APIs

API Description

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-87

■ FND_TREE_NODE_RF

■ FND_TREE_NODE_CF

■ FND_TREE_AUDIT_JOB

■ FND_TREE_VERSION_AUDIT_RES

■ FND_TREE_VERSION_AUDIT_RES_TL

■ FND_TREE_LOG

■ FND_TREE_LOG_PARAMS

■ FND_TREE_FLATTENING_HISTORY

Views:
■ FND_TREE_STRUCTURE_VL

■ FND_LABEL_VL

■ FND_TREE_VL

■ FND_TREE_VERSION_VL

■ FND_NODE_VL

■ FND_TREE_VERSION_AUDIT_RES_VL

19.14.2 Using PL/SQL APIs
Tree Management provides public PL/SQL APIs to work with trees. You can find
these APIs in the PL/SQL package FND_TREE_UTILS in the FUSION schema.

19.14.3 Using Incremental Flattening
Incremental flattening optimizes the process by starting with the results of a previous
flattening instead of flattening the data from scratch, as shown in Figure 19–76.

Figure 19–76 Flattening Delta

To flatten incrementally, a delta of flattening operations that occurred between these
two sets of start and end points is created, and information about what happened
during those operations is stored in three tables:

■ FND_TREE_FLATTENING_HISTORY

Note: The PL/SQL package FND_TREE_UTILS_PVT contains
private APIs for internal use with Oracle Fusion tree management. No
other use of these APIs is supported.

Advanced Topics

19-88 Developer's Guide

■ FND_TREE_LOG

■ FND_TREE_LOG_PARAMS

These tables are described in the sections that follow.

19.14.3.1 How to Use FND_TREE_FLATTENING_HISTORY
This table records the flattening history for a specific tree version. For optimization,
only the last process point is recorded. Process_Point records the time of the last
tree-node operation that has been flattened.

Table 19–20 shows the contents of the FND_TREE_FLATENNING_HISTORY table.

19.14.3.2 How to Use FND_TREE_LOG
FND_TREE_LOG is a log of all flattening operations for one tree version. The log
enables database administrators (DBAs) to move data easily and efficiently to external
systems such as a data warehouse, or from test to production systems.

FND_TREE_LOG stores tree-node operations. For each specific tree-version operation,
a unique Log_Entry_ID is assigned and the operation type is logged.

There are three types of tree nodes:

■ value

■ range

■ tree node

There also are three types of tree-node operations:

■ add

■ move

■ delete

Subsequently, there are nine types of operations:

■ add value node

■ move value node

■ delete value node

Table 19–20 FND_TREE_FLATTENING_HISTORY

Column Data Type Nullable?

Tree_Structure_Code (Primary
Key)

Varchar2(30) No

Tree_Code (Primary Key) Varchar2(30) No

Tree_Version_ID (Primary Key) Varchar2(32) No

Process_Point Timestamp(6) No

Flattening_Type (Primary Key) Varchar2(32) No

Created_By Varchar2(64) No

Creation_Date Timestamp(6) No

Last_Updated_By Varchar2(64) No

Last_Update_Date Timestamp(6) No

Last_Update_Login Varchar2(32) Yes

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-89

■ add range node

■ move range node

■ delete range node

■ add tree node

■ move tree node

■ delete tree node

Table 19–21 shows the contents of the FND_TREE_LOG table.

19.14.3.3 How to Use FND_TREE_LOG_PARAMS
Since the FND_TREE_LOG table does not record parameters for each operation, the
FND_TREE_LOG_PARAMS table is used to log them. The two tables are referenced by
a foreign key, Log_Entry_ID. This design helps save space and clearly organizes the
information.

Table 19–22 shows the contents of the FND_TREE_LOG_PARAMS table.

Table 19–21 FND_TREE_LOG

Column Data Type Nullable?

Log_Entry_ID (Primary Key) Varchar2(32) No

Tree_Structure_Code Varchar2(30) No

Tree_Code Varchar2(30) No

Tree_Version_ID Varchar2(32) No

Operation_Type Varchar1(32) No

Created_By Varchar2(64) No

Creation_Date Timestamp(6) No

Last_Updated_By Varchar2(64) No

Last_Update_Date Timestamp(6) No

Last_Update_Login Varchar2(32) Yes

Table 19–22 FND_TREE_LOG_PARAMS

Column Data Type Nullable?

Log_Entry_ID (Primary Key) Varchar2(32) No

Param_Name (Primary Key) Varchar2(64) No

Param_Value Varchar2(100) No

Created_By Varchar2(64) No

Creation_Date Timestamp(6) No

Last_Updated_By Varchar2(64) No

Last_Udpate_Date Timestamp(6) No

Last_Update_Login Varchar2(32) Yes

Advanced Topics

19-90 Developer's Guide

19.14.3.4 Flattening Rows
Row-flattening results are stored in the table registered as the row-flattening table for
the tree structure. If you register a custom row-flattening table for your tree structure,
ensure it has the same schema as FND_TREE_NODE_RF.

IS_LEAF and DISTANCE are two important row-flattening-table columns. For more
information, see Section 19.14.3.4.1 and Section 19.14.3.4.2.

19.14.3.4.1 IS_LEAF This column provides information about whether or not a tree
node is a leaf. In many instances, only a leaf contain meaningful information, while
other nodes provide a structural purpose. IS_LEAF makes it easier to differentiate a
leaf from other nodes, and makes it simpler to write simple queries and get faster
responses. Valid values are Y (yes) and N (no).

19.14.3.4.2 DISTANCE This column indicates the distance between the node and its
ancestor, which is specified in the row. For example, the distance between a node and
its parent or children is 1, between a node and its grandparent or grandchildren is 2,
and so on. DISTANCE, then, helps developers to get the entire path - from the root
node to the intermediate leaf/node without having to perform any additional queries.
A simple example is shown in Figure 19–77.

In the FND_TREE_NODE table, DISTANCE is stored in the form of an adjacency list,
as shown in Table 19–23.

Figure 19–77 Example of DISTANCE

After flattening, DISTANCE is stored in the FND_TREE_NODE table, as shown in
Table 19–24.

Table 19–23 Adjacency List

Node Parent

A Null

B A

C A

D C

Note: The node ancestor also includes itself.

Table 19–24 Flattened FND_TREE_NODE Table

Node Ancestor Distance IS_LEAF?

A Null 1 N

A A 0 N

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-91

To find the path from the root of D, the query would be the following:

select *
from fnd_tree_node_rf
where tree_node_id = D order by distance

19.14.3.5 Flattening Columns
Column flattening generally applies only to level-based trees. In the case of a view
object for Business Intelligence (BICVO), however, value-based trees also can be
column-flattened. (For more information, see Chapter 59, "Designing and Securing
View Objects for Oracle Business Intelligence Applications.")

For level-based trees, the maximum level of a tree version is 32. Subsequently, if a tree
version is not level-based or if it has a tree-version level that exceeds 32, only row
flattening can be performed.

Column-flattening results are stored in the table specified in the tree structure, which
has the same schema as FND_TREE_NODE_CF.

Each row in the FND_TREE_NODE_CF table represents a path in a tree, and can hold
a maximum of 32 nodes. The rows are arranged from leaf to root, as shown in
Figure 19–78.

Figure 19–78 Leaf-to-Root Order

B Null 2 Y

B A 1 Y

B B 0 Y

C Null 2 N

C A 1 N

C C 0 N

D Null 3 Y

D A 2 Y

D C 1 Y

D D 0 Y

Table 19–24 (Cont.) Flattened FND_TREE_NODE Table

Node Ancestor Distance IS_LEAF?

Advanced Topics

19-92 Developer's Guide

Table 19–25 shows the results after flattening.

19.14.4 Using Trees Business Events
A business event typically is a one-way, fire-and-forget, asynchronous way to send a
notification of a business occurrence. You can raise business events when a situation of
interest occurs. The Tree Management infrastructure provides create, update, and
delete business events on tree structures, trees and tree versions. The event definitions
are available in $MW_HOME/jdeveloper/jdev/oaext/events/Trees-Model-Events.jar.

Table 19–26 includes details of the create, update, and delete events.

Table 19–25 Column-Flattening Results

Dep0 Dep1 Dep2 Dep3 Dep4 ... Dep31

LA CA USA North America Null ... Null

SF CA USA North America Null ... Null

DC Null USA North America Null ... Null

Note: All fields not containing nodes will be filled with Null.

Table 19–26 Trees Business Events

Entity Event Name Condition Payload

Tree Structure TreeStructureCreateEvent Create TreeStructureCode

Tree Structure TreeStructureUpdateEvent Update TreeStructureCode

Tree Structure TreeStructureDeleteEvent Delete TreeStructureCode

Tree TreeCreateEvent Create TreeStructureCode, TreeCode

Tree TreeUpdateEvent Update TreeStructureCode, TreeCode

Tree TreeDeleteEvent Delete TreeStructureCode, TreeCode

Tree Version TreeVersionCreateEvent Create TreeStructureCode, TreeCode,
TreeVersionId

Tree Version TreeVersionUpdateEvent Update TreeStructureCode, TreeCode,
TreeVersionId

Tree Version TreeVersionDeleteEvent Delete TreeStructureCode, TreeCode,
TreeVersionId

Tree Node TreeNode Created New node added to
tree (includes value,
range and referenced
tree nodes)

TreeStructureCode, TreeCode,
TreeVersionId, TreeNodeId

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-93

For more information, see "Using Business Events and the Event Delivery Network" in
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

19.14.5 Using WLST Commands for Flattening
WebLogic Scripting Tool (WLST) is a command line scripting interface that you can
use to create, manage, and monitor WebLogic Server domains.

Tree management provides the data flattening feature that improves query
performance against the hierarchical data. It supports two types of flattening: column
flattening and row flattening. Column flattening optimizes the parent-child
information for run-time performance by storing additional column in a table for all
parents of a child. Row flattening optimizes parent-child information for run-time
performance by storing additional rows in a table (as compared to just normalized
parent-child rows) to instantly find all descendants to a parent value, without
initiating a CONNECT BY SQL statement.

The treeManagement.py Python Script defines the WLST commands that can be
executed at the WLST prompt. Each command corresponds to a method in the python
script. The python script is available at $ADE_VIEW_ROOT/atgpf/applcore/etc/wlst/.

A new package oracle.apps.fnd.applcore.trees.mbean is added to the Trees
ViewController Layer. This package includes the following files:

Tree Node TreeNode Deleted Node removed from
tree (includes value,
range and referenced
tree nodes)

TreeStructureCode, TreeCode,
TreeVersionId, TreeNodeId

Tree Node TreeNode Updated Node updated in tree
(includes value,
range and referenced
tree nodes)

TreeStructureCode, TreeCode,
TreeVersionId, TreeNodeId

Tree Node TreeNode Moved Node moved within
tree (includes value,
range and referenced
tree nodes)

TreeStructureCode, TreeCode,
TreeVersionId, TreeNodeId

Table 19–27 Files in the oracle.apps.fnd.applcore.trees.mbean Package

File Description

TreeFlatteningMBeanLifeCycleCallBack.java

TreeMBeanUtil.java

Manages registration and de-registration of Trees
MBean

TreeFlatteningMBean.java

TreeFlatteningMBeanImpl.java

Defines the signature and implements the java
based code logic for all WLST commands

FlatteningBean.java Bean Data Structure for the object that stores
flattening results for all individual Tree Versions

TreeFlatteningXMLReport.java Outlines the design and generates the output XML
Report for the WLST commands

TreeMBeanUtil.java

UIModelConstants.java

UIModelMsgBundle.java

Serves as the supporting utility and resource files

Table 19–26 (Cont.) Trees Business Events

Entity Event Name Condition Payload

Advanced Topics

19-94 Developer's Guide

The defined contextual parameter in TreeDeployMBeanLifeCycleCallBack.java and
the class need to be registered as a listener in the web.xml file of the Fnd Setup
application.

Contextual Parameter:

<context-param>
 <param-name>oracle.apps.fnd.internal.trees.mbean.ENABLED</param-name>
 <param-value>true</param-value>
</context-param>

Listener Class:

<listener>
 <listener-class>
 oracle.apps.fnd.applcore.trees.runtime.TreeFlatteningMBeanLifeCycleCallBack
 </listener-class>
</listener>

Ensure the following before you execute the WLST commands for flattening:

■ Integrated WebLogic Server is up and running.

■ Connection is established to the WebLogic Server.

■ Connection is established to the Trees MBean package.

■ Each WLST command is defined.

The MBean package exposes the following set of APIs:

■ flattenAll

■ flattenTreeStructure

■ flattenTree

■ flattenTreeVersion

■ forceFlattenTreeVersion

19.14.5.1 How to Invoke Flattening APIs
The flattening APIs exposed by the MBean package can be invoked in two ways:

1. by passing the required parameters.

2. by passing the parameter name and the corresponding value.

19.14.5.2 How to Use flattenAll API
This API performs incremental flattening of all active Tree Versions under all the
available Tree Structures in the application.

Note: You can pass the parameters in any order.

Important: The order in which you pass the parameter and its value
must match with the signature of the API.

Note: Only active Tree Versions are flattened.

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-95

The following table describes the parameters of this API:

The following is an example of this API:

Example 19–7 flattenAll API Example

flattenAll(type='COLUMN')

19.14.5.3 How to Use flattenTreeStructure API
This API performs incremental flattening for all active hierarchies for a given Tree
Structure.

The following table describes the parameters of this API:

The following is an example of this API:

Example 19–8 flattenTreeStructure API Example

flattenTreeStructure(treeStructureCode='FND_DEMO_EMP_TS')

19.14.5.4 How to Use flattenTree API
This API performs incremental flattening for all active Tree Versions for the specified
Tree Code.

The following table describes the parameters of this API:

Table 19–28 flattenAll API Parameters

Parameter Datatype Description
Mandatory/Optio
nal

type String Type of flattening to be
performed. It can be COLUMN or
ROW flattening. By default, this
API triggers both types of
flattening

Optional

Note: Only active Tree Structures are flattened.

Table 19–29 flattenTreeStructure API Parameters

Parameter Datatype Description
Mandatory/Optio
nal

treeStructureCode String Code of the tree structure on
which flattening needs to be
performed

Mandatory

type String Type of flattening to be
performed. It can be COLUMN or
ROW flattening. By default, this
API triggers both types of
flattening

Optional

Note: Only active Tree Versions are flattened.

Advanced Topics

19-96 Developer's Guide

The following is an example of this API:

Example 19–9 flattenTree API Example

flattenTree(treeCode='FND_DEMO_EMP_T',treeStructureCode='FND_DEMO_EMP_TS')

19.14.5.5 How to Use flattenTreeVersion API
This API performs incremental flattening for the specified tree version.

The following table describes the parameters of this API:

The following is an example of this API:

Example 19–10 flattenTreeVersion API Example

flattenTreeVersion(treeStructureCode='FND_DEMO_EMP_TS',treeCode='FND_DEMO_EMP_
T',treeVersionName='FND Demo Employee Tree Version',type='ROW')

Table 19–30 flattenTree API Parameters

Parameter Datatype Description
Mandatory/Optio
nal

treeStructureCode String Code of the tree structure on
which flattening needs to be
performed

Mandatory

treeCode String Code of the tree on which
flattening needs to be performed

Mandatory

type String Type of flattening to be
performed. It can be COLUMN or
ROW flattening. By default, this
API triggers both types of
flattening

Optional

Note: Only the tree structures that are in active or draft state are
flattened.

Table 19–31 flattenTreeVersion API Parameters

Parameter Datatype Description
Mandatory/Optio
nal

treeStructureCode String Code of the tree structure on
which flattening needs to be
performed

Mandatory

treeCode String Code of the tree on which
flattening needs to be performed

Mandatory

treeVersionName String Name of the tree version that
needs to be flattened

Mandatory

type String Type of flattening to be
performed. It can be COLUMN or
ROW flattening. By default, this
API triggers both types of
flattening

Optional

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-97

19.14.5.6 How to Use forceFlattenTreeVersion API
This API forces flattening on the specified tree version.

The following table describes the parameters of this API:

The following is an example of this API:

Example 19–11 forceFlattenTreeVersion API Example

forceFlattenTreeVersion(treeStructureCode='FND_DEMO_EMP_TS',treeCode='FND_DEMO_
EMP_T',treeVersionName='FND Demo Employee Tree Version')

19.14.6 Understanding XML Report Formats for WLST Commands
A WLST Command Report is generated and printed on the console when a WLST
command is executed. The following details are displayed on the console:

■ WLST command that is executed

■ registration of the MBean

■ flattening call invoked

■ XML report

Example 19–12 WLST Command Report

wls:/DefaultDomain/serverConfig> flattenTree(treeStructureCode='TEST_VS_BICVO_
TS',treeCode='TEST_VSBICVO_TREE')
<FLATTENING_INFO>Trees Flattening Mbean
name:oracle.apps.fnd.applcore.trees.mbean:name=TreeFlatten,*
<SUCCESS> Connected to Weblogic Server
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean
as the root.
For more help, use help(domainRuntime)

<FLATTENING_INFO> Type of Flattening : BOTH
<SUCCESS> TreeFlatten MBean found :
oracle.apps.fnd.applcore.trees.mbean:Location=DefaultServer,name=TreeFlatten,type=

Note: Only the tree versions that are in active or draft state are
flattened.

Table 19–32 forceFlattenTreeVersion API Parameters

Parameter Datatype Description
Mandatory/Optio
nal

treeStructureCode String Code of the tree structure on
which flattening needs to be
performed

Mandatory

treeCode String Code of the tree on which
flattening needs to be performed

treeVersionName String Name of the tree version that
needs to be flattened

Mandatory

Note: You can redirect the details printed on the console to a file, if
required.

Advanced Topics

19-98 Developer's Guide

AppsRuntimeMBean,Application=FndSetup,ApplicationVersion=V2.0
<FLATTENING_INFO>Invoking Mbean : for operation flattenTree
<FLATTENING_INFO> parseXMLForError : returning {''}
XML report Start:
<?xml version = '1.0' encoding = 'UTF-8'?>
<TreesFlatteningReport status="SUCCESS">
<TreeStructure treeStructureCode="TEST_VS_BICVO_TS" treeCodeCount="1" success="1"
error="0">
<TreeCode treeCode="TEST_VSBICVO_TREE" treeVersionCount="2" success="2" error="0">
<TreeVersion treeVersionName="TEST_VSBICVO_TV1"
treeVersionId="ABA44835820F97B8E0404498A8F14DB6" flatteningType="ROW"
time="7.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_VSBICVO_TV1"
treeVersionId="ABA44835820F97B8E0404498A8F14DB6" flatteningType="COLUMN"
time="2.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_VSBICVO_TV1_OLD_DATE"
treeVersionId="ABA44835823A97B8E0404498A8F14DB6" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_VSBICVO_TV1_OLD_DATE"
treeVersionId="ABA44835823A97B8E0404498A8F14DB6" flatteningType="COLUMN"
time="1.0secs" status="SUCCESS"/>
</TreeCode>
</TreeStructure>
</TreesFlatteningReport>
XML Report Ends
<FLATTENING_INFO>Completed flattenTree.

wls:/DefaultDomain/serverConfig>

An XML Report is generated every time you execute a WLST command. The XML
report contains all the results of the flattening APIs invoked. The following examples
illustrate the XML report generated in various scenarios.

Example 19–13 Success Report

<?xml version = '1.0' encoding = 'UTF-8'?>
<TreesFlatteningReport status="SUCCESS">
<TreeStructure treeStructureCode="TEST_PLSQL_EXTN_TS" treeCodeCount="2"
success="2" error="0">
<TreeCode treeCode="TEST_PLSQL_EXTN_TR1" treeVersionCount="3" success="3"
error="0">
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V1"
treeVersionId="B7598796828D8027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V1"
treeVersionId="B7598796828D8027E040449895F14B45" flatteningType="COLUMN"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V2"
treeVersionId="B7598796829A8027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V2"
treeVersionId="B7598796829A8027E040449895F14B45" flatteningType="COLUMN"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V3"
treeVersionId="B7598796829F8027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V3"
treeVersionId="B7598796829F8027E040449895F14B45" flatteningType="COLUMN"
time="0.0secs" status="SUCCESS"/>
</TreeCode>

Advanced Topics

Organizing Hierarchical Data with Tree Structures 19-99

<TreeCode treeCode="TEST_PLSQL_EXTN_TR2" treeVersionCount="1" success="1"
error="0">
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR2_V1"
treeVersionId="B759879682A48027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR2_V1"
treeVersionId="B759879682A48027E040449895F14B45" flatteningType="COLUMN"
time="0.0secs" status="SUCCESS"/>
</TreeCode>
</TreeStructure>
</TreesFlatteningReport>

Example 19–14 Error Report with Flattening Errors but no Exception

<?xml version = '1.0' encoding = 'UTF-8'?>
<TreesFlatteningReport status="ERROR">
<TreeStructure treeStructureCode="TEST_PLSQL_EXTN_TS" treeCodeCount="1"
success="0" error="1">
<TreeCode treeCode="TEST_PLSQL_EXTN_TR1" treeVersionCount="3" success="2"
error="1">
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V1"
treeVersionId="B7598796828D8027E040449895F14B45" flatteningType="ROW"
time="4.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V1"
treeVersionId="B7598796828D8027E040449895F14B45" flatteningType="COLUMN"
time="0.0secs" status="ERROR">
 ERROR:JBO-FTM-S-0045: Flattening cannot proceed due to the failure of auditing
tree version TEST_PLSQL_EXTN_TS, TEST_PLSQL_EXTN_TR1,
B7598796828D8027E040449895F14B45.
</TreeVersion>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V2"
treeVersionId="B7598796829A8027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V2"
treeVersionId="B7598796829A8027E040449895F14B45" flatteningType="COLUMN"
time="1.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V3"
treeVersionId="B7598796829F8027E040449895F14B45" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="TEST_PLSQL_EXTN_TR1_V3"
treeVersionId="B7598796829F8027E040449895F14B45" flatteningType="COLUMN"
time="1.0secs" status="SUCCESS"/>
</TreeCode>
</TreeStructure>
</TreesFlatteningReport>

Example 19–15 Error Report with Exception but no Flattening Errors

<?xml version = '1.0' encoding = 'UTF-8'?>
<TreesFlatteningReport status="ERROR">
<Exception>null releaseTreeService Exception: Cannot release TreeService Handle
</Exception>
<TreeStructure treeStructureCode="FND_DEMO_EMP_TS" treeCodeCount="1" success="1"
error="0">
<TreeCode treeCode="FND_DEMO_EMP_T" treeVersionCount="1" success="1" error="0">
<TreeVersion treeVersionName="FND Demo Employee Tree Version"
treeVersionId="A43EE0B37975BF52E040449833F06958" flatteningType="ROW"
time="0.0secs" status="SUCCESS"/>
<TreeVersion treeVersionName="FND Demo Employee Tree Version"
treeVersionId="A43EE0B37975BF52E040449833F06958" flatteningType="COLUMN"

Advanced Topics

19-100 Developer's Guide

time="0.0secs" status="SUCCESS"/>
</TreeCode>
</TreeStructure>
</TreesFlatteningReport>

20

Working with Localization Formatting 20-1

20Working with Localization Formatting

This chapter describes the Oracle Fusion Applications standards and guidelines for
working with localization formatting.

■ Section 20.1, "Introduction to Localization Formatting"

■ Section 20.2, "Formatting Currency"

■ Section 20.3, "Formatting Numbers"

■ Section 20.4, "Formatting Date and Timestamp Values"

■ Section 20.5, "Formatting Time Zones"

■ Section 20.6, "Formatting Numbers, Currency and Dates Using Localization
Expression Language Functions"

■ Section 20.7, "Implementing Bi-directional Support"

■ Section 20.8, "Supporting Mnemonic Keys"

■ Section 20.9, "Implementing Localization Formatting in ADF Desktop Integration"

■ Section 20.10, "Implementing Localization Formatting in Oracle BI Publisher
Reports"

■ Section 20.11, "Implementing Localization Formatting in ADF Data Visualization
Components"

■ Section 20.12, "Configuring National Language Support Attributes"

■ Section 20.13, "Standards and Guidelines for Localization Formatting"

20.1 Introduction to Localization Formatting
When developing applications for international users, it is often necessary to format
the display of certain location-dependent data. In the context of Oracle JDeveloper and
Oracle Application Development Framework, localization requires implementing
formatting patterns so as to properly display the data according to local standards.

Currency, dates, numbers and time zones are localized using Oracle ADF Faces
components that bind to the attribute to be localized. In some cases, Groovy or
Expression Language methods are used to localize a particular UI component.

20.2 Formatting Currency
Currency values may be formatted differently, depending on the currency code
associated with the value. Each currency code is associated with formatting such as
precision and currency symbols.

Formatting Currency

20-2 Developer's Guide

You can format currency using the default formatting behavior, or by overriding the
default formatting. Alternatively, you can format currency on the fly using partial page
rendering.

Currency fields are represented by java.lang.BigDecimal in entity objects and view
objects.

A currency field should always be formatted according to the currency code chosen in
the context UI of the transaction.

For example, if the user selects JPY as the currency code from the context UI, then the
currency value should be formatted according to the Japanese Yen standard.

There are two implementations to format numerical values according to the
corresponding currency code.

■ One is the Expression Language function fnd:currencyPattern(currencyCode)
that takes the currency code input in the context user interface as a parameter. If
JPY is input to this Expression Language function, then the number would be
formatted according to the Japanese Yen pattern: #,##0;-#,##0 without showing any
decimal digits, whereas if the same Expression Language function is used for the
US dollar input parameter, the number would be formatted according to the USD
pattern: #,##0.00;-#,##0.00. For example, the numerical value 135.6789 that is
fetched from the database needs to be shown as 135.68 USD, whereas the same
number in JPY would be shown as 136 JPY.

The syntax is:

fnd:currencyPattern(bindingToAmountCurrencyCode)

■ The other implementation to format currency values is the
fnd:currencyPatternWithPrecisionAndSymbol Expression Language function,
which is a more flexible function than fnd:currencyPattern. The
fnd:currencyPatternWithPrecisionAndSymbol function takes these input
parameters:

■ currency code to be used for formatting

■ number of precision digits required in the formatted number

■ whether the currency code or symbol is to be shown in the formatted number

The syntax is shown in Example 20–1.

Example 20–1 Syntax of fnd:currencyPatternWithPrecisionAndSymbol

fnd:currencyPatternWithPrecisionAndSymbol(
 bindingToAmountCurrencyCode, bindingToAttrNamePrecision,
 bindingToAttrNameCurrencySymbol)

For example, if JPY is entered as the formatting currency code, and symbol is used
as the currency code/symbol parameter, and the number of precision digits is set
to 1, then the number would be formatted as #,##0.0 ¥;-#,##0.0 ¥. The numerical
value 135.6789 retrieved from the database needs to be shown as 135.68$ in USD,
whereas the same number will need to be shown as 136¥ in JPY. (This example
considers that the currencySymbol parameter has been set to symbol). The
currencySymbol parameter can only take the values symbol, code, or none.

Currency codes are stored in the FND_Currencies table located in the Oracle Fusion
Middleware Extensions for Applications schema. The currency code determines the
format mask for the currency field, including:

Formatting Currency

Working with Localization Formatting 20-3

Precision: Determines the use and number of decimal digits, comma placement, and
so on.

Currency symbol: Displays the standard symbol for the currency.

The Expression Language function fnd:currencyPattern() determines formatting for
the currency field using the default precision associated with the currency code. No
currency symbol or code is displayed in the user interface. The Expression Language
function fnd:currencyPatternWithPrecisionAndSymbol() determines formatting for
the currency field using an extra parameter for precision. It also uses the currency code
to show a currency symbol/code in the user interface. User preferences for grouping
and decimal separators are used to format the value in both these functions.

20.2.1 How to Format Currency
To format currency, you must first set the view object custom attribute to type
currency and then select the currency code to be used in formatting the currency field.
You can specify the currency code by entering its value explicitly, or by writing a
Groovy expression in the transient attribute.

Before you begin:
Create an entity object and a view object.

20.2.1.1 Formatting Currency Values
To format currency values, use the fnd:currencyPattern() function to obtain the
format pattern of different currency codes. Therefore, a currency field, whether it is
used in inputText or outputText, should be formatted with code similar to that
shown here.

<af:convertNumber type="currency" currencyCode="#{bindingToAmountCurrencyCode}"
 pattern="#{fnd:currencyPattern(bindingToAmountCurrencyCode)}" />

Here, bindingToAmountCurrencyCode should be replaced with the actual name of the
field that allows users to select a currency code.

If <af:convertNumber type="currency"
pattern="#{applCorePrefs.numberFormatPattern}"/> is found, then the currency
field will be formatted as a number. This is incorrect.

If the field requires displaying currency numbers combined with a currency code or
currency symbol, the Expression Language function
fnd:currencyPatternWithPrecisionAndSymbol() should be used to get the format
pattern.

In Example 20–2, the Amount field is formatted according to the currency code set in
the af:convertNumber tag.

Example 20–2 The af:convertNumber Tag Currency Code Determines Amount Format

<af:outputText value="#{node.Amount}" id="ot28">
<af:convertNumber type="currency"
currencyCode="#{bindings.CurrencyCode.attributeValue}"
pattern="#{fnd:currencyPattern(bindings.CurrencyCode.attributeValue)}"/>
</af:outputText>

In Example 20–3, the grouping separator and decimal separator are taken from the
user's number preferences, and the number of precision digits is set to 2. Also, the
symbol shown corresponds to the currency code set in the af:convertNumber tag.

Formatting Currency

20-4 Developer's Guide

Example 20–3 Number Preferences Determine Grouping and Decimal Separators

<af:outputText value="#{node.Amount}" id="ot28">
<af:convertNumber type="currency"
currencyCode="#{bindings.CurrencyCode.attributeValue}"
pattern="#{fnd:currencyPatternWithPrecisionAndSymbol(bindings.CurrencyCode.attribu
teValue,2,'symbol'}"/>
</af:outputText>

The fields Ordered, Total Tax, and Total in Figure 20–1 show how currency values are
formatted in Oracle Fusion Applications.

Figure 20–1 Showing How Currency Values Are Formatted

20.2.1.2 What Happens When You Format Currency
When dragging and dropping the view object onto a JSF page, Applications Core
generates relevant bindings to the Oracle ADF Faces Number Converter attached to
the user interface component.

Example 20–4 shows bindings to the Number Converter.

Example 20–4 Bindings to the Number Converter

<af:outputText label="Amount" value="#{bindingToOrderTotal}">
<af:convertNumber
 pattern="#{applCorePrefs.numberFormatPattern}" />
<af:outputText>

As the developer, you should change the generated code according to either the
fnd:currencyPattern() Expression Language function or the
fnd:currencyPatternWithPrecisionAndSymbol() Expression Language function as
shown in Example 20–5.

Example 20–5 Changing the Generated Code

<af:outputText label="Amount" value="#{bindingToOrderTotal}">
<af:convertNumber type="currency"
 currencyCode="#{bindingToAmountCurrencyCode}"
 pattern="#{fnd:currencyPattern(bindingToAmountCurrencyCode)}" />
<af:outputText>

The bindings indicate that the Expression Language method fnd:currencyPattern()
is to be used to return the currency code for the value of the attribute.

20.2.1.3 What Happens at Runtime: How Currency Is Formatted
At runtime, Applications Core Technology evaluates the bindings generated during
design time to generate the correct currency format mask for the value. The

Formatting Numbers

Working with Localization Formatting 20-5

fnd:currencyPattern() and fnd:currencyPatternWithPrecisionAndSymbol()
Expression Language methods return the format mask for a given currency code,
accounting for currency precision, currency symbol, and so on.

20.3 Formatting Numbers
All numerical values need to be formatted correctly when they are presented to a user
in Oracle Fusion Applications. Users expect that they can enter numerical values based
on their formatting preferences, which include such things as options to change the
grouping and the decimal separators. Number formatting preferences also let users
choose the number format mask that will be used to display the number. For instance,
a user might choose that the grouping separator has to be shown once every three
digits with a maximum of three decimal digits (#,##0.###). An example is a value of
1234.5 in the database that might have to be displayed as 1 234,500 or 1,234.500 or
1.234,500.

20.3.1 How to Format Numbers

Before you begin:
Create an entity object and a view object with number fields, including any of these
attribute types:

java.math.BigDecimal, java.lang.Integer, or java.lang.Long.

The number one thousand two hundred and thirty four point five six can display in
any of the following formats:

■ 1,234.56

■ 1'234.56

■ 1'234,56

■ 1.234,56

■ 1234.56 (ISO standard)

■ 1234,56

■ 1 234.56

■ 1 234,56

View objects and entity objects can be formatted so as to display date and number data
in accordance with local standards. The ISO standard is typically used when it is not
desirable to use local standards.

20.3.1.1 Formatting Decimal Numbers
Decimal output fields should be formatted according to the user's number formatting
preferences. Use the <af:convertNumber pattern... entry to retrieve the number
formatting pattern from the applCorePrefs bean, as shown in Example 20–6.

Example 20–6 Formatting Decimal Output Fields

<af:outputText value="#{bindings.FromValue.inputValue}" id="ot19">
<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
</af:outputText>

Formatting Numbers

20-6 Developer's Guide

Input decimal fields should be formatted according to the user's number preferences.
In Example 20–7, use the <af:convertNumber pattern... entry to retrieve the number
formatting pattern from the applCorePrefs bean.

Example 20–7 Formatting Input Decimal Fields

<af:inputText value="#{row.bindings.FromValue.inputValue}"
 label="#{bindings.PerformanceThreshold21.hints.FromValue.label}"
 required="#{bindings.PerformanceThreshold21.hints.FromValue.mandatory}"
 columns="#{bindings.PerformanceThreshold21.hints.FromValue.displayWidth}"
maximumLength="#{bindings.PerformanceThreshold21.hints.FromValue.precision}"
 shortDesc="#{bindings.PerformanceThreshold21.hints.FromValue.tooltip}"
 id="inputText9"
 autoSubmit="true">
 <af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
</af:inputText>

The Threshold Start field in Figure 20–2 is an example of a number field that is
formatted according to the user's number formatting preferences.

Figure 20–2 Example of a Formatted Number Field

When a decimal number is to be shown as a part of a larger string object on the user
interface, the fnd:formatNumber and fnd:formatNumber2 Expression Language
functions provided in the applCore library should be used to format such numbers.
When either of these functions is used, the user's number formatting preferences are
implemented according to applCorePrefs.numberFormatPattern.

The syntaxes of the two Expression Language functions are:

■ fnd:formatNumber(java.lang.Number decimalValueToBeFormatted)

■ fnd:formatNumber2(java.lang.Number decimalValueToBeFormatted, int
maximumNumberOfFractionDigits)

Example 20–8 shows how to use these two functions for decimal number formatting.

Example 20–8 Decimal Number Formatting

<af:image id="img65"
 source="/images/upgreenplus_status.png"

shortDesc="#{af:formatNamed(prcponnegotiationsuiBundle3['AltTxt.IncreasedbyVALUE.F
avorablyIncreasedbyVALUE'], VALUE',
fnd:formatNumber(bindings.ActiveResponsesChangeAmt.inputValue))}"
 visible="#{bindings.ActiveResponsesChange.inputValue == 'INCREASE'}"/>

As shown in Example 20–8, the variable ActiveResponsesChangeAmt will be formatted
according to the user's number preferences according to
applCorePrefs.numberFormatPattern. This formatted number is then concatenated to
the externalized string FavorablyIncreasedbyVALUE and displayed to the user.

Formatting Numbers

Working with Localization Formatting 20-7

The fnd:formatNumber2 function has the advantage of explicitly specifying the
maximum number of fraction digits in the formatted number, as shown in
Example 20–9.

Example 20–9 Using the fnd:formatNumber2 Function

<af:showDetailItem text="#{PjbWorkareaGenBundle['Header.SubmittedValues']}
(#{fnd:formatNumber2(pageFlowScope.InvoiceWorkareaBean.invoiceValueRowNum[1],2)})"
 id="tabSubmitted"
 disclosureListener="#{InvoiceListBean.changeStatusTab}"
 partialTriggers="AT1:_ATp:menuSubmit AT1:_ATp:btnSubmit AT2:_
ATp:menuApprove AT2:_ATp:menuReject AT2:_ATp:menuRelease AT2:_
ATp:menuReturntoDraft cl1"
 stretchChildren="first"
 disclosedTransient="true"
 disclosed="#{pageFlowScope.pageFocus == '2'}">

Here, the text attribute of the af:showDetailItem tag includes a number that must be
formatted before being displayed. Therefore, the fnd:formatNumber2 Expression
Language function has been used to format the number to be added to the
SubmittedValues string. Here, the second parameter has been set to 2 and indicates
that a maximum of two fractional digits can be shown in the decimal number. So, for
example, after formatting, the number 1234.56789 that is retrieved from the database
will be displayed as SubmittedValues: 1,234.57.

20.3.1.2 Formatting Integer Numbers
Integer output fields should be formatted according to the user's number formatting
preferences without any decimal precision digits. For instance, the number 12345.00
stored in the database might have to be shown as 12,345 or 12.345 or 12 345 for a
certain user. Notice that there is no decimal separator or any precision digits shown in
these numbers. As shown in Example 20–10, use the <af:convertNumber pattern...
entry to retrieve the number formatting pattern from the applCorePrefs bean.

Example 20–10 Formatting Integer Numbers

<af:outputText value="#{bindings.integerQuantity.inputValue}" id="ot19">
<af:convertNumber pattern="#{applCorePrefs.integerFormatPattern}"/>
</af:outputText>

Input integer fields should be formatted according to the user's number preferences
without showing any decimal precision digits. As shown in Example 20–11, use the
<af:convertNumber pattern... entry to retrieve the number formatting pattern from
the applCorePrefs bean.

Example 20–11 Formatting Input Integer Fields

<af:inputText value="#{bindings.Point1.inputValue}"
 label="#{bindings.Point1.hints.label}"
 required="#{bindings.Point1.hints.mandatory}"
 columns="#{bindings.Point1.hints.displayWidth}"
 maximumLength="#{bindings.Point1.hints.precision}"
 shortDesc="#{bindings.Point1.hints.tooltip}"
 inlineStyle="width:100%; border-color:InactiveBorder; border-width:thin;"
 id="inputText5">
 <f:validator binding="#{bindings.Point1.validator}"/>
 <af:validateLongRange minimum="0"/>
 <af:convertNumber pattern="#{applCorePrefs.integerFormatPattern}"/>
 </af:inputText>

Formatting Numbers

20-8 Developer's Guide

In Figure 20–3, Point 1 is an example of an input integer field that is formatted
according to the user's number preferences without showing the decimal separator or
any precision digits.

Figure 20–3 Example of a Formatted Integer Field

When an integer number is to be shown as a part of a larger string object on the user
interface, the fnd:formatNumber2 function provided in the applCore library should be
used to format such numbers. When this function is used with the maximum number
of precision digits set to 0, the user's number formatting preferences are used from
applCorePrefs.numberFormatPattern with no precision digits.

The syntax of the fnd:formatNumber2 function is as follows:

fnd:formatNumber2(java.lang.Number integerValueToBeFormatted, int
maximumNumberOfFractionDigits)

The fnd:formatNumber2 function can be used to format integer numbers by explicitly
specifying the maximum number of fraction digits as 0 in the formatted number.
Example 20–12 shows how to use the fnd:formatNumber2 function for integer number
formatting.

Example 20–12 Formatting Integers Using fnd:formatNumber2

<af:showDetailItem text="#{PjbWorkareaGenBundle['Header.SubmittedInvoices']}
(#{fnd:formatNumber2(pageFlowScope.InvoiceWorkareaBean.invoiceValueRowNum[1],0)})"
 id="tabSubmitted"
 disclosureListener="#{InvoiceListBean.changeStatusTab}"
 partialTriggers="AT1:_ATp:menuSubmit AT1:_ATp:btnSubmit AT2:_
ATp:menuApprove AT2:_ATp:menuReject AT2:_ATp:menuRelease AT2:_
ATp:menuReturntoDraft cl1"
 stretchChildren="first"
 disclosedTransient="true"
 disclosed="#{pageFlowScope.pageFocus == '2'}">

Here, the text attribute of the af:showDetailItem tag includes a number that must be
formatted before being displayed. The fnd:formatNumber2 function is used to format
the integer to be added to the SubmittedInvoices string. The second parameter has

Formatting Numbers

Working with Localization Formatting 20-9

been set to 0 and indicates that no fractional digits can be shown in the formatted
number. For example, after formatting, the number 1234 that is retrieved from the
database will be displayed as SubmittedInvoices: 1,234.

20.3.1.3 Formatting ID Numbers
An ID field is a number field that uniquely identifies an object. Typical examples of ID
fields include TransactionID, Sequence Number, and Item Number. Such ID output
fields should be formatted without using the user's number formatting preferences.
That is, ID output fields should not display decimal precision digits or grouping
separators. For example, a student's admission number should be displayed as 14567
instead of 14,567.00. The <af:convertNumber pattern... entry in Example 20–13
retrieves the number formatting pattern from the applCorePrefs bean.

Example 20–13 Formatting ID Numbers

<af:column headerText="#{bindings.Deliveries.hints.SalesOrderLine.label} id="c9" >
<af:outputText value="#{row.bindings.SalesOrderLine.inputValue}"
label="#{bindings.Deliveries.hints.SalesOrderLine.label}" id="outputText3">
 <af:convertNumber pattern="#{applCorePrefs.numericCodeFormatPattern}"/>
 </af:outputText>
</af:column>

The field Sales Order Line in Figure 20–4 corresponds to the output ID field shown in
the above sample code.

Figure 20–4 Sample Output ID Field

Input integer fields should be formatted according to the user's number preferences
without showing any decimal precision digits or grouping separators. The
<af:convertNumber pattern entry in Example 20–14 indicates that the number
formatting pattern is being retrieved from the applCorePrefs bean.

Example 20–14 Formatting Input Integer Fields

<af:inputText value="#{bindings.SequenceNumber.inputValue}"
 label="#{bindings.SequenceNumber.hints.label}"

Note: ID fields always should be aligned to the left. As a developer,
you must not hardcode the align attribute of the column attribute of
an af:table, or the contentStyle attribute of the af:outputText tag
displaying an ID field. By default, Oracle ADF supports start
alignment that is appropriate for ID fields.

Formatting Numbers

20-10 Developer's Guide

 required="#{bindings.SequenceNumber.hints.mandatory}"
 columns="#{bindings.SequenceNumber.hints.displayWidth}"
 id="inputText1"
 partialTriggers="asgStat"
 helpTopicId="InvCoreSetup_755E15370133C364E040D30A688161D5V000"
 contentStyle="text-align:start"
 autoSubmit="true">
 <f:validator binding="#{bindings.SequenceNumber.validator}"/>
 <af:convertNumber pattern="#{applCorePrefs.numericCodeFormatPattern}"/>
 </af:inputText>

The field Sequence in Figure 20–5 corresponds to the input ID field shown in the above
sample code.

Figure 20–5 Example Input ID Field

The fnd:formatNumber() and fnd:formatNumber2() functions must not be used for ID
fields appearing in strings, because they introduce a grouping separator in number
fields, which should not be displayed in ID fields. In such cases, output ID fields
should be treated as normal text fields.

20.3.1.4 How to Format Numbers in Hyperlinks
In Oracle Fusion Applications, hyperlinks are represented by af:commandLink and
af:goLink. All numbers found in the labels of hyperlinks in the user interface must be
formatted according to the user's number preferences. The number might either have
to be formatted according to numberFormatPattern if the number value is decimal in
nature, integerFormatPattern if the number value is integer only, and need not be
formatted at all if the value corresponds to an ID value. Code to format numbers in
hyperlinks is shown in Example 20–15.

Example 20–15 Formatting Numbers in Hyperlinks

<af:commandLink id="outputText6" text=""
 partialSubmit="true" immediate="true"
 action="#{LocalAreaHandlerBean.showInventory}">
<af:outputText value="#{row.InvPendingCount}" id="ot1">
<af:convertNumber type="number" pattern="#{applCorePrefs.integerFormatPattern}"/>
</af:outputText>
</af:commandLink>

Because af:convertNumber is not a valid child tag of af:commandLink, the best way to
format a number on a link is by making the text attribute of the af:commandLink tag
empty and then adding an af:outputText tag as a child tag that displays the
formatted numerical value. In this case, the number is an integer (java.lang.Integer), so
the pattern applCorePrefs.integerFormatPattern has been used. In cases of decimal
numbers (java.math.bigDecimal), applCorePrefs.numberFormatPattern has to be
used, while in cases of ID fields (java.lang.Long), af:convertNumber can be removed
and the field can be honored as plain text. The parent hyperlink tag can be either
af:commandLink or af:goLink.

Formatting Numbers

Working with Localization Formatting 20-11

Similarly, numbers that are found on links represented by the af:goLink tag in Oracle
Application Development Framework (Oracle ADF) should be formatted according to
the user's number formatting preferences using the Preferences bean. The procedure to
be followed is very similar to that of the af:commandLink tag. Sample code for number
formatting in af:golink is shown in Example 20–16.

Example 20–16 Formatting a Number in af:goLink

<af:goLink text="" id="gl1" destination="#{row.children[0].FileUrl}">
 <af:outputText id="id1" value="#{bindings.fromValue.inputValue}">
 <af:convertNumber type="number"
pattern="#{applCorePrefs.numberFormatPattern}"/>
 </af:outputText>
 </af:goLink>

Again, af:goLink cannot have an af:convertNumber as its child tag, so the text
attribute of the goLink tag should be made empty and af:outputText should be
added as a child tag of af:goLink. The af:convertNumber then can be added as a
subtag of the outputText tag. The pattern attribute can be changed for this
af:convertNumber tag, according to whether the number is decimal or an integer. If
the number represents an ID field, no number formatting is needed.

Another way of formatting the text in af:commandLink and af:goLink is by using the
Expression Language functions fnd:formatNumber and fnd:formatNumber2 in their
text attributes. Sample code to format a number in a commandLink using the
fnd:formatNumber2 Expression Language function is shown in Example 20–17.

Example 20–17 Formatting a Number in a commandLink

<af:commandLink id="outputText6"
text="#{fnd:formatNumber2(row.InvPendingCount,0)}"
 partialSubmit="true" immediate="true"
 action="#{LocalAreaHandlerBean.showInventory}">
</af:commandLink>

Here, the second parameter has been set to 0 so that no precision digits are shown.
This is the same as using pattern="#{applCorePrefs.integerFormatPattern}" as
used in Example 20–15. The only added feature in this example is that there is no need
to add a child af:outputText tag for number formatting.

Similarly, af:goLink can also be formatted using the fnd:formatNumber and
fnd:formatNumber2 Expression Language functions. An example of formatting the
af:goLink shown in Example 20–16 using the fnd:formatNumber function is shown in
Example 20–18:

Example 20–18 Formatting af:goLink Using fnd:formatNumber

<af:goLink text="#{fnd:formatNumber(bindings.fromValue.inputValue)}" id="gl1"
destination="#{row.children[0].FileUrl}"/>

Here, the fnd:formatNumber Expression Language function has been used to format
the value in the af:goLink. This is the same as using
pattern="#{applCorePrefs.numberFormatPattern}" as shown in Example 20–16.

20.3.1.5 How to Format Percentage Values
A percentage value maps to java.math.BigDecimal in entity object and view object files
and NUMBER(n, m) (where m!=0) in underlying database columns.

Formatting Numbers

20-12 Developer's Guide

Such percentage values in output fields must be displayed in a locale-sensitive format.
For example, 75.68% in en_US (Language: English Territory: United States) should be
displayed as 75,68 % (there is a space between the number and the percentage sign) in
the fr_FR (Language: French Territory: France) locale.

The number and percentage sign of a percentage value should always be displayed in
a user preferred format in Oracle Fusion applications. Sample code that can display
percentage values is shown in Example 20–19.

Example 20–19 Displaying Percentage Values

<af:outputText value="#{row.PercentComplete != null ? (row.PercentComplete *
0.01): row.PercentComplete}"
 id="outputText5">
 <af:convertNumber minFractionDigits="2" maxFractionDigits="2"
 type="percent"/>
 <af:showPopupBehavior triggerType="click"
 popupId=":::progressTrendPopup"
 alignId="rowHeadCol"/>
 </af:outputText>

Here, maxFractionDigits can be determined by the underlying database column type
using this formula:

maxFractionDigits = The scale of database Column Data Type - 2

For example, if the database column data type is NUMBER(8,4), maxFractionDigits
can be "2". If "The scale of database Column Data Type - 2" <=0, attribute
maxFractionDigits should not be added to the convertNumber tag.

This formula arises from the fact that a percentage value like 1% usually is stored in
the database column as 0.01. Hence, the maximum number of fraction digits in the
percentage value to be displayed on the user interface will always be 2 less than the
scale of the database column.

In Oracle Fusion applications, you must not hardcode the % sign in the value attribute
of the outputText tag, because this makes the percentage values locale-insensitive.

The Percent of Project Work Complete field in Figure 20–6 corresponds to the output
percentage field shown in Example 20–19.

Figure 20–6 Results of Output Percentage Field

A percentage value in an input field generally is formatted exactly like the output
percentage field. Sample code to format input percentage fields is shown in
Example 20–20.

Formatting Date and Timestamp Values

Working with Localization Formatting 20-13

Example 20–20 Formatting Input Percentage Fields

<af:inputText value="#{bindings.PercentQuantity.inputValue}"
label="#{bindings.PercentQuantity.hints.label}"
autoSubmit="true"
id="inputText10"
<f:validator binding="#{bindings.PercentQuantity.validator}"/>
<af:convertNumber type="percent" minFractionDigits="2" maxFractionDigits="2"/>
</af:inputText>

20.3.2 What Happens When You Format Numbers
All number formatting patterns default to the formats described in Section 20.3.1,
"How to Format Numbers."

When dragging and dropping a view object containing an attribute of type
java.math.BigDecimal or java.lang.Integer, or java.lang.Long, Applications Core
generates code that binds to the numberFormatPattern property in the applCorePrefs
managed bean as shown in Example 20–21.

Example 20–21 Bindings to the numberFormatPattern Property

<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>

20.3.3 What Happens at Runtime: How Numbers Are Formatted
At runtime, the bindings generated at design time are executed. Numbers are
displayed according to user preferences for number formatting patterns, such as
1,234.567.

20.4 Formatting Date and Timestamp Values
All date values must be formatted correctly when they are presented to a user. Users
expect to input values according to their date formatting preferences. For instance, a
value of 13 August, 2011 in the database might have to be displayed as 08/13/2011 or
2011.8.13. A similar example of a date-time value is a value of 26 July 2011, 2:00:00 PM
might have to be displayed as 14:00 07/26/2011 or 2011.7.26 02:00:00 PM.

20.4.1 How to Format Dates and Timestamp Values

Before you begin:
Create an entity object and a view object with date fields, including either of these
attribute types: java.sql.Date or java.sql.Timestamp.

20.4.1.1 Formatting Dates
Dates without time values (called dates) are mapped to java.sql.Date in the entity
object/view object layer. These fields should be formatted according to the user's date
formatting preferences.

The <af:convertDateTime pattern... entry in the sample code retrieves the date
formatting pattern from the applCorePrefs bean.

<af:column sortProperty="OrderDate" filterable="true"
sortable="true"headerText="#{bindings.NlsOrders1.hints.OrderDate.label}" id="c1">
<f:facet name="filter">
<af:inputDate value="#{vs.filterCriteria.OrderDate}"
 id="id8" >

Formatting Date and Timestamp Values

20-14 Developer's Guide

<af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
</af:inputDate>
</f:facet>
<af:inputDate value="#{row.bindings.OrderDate.inputValue}"
label="#{bindings.NlsOrders1.hints.OrderDate.label}"
required="#{bindings.NlsOrders1.hints.OrderDate.mandatory}"
shortDesc="#{bindings.NlsOrders1.hints.OrderDate.tooltip}"
 id="id1">
<f:validator binding="#{row.bindings.OrderDate.validator}"/>
<af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
</af:inputDate>
</af:column>

Both the filter for the date and the date field should be formatted according to the
user's date formatting preferences. If this is not done, the dates will not be displayed
according to the user's preferences.

The values for the Due Date field in Figure 20–7 are examples of how a date value is
formatted according to the user's preferences in Oracle Fusion Applications.

Figure 20–7 Example of a Formatted Date Value

20.4.1.2 Formatting Current Dates
Applications often show the current date on the user interface. They are mapped to the
java.sql.Date data type in the entity object/view object layer. Correctly identifying
the date requires the use of particular APIs.

A server date is calculated by truncating the time portion of the current time from the
system clock. However, it may not be appropriate to display the server date to end
users if they are not located in the server time zone. For example, when creating an
order, the order form may display with the order date filled out for the end user with
the current date. In this case, the order date must be the end user's local date rather
than the server date. A server in the US may be serving an end user in China, whose
local date may be one day ahead due to time zone differences. It is necessary to adjust
the server date to the end user's local date.

This sample shows how to adjust the server date to the local date in the Java bean.

public Date getCurrentLocalDate() {
 // Get the current date and time.
 long date = new java.util.Date().getTime();
 // Get the user preferred time zone from the ApplCore PreferencesBean.
 TimeZone uptz = TimeZone.getTimeZone(pb.getUPTZ());
 // Get the server time zone.
 TimeZone crtz = TimeZone.getDefault();
 // Calculate the time zone offset difference and return an adjusted date.
 int uptzoff = uptz.getOffset(date);
 int crtzoff = crtz.getOffset(date);
 int diff = uptzoff - crtzoff;
 return new Date(date+diff);

}

Formatting Date and Timestamp Values

Working with Localization Formatting 20-15

This sample shows how to display the current date in the JSF page.

<af:inputDate binding="#{localDateBean.currentLocalDate}"
 value="#{bindings.StartDate.inputValue}"
 label="#{bindings.StartDate.hints.label}(Type: java.sql.Date)"
 required="#{bindings.StartDate.hints.mandatory}"
 shortDesc="#{bindings.StartDate.hints.tooltip}"
 id="id1">
 <af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
</af:inputDate>

This workaround can be used only if there is no middleware tier validation for the
date field. For example, if the middleware tier validation has a condition that the date
field's value cannot be more than the middleware tier's system time, the conversion
with the above method will generate a validation error. In such cases, you would need
the ATG enhancement to convert the server time zone date to the user's preferred time
zone.

The Required Date field in Figure 20–8 should default to the user's preferred time-zone
rather than the server time-zone.

Figure 20–8 Example of a Field to Default to User's Time

20.4.1.3 Formatting Timestamp Values
Dates with time values (called datetimes) are mapped to java.sql.Timestamp in the
entity object/view object layer. Format these fields according to the user's date and
time formatting preferences.

All datetime fields must have at least one of these three patterns in the
af:convertDateTime tag to be formatted according to the user's date and time
preferences.

■ Pattern 1

pattern="#{applCorePrefs.UPTZPattern}"

applCorePrefs.UPTZPattern returns a pattern by combining the selection of the
Date Format and the Time Format in User Preferences. For example, if a user
selects M.d.yyyy (4.28.2010) from the Date Format list, and HH.mm (00.55) from
the Time Format list, applCorePrefs.UPTZPattern returns a pattern M.dd.yyyy
HH:mm. Therefore, applCorePrefs.UPTZPattern may return a pattern with or
without Seconds, depending on the selection in User Preferences.

Formatting Date and Timestamp Values

20-16 Developer's Guide

■ Pattern 2

This pattern is applicable if it always needs to display the Seconds part of a
datetime value.

pattern="#{applCorePrefs.DateFormatPattern}
#{applCorePrefs.timeFormatPatternWithSeconds}"

Note that there is a single space between the two Expression Language
expressions.

■ Pattern 3

pattern="#{applCorePrefs.DateFormatPattern}
#{applCorePrefs.timeFormatPatternWithoutSeconds}"

Note that there is a single space between the two Expression Language
expressions.

This pattern is applicable if it does not need to display the Seconds part of a
date-time value.

Both the filter for the date-time and the date-time field should be formatted according
to the user's date and time formatting preferences, as shown in this sample code. If this
is not done, these fields will not be processed according to the user's preferences.

<af:column sortProperty="LastUpdateDate" filterable="true"
sortable="true"
headerText="#{bindings.NlsOrders1.hints.LastUpdateDate.label}"
 id="c1">
<f:facet name="filter">
<af:inputDate value="#{vs.filterCriteria.LastUpdateDate}"
 id="id8" >
<af:convertDateTime pattern="#{applCorePrefs.UPTZPattern}"/>
</af:inputDate>
</f:facet>
<af:inputDate value="#{row.bindings.LastUpdateDate.inputValue}"
label="#{bindings.NlsOrders1.hints.LastUpdateDate.label}"
required="#{bindings.NlsOrders1.hints.LastUpdateDate.mandatory}"
shortDesc="#{bindings.NlsOrders1.hints.LastUpdateDate.tooltip}"
 id="id1">
<f:validator binding="#{row.bindings.LastUpdateDate.validator}"/>
<af:convertDateTime pattern="#{applCorePrefs.UPTZPattern}"/>
</af:inputDate>
</af:column>

The Last Saved field at the top right of Figure 20–9 is an example of how a date-time is
formatted according to the user's preferences in Oracle Fusion Applications.

Figure 20–9 Example of a Formatted Date and Time

Formatting Time Zones

Working with Localization Formatting 20-17

20.4.2 What Happens When You Format Dates and Timestamps
When dragging and dropping a view object containing an attribute of type
java.sql.Date or java.sql.Timestamp , Applications Core generates code that binds
to the dateFormatPattern (date fields) or UPTZPattern (timestamp fields) property in
the applCorePrefs managed bean.

This sample shows bindings to the dateFormatPattern property. The pattern
according to which the date value is formatted is picked up from the Preferences bean
in applCore, which in turn accesses these values from the LDAP server configured
with users' roles and policies.

<af:panelLabelAndMessage label="#{bindings.OrderDate.hints.label}"
 id="plam1">
 <af:outputText value="#{bindings.OrderDate.inputValue}" id="ot1">
 <af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
 </af:outputText>
 </af:panelLabelAndMessage>

This type of code is generated for both date and timestamp fields. For date fields, you
should add the type="date" attribute, whereas for timestamp fields, you should add
the type="both" attribute, and make the pattern attribute equal to one of the three
patterns discussed above.

20.4.3 What Happens at Runtime: How Dates and Timestamps Are Formatted
At runtime, the bindings generated at design time are executed. Dates and
Timestamps are displayed according to user preferences for date and time formatting
patterns (for example, 01/01/10 and 01/01/10 01:05:00).

20.4.4 Standards and Guidelines for Formatting Dates and Timestamps
The following standards and guidelines apply to formatting dates and timestamps.

■ All date-only fields must be represented only by java.sql.Date data types.

■ When a value bound to a field is date-only of type java.sql.Date, do not set the
time zone to af:convertDateTime.

20.5 Formatting Time Zones
Date values with time (called datetime values) are mapped to java.sql.TimeStamp in
the entity object and view object layer. In Oracle Fusion Applications, datetime values
can be calculated according to one of these time zones:

■ Server Reporting Time Zone

This is the default and simply is the time zone of the server's operating system.

■ User Preferred Time Zone (UPTZ)

When UPTZ is used, the date-time changes in the UI when a user changes the
Time Zone preference in User Preferences. For example, if a user switches the Time
Zone preference from UTC-08:00 to UTC-11:00, the date-time 04/27/2010 01:00:00
will change to 04/26/2010 23:00:00. The value in the database is not changed, and
the conversion occurs after the value is retrieved from the database and before it is
shown on the user interface.

■ Legal Entity Time Zone (LETZ)

Formatting Time Zones

20-18 Developer's Guide

LETZ is defined with legal entities. It is an attribute of a legal entity business
object. For example, when creating a legal entity ORACLE-CDC, it can have a time
zone attribute (LETZ) which value is UTC+08:00. Thus a date-time 04/27/2010
01:00:00 in UTC will change to 04/27/2010 09:00:00 accordingly. The value in the
database is not changed, and the conversion occurs after the value is retrieved
from the database and before it is shown on the user interface.

The business logic of the application decides which time zone to use to calculate the
date-time value.

20.5.1 How to Format Time Zones
The different types of tags required to implement either the User Preferred Time Zone
or Legal Entity Time Zone are shown in this section.

Before you begin:
Create an entity object and a view object with date fields, and include the
java.sql.Timestamp attribute type. Note that the middle-tier time zone and the
database time zone always must match. If they do not match, the conversions will be
invalid.

Using the Server Reporting Time Zone
Use this code sample if the date-time value is to be calculated according to the Server
Reporting Time Zone:

<af:outputText value="#{bindings.StartDate.inputValue}" ... >
<af:convertDateTime type="both" pattern="#{applCorePrefs.UPTZPattern}" />
</af:outputText>

This is to say that nothing needs to be explicitly added into the automatically
generated af:convertDateTime tag.

Using the User Preferred Time Zone
Use this code sample to calculate the date-time value according to the User Preferred
Time Zone:

<af:outputText value="#{bindings.StartDate.inputValue}" ... >
<af:convertDateTime type="both" pattern="#{applCorePrefs.UPTZPattern}"
timeZone="#{applCorePrefs.UPTZ}" />
</af:outputText>

Converting a Timestamp to the Legal Entity Time Zone
Follow this method to convert a timestamp value to the Legal Entity Time Zone:

Retrieve the Legal Entity time zone. Each legal entity has a LETZ. Determining a LETZ
starts with a legal entity's address that is used to look up a specific location and a
unique time zone attribute. This time zone is the LETZ for the legal entity.

Related tables in the database are:

FND_TIMEZONES_B and FND_TIMEZONES_TL, tables to record time zone related
information.

XLE_REGISTRATIONS, a table of Legal Entity data.

HZ_LOCATIONS, table to store geographical locations.

Formatting Time Zones

Working with Localization Formatting 20-19

Use this PL/SQL API to obtain the Legal Entity Time Zone code. This API is found in
the package XLE_LE_TIMEZONE_GRP and is to be called in the following way:

Get_Le_Tz_Code(?,?)

The ? indicates an input parameter.

This is sample code for using the Get_Le_Tz_Code(?,?) API:

l_timezone_code = XLE_LE_TIMEZONE_GRP.Get_Le_Tz_Code('BUSINESS_UNIT_ID', p_ou_id);
l_timezone_code = XLE_LE_TIMEZONE_GRP.Get_Le_Tz_Code ('INVENTORY_ORG_ID', p_inv_
org_id);
l_timezone_code = XLE_LE_TIMEZONE_GRP.Get_Le_Tz_Code ('LEGAL_ENTITY_ID', p_le_id);

To retrieve the current date and time in the Legal Entity Time Zone, use this PL/SQL
API to calculate the current date and time in the Legal Entity Time Zone. This is
particularly useful while creating or saving a transaction, when the legal entity date
and time is to be displayed. This API is found in the XLE_LE_TIMEZONE_GRP
package and is to be called in the following way:

Get_Le_Sysdate_Time(?,?)

The ? indicates an input parameter.

This is sample code using this API to determine the current date and time in the LETZ:

l_sysdate = XLE_LE_TIMEZONE_GRP .Get_Le_SysDate_Time('BUSINESS_UNIT_ID', p_ou_id);
l_sysdate = XLE_LE_TIMEZONE_GRP .Get_Le_SysDate_Time ('INVENTORY_ORG_ID', p_inv_
org_id);
l_sysdate = XLE_LE_TIMEZONE_GRP .Get_Le_SysDate_Time ('LEGAL_ENTITY_ID', p_le_id);

This function will invoke the API (Get_DefaultLegalEntity) when the input
parameter passed is the Business Unit or the Inventory Organization.

To convert the server date and time into the LETZ, use this PL/SQL API. This is useful
while retrieving an already saved transaction and showing the already saved
timestamp in the LETZ. This API is found in the XLE_LE_TIMEZONE_GRP package and is
to be called in the following way:

Get_Le_Day_Time(?,?,?)

The ? indicates an input parameter.

Sample code using this API to convert a given date and time from the server time zone
to the LETZ:

l_le_day_time = XLE_LE_TIMEZONE_GRP . Get_Le_Day_Time ('BUSINESS_UNIT_ID', p_ou_
id, p_trxn_date);
l_le_day_time = XLE_LE_TIMEZONE_GRP . Get_Le_Day_Time ('INVENTORY_ORG_ID', p_inv_
org_id. p_trxn_date);
l_le_day_time = XLE_LE_TIMEZONE_GRP . Get_Le_Day_Time ('LEGAL_ENTITY_ID', p_le_id,
p_trxn_date);

Here the p_trxn_date is the transaction date and time value in the server time zone.

To convert the legal entity date and time into the server time zone, use this PL/SQL
API. This API is found in the XLE_LE_TIMEZONE_GRP package and is to be called in the
following way:

Get_Server_Day_Time(?,?,?)

The ? indicates an input parameter.

Formatting Time Zones

20-20 Developer's Guide

This API will be for reverse LETZ conversion. Calling applications can pass in the
Legal Entity Date Time and the Business Unit/Inventory Organization/Legal Entity
ID to convert the Legal Entity datetime to the Server datetime.

Sample code using this API to convert the LETZ timestamp value to server time zone:

l_Server_Date := XLE_LE_TIMEZONE_GRP .Get_Server_Day_Time ('INVENTORY_ORG_ID', p_
inv_org_id, p_Le_Date);
l_Server_Date := XLE_LE_TIMEZONE_GRP .Get_Server_Day_Time ('BUSINESS_UNIT_ID', p_
ou_id, p_Le_Date);
l_Server_Date := XLE_LE_TIMEZONE_GRP. Get_Server_Day_Time ('LEGAL_ENTITY_ID', p_
inv_org_id, p_Le_Date);

These PL/SQL APIs must be called in the Java entity object implementation classes for
time zone conversion. The JSF code corresponding to the date field need not be
changed.

Here is a sample of a JSF date field in the server time zone and its corresponding
conversion into the LETZ. The code in the JSF page corresponding to a date field is
shown in Example 20–22:

Example 20–22 Converting a Date Field into the LETZ

<af:inputDate value="#{bindings.InvoiceDate.inputValue}"
 label="#{bindings.InvoiceDate.hints.label}"
 required="#{bindings.InvoiceDate.hints.mandatory}"
 shortDesc="#{bindings.InvoiceDate.hints.tooltip}"
 showRequired="true" autoSubmit="true"

valueChangeListener="#{pageFlowScope.invoiceActionsBean.invoiceDateValueChangeList
ener}"
 columns="#{bindings.InvoiceDate.hints.displayWidth}"
 disabled="#{pageFlowScope.matchPopupVisible}"
 id="id2">
<f:validator binding="#{bindings.InvoiceDate.validator}"/>
<af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>
</af:inputDate>

As shown, you do not need to change the date field's snippet in the JSF page, or add a
time zone attribute in the af:convertDateTime tag for this field.

The calculation of LETZ date values should be triggered when changing the value for
the Business Unit field in the user interface. The value change should invoke a method
that can calculate values according to the LETZ in the EOImpl class. In this case, this
method is the setOrgID() method, shown in Example 20–23.

Example 20–23 Using the setOrgID() Method

public void setOrgID(Long orgID)
{
...
//To convert the current timestamp to the LETZ, we call another method
getLEDateTime
this.setInvoiceDate(this.getLEDateTime(orgID, this.getDBTransaction()));
}
//This method calls the PL/SQL API to get the current date and time in the LETZ
public Date getLEDateTime(Long orgId, DBTransaction dbTransaction)
{
 // 1. Define the PL/SQL block for the statement to invoke
 String stmt = "begin ? := XLE_LE_TIMEZONE_GRP.Get_Le_Sysdate_Time(?,?); end;";
 // 2. Create the CallableStatement for the PL/SQL block

Formatting Time Zones

Working with Localization Formatting 20-21

 st = (OracleCallableStatement)dbTransaction.createCallableStatement(stmt, 0);
 // 3. Register the positions and types of the OUT parameters
 st.registerOutParameter(1, Types.DATE);
 // 4. Set the bind values of the IN parameters
 st.setObject(2,"BUSINESS_UNIT_ID");
 st.setObject(3,orgId);
 //5. Execute Query
 st.executeUpdate();
 return st.getDate(1);
}

In Figure 20–10, the field Receipt Date is an example of how a date-time or a
timestamp field in Oracle Fusion Applications is calculated according to the user's
preferred time zone rather than the server time zone.

Figure 20–10 Converting to User Preferred Time Zone

In Figure 20–11, the Business Unit field determines the LETZ according to which the
date fields Date and Terms Date on the right of the screenshot are converted in Oracle
Fusion Applications. Thus, the fields Date and Terms Date change according to the
Business Unit field in the Create Invoice transaction.

Figure 20–11 Converting to Legal Entity Time Zone

20.5.2 How to Format Invariant Time Zone Values
Some date-time values are not associated with a specific time zone. For example, an
application may execute a job at 9 AM local time in every location across different time
zones. Such values are called invariant or floating times. To print an invariant time
zone value, use the default time zone such that no specific time zone is applied to the
value.

When printing a date-time value for a specific time zone derived from an invariant
time zone value, you may need to adjust the formatting so as to neutralize the effect of
time zone conversion. This is because the server default time zone is applied implicitly.

Formatting Time Zones

20-22 Developer's Guide

20.5.3 What Happens When You Format Time Zones
When you drag and drop a timestamp field onto the JSF page, Applications Core
generates these tags:

<af:outputText label="orderDateTime"
value="#{bindingToOrderDateTime}"><af:convertDateTime
pattern="#{applCorePrefs.dateFormatPattern}"/> <af:outputText>

You need to change the tags depending on whether the field is to be calculated
according to the UPTZ or the server time zone (invariant timestamp values), for
example Default : Server Time Zone.

This should be used only for invariant timestamp values. Invariant timestamp values
are timestamps in which varying Timezone will not make a difference to the business
logic of the application.

<af:outputText label="orderDateTime"
value="#{bindingToOrderDateTime}"><af:convertDateTime
pattern="#{applCorePrefs.UPTZPattern}"/> <af:outputText>

This is an example of a User Preferred Time Zone.

<af:outputText label="orderDateTime"
value="#{bindingToOrderDateTime}"><af:convertDateTime
timeZone="#{applCorePrefs.UPTZ}"
pattern="#{applCorePrefs.UPTZPattern}"/><af:outputText>

At design time, Applications Core uses the Date-Time Sensitive custom property to
generate bindings to the time zone attribute on the Oracle ADF Faces Date Time
Converter. The attribute is bound to the applCorePrefs managed bean.

20.5.4 What Happens at Runtime: How Time Zones Are Formatted
At runtime, the Applications Core managed bean applCorePrefs, implemented by
oracle.apps.fnd.applecore.common.PreferencesBean and registered with the
faces-config.xml file, retrieves the relevant formatting masks from Applications
Session.

By default, date-time data may display as shown in Example 20–24.

Example 20–24 Date Time Data Format

1/1/2009 12:34 AM for the pattern "M/d/yyyy hh:mm a"

20.5.5 Standards and Guidelines
The following standards and guidelines apply to formatting time zones:

■ All date time fields must be represented only by java.sql.Timestamp data types
(used by default in time zone view object attributes).

■ The database and middle-tier Timezone must always be the same in Oracle Fusion
Applications.

Formatting Numbers, Currency and Dates Using Localization Expression Language Functions

Working with Localization Formatting 20-23

20.6 Formatting Numbers, Currency and Dates Using Localization
Expression Language Functions

Expression Language functions provide an alternative to the formatting procedures
described in Section 20.2, "Formatting Currency,", Section 20.3, "Formatting Numbers"
and Section 20.5, "Formatting Time Zones."

20.6.1 How to Format Numbers, Currency and Dates Using Expression Language
Functions

Oracle ADF Faces Expression Language functions of the type af:formatNamed and
af:format only support String objects as parameters. Consequently, other object
types such as Date and BigDecimal must be converted to the String object type.

For example, when binding the date object dateValue as shown in Example 20–25, the
dateValue object must be converted to a String object by calling the toString()
method.

Example 20–25 Binding a Date Object

af:formatNamed(bundle.NOTE_MESSAGE, 'BIRTHDAY', dateValue)

However, the toString() method does not support Oracle Fusion Applications user
preferences. Oracle Fusion Applications thus require the use of Expression Language
format functions to convert the following data objects to String objects:

■ Number and currency objects:

– java.math.BigDecimal

– java.lang.Integer

– java.lang.Long

■ Date and DateTime (Timestamp) objects:

– java.sql.Date

– java.sql.Timestamp

You can format numbers, currency and dates using Expression Language functions.

20.6.1.1 Formatting Numbers Using Expression Language Functions
Use the following Expression Language functions to format numbers.

The number Expression Language formatting function is shown in Example 20–26.

Example 20–26 formatNumber(java.lang.Number value) Function

fnd:formatNumber(java.lang.Number value)

Returns the formatted number value using the user preferences for the number format
mask, grouping separator and decimal separator.

This function produces the tag shown in Example 20–27.

Example 20–27 Tag Produced by the Function fnd:formatNumber(java.lang.Number
value)

<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>

Formatting Numbers, Currency and Dates Using Localization Expression Language Functions

20-24 Developer's Guide

An additional Expression Language formatting function for numbers is shown in
Example 20–28.

Example 20–28 formatNumber2(java.lang.Number value, int maxFractionDigit) Function

fnd:formatNumber2(java.lang.Number value, int maxFractionDigit)

Returns the formatted number value using the user preferences for the number format
mask, grouping separator and decimal separator.

Overrides the scale—the number of digits following the decimal point—of the user
preferred number format pattern using the value assigned to maxFractionDigit.

This function produces the tag shown in Example 20–29.

Example 20–29 Tag Produced by the Function fnd:formatNumber2(java.lang.Number
value, int maxFractionDigit)

<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"
 maxFractionDigits="your scale here"/>

20.6.1.2 Formatting Currency Using Expression Language Functions
Use the Expression Language function shown in Example 20–30 to format currency.

Example 20–30 fnd:formatCurrency(java.lang.Number currencyAmount, java.lang.String
currencyCode) Function

fnd:formatCurrency(java.lang.Number currencyAmount,
 java.lang.String currencyCode)

Returns the formatted currency amount value in numeric form along with the relevant
currency code. Applications Core uses the currency code as defined in FND_
CURRENCIES to format the currencyAmount value, rather than the number format mask
preference. User preferences for grouping and decimal separators are used to format
the value.

This function produces the tag shown in Example 20–31.

Example 20–31 Tag Produced by the Function fnd:formatCurrency(java.lang.Number
currencyAmount, java.lang.String currencyCode)

 <af:convertNumber type="currency"
 currencyCode="#{bindings.quantityCurrencyCode.inputValue}"
 pattern="#{fnd:currencyPattern(bindings.quantityCurrencyCode.inputValue)}"/>

20.6.1.3 Formatting Dates Using Expression Language Functions
Use the Expression Language function shown in Example 20–32 to format dates.

Example 20–32 fnd:formatDate(java.util.Date dateValue) Function

fnd:formatDate(java.util.Date dateValue)

Returns the formatted date value based on the user preferred date format mask.

This function produces the tag shown in Example 20–33.

Formatting Numbers, Currency and Dates Using Localization Expression Language Functions

Working with Localization Formatting 20-25

Example 20–33 Tag Produced by the Function fnd:formatDate(java.util.Date dateValue)

<af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>

Use the Expression Language function shown in Example 20–34 to format date time
values.

Example 20–34 fnd:formatDateTime(java.util.Date dateTimeValue) Function

fnd:formatDateTime(java.util.Date dateTimeValue)

Returns the formatted date time value using the user preferences for the date and time
format masks and time zone.

This function produces the following tag as shown in Example 20–35.

Example 20–35 Tag Produced by the Function fnd:formatDateTime(java.util.Date
dateTimeValue)

<af:convertDateTime type="both" timeZone="#{applCorePrefs.UPTZ}"
 pattern="#{applCorePrefs.UPTZPattern}"/>

Use the Expression Language function shown in Example 20–36 to format date time
values with user formatting masks and the user-specified time zone.

Example 20–36 fnd:formatDateTimeTZ(java.util.Date dateTimeValue, java.util.TimeZone
timeZone) Function

fnd:formatDateTimeTZ(java.util.Date dateTimeValue,
 java.util.TimeZone timeZone)

Returns the formatted date time value using the user preferences for date and time
format masks and the user-specified time zone.

This function produces the tag shown in Example 20–37.

Example 20–37 Tag Produced by the Function fnd:formatDate(java.util.Date
dateTimeValue, java.util.TimeZone timeZone)

<af:convertDateTime type="both" timeZone="<your timezone>"
 pattern="#{applCorePrefs.UPTZPattern}"/>

20.6.2 What Happens When You Format Numbers, Currency and Dates Using
Expression Language Functions

Applications Core formats the value as defined by the Expression Language function
and produces the tags described in this section.

For example, the date formatting Expression Language function produces a tag such
as the one shown in Example 20–38.

Example 20–38 Tag Produced by Expression Language Date Formatting Function

<af:convertDateTime pattern="#{applCorePrefs.dateFormatPattern}"/>

Implementing Bi-directional Support

20-26 Developer's Guide

20.6.3 What Happens at Runtime: How Currency, Dates and Numbers and Time Zones
are Formatted Using Expression Language Functions

For more information about what happens at runtime when you format numbers,
currency and dates using Expression Language functions, see Section 20.2, Section 20.3
and Section 20.5.

20.7 Implementing Bi-directional Support
Oracle Fusion applications should be enabled to provide bi-directional support.
Examples of bi-directional languages are Arabic (Middle East and North Africa) and
Hebrew (Israel). These scripts are generally written from right to left. The entire UI
must also render from right to left. That is, if you took a standard English UI and
placed a mirror next to your computer screen, the image in the mirror is exactly what
is expected of speakers of bi-directional languages. Some rules come into play, such as
how to correctly render English text or numerals embedded in a bi-directional script,
but this generally is handled by underlying technologies (in this case, Oracle ADF). An
example of this is that the text, which translates to United Arab Emirates:

for a user with English locale needs to be displayed as:

 for a user with Arabic Locale.

20.7.1 How to Implement Bi-directional Support
Before you begin, create an entity and a view object from ADF Business Components.
Drag and drop some of the attributes from the view object into a JSF page.

20.7.1.1 Making Panels and Columns Provide Bi-directional Support
UI Components such as af:panelGroupLayout and af:column have an align or an
halign attribute that allows developers to align a particular component in one
direction. A typical example of this is a number field that is always aligned to the right
by Oracle Fusion Applications standards. Now, if a UI component (a non-number
field) is hardcode-aligned to the left or right in the JSF page, the implication in the
Arabic locale is that the UI component does not switch to its corresponding mirror
image position. As a result, there are discrepancies in the user interface in the Arabic
locale.

To correct this situation, you must not hardcode a UI component (non-number field) to
the left or right. You should always use the start or end values for the halign and
align attributes to make them bi-directional compatible, as shown in Example 20–39.

Example 20–39 Making align Attributes Bi-directional

<af:panelGroupLayout id="pgl5" layout="horizontal" halign="end">
 <af:commandButton
text="#{ResourcesGenBundle['Action.Advanced.AdvancedSearch']}"

actionListener="#{ItemRelationshipRegionalSearchBean.onAdvancedButtonClick}"
id="cb4"/>
 <af:spacer width="8" height="10" id="s7"/>
 <af:image source="/images/seperator_img.png" id="i2" shortDesc=""/>
 <af:spacer width="8" height="10" id="s8"/>

Implementing Bi-directional Support

Working with Localization Formatting 20-27

 <af:commandButton
textAndAccessKey="#{ResourcesGenBundle['Action.Search1']}" id="cb5"

actionListener="#{ItemRelationshipRegionalSearchBean.onRegionalAreaSearchClick}
"/>
 <af:spacer width="5" height="10" id="s9"/>
 <af:commandButton text="#{ResourcesGenBundle['Action.Reset']}"
id="cb6"

actionListener="#{ItemRelationshipRegionalSearchBean.onResetBtnClick}"/>
 <af:spacer width="5" height="10" id="s10"/>
 </af:panelGroupLayout>

Here, the halign attribute for the panel group has been set to end, which means that
this component will be bi-directional compatible and will switch to its mirror image
position in the Arabic locale.

In the English locale shown in Figure 20–12, the panel containing the three buttons
Advanced, Search and Reset is aligned to the right.

Figure 20–12 Showing Right-aligned Buttons for English Locale

Therefore, the expected behavior is that, in the Arabic locale shown in Figure 20–13,
the panel, with the buttons' text in Arabic, is aligned to the left.

Figure 20–13 Showing Left-aligned Buttons for Arabic Locale

20.7.1.2 Making Images Provide Bi-directional Support
In Oracle Fusion applications, all UI components should provide bi-directional
support. This means that, in bi-directional locales such as Arabic and Hebrew, UI
components should be shown from right-to-left instead of left-to-right. This also
includes images that are shown on the UI to give a pictorial representation of an
instruction to the end user. If an image is directional (unsymmetrical), it should be
flipped and shown as its corresponding mirror image from right-to-left. However, if an
image is non-directional (symmetrical) it need not be flipped since its mirror image is
the image itself. To make an image bi-directional, you have to use the function
fnd:bidiImage(<Image-Path>), shown in Example 20–40, that is provided as a part of
the ApplCore library.

Example 20–40 Using fnd:bidiImage to Provide Bi-directional Support for an Image

<af:commandImageLink icon="#{fnd:bidiImage('search_ena.png')}" action="search" />

Supporting Mnemonic Keys

20-28 Developer's Guide

In bi-directional locales, instead of displaying the image search_ena.png directly, the
fnd:bidiImage suffixes an _rtl just before the start of the extension to the parameter
file-name given to it (in this case, the image icon search_ena.png becomes search_
rtl_ena.png), and then displays the image search_rtl_ena.png on the JSF page.
Now, if the latter image has been stored as a mirror image of the former,
bi-directionality is ensured for the image.

Figure 20–14 shows how the search image next to the Search by Year option appears in
an English locale.

Figure 20–14 Showing Command Image Link in English Locale

Figure 20–15 shows how the command image link supports bi-directional behavior in
an Arabic locale.

Figure 20–15 Showing Command Image Link in Arabic Locale

20.8 Supporting Mnemonic Keys
A mnemonic key, also called a soft key, is a shorthand name for a key, command, or
menu option. Mnemonic keys are used in Oracle Fusion applications to activate the
buttons in a page. This is made possible by using a <Modifier>+<Access Key>.

Note that modifiers are browser-specific. Internet Explorer, Safari and Google Chrome
use the Alt key; Firefox uses Alt+Shift.

The Access Key is defined in the source code by the developer.

In Oracle Fusion applications, the access key for a particular button needs to be
externalized so that the keys for different locales are different. Do not hardcode the

Supporting Mnemonic Keys

Working with Localization Formatting 20-29

accessKey or the textAndAccessKey attribute provided as a child attribute of the
af:commandButton tag. Hard-coding these keys would cause mnemonic key issues. For
example, if an English letter is hardcoded as an access key in the JSF layer, an Arabic
user may not be able to use this key because there are no English letters on his
keyboard. Instead the accessKey and textAccessKey attributes should be externalized
using either the applCoreBundle or any resource bundle defined in an Oracle Fusion
application's project.

20.8.1 How to Implement Mnemonic Key Support
Before you begin, create an entity object and a view object from ADF Business
Components. Drag and drop some of the attributes from the view object into a JSF
page. Create a panel group and add a command button to it.

There are two attributes provided by Oracle ADF for mnemonic keys for buttons:
accessKey and textAndAccessKey. The attribute accessKey takes as a value just the
access key to be typed by the user, whereas the attribute textAndAccessKey takes as a
value the text to be displayed on the button and the short-hand key to be typed by the
user. You must make sure that the accessKey and textAndAccessKey attributes are
never hard-coded. Both should be externalized and read from resource bundles. In the
case of the textAndAccessKey attribute, the value of the access key usually is preceded
by an ampersand (&) in the resource bundle. In case the ampersand sign is not present
in the bundle, the first letter of the text is treated as the access key.

How to use the textAndAccessKey attribute using the applCoreBundle is shown in
Example 20–41.

Example 20–41 Using the textAndAccessKey Attribute Using the applCoreBundle

f:facet name="actionButtonBar">
 <af:panelGroupLayout layout="horizontal"
 id="panelGroupLayout11"
 styleClass="AFStretchWidth">
 <af:commandButton id="commandButton2"
 textAndAccessKey="#{applCoreBundle.SAVE}"
 actionListener="#{bindings.Commit.execute}"/>

How to use the textAndAccessKey attribute using the resource bundles is shown in
Example 20–42.

Example 20–42 Using the textAndAccessKey Attribute Using Resource Bundles

<af:commandButton id="commandButton2"
 textAndAccessKey="#{TemporaryBundle.SAVE}"
 actionListener="#{bindings.Commit.execute}"/>

Here, the resource bundle TemporaryBundle must be defined in the JSF page
containing the af:commandButton tag. Also, the textAndAccessKey has been
externalized and is read from the applCore bundle and the resource bundle , as shown
in the examples, which is the correct way to define mnemonic keys. The values for this
particular id SAVE in the resource bundles are "Save" in the English locale,
"\uC800\uC7A5(&S)" in the Korean locale (S is the access key) and
"\u062D\u0641&\u0638" (\u0638 is the access key) in the Arabic locale.

Example 20–43 shows how to externalize the accessKey attribute using the
applCoreBundle.

Implementing Localization Formatting in ADF Desktop Integration

20-30 Developer's Guide

Example 20–43 Externalizing the accessKey Attribute Using the applCoreBundle

<af:commandToolbarButton text="#{applCoreBundle.SAVE_AND_CLOSE_SHORT_DESC}"
 id="ctb1"
 actionListener="#{BillingCycleBean.saveAndClose}"
 accessKey="#{applCoreBundle.ACCESSKEY}">

Example 20–44 shows how to externalize the accessKey attribute using a resource
bundle.

Example 20–44 Externalizing the accessKey Attribute Using a Resource Bundle

<af:commandToolbarButton text="#{TemporaryBundle.SAVE_AND_CLOSE_SHORT_DESC}"
 id="ctb1"
 actionListener="#{BillingCycleBean.saveAndClose}"
 accessKey="#{TemporaryBundle.ACCESSKEY}">

Here, the accessKey attribute has been externalized and is read from the applCore
bundle and the resource bundle as shown in the examples. Note that the
TemporaryBundle has to be defined as the viewControllerBundle in the JSF page
containing the command button. The values for this particular resource ID ACCESSKEY
are "S" in the English locale, ""\uC800" in the Korean locale and "\u0638" in the Arabic
locale, as defined in the resource bundle.

In Figure 20–16, the buttons on the top right are examples of buttons with soft keys
that must not be hardcoded, so that they can be different for different locales.

Figure 20–16 Example of Buttons with Soft Keys

20.9 Implementing Localization Formatting in ADF Desktop Integration
With ADF Desktop Integration technology, users can browse, edit and upload data
through a Microsoft Excel spreadsheet. Localization formatting differs from to ADF
Faces pages:

■ Number and date/time values are formatted based on the format pattern specified
by the styles in the Excel spreadsheets. The format pattern follows Microsoft
standard instead of Java standard.

Notes:

■ When a textAndAccessKey attribute has a value with more than
one "&", the letter following the first "&" is chosen as the access
key.

■ When an accessKey attribute has more than one letter, the first
letter is chosen as the access key.

Implementing Localization Formatting in ADF Desktop Integration

Working with Localization Formatting 20-31

■ Number separators are decided by the client operating system locale.

In ADF Faces pages, number and date/time values are formatted based on the format
patterns selected in the Oracle Fusion application's Preference UI. Number separators
are extracted from the application's number format patterns.

20.9.1 How to Format Numbers
Number separators in ADF Desktop Integration spreadsheets vary according to the
client OS locale. Number formatting is decided by the style defined in Excel
spreadsheet. For example, when opening an ADF Desktop Integration spreadsheet
with French Windows XP and Excel, number 1000.5 (One thousand point 5) displays
as 1 000,5. It is displayed as 1.000,5 in German Windows XP and Excel. Assuming one
fractional digit is specified in the style.

To achieve this, developers need to specify correct styles for numbers at design time.

For more details about Excel styles, refer to the Oracle Fusion Middleware Desktop
Integration Developer's Guide for Oracle Application Development Framework.

20.9.1.1 Formatting Numbers
Before you begin, create a workable ADF Desktop Integration spreadsheet and have
the attributes in place. Related attributes are of types: java.math.BigDecimal,
java.lang.Integer, or java.lang.Long.

Define styles for each type of cells and configure the cell appearance using the Oracle
Fusion Applications UI standard.

Decimal Number Formatting
Follow these steps to modify the existing style for formatting decimal numbers and
apply the style to the cell containing a decimal number value.

■ In Excel, select Home > Cell Styles.

■ Right-click the style name and select Modify from the context menu, as shown in
Figure 20–17.

Figure 20–17 Selecting Modify Menu Option

■ On the Style dialog, shown in Figure 20–18, click Format.

Implementing Localization Formatting in ADF Desktop Integration

20-32 Developer's Guide

Figure 20–18 Selecting Format on the Style Dialog

■ Select the Number tab and select the Number category. Specify the number of
decimal places and the format of negative numbers according to your business
logic. If you want to see grouping separator in the number values, make sure that
Use 1000 Separator is checked, as shown in Figure 20–19.

Figure 20–19 Selecting the Use 1000 Separator

■ Click OK and save the Excel file.

Integer Formatting
Integer formatting is the same as decimal formatting except no fractional digit should
display. This can be done by specifying 0 for Decimal places when modifying the style.

ID Formatting
An ID value is a sequence of digits, such as an Invoice Number, Service Request ID, or
Bank Account. Displaying ID values should not vary based on a user's preference or
client OS locale. That is, ID values should be printed as text instead of numbers.

Implementing Localization Formatting in ADF Desktop Integration

Working with Localization Formatting 20-33

In Oracle Fusion applications, the length of an ID value typically is 13 or 18. By
default, Excel formats such long numbers with Scientific Notation format, which is not
desired for Oracle Fusion applications. For instance, an Invoice Number
1234567890123 (13 digits) is displayed as 1.23457E+12. It is not a valid Invoice Number
when it is printed out.

To avoid the default formatting of Excel in such cases, developers need to customize
the styles for ID values.

■ In Excel, select Home > Cell Styles

■ Right-click the style name and select Modify from the context menu.

■ Click Format.

■ Select the Number tab and select the Text category.

■ Click OK. In the Style dialog, Figure 20–20 shows that @ is defined as the Number
style.

Figure 20–20 Selecting the Number Style

■ Click OK and save the file.

As a result, Figure 20–21 shows that an ID value is displayed as text without any
number formatting.

Figure 20–21 Displaying ID Value as Text

20.9.1.2 What Happens When You Format Numbers
When dragging and dropping a binding to generate the components in an ADF
Desktop Integration spreadsheet, the framework generates default styles for those
values based on the Java type of the values. However, these styles may not be correct
for formatting number values. Therefore, you may need to refine the styles according
to business logic.

20.9.1.3 What Happens at Runtime: How Numbers Are Formatted
At runtime, ADF Desktop Integration will pass the style specified in the ADF Desktop
Integration unpublished spreadsheet (known as the design time file) to the published
spreadsheet during the publication process. When a user opens the published
spreadsheet, Excel formats the numbers according to the combination of styles and
client OS locale.

Implementing Localization Formatting in ADF Desktop Integration

20-34 Developer's Guide

20.9.2 How to Format Currency Values
Grouping and decimal separators of currency values vary based on the client OS
locale, while the number of fraction digits is controlled by the style defined in the
Excel spreadsheet.

You should not display currency symbols or currency codes with currency numbers in
the same cell. Instead, you need to display currency symbols or currency codes in a
separate cell.

20.9.2.1 Formatting Currency Values
Before you begin, create a workable ADF Desktop Integration spreadsheet and have
the attributes in place. The related attribute is of type java.math.BigDecimal.

Define styles for each type of cells and configure the cell appearance using the Oracle
Fusion Applications UI standard.

Follow these steps to modify an existing style for formatting currency values and
apply it to the corresponding cells.

■ In Excel, select Home > Cell Styles, right-click the style name and select Modify
from the context menu.

■ Click Format.

■ Select the Number tab and select the Currency category. Specify the number of
Decimal places and the format of negative numbers according to your business
logic.

■ In Oracle Fusion applications, you should display the currency symbol in a
separate cell. Make sure None is selected for Symbol, as shown in Figure 20–22.

Figure 20–22 Selecting None as the Currency Symbol

■ Click OK and save the file.

20.9.2.2 What Happens When You Format Currencies
When dragging and dropping a binding to generate the components in an ADF
Desktop Integration spreadsheet, the framework generates default styles for those
values based on the Java type of the values. However, these styles may not be correct
for formatting number values. Therefore, you may need to refine the styles according
to business logic.

20.9.2.3 What Happens at Runtime: How Currency Values Are Formatted
At runtime, ADF Desktop Integration will pass the style specified in the unpublished
spreadsheet (the design time file) to the published spreadsheet during the publication

Implementing Localization Formatting in ADF Desktop Integration

Working with Localization Formatting 20-35

process. When a user opens the published spreadsheet, Excel formats the numbers
according to the combination of styles and the client OS locale.

The currency code should be displayed in a cell other than the cell containing the
Currency Value. The currency code in this cell should be printed as text.

20.9.3 How to Format Dates and Timestamp Values
The format of date and timestamp values in ADF Desktop Integration spreadsheets
varies according to the client OS locale.

For example, when opening an ADF Desktop Integration spreadsheet with French
Windows XP and Excel, the date May 25th, 2011 is displayed as 25/05/2011. It
displays as 2011-05-25 in Korean Windows XP and Excel.

To achieve this, developers need to specify correct styles for date and timestamp
values at design time.

For more details about Excel styles, refer to the Oracle Fusion Middleware Desktop
Integration Developer's Guide for Oracle Application Development Framework.

20.9.3.1 Formatting Date and Timestamp Values
Before you begin, create a workable ADF Desktop Integration spreadsheet and have
the attributes in place. Related attributes are of types: java.sql.Date or
java.sql.Timestamp.

Define styles for each type of cell and configure the cell appearance using Oracle
Fusion Applications UI standards.

Formatting the Date
Follow these steps to modify an existing style for formatting dates and apply it to the
correspondent cells.

■ In Excel, select Home > Cell Styles

■ Right-click the style name and select Modify from the context menu.

■ Click Format.

■ Select the Number tab and select the Date category. Set the value of Locale
(location) to your Windows OS locale. For example, if you are using English
Windows XP, this Locale should be set to English (U.S.).

■ Select a type beginning with an asterisk (*), as shown in Figure 20–23. There are
two such Types: one is short date format, and the other is long date format. Choose
one according to your business requirement.

Implementing Localization Formatting in ADF Desktop Integration

20-36 Developer's Guide

Figure 20–23 Selecting the Date Type

Note that date formats display date and time serial numbers as date values. Date
formats that begin with an asterisk (*) respond to changes in regional date and
time settings that are specified for the operating system. Formats without an
asterisk are not affected by operating system settings.

■ Click OK and save the file.

Formatting the Timestamp
Follow these steps to define a style for formatting the timestamp and apply it to the
corresponding cells.

■ In Excel, select Home > Cell Styles.

■ Right-click the style name and select Modify from the context menu.

■ Click Format.

■ Select the Number tab and select the Time category. Set the value of Locale
(location) to your Windows OS locale. For example, if you are using English
Windows XP, this Locale should be set to English (U.S.).

■ Select the type beginning with an asterisk (*), as shown in Figure 20–24.

Implementing Localization Formatting in ADF Desktop Integration

Working with Localization Formatting 20-37

Figure 20–24 Selecting the Time Type

■ Click OK and save the file.

Note: With current ADF Desktop Integration support, it is impossible to display both
the date and the time part of a timestamp value in a single cell if you want to see its
format varying according to client OS locale.

Workaround
To display the date and time, formatted according to the client OS locale, you can use
two cells: One for displaying the date part and another for displaying the time part of
the timestamp. Then format each of these cells separately as described for date and
time format.

20.9.3.2 What Happens When You Format the Date and Timestamp
When dragging and dropping a binding to generate the components in an ADF
Desktop Integration spreadsheet, the framework generates default styles for those
values based on the Java type of the values. However, these styles may not be correct
for formatting number values. Therefore, you may need to refine the styles according
to business logic.

20.9.3.3 What Happens at Runtime: How Date and Timestamp Are Formatted
At runtime, ADF Desktop Integration will pass the style specified in the unpublished
spreadsheet (the design time file) to the published spreadsheet during the publication
process. When a user opens the published spreadsheet, Excel formats the date or
timestamp values according to the combination of styles and the client OS locale.

For timestamp values, time zone conversion also happens at runtime. See
Section 20.9.3.4, "Honoring Time Zones" for more details.

20.9.3.4 Honoring Time Zones
There are two time zones involved in time zone conversion for timestamp values in
ADF Desktop Integration spreadsheets. One is the time zone of the Oracle Fusion
Applications server, called the server time zone. The other is the time zone of the client

Implementing Localization Formatting in Oracle BI Publisher Reports

20-38 Developer's Guide

system on which the ADF Desktop Integration spreadsheet is open, which is called the
client time zone.

At runtime, conversion between server time zone and client time zone happens
automatically for timestamp values in ADF Desktop Integration spreadsheets.

For example, if the server time zone is (GMT-8:00) Pacific Time (US & Canada) and the
client time zone is (GMT+8:00) Beijing, Chongqing, Hong Kong, Urumqi, the
timestamp value in the database 2011-05-22 20:00:00 is converted to 2011-05-23 12:00:00
at runtime and displayed as 2011-05-23 or 12:00:00 in the ADF Desktop Integration
spreadsheet, depending on the format style defined for the corresponding cells.

20.10 Implementing Localization Formatting in Oracle BI Publisher
Reports

Oracle BI Publisher can pass Oracle Fusion applications Preferences Number Format,
Date Format and Time Format to Oracle BI Publisher reports using function
format-date, format-number or format-currency, if Oracle BI Publisher is running in
Oracle BI Publisher and Oracle Fusion applications integration mode.

20.10.1 How to Format Numbers in a Oracle BI Publisher Report
To format numbers in an RTF template with an Oracle Fusion application
user-preferred number format pattern, Oracle's format-number function must be used
with 'XDODEFNUM' used as a format mask, for example:

<?format-number:fieldName; 'XDODEFNUM'?>

For details about the format-number function, see "Number, Date and Currency
Formatting" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business
Intelligence Publisher.

Follow these steps to format numbers with the Oracle Fusion application
user-preferred number format pattern:

■ Open your RTF template file with Word.

■ Select BI Publisher > Sample XML and select a sample XML file that contains
sample data for the number fields to be formatted in the RTF template.

■ Double-click the number field to be modified (such as ORDER_TOTAL). In the
Oracle BI Publisher Properties dialog, select the Properties tab and make sure that
Regular Text is selected for Type.

■ Select the Advanced tab and enter format code, as shown in Figure 20–25.

Note: To modify RTF templates, Oracle BI Publisher Template
Builder for Word should be installed on Microsoft Word 2003, 2007 or
higher version. After it is installed, there is a Oracle BI Publisher menu
in the Word menu bar.

Implementing Localization Formatting in Oracle BI Publisher Reports

Working with Localization Formatting 20-39

Figure 20–25 Entering a Number Format Code

■ Click OK and save the RTF template file.

Follow these steps to format a number value in graphs in Oracle BI Publisher reports

■ To set format masks for graphs, an Oracle Fusion application Oracle BI Publisher
report designer needs to change the RTF template graph code manually.

■ Edit the graph and change the graph definition code in the Advanced tab of the
Graph dialog in the template builder.

■ Use an XSLT format such as:

<xsl:value-of select="xdoxslt:xdo_format_number($_
XDOXSLTCTX,current-group()/SGT_NUMBER,'XDODEFNUM')" />

to format a currency value on the graph.

At runtime, XDODEFNUM is replaced with the number format pattern selected in the
Oracle Fusion application Preferences UI. Consequently, the number is formatted with
the Oracle Fusion application number format pattern. For example, if a user selects
-1'234,567 as the Number Format in the Preferences UI, as shown in Figure 20–26, the
number 1000.8888 (one thousand point eight eight eight eight) will be displayed as
1'000,889 in the Oracle BI Publisher report.

Implementing Localization Formatting in Oracle BI Publisher Reports

20-40 Developer's Guide

Figure 20–26 Selecting a Number Format in the Preferences UI

When using XDODEFNUM as the format mask in format-number, the format of the
number is fully controlled by the Oracle Fusion application Number Format, including
grouping separator, decimal separator, number of fractional digit, and form of
negative numbers.

In the Oracle BI Publisher and Oracle Fusion application integration environment, if
format-number is used to format a number, whether or not XDODEFNUM is used as
the format mask, the grouping separator and decimal separator are always derived
from the Oracle Fusion application Number Format.

Therefore, an integer could be formatted as:

<?format-number:fieldName; '999G999'?>

In this case, if the Number Format is -1'234,567, the integer 10000 is displayed as 10'000
in the Oracle BI Publisher report.

If you do not wish to display a number with fractional digits or grouping separators
(such as PO numbers, Bank Accounts, or Invoice Numbers), enter <?fieldName?> in
step 4 of [To format numbers]. In such cases, the Number Format has no effect on the
field; it always is displayed as text.

20.10.2 How to Format Currency Values in Oracle BI Publisher
Currency fields in RTF templates can be formatted with the format-currency function:

<?format-currency:Amount_Field;CurrencyCode;displaySymbolOrNot?>

where

■ Amount_Field takes the tag name of the XML element that holds the amount
value in your data.

■ CurrencyCode can be set to a static value or it can be set dynamically. If the value
will be static for the report, enter the ISO three-letter currency code in
single-quotes, such as 'USD'.

To set the value dynamically, enter the tag name of the XML element that holds the
ISO currency code. Note that an element containing the currency code must be present
in the data.

■ At runtime, the Amount_Field will be formatted according to the format you set
up for the currency code in the report properties.

Implementing Localization Formatting in Oracle BI Publisher Reports

Working with Localization Formatting 20-41

■ displaySymbolOrNot takes as a value either 'true' or 'false' in single quotes. When
set to 'true', the currency symbol will be displayed in the report based on the value
for CurrencyCode. If you do not wish the currency symbol to be displayed, you
can either enter 'false' or simply omit the parameter.

For details about the format-currency function, see "Number, Date and Currency
Formatting" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business
Intelligence Publisher.

To use the format-currency function, the currency values in your data source must be
in a raw format, with no formatting applied (for example: 1000.00). If the value has
been formatted for European countries (for example: 1.000,00), the format will not
work.

To format your currency values with the currency code passed dynamically from a
particular business flow, you must have the currency code defined in your data source.

In the Oracle Fusion application and Oracle BI Publisher integration environment,
Currency is passed to Oracle BI Publisher through XDODEFCC. For example, if US
Dollar is selected for Currency in Preferences, as shown in Figure 20–27, at runtime,
XDODEFCC is replaced with USD.

Figure 20–27 Selecting a Currency in Oracle Fusion Application Preferences

Therefore, to format a currency value with the Currency selected in Oracle Fusion
application Preferences, you can use:

<?format-currency:Amount_Field; 'XDODEFCC'?>

or

<?format-currency:Amount_Field; 'XDODEFCC';'true'?>

To format currency values with the currency code selected in a particular business
flow instead of the Currency code selected in Oracle Fusion application Preferences,
you can use:

<?format-currency:Amount_Field; CurrencyCode_Field?>

Implementing Localization Formatting in Oracle BI Publisher Reports

20-42 Developer's Guide

or

<?format-currency:Amount_Field; CurrencyCode_Field;'true'?>

where CurrencyCode_Field is the tag name of the XML element that holds the
currency code selected in the business flow. At runtime, CurrencyCode_Field is
replaced with a currency code, such as USD, JPY, or EUR.

Note: Whether the currency code is set to a static value, such as XDODEFCC, or a
dynamic value passed from a particular business flow, the grouping separator and
decimal separator in currency values are always derived from the Number Format
selected in Oracle Fusion application Preferences. The parameter currency code in the
format-currency function controls the number of fraction digits and the placement of
the grouping separator in the output.

Example
Assume that <?format-currency:Amount_Field; CurrencyCode_Field?> is applied in
the RTF template for a currency field.

In the report properties, if the format mask for USD is 9G999D99, for JPY it is 9G999
and for INR it is 9G99G99G999D99, and if a user has set the Number Format as
-1,234.567 in Preferences (uses comma (,) as the grouping separator and dot (.) as
decimal separator), the currency value of 1234567.89 will display as shown here,
depending on the currency passed to CurrencyCode Field at runtime.

■ If 'USD' is passed to CurrencyCode_Field at runtime, the value displayed is
1,234,567.89.

■ If 'JPY' is passed to CurrencyCode_Field at runtime, the value displayed is
1,234,568.

■ If 'INR' is passed to CurrencyCode_Field at runtime, the value displayed is
12,34,567.89.

If a European user changes the Number Format to -1'234,567 in Preferences (uses the
apostrophe (') as the grouping separator and comma (,) as the decimal separator), the
currency value of 1234567.89 will display as:

■ If 'USD' is passed to CurrencyCode_Field at runtime, the value displayed is
1'234'567,89.

■ If 'JPY' is passed to CurrencyCode_Field at runtime, the value displayed is
1'234'568.

■ If 'INR' is passed to CurrencyCode_Field at runtime, the value displayed is
12'34'567,89.

Follow these steps to format a currency field in the Oracle BI Publisher RTF template.

■ Open the RTF template file with Word.

■ Expand BI Publisher > Sample XML and select a sample XML file that contains
sample data for the number fields to be formatted in the RTF template.

■ Double-click the currency field to be modified (for instance ORDER_TOTAL). In
the Oracle BI Publisher Properties dialog, click the Properties tab and make sure
Type is set to Regular Text.

■ Click the Advanced tab and enter format code, as shown in Figure 20–28.

Implementing Localization Formatting in Oracle BI Publisher Reports

Working with Localization Formatting 20-43

Figure 20–28 Entering Currency Code in Oracle BI Publisher Properties

■ Click OK and save the RTF template file.

Follow these steps to format a currency value in graphs in Oracle BI Publisher reports

■ To set format masks for graphs, an Oracle Fusion application Oracle BI Publisher
report designer needs to change the RTF template graph code manually.

■ Edit the graph and change the graph definition code in the Advanced tab of the
Graph dialog in template builder.

■ Use an XSLT format, such as <xsl:value-of select="xdoxslt:xdo_format_
currency($_XDOXSLTCTX,current-group()/SGT_CURRENCY,'XDODEFCC')" /> to
format a currency value on the graph.

20.10.3 How to Format Dates and Timestamps in Oracle BI Publisher
In the Oracle BI Publisher RTF template, a date or timestamp can be formatted as:

<?format-date:date_string; 'ABSTRACT_FORMAT_MASK';'TIMEZONE'?>

where:

■ ABSTRACT_FORMAT_MASK can be any date format pattern supported by
Oracle BI Publisher, such as YYYY-MM-DD or DD/MM/YYYY.

■ TIMEZONE is optional. It can be any valid time zone ID, such as PST or UTC. If it
is not specified, the Oracle BI Publisher report time zone is applied implicitly.

For details about the format-date function, see "Number, Date and Currency
Formatting" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business
Intelligence Publisher.

To use the format-date function, the date from the data source must be in canonical
format, which is YYYY-MM-DDThh:mm:ss+HH:MM

where:

■ YYYY is the year

■ MM is the month

■ DD is the day

■ T is the separator between the date and time component

Implementing Localization Formatting in Oracle BI Publisher Reports

20-44 Developer's Guide

■ hh is the hour in 24-hour format

■ mm is the minutes

■ ss is the seconds

■ +HH:MM is the time zone offset from Universal Time (UTC), or Greenwich Mean
Time

For example: 2011-05-26T09:30:10-07:00.

The data after the T is optional, therefore 2011-05-26 is a valid date.

In the Oracle BI Publisher and Oracle Fusion application integration environment,
XDODEFDATE is used to pass the Oracle Fusion application date format pattern to
Oracle BI Publisher, and XDODEFTIME can pass the Oracle Fusion application time
format pattern to Oracle BI Publisher reports.

Consider that "yyyy-MM-dd (2011-05-27)" is selected for the Date Format, and "a
hh:mm:ss (AM 12:49:13)" is selected for the Time Format in Oracle Fusion application
Preferences, as shown in Figure 20–29:

Figure 20–29 Selecting Date and Time Format in Oracle Fusion Application Preferences

At runtime, XDODEFDATE is replaced with "yyyy-MM-dd" and XDODEFTIME is
replaced with "a hh:mm:ss".

Therefore, to format date or timestamp values in Oracle BI Publisher reports with the
Date Format or Time Format selected in Oracle Fusion application Preferences, the
format-date function can be used:

■ To display date only values

<?format-date:Date_Only_Field; 'XDODEFDATE'?>

Only the date is displayed, such as 2011-05-27.

■ To display time only values

<?format-date:Time_Only_Field; 'XDODEFTIME'?>

Only the time is displayed, such as AM 12:49:13.

■ To display datetime values

<?format-date:Datetime_Field; 'XDODEFDATE XDODEFTIME'?>

Both date and time are displayed, such as 2011-05-27 AM 12:49:13.

■ To display System Date (sysdate)

Note: If the time component and time zone offset are not included in
the XML source date, Oracle BI Publisher assumes it represents 12:00
AM UTC (that is, YYYY-MM-DDT00:00:00-00:00).

Implementing Localization Formatting in Oracle BI Publisher Reports

Working with Localization Formatting 20-45

<?format-date:xdoxslt:sysdate_as_xsdformat();' XDODEFDATE XDODEFTIME
'?>

A sample output: 2011-05-27 AM 12:49:13.

With these codes, the format of date or timestamp values varies according to the Date
Format or the Time Format chosen in Oracle Fusion application Preferences.

Follow these steps to format date or timestamp values in the RTF template.

■ Open the RTF template file in Microsoft Word.

■ Choose BI Publisher > Sample XML, and choose a sample XML file that contains
sample data for the number fields to be formatted in RTF template.

■ Double-click the date or timestamp field to be modified, such as ORDER_DATE. In
the BI Publisher Properties dialog, click the Properties tab and make sure that Type
is set to Regular Text.

■ Click the Advanced tab and enter format code, as shown in Figure 20–30.

Figure 20–30 Entering Date Format Code in Oracle BI Publisher Properties

■ Click OK and save the file.

Follow these steps to format date or timestamp values in graphs in Oracle BI Publisher
reports.

■ To set format masks for graphs, an Oracle Fusion application Oracle BI Publisher
report designer needs to change the RTF template graph code manually.

■ Edit the graph and change the graph definition code in the Advanced tab of the
Graph dialog in template builder.

■ Use an XSLT format such as <xsl:value-of select="xdoxslt:xdo_format_
date($_XDOXSLTCTX,current-group()/SGT_DATE,'XDODEFDATE XDODEFTIME')" />
to format a date-time value on the graph.

If you do not wish to format date or timestamps according to the Oracle Fusion
application Date or Time format, you can use Oracle abstract format masks, such as:

■ <?format-date:ORDER_DATE;'SHORT'?>

■ <?format-date:ORDER_DATE;'LONG'?>

Implementing Localization Formatting in ADF Data Visualization Components

20-46 Developer's Guide

■ <?format-date:xdoxslt:sysdate_as_xsdformat();'MEDIUM'?>

For more abstract format masks, see "Oracle Abstract Format Masks" in "Number,
Date, and Currency Formatting" in the Oracle Fusion Middleware Report Designer's Guide
for Oracle Business Intelligence Publisher.

With using abstract format masks, date and timestamp values are formatted according
to the default format of the Oracle Fusion application user's locale.

20.10.4 How to Honor Time Zones in Oracle BI Publisher
In Oracle BI Publisher and Oracle Fusion application integration environment, the
Time Zone selected in Oracle Fusion application Preferences is passed to the Oracle BI
Publisher server and overrides the Oracle BI Publisher report time zone automatically.
As a result, if the TIMEZONE parameter is not specified in the format-date function, a
date/time field in the Oracle BI Publisher report is formatted with the time zone
selected in Oracle Fusion application Preferences. That is, time zone conversion
happens between the Oracle BI Publisher server time zone and the Oracle Fusion
application Preferences time zone.

If you do not wish to format a date-time field with the Oracle Fusion application
Preferences Time Zone, you must explicitly specify a time zone ID in the format-date
function:

<?format-date:Datetime_Field; 'XDODEFDATE XDODEFTIME', 'timezone'?>

where timezone is a static value, such as PST, UTC, or IST.

20.11 Implementing Localization Formatting in ADF Data Visualization
Components

All numerical-based values need to be formatted correctly when they are presented to
a user in Oracle Fusion applications graphs. For instance, a value of 1234.5 in the
database might need to be displayed as 1 234,500 or 1,234.500 or 1.234,5. The user can
change the number of digits found after the decimal digit, grouping separator, and
decimal separator.

20.11.1 How to Format Numbers on a Graph
Before you begin, create an entity object and a view object with number fields,
including any of the following attribute types: java.math.BigDecimal, java.lang.Integer,
or java.lang.Long. Drag and drop the entity and create a data visualization component
such as a pie graph, bar graph or a line graph.

Numerical values on all parts of the graph need to be formatted according to the user's
number formatting preferences in Oracle Fusion applications. Developers need to add
the tag <af:convertNumber> to all the tags in the graph where numerical values are
displayed.

Note: There is no parameter that passes the Oracle Fusion
application Corporation Time Zone (CRTZ) or Legal Entity Time Zone
(LETZ) to the Oracle BI Publisher server. Therefore, you cannot format
a date/time value with CRTZ or LETZ dynamically by using a
parameter to pass CRTZ or LETZ to Oracle BI Publisher reports.
Instead, you have to hard-code the time zone ID within the
format-date function.

Implementing Localization Formatting in ADF Data Visualization Components

Working with Localization Formatting 20-47

The ADF Data Visualization area graph supports number formatting on its Y1 and Y2
axis tick labels, and for marker text that appears on the data points. Users can
customize the number formatting by adding <af:convertNumber> to the
<dvt:y1TickLabel>, <dvt:y2TickLabel>, <dvt:y1Format>, and <dvt:y2Format> tags.
Example 20–45 shows how to configure these tags.

Example 20–45 Area Graph Y1 Axis Number Formatting

<dvt:y1TickLabel>
<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
</dvt:y1TickLabel>

<dvt:markerText><dvt:y1Format>
<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
</dvt:y1Format></dvt:markerText>

In Figure 20–31, numbers such as 20,000 and 40,000 on the Y axis and numbers such as
12,003.67 on the tooltip are examples of numbers on an area graph that should be
formatted according to the user's number preferences in graphs in Oracle Fusion
applications.

Figure 20–31 Showing Number Formatting on an Area Graph

Note: For integer fields, use pattern="#{applCorePrefs.integerFormatPattern}"
just like integer formatting in ADF Faces.

Generally, an attribute on an ordinal axis (O1 axis and X1 axis) of a graph in ADF Data
Visualization is considered to be text, irrespective of its data type in the model or view
layer. A developer can add af:convertNumber to such a view attribute by first adding
dvt:attributeFormat to it, and only then will the resultant values on the x-axis and
o-axis be formatted according to the user's number preferences. The name="size" entry
refers to the categorical attribute (attribute on the ordinal/x axis). To format the
integers, use pattern="#{applCorePrefs.integerFormatPattern}", as shown in
Example 20–46.

Example 20–46 Area Graph O Axis Formatting

<dvt:attributeFormat id="af1" name="size">
<af:convertNumber pattern="#{applCorePrefs.numberFormatPattern}"/>
 </dvt:attributeFormat>

In Figure 20–32, numbers such as 2234 and 1014 are examples of numbers on the O
axis of an area graph that should be formatted according to the user's number
preferences.

Implementing Localization Formatting in ADF Data Visualization Components

20-48 Developer's Guide

Figure 20–32 Numbers to Format Using User's Preferences

Other Types of Graphs
Example 20–46 just gives an example of number formatting in area graphs. Table 20–1
presents the tags in which af:convertNumber can be added for number formatting in
other types of graphs, such as bar graphs and pie charts, and the graphs in which
dvt:attributeFormat can be used to format text attributes on the ordinal axis.

20.11.2 Standards and Guidelines for Formatting Numbers in Graphs
■ dvt:numberFormat has been deprecated and all Oracle Fusion applications

developers should use only af:convertNumber to format numbers on graphs.

■ Before adding an af:convertNumber tag to a graph, make sure that the
autoPrecision attribute of the parent tag (for example dvt:MarkerText) is set to
off. If autoPrecision is set to on, ADF Data Visualization does not follow the

Table 20–1 Using af:convertNumber for Number Formatting and dvt:attributeFormat for Text Formatting

Graph Type Parent Tags for af:convertNumber
Is dvt:attributeFormat Needed
for Number Formatting?

Bar Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes (for O1 axis)

Bar Horizontal <dvt:y1TickLabel>, <dvt:y2TickLabel>
,<dvt:y1Format>, and <dvt:y2Format>

Yes (for O1 axis)

Bubble Graph <dvt:x1TickLabel>, <dvt:y1TickLabel>,
<dvt:y2TickLabel>, <dvt:x1Format>,
<dvt:y1Format>, <dvt:y2Format> and
<dvt:zFormat>

Yes (but not for O1 axis, for X1
axis)

Combination graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes (for O1 axis)

Funnel Graph <dvt:sliceLabel> Yes (for funnel section values)

Line Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes (for O1 axis)

Pareto Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>, and
<dvt:y1Format>

Yes (for O1 axis)

Pie Graph <dvt:sliceLabel> Yes (for slice values)

Pie Bar Charts <dvt:y1TickLabel>, <dvt:sliceLabel> and
<dvt:y1format>

Yes (for slice values)

Gantt Chart <af:column> Yes (for O1 axis)

Gauge <dvt:metricLabel> and <dvt:tickLabel> Yes (for O1 axis)

ADF Pivot Table <af:inputText> or <af:outputText> whose
parent tag is <dvt:dataCell>

<af:inputText> or <af:outputText> whose
parent tag is <dvt:headerCell>

Implementing Localization Formatting in ADF Data Visualization Components

Working with Localization Formatting 20-49

converter correctly, and formats numbers automatically, which will be incorrect in
Oracle Fusion applications, as the number will not honor user preferences.

■ Set scaling="none" before adding the af:convertNumber tag to a graph.
Otherwise ADF Data Visualization will not follow the converter correctly.

20.11.3 How to Format Currency Values in ADF Data Visualization
Currency fields are represented by java.lang.BigDecimal in entity objects and view
objects.

A currency field should always be formatted according to the currency code chosen in
the context UI of the transaction.

For example, if the user selects "JPY" as the currency code from the context UI, the
currency value should be formatted according to the Japanese Yen standard, whereas
if USD is chosen as the currency code, the currency value should be formatted
according to the American Dollar standard.

Oracle Applications Technology (ATG) provides two implementations to format
numerical values according to the corresponding currency code:

■ fnd:currencyPattern(bindingToAmountCurrencyCode) : This function formats
the numerical value according to the currency code input as a parameter (for
example, if "USD" is the input parameter, the value is formatted as #,##0.00)

■ fnd:currencyPatternWithPrecisionAndSymbol(bindingToAmountCurrencyCode,
bindingToAttrNamePrecision, bindingToAttrNameCurrencySymbol): This
function formats the numerical value according to the currency code input as the
first parameter; the second parameter indicates the number of decimal digits in the
formatted value; the third parameter determines whether the formatted string
shows the symbol for the currency code, the currency code itself or nothing after
the numerical value. (The third parameter can be symbol, code or none.)

20.11.3.1 Formatting Currency Values on a Graph
Before you begin, create an entity object and a view object with number fields,
including any of the following attribute types: java.math.BigDecimal, which is a
currency value. Drag and drop the entity and create an ADF Data Visualization
component, such as a pie graph, bar graph, or a line graph.

Numbers on the Y and O axis can be formatted as currency and can be displayed with
the currency symbol, as shown in Example 20–47.

Example 20–47 Area Graph Y1 Axis Currency Value Formatting

<dvt:y1TickLabel>
 <af:convertNumber pattern="#{ fnd:currencyPattern(YourCurrencyCode)}"/>
</dvt:y1TickLabel>
<dvt:markerText><dvt:y1Format>
<af:convertNumber pattern="#{ fnd:currencyPattern(YourCurrencyCode) }/>
</dvt:y1Format></dvt:markerText>

In Figure 20–33, number values such as 40,000.00 and 80,000.00 on the Y axis, and
13,344.22 on the tooltip, are examples of number fields in an area graph that should be
formatted according to the currency code for these values. Numbers on the O1 axis
should also be formatted according to the currency code. (In this case, for USD, the
format is #,##0.00.)

Implementing Localization Formatting in ADF Data Visualization Components

20-50 Developer's Guide

Figure 20–33 Numbers to Format According to Currency Code

Other Types of Graphs
Example 20–47 gives an example of currency formatting in area graphs. Table 20–2
presents the tags in which af:convertNumber can be added for currency formatting in
other types of graphs, and the graphs in which dvt:attributeFormat can be used to
format text attributes on the ordinal axis.

20.11.3.2 Standards and Guidelines for Formatting Currency Values in Graphs
■ Before adding an af:convertNumber tag to a graph, make sure that the

autoPrecision attribute of the parent tag (such as dvt:MarkerText) is set to off. If
autoPrecision is set to on, ADF Data Visualization does not follow the converter
correctly, and instead formats numbers automatically, which will be incorrect in
Oracle Fusion applications, as the number will not honor user preferences.

Table 20–2 Using af:convertNumber for Currency Formatting and dvt:attributeFormat for Text Formatting

Graph Type
Tags in which af:convertNumber Can
Be Added for Currency Formatting

Can dvt:attributeFormat Be Added for
Currency Formatting of Attributes on the
Ordinal Axis?

Bar Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes

Bar Horizontal <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes

Bubble Graph <dvt:x1TickLabel>, <dvt:y1TickLabel>,
<dvt:y2TickLabel>,<dvt:x1Format>,
<dvt:y1Format>, <dvt:y2Format> and
<dvt:zFormat>

Yes (but not for O1 axis, for X1 axis)

Combination Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes

Funnel Graph <dvt:sliceLabel> Yes (for funnel section values)

Line Graph <dvt:y1TickLabel>, <dvt:y2TickLabel>,
<dvt:y1Format>, and <dvt:y2Format>

Yes

Pareto Graph <dvt:y1TickLabel>,
<dvt:y2TickLabel>,and <dvt:y1Format>

Yes

Pie Graph <dvt:sliceLabel> Yes (for slice values)

Pie Bar Charts <dvt:y1TickLabel>, <dvt:sliceLabel> and
<dvt:y1format>

Yes (for slice values)

Gantt Chart <af:column> No

Gauge <dvt:metricLabel> and <dvt:tickLabel> No

ADF Pivot Table <af:inputText>/<af:outputText> whose
parent tag is <dvt:dataCell>

<af:inputText>/<af:outputText> whose
parent tag is <dvt:headerCell>

Implementing Localization Formatting in ADF Data Visualization Components

Working with Localization Formatting 20-51

■ Set scaling="none" before adding the af:convertNumber tag to a graph.
Otherwise, ADF Data Visualization will not follow the converter correctly.

20.11.4 How to Format Dates and Timestamp Values in ADF Data Visualization
All date values on a graph need to be formatted correctly when they are presented to a
user. Users expect that they can input values according to their date formatting
preferences. For instance, a value of 13th August, 2011 in the database might have to
be displayed as 08/13/2011 for a certain user. A similar example of a date-time value
is that a value of 26th July 2011, 2:00:00 PM might have to be displayed as 14:00
07/26/2011.

20.11.4.1 Formatting Dates and Timestamp Values on a Graph
Before you begin, create an entity object and a view object with date or timestamp
fields, including any of these attribute types: java.sql.Date or java.sql.Timestamp. Drag
and drop the entity and create an ADF Data Visualization component, such as a pie
graph, a bar graph or a line graph.

A graph typically uses categorical attributes, such as product, geography or year, on
an ordinal axis (x axis or dvt:o1Axis) and for the marker tooltips. For the dvt:o1 axis,
the data is considered as text no matter what its type in the underlying layers.
Therefore, any number or date on the dvt:o1 axis does not honor any formatting.

A user can add af:convertNumber/af:convertDateTime by first adding
dvt:attributeFormat to it, and the resultant values on the x-axis will be formatted, as
shown in Example 20–48. Also, with this code, wherever the ordinal axis values are
used in the user interface, they will appear with the proper formatting.

Example 20–48 Date Formatting on the O1 Axis

<dvt:attributeFormat id="af1" name="OrderDate">
 <af:convertDateTime type="date"
pattern="#{applCorePrefs.dateFormatPattern}"/>
 </dvt:attributeFormat>

Notes:

■ If there is a single categorical Date attribute being displayed on
the O1Axis, the graph displays a TimeAxis instead of the typical
O1 / Ordinal Axis. The TimeAxis will show dates in a hierarchical
format instead of as a single label on an O1 Axis, for example June
27, 2001. To show a single label on the O1 Axis, the TimeAxis
should be turned off (timeAxisType="TAT_OFF") and a
<dvt:attributeFormat> should be used to specify the date format.

■ The Area graph displays a time axis when dates (object type
java.util.Date) are specified for the column labels. Several
timeXXX attributes are defined on the graph tag to customize the
time axis. The child tag timeAxisDateFormat controls the format
in which the time axis labels are displayed.

<dvt:timeAxisDateFormat dayFormat="DAY_OF_MONTH"
 monthFormat="MONTH_LONG"
 quarterFormat="NONE" yearFormat="YEAR_LONG"
 timeFormat="HOUR_MINUTE_SECOND"/>

Configuring National Language Support Attributes

20-52 Developer's Guide

Example 20–49 shows timestamp formatting on the O1 axis.

Example 20–49 Timestamp Formatting on the O1 Axis

<dvt:attributeFormat id="af1" name="LastUpdateDate">
 <af:convertDateTime type="both"
pattern="#{applCorePrefs.UPTZPattern}"/>
 </dvt:attributeFormat>

This is the same as the case of ADF Faces, in which the UPTZPattern is used to format
timestamp values and dateFormatPattern is used to format date values.

In Figure 20–34, dates such as 2/1/2015 on the O1 axis and 8/9/2009 on the tooltip are
examples of date fields on an area graph that should be formatted according to the
user's date formatting preferences.

Figure 20–34 Dates to Format Using User Preferences

Other Types of Graphs
Example 20–49 just gives an example of date and date-time formatting in area graphs.
Table 20–3 shows the tags in which af:convertDateTime can be added for date and
timestamp formatting in the other types of graphs.

20.12 Configuring National Language Support Attributes
In Oracle Fusion Applications, National Language Support (NLS) refers to the ability
to run an application instance in any single supported language, including specific

Table 20–3 Using af:convertDateTime for Date and Timestamp Formatting

Graph Type Is dvt:attributeFormat Required?

Bar Graph Yes

Bar Horizontal Yes

Bubble Graph Yes

Combination Graph Yes

Funnel Graph Yes (for funnel section values

Line Graph Yes

Pareto Graph Yes

Pie Graph Yes

Pie Bar Charts Yes

Gantt Chart No (Add af:convertDateTime as a child tag of af:column)

Gauge N/A

ADF Pivot Table <af:inputText>/<af:outputText> whose parent tag is <dvt:dataCell>

<af:inputText>/<af:outputText> whose parent tag is <dvt:headerCell>

Configuring National Language Support Attributes

Working with Localization Formatting 20-53

regional or territorial number and date formats. Typically, in order to support a given
language, only the customer-facing components of the software (user interface, lookup
tables, online documentation, and so on) are translated. Translations are delivered via
NLS patches.

20.12.1 Session National Language Support Attributes
Oracle Fusion Applications manage NLS attributes at the session level. At runtime,
these attributes are initialized based on the user's profile, and are applied when
needed by Applications Core. For example, the session date format mask is initialized
based on the user's preferred date format mask. The date format mask is automatically
applied when date is rendered and parsed. As such, it is unnecessary to manually
specify NLS attributes in design time.

In certain situations, however, you may need to access the NLS attributes for the
purposes of data formatting or parsing your code. To do so, use the managed bean
ApplCorePrefs.

Table 20–4 lists the Oracle Fusion Applications session NLS attributes, the profile used
to set each attribute and the possible values for session attributes.

Table 20–4 Session NLS Attributes

Session Attribute Profile Values Comments

LANGUAGE FND_LANGUAGE select DESCRIPTION, LANGUAGE_TAG
from FND_LANGUAGES_B where
INSTALLED_FLAG in ('I', 'B');

Primary attribute used to represent the
current language. Corresponds to the
LANGUAGE_TAG column in FND_LANGUAGES.

Looks up the corresponding NLS_
LANGUAGE and alters the session in the
database. Valid examples are es, es-US,
fr.

NLS_LANG Represents the two letter language code,
which is derived using the LANGUAGE
attributes. This value is derived rather
than explicitly set.

NLS_LANGUAGE Represents the NLS language, which is
derived from the LANGUAGE attribute. This
value is derived rather than explicitly set.

NLS_SORT FND_NLS_SORT select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'NLS_SORT'

and ENABLED_FLAG = 'Y'

and SYSDATE

between START_DATE_ACTIVE and
nvl(END_DATE_ACTIVE, SYSDATE+1);

Setting this attribute results
in an altered session in the
database for the NLS_SORT
database attribute.

DATE_FORMAT FND_DATE_FORMAT select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'DATE_FORMAT'

and ENABLED_FLAG = 'Y' and SYSDATE
between START_DATE_ACTIVE and
nvl(END_DATE_ACTIVE, SYSDATE+1);

Configuring National Language Support Attributes

20-54 Developer's Guide

TIME_FORMAT FND_TIME_FORMAT select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'TIME_FORMAT'

and ENABLED_FLAG = 'Y'

and SYSDATE between START_DATE_
ACTIVE and nvl(END_DATE_ACTIVE,
SYSDATE+1);

GROUPING_
SEPARATOR

FND_GROUPING_
SEPARATOR

select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'GROUPING_
SEPARATOR'

and ENABLED_FLAG = 'Y'

and SYSDATE between START_DATE_
ACTIVE and nvl(END_DATE_ACTIVE,
SYSDATE+1);

DECIMAL_SEPARATOR FND_DECIMAL_
SEPARATOR

select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'DECIMAL_
SEPARATOR'

and ENABLED_FLAG = 'Y'

and SYSDATE between START_DATE_
ACTIVE and nvl(END_DATE_ACTIVE,
SYSDATE+1);

CURRENCY FND_CURRENCY select NAME, CURRENCY_CODE

from FND_CURRENCIES_VL

where ENABLED_FLAG = 'Y'

and SYSDATE between START_DATE_
ACTIVE and nvl(END_DATE_ACTIVE,
SYSDATE+1);

This attribute specifies the
preferred currency code. It
has no corresponding
database attribute.

Table 20–4 (Cont.) Session NLS Attributes

Session Attribute Profile Values Comments

Configuring National Language Support Attributes

Working with Localization Formatting 20-55

Table 20–5 lists language and territory values used with NLS attributes.

TERRITORY FND_TERRITORY select TERRITORY_SHORT_NAME,
TERRITORY_CODE from FND_TERRITORIES_
VL where ENABLED_FLAG = 'Y';

This attribute specifies the
preferred territory. This
attribute differs from the
database attribute NLS_
TERRITORY, as Oracle Fusion
Applications supports more
territories than the database.
The database attribute is
permanently set to the value
AMERICAN.

TIMEZONE FND_TIMEZONE select TIMEZONE_CODE, NAME from FND_
TIMEZONES_VL where ENABLED_FLAG =
'Y';

This attribute specifies the
preferred time zone value.

CLIENT_ENCODING FND_CLIENT_
ENCODING

select MEANING, LOOKUP_CODE

from FND_LOOKUPS

where LOOKUP_TYPE = 'CLIENT_
ENCODING'

and ENABLED_FLAG = 'Y'

and SYSDATE between START_DATE_
ACTIVE and nvl(END_DATE_ACTIVE,
SYSDATE+1);

Table 20–5 Language and Territory Values

LANGUA
GE_TAG

LANGUAGE
_CODE

LANGUA
GE_ID

NLS_
LANGUAGE

NLS_
TERRITORY

ISO_
LANGUAGE

ISO_
TERRIT
ORY NLS_CODESET

ISO_
LANGUA
GE_3

ar AR 8 ARABIC UNITED
ARAB
EMIRATES

ar AE AR8ISO8859P6 ara

bg BG 101 BULGARIAN BULGARIA bg BG CL8ISO8859P5 bul

ca CA 102 CATALAN CATALONIA ca CT WE8ISO8859P1 cat

cs CS 30 CZECH CZECH
REPUBLIC

cs CZ EE8ISO8859P2 ces

de D 4 GERMAN GERMANY de DE WE8ISO8859P1 deu

da DK 5 DANISH DENMARK da DK WE8ISO8859P1 dan

es E 11 SPANISH SPAIN es ES WE8ISO8859P1 spa

eg EG 118 EGYPTIAN EGYPT eg EG AR8ISO8859P6 egy

el EL 104 GREEK GREECE el GR EL8ISO8859P7 ell

es-US ESA 29 LATIN
AMERICAN
SPANISH

AMERICA es US WE8ISO8859P1 spa

fr F 2 FRENCH FRANCE fr FR WE8ISO8859P1 fra

fr-CA FRC 3 CANADIAN
FRENCH

CANADA fr CA WE8ISO8859P1 fra

en-GB GB 1 ENGLISH UNITED
KINGDOM

en GB WE8ISO8859P1 eng

Table 20–4 (Cont.) Session NLS Attributes

Session Attribute Profile Values Comments

Configuring National Language Support Attributes

20-56 Developer's Guide

20.12.2 Database Session Attributes
Oracle Fusion Applications does not use most of the database session NLS parameters.
Instead, these are set to constant values such that typically, the user's preferred values
are not reflected. This is true for most parameters except the following: NLS_LANGUAGE
which is set to view link view access, and NLS_SORT, which is set to use the database
linguistic sorting functionality.

hr HR 103 CROATIAN CROATIA hr HR EE8ISO8859P2 hrv

hu HU 28 HUNGARIAN HUNGARY hu HU EE8ISO8859P2 hun

it I 108 ITALIAN ITALY it IT WE8ISO8859P1 ita

is IS 106 ICELANDIC ICELAND is IS WE8ISO8859P1 isl

he IW 107 HEBREW ISRAEL he IL IW8ISO8859P8 heb

ja JA 15 JAPANESE JAPAN ja JP JA16EUC jpn

ko KO 16 KOREAN KOREA ko KR KO16KSC5601 kor

lt LT 109 LITHUANIAN LITHUANIA lt LT NEE8ISO8859P4 lit

no N 10 NORWEGIAN NORWAY no NO WE8ISO8859P1 nor

nl NL 6 DUTCH THE
NETHERLAND
S

nl NL WE8ISO8859P1 nld

pl PL 110 POLISH POLAND pl PL EE8ISO8859P2 pol

pt PT 18 PORTUGUESE PORTUGAL pt PT WE8ISO8859P1 por

pt-BR PTB 26 BRAZILIAN
PORTUGUESE

BRAZIL t BR WE8ISO8859P1 por

ro RO 111 ROMANIAN ROMANIA ro RO EE8ISO8859P2 ron

ru RU 112 RUSSIAN RUSSIA ru RU CL8ISO8859P5 rus

sv S 13 SWEDISH SWEDEN sv SE WE8ISO8859P1 swe

fi SF 7 FINNISH FINLAND fi FI WE8ISO8859P1 fin

sk SK 113 SLOVAK SLOVAKIA sk SK EE8ISO8859P2 slk

sl SL 114 SLOVENIAN SLOVENIA sl SI EE8ISO8859P2 slv

th TH 115 THAI THAILAND th TH TH8TISASCII tha

tr TR 116 TURKISH TURKEY tr TR WE8ISO8859P9 tur

en US 0 AMERICAN AMERICA en US US7ASCII eng

zh-CN ZHS 14 SIMPLIFIED
CHINESE

CHINA zh CN ZHS16CGB231280 zho

zh-TW ZHT 117 TRADITIONAL
CHINESE

TAIWAN zh TW ZHT16BIG5 zho

sq SQ 67 ALBANIAN ALBANIA sq AL EE8ISO8859P2 sqi

vi VN 43 VIETNAMESE VIETNAM vi VN VN8MSWIN1258 vie

id IN 46 INDONESIAN INDONESIA id ID WE8ISO8859P1 ind

Table 20–5 (Cont.) Language and Territory Values

LANGUA
GE_TAG

LANGUAGE
_CODE

LANGUA
GE_ID

NLS_
LANGUAGE

NLS_
TERRITORY

ISO_
LANGUAGE

ISO_
TERRIT
ORY NLS_CODESET

ISO_
LANGUA
GE_3

Configuring National Language Support Attributes

Working with Localization Formatting 20-57

The parameters TO_NUMBER, TO_DATE, TO_TIMESTAMP and TO_CHAR are used to format
and parse SQL or PL/SQL statements. These parameters are based on constant values,
the canonical format. The parameter FND_DATE for PL/SQL packages also works with
the canonical format. Formatting and parsing should be done at the presentation,
rather than the model layer.

Oracle Fusion Applications session management controls database session parameters.
As such, the database NLS session parameter values must not be altered.

Table 20–6 lists the following:

■ Database attribute: The database NLS session parameter name.

■ Associated session attribute: The Oracle Fusion Applications NLS session
attribute name related to the database attribute name, if one exists. If the attributes
are indeed related, configuring a value for the Oracle Fusion Applications NLS
session attribute results in an ALTER SESSION in the database layer.

■ Default value: The default value of the attribute. This value is configured both in
the database and init.ora as the database default.

■ Alter Session: Indicates whether an ALTER SESSION is created in the database.
When an ALTER SESSION initiates at session creation or attachment, execute NLS_
LANGUAGE and NLS_TERRITORY first, as these may affect other attributes.

– Create: An ALTER SESSION is created once, when the connection is first
created.

– Update: The ALTER SESSION updates when the session attaches, or whenever
an associated attribute value changes mid-session.

– Never: An ALTER SESSION is not created, and the default database value is
unchanged.

Table 20–6 Localization Database Attributes

Database Attribute Default Value Alter Session Comments

NLS_CALENDAR None Never This attribute need not be set as the
default value is GREGORIAN. Accept the
default value.

NLS_COMP None Never This attribute need not be set as the
default value is BINARY. Accept the
default value.

NLS_CURRENCY None Never Accept the default value.

NLS_DATE_FORMAT YYYY-MM-DD Create Fixed value.

NLS_DATE_LANGUAGE NUMERIC DATE LANGUAGE Create Fixed value. Does not require an
attribute or profile.

NLS_ISO_CURRENCY None Never Accept the default value.

NLS_LANGUAGE None Update The value of this attribute is based on
the LANGUAGE session attribute. See the
LANGUAGE attribute in Table 20–4.

NLS_TERRITORY AMERICA Create The value of this attribute is fixed. See
the TERRITORY attribute in Table 20–4.

NLS_LENGTH_SEMANTICS CHAR Create Fixed value. Does not require an
attribute or profile.

NLS_NCHAR_CONV_EXCP None Never Accept the default value. This
parameter is not used.

Standards and Guidelines for Localization Formatting

20-58 Developer's Guide

20.13 Standards and Guidelines for Localization Formatting
The following standards and guidelines apply to localization formatting:

■ After dragging and dropping a view object onto a JSF page, the Oracle ADF tags
for that view object are set. If you change the attributes of the view object after you
create the JSF page, new Oracle ADF tags are not created. You must make these
changes manually by editing the tags.

■ You can change tags generated by Applications Core at design time by editing
them manually.

NLS_NUMERIC_CHARACTERS ,. Create Fixed value. Choose group and
decimal separators independently.

NLS_SORT None Update In order to enable linguistic sorting,
the NLS_SORT session attribute is used
to set the value for this database
attribute. See the NLS_SORT session
attribute in Table 20–4.

NLS_TIME_FORMAT HH24:MI:SS.FF Create Fixed value. Does not require an
attribute or profile.

NLS_TIME_TZ_FORMAT HH24:MI:SS.FF TZR Create Fixed value. Does not require an
attribute or profile.

NLS_TIMESTAMP_FORMAT YYYY-MM-DD
HH24:MI:SS.FF

Create Fixed value. Does not require an
attribute or profile.

NLS_TIMESTAMP_TZ_FORMAT YYYY-MM-DD
HH24:MI:SS.FF TZR

Create Fixed value. Does not require an
attribute or profile.

NLS_DUAL_CURRENCY None Never Accept the default value.

Note: As the language attributes tracked on the session reflect Java
values, you cannot use them for formatting on the PL/SQL layer.

Table 20–6 (Cont.) Localization Database Attributes

Database Attribute Default Value Alter Session Comments

Part IV
Part IV Developing Applications with Flexfields

This part of the Developer's Guide discusses how to use descriptive, extensible, and
key flexfields to develop Oracle Fusion applications that can be customized by
application implementors and administrators without programming.

Getting Started with Flexfields introduces flexfield concepts and features, including the
development process, development roles, and how flexfields appear in the user
interface.

Using Descriptive Flexfields discusses the descriptive flexfield concepts and features, the
development process, how to incorporate descriptive flexfields in user interface (UI)
tables, forms, and query panels, and how to use descriptive flexfields with Oracle
Business Intelligence, web services, and ADF Desktop Integration.

Using Extensible Flexfields discusses the extensible flexfield concepts and features, the
development process, contexts, dedicated tables and views, how to employ extensible
flexfields on an application page, how to programmatically access business component
information, and how to customize the Java classes that generate extensible flexfield
business components and UI artifacts at runtime.

Using Key Flexfields discusses the key flexfield concepts and features, the development
process, producer and consumer development activities, how to incorporate key
flexfields in UI tables and forms, how to define and access code-combination filters,
and how to use key flexfields with Oracle Business Intelligence, web services, and
ADF Desktop Integration..

Testing and Deploying Flexfields discusses how to test your flexfield business
components using Integrated WebLogic Server, how to deploy your flexfield
application to a standalone instance of WebLogic Server to test the full lifecycle, how
to regenerate flexfield business components programmatically, and how to make
flexfield setup task flows accessible from Oracle Fusion Functional Setup Manager.

This part contains the following chapters:

■ Chapter 21, "Getting Started with Flexfields"

■ Chapter 22, "Using Descriptive Flexfields"

■ Chapter 23, "Using Extensible Flexfields"

■ Chapter 24, "Using Key Flexfields"

■ Chapter 25, "Testing and Deploying Flexfields"

21

Getting Started with Flexfields 21-1

21Getting Started with Flexfields

This chapter discusses the basics of using flexfields to enable customers to add custom
attributes to business objects in their Oracle Fusion applications.

This chapter includes the following sections:

■ Section 21.1, "Introduction to Flexfields"

■ Section 21.2, "Participant Roles"

■ Section 21.3, "The Flexfield Development Lifecycle"

■ Section 21.4, "Flexfields in the Application User Interface"

21.1 Introduction to Flexfields
In your role as a developer, it is often impossible for you to anticipate all the database
columns and UI fields your customers might need, or how each field should look as
end user needs change. Flexfields enable customers to configure their applications to
meet their business needs without having to perform custom programming.

The basic premise of a flexfield is to encapsulate all of the pieces of information related
to a specific purpose, such as the components of a student's contact information, or the
features of a product in inventory, or a key identifying a particular purchase by a
particular person for a particular company on a particular date. A flexfield is a set of
placeholder fields, called segments, that are associated with a business object. A
segment captures a single atomic value, which is represented in the application
database as a single column. In the application UI, a flexfield's segments can be
presented as individual table columns, as separate fields, or as a concatenated string of
values.

Those performing in the role of an implementor, either on behalf of the developer
organization for a developer flexfield or on behalf of a customer for a customer flexfield,
configure a flexfield by specifying the prompt, length, and data type of each flexfield
segment. Configuration includes the specification of valid values for each segment,
and the meaning of each value. Configuration also involves defining structure and
context. The role of implementor is defined in Section 21.2, "Participant Roles." The
difference between a developer flexfield and a customer flexfield is explained in
Section 21.1.1, "Descriptive Flexfields" and Section 21.1.2, "Extensible Flexfields." The
concepts of structure and context are defined later in this section. For information
about flexfield configuration, see the "Using Flexfields for Custom Attributes" chapter
in the Oracle Fusion Applications Extensibility Guide.

There are three types of flexfields, all of which enable implementors to configure
application features without programming. These configurations are fully supported
within Oracle Fusion Applications:

Introduction to Flexfields

21-2 Developer's Guide

■ Descriptive: Descriptive flexfields give customers the ability to extend the data
model with additional attributes. A descriptive flexfield provides a fixed number
of segments for a business object, which the customer can optionally use to add
custom attributes to meet their business needs, define how the attributes are
validated, and configure how the attributes are displayed. For more information,
see Section 21.1.1, "Descriptive Flexfields."

■ Extensible: An extensible flexfield is similar to a descriptive flexfield, but with the
following additional features:.

– The number of configurable segments is not fixed. That is, the number of
segments is extensible.

– Attributes can be grouped into contexts so they will always be presented
together in the application user interface.

– Hierarchical categories enable implementors to reuse contexts for similar
entities.

– Extensible flexfields support one-to-many relationships between the entity
and the extended attribute rows.

For more information, see Section 21.1.2, "Extensible Flexfields."

■ Key: Key flexfields enable customers to use their own coding scheme or naming
scheme to identify their business entities by giving implementors the ability to
configure the business entities to be identified using flexible, multipart, intelligent
key codes. Each element (segment) of the key may be individually meaningful, as
well as the combination as a whole. For example, key flexfields might represent
part numbers and account numbers. Key flexfields are never optional; customers
must configure them for their Oracle Fusion applications to operate correctly.

For more information, see Section 21.1.3, "Key Flexfields."

To better understand flexfields and the differences among descriptive flexfields,
extensible flexfields, and key flexfields, it is important to understand flexfield
structures and contexts.

■ Structure: A flexfield structure is a specific configuration of segments. If you add
or remove segments, or, in the case of key flexfields, you rearrange the order of
segments in a flexfield, you produce a different structure. In some applications,
different end users need to see individually tailored segment structures for the
same flexfield; for example, the correctly formatted local postal address for
customer service inquiries, which would change based on the user's locale.

A flexfield can display different segments and prompts for different end users
based on a data condition in the application's data, such as the user's role or a
value entered by the user. All types of flexfields allow for multiple structures. All
the segments that you might need to use to create all the anticipated structures
must be defined as part of the flexfield.

■ Context: Descriptive and extensible flexfield segments are context-sensitive — they
are varied or made available in your application by implementors to reflect the
needs of the customer for which the application is being configured.

Segments are made available to an application as groups of attributes called
contexts. Each context is defined as part of a flexfield, and includes of a set of
context-sensitive segments that stores a particular type of related information. The
database columns on which segments are based can be reused in as many contexts
as desired. For example, an implementor can define a Dimensions context, which
uses three of the flexfield's database columns of type NUMBER for the height, width,

Introduction to Flexfields

Getting Started with Flexfields 21-3

and depth segments. The implementor can also define a Measurements context,
which reuses those database columns for weight, volume, and density segments.

21.1.1 Descriptive Flexfields
Descriptive flexfields provide a way for customers to add custom attributes to
business objects, to define how the attributes are validated, and to define display
properties for the attributes. These attributes can be standalone attributes. That is, they
do not necessarily need to have anything to do with each other and do not need to be
treated as a combination. The segments of a descriptive flexfield that are made
available to end users are exposed in the user interface as individual fields.

Descriptive flexfields are entirely optional; customers can choose to configure and
expose them or not, as they wish. For example, one customer could configure the parts
flexfield to store depth, height, and width, and another customer could configure the
parts flexfield to store size and color. Some customers might not need any additional
attributes.

You create a descriptive flexfield for one of two purposes:

■ For use by customer implementors — a customer flexfield.

In this case, you define and register the descriptive flexfield in your application
database, but all configuration is accomplished by the implementor, including
creating contexts, creating segments, and adding validation. End users see these
additional attributes in the UI and can enter values for them. End users cannot
modify the configuration; they can only enter values for attributes that are already
configured.

■ To support functionality that you build into your application — a developer
flexfield.

For this purpose, you define and register the descriptive flexfield, and then
preconfigure (seed) the contexts and segments, value sets, and validation to satisfy
a specific purpose. The descriptive flexfield becomes part of your application, and
you can code references to its seeded configuration. You might also enable
implementors to extend the developer flexfield, allowing them to configure it as
they would a customer flexfield.

Even if implementors never change a flexfield after it has been configured, they can
take advantage of useful flexfield features such as automatic segment validation,
automatic segment cross-validation, multiple segment structures, and more.

21.1.2 Extensible Flexfields
An extensible flexfield is similar to a descriptive flexfield, but with the added ability
for customers to add as many context-sensitive segments to a flexfield as they need. In
addition, customers can associate more than one context with any particular row of
data.

Extensible flexfields also enable implementors to configure contexts as either single row
or multiple row. That is, either one set of the context's segments is stored for a business
object instance, or multiple sets of the context's segments are stored for the instance.
For example, a job position requires only one set of educational requirements, but can
require more than one certificate or license.

Note: Descriptive flexfield segments that store data that is applicable
to all entities, regardless of context, are referred to as global segments.

Introduction to Flexfields

21-4 Developer's Guide

Extensible flexfields also enable implementors to combine the contexts into groups
known as pages, which serve to connect the contexts so they will always be presented
together in the application user interface. Hierarchical categories can be defined for
extensible flexfields, and implementors can associate any combination of contexts with
a given category. For example, the Electronics and Computers category hierarchy
might include a Home Entertainment category, which in turn might include an Audio
category and a TV category, and so on. The Home Entertainment category might have
contexts that specify voltage, dimensions, inputs and outputs. Contexts are reusable
within a given extensible flexfield. For example, the dimensions context could be
assigned to any category that needs to include dimensional information.

Just as with descriptive flexfields, you create a flexfield for one of two purposes:

■ For use by customer implementors — a customer flexfield.

■ To support functionality that you build into your application — a developer
flexfield.

For more information about customer and developer flexfields, see Section 21.1.1,
"Descriptive Flexfields."

21.1.3 Key Flexfields
Key flexfields are configurable multipart intelligent keys, where each element
(segment) of the key may be individually meaningful, as well as the combination as a
whole. For example, key flexfields might represent part numbers and account
numbers.

A key flexfield is implemented in the user interface as a collection of fields that can be
displayed in various UI formats. Key flexfields are never optional; customers must
configure them for their Oracle Fusion applications to operate correctly.

The ability to individually tailor key flexfield structures to the end user can be
essential. For example, Oracle General Ledger uses a key flexfield called the
Accounting Flexfield to uniquely identify a general ledger account. It maintains the
multiple accounting codes used throughout Oracle Fusion Applications, and provides
different Accounting Flexfield structures for users of different sets of books. Oracle
General Ledger determines which flexfield structure to use based on the value of a Set
of Books user profile option.

This flexfield is preconfigured to include six segments: company code, cost center,
account, product, product line, and subaccount, and valid values are defined for each
segment, as well as cross-validation rules to describe valid segment combinations.
However, customers might structure their general ledger account fields differently. By
including the Accounting Flexfield, Oracle General Ledger can accommodate the
needs of different customers. One customer can configure the Accounting Flexfield
structure to include 6 segments, while another customer includes 12 segments, all
without programming.

21.1.4 Value Sets
An end user enters a value into a flexfield segment while using an Oracle Fusion
application. The flexfield validates each segment value against a set of valid values —
a value set — which is usually predefined by the implementor. To validate a segment
means that the flexfield compares the value that the end user enters into the segment
against the values that comprise the value set that is assigned to that segment.

Flexfield segments are usually validated, and typically each segment in a given
flexfield uses a different value set. A value set can be assigned to more than one

Participant Roles

Getting Started with Flexfields 21-5

segment and value sets can be shared among different flexfields. For most value sets,
when you enter values into a flexfield segment, you can enter only values that already
exist in the value set assigned to that segment.

When business components are generated for a flexfield, the value set metadata is
used in the creation of the view objects. Value sets (and their view objects) are owned
by a module, which can be an Application, a Logical Business Area (LBA), or a sub-LBA
in the application taxonomy hierarchy.

For information about value set configuration, see the "Using Flexfields for Custom
Attributes" chapter in the Oracle Fusion Applications Extensibility Guide. For more
information about the taxonomy hierarchy, see Chapter A, "Working with the
Application Taxonomy."

21.1.5 Flexfield Integration with Oracle Business Intelligence
Oracle Business Intelligence is a comprehensive collection of enterprise business
intelligence functionality that provides the full range of business intelligence
capabilities including interactive dashboards, proactive intelligence and alerts,
enterprise and financial reporting, real-time predictive intelligence, and more.

A descriptive or key flexfield can be included in Oracle Business Intelligence by
business-intelligence enabling the flexfield. However, because the polymorphic view
objects that are used to model flexfields are not compatible with Oracle Business
Intelligence, the flexfield must be flattened into a static form that Oracle Business
Intelligence can work with. You accomplish this by slightly modifying the process
when you register the flexfield and incorporate it into your application.

For more information, see Section 22.12, "Preparing Descriptive Flexfield Business
Components for Oracle Business Intelligence" and Section 24.5.3, "How to Prepare Key
Flexfield Business Components for Oracle Business Intelligence.".

21.2 Participant Roles
Responsibility for flexfield development activities is divided between owners and
implementors. These are not formal development roles; they are used only in this
documentation to clarify and group the flexfield development activities.

Owner
The flexfield owner is the developer (or development team) who determines that a
particular flexfield is needed or would be useful within a particular Oracle Fusion
application, and makes a flexfield of the appropriate design available. The owner then
incorporates the flexfield into an application. With key flexfields, the owner can be
either a producer or a consumer, or can assume both roles.

■ Producer: The flexfield producer is the developer who determines that a particular
flexfield is needed or would be useful within a particular application, and makes
available a flexfield of the appropriate design. With key flexfields, the producer's
product owns the combinations table for that flexfield, which is described in
Section 24.2.1.1, "Creating the Combinations Table."

■ Consumer: A key flexfield consumer incorporates a flexfield into an application.
The consumer typically stores segment values or combination IDs (CCIDs) on a
product database table, and works with the structural and seed data and the
business components that have been configured by the flexfield producer.

The Flexfield Development Lifecycle

21-6 Developer's Guide

Implementor
A flexfield implementor is an individual who sets up all or part of a flexfield-enabled
application for deployment. Implementors typically work for or on behalf of
customers to install, configure, or administer their applications. In the case of developer
flexfields that have been created to support functionality that has been built into the
application, the developer also assumes the role of implementor.

21.3 The Flexfield Development Lifecycle
The process of developing a flexfield and incorporating it into an application differs
for each type of flexfield. In general, the process comprises the following activities:

1. Define and register the flexfield metadata.

2. Create business components for the flexfield. For key flexfields, also create
business components for the key flexfield combination filters as described in
Section 24.7, "Working with Code-Combination Filters for Key Flexfields."

3. For descriptive and key flexfields, link the flexfield business components to the
application's business components.

4. Incorporate the flexfield into UI pages.

5. Define sample flexfield data and use it to test the flexfield.

6. Use the Tester role of the Create Flexfield Business Components wizard to create a
model that you can use to test the flexfield.

7. Optionally, share the flexfield business components with other developers using
an Oracle Application Development Framework (Oracle ADF) library.

After you have completed the flexfield development process and delivered the
application, implementors can use the Manage Flexfields task flows to configure each
flexfield. These task flows determine how the flexfield's segments will be populated,
organized, and made available to end users within the application. For information
about planning and implementing flexfield configuration, such as defining structures,
contexts, attributes, labels, behavior, and associated value sets, see the "Using
Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility
Guide.

Note: You must use the specified tools throughout the development
lifecycle to create and update the flexfield metadata and product
tables. Do not use database tools unless you are instructed to do so. If
you use database tools instead of the specified tools, you risk
destroying data integrity and you lose the ability to audit changes to
the data.

Because Oracle Fusion Applications tables are interrelated, any
changes that you make using the specified tools, such as building
business components or UI forms, can update many tables at once. If
you do not use the specified tools, you might not update all the
necessary tables. In addition, most of these tools perform validation
and change tracking.

If tables are not properly synchronized, you risk unpredictable results
throughout Oracle Fusion Applications products.

Flexfields in the Application User Interface

Getting Started with Flexfields 21-7

21.4 Flexfields in the Application User Interface
Flexfield segments can appear in a user interface as either label/widget pairs or as
table fields. After an extensible flexfield is configured, it appears in the UI as one or
more regions. Configured descriptive and key flexfields may appear in the UI in either
a form layout, a tabular layout, or in a form or table layout in a popup component:

■ Form layout: A typical label/prompt and either view-only data or a widget (text
field, choice list, and so on) that allows an end user to enter values.

■ Tabular layout: A column of information in a table, where the label of the flexfield
segment is the column header, and the values are within each cell of the column.

All segments of a single flexfield are grouped together by default. The layout of the
form or table and the positions of the flexfield segments depend on where you place
the flexfield on the page. Flexfields may also be presented in a separate section of the
page, alone in a table, or on their own page.

Flexfields in the Application User Interface

21-8 Developer's Guide

22

Using Descriptive Flexfields 22-1

22Using Descriptive Flexfields

This chapter discusses how to use descriptive flexfields to enable customers to add
additional attributes to business objects in their Oracle Fusion applications.

This chapter includes the following sections:

■ Section 22.1, "Introduction to Descriptive Flexfields"

■ Section 22.2, "Developing Descriptive Flexfields"

■ Section 22.3, "Creating Descriptive Flexfield Business Components"

■ Section 22.4, "Creating Descriptive Flexfield View Links"

■ Section 22.5, "Nesting the Descriptive Flexfield Application Module Instance in the
Application Module"

■ Section 22.6, "Adding a Descriptive Flexfield View Object to the Application
Module"

■ Section 22.7, "Adding Descriptive Flexfield UI Components to a Page"

■ Section 22.8, "Configuring Descriptive Flexfield UI Components"

■ Section 22.9, "Loading Seed Data"

■ Section 22.10, "Working with Descriptive Flexfield UI Programmatically"

■ Section 22.11, "Incorporating Descriptive Flexfield into a Search Form"

■ Section 22.12, "Preparing Descriptive Flexfield Business Components for Oracle
Business Intelligence"

■ Section 22.13, "Publishing Descriptive Flexfields as Web Services"

■ Section 22.14, "Accessing Descriptive Flexfields from an ADF Desktop Integration
Excel Workbook"

22.1 Introduction to Descriptive Flexfields
Descriptive flexfields provide a way for implementors at customer sites to add custom
attributes to entities, and to define validation and display properties for them. A
descriptive flexfield is a logical grouping of segments that is mapped to a set of
database columns that serve as placeholders for custom attributes. These placeholder
columns are often referred to as extension columns. The attributes in the group are of
three types: global segments, context-sensitive segments, and context segments. The global
segments are for custom attributes that apply to all entity rows, while the
context-sensitive segments are for custom attributes that apply to certain entity rows
based on the value of a context segment.

Introduction to Descriptive Flexfields

22-2 Developer's Guide

To learn more about flexfield basics and terms, including developer and implementor
roles, global segments, context-sensitive segments, and context segments, see
Chapter 21, "Getting Started with Flexfields."

As the developer, you can define multiple usages for a descriptive flexfield. For
example, you might have defined an address flexfield that the implementor may use
to add attributes related to addresses. The implementor can define context-sensitive
segments for the address that are based on a certain attribute, such as country code.
You can reuse the address flexfield with any table for which you need address
information, and the implementor needs to configure the flexfield only once.

To learn more about developer and implementor roles, see Section 21.2, "Participant
Roles". To learn how implementors configure descriptive flexfields to meet customer's
needs, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion
Applications Extensibility Guide.

To complete the development tasks for descriptive flexfields:

1. Create the extension columns to store the flexfield data, and then register the
flexfield definition, usage, and parameter metadata.

See Section 22.2, "Developing Descriptive Flexfields".

2. Create descriptive flexfield business components.

See Section 22.3, "Creating Descriptive Flexfield Business Components".

3. Create view links between the descriptive flexfield business components and the
application's business components.

See Section 22.4, "Creating Descriptive Flexfield View Links".

4. Nest the descriptive flexfield application module instance in the application
module.

See Section 22.5, "Nesting the Descriptive Flexfield Application Module Instance in
the Application Module".

5. Add an instance of the descriptive flexfield view object to the application module.

See Section 22.6, "Adding a Descriptive Flexfield View Object to the Application
Module".

6. Add the descriptive flexfield usage to the appropriate application pages.

See Section 22.7, "Adding Descriptive Flexfield UI Components to a Page".

7. Configure the descriptive flexfield UI components.

See Section 22.8, "Configuring Descriptive Flexfield UI Components".

8. Load any necessary application seed data, such as error messages or lookup
values.

See Section 22.9, "Loading Seed Data."

Tip: After completing this step, you can regenerate the flexfield
business components programmatically at runtime to update your
descriptive flexfield implementation without manual intervention.

For more information, see Section 25.4, "Regenerating Flexfield
Business Components Programmatically".

Introduction to Descriptive Flexfields

Using Descriptive Flexfields 22-3

After implementing a flexfield, you can define seed or test value sets for the flexfield,
and you can create a model that you can use to test it. For more information, see
Section 25.1.2, "How to Test Flexfields."

After you have completed the flexfield development process and delivered your
application, implementors can use the Manage Descriptive Flexfields task flows to
define context values and to configure the segments for each flexfield. These task flows
determine how the flexfield's segments will be populated, organized, and made
available to end users within the application. For information about planning and
implementing flexfield configuration, such as defining attributes, labels, behavior, and
associated value sets, see the "Using Flexfields for Custom Attributes" chapter in the
Oracle Fusion Applications Extensibility Guide.

To make the Manage Descriptive Flexfields task flows available to implementors,
register them with the Oracle Fusion Functional Setup Manager. For more
information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion
Functional Setup Manager".

22.1.1 Benefits of Descriptive Flexfields
Descriptive flexfields let you satisfy different customers without having to reprogram
the application, by enabling the customers to add customized fields. Descriptive
flexfields also enable context-sensitive fields that appear only when needed. In
essence, a descriptive flexfield enables implementors to extend the data model without
writing either XML or Java. A descriptive flexfield is presented as a set of fields on a
page, much like the fields of the core application.

For example, consider a retail application that keeps track of customers. The customer
form would typically include fields such as Name, Address, State, Customer Number,
and so on. However, the page might not include fields to keep track of customer
clothing size and color preferences, because these are attributes that can differ for each
company that uses the application. For example, if the retail application is used for a
tool company, a field for clothing size would be undesirable. Even if you initially
provide all the fields that a company needs, the company might later identify even
more customer attributes that it wants to track. You can add a descriptive flexfield to
the customer form to provide the desired expansion space. Companies also can take
advantage of the fact that descriptive flexfields can be context-sensitive, where the
information that the application stores depends on other values that the end users
enter on other parts of the page. For example, a company could configure the
descriptive flexfield for a fixed asset form to store style, size, and wood type if the
asset type was "desk", and store CPU chip and memory size if the asset type was
"computer."

Another example is the descriptive flexfield in the Oracle General Ledger journal entry
form. Implementors can configure the flexfield to add information of a customer's own
choosing. For example, a customer might want to capture additional information
about each journal entry, such as source document number, or the name of the person
who prepared the entry.

To maximize flexibility for customers, consider defining a descriptive flexfield for
every entity in your application to which a customer might need to add attributes.

22.1.2 How Descriptive Flexfields Are Modeled in Oracle Application Development
Framework

Flexfields are modeled as a collection of Oracle Application Development Framework
(Oracle ADF) polymorphic view rows, as described in the "Working with Polymorphic

Developing Descriptive Flexfields

22-4 Developer's Guide

View Rows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition). In a
polymorphic collection of rows, each view row can have its own set of attributes, and
all rows have at least one common attribute, the discriminator. The discriminator
determines which view row type should be used. Given a collection of polymorphic
view rows, each row can be a different type.

The attribute sets that are associated with the discriminator are predefined. In fact,
Oracle ADF enables each view row to have its own view definition. When a
polymorphic collection of rows is created, Oracle ADF selects a view definition for the
row to be added based on the value of the discriminator attribute.

Descriptive flexfield segments are exposed as view row attributes in the order that
they are defined in the flexfield's metadata. Global segments are exposed as attributes
in the base view object of the polymorphic collection. Every context is modeled as an
extended view object of the base view object. That is, an extended view object is
created for every context value. These extended view objects, which are referred to as
subtype view objects, expose context-sensitive segments as subtype-specific view
attributes. The context segment is exposed as the discriminator attribute of the
polymorphic view rows.

You use a wizard to generate a polymorphic base view object that is based on the
descriptive flexfield definition, then create a view link to connect the product view
object and the base view object. You can then use the base view object to add the
flexfield to a UI page. For more information about the generation of base and subtype
view objects, see Section 22.3, "Creating Descriptive Flexfield Business Components."

For more information about polymorphic view rows, see the "Working with
Polymorphic View Rows" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

22.2 Developing Descriptive Flexfields
Whenever you have a product table that you think implementors might need to extend
for their specific circumstances, you can add columns to the table and register those

Note: One distinction of the flexfield context-switching mechanism
is that during context switching, the context-sensitive segments are
initialized as follows:

■ If a segment is defined to use a constant value from an underlying
entity object as its default, it is initialized to that value.

■ If a segment is defined to use a descriptive flexfield parameter by
default, it is initialized to that value.

■ For all other cases, the context-sensitive segment is set to NULL.

Note: Because flexfield view objects are modeled as polymorphic
view objects, you can use descriptive flexfield view objects in the same
manner that you use any other polymorphic view objects, and they
will behave in the same way. This includes support for flexfields in
ADF Desktop Integration. For more information, see Section 22.14,
"Accessing Descriptive Flexfields from an ADF Desktop Integration
Excel Workbook" and the Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

Developing Descriptive Flexfields

Using Descriptive Flexfields 22-5

columns as flexfield segments. After you have registered a flexfield, you can reuse the
flexfield with other product tables.

To complete the process for developing a descriptive flexfield:

1. Add extension columns to the product table.

2. Register the flexfield and define its metadata and primary usage. You can register
the flexfield using a registration task or using procedures from the FND_FLEX_DF_
SETUP_APIS PL/SQL package.

3. Optionally reuse the flexfield by adding the same set of extension columns to
other product tables.

4. Register all secondary usages using either a registration task or procedures from
the FND_FLEX_DF_SETUP_APIS PL/SQL package.

5. Register the entity details for each usage.

6. Register flexfield parameters to identify values that are obtained from external
reference data sources, such as different database columns, constant values, or
session attributes. You can register the parameters using a registration task or
using the procedures from the FND_FLEX_DF_SETUP_APIS PL/SQL package.

22.2.1 How to Create Descriptive Flexfield Columns
To implement a descriptive flexfield for a product table, you first add extension
columns to that table. You need to add a context column, such as ATTRIBUTE_
CATEGORY, and as many generic attribute (segment) columns of each type, such as
ATTRIBUTE1_VARCHAR2 and ATTRIBUTE12_NUMBER, that you think the
implementors will need. A segment column must be a VARCHAR2, NUMBER, DATE, or
TIMESTAMP. When defining a flexfield attribute, the implementor must map the
attribute to an available extension column.

The context column, which is required, must be of type VARCHAR2. The context
column's length determines the maximum length of the context codes that can be
created by implementors when they configure the flexfields.

Each implementor can configure as many of the segment columns as the end user
requires and can choose whether to use the context column.

You must use the Database Schema Deployment Framework tools to create the
product table and columns. Using these tools ensures that the table and its columns
are registered in the Oracle Fusion Middleware Extensions for Applications
(Applications Core) data dictionary. For more information, see Chapter 56, "Using the
Database Schema Deployment Framework."

22.2.2 How to Register and Define Descriptive Flexfields
Before you can create business components for a descriptive flexfield, you must first
define and register the descriptive flexfield.

The basic steps for defining and registering a descriptive flexfield are as follows:

Tip: There are no constraints on how to name the segment columns.
However, these columns are typically named using the patterns
ATTRIBUTEn_VARCHAR2, ATTRIBUTEn_NUMBER, ATTRIBUTEn_
DATE, and ATTRIBUTEn_TIMESTAMP. This convention makes it
easy to identify the flexfield segments. It also makes it easier to name
the columns for other usages of the flexfield.

Developing Descriptive Flexfields

22-6 Developer's Guide

■ Name and describe the flexfield.

■ Define the primary usage. The primary usage is the first usage that you define for a
flexfield.

■ Define the product table column to be used for the context segment. The product
table that is used for the first usage that you register is called the primary table.

■ Map the product table columns to the flexfield segments.

You can define a descriptive flexfield using the Register Descriptive Flexfields task,
which is accessed from the Setup and Maintenance work area of any Oracle Fusion
Setup application, or using the FND_FLEX_DF_SETUP_APIS PL/SQL package.

22.2.2.1 Registering and Defining Descriptive Flexfields Using a Registration Task
You can the Register Descriptive Flexfields task, which is accessed from the Setup and
Maintenance work area of any Oracle Fusion Setup application, to register and define
a descriptive flexfield. First you add a descriptive flexfield entry, then you define the
primary usage. You next specify which primary table column to use for the context
segment, and you define the primary table columns to be used for the flexfield
segments. You can then specify the name of the entity object, the package name, and
the prefix to use when generating the flexfield's business components, or you can
complete that task at a later time.

Before you begin:

Create the extension columns as described in Section 22.2.1, "How to Create
Descriptive Flexfield Columns."

To register and define a descriptive flexfield using a registration task:

1. In the Oracle Fusion Applications global area, choose Setup and Maintenance
from the Administration menu.

2. Go to the Register Descriptive Flexfields task.

3. From the Search Results section, select Actions > New.

4. On the Create Descriptive Flexfield page shown in Figure 22–1, set the following
values:

■ Descriptive Flexfield Code: Provide a code that uniquely identifies the
flexfield.

■ Descriptive Flexfield Name: Provide a descriptive name for the flexfield.

■ Description: Provide a short description of the flexfield.

■ Application Name: Select the application name that has been assigned for the
product area.

■ Module: Select the module that owns the flexfield. This is typically the
application or logical business area (LBA) with which the flexfield is delivered.

■ Delimiter: Select the character to be displayed between flexfield segments,
when the segments are displayed in a concatenated format.

Tip: You can also define and register a flexfield using the FND_FLEX_
DF_SETUP_APIS PL/SQL package, as described in Section 22.2.2.2,
"Registering and Defining Descriptive Flexfields Using the Setup
APIs.".

Developing Descriptive Flexfields

Using Descriptive Flexfields 22-7

■ BI Enabled: Select the checkbox to enable the flexfield for Oracle Business
Intelligence. For more information, see Section 22.12, "Preparing Descriptive
Flexfield Business Components for Oracle Business Intelligence."

Figure 22–1 Create Descriptive Flexfield Page

5. Click Save and Close.

6. In the Search Results section, select the flexfield that you just created and click
Primary Table.

7. In the Descriptive Flexfield Table section of the Manage Flexfield Primary Table
and Columns page, choose Actions > New.

8. On the Create Table Usage page shown in Figure 22–2, set the following values to
define the primary usage for the flexfield:

■ Table Usage Code: Provide a code that uniquely identifies the flexfield usage.
For the primary usage, this is typically the same code as the flexfield code.

■ Table Name: Enter or select the name of the database table that contains the
columns to be used as flexfield segments.

■ Description: Provide a short description of the flexfield usage.

Figure 22–2 Create Table Usage Page

Developing Descriptive Flexfields

22-8 Developer's Guide

9. Click Save and Close.

10. In the Table Name Column Details tab, choose Actions > New.

11. Select Context Segment from the Column Usage Type dropdown list.

12. From the Column Name dropdown list, select the database column that you want
to map to the flexfield's context segment. The column must be of type VARCHAR2.

13. Repeat the following steps for each table column that you want to map to a
flexfield segment, as shown in Figure 22–3:

a. In the Column Details tab, choose Actions > New.

b. Select Segment from the Column Usage Type dropdown list.

c. Select the database column from the Column Name dropdown list that you
want to map to a segment of the flexfield.

Figure 22–3 Column Details Tab

14. Click Save and Close.

15. You can register the entity details now or later. However, this step must be
completed before you can generate the flexfield usage's business components. For
more information, see Section 22.2.5, "How to Register Entity Details."

16. (Optionally) Register secondary usages of the flexfield as described in
Section 22.2.4, "How to Register the Reuse of a Descriptive Flexfield."

Tip: The context segment database column is typically named
ATTRIBUTE_CATEGORY.

Developing Descriptive Flexfields

Using Descriptive Flexfields 22-9

22.2.2.2 Registering and Defining Descriptive Flexfields Using the Setup APIs
In addition to using a registration task, as described in Section 22.2.2.1, "Registering
and Defining Descriptive Flexfields Using a Registration Task," you can define and
register a descriptive flexfield using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package. This package also has procedures for updating, deleting, and
querying flexfield definitions.

To learn how to access documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know About the
Descriptive Flexfield Setup API."

Before you begin:

Create the extension columns as described in Section 22.2.1, "How to Create
Descriptive Flexfield Columns".

To register and define a descriptive flexfield using the setup APIs:

1. Run the fnd_flex_df_setup_apis.create_flexfield(...) procedure to register
the descriptive flexfield, its context segment, and its primary (master) usage.

2. Run the fnd_flex_df_setup_apis.create_segment_column_usage(...)
procedure for each segment column to register the segment columns.

3. (Optionally) Register the entity details as described in Section 22.2.5, "How to
Register Entity Details." This step must be completed before you can generate the
flexfield usage's business components.

22.2.2.2.1 What You May Need to Know About the Descriptive Flexfield Setup API In the
descriptive flexfield development process, use the FND_FLEX_DF_SETUP_APIS PL/SQL
package to manage flexfield registration metadata.

You can learn about the FND_FLEX_DF_SETUP_APIS PL/SQL package by running the
following command, which stores package documentation and usage examples in the
<db_name>_<user_name>_FND_FLEX_DF_SETUP_APIS_<date>.plsqldoc file.

sqlplus <fusion_user>/<fusion_pwd>@<fusion_db> \
@/ORACLE/fusionapps/atgpf/applcore/db/sql/flex/fnd_flex_pkg_doc.sql \
FND_FLEX_DF_SETUP_APIS

22.2.3 How to Reuse a Descriptive Flexfield on Another Table
A descriptive flexfield configuration can be shared with other product tables. To reuse
a descriptive flexfield, you add the same set of extension columns to the product table
for which you want to reuse the flexfield, and you register the secondary usage as
described in Section 22.2.4, "How to Register the Reuse of a Descriptive Flexfield."

The product table that was used to first register the flexfield is referred to as the
primary table, and it is the owner of the flexfield. A reuse of a flexfield is referred to as a
secondary usage.

The secondary table must have the same number of extension columns as the primary
table. The secondary extension columns must have the same data type and size as the
corresponding primary table extension columns.

The column names must also be exactly the same as in the primary table, with the
exception of an optional prefix. For example, if the column names are ATTRIBUTE1
and ATTRIBUTE2 in the primary table, then in the secondary table they could again be
ATTRIBUTE1 and ATTRIBUTE2, respectively, or with a prefix, they could be HOME_

Developing Descriptive Flexfields

22-10 Developer's Guide

ATTRIBUTE1 and HOME_ATTRIBUTE2. They cannot be ATTR1 and HOME_ATTR2,
or any variation that does not end in the names of the primary table columns.

Each implementor can configure as many of the segment columns as the end user
requires and can choose whether to use the context column.

You must use the Database Schema Deployment Framework tools to create the
product table and columns. Using these tools ensures that the table and its columns
are registered in the Oracle Fusion Middleware Extensions for Applications
(Applications Core) data dictionary. For more information, see Chapter 56, "Using the
Database Schema Deployment Framework."

22.2.4 How to Register the Reuse of a Descriptive Flexfield
After you add extension columns to a table for a secondary usage of a flexfield, you
must register the usage before you can build a descriptive business component for the
secondary usage.

You can register the secondary usage of a descriptive flexfield using a registration task
or using procedures from the FND_FLEX_DF_SETUP_APIS PL/SQL package.

22.2.4.1 Registering the Secondary Usage of a Descriptive Flexfield Using a
Registration Task
You can use the Register Descriptive Flexfields task, which is accessed from the Setup
and Maintenance work area of any Oracle Fusion Setup application, to register the
secondary usage of a descriptive flexfield. The registration task uses the primary usage
column mappings to determine how to map the secondary table's column names to
the flexfield segments. If you specify a prefix, the task uses the prefix to determine the
column mappings. For example, if the primary table's ATTRIBUTE1 column is
mapped to a segment, and you specify a prefix of HOME for the secondary usage, the
task automatically maps its HOME_ATTRIBUTE1 column to a flexfield segment.

Before you begin:

1. Register the descriptive flexfield and its primary usage as described in
Section 22.2.2, "How to Register and Define Descriptive Flexfields."

2. Create the extension columns for the secondary usage as described in
Section 22.2.3, "How to Reuse a Descriptive Flexfield on Another Table."

To register a secondary usage using a registration task:

1. In the Oracle Fusion Applications global area, choose Setup and Maintenance
from the Administration menu.

2. Go to the Register Descriptive Flexfields task.

3. In the Search Results section, select the flexfield for which you want to add a
secondary usage and click Secondary Tables.

4. In the Descriptive Flexfield Table section of the Manage Flexfield Secondary
Tables and Columns page, choose Actions > New.

5. On the Create Table Usage page, set the following values to define the secondary
table usage for the flexfield:

Tip: You can also register the secondary usage of a flexfield using the
FND_FLEX_DF_SETUP_APIS PL/SQL package, as described in
Section 22.2.4.2, "Registering the Secondary Usage of a Descriptive
Flexfield Using the Setup APIs.".

Developing Descriptive Flexfields

Using Descriptive Flexfields 22-11

■ Table Usage Code: Provide a code that uniquely identifies the flexfield usage.

■ Table Name: Select the name of the database table that contains the columns
to be used as flexfield segments for this secondary usage.

■ Column Name Prefix: If you used a prefix for the flexfield column names,
enter the prefix.

■ Description: Provide a short description of the flexfield usage.

6. Click Save and Close.

7. You can register the entity details now or later. However, this step must be
completed before you can generate the flexfield usage's business components. For
more information, see Section 22.2.5, "How to Register Entity Details."

22.2.4.2 Registering the Secondary Usage of a Descriptive Flexfield Using the
Setup APIs
In addition to using the registration task, as described in Section 22.2.4.1, "Registering
the Secondary Usage of a Descriptive Flexfield Using a Registration Task," you can
define and register the secondary usage of a descriptive flexfield using procedures
from the FND_FLEX_DF_SETUP_APIS PL/SQL package.

To learn how to generate documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know About the
Descriptive Flexfield Setup API."

The definition of a descriptive flexfield usage includes the following information:

■ The table name

■ The code for identifying the secondary usage

■ The column name prefix. For example, if the primary table column is
ATTRIBUTE1, and the secondary table column is HOME_ATTRIBUTE1, then the
prefix is HOME_.

Before you begin:

1. Register the descriptive flexfield and its primary usage as described in
Section 22.2.2, "How to Register and Define Descriptive Flexfields."

2. Create the extension columns for the secondary usage as described in
Section 22.2.3, "How to Reuse a Descriptive Flexfield on Another Table."

To register a secondary usage using the setup APIs:

1. To register the secondary usage of a descriptive flexfield, run the fnd_flex_df_
setup_apis.create_flex_table_usage(...)procedure.

2. (Optionally) Register the entity details as described in Section 22.2.5, "How to
Register Entity Details." This step must be completed before you can generate the
flexfield usage's business components.

22.2.5 How to Register Entity Details
Before you can create a flexfield business component and create a flexfield business
component and create flexfield-specific application module instances, you must
register the following information:

■ The full class name of the entity object for the table upon which the flexfield usage
is based.

Developing Descriptive Flexfields

22-12 Developer's Guide

■ A prefix from which to derive the names of generated objects.

■ The package in which to place the generated business components. Each usage can
have its own package name.

You can use a registration task or the FND_FLEX_DF_SETUP_APIS PL/SQL package to
register this information for a flexfield usage.

22.2.5.1 Registering Entity Details Using a Registration Task
You can use the Register Descriptive Flexfields task, which is accessed from the Setup
and Maintenance work area of any Oracle Fusion Setup application, to register a
flexfield usage's entity details.

Before you begin:

1. Register the usage as described in Section 22.2.2, "How to Register and Define
Descriptive Flexfields" and Section 22.2.4, "How to Register the Reuse of a
Descriptive Flexfield."

2. Ensure that the entity object for the usage's table exists.

To register the entity details using a registration task:

1. In the Oracle Fusion Applications global area, choose Setup and Maintenance
from the Administration menu.

2. Go to the Register Descriptive Flexfields task.

3. In the Search Results section, select the flexfield for which you want to add entity
details and click Primary Table for the primary usage or click Secondary Tables
for a secondary usage.

4. Select the usage and click the Table Name Entity Details tab, as shown in
Figure 22–4.

Figure 22–4 Entity Details Tab

5. If no row exists in the Entity Details section, choose Actions > New to create a
row.

6. Set the following values:

Tip: You can also register entity details using the FND_FLEX_DF_
SETUP_APIS PL/SQL package, as described in Section 22.2.4.2,
"Registering the Secondary Usage of a Descriptive Flexfield Using the
Setup APIs."

Developing Descriptive Flexfields

Using Descriptive Flexfields 22-13

■ Entity Object: Provide the full class name of the table's entity object.

■ Object Name Prefix: Enter a short unique name for the flexfield usage. For
example PartsDFF. This prefix is used to derive the names of objects that are
generated for the flexfield usage.

■ Package Name: Specify the name of the root package to be used for the
generated business components that model the flexfield usage.

■ BI Flattened Fact Name: If the flexfield is enabled for Oracle Business
Intelligence and you know the Oracle Business Intelligence object that this
flexfield should be mapped to when the flexfield is imported into Oracle
Business Intelligence, specify the name of the object.

For more information about Oracle Business Intelligence, see Section 22.12,
"Preparing Descriptive Flexfield Business Components for Oracle Business
Intelligence."

7. Click Save and Close.

22.2.5.2 Registering Entity Details Using the Setup APIs
In addition to using the registration task, as described in Section 22.2.5.1, "Registering
Entity Details Using a Registration Task," you can register entity details using
procedures from the FND_FLEX_DF_SETUP_APIS PL/SQL package.

To learn how to generate documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know About the
Descriptive Flexfield Setup API."

Before you begin:

1. Register the usage as described in Section 22.2.2, "How to Register and Define
Descriptive Flexfields" and Section 22.2.4, "How to Register the Reuse of a
Descriptive Flexfield."

2. Ensure that the entity object for the usage's table exists.

To register the entity details using the setup APIs:

■ Run the fnd_flex_df_setup_apis.create_adfbc_usage(...)procedure to
register the entity object, package name, and object name prefix for the flexfield
usage.

22.2.6 How to Register Descriptive Flexfield Parameters
A flexfield parameter is a declared public variable, which can be used to designate which
attributes of eligible entity objects that are related to the flexfield can be used to pass
external reference data to flexfield segments. These entity object attributes could, in
turn, take their values from column values, constant values, session attributes, and so
forth.

Note: Each usage must have a unique package name. In addition, the
package name must uniquely identify a usage. For example, if the root
package for a usage is oracle.apps.hcm.payroll.flex.dff1, then
you cannot define the oracle.apps.hcm.payroll.flex package for
another usage, because that package would then identify both usages.
Instead, you could use oracle.apps.hcm.payroll.flex.dff2.

Developing Descriptive Flexfields

22-14 Developer's Guide

A flexfield may have zero, one, or many flexfield parameters defined, each one
representing a specific type of information that is useful to that flexfield. Implementors
can use the parameters to define defaults and value set validation for the flexfield
segments, as described in the "Task: Define Attribute Properties" section in the Oracle
Fusion Applications Extensibility Guide.

Some or all of these types of data sources can be referenced in the following ways:

■ At row creation time to provide default segment values.

■ In derived segments, which are global, context, or context-sensitive segments for
which values are derived from an external reference data source, causing its values
to automatically change to reflect any new reference data values.

■ In the WHERE clauses for table value sets. For more information, see the "Creating
Custom Value Sets" section in the Oracle Fusion Applications Extensibility Guide.

Every flexfield parameter must be mapped to an appropriate entity object attribute at
design time. In this way, implementors are guaranteed that the parameters will always
be mapped to entity object attributes, and they can use the parameters as needed.

When you create business components for a descriptive flexfield, you will be required
to map each parameter associated with that flexfield to an attribute of the entity object
that you are creating. The values accessed from reference data sources by these
parameters are then available for you to use in your application. Many of the core
(nonflexfield) fields on a page can serve as reference fields.

Consider the example of an Expense Lines entity object with the core fields of Expense
Line ID, Expense Date, Amount, Description, and Expense Type. If the flexfield has an
ExpenseType parameter that is mapped to the Expense Type field, an implementor can
configure the context segment to derive its value from the ExpenseType parameter.

To implement descriptive flexfield parameters, you must map them to the appropriate
entity object attributes at design time and configure them. For more information, see
Section 22.3, "Creating Descriptive Flexfield Business Components" and Section 22.8.3,
"How to Configure Descriptive Flexfield Parameters".

22.2.6.1 Registering a Flexfield Parameter Using a Registration Task
You can use the Register Descriptive Flexfields task, which is accessed from the Setup
and Maintenance work area of any Oracle Fusion Setup application, to register a
flexfield parameter.

To register a parameter using a registration task:

1. In the Oracle Fusion Applications global area, choose Setup and Maintenance
from the Administration menu.

2. Go to the Register Descriptive Flexfields task.

Note: Although a flexfield parameter is associated with a flexfield in
metadata, it is not connected with any specific segment in the
flexfield. Rather, it serves as a variable through which flexfield
segments can access reference data from other sources.

Tip: You can also register parameters using the FND_FLEX_DF_SETUP_
APIS PL/SQL package, as described in Section 22.2.6.1, "Registering a
Flexfield Parameter Using a Registration Task."

Creating Descriptive Flexfield Business Components

Using Descriptive Flexfields 22-15

3. In the Search Results section, select the flexfield for which you want to add a
parameter and click Parameters.

4. In the Parameters section of the Manage Flexfield Parameters page, choose
Actions > New.

5. In the Parameters section shown in Figure 22–5, set the following values to define
a parameter for the flexfield:

■ Parameter Code: Provide a code that uniquely identifies the parameter for the
given flexfield.

■ Description: Provide a brief description of the parameter.

■ Enabled: Select this checkbox.

Figure 22–5 Manage Descriptive Flexfield Parameters Page

6. Click Save and Close.

22.2.6.2 Registering a Flexfield Parameter Using the Setup APIs
In addition to using the registration task, as described in Section 22.2.6.1, "Registering
a Flexfield Parameter Using a Registration Task," you can register a flexfield parameter
using procedures from the FND_FLEX_DF_SETUP_APIS PL/SQL package.

To learn how to generate documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know About the
Descriptive Flexfield Setup API."

Before you begin:

Define and register the flexfield as described in Section 22.2.2, "How to Register and
Define Descriptive Flexfields."

To create a parameter using the setup APIs:

■ Run the fnd_flex_df_setup_apis.create_parameter(...) procedure and
provide a parameter code and data type.

22.3 Creating Descriptive Flexfield Business Components
Before you can use a descriptive flexfield in your application, you must use the Create
Flexfield Business Components wizard to generate flexfield business components for
the flexfield. The wizard generates a base view object that is based on the information
in the flexfield metadata. After the initial flexfield registration, and before any
configuration is completed, the base view object has at least two attributes: the primary
key attribute, which links the flexfield view object to the product view object, and the
context attribute, which serves as the discriminator.

Creating Descriptive Flexfield Business Components

22-16 Developer's Guide

When implementors configure the flexfields by defining global and context-sensitive
segments, the base view object is regenerated and additional flexfield view objects are
generated. Figure 22–6 shows an example of the configured ADF Business
Components. The product view object contains only the nonflexfield attributes. The
base view object contains the primary key attribute, the context attribute, and global
attributes. The base view object is extended to define view object rows based on the
configured context values. Each context value requires a subtype view object definition
that represents the structure of the rows with that context value, as described in
Section 22.1.2, "How Descriptive Flexfields Are Modeled in Oracle Application
Development Framework."

Figure 22–6 Descriptive Flexfield Modeled as ADF Business Components Component

No Java implementation classes are generated for descriptive flexfield view objects.
The product view object may or may not have Java implementation classes.

22.3.1 How to Create Descriptive Flexfield Business Components
You use the Create Flexfield Business Components wizard to create the flexfield
business components for a flexfield's usage.

The business components generated will replace any existing ones that are based on
the same flexfield usage.

Note: The product view object might contain other attributes.
However, the product view object must not include flexfield view
object attributes.

None of the flexfield view objects contains the fixed (nonflexfield)
columns.

extends

View link

C1

Flexfield
View Objects

C2 Primary Key

G1 G2 Context

G1 G2 Context: v1 X

G1 G2 Context: v2 Y

C1

 Product View
Object

Product Entity
Object

C2 A1 A2 A3 A4 A5

G1 G2 Context: v3 Z W

BaseVO

Fixed columns Global segments Context-sensitive segments

_v1_VO

_v2_VO

_v3_VO

Primary Key

Primary Key

Primary Key

Primary Key

Primary Key

Creating Descriptive Flexfield Business Components

Using Descriptive Flexfields 22-17

Before you begin:
■ Ensure that you have added the Applications Core library to your project as

described in Chapter 3, "Setting Up Your JDeveloper Application Workspace and
Projects"

■ Ensure that at least one customization class is included in the adf-config.xml file.
This inclusion serves to ensure correct application behavior. It does not matter
which customization class you include.

For information about customization layers, see the "Understanding
Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.

■ Verify that the entity object that will be used as the data source for the business
component meets the following requirements:

– All flexfield columns are included in the entity object. In general, all columns
should be included.

– A primary key is defined for the entity object. If an entity object is going to be
used to create new application transaction rows, a default primary key must
be programmed.

– All VARCHAR2 columns used for descriptive flexfield attributes are mapped to
data type java.lang.String.

– All number columns used for descriptive flexfield attributes are mapped to
data type java.math.BigDecimal.

– All date columns used for descriptive flexfield attributes are mapped to data
type java.sql.Date.

– All timestamp columns used for descriptive flexfield attributes are mapped to
data type java.sql.Timestamp.

■ Register the flexfield usage's entity object, package name, and object name prefix.
For more information, see Section 22.2.5, "How to Register Entity Details."

To create descriptive flexfield business components:
1. Build your project to ensure that the entity objects are available in classes. The

modeler relies on what is in your classes.

2. From the File menu, choose New.

3. In the New Gallery, go to Business Tier > ADF Business Components and select
Flexfield Business Components.

4. Click OK.

5. On the Role page of the Create Flexfield Business Components wizard, select the
role that you want while you create the flexfield business components:

■ Developer: Select this role if you are incorporating the flexfield into an
application. The business components must be stored in one of your projects.
Select the desired project location from the Project Source Path dropdown list.

■ Tester: Select this role if you are planning to test your flexfield or a shared
flexfield. In the Output Directory field, specify the path of your desired
location for the generated business components.

For more information about testing flexfields and importing shared flexfields,
see Chapter 25, "Testing and Deploying Flexfields."

Creating Descriptive Flexfield Business Components

22-18 Developer's Guide

6. Click Next. The Flexfield page appears, as shown in Figure 22–7.

Figure 22–7 Create Flexfield Business Components Wizard — Flexfield Page

7. From the Type dropdown list, select Descriptive.

8. In the Application field, specify the full name of the application to which your
descriptive flexfield belongs.

You can browse for the name, and filter by ID, Short Name, or Name.

9. In the Code field, specify the code of the descriptive flexfield you want to use.

You can browse for and filter by Code.

10. In the Usage section, select the table row that contains your desired descriptive
flexfield usage. The descriptive flexfield usage can be one of two possible types:

■ The primary usage of the descriptive flexfield on the product table where it
was originally defined. Every descriptive flexfield has one primary usage.

■ A secondary usage of the descriptive flexfield on a product table, including
the one on which it was originally defined. Zero or more secondary usage
instances can be defined for a given flexfield, each one potentially on a
different product table. You can identify secondary usage instances by the
presence of the prefix (Reuse) in the Description field.

11. Click Next.

12. On the Entity Object page, expand the tree of available models and select an entity
object to use as the data source for the descriptive flexfield, as shown in
Figure 22–8.

Note: The role referred to here is not a role in the security sense. It
exists only during this procedure, for the purpose of specifying where
your generated flexfield business components should be stored.

Creating Descriptive Flexfield Business Components

Using Descriptive Flexfields 22-19

Figure 22–8 Create Flexfield Business Components Wizard — Entity Object Page

The entity object you select must include all of the attributes representing the
columns that are reserved for the descriptive flexfield.

Descriptive flexfield attributes will be validated by the entity object along with its
other attributes.

13. If you want to select an entity object for which the descriptive flexfield attributes
are defined as transient (not based on database table columns), then select the
checkbox labeled Use the entity attributes named after their corresponding
flexfield database columns. This checkbox is not selected by default.

When an attribute of a descriptive flexfield entity object is transient, there is no
matching underlying column name. When you select this checkbox, the system
will match the entity object attribute names to the descriptive flexfield column
names, and use the matching attributes to access the flexfield data. Ensure that the
entity object has a full set of attributes with matching names before you select this
option.

This entity object must be registered under the primary usage. There is no need to
register another table for this purpose, even if the entity object is based on some
other table. For more information, see Section 22.2.5, "How to Register Entity
Details."

Note: If you select a polymorphic entity object, ensure that the
InheritPersonalization property for every subtype entity is set to
true.

Note: If the entity object with transient descriptive flexfield
attributes is not based on the primary usage, the transient attributes
must be named using the same prefix as the other attributes of that
entity object (and the corresponding table columns). For more
information, see Section 22.2.3, "How to Reuse a Descriptive Flexfield
on Another Table."

Creating Descriptive Flexfield Business Components

22-20 Developer's Guide

14. Click Next.

15. The Naming page displays the entity object's package name and object name that
you registered for the usage, as described in Section 22.2.5, "How to Register Entity
Details." Click Next.

If the selected entity object is not registered with the flexfield usage, the Naming
page displays a message to that effect. Take one of the following actions:

– Click Back to return to the Entity Object page and select an entity object that
has been properly registered.

– Click Cancel to exit this wizard and register the entity object that you want to
use.

For information about registering the entity object with the flexfield usage, see
Section 22.2.5, "How to Register Entity Details."

16. On the Parameters page shown in Figure 22–9, map each flexfield parameter to the
entity object attribute that will be the data source for the parameter.

Parameters are not a requirement for descriptive flexfields. If no parameters are
defined for the descriptive flexfield that you are working with, the Parameters
page will display a message to that effect. However, if any parameters are defined
and associated with a descriptive flexfield, you must map each parameter to an
entity object attribute before you can use the flexfield in your application.

Figure 22–9 Create Flexfield Business Components Wizard — Parameters Page

The names in the Parameter Code column represent parameters that have been
defined for the descriptive flexfield. For each parameter listed, select the entity
object attribute from the Entity Attribute Name dropdown list to use as the data
source for that parameter.

Caution: The Create Flexfield Business Components wizard is
case-sensitive. All column names — and the names of the flexfield
entity object attributes associated with them — must be uppercase.

Creating Descriptive Flexfield Business Components

Using Descriptive Flexfields 22-21

The entity attributes in the dropdown list include the following:

■ Attributes that are part of the entity object you selected as the flexfield data
source.

■ Attributes that are part of any entity object that is directly associated with the
flexfield entity object through an accessor.

■ Attributes that are part of any entity object that is indirectly associated with
the flexfield entity object through a chain of accessors and entity objects.

The path through the chain of accessors to each available entity attribute is
displayed using the following notation:

[accessorname1.[accessorname2.]...]attributename

Although it is not visible, the name of the previously selected flexfield entity object
is implied as the first element in the chain, followed by zero or more accessor
names, then the target entity attribute name. The names of the entity objects in this
chain are also implied.

17. When all of the defined parameters are mapped, click Next.

18. On the Summary page, click Finish.

19. Refresh the project to see the newly created flexfield business components in the
Application Navigator. The components are in the package that you registered for
the flexfield usage and are named using the registered prefix.

Note: An entity attribute is available on this list only if all the
accessors in the chain to the attribute have an underlying association
cardinality of 1-to-1 or many-to-1.

Cautions:

■ Flexfield parameters can be used only with segments of the same
Java type. The data type of each entity attribute you select must
match the data type shown for the parameter.

■ For any flexfield segment value that is derived from a parameter
as described in the "Task: Define Attribute Properties" section in
the Oracle Fusion Applications Extensibility Guide, the derivation
happens only when the value of the mapped attribute is updated.
Therefore, if you intend for customers to use a parameter for
derivation, then the attribute that you map the parameter to must
be updatable. If the parameter's value must come from a
reference-only entity, then create an updatable transient entity
attribute and assign that entity to the flexfield parameter.

Note: This wizard might fail with a "ClassNotFound" exception
message. This indicates that one or more required libraries have not
been automatically included in your project. You can resolve this issue
by manually adding any missing libraries; then you can complete this
procedure successfully.

Creating Descriptive Flexfield View Links

22-22 Developer's Guide

22.4 Creating Descriptive Flexfield View Links
A view link is needed whenever a product view object references your descriptive
flexfield. The product view object and the flexfield base view object are linked through
their primary keys.

22.4.1 How to Create Descriptive Flexfield View Links
You create a view link to connect your product view object with the flexfield view
object. After you have created the view link, you can use the view object to add the
flexfield to an application page.

Before you begin:
1. Create the master view object, which contains only nonflexfield attributes.

2. Create the flexfield business components for the descriptive flexfield as described
in Section 22.3.1, "How to Create Descriptive Flexfield Business Components".

To create a descriptive flexfield view link:
1. From the File menu, choose New.

2. In the New Gallery, go to Business Tier > ADF Business Components and select
Flexfield View Link.

3. Click OK to access the Create Flexfield View Link wizard, as shown in
Figure 22–10.

Figure 22–10 Create Flexfield View Link Wizard — Name Page

4. On the Name page, from the Package dropdown list, specify a package for the
view link.

Caution: You cannot move the view link to a different package after
you create it. Instead, you must delete the view link and re-create it
with the new package name.

Nesting the Descriptive Flexfield Application Module Instance in the Application Module

Using Descriptive Flexfields 22-23

5. In the Name field, enter a name for the view link.

6. Click Next. The View Objects page appears, as shown in Figure 22–11.

Figure 22–11 Create Flexfield View Link Wizard — View Objects Page

7. In the Select Source View Object tree, expand the available objects from your
current project and select the master view object.

8. In the Select Destination Flexfield tree, expand the application and select a
destination flexfield usage.

9. In the View Link Accessor Name field, enter an appropriate name for the view
link accessor.

10. Click Next.

11. On the Source Attributes page, click Finish.

For descriptive flexfields, the Source Attributes page is informational only. The
wizard uses the primary key attributes of the source view object to define the view
link.

12. On the Summary page, click Finish.

22.5 Nesting the Descriptive Flexfield Application Module Instance in the
Application Module

You must nest the descriptive flexfield application module instance under the product
application module before you can incorporate the descriptive flexfield usage into the
UI.

You need to nest only one flexfield application module for a flexfield usage, even if
two or more view links exist for the same flexfield usage.

Note: You can skip the Properties page because view link-specific
properties are not supported.

Nesting the Descriptive Flexfield Application Module Instance in the Application Module

22-24 Developer's Guide

22.5.1 How to Nest the Descriptive Flexfield Application Module Instance in the
Application Module

You use the overview editor for your application module to nest the descriptive
flexfield application module instance. The descriptive flexfield application module
instance that you nest in the product application module shares the same transaction
and entity object caches as the application module.

Before you begin:
1. You should have already created the product application module. For information

about creating application modules, see the "Implementing Business Services with
Application Modules" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

2. Create the master view object, which contains only nonflexfield attributes.

3. Create a flexfield business component for the descriptive flexfield usage as
described in Section 22.3.1, "How to Create Descriptive Flexfield Business
Components."

To nest the descriptive flexfield application module instance in the product
application module:
1. In the Application Navigator, double-click the product application module.

2. Click the Data Model navigation tab.

3. On the Data Model Components page, expand the Application Module Instances
section, as shown in Figure 22–12.

Figure 22–12 Application Module — Application Module Instances Section

4. In the Available tree, find and expand the applicationModule instance under the
flexfield usage's package. This is the package that you specified when you defined
the entity details, as described in Section 22.2.5, "How to Register Entity Details."

5. Select the application module for the descriptive flexfield and move it to the
Selected tree.

This application module was created when you created the flexfield business
component and was named using the prefix that you specified when you defined
the usage's entity details, as described in Section 22.2.5, "How to Register Entity
Details." For example, if you registered the CasesDFF prefix, the application
module name is CasesDFFAM.

The New App Module Instance field under the list shows the name that will be
used to identify instance. You can change this name.

Adding a Descriptive Flexfield View Object to the Application Module

Using Descriptive Flexfields 22-25

22.6 Adding a Descriptive Flexfield View Object to the Application
Module

You must add a flexfield view object instance that reflects the hierarchy of the view
link that you created in Section 22.4.1, "How to Create Descriptive Flexfield View
Links" to the application module for your application.

22.6.1 How to Add a Descriptive Flexfield View Object Instance to the Application
Module

Edit the product application module to add the flexfield view object.

Before you begin:
1. You should have already created the product application module. For information

about creating application modules, see the "Implementing Business Services with
Application Modules" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

2. Create the master view object, which contains only nonflexfield attributes.

3. Create the flexfield business components for the descriptive flexfield usage as
described in Section 22.3.1, "How to Create Descriptive Flexfield Business
Components".

4. Create the flexfield view link as described in Section 22.4.1, "How to Create
Descriptive Flexfield View Links."

To add a descriptive flexfield view object to the product application module:
1. In the Application Navigator, double-click the product application module.

2. Click the Data Model navigation tab.

3. In the View Object Instances section, select the master view object from the
Available View Objects tree and click the right arrow to add it to the Data Model
tree. Next, select the child view object for the flexfield view link and click the right
arrow to add it to the Data Model tree, as shown in Figure 22–13.

Figure 22–13 Application Module — View Object Instances Section

Adding Descriptive Flexfield UI Components to a Page

22-26 Developer's Guide

22.7 Adding Descriptive Flexfield UI Components to a Page
To include a descriptive flexfield on an application page, add the flexfield UI
component to the page, and then configure the properties of the UI component.

To add a descriptive flexfield UI component, you add the component to a page in the
one of the following configurations:

■ As part of a form component.

■ As part of a table component, with the context-sensitive segments of the flexfield
presented in a detailStamp facet. This is the typical configuration, which allows
for the full range of possible values in the context segment.

■ As part of a table component, with context-sensitive segments of the flexfield
presented as columns. To use this configuration, you must guarantee that the
flexfield context segment will have the same value in all rows of the table.

If your ADF Table is in an Applications Table component, you must add the following
functionality to the UI:

■ Create Row and Delete Row functionality if you are using your own CreateInsert
button to create new rows.

■ Empty table handling if you are using a custom createInsert method.

■ Dynamic refresh of the context-sensitive segment columns whenever the
Applications Table component is refreshed by another component, such as a
button or a search query.

Note: You can also use descriptive flexfields in the following ways:

■ Incorporate descriptive flexfield view object attributes as search
criteria in an advanced query search form.

See Section 22.11, "Incorporating Descriptive Flexfield into a
Search Form".

■ Use ADF Desktop Integration to incorporate descriptive flexfields
into an Excel workbook.

See Section 22.14, "Accessing Descriptive Flexfields from an ADF
Desktop Integration Excel Workbook".

Note: You cannot use a descriptive flexfield in a tree table
component.

Note: The following procedures assume that you are using the
data-first approach of adding flexfields to your application. The
UI-first approach is also available, but is not documented here. For
more information about the data-first approach, see the "Introduction
to Placeholder Data Controls" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition)

Adding Descriptive Flexfield UI Components to a Page

Using Descriptive Flexfields 22-27

22.7.1 How to Add a Descriptive Flexfield UI Component to a Form
Use this procedure to incorporate your descriptive flexfield into a basic form.

Before you begin:
1. Create the descriptive flexfield view object as described in Section 22.3.1, "How to

Create Descriptive Flexfield Business Components".

2. Create the view link as described in Section 22.4.1, "How to Create Descriptive
Flexfield View Links".

3. Nest the descriptive flexfield application module instance in the product
application module as described in Section 22.5.1, "How to Nest the Descriptive
Flexfield Application Module Instance in the Application Module".

4. Add the view object instance to the application module as described in
Section 22.6.1, "How to Add a Descriptive Flexfield View Object Instance to the
Application Module".

To add a descriptive flexfield UI component to a form:
1. From the Data Controls panel, select the master view object and drag it onto the

page to create the UI for the master view object.

2. When prompted, select ADF Form or select Applications > Panel.

3. In the Data Controls panel, expand the master view object and find the flexfield
view object, as shown in Figure 22–14.

Figure 22–14 Flexfield View Object Nested Under Master View Object

Caution: You must use the flexfield view object that is the child of
the master view object. Do not use the flexfield view object from the
flexfield's application module data control.

Adding Descriptive Flexfield UI Components to a Page

22-28 Developer's Guide

4. Drag the flexfield view object onto a form, and select the appropriate flexfield UI
component.

5. Optionally, to add Create Row and Delete Row functionality to the UI, drag the
appropriate operation of the master view object from the Data Controls panel onto
the page.

22.7.2 How to Add an Unrestricted Descriptive Flexfield UI Component to a Table
Use this procedure to allow for the full range of possible context segment values. End
users will be able to expose or hide the context-sensitive segments of the flexfield
separately for each row of data.

Before you begin:
1. Create the descriptive flexfield view object as described in Section 22.3.1, "How to

Create Descriptive Flexfield Business Components".

2. Create the view link as described in Section 22.4.1, "How to Create Descriptive
Flexfield View Links".

Tips:

■ If you place the flexfield in its own tab, header, or subheader, and
you cannot provide a specific label for the region, consider using
the label "Additional Information," which is the standard generic
label in such a case for Oracle Fusion Applications.

■ If a descriptive flexfield is in a region, such as a header, subheader,
or tab, that does not contain nonflexfield fields, there is a
possibility that the implementor will not use the flexfield
segments and the region will be empty. To avoid the display of an
empty region on the page, add controlling logic to hide the region
if the implementor has not defined the segments that appear in
the region. For information about how to determine if a segment
has been defined, see Section 22.10.2, "How to Determine Whether
Descriptive Flexfield Segments Have Been Defined." For
information about using an EL expression to hide the region, see
the "Creating EL Expressions" section in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications
Edition)

■ You can place the segments in a multiple-column layout. Use a
multiple-column layout when the number of segments that will be
added by the implementor is unknown and you anticipate that a
large number of segments will be used. Otherwise, a flexfield with
several segments will take up a large amount of space and the end
user will have to scroll to see any fields that appear below the
flexfield.

Tip: You can configure the descriptive flexfield UI component to
present multiple descriptive flexfield rows using the Panel Form
Layout component, with each row's content based on a different
context value. For more information, see the "Arranging Content in
Forms" section of the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition).

Adding Descriptive Flexfield UI Components to a Page

Using Descriptive Flexfields 22-29

3. Nest the descriptive flexfield application module in the product application
module as described in Section 22.5.1, "How to Nest the Descriptive Flexfield
Application Module Instance in the Application Module".

4. Add the view object instance to the application module as described in
Section 22.6.1, "How to Add a Descriptive Flexfield View Object Instance to the
Application Module".

To add an unrestricted descriptive flexfield UI component to a table:
1. From the Data Controls panel, select the master view object and drag it onto the

page to create the UI for the master view object.

2. When prompted, select ADF Table or Applications > Table. You must select the
Row Selection option, and set the appropriate width.

3. In the Data Controls panel, expand the master view object and find the flexfield
view object.

4. Drag the flexfield view object onto the table on the design tab, as shown in
Figure 22–15, and select Oracle Descriptive Flexfield Column as the UI
component. This creates the base flexfield column in the table that the global
segments will render.

Figure 22–15 Descriptive Flexfield Dropped Into a Table

5. Create a detail region (detailStamp facet) if the table does not have one, as shown
in Figure 22–16.

Caution: You must use the flexfield view object that is the child of
the master view object. Do not use the flexfield view object from the
flexfield's application module data control.

Caution: Do not drop the flexfield view object into an existing
column. The displaying of descriptive flexfields in the cell of a table
column is not supported.

Adding Descriptive Flexfield UI Components to a Page

22-30 Developer's Guide

Figure 22–16 Detail Region — detailStamp Facet

6. Add a panel layout control to the detailStamp facet if you do not already have
one.

7. Drag and drop the same flexfield view object into the detail region on the Source
tab or the structure view as shown in Figure 22–17; this creates fields for the
context-sensitive segments.

Figure 22–17 Descriptive Flexfield Dropped into a Detail Region

22.7.3 How to Add Descriptive Flexfield Context-Sensitive Segments to a Table as
Columns

Typically, context-sensitive segments in a table are visible only in a detailStamp facet.
This is because the flexfield context segment can contain a different value in each table
row; therefore the set of associated context-sensitive segments that appears can vary
from row to row. There is no way to present all of these varying results in a predefined
column format within a single table.

Adding Descriptive Flexfield UI Components to a Page

Using Descriptive Flexfields 22-31

However, if you can guarantee that a given context segment in every row of the table
will always contain the same value for a given application page, the resulting
combination of corresponding context-sensitive segments in each row will remain
constant. In this circumstance the context-sensitive segments can be displayed as table
columns.

For example, if the context segment is a country code, and the purpose of this
application page is to manage only Italian tax data, then the context value should
always be IT. The table columns for the context-sensitive segments will always be
displayed in the configuration appropriate to the Italian tax system.

Before you begin:
1. Create the descriptive flexfield view object as described in Section 22.3.1, "How to

Create Descriptive Flexfield Business Components".

2. Create the view link as described in Section 22.4.1, "How to Create Descriptive
Flexfield View Links".

3. Nest the descriptive flexfield application module in the product application
module as described in Section 22.5.1, "How to Nest the Descriptive Flexfield
Application Module Instance in the Application Module".

4. Add the view object instance to the application module as described in
Section 22.6.1, "How to Add a Descriptive Flexfield View Object Instance to the
Application Module".

To add a descriptive flexfield UI component to a table as a column:
1. From the Data Controls panel, select the master view object and drag it onto the

page to create the UI for the master view object.

2. When prompted, select ADF Table or Applications > Table. You must select the
Row Selection option, and set the appropriate width.

3. In the Data Controls panel, expand the master view object and find the flexfield
view object.

4. Drag the flexfield view object onto the table on the design tab as shown in
Figure 22–15, and select Oracle Descriptive Flexfield Column as the UI
component. This creates the base flexfield column in the table.

5. Edit the JSP source code for this page, and remove the following attribute from the
<fnd:descriptiveFlexfield> tag:

mode="global"

See Table 22–1 for information about the mode attribute.

Caution: You must use the flexfield view object that is the child of
the master view object. Do not use the flexfield view object from the
flexfield's application module data control.

Caution: Do not drop the flexfield view object into an existing
column. The displaying of descriptive flexfields in the cell of a table
column is not supported.

Adding Descriptive Flexfield UI Components to a Page

22-32 Developer's Guide

6. Add an additional WHERE clause or view criteria to the master view object to
enforce the same predetermined context value for all rows of the table.

If the context segment will be visible on the page, you must configure the segment
to be read-only so end users cannot modify it. For more information, see
Section 22.8.2, "How to Configure Segment-Level UI Properties".

22.7.4 How to Add Create Row and Delete Row Functionality to the Page
If your ADF Table is wrapped in an Applications Table component, and if you are
using your own Create Insert button to create new rows, you must complete the
following steps.

You do not need to complete these steps if new rows are created using the
Applications Table's New button or the New option on the Actions menu.

To add Create Row and Delete Row functionality to the page:
1. From the Data Controls panel, drag the appropriate operation of the master view

object (such as CreateInsert) onto the page.

2. Delete the newly created button, but not its pageDef entry. Example 22–1 shows an
example of the pageDef entry.

Example 22–1 Executables Element of Page Definition Code

<executables>
 <iterator Binds="Dff1RefInstance" RangeSize="25"
DataControl="Dff1RefAMDataControl" id="Dff1RefInstanceIterator"/>
 <iterator Binds="Dff1Instance" RangeSize="25"
DataControl="Dff1RefAMDataControl" id="Dff1InstanceIterator"/>
</executables>

3. Add a new button to the layout.

4. In the Property Inspector for the button, expand the Common section and set the
ActionListener to the EL expression for the method binding. For example,
#{myBean.customCreateInsert}.

Example 22–1 shows how the executables element of the page definition might
look. Dff1RefInstanceIterator is the iterator of the master view object.

5. To ensure that new descriptive flexfield rows appear in the UI, add code to the
application page (in the Invoke Application phase or just before the Render
Response phase) to set the state of each newly created row to STATUS_NEW, as
demonstrated in Example 22–2.

Example 22–2 Code to Set New Table Row State to STATUS_NEW

public void invokeMethod(String expr, Class[] paramTypes, Object[] params)
{
 FacesContext fc = FacesContext.getCurrentInstance();
 MethodBinding mb = fc.getApplication().createMethodBinding(expr,paramTypes);
 return mb.invoke(fc,params);
}

Caution: If you enable end users to add new flexfield rows to the UI
table, you can permit them to enter their own unique key values for a
new row. However, you must provide a programmatically generated
primary key value for the new row, otherwise it will generate an error.

Adding Descriptive Flexfield UI Components to a Page

Using Descriptive Flexfields 22-33

public void customCreateInsert(ActionEvent actionEvent)
{
 invokeMethod("#{bindings.CreateInsert.execute}",ActionEvent.class,actionEvent);

 FacesContext fCtx = FacesContext.getCurrentInstance();
 javax.faces.application.Application app = fCtx.getApplication();
 ELContext elCtx = fCtx.getELContext();
 int index = 0;
 Row coreVORow =
 ((RowSetIterator)app.evaluateExpressionGet(fCtx,
 "#{bindings.Dff1RefInstanceIterator.rowSetIterator}",
 RowSetIterator.class)).getRowAtRangeIndex(index);

 coreVORow.setNewRowState(Row.STATUS_NEW);
}

6. Add code to the custom createInsert method to handle an empty table as

described in Section 22.7.5, "How to Add a Row to an Empty Table in a Custom
createInsert Method"

22.7.5 How to Add a Row to an Empty Table in a Custom createInsert Method
If you are using a custom createInsert method to add rows to an Applications Table
component, you must include code similar to Example 22–3 to handle an empty table.
Replace FirstRowInTable with logic to determine whether the table is empty and the
new row is the first row in the table.

Example 22–3 Handling Empty Tables in a Custom createInsert Method

if (FirstRowInTable &&
 BindingUtil.getCustomProperty(table, "flexenabled") != null)
 {
 List<UIComponent> columns = table.getChildren();
 if (columns != null)
 {
 for (UIComponent column: columns)
 {
 if (column.getChildCount() > 0)
 {
 UIComponent c1 = column.getChildren().get(0);

Caution:

■ If you enable end users to add new flexfield rows to the UI table,
you must ensure that the default value of the new row's context
segment is your predetermined value, matching the existing rows.

■ You can permit end users to enter their own unique key values for
a new row. However, you must provide a programmatically
generated primary key value for the new row, otherwise it will
generate an error.

■ The context segment value in any existing row must not change at
runtime. You must enforce this by hiding the context segment or
by configuring it as read-only. For more information, see
Section 22.8.1, "How to Configure Flexfield-Level UI Properties"
and Section 22.8.2, "How to Configure Segment-Level UI
Properties".

Adding Descriptive Flexfield UI Components to a Page

22-34 Developer's Guide

 if (c1 instanceof DescriptiveFlexfield)
 {
 ((DescriptiveFlexfield) c1).createDynamicColumns();
 }
 }
 }
 }
 }

22.7.6 How to Dynamically Refresh a Descriptive Flexfield
If your flexfield is in an ADF Table that is wrapped in an Applications Table
component that is refreshed by another component, such as a button or a query, then
you must add functionality to dynamically refresh the flexfield segments.

To refresh the flexfield segments based on the current iterator rowset data, create a
listener method in the flexfield's backing bean and bind the listener to the component
that is initiating the table refresh. The listener must first call the default listener and
then call DescriptiveFlexfield.updateFlexColumns(RichTable), where RichTable is
the binding for the table that contains the flexfield.

Example 22–4 shows an example of a custom flexfield handler for a query event. The
method first calls invokeMethodExpression to call the original query listener, and then
calls updateFlexColumns with the table component that contains the flexfield as the
parameter. Example 22–5 shows the binding of the custom flexfield handler to the
query component.

Example 22–4 Flexfield Listener

public void customDffSearchQueryListener(QueryEvent queryEvent)
{
 invokeMethodExpression(
 "#{bindings.DffCriteriaQuery.processQuery}",
 Object.class,QueryEvent.class,queryEvent);
 DescriptiveFlexfield.updateFlexColumns(appTable);
}

Example 22–5 Binding the Flexfield Listener to the Search Query

<af:query id="qryId1"
 headerText="#{applcoreBundle.QUERY_SEARCH_HEADER_TEXT}"
 disclosed="true"
 value="#{bindings.criteriaQuery.queryDescriptor}"
 model="#{bindings.criteriaQuery.queryModel}"
 queryListener="#{backingBeanScope.dffBean.customDffSearchQueryListener}"
 queryOperationListener="#{bindings.DffCriteriaQuery.processQueryOperation}"
 resultComponentId="::AT2:_ATp:ATt2"/>

22.7.7 What Happens When You Add a Descriptive Flexfield to a Page
Descriptive flexfield segments appear on a form as a widget with a
implementor-defined label, just as core fields do. In a table, the label of the flexfield
segment is the column header and the values are within each cell of the column.

Note: You do not need to handle flexfield refresh for standard
Applications Table create and delete operations. However, custom
create and delete operations must handle the refreshing of flexfields.

Configuring Descriptive Flexfield UI Components

Using Descriptive Flexfields 22-35

Figure 22–18 shows an example of a descriptive flexfield used in a form on an
application page.

Figure 22–18 Example of a Descriptive Flexfield in a Form

Figure 22–19 shows an example of a descriptive flexfield used in a table on an
application page:

Figure 22–19 Example of a Descriptive Flexfield In a Table

22.8 Configuring Descriptive Flexfield UI Components
You can control your descriptive flexfield's behavior in the application UI by
modifying properties at the flexfield level and the segment level, configuring
descriptive flexfield parameters, and configuring the flexfield to handle value change
events.

22.8.1 How to Configure Flexfield-Level UI Properties
You configure flexfield-level behavior by configuring the UI component's properties.

Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding
Descriptive Flexfield UI Components to a Page".

Note: Descriptive flexfield segments always appear as form fields or
table columns in the same order that their corresponding attributes
appear in the underlying view object.

Configuring Descriptive Flexfield UI Components

22-36 Developer's Guide

To configure flexfield-level properties:
■ Select the descriptive flexfield's UI component on the page and modify its

properties in the Property Inspector, as shown in Figure 22–20.

Figure 22–20 Descriptive Flexfield Property Inspector

The significant properties on the Common, Data, Style and Behavior property tabs are
listed in Table 22–1.

Table 22–1 Descriptive Flexfield Properties

Tab > Property Description

Common > Id This is the ID of the flexfield.

Common > Rendered This indicates whether the flexfield is rendered on the
page. Values can be True (default) or False. EL
expressions are allowed.1

Common > Value This is the value of the flexfield. This should be an EL
expression pointing to an iterator object. The iterator value
must be statically declared in the page definition.

This field is also visible on the Data tab.

Data > Accessor This property is the name of the accessor between the
product view object and the flexfield view object.

Data > Category This defines which category will be rendered on the page.
The category can be set on each attribute's custom
property.

Style > StyleClass This property is the style class of the flexfield. A style class
allows you to group a set of inline styles.

Style > InlineStyle This is the inline style of the component. The InlineStyle
property is a string of CSS styles that can set individual
properties such as background color, font style, or
padding.

Behavior > Read-Only This indicates whether the flexfield is rendered as
read-only. Values can be True or False (default). EL
expressions are allowed.

Configuring Descriptive Flexfield UI Components

Using Descriptive Flexfields 22-37

22.8.2 How to Configure Segment-Level UI Properties
Descriptive flexfields support finer control of segments in the UI through the
following segment-level UI properties:

■ Rendered: This boolean property indicates whether the segment is visible on the
application page. You can set this property with a literal value or an EL expression.

■ Required: This boolean property indicates whether the segment must have a
value. You can set this property with a literal value or an EL expression.

■ ReadOnly: This boolean property indicates whether end users can modify the
segment. You can set this property with a literal value or an EL expression.

■ Visible: This boolean property specifies whether the segment is displayed in the
page or is hidden. You can set this property with a literal value or an EL
expression.

■ AutoSubmit: This boolean property specifies whether or not a component
automatically submits when a segment's value changes. You can set this property
with a literal value or an EL expression.

■ Label: This string property provides a display label for a segment.

■ ShortDesc: This string property provides a short description of a segment.

■ Columns: This integer property specifies the width of the control in terms of the
default font size of the browser. You can set this property with a literal value or an
EL expression.

Behavior > Mode This defines the UI mode of the descriptive flexfield
component, to render all of the segments or just some of
them. Values can be:

■ No value (default): render all of the descriptive
flexfield segments.

■ global: render only the global segments of the
flexfield. This is the default value for a descriptive
flexfield inside a table column, to generate
subcolumns for the global segments.

■ contextSensitive: render only the context-sensitive
segments of the flexfield (including the context
segment). This is the default value for a descriptive
flexfield inside a table detail region, to render the
context values.

Behavior > partialTriggers This property is the IDs of the components that should
trigger a partial update in the flexfield (String[]). EL
expressions are allowed.

Behavior > valueChangeListener This property is a method reference to a value change
listener (javax.faces.el.MethodBinding). It requires an
EL expression.

Behavior > binding This is an EL reference that will store the component
instance on a bean
(oracle.apps.fnd.applcore.flex.ui.DescriptiveFlexf
ield). This property requires an EL expression.

1 For a descriptive flexfield that was added as table columns, you cannot control this property on a
row-by-row basis. It must be set to apply to the entire column.

Table 22–1 (Cont.) Descriptive Flexfield Properties

Tab > Property Description

Configuring Descriptive Flexfield UI Components

22-38 Developer's Guide

The default values of these properties are derived from the flexfield metadata, but you
can override them by inserting the following flexfield hint components from the
Applications page of the Component Palette:

■ Flexfield Context Segment Hints: Use this component to configure the context
segment.

■ Flexfield Segment Hints: Use this component to configure all global segments or
to configure all context-sensitive segments. Also use this component as a container
for Flexfield Segment Hint.

■ Flexfield Segment Hint: Nest this component in a Flexfield Segment Hints
component to configure an individual global or context-sensitive segment.

For information about using EL expressions, see the "Creating ADF Data Binding EL
Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding
Descriptive Flexfield UI Components to a Page".

22.8.2.1 Configuring a Context Segment
Use Flexfield Context Segment Hints to set the Visible, ReadOnly, Rendered,
Required, Label, ShortDesc, Columns, and AutoSubmit UI properties for a context
segment.

To configure a context segment:
1. From the Applications page of the Component Palette, drag Flexfield Context

Segment Hints and drop it as a child of the Descriptive Flexfield component.

2. In the Property Inspector, set the context segment's UI properties.

22.8.2.2 Configuring All Global Segments
Use Flexfield Context Hints to set the Visible, ReadOnly, Rendered, and Required
properties to the same values for all the global segments.

To configure all global segments:
1. From the Applications page of the Component Palette, drag Flexfield Segment

Hints and drop it as a child of the Descriptive Flexfield component.

2. In the Property Inspector, set the Visible, ReadOnly, Rendered, and Required
properties.

3. Ensure that the ContextCode property is blank.

Note: If you set a segment's Required property to True, for
validation purposes you cannot override this by resetting it to False in
the flexfield hint component. You can, however, do the reverse:
Change a nonrequired segment to required in the flexfield hint
component.

Configuring Descriptive Flexfield UI Components

Using Descriptive Flexfields 22-39

22.8.2.3 Configuring Individual Global Segments
Use a Flexfield Segment Hint component nested in a Flexfield Segment Hints
component to set the Visible, ReadOnly, Rendered, Required, Label, ShortDesc,
Columns, and AutoSubmit UI properties for a global segment.

You typically set the ReadOnly property to True if a default value is assigned to that
segment, and you do not want end users to choose a value other than the default. Do
not set both Required and ReadOnly to True if the segment does not have a default
value.

Before you begin:
From the Applications page of the Component Palette, drag Flexfield Segment Hints
and drop it as a child of the Descriptive Flexfield component. Do not set any
properties.

To configure a global segment:
1. From the Applications page of the Component Palette, drag Flexfield Segment

Hint and drop it as a child of Flexfield Segment Hints.

2. In the Property Inspector, set the SegmentCode property.

3. Set the global segment's UI properties.

22.8.2.4 Configuring All Context-Sensitive Segments
Use Flexfield Context Hints to set the Visible, ReadOnly, Rendered, and Required
UI properties to the same values for all the context-sensitive segments.

To configure all global segments:
1. From the Applications page of the Component Palette, drag Flexfield Segment

Hints and drop it as a child of the Descriptive Flexfield component.

2. In the Property Inspector, set the ContextCode property.

3. Set the Visible, ReadOnly, Rendered, and Required properties.

22.8.2.5 Configuring Individual Context-Sensitive Segments
Use a Flexfield Segment Hint component nested in a Flexfield Segment Hints
component to set the Visible, ReadOnly, Rendered, Required, Label, ShortDesc,
Columns, and AutoSubmit UI properties for a context-sensitive segment.

You typically set the ReadOnly property to True if a default value is assigned to that
segment, and you do not want end users to choose a value other than the default. Do
not set both Required and ReadOnly to true if the segment does not have a default
value.

Caution: For a descriptive flexfield that was added as table columns,
you cannot configure the Rendered property of global segments on a
row-by-row basis. It must be set to apply to the entire column.

Tip: To determine the correct value for the SegmentCode property,
examine the FND_ACFF_SegmentName attribute of the segment's
viewAttribute element in the descriptive flexfield view object.

Loading Seed Data

22-40 Developer's Guide

Before you begin:
From the Applications page of the Component Palette, drag a Flexfield Segment
Hints and drop it as a child of the Descriptive Flexfield component. Set the
ContextCode property.

To configure a context-sensitive segment:
1. From the Applications page of the Component Palette, drag Flexfield Segment

Hint and drop it as a child of Flexfield Segment Hints.

2. In the Property Inspector, set the SegmentCode property.

3. Set the context-sensitive segment's UI properties.

22.8.3 How to Configure Descriptive Flexfield Parameters
You must add all the parameters that you have registered for the flexfield to the
partialTriggers list so that each parameter's associated UI component is refreshed
when its attribute is changed.

Before you begin:
1. Define and register the necessary parameters, if any, as described in Section 22.2.6,

"How to Register Descriptive Flexfield Parameters".

2. Add the descriptive flexfield to the page as described in Section 22.7, "Adding
Descriptive Flexfield UI Components to a Page".

To configure descriptive flexfield parameters:
1. Identify each UI component that corresponds (through the flexfield view object) to

an entity object attribute to which a flexfield parameter is mapped, and ensure that
the ID attribute of the UI component is set.

For example, say you mapped the Customer parameter to the entity object
Customer_Name attribute, which in turn has a corresponding view object attribute
called Customer_Name and is displayed on the page using an inputText field with
the prompt "Customer Name". You would ensure that this UI component has an ID,
say, customerInputText.

2. In the Behavior section of the Property Inspector for the descriptive flexfield UI
component, add the UI component ID to the list in the PartialTriggers field.

In the previously introduced example, you would add customerInputText to the
PartialTriggers list. Example 22–6 shows the source view of the partialTriggers
attribute.

Example 22–6 Adding the UI Component ID to the PartialTriggers List

<fnd:descriptiveFlexfield value="#{bindings.Dff1Iterator}"
partialTriggers=customerInputText>

22.9 Loading Seed Data
Any implementation of flexfields in Oracle Fusion Applications typically requires
application seed data, which is the essential data to enable flexfields to work properly

Tip: To determine the correct value for the SegmentCode property,
examine the FND_ACFF_SegmentName attribute of the segment's
viewAttribute element in the descriptive flexfield view object.

Working with Descriptive Flexfield UI Programmatically

Using Descriptive Flexfields 22-41

in applications. Flexfield seed data can be uploaded and extracted using the Seed Data
Loader.

After you complete the registration process described in Section 22.2.2, "How to
Register and Define Descriptive Flexfields," your flexfield seed data consists of the
information that you registered for your flexfield, such as the tables and columns
reserved for your flexfield. For a customer flexfield, the seed data contains only this
registration data.

If your flexfield is a developer flexfield, you also serve the role of the implementor. In
addition to the registration data, your flexfield seed data might include contexts,
segments, and value sets that you have defined for your flexfield.

For information about extracting and loading seed data, see Chapter 55, "Initializing
Oracle Fusion Application Data Using the Seed Data Loader".

22.10 Working with Descriptive Flexfield UI Programmatically
When working with descriptive flexfields programmatically, you might need to know
how to do the following tasks:

■ Update a descriptive flexfield

■ Determine whether flexfield segments have been defined

■ Configure a descriptive flexfield to handle value change events

22.10.1 How to Update a Descriptive Flexfield Programmatically
When you update a flexfield programmatically, you must obtain the same flexfield
view row that is used by the UI. You use the getFlexfieldVORowFromEvent method to
get a handle to a flexfield view row from the ValueChangeEvent instance.

public static Row getFlexfieldVORowFromEvent(ValueChangeEvent vce);

Update the context value on the flexfield, not the master view row. Otherwise, the
structure will not change. Do not update the entity object directly. The flexfield's
structure logic is in the setter of the view row, so do not bypass it.

22.10.2 How to Determine Whether Descriptive Flexfield Segments Have Been Defined
Your application might require information about any global or context-sensitive
segments that exist in a descriptive flexfield's metadata before it invokes a UI that
includes the flexfield.

There is a view attribute in the descriptive flexfield view object, _FLEX_NumOfSegments,
that contains the combined total number of global segments and context-sensitive
segments in the flexfield. Its value is in the java.lang.Integer data format. This value
may vary depending on the context.

The value of this view attribute is the number of segments defined in the metadata.
For a given descriptive flexfield view row, a value of 0 means that only the context
segment is available. Whether a segment is displayed is not taken into consideration.

22.10.3 How to Configure a Descriptive Flexfield to Handle Value Change Events
You can configure your application to recognize and respond to changes in individual
descriptive flexfield segment values.

Incorporating Descriptive Flexfield into a Search Form

22-42 Developer's Guide

You register a value change listener to capture any ValueChangeEvent that occurs. When
an end user changes a segment value, the input components associated with the
flexfield segments on the application page deliver a value change event, and the
listener is called.

Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding
Descriptive Flexfield UI Components to a Page".

To configure a descriptive flexfield to handle value change events
1. Create the listener handler as a Java method (usually on a backing bean).

Example 22–7 is an example of a method that handles a ValueChangeEvent.

Example 22–7 Sample Listener Handler Method

public void dffChangeListener(ValueChangeEvent valueChangeEvent) {
 System.out.println("***** In dffChangeListener()");
 System.out.println("getSource() = " + valueChangeEvent.getSource());
 System.out.println("getOldValue() = " + valueChangeEvent.getOldValue());
 System.out.println("getNewValue() = " + valueChangeEvent.getNewValue());
 }

2. Specify the handler method as UI metadata on the flexfield's value change listener
property (described in Table 22–1). In the Property Inspector, click the Edit button
for the value change listener property, and a wizard appears to help you select an
existing event listener or create a new listener. Example 22–8 is an example of the
metadata as an EL expression that identifies the dffChangeListener listener from
the Java method in Example 22–7.

Example 22–8 Sample EL Expression Identifying dffChangeListener

<fnd:descriptiveFlexfield value="#{bindings.PJCDFF1Iterator}"
 valueChangeListener=
 "#{managed_DFFHeaderTablePropHandler.dffChangeListener}"
 autoSubmit="true">

For more information about handling value change events, see the "Using Input
Components and Defining Forms" chapter inOracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

22.11 Incorporating Descriptive Flexfield into a Search Form
You can include descriptive flexfield view object attributes as search criteria in an
advanced query search form. This form enables end users to define ad hoc criteria to
search for data in the application's master view object and its linked descriptive
flexfield view object. End users can select which attributes of the descriptive flexfield
view object to use as search criteria.

22.11.1 How to Incorporate Descriptive Flexfields Into a Search Form
To incorporate a descriptive flexfield into a search form, use the Edit Query Criteria
tab to add view criteria to a view object instance and then drop the view criteria onto
the page as a Query Panel with results.

Incorporating Descriptive Flexfield into a Search Form

Using Descriptive Flexfields 22-43

To add a descriptive flexfield to a search form:
1. Add view criteria to the product view object instance that uses attributes from the

view-linked descriptive flexfield view object, as shown in Figure 22–21.

Figure 22–21 Edit Query Criteria Tab of View Object View Criteria Definition

a. Enter a name for the view criteria definition and select the view accessor
attribute from the master view object. The attributes of the view-linked
descriptive flexfield view object appear.

b. Select the context segment (the discriminator) and use it as the attribute in the
view criteria definition.

c. Select Equals as the Operator and select Literal as the Operand.

2. Create a new JSPX page in the user interface project.

3. In the Data Control panel, select the named view criteria that you created
previously.

4. Drag and drop the view criteria onto the page as a Query Panel with results, as
shown in Figure 22–22.

Tip: Oracle JDeveloper names the user interface project
ViewController by default.

Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence

22-44 Developer's Guide

Figure 22–22 Page with Descriptive Flexfield Search Form

5. Run the new search form page and click the Advanced button. When you click
Add Fields, only the attributes associated with the base descriptive flexfield view
object (global segments) are available as additional criteria. To include the
context-sensitive attributes for a context, select the equal to operator for the
Context Value criteria item and select a context. The Add Fields list refreshes to
include the context-sensitive attributes from the subtype view object for the
selected context, as shown in Figure 22–23.

Figure 22–23 Descriptive Flexfield Search Form UI

For more information about working with search forms, see the "Creating ADF
Databound Search Forms" chapter of Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

22.12 Preparing Descriptive Flexfield Business Components for Oracle
Business Intelligence

Oracle Business Intelligence is a comprehensive collection of enterprise business
intelligence functionality that provides the full range of business intelligence
capabilities including interactive dashboards, full ad hoc, proactive intelligence and
alerts, enterprise and financial reporting, real-time predictive intelligence, and more.

Note: Figure 22–6 illustrates the attributes associated with the base
descriptive flexfield view object (global segments) and the
context-sensitive attributes.

Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence

Using Descriptive Flexfields 22-45

While descriptive flexfields are modeled using polymorphic view objects, flexfield
technology is not compatible with Oracle Business Intelligence, which also requires
reference data, such as lookups, to be modeled as view-linked child view objects. To
enable a descriptive flexfield to be used by Oracle Business Intelligence, it must be
flattened into a usable static form. When you create business components for this
descriptive flexfield, the business component modeler recognizes the business
intelligence-enabled setting, and a view object that is flattened for business intelligence
is generated alongside the standard descriptive flexfield polymorphic view object. You
must also slightly modify the process of creating descriptive flexfield view links and
application modules.

When the business intelligence-enabled and flattened descriptive flexfield is
configured as part of an application, the implementor can select which individual
flexfield segments to make available for use with Oracle Business Intelligence. Only
the segments that are business intelligence-enabled are included in the flattened view
object

22.12.1 How to Enable a Descriptive Flexfield for Oracle Business Intelligence
To enable implementors to perform business intelligence queries on whatever
segments they configure for a flexfield, you must business-intelligence enable the
flexfield in one of the following ways. A flattened view object is generated only if the
descriptive flexfield is business-intelligence enabled.

■ Edit the flexfield from the Register Descriptive Flexfields task, select the Business
Intelligence Enabled checkbox. For more information, see Section 22.2.2.1,
"Registering and Defining Descriptive Flexfields Using a Registration Task."

■ Set the BI_ENABLED flag at registration time using the fnd_flex_df_setup_
apis.create_flexfield(...) procedure. For information about using this
procedure, see Section 22.2.2.2.1, "What You May Need to Know About the
Descriptive Flexfield Setup API."

■ Set the BI_ENABLED flag using the fnd_flex_df_setup_apis.update_
flexfield(...) procedure. For information about using this procedures, see
Section 22.2.2.2.1, "What You May Need to Know About the Descriptive Flexfield
Setup API."

You can optionally provide flattened fact names for the flexfield's entity details, as
described in Section 22.2.5, "How to Register Entity Details." This helps to automate
the process for importing the descriptive flexfield into Oracle Business Intelligence. If
you are using fnd_flex_df_setup_apis, you provide the flattened fact name by
setting the BI_FLATTENED_FACT_NAME value.

When a descriptive flexfield is business intelligence-enabled, implementors use the
Manage Descriptive Flexfields task to enable the descriptive flexfield's segments for
business intelligence, as described in the "Configuring Descriptive Flexfields" section
in Oracle Fusion Applications Extensibility Guide. Only the segments that are business
intelligence-enabled are included in the flattened view object.

22.12.2 How to Flatten the Descriptive Flexfield Model for a Business
Intelligence-Enabled Descriptive Flexfield

When you create business components for a business intelligence-enabled descriptive
flexfield, the business component modeler recognizes the business
intelligence-enabled setting. A view object that is flattened for Oracle Business
Intelligence is generated alongside the standard descriptive flexfield polymorphic

Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence

22-46 Developer's Guide

view object. You must also slightly modify the process of creating descriptive flexfield
view links and application modules.

Before you begin:
1. Enable the flexfield and the desired segments for Oracle Business Intelligence as

described in Section 22.12.1, "How to Enable a Descriptive Flexfield for Oracle
Business Intelligence."

2. If you have defined trees on any of the value sets that are referenced by the
flexfield, ensure that the flattened tree view objects are already in your project.
Otherwise, the Create Flexfield Business Components wizard that you use to
create the flexfield business components will report the missing view objects as
errors.

For more information about flattened tree view objects, see Section 59.8.1,
"Designing a Column-Flattened View Object for Oracle Business Intelligence." For
more information about value sets, see the "Creating Custom Value Sets" section in
the Oracle Fusion Applications Extensibility Guide.

To produce a business intelligence-enabled flattened descriptive flexfield model:
1. Create descriptive flexfield business components as described in Section 22.3,

"Creating Descriptive Flexfield Business Components".

For a flexfield that is business intelligence-enabled, the Create Flexfield Business
Components wizard generates a business intelligence-specific view object and
other business components under a directory called analytics in the package
root directory. These are generated in addition to the standard descriptive flexfield
view object.

2. Create a view link using the procedure described in Section 22.4, "Creating
Descriptive Flexfield View Links". Keep the following in mind:

■ The master view object that you create with the standard wizard can be the
same master view object that you create for the core descriptive flexfield
model.

■ Create the view link from the master view object to the business
intelligence-enabled flexfield base view object. The business
intelligence-enabled flexfield is distinguished from the core flexfield by the
prefix "BI:" as shown in Figure 22–24.

Note: When you make changes to a business intelligence-enabled
flexfield, you use the Import Metadata wizard to import the changes
into the Oracle Business Intelligence repository as described in the
"Using Incremental Import to Propagate Flex Object Changes" section
in the Oracle Fusion Middleware Metadata Repository Builder's Guide for
Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications
Edition).

Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence

Using Descriptive Flexfields 22-47

Figure 22–24 Create Flexfield View Link Wizard — View Objects Page

3. Create an application module for use with Oracle Business Intelligence as
described in Section 22.6, "Adding a Descriptive Flexfield View Object to the
Application Module." Make the following changes:

a. On the Data Model page of the Create Application Module wizard, when you
create an instance of the master view object, there is no need for a child view
object.

b. On the Application Modules page of the wizard, add an instance of the
descriptive flexfield Oracle Business Intelligence application module as a
nested instance of this application module. You can identify the Oracle
Business Intelligence application module by the analytics subpackage
under the package root.

4. Define the custom properties required to link the master view object instance to
the default view instance inside the nested flexfield Oracle Business Intelligence
application module instance.

This is done on the General tab of the nested business intelligence-enabled
flexfield application module instance definition, as shown in Figure 22–25.

Note: If you already have a product Oracle Business Intelligence
application module, you may use it.

Publishing Descriptive Flexfields as Web Services

22-48 Developer's Guide

Figure 22–25 Custom Properties for Business Intelligence-Enabled Application Module

As you define the custom properties, keep the following points in mind:

■ The default view instance inside the business intelligence-enabled flexfield
application module is typically called DefaultFlexViewUsage.

■ The custom property names should be formatted as BI_VIEW_LINK_
mypropertyname

■ The custom property values must be formatted as source_
viewobjectinstance_name, viewlink_definition_name, destination_
viewobjectinstance_name.

■ Use the fully qualified view object instance names for the source view object
and destination view object, and the fully qualified package name for the view
link definition.

■ Business intelligence joins between the view object instances that you specify
in different application modules are created while importing them from Oracle
ADF if custom properties are defined on the application module.

22.13 Publishing Descriptive Flexfields as Web Services
You can make access to a descriptive flexfield available through web services, which
will enable you to create, retrieve, update and delete operations on the flexfield data
rows. You accomplish this by exposing utility methods in the product application
module to access flexfield service data objects.

Utility methods for flexfield service data objects are helpful to the customers because
the identifiers that are used in flexfield services are generally not the same as those in
the flexfield definition, such as the customer-defined segment codes and context codes.
For example, the name of the service data object for the customer-defined context
"Product Type" might be called "CasesDFFProduct_Type." These utility methods help
customers quickly identify a service data object or a property of the object by the
identifiers with which the customers are familiar.

When you generate a flexfield business component, the descriptive flexfield business
components and other artifacts are developed based on the information in the flexfield
metadata. As illustrated in Figure 22–6, a base view object is created for the context
and global segments. If any contexts have been configured, subtype view objects are
generated for each configured context.

Publishing Descriptive Flexfields as Web Services

Using Descriptive Flexfields 22-49

The example in Figure 22–26 shows a Business Component Browser view of a
descriptive flexfield.

Figure 22–26 Business Component Browser View of a Descriptive Flexfield

To complete the development process to publish descriptive flexfields as web services:

1. Expose the descriptive flexfield as a web service.

2. Test the web service.

22.13.1 How to Expose a Descriptive Flexfield as a Web Service
To make available web service access to a descriptive flexfield, you must complete the
following steps:

1. Service-enable the master view object.

2. Expose the application module as a web service.

3. Expose the operations on the master view object.

4. Add utility methods for the flexfield to the product application module. These
utility methods, which are exposed to client applications, provide access to
information from the FlexfieldSdoSupport object, which is not exposed to clients.

You can then deploy the service and run Java client programs to test the service as
described in Section 22.13.2, "How to Test the Web Service."

For more information about service-enabling an application module, see "Integrating
Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

Before you begin:
1. Create a flexfield business component for the flexfield's usage as described in

Section 22.3.1, "How to Create Descriptive Flexfield Business Components."

Note: When you generate a flexfield business component, the Create
Descriptive Flexfield Business Components wizard automatically
service-enables the business component by generating a Service Data
Object (SDO) for the base view object and for every subtype view
object.

Publishing Descriptive Flexfields as Web Services

22-50 Developer's Guide

2. Create a flexfield view link between the master view object, which contains only
nonflexfield attributes, and the flexfield business component for the flexfield
usage as described in Section 22.4.1, "How to Create Descriptive Flexfield View
Links."

3. Nest the descriptive flexfield application module instance in the product
application module as described in Section 22.5.1, "How to Nest the Descriptive
Flexfield Application Module Instance in the Application Module."

4. Add the view object instance to the application module as described in
Section 22.6.1, "How to Add a Descriptive Flexfield View Object Instance to the
Application Module."

To expose a descriptive flexfield as a web service:
1. In the Application Navigator, open the view link between the master view object

and the flexfield base view object.

2. In the overview editor, expand the Custom Properties section and add a
SERVICE_PROCESS_CHILDREN property set to true, if one does not already
exist.

3. Open the master view object, which is the view object that contains only the
nonflexfield attributes.

4. In the overview editor click the Java navigation tab.

5. In the Java Classes section, click the Edit icon to generate and configure Java
implementation classes.

6. In the Select Java Options dialog, select Generate Service Data Object Class and
click OK, as shown in Figure 22–27.

Figure 22–27 Generating a Service Data Object Class for the Master View Object

7. From the Application Navigator, open the product application module.

8. In the overview editor, click the Service Interface navigation tab.

Publishing Descriptive Flexfields as Web Services

Using Descriptive Flexfields 22-51

9. If the Add icon is enabled, complete the following steps to service-enable the
application module and expose the master view object operations:

a. Click the Add icon to enable the application to support the Service interface.

b. In the Create Service Interface wizard, click Next twice to go to the Service
View Instances page.

c. Move the view instance for the master view object to the Selected list.

d. Select the master view object from the Selected list as shown in Figure 22–28,
select all the operations in the Basic Operations list, and click OK.

Figure 22–28 Selecting Master View Object Instances to Expose

e. Click Finish.

10. If the Add icon is disabled, the application is already service enabled. Complete
the following steps to expose the master view object operations:

a. In the Service Interface View Instances section, click the Edit icon.

b. Move the view instance for the master view object to the Selected list.

c. Select the master view object from the Selected list as shown in Figure 22–28,
select all the operations in the Basic Operations list, and click OK.

11. Expand the Generated Files for Service Interface section, and make a note of the
name of the remote server class for the product application module. This is the
class that has a name ending with ServiceImpl.java.

12. In the overview editor for the product application module, click the Java
navigation tab and click the link for the Application Module Class.

13. Add the utility methods for the flexfield service data objects to the product
application module. Include methods that return the namespace and name of the
service data object for a given context. Optionally, include methods that return the

Publishing Descriptive Flexfields as Web Services

22-52 Developer's Guide

path of an attribute that is associated with a given segment in the service data
object. Use self-explanatory names that reflect the name of the flexfield and what is
returned. Example 22–9 shows example utility methods for the CasesDFF flexfield.
Example 22–10 shows an example of the methods being invoked in a client
application. The self-explanatory utility method names make it easy to understand
the client code.

Example 22–9 Utility Methods for Cases DFF Flexfield Service Data Object Support

// A private method to retrieve a FlexfieldSdoSupport object
// from the flexfield application module.
private FlexfieldSdoSupport getCasesDFFSdoSupport(String contextValue)
{
 // Find the nested flexfield application module instance.
 DFFApplicationModuleImpl am =
 (DFFApplicationModuleImpl) findApplicationModule("CasesDFFAM1");
 // If contextValue is null, the base type is returned.
 return am.getSdoSupport(contextValue);
}

// Gets the namespace and name of the service data object for a
// given context value. Note how the method name and argument
// name are specific to CasesDFF.
public List<String> getCasesServiceNamespaceAndName(String productType)
{
 FlexfieldSdoSupport ss = getCasesDFFSdoSupport(productType);
 if (ss == null)
 {
 return null;
 }
 return Arrays.asList(ss.getSdoNamespace(), ss.getSdoName());
}

// Gets the property path for "Product Type", which is the context
// segment of CasesDFF.
public String getCasesProductTypeServicePropertyPath()
{
 FlexfieldSdoSupport ss = getCasesDFFSdoSupport(null);
 if (ss == null)
 {
 return null;
 }
 return ss.getDiscriminatorSdoPath();
}

// Gets the property paths for a list of segments specific to a
// product type.
public List<String> getCasesServicePropertyPaths(String productType,
 List<String> segmentCodes)
{
 FlexfieldSdoSupport ss = getCasesDFFSdoSupport(productType);
 if (ss == null)
 {
 return null;
 }
 ArrayList r = new ArrayList(segmentCodes.size());
 for (String segmentCode: segmentCodes)
 {
 r.add(ss.getSegmentSdoPath(segmentCode));
 }

Publishing Descriptive Flexfields as Web Services

Using Descriptive Flexfields 22-53

 return r;
}

Example 22–10 Client Application for Updating CasesDFF in a CaseList Row

// Obtain the service definition for product type "Office Chair."
List<String> chairObjInfo=
 caseListService.getCasesServiceNamespaceAndName("Office Chair");

// Create a service data object for "Office Chair."
DataObject chairObj = dataFactory.create(chairObjInfo.get(0),
 chairObjInfo.get(1));

// Set the product type, so the product type matches the object type
chairObj.set(caseListService.getCasesProductTypeServicePropertyPath(),
 "Office Chair");

// Obtain the element names of the segments and set the values.
List<String> segmentPaths =
 caseListService.getCasesServicePropertyPaths("Office Chair",
 Arrays.asList("Broken Part"));

// Update the segment "Broken Part."
chairObj.set(segmentPaths.get(0), "Chair Back");

14. In the overview editor for the product application module, click the Service
Interface navigation tab for the product application module and click the Edit
icon in the Service Interface Custom Methods section.

15. In the Service Custom Methods dialog, move the newly added methods to the
Selected list to make them available for clients and click OK.

The application module's remote server implementation class will be modified to
expose these methods.

22.13.2 How to Test the Web Service
You can test the service by adding StringRefAddr elements to the Reference element
for the product application module's service to the connections.xml file, deploying
and manually testing the service, and optionally creating and running Java client
programs to test the service.

Before you begin:
■ Expose the descriptive flexfield as a web service as described in Section 22.13.1,

"How to Expose a Descriptive Flexfield as a Web Service."

■ Ensure that the BC4J Service Client and BC4J Service Runtime libraries are
included in your project.

To test the web service:
1. Expand Application Resources > Descriptors > ADF Meta-INF, and open the

connections.xml file.

2. Locate the Reference element for the product application module's service
(DFF1MasterApplicationModuleService in this example).

3. Add the StringRefAddr elements that are shown in bold in Example 22–11 to the
Reference element for the product application module's service. Modify the host

Publishing Descriptive Flexfields as Web Services

22-54 Developer's Guide

and port number in the jndiProviderURL entry to point to Oracle WebLogic
Server. The port number is typically 7101.

Example 22–11 StringRefAddr Elements to Add to Service Reference in connections.xml

<Reference
name="{http://xmlns.oracle.com/oracle/apps/fnd/applcore/flex/test/dff1/model/}DFF1
MasterApplicationModuleService" className="oracle.jbo.client.svc.Service"
xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">

<Contents>oracle.apps.fnd.applcore.flex.test.dff1.model.DFF1MasterApplicationModul
eService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">

<Contents>DFF1MasterApplicationModuleServiceBean#oracle.apps.fnd.applcore.flex.tes
t.dff1.model.DFF1MasterApplicationModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>DFF1MasterApplicationModuleService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/fnd/applcore/flex/test/dff1/model/</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:port_number</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityPrincipal">
 <Contents>weblogic</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityCredentials">
 <Contents>weblogic1</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

4. Run the remote server class for the product application module to deploy the

service to Integrated WebLogic Server and to manually test the web service.

5. Optionally, create and run Java client programs to test invoking the web service:

The following examples demonstrate how to write programs to test the web
service.

Note: The remote server class was generated when you exposed the
descriptive flexfield as a web service in Section 22.13.1, "How to
Expose a Descriptive Flexfield as a Web Service." This class has a name
that ends with ServiceImpl.java.

Publishing Descriptive Flexfields as Web Services

Using Descriptive Flexfields 22-55

■ Example 22–12 shows how to get a data row. The XML payload output of this
program is shown in Example 22–13.

■ Example 22–14 shows how to create a new data row.

■ Example 22–15 shows how to update an existing data row.

Example 22–12 Web Service Get Operation

package oracle.apps.fnd.applcore.flex.test.dff1.model.test;

import ...

public class DFFTester {
 private static final String PK1 = "MY_PRIMARY_KEY";
 public DFFTester() {
 super();
 }
 public void getFKRowGivenKey(){
 try
 {
 DFF1MasterApplicationModuleService dff1Service =
 (DFF1MasterApplicationModuleService)
 ServiceFactory.getServiceProxy(
 DFF1MasterApplicationModuleService.NAME);

 List<String> dff1Info = dff1Service.getMyFlexfieldSdoNamespaceAndName(null);
 System.out.println(dff1Info);

 final String contextValue = "MY_CONTEXT_VALUE";
 List<String> dffInfo2 =
 dff1Service.getMyFlexfieldSdoNamespaceAndName(contextValue);
 System.out.println(dffInfo2);

 MasterDff masterVOSDO = dff1Service.getMasterDff1(PK1);
 DataObject dataObject = (DataObject) masterVOSDO;
 String uri = dataObject.getType().getURI();
 XMLHelper xmlhelper = ServiceFactory.getXMLHelper(dff1Service);
 String xml = xmlhelper.save(dataObject, uri, "MasterDff");
 System.out.println(xml);

 }
 }catch(Exception e){
 e.printStackTrace();
 }
 }

 public static void main(String args[]){
 DFFTester dfftester =new DFFTester();
 dfftester.getFKRowGivenKey();
 }
}

Example 22–13 Example XML Payload Output of Web Service Get Operation

<?xml version="1.0" encoding="UTF-8"?>
<ns2:MasterDff
xmlns:ns2="http://xmlns.oracle.com/apps/fnd/applcore/flex/test/dff1/model/"
xmlns:ns1="http://xmlns.oracle.com/apps/fnd/applcore/flex/test/dff1/flex/dff1/"

Publishing Descriptive Flexfields as Web Services

22-56 Developer's Guide

xmlns:ns0="http://xmlns.oracle.com/adf/svc/types/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="ns2:MasterDff">
<ns2:CreatedBy>0</ns2:CreatedBy>
<ns2:CreationDate>2009-12-03T23:39:25.0-08:00</ns2:CreationDate>
<ns2:LastUpdateDate>2009-12-03T23:39:25.0-08:00</ns2:LastUpdateDate>
<ns2:LastUpdateLogin>0</ns2:LastUpdateLogin>
<ns2:LastUpdatedBy>0</ns2:LastUpdatedBy>
<ns2:PrimaryKeyCode>VS_IND_COC_DEP_DAT_ON_DAT05</ns2:PrimaryKeyCode>
<ns2:ProductContext xsi:nil="true"/>
<ns2:ProductDate xsi:nil="true"/>
<ns2:ProductNumber xsi:nil="true"/>
<ns2:ProductVarchar2 xsi:nil="true"/>
<ns2:dff1 xsi:type="ns1:Dff1VS_5FIND_5FCOC_5FDEP_5FDAT_5FON_5FDAT">
<ns1:PrimaryKeyCode>VS_IND_COC_DEP_DAT_ON_DAT05</ns1:PrimaryKeyCode>
<ns1:_FLEX_ValidationDate>2009-12-03</ns1:_FLEX_ValidationDate>
<ns1:_GlobalSegment1>05</ns1:_GlobalSegment1>
<ns1:_GlobalSegment2>Value05</ns1:_GlobalSegment2>
<ns1:_GLOBAL_STATE_ID_NUM xsi:nil="true"/>
<ns1:_GLOBAL_STATE_ID_NUM_Display xsi:nil="true"/>
<ns1:_FLEX_Context>VS_IND_COC_DEP_DAT_ON_DAT</ns1:_FLEX_Context>
<ns1:_FLEX_NumOfSegments>5</ns1:_FLEX_NumOfSegments>
<ns1:_State>RI</ns1:_State>
<ns1:_State_Holiday>2007-08-12</ns1:_State_Holiday>
</ns2:dff1>
</ns2:MasterDff>

Example 22–14 Web Service Create Operation

...
 public void createMasterDffRow() {
 try {

 DFF1MasterApplicationModuleService dff1Service =
 (DFF1MasterApplicationModuleService)
 ServiceFactory.getServiceProxy(
 DFF1MasterApplicationModuleService.NAME);
 DataFactory dataFactory =
 ServiceFactory.getDataFactory(dff1Service);
 MasterDffImpl dffMaster =
 (MasterDffImpl)dataFactory.create(MasterDff.class);
 dffMaster.setPrimaryKeyCode(PK1);

 final String contextValue = "MY_CONTEXT";
 List<String> dffInfo =
 dff1Service.getMyFlexfieldSdoNamespaceAndName(contextValue);
 System.out.println(dffInfo);
 DataObject dffSubType =
 dataFactory.create(dffInfo.get(0), dffInfo.get(1));
 System.out.println(dff1Service.getMyFlexfieldTypeSdoPath());
 dffSubType.set(dff1Service.getMyFlexfieldTypeSdoPath(), contextValue);
 dffSubType.set(dff1Service.getMyFlexfieldSegmentSdoPaths(contextValue,
 Arrays.asList("GLOBAL_STATE_ID_NUM")).get(0),
 new BigDecimal(100));
 dffSubType.set(dff1Service.getMyFlexfieldSegmentSdoPaths(contextValue,
 Arrays.asList("Date_On_Date")).get(0),
 java.sql.Date.valueOf("2011-04-18"));
 dffMaster.setDff1(dffSubType);
 dff1Service.createMasterDff1(dffMaster);

Publishing Descriptive Flexfields as Web Services

Using Descriptive Flexfields 22-57

 MasterDffImpl masterVOSDO =
 (MasterDffImpl)dff1Service.getMasterDff1(PK1);
 String updatedXML =
 DFFTester.extractXMLFromDataObject(dff1Service, masterVOSDO);
 System.out.println("<<<--------Updated XML output-------------->");
 System.out.println("");
 System.out.println(updatedXML);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
...

Example 22–15 Web Service Update Operation

...
 public void updateMasterDffRow() {
 try {

 DFF1MasterApplicationModuleService dff1Service =
 (DFF1MasterApplicationModuleService)
 ServiceFactory.getServiceProxy(
 DFF1MasterApplicationModuleService.NAME);
 DataFactory dataFactory =
 ServiceFactory.getDataFactory(dff1Service);

 MasterDffImpl dffMaster =
 (MasterDffImpl)dff1Service.getMasterDff1(PK1);
 XMLHelper xmlhelper = ServiceFactory.getXMLHelper(dff1Service);
 String uri = dffMaster.getType().getURI();
 String xml = xmlhelper.save(dffMaster, uri, "MasterDff");
 System.out.println(xml);

 Object dffObject = dffMaster.getDff1();
 System.out.println("Dff Object Name->" +
 dffObject.getClass().getName());

 final String contextValue = "MY_CONTEXT";
 List<String> dffInfo =
 dff1Service.getMyFlexfieldSdoNamespaceAndName(contextValue);
 System.out.println(dffInfo);
 DataObject dffSubType =
 dataFactory.create(dffInfo.get(0), dffInfo.get(1));
 System.out.println(dff1Service.getMyFlexfieldTypeSdoPath());
 dffSubType.set(dff1Service.getMyFlexfieldTypeSdoPath(), contextValue);

 dffSubType.set(dff1Service.getMyFlexfieldSegmentSdoPaths(contextValue,
 Arrays.asList("GlobalSegment1")).get(0),
 new BigDecimal(02));
 dffSubType.set(dff1Service.getMyFlexfieldSegmentSdoPaths(contextValue,
 Arrays.asList("P6_S0_On_Number")).get(0),
 new BigDecimal(123));
 dffMaster.setDff1(dffSubType);
 dff1Service.updateMasterDff1(dffMaster);

 dffMaster = (MasterDffImpl)dff1Service.getMasterDff1(PK1);

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

22-58 Developer's Guide

 String updatedXML =
 DFFTester.extractXMLFromDataObject(dff1Service, dffMaster);
 System.out.println("<<<--------Updated XML output-------------->");
 System.out.println("");
 System.out.println(updatedXML);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
...

22.14 Accessing Descriptive Flexfields from an ADF Desktop Integration
Excel Workbook

ADF Desktop Integration makes it possible to combine desktop productivity
applications with Oracle Fusion Applications, so you can use a program like Microsoft
Excel as an interface to access application data.

Using ADF Desktop Integration, you can incorporate descriptive flexfields into an
integrated Excel workbook, so you can work with the flexfield data from within the
workbook.

The Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework provides most of the information you need to complete the
required activities, including the following:

■ Preparing your development environment for desktop integration.

■ Creating a page definition file that will expose the Oracle ADF bindings for use in
Excel.

■ Creating an Excel workbook to integrate with the descriptive flexfield.

■ Preparing your Excel workbook to access the column containing the flexfield.

■ Incorporating a descriptive flexfield as a dynamic component or a single cell on a
worksheet in the workbook.

The Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework does not make explicit reference to flexfields. In addition to the
standard implementation steps covered in that guide, you must modify your
implementation to accommodate flexfields.

There are two ways to access a descriptive flexfield in Excel:

■ Using a dynamic column, in an ADF Desktop Integration Table.

A web page in a popup dialog can be associated with a dynamic column, enabling
end users to pick flexfield segment values. Alternatively, users can enter values
directly into the segment fields. No custom code is required in either case.

This is the most typical scenario. Each descriptive flexfield segment is displayed as
a distinct column in the ADF Desktop Integration Table.

■ Using a static column, in a popup dialog associated with a single cell. Use this
approach for either of the following reasons:

– The descriptive flexfield is exposed in an ADF Desktop Integration Table, is
context sensitive, and the context changes from row to row. A static column is
required in this case.

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

Using Descriptive Flexfields 22-59

– You do not want descriptive flexfield segments to occupy too much space in
the worksheet.

In addition to using the popup dialog, end users can enter values directly into the
segment field, with the values separated by an appropriate delimiter that you
specify.

Individual flexfield segments do not appear in the worksheet. Instead, ADF
Desktop Integration invokes a separate JSPX page on which the flexfield will be
visible. You can use this scenario with an ADF Desktop Integration Form, or either
table type.

The descriptive flexfield's segments are part of your database table, so the flexfield is
generated against the same entity object on which your worksheet view object is
based.

To complete the process for accessing descriptive flexfields from an ADF Desktop
Integration Excel workbook:

1. Configure ADF Desktop Integration with either a dynamic or static column
descriptive flexfield.

2. If using a dynamic column descriptive flexfield where the end user can control the
context value, modify the application to update the descriptive flexfield structure
whenever user-initiated context value changes occur in the dynamic column
descriptive flexfield.

3. Create a custom method to process updates or inserts for descriptive flexfield data
row and add code to invoke the method.

22.14.1 How to Configure ADF Desktop Integration with a Dynamic Column Descriptive
Flexfield

When you configure the ADF Desktop Integration Table, make the following changes:

■ Add the ADF Desktop Integration Model API library to your data model project.

■ In your page definition for the worksheet, add the descriptive flexfield that you
want to access to the master worksheet view object as a child node. Do not add
any display attribute to the child node that expands as a dynamic column in the
worksheet.

For more information about how to create a page definition file for an ADF
Desktop Integration project, see the "Working with Page Definition Files for an
Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop
Integration Developer's Guide for Oracle Application Development Framework.

■ To make the descriptive flexfield column of the ADF Desktop IntegrationTable
dynamic, set the DynamicColumn property in the TableColumn array of the ADF
Desktop Integration Table to True. A dynamic column in the TableColumn array is
a column that is bound to a tree binding or tree node binding whose attribute
names are not known at design time. A dynamic column can expand to more than
a single worksheet column at runtime.

For more information about the binding syntax for dynamic columns, see the
"Adding a Dynamic Column to Your ADF Table Component" section of the Oracle

Note: A static column is any column for which the DynamicColumn
property is set to False.

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

22-60 Developer's Guide

Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework.

■ For the table's UpdateComponent and InsertComponent properties, specify one
of the following as the subcomponent to use:

– Inputtext

– OutputText

– ModelDrivenColumnComponent

■ For the subcomponent's Value property, access the Expression Builder, expand the
Bindings node and your tree binding for the table, and select the flexfield node.

■ For the subcomponent's Label property, access the Expression Builder, expand the
Bindings node and your tree binding for the table, and select the flexfield node.

22.14.2 How to Handle User-Initiated Context Value Changes in a Dynamic Column
Descriptive Flexfield

ADF Desktop Integration requires that to use a dynamic column implementation, the
structure of the descriptive flexfield must remain constant for all rows in a given result
set. However, each time a new result set is downloaded into the table, the context
value (and thus the structure) can be changed.

If the context value is set globally for the end user of the workbook, changes are not an
issue. However, if the user can control the context value (for example, using a list of
values (LOV) in a header form), your application must be able to respond
appropriately to update the descriptive flexfield structure.

After the end user specifies a context value, you must invoke the worksheet UpSync
method to get the new value into the model layer. Then you can use the ADF Desktop
Integration Table Download method to get fresh data with the new descriptive flexfield
structure.

22.14.3 How to Configure ADF Desktop Integration with a Static Column Descriptive
Flexfield

If the structure of your descriptive flexfield varies from row to row in a given result
set, you cannot implement the flexfield as a dynamic column — it will produce errors.
You must use a static column with a popup dialog.

ADF Desktop Integration supports descriptive flexfields by using tree bindings in an
ADF Desktop Integration Table. If you are adding your descriptive flexfield as a static
column, you can alternatively use an ADF Desktop Integration Read-Only Table. Keep

Note: For an insert-only table, the Download method is undesirable.
For these cases, use either the ADF Desktop Integration Table
DownloadForInsert method or the Initialize method to enable the
ADF Desktop Integration Table to reconfigure to accommodate the
new flexfield structure.

Note: If a specific dialog title cannot be provided because the
configuration of the flexfield will not be known until implementation,
use "Additional Information" for the title, which is the standard
generic label in such a case for Oracle Fusion Applications.

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

Using Descriptive Flexfields 22-61

in mind that ADF Desktop Integration Read-Only Table supports static columns, but
not dynamic columns. Popup dialogs support both types.

When you configure the popup dialog, make the following changes:

■ You can use the column's action set properties to make the descriptive flexfield
web page available for editing. Include the attributes used in the web page in the
table's cached attributes unless the row will be committed immediately.

■ You must choose a fixed attribute (a descriptive flexfield global segment attribute)
to represent the flexfield in the worksheet. Add a Dialog action to the
DoubleClickActionSet component action of an InputText or OutputText
component, then connect the Dialog action to JSPX page that will display the
descriptive flexfield.

For more information about how to create a page definition file for an ADF
Desktop Integration Table project, see the "Working with Page Definition Files for
an Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop
Integration Developer's Guide for Oracle Application Development Framework.

For static display of a descriptive flexfield in an ADF Desktop Integration workbook,
you must create an updatable transient attribute in the view object on which the ADF
Desktop Integration Table is based. This transient attribute will hold the concatenated
value of the descriptive flexfield segments, separated by a delimiter. If one purpose of
the worksheet is to display existing data from the database, the transient attribute
should be populated using custom application module methods upon returning from
a popup dialog or opening the worksheet.

22.14.4 How to Handle Updating or Inserting of a Descriptive Flexfield Data Row
To handle updating or inserting of a data row containing a descriptive flexfield in an
ADF Desktop Integration Table, you call a custom application module method that
contains appropriate code, as follows:

■ To update an existing row, add your code to the UpdateRowActionId property of
the table.

■ To insert a new row, add your code to the InsertAfterRowActionId property of
the table.

The context value should be set before calling the application module method, which
gets called in the doubleclickactionset component action of the table's
UpdateComponent or InsertComponent properties. This is applicable for both
dynamic column and static column display of descriptive flexfields. Setting the context
value appropriately is important because this controls the structure of the flexfield.

The following examples demonstrate the code needed to accomplish these tasks.
Example 22–16 and Example 22–17 apply to an ADF Desktop Integration
implementation with the descriptive flexfield exposed as a static column.
Example 22–18 presents the isSegmentDisplayable() method that is used in the other
two examples.

Note: A descriptive flexfield appears as a node in the tree binding at
design time. Because flexfields are built up dynamically at runtime,
you will not see any attributes under the flexfield node in the page
definition, but the node itself is present.

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

22-62 Developer's Guide

Example 22–16 Updating or Inserting a Row with a Static Column Descriptive Flexfield

//Retrieve your worksheet view object
 myworksheet_VOImpl srcVO = myVO

//Retrieve the current row from your view object.
//That is the row that is being processed by ADF Desktop Integration.

 myworksheet_VO_Row_Impl srcRow = myworksheet_VO_Row_Impl srcVO.getCurrentRow();

 //This gives the transient attribute value from your worksheet.
 Object dffAttributeValue = srcRow.getAttribute(mytransientattribute);

 //Get the descriptive flexfield row based on the descriptive flexfield view
accessor.
 DFFViewRowImpl dffRow = (DFFViewRowImpl)srcRow.getAttribute(mydff_viewaccessor);

 //Check if the single cell value is null.
 if (dffAttributeValue != null && !("").equals(dffAttributeValue)) {
 //Getting DFF metadata information
 FlexfieldViewDefImpl dffImpl =
 (FlexfieldViewDefImpl)dffRow.getFlexfieldViewDef();
 String delim = dffImpl.getDelimiter();
 //Parse the DFF string into tokens
 StringTokenizer token =
 new StringTokenizer(dffAttributeValue.toString(), delim);

 while (token.hasMoreTokens()) {
 prjValues.add(token.nextToken());
 }
 }
 //Get the descriptive flexfield segment information.
 ListAttributeDef listSeg =
 dffRow.getFlexfieldViewDef().getFlexfieldAttributes();

 Iterator listSegIterator = listSeg.iterator();
 AttributeDef seg = null;
 ListString segDisplay = new ArrayListString();
 while (listSegIterator.hasNext()) {
 seg = (AttributeDef)listSegIterator.next();
 if (isSegmentDisplayable(seg, dffRow)) {
 segDisplay.add(seg.getName());
 }
 }

 //Get the size of the segment.
 int segValueSize=0;
 if (dffAttributeValue != null && !("").equals(dffAttributeValue))
 segValueSize = prjValues.size();
 else
 segValueSize = segDisplay.size();

 //This check is required to handle a context dependent DFF case.
 //If the context is changed before uploading, do not proceed.
 if (segValueSize < prjValues.size())
 return;
 if (segDisplay.size()==0)
 return;

 for (int i = 0; i < segValueSize; i++) {
 if (dffAttributeValue != null && !("").equals(dffAttributeValue)) {

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

Using Descriptive Flexfields 22-63

 if (prjValues.get(i) != null && !prjValues.get(i).equals(" ")){
 dffRow.setAttribute(segDisplay.get(i), prjValues.get(i));
 } else {
 dffRow.setAttribute(segDisplay.get(i), null);
 }
 } else {
 dffRow.setAttribute(segDisplay.get(i), null);
 }
 }

Example 22–17 Applying Modified Segment Values to a Cell in a Static Column
Descriptive Flexfield

Add this code as an application module method that will be invoked by clicking the
OK button of a popup dialog. This method can also be used to populate transient
attribute values used for single cell display upon opening the worksheet, if the
worksheet is intended to display existing records from the database.

//Retrieve the DFF row through the DFF view accessor.
 DFFViewRowImpl dffRow =
 (DFFViewRowImpl)row.getAttribute(
 "DFF_viewaccessorattribute_from_worksheetVO");

//Get the delimiter information for your DFF.
 FlexfieldViewDefImpl dffImpl =
 (FlexfieldViewDefImpl)dffRow.getFlexfieldViewDef();
 String delim = dffImpl.getDelimiter();

//Get the segment information for your DFF.
 ListAttributeDef listSeg =
 dffRow.getFlexfieldViewDef().getFlexfieldAttributes();

 //Your DFF will have many segments, but not all of them will be used for display.
 //This code loops through DFF segments and obtains the name and type
 //of each displayable segment.
 Iterator listSegIterator = listSeg.iterator();
 AttributeDef seg = null;
 Liststring segDisplay = new ArrayListstring();
 Listinteger segDisplayType = new ArrayListinteger();

 while (listSegIterator.hasNext()) {
 seg = (AttributeDef)listSegIterator.next();
 if (isSegmentDisplayable(seg,dffRow)) {
 segDisplay.add(seg.getName());
 segDisplayType.add(new Integer(seg.getSQLType()));
 }
 }
int segDisplaySize = segDisplay.size();
StringBuffer segmentString = new StringBuffer();

 // This loop is constructing a string out of displayed segment values
 // with a delimiter in between each segment value.

 // If the segment type is date, remove the time from the date.
 // For the first segment (i=0), you need to handle it differently
 // to construct the string correctly.
 for (int i = 0; i < segDisplaySize; i++) {
 if (dffRow.getAttribute(segDisplay.get(i)) != null) {
 if (i == 0) {
 if (segDisplayType.get(i) == 91) {
 StringTokenizer stTime =

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

22-64 Developer's Guide

 new
 StringTokenizer(dffRow.getAttribute(segDisplay.get(i)).toString(), " ");
 segmentString.append(stTime.nextToken());
 } else {

segmentString.append(dffRow.getAttribute(segDisplay.get(i)));
 }
 } else {
 segmentString.append(delim);
 if (segDisplayType.get(i) == 91) {
 if (dffRow.getAttribute(segDisplay.get(i)) != null) {
 StringTokenizer stTime =
 new
 StringTokenizer(dffRow.getAttribute(segDisplay.get(i)).toString(), " ");
 segmentString.append(stTime.nextToken());
 } else {
 segmentString.append(
 dffRow.getAttribute(segDisplay.get(i)));
 }
 } else {
 segmentString.append(dffRow.getAttribute(segDisplay.get(i)));
 }
 }
 }else {
 if (i==0)
 segmentString.append(" ");
 else {
 segmentString.append(delim);
 segmentString.append(" ");
 }
 }
 }
 row.setyour_transient_attribute(segmentString)

Example 22–18 isSegmentDisplayable() Helper Method Used in the Previous Examples

The input parameters for this method are the segment attribute definition and the
descriptive flexfield row.

public boolean isSegmentDisplayable(AttributeDef seg,
 DFFViewRowImpl dffRow) {
 if (seg.getProperty("FND_ACFF_DisplayAttributeName") == null) {
 if (seg.getProperty(seg.getUIHelper().ATTRIBUTE_DISPLAY_HINT) ==null ||
 !seg.getProperty(
 seg.getUIHelper().ATTRIBUTE_DISPLAY_HINT).equals("Hide")) {
 return true;
 } else {
 return false;
 }
 } else {
 int attrIndex =
 dffRow.getFlexfieldViewDef().getAttributeIndexOf(
 seg.getProperty("FND_ACFF_DisplayAttributeName").toString());
 AttributeDef displayAttrDef =
 dffRow.getFlexfieldViewDef().getAttributeDef(attrIndex);
 if (displayAttrDef.getProperty(
 seg.getUIHelper().ATTRIBUTE_DISPLAY_HINT) == null ||
 !displayAttrDef.getProperty(
 seg.getUIHelper().ATTRIBUTE_DISPLAY_HINT).equals("Hide")) {
 return true;
 } else {

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

Using Descriptive Flexfields 22-65

 return false;
 }
 }
}

Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook

22-66 Developer's Guide

23

Using Extensible Flexfields 23-1

23Using Extensible Flexfields

This chapter discusses how to use extensible flexfields to enable customers to add
additional attributes to application business objects in Oracle Fusion Applications.

This chapter includes the following sections:

■ Section 23.1, "Introduction to Extensible Flexfields"

■ Section 23.2, "Overview of Integrating Extensible Flexfields in an Application"

■ Section 23.3, "Creating Extensible Flexfield Data Tables"

■ Section 23.4, "Registering Extension Tables as Secured Objects"

■ Section 23.5, "Defining and Registering Extensible Flexfields"

■ Section 23.6, "Defining and Registering Extensible Flexfield Business Components"

■ Section 23.7, "Employing an Extensible Flexfield on a User Interface Page"

■ Section 23.8, "Loading Seed Data"

■ Section 23.9, "Customizing the Extensible Flexfield Modelers"

■ Section 23.10, "Testing the Flexfield."

■ Section 23.11, "Accessing Information About Extensible Flexfield Business
Components"

23.1 Introduction to Extensible Flexfields
An extensible flexfield is similar to a descriptive flexfield in that it provides a
customizable expansion space that implementors, such as Oracle Fusion Applications
customers, can use to configure additional attributes (segments) without additional
programming. As with descriptive flexfields, each segment is represented in the
database as a single column. However, with extensible flexfields, the context values
and context-sensitive segments are stored in an extension table.

Implementors can combine and arrange the segments into attribute groups that are
tailored to a customer's specific needs. For example, they can group related segments
so that they appear together on the page. The attribute groups are referred to as
contexts. You can optionally set up an extensible flexfield to enable implementors to
group contexts into categories.

To understand how implementors use contexts and categories to configure extensible
flexfields to meet a customer's specific needs, see the "Using Flexfields for Custom
Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.

To learn more about flexfield basics and terms, including developer and implementor
roles, segments, and contexts, see Chapter 21, "Getting Started with Flexfields." For

Introduction to Extensible Flexfields

23-2 Developer's Guide

more details about the differences between descriptive flexfields and extensible
flexfields, see Section 23.1.2, "The Benefits of Extensible Flexfields."

23.1.1 Understanding Extensible Flexfields
Extensible flexfields include the following key artifacts:

■ Contexts (attribute groups)

■ Context-sensitive segments

■ Logical pages

■ Categories

■ Category hierarchies

■ Usages

23.1.1.1 About Contexts (Attribute Groups)
An extensible flexfield context is a data grouping mechanism that implementors can
use to arrange segments into meaningful groups. Each context is a group of attributes
that is displayed in its own subregion of the user interface (UI) page at runtime.
Implementors create and configure the contexts. After creating a context, an
implementor must associate the context with the categories for which that group of
attributes is relevant. For example, a Parts flexfield might have a Fax category and an
All-in-One Printers category. A Fax context would be associated with both categories,
while a Copy context would be relevant only to the All-in-One Printers category. You
can learn about categories in Section 23.1.1.4, "About Categories."

Figure 23–1 shows the UI page for the Positions business object. The Positions flexfield
is embedded in the Additional Position Details region on the page. This region
contains the Educational Requirements, Certification and License Requirements, and
Travel contexts for the Positions flexfield.

Figure 23–2 and Figure 23–3 show UI pages for the Parts business object. The
developer has enabled multiple categories for the Parts flexfield, so the page displays
the category to which the part shown belongs. In Figure 23–2, the part belongs to the
All-in-One Printers category, and in Figure 23–2, the part belongs to the Fax category.
In these pages, the Parts flexfield is embedded in the Additional Information region.
For the All-in-One Printers category in Figure 23–2, the Additional Information region
contains the Copy, Fax, and Scan contexts for the Parts flexfield, while on the Parts
page for the Fax category in Figure 23–3, the region contains just the Fax context.

Extensible flexfields allow implementors to configure contexts as either single row or
multiple row. That is, either one set of segments is stored for a business object instance,
or multiple sets of segments are stored for the instance. For example, a job position
requires only one set of educational requirements, but can require more than one
certificate or license.

For single-row contexts, the segments appear as fields in a form. With multiple-row
contexts, the segments appear as columns in a table, thus allowing end users to
capture a list. In Figure 23–1, Educational Requirements and Travel are single-row
contexts, so end users can specify only a single value for each context-sensitive
segment, such as the percent of travel time required for the position. The Certification

Note: A flexfield region is empty until the implementor configures
the extensible flexfield that is embedded in it.

Introduction to Extensible Flexfields

Using Extensible Flexfields 23-3

and License Requirements context is a multiple-row context, so end users can enter
multiple rows, one for each certificate or license required for the position.

Figure 23–1 Position User Interface Page

Figure 23–2 Parts User Interface Page for the All-in-One Printers Category

Introduction to Extensible Flexfields

23-4 Developer's Guide

Figure 23–3 Parts User Interface Page for the Fax Category

23.1.1.2 Context-Sensitive Segments
With extensible flexfields, every segment is a member of a context (attribute group).
That is, all segments are context-sensitive. Implementors define the contexts and their
context-sensitive segments. Context-sensitive segments are the lowest-level data
points that implementors can define for an extensible flexfield, and each segment is
mapped to a column in an extension table. Just as with descriptive flexfields, the
segments are rendered as ADF Faces rich client components, such as text box, text
area, list of values (LOV) choice list, date picker, checkbox, and radio button group.

In Figure 23–1, the Educational Requirements context contains the High School,
Bachelor, Master, J.D., M.D., and Ph.D. context-sensitive segments, and the
Certification and License Requirements context contains the Type and
Certificate/License context-sensitive segments.

23.1.1.3 About Logical Pages
Extensible flexfields enable implementors to define logical pages with which to group
contexts for display purposes. Each page can contain one or more contexts along with
their respective context-sensitive segments. There is no limit to the number of contexts
on a logical page. The implementors associate the logical pages with categories on a
flexfield usage basis. For information about usages, see Section 23.1.1.6, "About Usages
(Data Levels)."

In the Parts UI page shown in Figure 23–2, an implementor has defined two logical
pages for this category — Printers and All-in-One. The implementor defined the
Printers logical page to contain all contexts related to the printing capabilities of the
printer, and the All-in-One page to contain all contexts related to the other capabilities
of the printer, such as the scanning, copying, and faxing capabilities

The Parts page that is shown in Figure 23–2 displays the list of logical pages for the
category in the left-hand pane. End users view a logical page in the right-hand pane by
selecting it from the list. In this figure, the end user has chosen to view the All-in-One
logical page. The Printers logical page is shown in Figure 23–4.

Introduction to Extensible Flexfields

Using Extensible Flexfields 23-5

Figure 23–4 Printers Logical Page in the Parts User Interface Page

Logical pages have several layout options. For example, in Figure 23–1, the developers
chose to hide the entire left-hand section because their customers will add attributes to
a single page that is known at the time of development. However, in Figure 23–4,
developers chose to display the list of logical pages in the left-hand pane. For more
information about layout options, see Section 23.7, "Employing an Extensible Flexfield
on a User Interface Page."

23.1.1.4 About Categories
Categories enable applications to dynamically display different sets of logical pages and
contexts at runtime. In the simplest case, you create a single category for a flexfield,
and the same extensible flexfield contexts and logical pages appear for every instance
of the business object. In some cases, you might need the application to display
different sets of logical pages and contexts depending on a runtime discriminator, such
as an instance value. In these cases, you can create multiple categories for the flexfield,
or you can provide application-specific logic that enables implementors to define their
own categories.

The Positions flexfield in Figure 23–1 has a single category. The same flexfield
segments appear in the Additional Position Details region regardless of which position
is displayed. In this page, the developer has hidden the name of the category, because
there is only one category.

In Figure 23–2 and Figure 23–3, the segments that the region displays depend on
which category the part belongs to. In Figure 23–2, the part belongs to the All-in-One
Printers category and the UI displays fields related to copying, faxing, and scanning.
In Figure 23–3, the part belongs to the Fax category and the UI displays fields related
to only faxing.

23.1.1.5 About Category Hierarchies
You can choose to support multiple categories for your flexfield. When you do so, the
extensible flexfield respects any hierarchical relationship that is defined for the
categories, whether created by developers or defined by implementors. Figure 23–5
shows an example of categories that are defined in a hierarchical fashion. In this

Introduction to Extensible Flexfields

23-6 Developer's Guide

example, the root category (the category that does not have parent categories) is
Computers and Office. One of its child categories is Printers and Ink. The Printers and
Ink category, in turn, has a Printers child category. The Printers category has two child
categories — All-in-One Printers and Single Function Printers.

Figure 23–5 Example of a Category Hierarchy

Each child category inherits the contexts and pages from its parent categories. For
example, the Printers category contains the Print, Printer Functions, and Supported
Operating Systems contexts. The All-in-One Printers category inherits these contexts
from the Printers category. It also inherits all logical pages that are defined for its
parent categories. Additional contexts can be assigned directly to the
All-in-One-Printers category, such as Copy and Scan, which are relevant only to
All-in-One printers.

23.1.1.6 About Usages (Data Levels)
When you create an extensible flexfield, you create one flexfield usage for each set of
tables in the application that uses the flexfield. In the simplest case, you will have one
flexfield usage. For example, in Figure 23–1, the Positions application requires a single
Positions table with its associated extension tables to store the extensible flexfield
values. Implementors simply associate their contexts with that one usage to make
them available to the Positions application.

When you have several objects in the application that should be extended using the
same extensible flexfield, you must create multiple usages for the flexfield. For
example, in the case of an Items application, there might be different data levels, such as
items and item revisions. In this case, you create one usage per data level. By defining
separate usages for each set of tables, you enable your implementors to reuse the same
extensible flexfield configuration for all data levels.

23.1.2 The Benefits of Extensible Flexfields
When deciding whether to use a descriptive flexfield or an extensible flexfield to
extend a business object, consider the following features that you make available for
implementors by using extensible flexfields:

■ Custom grouping: Extensible flexfields enable implementors to group segments
into contexts (attribute groups), and each context is displayed in its own region on
a page.

Introduction to Extensible Flexfields

Using Extensible Flexfields 23-7

■ Multiple logical pages: When an implementor defines a large number of custom
attributes, the implementor can choose to create several logical pages with which
to display the attribute groupings. For example, Figure 23–2 and Figure 23–4 show
different logical pages for the same part. In addition, the implementors can reuse
these pages with different categories.

■ Hierarchical categories: Extensible flexfields can be configured to enable
categories, which can be used to dynamically display different sets of logical pages
and contexts based upon a runtime discriminator. The categories can be structured
in a hierarchical manner and the children categories inherit all the contexts and
logical pages that are configured for their parent categories.

■ Reusable attribute groups: When you enable multiple categories for an extensible
flexfield, implementors can associate contexts with more than one category. When
business object instances share common attributes, the implementors can put the
common attributes in one context and reuse that context in all applicable
categories, thus minimizing setup time. For example, in Figure 23–2 and
Figure 23–3, the Fax context is associated with both the Fax category and the
All-in-One Printers category.

■ Unlimited expansion space: While the number of segments that an implementor
can define for a context is limited to the number of underlying flexfield extension
columns, there is no limit to the number of contexts that an implementor can
create for an extensible flexfield. Implementors can use the extension columns
over and over in newly created contexts resulting in an unlimited number of
custom attributes.

■ Custom lists: When implementors need to add custom lists to their business
objects, they can create multiple-row contexts, which display the context's
segments in a table, as shown in the Certification and License Requirements region
in Figure 23–1.

■ Locale-specific values: You can optionally enable implementors to store different
attribute values on a locale-by-locale basis. For example, an implementor could
store and maintain the description of a part in English, Chinese, and French. The
application displays and stores the value for the end user's locale.

For more information, see the "Translating Flexfield and Value Set Configurations"
section in the Oracle Fusion Applications Extensibility Guide.

■ Access control. Implementors can define who can view and edit the attributes in a
context.

Another advantage of using extensible flexfields is that you can create your own
custom modeler classes for adding application-specific logic for generating ADF
Business Components and UI task flows, as described in Section 23.9, "Customizing
the Extensible Flexfield Modelers."

23.1.3 Extensible Flexfield Structure and Content
Unlike descriptive flexfields, which are mapped to extension columns in a product
table, extensible flexfields are mapped to extension columns in extension tables that
are separate from the product table. You create the extension tables at design time.

How Extensible Flexfields Are Modeled in Oracle Application Development
Framework
Extensible flexfields are modeled as a collection of Oracle Application Development
Framework (ADF) polymorphic view rows, as described in the "Working with

Overview of Integrating Extensible Flexfields in an Application

23-8 Developer's Guide

Polymorphic View Rows" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

The category hierarchy translates into a hierarchy of view objects that are configured
to support polymorphic view rows. The view objects have view links to associated
context view objects. A CategoryCode attribute acts as the discriminator that
determines which category view row type should be used. At application runtime, the
category in the base category view object row determines what pages and contexts are
displayed. Given a collection of polymorphic view rows, each row can be a different
type depending upon the category. An application module that holds the category
view object is generated for each category.

23.2 Overview of Integrating Extensible Flexfields in an Application
The process of developing an extensible flexfield and integrating it in an application
comprises several different activities, such as creating the extension tables, creating
business components, and adding the flexfield to the appropriate application pages.
This section identifies the major tasks for incorporating an extensible flexfield and
points to the sections that provide the details for completing the tasks.

Before you begin:
Before you begin developing an extensible flexfield, you must first complete the
following tasks:

1. Identify the business object and related product table for which you are
implementing the extensible flexfield. For example, you might want to enable
implementors to create custom attributes for the Parts business object, which
corresponds to the FND_CRM_PARTS table.

2. Decide if you want customers to be able to store translated values for one or more
segments. For example, for a Parts flexfield, customers might want to store
translations for the attributes in the Catalog Information context so they can print
the catalog in different languages.

3. Decide if you want to enable customers to store the information for a context at
different levels (also referred to as flexfield usages). For example, implementors
might choose to set up a context for a Parts flexfield that has both a part supplier
level and a part level. The same context segments appear in both the supplier UI
and the part UI, but the end user would enter different values. Take, for example, a
lead-time segment. At the part level, the end user would supply the average lead
time. At the supplier level, the end user would enter the actual lead time required
for that supplier.

4. Decide if you need more than one set of artifacts generated for a flexfield usage.
For example, you might need both private user interfaces that are based on
updatable (entity-based) view objects and public user interfaces that are based on
read-only view objects. When you have more than one set of artifacts, you will
need to define multiple groups at the entity-usage level for the flexfield usage,
such as a Private group and a Public group, when you register the flexfield's
business components.

Note: Because flexfield view objects are modeled as polymorphic
view objects, you can use extensible flexfield view objects in the same
manner that you use any other polymorphic view objects, and they
will behave in the same way.

Overview of Integrating Extensible Flexfields in an Application

Using Extensible Flexfields 23-9

5. Determine whether you need to customize the generated model to add additional
product-specific logic or customize the generated user interface, or both.

To complete the development tasks for an extensible flexfield:

1. Create a base extension table for each flexfield usage. If you want to enable
customers to store translations on a locale-by-locale basis, create a translation
extension table and a view of the translation extension table for each usage as well.

See Section 23.3, "Creating Extensible Flexfield Data Tables."

2. Register the extension tables as secured objects to enable implementors to specify
view and edit privileges for each context's attributes.

See Section 23.4, "Registering Extension Tables as Secured Objects."

3. Create the flexfield metadata. In this step, you use PL/SQL procedures to register
the flexfield and its usages, create a default context data element, and register the
flexfield data columns and root category.

See Section 23.5, "Defining and Registering Extensible Flexfields."

4. Create and configure business components to support the extensible flexfield. In
this step, you create an entity object and a view object from the base extension
table, and, if they exist, the translation extension table and view. You then create
the base category view object from the product table entity object (the table for
which the flexfield is an extension). If you want to enable search capabilities, you
create a declarative SQL-based view object for searching over the product table
that the flexfield extends. Last, you configure the flexfield usages' application
modules to support flexfields and you register the flexfield's business components.

See Section 23.6, "Defining and Registering Extensible Flexfield Business
Components."

5. Add the extensible flexfield to the appropriate UI pages.

See Section 23.7, "Employing an Extensible Flexfield on a User Interface Page."

6. Load any necessary application seed data, such as error messages and lookup
values.

See Section 23.8, "Loading Seed Data."

7. Optionally, customize the generated model or the generated UI artifacts, or both.

See Section 23.9, "Customizing the Extensible Flexfield Modelers" and
Section 23.9.2, "How to Customize the Runtime User Interface Modeler for
Extensible Flexfields."

8. Test the flexfield.

See Section 23.10, "Testing the Flexfield."

After you have completed the extensible flexfield development process and delivered
your application, implementors can use the Manage Extensible Flexfields task flow to
define contexts, categories, and pages, and to configure the segments for each
extensible flexfield. These task flows determine how the flexfield's segments will be
populated, organized, and made available to end users within the application. For
information about planning and implementing flexfield configuration, such as
defining attributes, labels, behavior, and associated value sets, see the "Using
Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility
Guide.

Creating Extensible Flexfield Data Tables

23-10 Developer's Guide

To make the Manage Extensible Flexfields task flow available to application
implementors, register it with Oracle Fusion Functional Setup Manager. For more
information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion
Functional Setup Manager."

23.3 Creating Extensible Flexfield Data Tables
Before you can define an extensible flexfield, you must create one set of dedicated
database tables for each of the flexfield's usages. Each set must be composed of at least
a base extension table. If you want to enable customers to store translated values for
the segments, the set must include a translation extension table and a view of the
translation extension table.

At runtime, as end users enter attribute values for each context, the context and its
segment (attribute) values are stored as a row in the base extension table if the context
is not translatable, or, if the context is translatable, as rows in the translation extension
table (one row per installed language). The translation extension view returns the rows
in the current user locale. When an implementor creates a translatable context, the
implementor can add only VARCHAR2 segments to the context.

An extensible flexfield must have at least one set of tables, which defines the primary
usage. The implementors will expose only the extension columns that they require.

You must use the Database Schema Deployment Framework tools to create the tables
and columns. Using these tools ensures that the table and its columns are registered in
the Oracle Fusion Middleware Extensions for Applications (Applications Core) data
dictionary. For more information, see Chapter 56, "Using the Database Schema
Deployment Framework."

23.3.1 How to Create a Base Extension Table
Each flexfield usage requires a base extension table. This table stores nontranslatable
contexts and their segment values. The table name should have a suffix of _B to
identify it as the base extension table.

Table 23–1 lists the columns that you must include in a base extension table. You can
include additional columns, such as columns that are required by product teams or
application standards. For space considerations, the table shows only the first and last
attribute columns for each type.

Add as many attribute columns as you consider necessary. The attribute columns can
be of type VARCHAR2, NUMBER, and TIMESTAMP. Do not set scale or precision for the
NUMBER columns. There are no size requirements for the VARCHAR2 columns. To avoid
compatibility and interoperability problems, name the columns ATTRIBUTE_
type-and-number, such as ATTRIBUTE_CHAR1 for a VARCHAR2 column, ATTRIBUTE_
NUMBER1 for a NUMBER column, and ATTRIBUTE_TIMESTAMP1 for a TIMESTAMP
column.

Note: An extensible flexfield is not displayed at runtime unless at
least one context and context-sensitive segment has been configured
and associated with a category.

Note: The steps in this section assume that the product table that the
flexfield is extending already exists.

Creating Extensible Flexfield Data Tables

Using Extensible Flexfields 23-11

For columns of type NUMBER, you can optionally add a column named ATTRIBUTE_
NUMBERn_UOM to store the unit of measure.

The primary key of the base extension table must include the EFF_LINE_ID column,
the CONTEXT_CODE column, the CATEGORY_CODE column, and the columns that
match the primary key columns of the product table.

23.3.2 How to Create a Translation Extension Table
If you plan to allow customers to store translations for some contexts on a
locale-by-locale basis, then you must also create a translation extension table and a
single table translation view from that table. The translation extension table and the
translation extension view are not required. However, if you do not provide these
tables, the customers cannot store translations for their extensible flexfields as
described in the "Translating Custom Text" chapter in the Oracle Fusion Applications
Extensibility Guide. For more information about multilanguage tables, see Section 9.2,
"Using Multi-Language Support Features." For information about creating the view,
see Section 23.3.3, "How to Create a Translation Extension View."

Note that unlike typical translation tables, the base extension table is completely
separate from the translation extension table. All the segment values for a context go
in either the base extension table or in the translation extension table. If a context is

Table 23–1 Extensible Flexfield Base Extension Table (_B) Specification

Column Type Nullable?

EFF_LINE_ID NUMBER(18) No

Primary key columns of the product
table for which this extensible flexfield
is being defined.

Same as the column in the
application.

No

CONTEXT_CODE VARCHAR2(80) No

CATEGORY_CODE VARCHAR2(80) No

CREATED_BY VARCHAR2(64) No

CREATION_DATE TIMESTAMP(6) No

LAST_UPDATED_BY VARCHAR2(64) No

LAST_UPDATE_DATE TIMESTAMP(6) No

LAST_UPDATE_LOGIN VARCHAR2(32) Yes

ATTRIBUTE_CHAR1 VARCHAR2(150) Yes

...

ATTRIBUTE_CHAR40 VARCHAR2(150) Yes

ATTRIBUTE_NUMBER1 NUMBER Yes

ATTRIBUTE_NUMBER1_UOM VARCHAR2(9) Yes

....

ATTRIBUTE_NUMBER20 NUMBER Yes

ATTRIBUTE_NUMBER20_UOM VARCHAR2(9) Yes

ATTRIBUTE_TIMESTAMP1 TIMESTAMP Yes

... TIMESTAMP Yes

ATTRIBUTE_TIMESTAMP10 TIMESTAMP Yes

Creating Extensible Flexfield Data Tables

23-12 Developer's Guide

marked as translatable, all segment values are stored in the translation extension table,
otherwise they are stored in the base extension table.

Table 23–2 lists the required translation extension table columns. The required columns
are similar to those in the base extension table, except that the attribute columns must
be of type VARCHAR2 and you must include the LANGUAGE and SOURCE_LANG
columns. For space considerations, the table shows only the first and last attribute
columns. You can include additional columns, such as columns that are required by
product teams or application standards.

The translation table name should have a suffix of _TL to identify it as a translation
table.

The primary key of the translation extension table must include the EFF_LINE_ID
column, the CONTEXT_CODE column, the CATEGORY_CODE column, the
LANGUAGE column, and the columns that match the primary key columns of the
product table.

Developers typically create the same number of VARCHAR2 type attribute columns in
the translation extension table as exist in the base extension table, but you are not
required to do so. Create as many VARCHAR2 type attribute columns as you think are
necessary for a translatable context. To avoid compatibility and interoperability
problems, name the columns ATTRIBUTE_CHARnumber, such as ATTRIBUTE_
CHAR1, ATTRIBUTE_CHAR2, and so on. When setting the size of the VARCHAR2
columns in an extension translation table, consider that the columns might need to
contain multibyte characters.

Table 23–2 Extensible Flexfield Translation Extension Table (_TL) Specification

Column Type Nullable?

EFF_LINE_ID NUMBER(18) No

Primary key columns of the product
table for which this extensible flexfield
is being defined.

Same as the column in the
application.

No

CONTEXT_CODE VARCHAR2(80) No

CATEGORY_CODE VARCHAR2(80) No

CREATED_BY VARCHAR2(64) No

CREATION_DATE TIMESTAMP(6) No

LAST_UPDATED_BY VARCHAR2(64) No

LAST_UPDATE_DATE TIMESTAMP(6) No

LAST_UPDATE_LOGIN VARCHAR2(32) Yes

SOURCE_LANG VARCHAR2(4) No

LANGUAGE VARCHAR2(4) No

ATTRIBUTE_CHAR1 VARCHAR2(1000) Yes

... VARCHAR2(1000) Yes

ATTRIBUTE_CHAR40 VARCHAR2(1000) Yes

Note: To avoid compatibility and interoperability problems, format
the column names as indicated.

Registering Extension Tables as Secured Objects

Using Extensible Flexfields 23-13

23.3.3 How to Create a Translation Extension View
If you create a translation extension table, you must also create a view from the
translation extension table. To create the view, use a view definition statement that
follows the format shown in Example 23–1. The name of the translation extension view
should have a suffix of _VL.

Example 23–1 Format for Translation Extension View Definition

select ROWID ROW_ID,
column list
from translation extension table
where LANGUAGE = userenv('LANG');

Example 23–2 shows a sample view definition.

Example 23–2 Sample Translation Extension View Definition

select
ROWID ROW_ID,
EFF_LINE_ID,
CONTEXT_CODE,
CATEGORY_CODE,
ATTRIBUTE_CHAR1,
...
ATTRIBUTE_CHAR40
from MYEFF_TL
where LANGUAGE = userenv('LANG');

23.4 Registering Extension Tables as Secured Objects
You must register an extensible flexfield's extension tables as database resources to
enable implementors to specify and manage access privileges for context attributes as
described in the "Task: Plan Extensible Flexfield Security" section in the Oracle Fusion
Applications Extensibility Guide.

You can optionally preconfigure database resource actions and conditions (instance
sets) that might be useful for the customers.

23.4.1 How to Register a Table as a Secured Object
You must register an extensible flexfield's base extension table as a secured object by
creating a database resource for the table. If you create a translation extension table
and view for an extensible flexfield, then you must register the view as a database
resource as well. Use the Manage Database Security Policies task, which is accessed

Note: When an implementor uses Oracle Authorization Policy
Manager to define security policies for an extensible flexfield, the
implementor must manage the privileges for both the base extension
table and the view of the translation extension table as described in
the "Task: Plan Extensible Flexfield Security" section in the Oracle
Fusion Applications Extensibility Guide. If your application has a
separate user interface for managing privileges, this user interface
must manage the base extension tables and the views of the
translation extension tables for all usages as separate secured objects.

Defining and Registering Extensible Flexfields

23-14 Developer's Guide

from the Setup and Maintenance work area of any Oracle Fusion Setup application, to
create the database resources.

You can optionally create actions and conditions for the database resource. The
preconfigured actions appear in the View Privileges and Edit Privileges dropdown
lists for a context's usages in the Manage Extensible Flexfields task, as described in the
"Configuring Extensible Flexfields" section in the Oracle Fusion Applications Extensibility
Guide. Customers use these actions to restrict view and edit privileges.

For more information about database resources, actions, and conditions for extensible
flexfields, see the "Task: Plan Extensible Flexfield Security" section in the Oracle Fusion
Applications Extensibility Guide.

To create a database resource:
1. In the Setup and Maintenance work area of any Oracle Fusion Setup application,

go to the Manage Database Security Policies task.

2. From the Search Results region, select Actions > Create.

3. Create the database resource as described in the "Managing Oracle Fusion
Applications Data Security Policies" chapter in the Oracle Fusion Middleware Oracle
Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications
Edition).

4. Ensure that the EFF_LINE_ID column is included in the primary key.

5. Optionally, create actions and conditions for the database resource as described in
the "Task: Plan Extensible Flexfield Security" section in the Oracle Fusion
Applications Extensibility Guide.

23.5 Defining and Registering Extensible Flexfields
After you create a set of dedicated tables for a flexfield's usage, use procedures from
the FND_FLEX_DF_SETUP_APIS PL/SQL package to register the flexfield usage and
define its metadata in seed tables.

The definition of an extensible flexfield usage includes the following information:

■ The logical name of the flexfield.

■ The name of the base extension table that contains the columns to be used as
flexfield segments.

■ The names of the columns in the base extension table that are to be used as
flexfield segments.

WARNING: When creating a database resource for the base extension
table, then you must use the name of the table for the name of the
database resource, such as ITEM_EFF_B. When creating a database
resource for the view of the translation extension table, then you must
use the name of the view for the name of the database resource, such
as ITEM_EFF_VL. Otherwise, if an implementor creates actions for
that database resource and sets the privileges for an extensible
flexfield's context to those actions, the end users who have those
privileges will get an oracle.jbo.JboException, such as Object is
not registered with Data Security, when they access a page that
contains the extensible flexfield context.

Defining and Registering Extensible Flexfields

Using Extensible Flexfields 23-15

■ The identity of the flexfield context segment that will indicate how
context-sensitive segments are used in each data row.

■ If the flexfield has a custom modeler, the name of the custom modeler in fnd_df_
flexfields_b.ADFBC_MODELER. For information about custom modelers, see
Section 23.9.1, "How to Customize the Runtime Business Component Modeler for
Extensible Flexfields."

■ Flexfield usage information, including Oracle Metadata Services (MDS) root
packages for usages — the name of the root package for all business components
that model the flexfield. Each usage can have its own package name.

After the implementors configure the flexfield, the definition of an extensible flexfield
also contains the following information:

■ A complete list of the ContextCode values that can appear in the flexfield context
segment.

■ Information about the segments that are associated with the ContextCode values.
Each ContextCode value is associated with its own set of these segments.

■ A complete list of the CategoryCode values that belong to the extensible flexfield,
and the contexts that are associated with each category, page, and usage.

■ Validation rules that are associated with the segments. Each segment can have its
own LOV or validation rules.

23.5.1 How to Register Extensible Flexfields
Use the FND_FLEX_DF_SETUP_APIS PL/SQL API package to register new extensible
flexfield usages and to add the specified flexfield metadata to the following global
configuration metadata:

■ FND_DF_FLEXFIELDS_B, FND_DF_FLEXFIELDS_TL

Add the extensible flexfield's code name to both tables.

■ FND_DF_FLEX_USAGES_B, FND_DF_FLEX_USAGES_TL

Add the extensible flexfield usages.

■ FND_DF_FLEX_USAGES_TL

Add the display names for the flexfield usages.

■ FND_DF_TABLE_USAGES

For each usage, add the product table name for which the flexfield is implemented
and set the table type to BASE. Also, add the usage's base extension table name
with a type of EXTENSION, and add the usage translation extension table name
with a type of EXTENSION_TL. Set the table usage code to the flexfield's usage
code.

If the consumers want to support interface loading of extensible flexfield data, add
entries for the BASE_INTERFACE, EXTENSION_INTERFACE, and EXTENSION_
INTERFACE_TL table types.

■ FND_DF_SEGMENTS_B

Add one row for the extensible flexfield with CONTEXT_CODE set to "Context
Data Element" and SEGMENT_CODE set to "Context Segment."

■ FND_FF_COLUMN_USAGES

Defining and Registering Extensible Flexfield Business Components

23-16 Developer's Guide

For each usage, add an entry for each context-specific column in the EXTENSION
and EXTENSION_TL tables. For example, add entries for all the ATTRIBUTE_
CHARn columns, for all the ATTRIBUTE_NUMBERn columns, and so on.

■ FND_EF_CATEGORIES_B

An extensible flexfield requires at least one entry in this table. Add additional
entries only if you are shipping your application with some categories already
defined.

After you create the flexfield's business components, you must complete the
registration process by adding entity details, as described in Section 23.5.1, "How to
Register Extensible Flexfields." You must have at least one entity usage per base
extension table. If you require parallel sets of extensible flexfield artifacts generated for
different uses (for example, public view objects and private view objects), replicate the
entity usage entries with a different group name. When the business components are
generated for the flexfield, a separate set of components is generated for each group
name.

For more information, see the package specification.

23.6 Defining and Registering Extensible Flexfield Business Components
To incorporate an extensible flexfield into your application, you must define and
configure entity objects and view objects for each set of extension tables that is defined
for each flexfield usage.

Figure 23–6 shows the extensible flexfield business components for a product table. In
this example, the flexfield is not translatable. The developer creates an entity object
and view object from the base extension table to support contexts.

If the flexfield is translatable, the developer would also create an entity object and
view object from the translation extension table and the translation extension view.

When an implementor deploys flexfield configurations, the deployment process
creates the extended context entity objects, context view objects, category view objects,
and category-to-context view links. Note that in this example, the C2 context is a
member of two categories.

Note: The CATEGORY_CODE and PARENT_CATEGORY_CODE
values are used in the flexfield's element in the XML schema for web
services. You can maximize the readability of the schema by naming
the codes with a leading alphabetic character followed by
alphanumeric characters. The use of spaces, underscores, multibyte
characters, and leading numeric characters, which are all encoded in
XML schemas, make the codes in the schema element difficult to read.

Defining and Registering Extensible Flexfield Business Components

Using Extensible Flexfields 23-17

Figure 23–6 Extensible Flexfield Business Components

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

3
Y

Z
C

3_V
O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

2
X

C
2_V

O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

1
T

U
V

W
C

1_V
O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext

A
1

A
2

A
3

A
4

A
5

P
rim

ary
K

ey
C

ategory

P
rim

ary
K

ey
C

ategory

P
rim

ary
K

ey
C

ategory

P
rim

ary
K

ey
C

ategory:
B

1

P
rim

ary
K

ey
C

ategory:
B

2

P
rim

ary
K

ey
C

ategory:
B

3

E
xtends

B
ase E

xtension Table
V

iew
 O

bject
B

ase A
pplication Table V

iew
 O

bjects

B
ase A

pplication Table
E

ntity O
bjects

B
ase C

ategory V
iew

 O
bjects

C
o

n
text V

iew
 O

b
jects

C
ateg

o
ry to

 C
o

n
text

V
iew

 L
in

ks
C

ateg
o

ry V
iew

 O
b

jects

O
ther A

pplication
A

ttributes

C
ontext-S

ensitive
A

ttributes

B
3_V

O

B
2_V

O

B
1_V

O

E
xtends

E
xtends

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

3
Y

Z
C

3_E
O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

2
X

C
2_E

O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext
C

1
T

U
V

W
C

1_E
O

E
F

F

Line ID
P

rim
ary

K
ey

C
ontext

A
1

A
2

A
3

A
4

A
5

E
xtends

B
ase E

xtension Table
E

ntity O
bject

C
o

n
text E

n
tity O

b
jects

C
ontext-S

ensitive
A

ttributes

Defining and Registering Extensible Flexfield Business Components

23-18 Developer's Guide

To define an extensible flexfield business component:

1. Create and configure extensible flexfield entity objects from the base extension
table. If a translation extension table exists for the flexfield, create and configure
extensible flexfield entity objects from the translation extension table and the
translation table view.

2. Configure the EFF_LINE_ID attribute for each extensible flexfield entity object as a
unique ID.

3. Create and configure flexfield view objects to support contexts, categories, and,
optionally, searching.

4. For each extensible flexfield usage, configure its application module to support
extensible field usage by adding a createDetailRowIfNotExist method.

5. Register the flexfield business components.

23.6.1 How to Create and Configure Extensible Flexfield Entity Objects
For each extensible flexfield usage, you must create entity objects from the base
extension table. If you created a translation extension table and a translation extension
view for a usage, you must create entity objects for them as well.

For more information about creating entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

Before you begin:
1. Create one set of dedicated extension tables per usage, as described in

Section 23.3.1, "How to Create a Base Extension Table."

2. Register the flexfield's usages as described in Section 23.5.1, "How to Register
Extensible Flexfields."

3. Ensure that the Applications Core library has been added to the data model
project, as described in Section 3.3, "Adding Necessary Libraries to Your Data
Model Project."

4. Verify that at least one customization class is included in the adf-config.xml file.
This serves to ensure correct application behavior. It does not matter which
customization class you include.

For information about defining the customization layers, see the "Understanding
Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.

Tip: After completing these steps, you can regenerate the flexfield
business components programmatically at runtime to update your
extensible flexfield implementation without manual intervention.

For more information, see Section 25.4, "Regenerating Flexfield
Business Components Programmatically."

Note: The packages in which these entity objects are created must
not fall under the packages allocated for runtime-generated business
components (which are specified in the adf-config.xml file and the
flexfield usage metadata).

Defining and Registering Extensible Flexfield Business Components

Using Extensible Flexfields 23-19

23.6.1.1 Creating and Configuring an Entity Object from the Base Extension Table
For each extensible flexfield usage, use the Create Entity Object wizard to create an
entity object from the base extension table that is described in Table 23–1, but apply the
changes described in the following procedure to support the extensible flexfield. For
information about the Create Entity Object wizard, see the "How to Create Single
Entity Objects Using the Create Entity Wizard" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

To create and configure an entity object from the base extension table:

1. On the Attributes page of the wizard, include only the following columns as
attributes in your new entity object:

■ EFF_LINE_ID

■ OBJECT_VERSION_NUMBER

■ Primary key columns of the product table

■ CONTEXT_CODE

■ CATEGORY_CODE

■ CREATED_BY

■ CREATION_DATE

■ LAST_UPDATED_BY

■ LAST_UPDATE_DATE

■ LAST_UPDATE_LOGIN

2. On the Attribute Settings page, do the following:

■ Set the EFF_LINE_ID attribute to be a unique primary key.

■ Set the CONTEXT_CODE attribute to be a discriminator, with a default value of 0.

3. On the Java page, confirm that the objectnameBEOImpl entity object class to be
generated extends the oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
class.

4. After creating the entity object, configure all of its attributes to be hidden.

On the UI Hints tab of the Property Inspector for each attribute, set the Display
Hint property to Hide.

23.6.1.2 Creating and Configuring an Entity Object from the Translation Extension
Table
If you created a translation extension table for the flexfield usage, as described in
Table 23–2, use the Create Entity Object wizard to create an entity object from the
translation extension table, but apply the changes described in the following
procedure to support the extensible flexfield.

For more information about creating entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

To create and configure an entity object from the extensible flexfield translation
extension table:

Defining and Registering Extensible Flexfield Business Components

23-20 Developer's Guide

1. On the Attributes page of the wizard, include only the following columns as
attributes in your new entity object:

■ EFF_LINE_ID

■ OBJECT_VERSION_NUMBER

■ Primary key columns of the product table

■ CONTEXT_CODE

■ CATEGORY_CODE

■ SOURCE_LANG

■ LANGUAGE

■ CREATED_BY

■ CREATION_DATE

■ LAST_UPDATED_BY

■ LAST_UPDATE_DATE

■ LAST_UPDATE_LOGIN

2. On the Attribute Settings page, do the following:

■ Set the EFF_LINE_ID attribute to be a unique primary key.

■ Set the CONTEXT_CODE attribute to be a discriminator, with a default value of 0.

3. On the Java page, confirm that the objectnameTlEOImpl entity object class to be
generated extends the oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
class.

4. After creating the entity object, configure all of its attributes to be hidden.

On the UI Hints tab of the Property Inspector for each attribute, set the Display
Hint property to Hide.

5. Configure all of the non-key attributes that are of type String to be translatable.

On the Applications tab of the Property Inspector for each non-key, String type
attribute, set the OA Translatable property to True.

23.6.1.3 Creating and Configuring an Entity Object from the Translation Extension
View
If you created a translation extension table and view for the flexfield usage, use the
standard wizard to create an entity object from the translation extension view that is
described in Section 23.3.3, "How to Create a Translation Extension View," but apply
the changes described in the following procedure to support the extensible flexfield.

To create and configure an entity object from the extensible flexfield translation
extension view:

1. On the Attributes page of the wizard, include only the following columns as
attributes in your new entity object:

■ EFF_LINE_ID

■ Primary key columns of the product table

■ CONTEXT_CODE

■ CATEGORY_CODE

Defining and Registering Extensible Flexfield Business Components

Using Extensible Flexfields 23-21

2. On the Attribute Settings page, do the following:

■ Set the EFF_LINE_ID attribute to be a unique primary key.

■ Set the CONTEXT_CODE attribute to be a discriminator, with a default value of 0.

3. On the Java page, confirm that the objectnameVlEOImpl entity object class to be
generated extends the oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
class.

4. After creating the entity object, configure all of its attributes to be hidden.

On the UI Hints tab of the Property Inspector for each attribute, set the Display
Hint property to Hide.

5. On the Applications tab of the Property Inspector for the entity object General
tab, set the OA Base Table property to the name of the view underlying this entity
object.

23.6.2 How to Configure the EFF_LINE_ID Attribute as a Unique ID
After you create and configure entity objects from the base extension table, translation
extension table, and view of the translation extension table as described in
Section 23.6.1, "How to Create and Configure Extensible Flexfield Entity Objects," you
must configure the EFF_LINE_ID attribute for each entity object as a unique ID.

The Unique ID Generator provides a way for your application to generate unique IDs
for entity object attributes of type BigDecimal. The unique IDs generated are also of
type BigDecimal, and meet certain required criteria for uniqueness across database
instances.

To configure EFF_LINE_ID as a unique ID:
1. Create a connection to the database that contains the Unique ID Generator table

called S_ROW_ID.

2. Configure a special default-value expression for EFF_LINE_ID that will invoke the
Unique ID Generator when needed.

For more information, see Section 9.6, "Using Unique ID."

23.6.3 How to Create and Configure Extensible Flexfield View Objects
For each extensible flexfield usage, use the Create View Object wizard (not the
Flexfield Business Components wizard) to create the following types of view objects:

■ To support contexts for the extensible flexfield, create one view object from the
base extension table entity object and, if the flexfield has a translation extension
table, one view object from the translation extension view entity object.

■ To support categories for the flexfield, create a view object from the product table
entity object for which you are developing this extensible flexfield.

■ To support searching, create declarative SQL-based view objects.

For more information about creating view objects, see the "Defining SQL Queries
Using View Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition). For

Note: No view objects are required from the translation table entity
object.

Defining and Registering Extensible Flexfield Business Components

23-22 Developer's Guide

more information about declarative SQL-based view objects, see the "How to Create
SQL-Independent View Objects with Declarative SQL Mode" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

Before you begin:
1. Create and configure entity objects from the base extension table, translation

extension table, and view as described in Section 23.6.1, "How to Create and
Configure Extensible Flexfield Entity Objects."

2. Configure the EFF_LINE_ID attribute as a unique ID as described in Section 23.6.2,
"How to Configure the EFF_LINE_ID Attribute as a Unique ID."

23.6.3.1 Creating and Configuring Context View Objects
To support contexts for an extensible flexfield usage, the usage must have a view
object from its base extension table entity object. If you created a translation extension
table for the usage, you must also create a view object from the translation extension
view entity object.

To create and configure context view objects:

1. Use the Create View Object wizard to create the view objects from the base
extension table entity object and, if you created a translation extension table for the
usage, from the translation extension view entity object.

2. On the Java page for each view object, ensure that the view object classes to be
generated extend base classes as follows:

■ vo_nameImpl extends EFFViewObjectImpl

■ vo_nameRowImpl extends EFFViewRowImpl

■ vo_nameDefImpl extends EFFViewDefImpl

These base classes are in the oracle.apps.fnd.applcore.oaext.model package.

23.6.3.2 Creating and Configuring the Category View Object
To support categories for the flexfield, there must be a view object from the product
table entity object for which you are developing the extensible flexfield.

To create and configure the category view object:

1. Use the Create View Object wizard to create a view object from the product table
for which you are implementing the extensible flexfield in the usual manner. For
example, in Figure 23–2, the product table is the Parts table that stores the base
attributes for the Parts entity, such as Part Number, Description, and Unit Cost.

This view object must include an attribute called CategoryCode, which is used to
identify the category to which each row of data belongs. This attribute must be an
entity-based attribute of type VARCHAR2 with a maximum of 80 characters.

Set the CategoryCode attribute to be a discriminator, with a default value of 0.

You must ensure that the correct category code is returned for this attribute at
runtime.

2. Implement the following interface on the Java tab of the view object definition:

oracle.apps.fnd.applcore.oaext.model.EFFCategoryViewObjectInterface

Defining and Registering Extensible Flexfield Business Components

Using Extensible Flexfields 23-23

Create a method called queryCategoryRowByPrimaryKey that accepts up to five
primary key values and returns the correct row of the product view object as
demonstrated in Example 23–3.

For this example, the view object has a view criterion defined, which is called
getItemByKey, and has bind parameters defined for two primary key attributes,
which are called OrganizationIdBind and InventoryItemIdBind.

Example 23–3 Query Category Row Method

public Row queryCategoryRowByPrimaryKey(
 String pk1, String pk2, String pk3,
 String pk4, String pk5)
 {
 Long invId = new Long (pk1);
 Long orgId = new Long (pk2);

 setWhereClauseParams(null);
 applyViewCriteria(null);

 ViewCriteria vc = getViewCriteria("getItemByKey");
 setNamedWhereClauseParam("OrganizationIdBind", orgId);
 setNamedWhereClauseParam("InventoryItemIdBind", invId);

 applyViewCriteria(vc);
 executeQuery();
 Row r = null;
 if(hasNext())
 {
 r = next();
 setCurrentRow(r);
 }
 return r;
 }

This method queries the correct category row based on up to five primary key
values passed into the method.

23.6.3.3 Creating a Declarative SQL-Based View Object to Enable Searching
To enable searching, there must be a declarative SQL-based view object for searching
over the product table for which you are implementing the extensible flexfield.

To create a declarative SQL-based view object to enable searching:

1. Create a declarative SQL-based view object as described in the "How to Create
SQL-Independent View Objects with Declarative SQL Mode" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

2. On the Java page, confirm that the objectnameVOImpl view object class to be
generated extends the following class:

oracle.apps.fnd.applcore.oaext.model.EFFCategoryViewObjectImpl

The EFFCategoryViewObjectImpl class adds the additional WHERE clause that
provides security.

Defining and Registering Extensible Flexfield Business Components

23-24 Developer's Guide

23.6.4 How to Configure an Extensible Flexfield Application Module
To enable UI pages that contain a flexfield usage to display the flexfield's segments,
you must configure an application module to support that flexfield usage.

You can use the product application module, or you can use the Create Application
Module wizard to create a new application module dedicated to your extensible
flexfield.

To the application module's Java client interface, add a method called
createDetailRowIfNotExist, as shown in Example 23–4.

Example 23–4 Java Source for createDetailRowIfNotExist Method

public void createDetailRowIfNotExist(
 String categoryAMInstName, String categoryViewUsageName,
 String contextViewLinkAccName, String category_pk1,
 String category_pk2, String category_pk3,
 String category_pk4, String category_pk5)
{
 EffCategoryAMImpl effAM = (EffCategoryAMImpl)
 findApplicationModule(categoryAMInstName);
 effAM.createDetailRowIfNotExist(
 categoryViewUsageName, contextViewLinkAccName,
 category_pk1, category_pk2, category_pk3,
 category_pk4, category_pk5);
}

When an implementor deploys a configured extensible flexfield, an application
module instance is generated for each category that the implementor defined for the
flexfield. For information about deploying flexfields, see the "Deploying Flexfield
Configurations" section in the Oracle Fusion Applications Extensibility Guide.

23.6.5 How to Register Extensible Flexfield Business Components
After you configure business components to support an extensible flexfield usage, you
must complete the flexfield registration process by providing the names of the flexfield
usage's entity object and view object. If you created a translation extension table for the
flexfield usage, you must also register the entity object from the translation extension
table.

You use procedures from the FND_FLEX_DF_SETUP_APIS PL/SQL package to register
the flexfield usage's entity details. For information about using the procedures, see the
package specification.

To register extensible flexfield entity details:
Add the flexfield metadata to the FND_DF_ADFBC_USAGES table as specified by the
package specification.

For each table defined in the FND_DF_TABLE_USAGES table, specify the name of the
entity object and view object. For the translation extension table, also specify the name
of the entity object from the translation extension table.

If the consumers who are incorporating the flexfield into the application want to
generate a different set of artifacts for both private and public groups, create an
additional set of rows with a different extensible flexfield group name.

Figure 23–7 shows example entries for a flexfield usage. As described in Section 23.5.1,
"How to Register Extensible Flexfields," the FND_DF_TABLE_USAGES table contains
rows for the product table (USGA_BASE), the usage base extension table (USGA_EFF_

Employing an Extensible Flexfield on a User Interface Page

Using Extensible Flexfields 23-25

B), and the usage translation extension table (USGA_EFF_TL). The FND_DF_ADFBC_
USAGES table contains two entries for each entry in the FND_DF_TABLE_USAGES
table — one for the Private group and one for the Public group. Each row names the
entity object and the view object. The rows for the translation extension table also
name the entity object from the translation extension table. Note that not all columns
are shown.

Figure 23–7 Example Entity Detail Entries

23.7 Employing an Extensible Flexfield on a User Interface Page
You can incorporate an extensible flexfield into an application with several UI
variations:

■ As a list of the extensible flexfield logical pages for a single usage, combined with
the contexts for the selected logical page, and integrated into a single task flow.
Figure 23–2 is an example of this variation.

■ As a complete list of the usages and pages for a given extensible flexfield in one
task flow, with contexts for the selected page in a separate task flow.

■ As a single task flow that presents a set of contexts associated with a specified
logical page, which is identified before the UI page initializes. Figure 23–1 is an
example of this variation.

■ As a single task flow that presents a context, which will be identified before the UI
page initializes.

Note: In this example, the Public group is necessary because the
product that is using the flexfield usage requires a parallel set of
extensible flexfield artifacts generated for public view objects.

If the consumers wanted to support interface loading of extensible
flexfield data, you would also add entries for the BASE_INTERFACE,
EXTENSION_INTERFACE, and EXTENSION_INTERFACE_TL table
types.

FND_DF_TABLE_USAGES

ABC_EFF ABC_USG_A USGA_EFF_TL EXTENSION_TL ABC_USG_A

ABC_EFF ABC_USG_A USGA_EFF_B

ABC_EFF ABC_USG_A USGA_BASE

DESCRIPTIVE_FLEXFIELD_CODE FLEXFIELD_USAGE_CODE TABLE_NAME

EXTENSION ABC_USG_A

BASE ABC_USG_A

TABLE_TYPE TABLE_USAGE_CODE

FND_DF_ADFBC_USAGES

Public ABC_USG_A USGA_EFF_TL EFFVLPEO EFFTLPEO

Public ABC_USG_A USGA_EFF_B

Public ABC_USG_A USGA_BASE

EFFBPEO

BasePEO

Private ABC_USG_A USGA_EFF_TL EFFVLEO EFFTLEO

Private ABC_USG_A USGA_EFF_B

Private ABC_USG_A USGA_BASE

EFF_GROUP_NAME TABLE_USAGE_CODE TABLE_NAME

EFFBEO

BaseEO

ENTITY_OBJECT ENTITY_OBJECT_TL

EFFVLPVO

EFFBPVO

BasePVO

EFFVLVO

EFFBVO

BaseVO

VIEW_OBJECT

Employing an Extensible Flexfield on a User Interface Page

23-26 Developer's Guide

For more information about task flows, see the "Creating a Task Flow" section in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

23.7.1 How to Expose the Logical Pages and Contexts Associated with One Extensible
Flexfield Usage

You can incorporate an extensible flexfield into the UI as a list of the logical pages for a
single usage, combined with the contexts for the selected logical page, and integrated
into a single task flow.

To expose the logical pages and contexts that are associated with one extensible
flexfield usage:

1. Create a task flow for the single extensible flexfield usage, which includes a page
fragment with a splitter that contains the list of the usage's logical pages on the
left, and the contexts associated with the selected logical page on the right.

2. Add the task flow to the page.

3. Render the page.

23.7.1.1 Creating a Task Flow for a Single Extensible Flexfield Usage
Create a task flow to be added to the page that will display the page lists and contexts.

Before you begin:

Notes:

■ If there is only one usage and only one logical page, use a single
task flow that presents a set of contexts associated with a specified
logical page, which is identified before the UI page initializes. Do
not display a list of usages or pages on the left-hand side of the
task flow.

■ If the extensible flexfield will never have more than one usage and
will never have more than one logical page, and if you do not
need any features that are unique to extensible flexfields as
discussed in Section 23.1.2, "The Benefits of Extensible Flexfields,"
consider using a descriptive flexfield instead.

■ Unless you know that the extensible flexfield will contain only a
small amount of information, do not embed the flexfield in the
middle of a region that has other content.

Note: When it is not clear what type of data will be configured for
the extensible flexfield, name the containing region, such as a page or
a dialog, "Additional Information" or "Additional Information: Object
Name" for view-only data, and "Edit Additional Information" or "Edit
Additional Information: Object Name" for data that can be edited. If
the containing region is a tab, name the tab "Additional Information"
or "Edit Additional Information," as appropriate. This convention
ensures consistency across Oracle Fusion applications.

Employing an Extensible Flexfield on a User Interface Page

Using Extensible Flexfields 23-27

Create and configure business components to support the extensible flexfield as
described in Section 23.6, "Defining and Registering Extensible Flexfield Business
Components."

To create a task flow for a single extensible flexfield usage:

1. Create a task flow.

2. Add a view activity for a new page fragment and designate the activity as the
default activity.

3. Add an EffCategoryPagesBean managed bean with the class
oracle.apps.fnd.applcore.flex.eff.runtime.EffCategoryPagesBean to the
task flow. The scope should be pageFlow.

4. Open the fragment and drag and drop a splitter control.

5. On the first facet, drag and drop the EffCatPageListContainer seeded task flow
from the ViewController FlexModeler-View library.

6. Add the following parameters:

■ _eff_application_id: Provide the FND_EF_UI_PAGES_B.APPLICATION_ID
value; for example 10010.

■ _eff_descriptive_flexfield_code: Provide the FND_EF_UI_PAGES_
B.DESCRIPTIVE_FLEXFIELD_CODE value; for example EGO_ITEM_EFF.

■ _eff_category_code: Provide the FND_EF_UI_PAGES_B.CATEGORY_CODE value;
for example ELECTRONICS.

■ _eff_usage_code: Provide the FND_EF_UI_PAGES_B.FLEXFIELD_USAGE_CODE
value; for example, EGO_ITEM_DL.

■ _eff_containerBean: Provide #{pageFlowScope.EffCategoryPagesBean}.

7. On the first facet, drag and drop the EffContextsPageContainer seeded task flow
from the ViewController FlexModeler-View library.

8. Add the following parameters:

■ _eff_application_id: Provide #{pageFlowScope._eff_application_id}.

■ _eff_descriptive_flexfield_code: Provide #{pageFlowScope._eff_
descriptive_flexfield_code}.

■ _eff_category_code: Provide #{pageFlowScope._eff_category_code}.

■ _eff_usage_code: Provide #{pageFlowScope._eff_usage_code}.

■ _eff_page_code: Provide #{pageFlowScope._eff_page_code}.

■ _eff_containerBean: Provide #{pageFlowScope.EffCategoryPagesBean}.

■ _eff_category_pk1: (optional) Provide the value for the category's first
primary key column, if applicable. For example, if the first primary key
column is INVENTORY_ITEM_ID, and its value is 149, provide 149.

■ _eff_category_pk2 - (optional) Provide the value for the category's second
primary key column, if applicable. For example, if the second primary key
column is ORGANIZATION_ID, and its value is 204, provide 204.

■ _eff_category_pk3 through pk5: Provide the value for that primary key
column, if applicable.

Employing an Extensible Flexfield on a User Interface Page

23-28 Developer's Guide

23.7.1.2 Adding the Task Flow to the UI Page
Add the task flow for the extensible flexfield usage to the UI page that will display the
logical page lists and contexts.

Before you begin:

Create the task flow for the extensible usage as described in Section 23.7.1.1, "Creating
a Task Flow for a Single Extensible Flexfield Usage."

To add the task flow to the page:

1. Open the .jspx page that will display the logical page lists and contexts.

2. Drag and drop the task flow onto the page.

23.7.1.3 Rendering the Page
Render the page to view the UI.

Before you begin:

■ Add the task flow for the extensible usage to the page as described in
Section 23.7.1.2, "Adding the Task Flow to the UI Page."

■ Obtain the flexfield usage's package name from the PACKAGE_NAME column in
the FND_DF_ADFBC_USAGES table.

To render the page:

1. Open the Databindings.cpx file for the project that is consuming the generated
extensible flexfield task flows and add the following EFFRuntimeAM data control:

<BC4JDataControl id="EFFRuntimeAMDataControl"
 Package="oracle.apps.fnd.applcore.flex.eff.
 runtime.applicationModule"
 FactoryClass="oracle.adf.model.bc4j.
 DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true" Configuration=
 "EFFRuntimeAM"
 syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>

2. Complete the following steps to mark the flexfield usage's package directory as a
flexfield model package:

a. Create an inf subdirectory in the flexfield usage's package directory. For
example, if the usage's package is oracle.apps.fnd.applcore.crmdemo.flex,
then create the /oracle/apps/fnd/applcore/crmdemo/flex/inf subdirectory.

b. To identify the package directory as a flexfield model package, create a file
named FlexfieldPkgInf.xml in the package's inf subdirectory and add the
following contents to the file:

<?xml version="1.0" encoding="UTF-8" ?>
<flexfield-inf/>

Employing an Extensible Flexfield on a User Interface Page

Using Extensible Flexfields 23-29

3. Complete the following steps to identify the flexfield user interface packages:

a. Either create a web application archive (WAR) deployment profile in the
project that is named FlexfieldViewController and that contains flexfield
user interface packages, or reference the flexfield user interface packages
through a library Java archive (JAR) file. Do not include this deployment
profile in the application enterprise archive (EAR) file. This is only a marker
profile.

b. Find the flexfield user interface package directory under the
ViewController/public_html directory and add an inf subdirectory to the
flexfield user interface package directory.

c. To identify the package directory as a flexfield user interface package, create a
file named FlexfieldViewPkgInf.xml in the package's inf subdirectory and
add the following contents to the file:

<?xml version="1.0" encoding="UTF-8" ?>
<flexfield-inf/>

4. Add the following code to the Application tag at the top of the Databindings.cpx
file so the application will find the page definitions for the generated UI artifacts:

PageMapClass="oracle.jbo.uicli.mom.DynamicPageMapImpl"
 BasePageDefPackageName="pageDefs"

5. Deploy and run the application to render the page.

23.7.2 How to Expose the Complete Set of an Extensible Flexfield's Usages, Logical
Pages, and Associated Contexts

To expose the complete set of usages, logical pages, and associated contexts, build a UI
page that includes a splitter with two task flows: one containing the list of extensible

Note: Ensure that the package directory contains only the
automatically generated flexfield MDS files and the inf subdirectory
with the FlexfieldPkgInf.xml file. When the application is deployed,
the Ant script that is run by the deployment process will add the
required namespaces for the identified package directory to the
adf-config file, as shown in the following example:

<namespace path="/persdef" metadata-store-usage="mdsRepos"/>
<namespace
path="/oracle/apps/scm/productCatalogManagement/items/protectedMode
l/itemRevisionEff"metadata-store-usage="mdsRepos"/>
<namespace
path="oracle/apps/scm/productCatalogManagement/"items/protectedMode
l/itemsEffmetadata-store-usage="mdsRepos"/>

Note: The package directory will be added to the adf-config file
and thus should contain only the automatically generated flexfield
MDS files and the inf subdirectory with this file.

Do not repeat these steps for the corresponding pageDefs packages
under Application Sources. Those packages are added automatically
when the flexfield is deployed.

Employing an Extensible Flexfield on a User Interface Page

23-30 Developer's Guide

flexfield usages and their associated logical pages on the left, and the other containing
the contexts associated with the selected logical page on the right.

To build the UI page:

1. Create a task flow for the extensible flexfield usages and a task flow for the
associated contexts.

2. Create the left and right fragment pages.

3. Use the task flows in the UI page.

23.7.2.1 Creating the Task Flows
The UI page requires two task flows: one containing the list of extensible flexfield
usages and their associated logical pages, and the other containing the contexts
associated with the selected logical page.

Before you begin:

Create and configure business components to support the extensible flexfield as
described in Section 23.6, "Defining and Registering Extensible Flexfield Business
Components."

To create the two task flows:

1. Create a page-list task flow, for example, PageListTF.

2. Add the following parameter to the task flow:

■ Name: ContainerBean

■ Class:
oracle.apps.fnd.applcore.flex.eff.runtime.EffCategoryPagesBean

■ Value: #{pageFlowScope.ContainerBean}

3. Create the context container task flow, for example, ContextPageTF.

4. Add a parameter that is exactly the same as the one you added in Step 2 to the task
flow.

23.7.2.2 Creating the Fragments
Create a left fragment for the list of flexfield usages and a right fragment for contexts.

Before you begin:

Create the page-list task flow and context container task flow as described in
Section 23.7.2.1, "Creating the Task Flows".

To create the fragments:

1. Create the left and right fragment pages PageListFrag.jsff and
ContextPageFrag.jsff.

2. Add the EffCatPageListContainer seeded task flow from the ViewController
FlexModeler-View library to the page list fragment using the parameters listed in
Section 23.7.1.1, "Creating a Task Flow for a Single Extensible Flexfield Usage,"
with the exception that the value for _eff_containerBean should be
pageFlowScope.ContainerBean instead of pageFlowScope.EffCategoryPagesBean.

3. Add the EffContextsPageContainer seeded task flow from the ViewController
FlexModeler-View library to the context page fragment using the parameters

Employing an Extensible Flexfield on a User Interface Page

Using Extensible Flexfields 23-31

described in Section 23.7.1.1, "Creating a Task Flow for a Single Extensible
Flexfield Usage," with the exception that the value for _eff_containerBean should
be pageFlowScope.ContainerBean instead of
pageFlowScope.EffCategoryPagesBean.

4. Drag and drop the page list fragment onto the page-list task flow.

5. Drag and drop the context page fragment onto the context task flow.

23.7.2.3 Using the Task Flows in the Page
Use the task flows that you just created in Section 23.7.1.1, "Creating a Task Flow for a
Single Extensible Flexfield Usage" to add the usage and context lists to the page.

Before you begin:

1. Create the page-list task flow and context container task flow as described in
Section 23.7.2.1, "Creating the Task Flows."

2. Create the left and right fragment pages PageListFrag.jsff and
ContextPageFrag.jsff as described in Section 23.7.2.2, "Creating the Fragments."

To use the task flows in the page:

1. Open the page and add the splitter.

2. Add the page-list and context page task flows to the left and right facets of the
splitter.

3. Enter the value of pageFlowScope.EffCategoryPagesBean for the ContainerBean
parameter to the task flows.

4. Follow the steps listed in Section 23.7.1.3, "Rendering the Page" to view the user
interface.

23.7.3 How to Expose One Logical Page and Its Contexts
You can incorporate an extensible flexfield into an application as a single task flow that
presents a set of contexts associated with a specified logical page, which will be
identified before the UI page initializes.

To expose one logical page and its contexts, build a UI page that includes a splitter
with a single task flow as a dynamic region on the right, and that contains the contexts
associated with the selected logical page. This variation does not present an extensible
flexfield usage or page-list task flow in the user interface.

23.7.4 How to Expose One Extensible Flexfield Context
Build an application page with a single task flow as a dynamic region on the right, and
containing the context that was passed. This variation does not present an extensible
flexfield usage or page-list task flow in the user interface.

Before you begin:
Create and configure business components to support the extensible flexfield as
described in Section 23.6, "Defining and Registering Extensible Flexfield Business
Components."

To expose the extensible flexfield context:
1. Create a task flow for Pages List, for example, PageListTF.xml.

Employing an Extensible Flexfield on a User Interface Page

23-32 Developer's Guide

2. Add a managed bean called EffCategoryPagesBean to this task flow. It should
have a class of pageFlowScope.EffCategoryPagesBean and a scope of pageFlow.

3. Create a fragment, for example PageListFrag.jsff, and drag and drop the
EffCatPageListContainer task flow from the ViewController FlexModeler-View
library on the fragment.

4. Add the following parameters:

■ _eff_application_id: Provide #{pageFlowScope._eff_application_id}.

■ _eff_descriptive_flexfield_code: Provide #{pageFlowScope._eff_
descriptive_flexfield_code}.

■ _eff_category_code: Provide #{pageFlowScope._eff_category_code}.

■ _eff_usage_code: Provide #{pageFlowScope._eff_usage_code}.

■ _eff_page_code: Provide #{pageFlowScope._eff_page_code}.

■ _eff_containerBean: Provide #{pageFlowScope.EffCategoryPagesBean}.

5. Place the task flow on any page on which you want the page list to appear.

6. Create a task flow, for example, ContextsTF.xml.

7. Add an empty fragment to this task flow, for example, ContextsFrag.jsff.

8. Access the page on which you would like your contexts to appear. This could
possibly be the same page as in Step 5, but is likely the second facet of a splitter.

9. Drag and drop ContextsTF.xml as a dynamic region onto this page at the correct
location.

10. When prompted for a backing bean, enter a new bean name, class, and package,
for example, ContextsRenderingBean.java, and allow it to remain as a backing
bean.

11. Open the Java file and add the following code, replacing the value for taskFlowId
with the appropriate string:

public class ContextsRenderingBean {
 private String taskFlowId =
"/WEB-INF/oracle/apps/fnd/applcore/flex/eff/runtime/ui/test/flow/ContextsTF.xml
#ContextsTF";
 private String newTaskFlowId =null;
 private boolean refreshRegion = false;

 public ContextsRenderingBean () {
 }

 public TaskFlowId getDynamicTaskFlowId() {
 return TaskFlowId.parse(taskFlowId);
 }
 public boolean getRefreshRegion() {
 refreshRegion = false;
 newTaskFlowId = (String) ADFContext.getCurrent().getSessionScope().
 get("_eff_context_tf_id");

 if (newTaskFlowId != null && taskFlowId.compareTo(newTaskFlowId) != 0) {
 taskFlowId = newTaskFlowId;
 refreshRegion = true;
 }
 return refreshRegion;
 }

Customizing the Extensible Flexfield Modelers

Using Extensible Flexfields 23-33

}

12. Open the page definition for the launch page and scroll to the location of the
dynamic region binding.

13. Add the following refresh condition setting to the taskFlow tag:

RefreshCondition="#{backingBeanScope.ContextsRenderingBean.refreshRegion}"

This setting provides the callback and the conditions for the refresh of the contexts
region.

14. Follow the steps listed in Section 23.7.1.3, "Rendering the Page" to view the user
interface.

When you run the page and click the page link, the callback to refreshRegion will
look up the ID for the contexts task flow and enable a refresh condition of the
dynamic region.

23.8 Loading Seed Data
Any implementation of flexfields in Oracle Fusion Applications typically requires
application seed data, which is the essential data that enables flexfields to work
properly in applications. Flexfield seed data can be uploaded and extracted using Seed
Data Loader.

After you complete the registration process described in Section 23.5.1, "How to
Register Extensible Flexfields," your flexfield seed data consists of the information that
you registered for your flexfield, such as the tables and columns reserved for your
flexfield. For a customer flexfield, the seed data contains only this registration data.

If your flexfield is a developer flexfield, you also serve as the implementor. In addition
to the registration data, your flexfield seed data might include contexts, segments, and
value sets that you have defined for your flexfield. You can use the Oracle Fusion
Middleware Extensions for Applications (Applications Core) Setup application, as
described in Section 25.2, "Deploying Flexfields in a Standalone WebLogic Server
Environment," to configure a flexfield. For information about how to define contexts,
segments, and value sets, see the "Using Flexfields for Custom Attributes" chapter in
the Oracle Fusion Applications Extensibility Guide.

For information about extracting and loading seed data, see Chapter 55, "Initializing
Oracle Fusion Application Data Using the Seed Data Loader."

23.9 Customizing the Extensible Flexfield Modelers
You can customize the modelers that generate the extensible flexfield business
component and UI artifacts to add additional product-specific logic. For example, you
might want the modeler to set a specific JavaServer Pages (JSP) Expression Language
(EL) expression on a generated segment's ReadOnly property.

23.9.1 How to Customize the Runtime Business Component Modeler for Extensible
Flexfields

To extend the runtime business component modeler for extensible flexfields, override
the EFFBCModelerFactory.getCustomEFFBCModeler method, shown in Example 23–5,
in the custom runtime business component modeler factory for extensible flexfields.

Customizing the Extensible Flexfield Modelers

23-34 Developer's Guide

Example 23–5 getCustomEFFBCModeler Method

/**
 * Implementing teams need to override this method and provide the
 * custom BC Modeler here (for example, PIMBCModeler).
 * @param namespace the name space
 * @param flexDef the flexfield def
 * @param entityUsage the entity usage
 * @param writer the modeler writer
 * @param conf the configuration
 * @param categoryDef the category def
 * @param categoryContextDef the category context def
 * @param categoryCode the category code
 * @param contextCode the context code
 * @param appShortName the application short name
 * @param flexCode the flexfield code
 * @param connUrl the connection url
 * @param isInterface the interface flag
 * @return the custom EFF BC Modeler instance.
 */
 protected EFFBCModeler getCustomEFFBCModeler(FlexfieldNamespace namespace,
 FlexfieldDef flexDef,
 FlexfieldEntityUsage entityUsage,
 BCModelerWriter writer,
 Map<BCModeler.Option, Object> conf,
 CategoryDef categoryDef,
 CategoryContextDef categoryContextDef,
 String categoryCode,
 String contextCode,
 String appShortName,
 String flexCode,
 String connUrl,
 boolean isInterface)
 {
 return new EFFBCModeler(namespace, flexDef, entityUsage, writer, conf,
 categoryDef, categoryContextDef, categoryCode,
 contextCode, appShortName, flexCode, connUrl,
 isInterface);
 }
An example of the PIMBCModelerFactory.java override for this method is shown in
Example 23–6.

Example 23–6 PIMBCModelerFactory.java Override

protected EFFBCModeler getCustomEFFBCModeler(FlexfieldNamespace namespace,
 FlexfieldDef flexDef,
 FlexfieldEntityUsage entityUsage,
 BCModelerWriter writer,
 Map<BCModeler.Option, Object> conf,
 CategoryDef categoryDef,
 CategoryContextDef categoryContextDef,
 String categoryCode,
 String contextCode,
 String appShortName,
 String flexCode,
 String connUrl,
 boolean isInterface)
 {
 return new PIMBCModeler(namespace, flexDef, entityUsage, writer, conf,
 categoryDef, categoryContextDef, categoryCode,
 contextCode, appShortName, flexCode, connUrl,

Customizing the Extensible Flexfield Modelers

Using Extensible Flexfields 23-35

 isInterface);
 }

23.9.2 How to Customize the Runtime User Interface Modeler for Extensible Flexfields
If the UI artifacts that are generated for an extensible flexfield business component do
not fulfill application requirements, you can create wrapper implementation classes
for the framework's customizer interfaces. These wrapper implementation classes
enable some control over the XML code that the modeler generates for the UI artifacts
just before it persists the generated task flows and JavaServer Faces (JSF) page
fragments. The implementation classes are in the
oracle.apps.fnd.applcore.flex.uimodeler.customizers package.

To customize an extensible flexfield business component's generated UI artifacts:

1. Create wrapper classes for the default customizer implementation classes.

2. Create a wrapper of the metadata provider implementation class.

3. Register the metadata provider wrapper class in the metadata for the flexfield's
business component.

23.9.2.1 Creating the Customizer Wrapper Class
Extend the default customizer implementation classes from the
oracle.apps.fnd.applcore.flex.uimodeler.customizers package to customize the
following UI artifacts:

■ Context JSF fragment

■ Segment components in the generated context task flow

■ Page links in the generated links task flow

■ Page task flow

■ Search task flow

23.9.2.1.1 How to Customize the Context JSF Page Fragment To customize the JSF page
fragment for a single row context, create a wrapper class for the
SingleRowContextRegionCustomizerImpl implementation class and override the
customizeGeneratedSingleRowContextFragment method.

To customize the JSF page fragment for a multiple row context, create a wrapper class
for the MultiRowContextRegionCustomizerImpl implementation class and override
the customizeGeneratedMultiRowContextFragment method.

23.9.2.1.2 How to Customize the Segment Components in the Generated Context Task Flow To
customize which segment components in the generated context task flow will be
read-only for single and multirow contexts, create a wrapper class for the
ContextComponentsCustomizerImpl implementation class and override the
getAtributeComponentReadonlyELExpression method. This method returns the value
of the readOnly property for a given segment component in the context task flow, as
shown in Example 23–7.

Example 23–7 Sample getAtributeComponentReadonlyELExpression Method

public String getAtributeComponentReadonlyELExpression(
 Transaction tx, ViewDef contextViewDef) {
 String returnData = null;
 ViewDefImpl contextViewDefImpl = (ViewDefImpl) contextViewDef;

Customizing the Extensible Flexfield Modelers

23-36 Developer's Guide

 if(contextViewDefImpl.getName().toUpperCase().indexOf("RESOLUTION") >0) {
 returnData = "#{pageFlowScope.EFF_PARAM5=='Y'}";
 }
 return returnData;
 }

23.9.2.1.3 How to Customize the Page Links in the Generated Links Task Flow To customize
which page links in a generated links task flow will be rendered, create a wrapper
class for the PageListCustomizerImpl implementation class and override the
getPageLinkRenderedProperty method. This method returns the value of the
rendered property for a page link.

23.9.2.1.4 How to Customize the Page Task Flow To customize which context task flows
will be rendered in a page task flow, create a wrapper class for the
ContainerPageCustomizerImpl implementation class and override the
getContextTFRenderedELExpression method. This method returns the value of the
region tag for a context task flow.

If implementors have defined a view privilege on a context, then the application
checks if the context is present in either the base or translation extension table before
verifying whether the end user has view privileges for the context. By default, the
application uses the primary keys of the product table plus the context code and
category code to search for a matching row in the extension tables. If your application
uses a different method for associating extension table rows with product table rows,
you must override the prepareSqlQueryForMatchingEffLineId method in the
oracle.apps.fnd.applcore.flex.eff.runtime.EffCategoryPagesBean.java class to
return the search query that is to be used to find a matching row. This method takes
the security object, the context code, the category code, and the category row as input
parameters and it returns the query in String form.

23.9.2.1.5 How to Customize the Search Task Flow To customize the search task flow,
create a wrapper class for the SearchRegionCustomizerImpl implementation class.
Table 23–3 shows the ways in which you can customize the search task flow and the
methods to override to perform the customizations.

Table 23–3 Methods to Override to Customize the Search Task Flow

Customization Method to Override Notes

Set the list of
actions required in
the search results
table.

getResultTableActionMenu Use the ResultsTableActionMenu
inner class to define the menu
properties and entries.

Set the managed
bean for the
generated task
flow.

getSearchManagedBeanClass The manage bean must extend
oracle.apps.fnd.applcore.flex
.eff.search.ui.bean.DefaultEf
fSearchManagedBean.

Alter properties in
the product table
component for
search results.

getApplicationsTablePropertie
sMap

This method returns a hashmap
of name-value pairs of the
properties to be set.

Alter properties in
the ADF Table that
is in the product
table component
for search results.

getADFTablePropertiesMap This method returns a hashmap
of name-value pairs of the
properties to be set, as shown in
Example 23–8.

Customizing the Extensible Flexfield Modelers

Using Extensible Flexfields 23-37

Example 23–8 Sample getADFTablePropertiesMap Method

public HashMap getADFTablePropertiesMap()
 {
 HashMap propertiesMap = new HashMap(10);
 propertiesMap.put("filterVisible","false");
 propertiesMap.put("columnStretching","column:description");
 propertiesMap.put("inlineStyle","width:100%;");
 return propertiesMap;
 }

Customize the
query panel
properties.

getQueryPanelPropertiesMap This method returns a hashmap
of name-value pairs of the
properties.

Get a handle to the
document object
model (DOM)
object of the
generated search
region and its
pageDef.

customizeGeneratedSearchTaskf
lowRegion

Use DOM objects to customize
generated artifacts only if there is
no other way to perform for the
customization.

Customize the
readOnly property
for a component in
search results table
column.

getResultsTableColumnComponen
tReadOnlyELExpression

This method returns a JSP EL
expression.

Customize the
properties on the
search results table
column for an
attributeDef.

getResultsTableColumnProperti
esMap

This method returns a hashmap
of name-value pairs of the
properties.

Set the task flow
data control scope
to shared.

getSearchTaskFlowDataControlS
cope

The task flow can be generated
with either a SHARED scope or an
ISOLATED scope. The default is
ISOLATED. Override this method
to set the scope to SHARED.

Add custom
toolbar
components.

getAdditionalToolbarComponent
Definitions

Use the
AdditionalToolbarComponentDef
inition inner class to provide
metadata for the required
component. You can add
components of type CHOICELIST,
BUTTON, SPACER, and SEPARATOR.

Set the default
search criteria on
the search page as
it is loaded.

getDefaultSearchCriteriaName NA.

Customize the
generated search
task flow XML.

customizeGeneratedSearchTaskf
low

This method returns a handle to
the DOM object for the generated
task flow XML. You should use
DOM objects to customize
generated artifacts only if there is
no other way to perform the
customization.

Table 23–3 (Cont.) Methods to Override to Customize the Search Task Flow

Customization Method to Override Notes

Testing the Flexfield

23-38 Developer's Guide

23.9.2.1.6 How to Create a Metadata Provider Implementation Class If you have created
customizer wrapper classes for a flexfield business component, you must create a
wrapper of the default UIModelerMetadataProviderImpl implementation class for that
business component. This class is in the oracle.apps.fnd.applcore.flex.uimodeler
package.

Override the appropriate methods in the following list to return the names of the
custom wrapper classes. For example, if you created a custom wrapper class to
customize the search task flow, you would override the
getSearchRegionCustomizerClassName method, as shown in Example 23–9. Override
only the methods that correspond to the classes for which you have created custom
wrappers. In the case of a SearchRegionCustomizerImpl custom wrapper, the method
that you override depends on whether the wrapper customizes the interface search UI
or the regular search UI. If the wrapper customizes the interface search UI, override
the getInterfaceSearchRegionCustomizer method. Otherwise, override the
getSearchRegionCustomizerClassName method.

■ getContextComponentCustomizerClassName

■ getContainerPageCustomizerClassName

■ getPageListCustomizerClassName

■ getSearchRegionCustomizerClassName

■ getInterfaceSearchRegionCustomizer

■ getSingleRowContextRegionCustomizerClassName

■ getMultiRowContextRegionCustomizerClassName

Example 23–9 Sample getSearchRegionCustomizerClassName Method

public String getSearchRegionCustomizerClassName() {
 return "oracle.apps.myProduct.myApp.items.eff.ItemSearchRegionCustomizer";
 }

23.9.2.1.7 How to Register the Metadata Provider Class for the Business Component For the
user interface modeler to use your custom wrapper classes at runtime, you must
register the metadata provider class. To register the class, set the ADFUI_MODELER
column for the business component's row in the FND_DF_FLEXFIELDS_B table to the
name of the UIMetadataProviderImpl implementation class that you created for the
business component.

23.10 Testing the Flexfield
After implementing a flexfield, you can define seed or test value sets for the flexfield,
and you can create a model that you can use to test it. For more information, see
Section 25.1.2, "How to Test Flexfields."

23.11 Accessing Information About Extensible Flexfield Business
Components

The consumers of an extensible flexfield might need to programmatically access an
extensible flexfield, for instance, to further process the data that has been entered for
an extensible flexfield, to add additional validation, or to perform change control. The
oracle.apps.fnd.applcore.flex.runtime.util.common.ExtensibleFlexfieldUtil
package provides methods for obtaining the handles to the artifacts that are generated
in a customer's instance.

Accessing Information About Extensible Flexfield Business Components

Using Extensible Flexfields 23-39

23.11.1 How to Access Information About Extensible Flexfield Business Components
Use the methods in
oracle.apps.fnd.applcore.flex.runtime.util.common.ExtensibleFlexfieldUtil
to get the names of the following Java business objects (JBOs) that are generated for an
extensible flexfield:

■ Context entity object: Use getContextEoName, which is shown in Example 23–10.

■ Context view object: Use getContextVoName, which is shown in Example 23–11.

■ Context entity association between base and extension entity objects: Use
getCategoryContextAssocName, which is shown in Example 23–12.

■ Context entity/view object attribute for a given segment code: Use
getContextAttributeName, which is shown in Example 23–13.

■ Categories: Use the various methods shown in Example 23–14.

■ Search view object attributes: Use getSearchVoAttributeNames, which is shown in
Example 23–15.

Example 23–10 Method to Get EFF Context Entity Object Name

/**
 * @param appId - application id
 * @param flexCode - flexfield code (e.g. EGO_ITEM_UDA)
 * @param flexUsageCode - flexfield usage code (e.g. EGO_ITEM_DL)
 * @param txn - DB transaction
 * @param contextCode - context code (e.g Voltage)
 * @param tableType - table type (e.g. EXTENSION)
 * @param effGroup - eff grouping entity name (public / private)
 * @return
 */
 public static String getContextEoName(Long appId, String flexCode,
 String flexUsageCode,
 DBTransaction txn,
 String contextCode,
 String tableType,
 String effGroup)

Example 23–11 Method to Get EFF Context View Object Name

/**
 * @param appId - application id
 * @param flexCode - flexfield code (e.g. EGO_ITEM_UDA)
 * @param flexUsageCode - flexfield usage code (e.g. EGO_ITEM_DL)
 * @param txn - DB transaction
 * @param contextCode - context code (e.g Voltage)
 * @param tableType - table type (e.g. EXTENSION)
 * @param effGroup - eff grouping entity name (public / private)
 * @return
 */
 public static String getContextVoName(Long appId, String flexCode,
 String flexUsageCode,
 DBTransaction txn,
 String contextCode,
 String tableType,
 String effGroup)

Accessing Information About Extensible Flexfield Business Components

23-40 Developer's Guide

Example 23–12 Method to Get Name for EFF Context Entity Association Between Base
and Extension Entity Objects

 /**
 * @param appId - application id
 * @param flexCode - flexfield code (e.g. EGO_ITEM_UDA)
 * @param flexUsageCode - flexfield usage code (e.g. EGO_ITEM_DL)
 * @param txn - DB transaction
 * @param contextCode - context code (e.g Voltage)
 * @param tableType - table type (e.g. EXTENSION)
 * @param effGroup - eff grouping entity name (public / private)
 * @return
 */
 public static String getCategoryContextAssocName(Long appId, String flexCode,
 String flexUsageCode,
 DBTransaction txn,
 String contextCode,
 String tableType,
 String effGroup)

Example 23–13 Method to Get Attribute Name for EFF Context Entity/View Object Given
Segment Code (FND_DF_SEGMENTS_VL.SEGMENT_CODE)

/**
 * Get the attribute name for the EFF context view
 * object / entity object given the segment code.
 * @param segmentCode - segment code for attribute name.
 * @return attribute name
 */
 public static String getContextAttributeName(String segmentCode)

Example 23–14 EFF Category Methods

public static String getCategoryAmNameForWebServices()
public static String getCategoryAmNameForDataEntry()
public static String getCategoryAmNameForInterfaceGeneric()
public static String getCategoryAmNameForInterfaceCategory()
public static String getCategoryAmNameForSearchGeneric()
public static String getCategoryAmNameForSearchCategory()
public static String getCategoryVoNameForDataEntry()
public static String getCategoryVoNameForWebServices()
public static String getCategoryVoNameForInterfaceGeneric()
public static String getCategoryVoNameForInterfaceCategory()
public static String getCategoryContextViewLinkNameForInterfaceGeneric()
public static String getCategoryContextViewLinkNameForInterfaceCategory()
public static String getCategoryContextViewLinkNameForSearchCategory()
public static String getCategoryContextViewLinkNameForSearchGeneric()
public static String getCategoryContextViewLinkNameForWebService()
public static String getCategoryContextViewLinkNameForDataEntry()
public static void useServiceProvider()
public static String getCategoryVoNameForSearchCategory()
public static String getCategoryVoNameForSearchGeneric()

Example 23–15 Method to Get Hash Map of View Object Attribute Names for EFF Search
View Object

/**
 * Get a map of segment codes to search view object attribute names
 * @param flexUsageCode - flexfield usage code (e.g. EGO_ITEM_DL)
 * @param contextCode - context code (e.g Voltage)
 * @param segmentCodeList - segment codes for the map.

Accessing Information About Extensible Flexfield Business Components

Using Extensible Flexfields 23-41

 * @return map of attribute names with key of segment codes
 */
 public static HashMap<String, String> getSearchVoAttributeNames(
 String flexUsageCode,
 String contextCode,
 ArrayList<String> segmentCodeList)

Accessing Information About Extensible Flexfield Business Components

23-42 Developer's Guide

24

Using Key Flexfields 24-1

24Using Key Flexfields

This chapter discusses how to use key flexfields in Oracle Fusion applications to access
data that is presented by different customers using different combinations of fields,
and to customize the presentation of that information to customers in a way that is
most appropriate for them. This chapter also discusses how to take advantage of key
flexfield secondary usages, code-combination filters, and other advanced features.

This chapter includes the following sections:

■ Section 24.1, "Introduction to Key Flexfields"

■ Section 24.2, "Completing the Producer Tasks for Key Flexfields"

■ Section 24.3, "Completing the Consumer Tasks for Key Flexfields in Reference
Mode"

■ Section 24.4, "Employing Key Flexfield UI Components on a Page."

■ Section 24.5, "Using Key Flexfield Advanced Features in Reference Mode"

■ Section 24.6, "Completing the Development Tasks for Key Flexfields in Secondary
Mode"

■ Section 24.7, "Working with Code-Combination Filters for Key Flexfields"

24.1 Introduction to Key Flexfields
A key flexfield is a key that is composed of segments, in which one or more segments
may have a meaning. The key, or code, uniquely identifies an object such as an account,
an asset, a part, or a job, that implementors can configure to validate any way they
wish. The definition of a key flexfield provides a list of possible combinations of key
flexfield segment values, known as code combinations. Each type of code combination is
called a structure. Each structure is identified by a string that is called the structure code.
Much like the context values in descriptive flexfields, a key flexfield structure code
indicates how database columns are organized to store the code combinations.

24.1.1 Benefits of Key Flexfields
Key flexfields provide a way for Oracle Fusion applications to represent objects such
as accounting codes, part numbers, or job descriptions, which combine multiple fields
(or segments) into a single object of concatenated segments.

Most customers use codes made up of meaningful segments to identify various
business objects. For example, a customer might have a part number "PAD-NR-YEL-8
1/2x14" indicating a notepad, narrow-ruled, yellow, and 14 inches by 8 1/2. Key
flexfields enable developers of Oracle Fusion applications to provide customers with
flexible code data structures that implementors can set up however they like using key

Introduction to Key Flexfields

24-2 Developer's Guide

flexfield segments. Key flexfields enable an implementor to customize Oracle Fusion
applications to show a customer's codes any way they want them. For example, a
different customer might have a different code for the same notepad, such as
"8x14-PD-Y-NR", and the implementor can easily customize Oracle Fusion applications
to meet that different need. Key flexfields let developers satisfy different customers
without having to reprogram the applications.

You can use key flexfields in many applications. For example, you could use a Part
flexfield in an inventory application to uniquely identify parts. Your Part flexfield
could contain such segments as product class, product code, size, color and packaging
code. You could define valid values for the color segment, for example, to range from
01 to 10, where 01 means red, 02 means blue, and so on. You could even specify
cross-validation rules to describe valid combinations of segment values. For example,
products with a specific product code may be available only in certain colors.

24.1.2 How Key Flexfields Are Modeled in Oracle Application Development Framework
Flexfields are modeled as a collection of Oracle Application Development Framework
(Oracle ADF) polymorphic view rows, as described in the "Working with Polymorphic
View Rows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

In a polymorphic collection, each view row can have its own set of attributes, and all
rows have at least one common attribute, the discriminator. The discriminator
determines which view row type should be used. Given a collection of polymorphic
view rows, each row can be a different type. When a polymorphic collection of rows is
created, Oracle ADF selects the correctly-typed view definition for the row to be added
based on the value of the discriminator attribute.

Key flexfield segments are exposed as view row attributes in the order that they are
defined in the flexfield's metadata. The code combination ID (CCID) and structure
instance number (SIN) segments are exposed as attributes in the base view object of the
polymorphic collection. Every code combination structure is modeled as an extended
view object of the base view object. That is, an extended view object is created for
every structure instance number. These extended view objects, which are referred to as
subtype view objects, expose the key flexfield segments as subtype-specific view
attributes. The structure instance number is exposed as the discriminator attribute of
the polymorphic view rows. For more information about code combination IDs and
structure instance numbers, see Section 24.2.1.1, "Creating the Combinations Table."

You use the Create Entity Objects wizard to generate the base view object that is based
on the key flexfield definition, then create a view link to connect the reference view
object (the view object for the database table that the key flexfield extends) and the base
view object. You can then use the base view object to add the flexfield to a user
interface page. For more information about the generation of base and subtype view
objects, see Section 24.2.4, "How to Create Key Flexfield Business Components."

Because flexfield view objects are modeled as polymorphic view objects, you can use
key flexfield view objects in the same manner that you use any other polymorphic
view objects, and they will behave in the same way. This includes support for
flexfields in ADF Desktop Integration. For more information, see the Oracle Fusion
Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework.

24.1.3 Secondary Usage Feature
A key flexfield configuration can be shared with other product tables through the
secondary usage feature. To share a key flexfield configuration with another product

Introduction to Key Flexfields

Using Key Flexfields 24-3

table, you include one or all of the primary usage segment columns in that product
table. The product table that contains the shared segment columns is referred to as a
secondary table. When you work with a primary usage you are working in reference
mode. When you work with a secondary usage, you are working in secondary mode.

There are two types of secondary usages:

■ All-segment secondary usage: In this mode, the secondary table has columns for all
of the key flexfield segments.

■ Single-segment secondary usage: In this mode, the secondary table has only one key
flexfield segment column.

24.1.4 Participant Roles
As mentioned in Section 21.2, "Participant Roles," this guide uses the owner and
implementor roles to clarify and group flexfield development activities.

The flexfield owner is the developer (or development team) who determines that a
particular flexfield is needed or would be useful within a particular Oracle Fusion
application, and makes a flexfield available. The owner then incorporates the flexfield
into an application. With key flexfields, the owner can be either a producer or a
consumer, or can assume both roles.

The producer is the developer who determines that a particular key flexfield is needed
or would be useful within a particular application, and makes it available. The
producer's product owns the combinations table, which supports that flexfield by
storing the key flexfield values.

A consumer incorporates a key flexfield into the application, which is typically
different from the producer's application. The consumer typically stores a code
combination ID (CCID), which identifies a row in the combinations table, in a product
table, and works with the structural and seed data and the business components that
have been configured by the key flexfield producer.

An implementor configures a flexfield on behalf of the customer by specifying the
structure of the flexfield and specifying the prompt, length, and data type of each
flexfield segment.

For more information about owners, producers, consumers, and implementors see
Section 21.2, "Participant Roles." For information about the combinations table, see
Section 24.2.1.1, "Creating the Combinations Table."

24.1.5 Completing the Key Flexfield Development Process
Before you start to incorporate key flexfields into your application, you must
determine whether you should complete the producer portion or the consumer
portion of the key flexfield development process.

■ If you have determined that a particular key flexfield is needed or would be useful
within a particular application, and there is not yet a combinations table to
support it, see the producer development tasks covered in Section 24.1.5.3,
"Understanding the Key Flexfield Producer Development Tasks."

■ If there is already a combinations table for the key flexfield that you want to
implement, see the consumer development tasks covered in Section 24.1.5.4,
"Understanding the Key Flexfield Consumer Development Tasks."

Note: Secondary usage is sometimes referred to as a partial usage.

Introduction to Key Flexfields

24-4 Developer's Guide

To incorporate key flexfield secondary usages into your application, see Section 24.6,
"Completing the Development Tasks for Key Flexfields in Secondary Mode."

To employ key flexfield code-combination filters in your application, see Section 24.7,
"Working with Code-Combination Filters for Key Flexfields."

Figure 24–1 provides an overview of producer and consumer roles as they apply to the
creation and configuration of the necessary key flexfield business components and
associated artifacts. Section 24.1.5.3, "Understanding the Key Flexfield Producer
Development Tasks" and Section 24.1.5.4, "Understanding the Key Flexfield Consumer
Development Tasks" define the producer phases and summarize the steps for creating
the components and artifacts shown in Figure 24–1.

Figure 24–1 Key Flexfield Development Roles, Business Components and Supporting
Artifacts

24.1.5.1 Maintenance Mode and Dynamic Combination Insertion
By default, key flexfield user interface elements do not allow new code combination
values entered into the application user interface to be saved. However, you might
want to enable the entry of new code combinations in either of the following ways:

■ A code-combination maintenance page enables application implementors and
administrators to manage key flexfield code combinations, including the ability to
enter new code combinations and update existing code combinations for a
flexfield. This is called working in maintenance mode.

■ You can enable end users to enter values on an application page that constitute
ad-hoc new code combinations, even if the users are not authorized to perform
maintenance tasks directly. This is known as dynamic combination insertion.

For example, when entering a transaction, an Oracle General Ledger user can enter
a new expense account code combination for an account that does not yet exist.
Your application creates the new account by inserting the new combination into
the combinations table in the background.

Maintenance Application Module

P
ro

d
u

c
e

r
 P

h
a

s
e

 1

Entity Object for the
Reference Table

Maintenance Key Flexfield
Polymorphic VOs

Flexfield
View Link

Reference Table
(Product Table with a
Foreign Key
Reference to the
Combinations Table)

Combinations
Table

Dynamic Insertion Call

Flexfield
View Link

View Object for the
Reference Table

Reference Key Flexfield
Polymorphic VOs

Reference Key Flexfield
Polymorphic VOs
RReffereencce KeeK y Fleexfieef lddl
PPolyymoorpphicc VOVOsOsi

Reference Key Flexfield RReffereencce Keey Flelexxfieef ldReference Key Flexfiel
Polymorphic VOsc

yy
PPolyymoorpphicc VVOOPolymorphic VOii

Polymorphic View Objects
for the Key Flexfield’s
Reference Model

Master View Object for
the Combinations Table

Updatable Entity Object for
the Combinations Table

Read-Only Entity Object for
the Combinations Table

Maintenance Key Flexfield
Polymorphic VOs

Maintennanncee KeKeyy FFleexfielli d d
Polymorphhr ic VOOsV

Maintenance Key FlexfieldMMaintennanncee KKeyy FFleexffielelMaintenance Key Flexfiel
Polymorphic VOsPolymorphhr ic VOOVPolymorphic VOy p

Polymorphic View Objects for the
Flexfield’s Maintenance Model

P
ro

d
u

c
e

r
 P

h
a
s

e
 2

C
o

n
s

u
m

e
r

Introduction to Key Flexfields

Using Key Flexfields 24-5

The key flexfield producer builds the appropriate models to support maintenance
mode and dynamic combination insertion.

24.1.5.2 Cross-Validation Rules and Custom Validation
When you decide to support maintenance mode or dynamic combination insertion for
a key flexfield, you can also implement advanced validation capability for the new
code combinations that are entered.

Cross-Validation Rules
Cross-validation rules apply a pair of filters to new code combinations that are proposed
for a key flexfield by implementors.

At registration time, you must enable the key flexfield for cross-validation. Then you
create a maintenance user interface that administrators of your application can
subsequently use to define each cross-validation rule as a pair of code-combination
filters: one to establish the condition for evaluating the rule, and the other to specify
which code combinations are valid under that condition.

Custom Validation Callouts
There are two PL/SQL custom validation callout procedures that can be defined for a
given key flexfield: one for application development use, and one reserved for
customers. These callouts can be used to enforce any custom validation logic that you
want to apply to new code combinations beyond what has been defined for
cross-validation rules.

You define custom validation logic with a standard signature for the customer callout.
You then register your callout with the key flexfield. The custom validation callout will
automatically be called before any new combination is inserted using dynamic
insertion in C and PL/SQL.

24.1.5.3 Understanding the Key Flexfield Producer Development Tasks
If you have determined that a particular key flexfield is needed within an application,
and there are not yet columns in the product table to support it, you must define the
necessary metadata and provide the appropriate business components so that flexfield
consumers can make use of your flexfield.

To complete the producer development tasks:

1. Develop the key flexfield.

See Section 24.2.1, "How to Develop Key Flexfields."

Optionally, you can also do the following at registration time:

■ Implement segment labels.

For more information, see Section 24.2.2, "How to Implement Key Flexfield
Segment Labels."

Note: If you configure the key flexfield for dynamic combination
insertion, you must build a maintenance model and a maintenance
application module as described in Section 24.2.4.1, "Building a
Writable Maintenance Model," and use the setup APIs to register the
maintenance application module in the flexfield metadata. For
information about the setup APIs, see Section 24.2.1.5, "Registering
and Defining Key Flexfields Using the Setup APIs."

Introduction to Key Flexfields

24-6 Developer's Guide

■ Enable cross-validation or register custom validation callout procedures.

For more information, see Section 24.2.3, "How to Implement Cross-Validation
Rules and Custom Validation."

2. Create and configure the key flexfield business components.

As shown in Figure 24–1, the producer activities occur in two phases. The first
phase produces a writable maintenance model, and the second phase produces a
read-only reference model:

■ In producer phase 1, you create an updatable entity object for your
combinations table and a master view object that is based on the updatable
entity object. Next, using the updatable entity object, you create key flexfield
business components for a maintenance model and define a view link between
the master view object and the key flexfield view objects. Then you create the
maintenance application module.

■ In producer phase 2, you optionally configure the maintenance application
module to accept dynamic combination insertion calls, and implement the
appropriate Java class in the user interface to invoke dynamic insertion. You
create a read-only reference entity object for your combinations table, and
using this entity object, create key flexfield business components for a
reference model.

See Section 24.2.4, "How to Create Key Flexfield Business Components."

3. Optionally, share your key flexfield business components with other developers
using an ADF library.

For more information, see Section 24.2.5, "How to Share Key Flexfield Business
Components."

4. Optionally, build a user interface for key flexfield maintenance.

For more information, see Section 24.2.6, "How to Build a Key Flexfield
Maintenance User Interface."

5. Optionally, implement key flexfield advanced features such as code combination
constraints or API access to segment labels, or access flexfields from an Excel
worksheet using ADF Desktop Integration.

For more information, see Section 24.5, "Using Key Flexfield Advanced Features in
Reference Mode."

6. Optionally, define, implement, and invoke key flexfield code-combination filters.

For more information, see Section 24.7, "Working with Code-Combination Filters
for Key Flexfields."

24.1.5.4 Understanding the Key Flexfield Consumer Development Tasks
You can incorporate a producer's key flexfields in your own application. For example,
you might have an expenses table that references an account key flexfield in the Oracle
General Ledger application.

Tip: After completing this task, you can regenerate the flexfield
business components programmatically at runtime to update your key
flexfield implementation without manual intervention. For more
information, see Section 25.4, "Regenerating Flexfield Business
Components Programmatically."

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-7

If your product table already has a foreign-key reference to the key flexfield's
combinations table, and the flexfield producer who owns that metadata has provided
you with the appropriate business components, you can proceed to incorporate the
flexfield into your application. You should have already created an entity object and
view object for the product table, which is referred to as the reference table.

To complete the consumer development tasks:

1. As shown in Figure 24–1, create a view link between the view object for the
reference table and the polymorphic view objects for the key flexfield's reference
model.

See Section 24.3.1, "How to Create Key Flexfield View Links."

2. Nest the key flexfield application module instance in the product application
module.

See Section 24.3.2, "How to Nest an Instance of the Key Flexfield Application
Module in the Product Application Module."

3. Add a key flexfield view object instance to the product application module.

See Section 24.3.3, "How to Add an Instance of a Key Flexfield View Object to the
Product Application Module."

4. Add your key flexfield to an application page.

See Section 24.4, "Employing Key Flexfield UI Components on a Page."

5. Configure the key flexfield user interface components.

See Section 24.4.3, "How to Configure Key Flexfield UI Components."

After completing these tasks, you can define seed or test value sets for the flexfield,
and you can create a model that you can use to test the flexfield. For more information,
see Section 25.1.2, "How to Test Flexfields."

After you have completed the key flexfield development process and delivered your
application, implementors can use the Manage Key Flexfields task flow to define and
configure the structures, structure instances, segments, and segment instances for each
key flexfield. This will determine how the flexfield's segments will be populated,
organized, and made available to end users within the application.

To make the Manage Key Flexfields task flow available to application implementors
and administrators, you register it with Oracle Fusion Functional Setup Manager. For
more information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle
Fusion Functional Setup Manager."

24.2 Completing the Producer Tasks for Key Flexfields
To prepare key flexfields for modeling in Oracle JDeveloper, you must ensure that
columns for the flexfields you require are defined in your application database. You
also might need to define more advanced features such as key flexfield secondary
usages, code-combination filters, or the enabling of cross-validation rules and custom
validation callout procedures. All of these features require you to modify your
application database.

Completing the Producer Tasks for Key Flexfields

24-8 Developer's Guide

The product table and its key flexfield columns must be registered in the Oracle Fusion
Middleware Extensions for Applications (Applications Core) data dictionary before a
flexfield can be defined on it. For more information, see Chapter 56, "Using the
Database Schema Deployment Framework."

Any implementation of flexfields in Oracle Fusion applications typically requires
application seed data, which is the essential data to enable flexfields to work properly
in applications. Flexfield seed data can be uploaded and extracted using the seed data
loader.

After you complete the registration process described in Section 24.2.1, "How to
Develop Key Flexfields," your flexfield seed data consists of the information that you
registered for your flexfield, such as the tables and columns reserved for your flexfield.

For information about extracting and loading seed data, see Chapter 55, "Initializing
Oracle Fusion Application Data Using the Seed Data Loader."

24.2.1 How to Develop Key Flexfields
Key flexfields enable you to represent objects such as accounting codes, part numbers,
or job descriptions, that combine multiple columns (or segments) into a single object of
concatenated segments.

To develop a key flexfield:

1. Create a combinations table that includes the key flexfield segments.

2. Create foreign key columns to associate a product table with the combinations
table. The product table is referred to as the reference table.

3. Optionally, include the key flexfield segments in product tables for secondary
usages.

4. Optionally, create filter columns for defining which key flexfields the user can
filter.

5. Enable the use of flexfield combinations on application pages.

6. Register and define the key flexfield.

7. Optionally enable the multiple structure and data set features.

8. Optionally reuse one or all key flexfield segments in a product table.

9. Register the entity details for each usage.

24.2.1.1 Creating the Combinations Table
Each key flexfield must have one corresponding table known as the combinations table.

Note: To incorporate a key flexfield secondary usage into your
application, you must have already defined and registered the key
flexfield primary usage on which it is based. See Section 24.2.1.5,
"Registering and Defining Key Flexfields Using the Setup APIs," then
continue to Section 24.6, "Completing the Development Tasks for Key
Flexfields in Secondary Mode."

To employ key flexfield code-combination filters in your application,
see Section 24.7, "Working with Code-Combination Filters for Key
Flexfields."

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-9

The combinations table must have a code combination ID (CCID) column (type NUMBER)
that identifies each data row.

The combinations table can have an optional structure instance number (SIN) column
(type NUMBER) with generated values that identify different validation sources for a
given structure. These generated values are unique within a given flexfield. Multiple
SIN values exist for a key flexfield if you elect to define the flexfield with multiple
alternate structure instances.

A given structure (arrangement of segments) can have several structure instances. The
structure instances share the same arrangement of segments, but use different value
sets to validate the segments (for example, one group of value sets for the United
States. and another for France). Each structure instance is identified by a SIN.

The combinations table might also have a data set number (DSN) column (type NUMBER),
but only if you have elected to data set-enable your key flexfield code combinations. A
DSN column enables you to tag sets of combination codes with your own numeric IDs.
For example, you can use it to stripe (partition) the data into subsets by
ORGANIZATION_ID. ADF Business Components supports the DSN by including it
as part of the table's primary key. Your SQL code can then select code combinations
from this table using a more qualified primary key.

The table's primary key is composed of a combination of the CCID, SIN, and DSN
columns depending on the conditions listed in Table 24–1.

The combinations table must include the columns listed in Table 24–2. These columns
indicate whether a combination is enabled and active. The column names and data
types must match exactly.

Note: The product table and its key flexfield columns must be
registered in the Applications Core data dictionary before a flexfield
can be defined on it. For more information, see Chapter 56, "Using the
Database Schema Deployment Framework."

Note: Data sets are used by specific application-development teams.
If your team does not use data sets, you can ignore the references to
DSNs in this guide.

A DSN is not the same thing as a set ID. Set ID partitioning is not
supported by flexfields. For information about set IDs, see Chapter 8,
"Managing Reference Data with SetIDs."

Table 24–1 Primary Key Configuration

Column Include in the Primary Key

CCID Always

SIN When the flexfield is multiple structure-enabled or is multiple
structure instance-enabled

DSN When the flexfield is DSN-enabled

Completing the Producer Tasks for Key Flexfields

24-10 Developer's Guide

Include one column for each flexfield segment that you or your customers might wish
to customize. You need at least as many columns as the maximum number of
segments an end user would ever want in a single key flexfield structure. The columns
must be of type VARCHAR2 or NUMBER. If the type is VARCHAR2, the length must be at least
30 characters.

If the key flexfield defines value attributes, you must include one derived value
attribute column of type VARCHAR2 for each value attribute. For more information
about value attributes, see Section 24.2.2, "How to Implement Key Flexfield Segment
Labels."

24.2.1.2 Creating Foreign Key Columns to Enable the Use of Flexfield
Combinations on Application Pages
To permit the use of flexfield code combinations on different application pages, you
must include foreign key references to your combinations table's primary key
configuration, as shown in Table 24–1, in other product tables. That way, you can
display or enter valid combinations using forms that are not based on your
combinations table. When you build an application that uses key flexfields, you
include foreign key references in the product tables wherever you reference the

Table 24–2 Required Combinations Table Columns

Column Data Type Description

ENABLED_FLAG VARCHAR2(1)
NOT NULL

A Y value indicates that the
combination is enabled. Any
other value indicates that
the combination is not
enabled.

START_DATE_ACTIVE DATE If a date is specified and the
current validation date is
earlier than the specified
date, the combination is not
active. There must not be a
default database value for
this column.

END_DATE_ACTIVE DATE If a date is specified and the
current validation date is
later than the specified date,
the combination has
expired. There must not be a
default database value for
this column.

Tip: There are no constraints on how to name the segment columns.
However, these columns are typically named using the patterns
SEGMENTn_VARCHAR2 and SEGMENTn_NUMBER. This
convention makes it easy to identify the key flexfield segments. It also
makes it easier to name the columns for secondary usages of the key
flexfield.

Note: The combinations table may contain other columns than those
described here. If the key flexfield is dynamic insert-enabled, these
other columns should either allow null values or they should have
default database values.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-11

flexfield. The product tables that contain the foreign key references are referred to as
reference tables.

24.2.1.3 Including Segment Columns in Secondary Tables
You can reuse a key flexfield definition over a product table by including some or all of
the key flexfield's segment columns in the product table. The product table that
contains the redefined segment columns is referred to as a secondary table. If a SIN or
DSN is used, the secondary table must either include those columns or a column from
which the SIN or DSN can be derived.

24.2.1.4 Creating Filter Columns
You can use the key flexfield code-combination filter feature to represent a subset of
combinations. For each filter that you want to include in the application user interface,
you define a dedicated column of type XMLType. You can define the column in an
existing reference table or you can create one or more dedicated tables just to store
filter columns.

For more information, see Section 24.7, "Working with Code-Combination Filters for
Key Flexfields."

24.2.1.5 Registering and Defining Key Flexfields Using the Setup APIs
Before you can use a key flexfield in an application, you must first define and register
the flexfield using procedures from the FND_FLEX_KF_SETUP_APIS PL/SQL package.
This package also has procedures for updating, deleting, and querying flexfield
definitions.

The definition of a key flexfield includes the following information:

■ The code, name, and description of the flexfield.

■ The primary usage code (also referred to as the master usage code). This code is
typically the same code as the flexfield.

■ The name of the combinations database table.

■ The names of the database table columns to be used as flexfield segments.

■ The name of the CCID column.

■ The names of the SIN and DSN columns, if they exist.

Before you begin:

Create the combinations table as described in Section 24.2.1.1, "Creating the
Combinations Table."

To learn how to generate documentation about using the procedures in the following
steps, see Section 24.2.1.6, "What You May Need to Know About the Key Flexfield
Setup API."

To register and define a key flexfield:

Note: Pages whose underlying entity objects contain a foreign key
reference to the combinations table are referred to as code-combination
reference pages, while pages whose underlying entity objects use the
combinations table itself are referred to as code-combination maintenance
pages.

Completing the Producer Tasks for Key Flexfields

24-12 Developer's Guide

1. Run the fnd_flex_kf_setup_apis.create_flexfield(...) procedure to register
the key flexfield and its primary usage.

2. Run the fnd_flex_kf_setup_apis.create_segment_column_usage(...)
procedure for each segment column to register the segment columns.

3. (Optionally) Register the entity details as described in Section 24.2.1.9, "Registering
Entity Details Using the Setup APIs." This step must be completed before you can
generate the flexfield usage's business components.

24.2.1.6 What You May Need to Know About the Key Flexfield Setup API
In the key flexfield development process, you use the FND_FLEX_KF_SETUP_APIS
PL/SQL package to manage flexfield registration data.

You can learn about the FND_FLEX_KF_SETUP_APIS PL/SQL package by running the
following command, which produces package documentation and usage examples to
the <db_name>_<user_name>_FND_FLEX_KF_SETUP_APIS_<date>.plsqldoc file.

sqlplus <fusion_user>/<fusion_pwd>@<fusion_db> \
@/ORACLE/fusionapps/atgpf/applcore/db/sql/flex/fnd_flex_pkg_doc.sql \
FND_FLEX_KF_SETUP_APIS

24.2.1.7 Enabling Multiple Structure, Multiple Structure Instance, and Data Set
Features
To enable the multiple structure, multiple structure instance, or data set features for a
registered key flexfield, you must run the enable_feature(...) procedure from the
FND_FLEX_KF_SETUP_APIS PL/SQL package. To enable the multiple structure feature
or multiple structure instance feature, you provide the SIN column name. To enable
the data set feature, you provide the DSN column name.

To learn how to generate documentation about using the enable_feature(...)
procedure, see Section 24.2.1.6, "What You May Need to Know About the Key Flexfield
Setup API."

24.2.1.8 Reusing Key Flexfield Segments in Another Table
Key flexfield secondary usage enables you to capture the values of a key flexfield's
segments in a product table. You can capture all of the flexfield's segments, or just one.

For information about reusing a key flexfield's segments, see Section 24.6, "Completing
the Development Tasks for Key Flexfields in Secondary Mode."

24.2.1.9 Registering Entity Details Using the Setup APIs
When you build the flexfield business components and create flexfield-specific
application module instances, the flexfield modeler requires the following information
about the flexfield usage:

■ The full class name of the entity object. For the primary usage, this is the entity
object that was defined for the combinations table. For a secondary usage, this is
the entity object that was defined for the secondary table.

■ A prefix from which to derive the names of generated objects.

■ The package in which to place the generated business components. Each usage can
have its own package name.

You register entity details using the create_adfbc_usage(...) procedure from the
FND_FLEX_KF_SETUP_APIS PL/SQL package.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-13

Before you begin:

1. Register the usage as described in Section 24.2.1.5, "Registering and Defining Key
Flexfields Using the Setup APIs."

2. Ensure that the entity object for the usage's table exists.

To learn how to generate documentation about using the create_adfbc_usage(...)
procedure, see Section 24.2.1.6, "What You May Need to Know About the Key Flexfield
Setup API."

To register the entity details using the registration application:

■ Run the fnd_flex_kf_setup_apis.create_adfbc_usage(...) procedure to
register the entity object, package name, and object name prefix for the flexfield
usage.

24.2.2 How to Implement Key Flexfield Segment Labels
A segment label identifies the purpose of a particular segment in a key flexfield.

Usually an application needs some method of identifying a particular segment for
some application purpose such as security or computations. However, because a key
flexfield can be customized so that segments appear in any order with any prompts,
the application needs a mechanism other than the segment name or order to use for
segment identification. Segment labels serve this purpose.

You can think of a segment label as an identification tag for a segment. It identifies a
segment that application implementors and administrators should include when
customizing the key flexfield. By defining segment labels when you define your key
flexfield, you ensure that implementors customize the flexfield to include the segments
that your application needs.

For example, the Oracle General Ledger application needs to be able to identify which
segment in the Accounting flexfield contains the primary balance information and
which segment contains natural account information. Because you can customize the
Accounting flexfield so segments appear in any order with any prompts, Oracle
General Ledger needs a segment label to internally specify the correct segment for
each purpose. When you define your Accounting flexfield, you must specify which
segment labels apply to which segments.

You ensure that the implementor or administrator will define these key segments by
defining two segment labels, GL_BALANCING and GL_ACCOUNT. When
customizing your accounting flexfield, the implementor ties the GL_BALANCING and
GL_ACCOUNT segment labels to particular key segments. As the developer, you need
not know which key segment becomes the natural account or primary balance
segment, because the key flexfield takes care of returning natural account and primary
balance information to your application at runtime.

Oracle General Ledger also uses key flexfields that have segment labels identifying the
cost center segment (FA_COST_CTR), management segment (GL_MANAGEMENT),
and intercompany segment (GL_INTERCOMPANY). Other applications, such as
Human Resources, use segment labels as well. Human Resources uses segment labels
to control who has access to confidential information in its flexfield segments.

When you use segment labels with a key flexfield, you might also need to define value
attributes in which you qualify a value by applying a value attribute to it when the
value set is used with a segment that has a segment label.

Completing the Producer Tasks for Key Flexfields

24-14 Developer's Guide

24.2.2.1 Defining Key Flexfield Segment Labels
You should define and register segment labels if you want to ensure that the
application implementor or administrator customizes your key flexfield to include the
segments that your application needs. For example, Oracle General Ledger defines
account and balancing segment labels in the Accounting flexfield to ensure that
implementors define the account and balancing segments.

When you register a key flexfield, you can define segment labels for it.

Segment labels can be unique, required, or global. You specify a segment label as
unique if you want the implementor to tie it to at most one segment of the flexfield.
You specify a segment label as required if you want the implementor to tie it to at
least one segment. You specify a segment label as global if you want it to apply to all
segments. Any key flexfield segment can have any number of segment labels applied.

Table 24–3 shows the results of setting these flags on a segment label in various
combinations.

For example, in the Oracle General Ledger Accounting flexfield, the Account segment
label is required and unique because Oracle General Ledger requires one and only one
account segment.

You create segment labels using the create_segment_label(...) procedure from the
FND_FLEX_KF_SETUP_APIS PL/SQL package.

Before you begin:

Define the key flexfield as described in Section 24.2.1.5, "Registering and Defining Key
Flexfields Using the Setup APIs."

To learn how to generate documentation about using the create_segment_
label(...)procedure, see Section 24.2.1.6, "What You May Need to Know About the
Key Flexfield Setup API."

To define key flexfield segment labels:

■ Run the fnd_flex_kf_setup_apis.create_segment_label(...) procedure to
register the label and label code for the key flexfield.

Note: For information about retrieving segment label information,
see Section 24.5.2, "How to Access Segment Labels Using the Java
API."

Table 24–3 Segment Label Flag Combinations

Global
Flag

Required
Flag

Unique
Flag Result

N N N 0+ (Zero or more segments)

N N Y 0,1 (Zero or one segment)

N Y N 1+ (One or more segments)

N Y Y 1 (Exactly one segment)

Y - - ALL (All segments; global flag overrides the
other flags.)

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-15

24.2.2.2 Using Value Attributes
When you use segment labels with a key flexfield, you might also need to define value
attributes.

Every value in a value set has accompanying properties that provide supplemental
information about the value, such as a description, an internal code, and start and end
dates. In addition to these standard properties, you can further qualify a value by
applying a value attribute to it when the value set is used with a segment that has a
segment label. There are three types of value attributes:

■ Flexfield value attributes: The FND_VS_VALUES_B table contains 20 available
value attribute columns, called FLEX_VALUE_ATTRIBUTE1 through FLEX_
VALUE_ATTRIBUTE20, which are globally defined across all Oracle Fusion
applications.

■ Custom value attributes: The FND_VS_VALUES_B table also contains 10
additional value attribute columns, called CUSTOM_VALUE_ATTRIBUTE1
through CUSTOM_VALUE_ATTRIBUTE10. Customers cannot modify or reassign
the standard value attribute columns, but they can use these custom columns for
their own implementations of value attributes.

■ SUMMARY_FLAG: This is a predefined system value attribute, for use with the
GL# key flexfield only.

Create value attributes using a procedure from the FND_FLEX_KF_SETUP_APIS PL/SQL
package.

Before you begin:

1. Define the key flexfield as described in Section 24.2.1.5, "Registering and Defining
Key Flexfields Using the Setup APIs."

2. Define the segment label as described in Section 24.2.2.1, "Defining Key Flexfield
Segment Labels."

To define key flexfield segment labels:

■ Run the fnd_flex_kf_setup_apis.create_value_attribute(...) procedure to
register the value attribute and attribute code for the segment label.

24.2.3 How to Implement Cross-Validation Rules and Custom Validation
Use procedures from the FND_FLEX_KF_SETUP_APIS PL/SQL package to prepare the
application database for cross-validation rules and custom validation. When you
register a key flexfield in your application database, you can also enable
cross-validation rules and register a customer custom validation callout procedure for
the flexfield, so new code combinations entered on a code-combination maintenance
page or using dynamic combination insertion can be validated.

At runtime, when a new code combination is entered, the validation APIs are called in
the following order:

1. Cross-validation rules

2. Developer custom validation callout procedure

3. Customer custom validation callout procedure

Completing the Producer Tasks for Key Flexfields

24-16 Developer's Guide

24.2.3.1 Implementing Cross-Validation Rules
To implement a cross-validation rule for a key flexfield, use a procedure from the FND_
FLEX_KF_SETUP_APIS PL/SQL package to enable the flexfield to use cross-validation
rules in your application database. Then, build a user interface that administrators can
use to maintain their own rule definitions.

Before you begin:

Before you can build a user interface for maintaining a key flexfield's cross-validation
rules, you must first have created and configured the business components for the key
flexfield.

For more information, see Section 24.2.4, "How to Create Key Flexfield Business
Components."

To learn how to generate documentation about using the FND_FLEX_KF_SETUP_APIS
PL/SQL package, see Section 24.2.1.6, "What You May Need to Know About the Key
Flexfield Setup API."

To implement cross-validation rules:

1. To enable a key flexfield to use cross-validation rules, set the value of the flexfield's
CVR_ENABLED_FLAG column in the FND_KF_FLEXFIELDS_B table to Y. This
flag is a required VARCHAR2(1).

2. To enable administrators to define cross-validation rules that are appropriate for
their organizations, develop a runtime maintenance utility that they can use to
define and maintain their own rows in a dedicated repository table, FND_KF_
CROSS_VAL_RULES, as shown in Table 24–4.

Note: Setting the value of CVR_ENABLED_FLAG to Y enables
support for any cross-validation rules you define for the flexfield.
Support for cross-validation is somewhat resource-intensive, so assess
each key flexfield to determine if cross-validation is really necessary.

For example, if the creation of new code combinations for a given key
flexfield will be a tightly controlled process that requires
organizational oversight, cross-validation might be redundant.

Table 24–4 FND_KF_CROSS_VAL_RULES Cross-Validation Repository Table

Column Type
Null
Allowed? Description

ENTERPRISE_ID NUMBER(18) No (Primary key) Enterprise
ID.

STRUCTURE_INSTANCE_ID NUMBER(18) No (Primary key) Structure
Instance ID.

RULE_CODE VARCHAR2(30) No (Primary key) Developer
key for this rule.

DESCRIPTION VARCHAR2(240) Yes Rule description.

CONDITION_FILTER XMLTYPE Yes Flexfield filter defining
where the rule should be
applied. A null value
means to apply the rule
globally.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-17

The primary key for this table is the combination of the ENTERPRISE_ID,
STRUCTURE_INSTANCE_ID, and RULE_CODE columns.

The cross-validation rule itself is the combination of a condition filter (when to
apply the rule) and a validation filter (how to validate the code combination) in the
corresponding XMLType columns of the repository table. These filters are
compatible with, and supported by the same infrastructure that supports
code-combination filters, as described in Section 24.7, "Working with
Code-Combination Filters for Key Flexfields."

The value of each of these filters should be a logical combination of boolean
expressions. At runtime, all filters from the repository table that match the
application, key flexfield, and SIN of the newly submitted code combination are
retrieved, converted into SQL fragments, and used to validate the proposed code
combination.

The condition filter establishes the condition that a proposed new code
combination must fulfill to qualify for validation. If it qualifies, the code
combination is evaluated against the validation filter. This is demonstrated by
Example 24–1.

Example 24–1 Applying a Cross-Validation Rule

The condition filter specifies a value range for one segment:

segment1 <= '10'

If the condition is met, the validation filter is applied:

(segment2 = '20') OR (segment2 = '30')

VALIDATION_FILTER XMLTYPE Yes1 Flexfield filter defining the
validation that must be
true.

ERROR_MSG_APPLICATION_
ID

NUMBER(18) Yes Message application.

ERROR_MSG_NAME VARCHAR2(30) Yes Message to display if rule
is violated. If a null value,
displays the default
message.

ENABLED_FLAG VARCHAR2(1) No Valid values are Y (yes)
and N (no).

START_DATE_ACTIVE DATE Yes Standard start date.

END_DATE_ACTIVE DATE Yes Standard end date.

WHO columns2 Varies depending
on the WHO
column

Varies
depending
on the
WHO
column

Standard WHO columns.

1 Although the validation filter column must allow null values in the data model, it is still a required value
that is logically necessary for cross-validation to work.

2 For more information about WHO columns, see Section 9.3, "Using WHO Column Features."

Table 24–4 (Cont.) FND_KF_CROSS_VAL_RULES Cross-Validation Repository Table

Column Type
Null
Allowed? Description

Completing the Producer Tasks for Key Flexfields

24-18 Developer's Guide

If the proposed code combination is three segments with the following values, the
validation will succeed:

segment1 = '8'
segment2 = '30'
segment3 = '70'

If the proposed values are as follows, the condition is not met, and the code
combination will not be subject to the validation filter:

segment1 = '12'
segment2 = '40'
segment3 = '70'

This means that even though this combination would have failed the validation
filter, it is still considered valid because the validation filter was not applied. A
code combination fails cross-validation only if it passes the condition filter, but
fails the validation filter.

Use the code-combination filter infrastructure to create a separate
code-combination maintenance page for each key flexfield that supports
cross-validation rules as described in Section 24.7.5, "How to Add
Code-Combination Filters to Your Application," Section 24.7.9, "How to Remove
Code-Combination Filters from Your Application," and Section 24.7.6, "How to
Employ Code-Combination Filters on an Application Page."

24.2.3.2 Implementing Custom Validation
To implement custom validation, create and register a PL/SQL validation procedure.

To implement custom validation with a custom validation callout procedure:

1. Write a PL/SQL custom validation procedure.

2. Register the procedure as the customer callout along with the key flexfield to
which it will apply.

The PL/SQL validation procedure must have the signature shown in Example 24–2.

Example 24–2 PL/SQL Validation Procedure Signature

type FLEX_VAL_CTX_RECORD is record (
 VALIDATION_DATE DATE);

procedure MY_VALIDATION_CALLOUT (
 NEW_CODE_COMBINATION in my_comb_table%ROWTYPE,
 VALIDATION_CONTEXT in FLEX_VAL_CTX_RECORD);

my_comb_table is the name of the combinations table for this key flexfield. When
passed, every column in the NEW_CODE_COMBINATION record will be populated with the
values of the combination that is about to be inserted. Payload columns (columns that
are not part of the primary key) in the combinations table that are not related to the
flexfield will be passed as null values.

Note: There are no artificial restrictions on what each filter can
contain. If you set the condition filter to a null value, all new code
combinations for the flexfield will qualify to be evaluated with the
validation filter.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-19

VALIDATION_CONTEXT is a record containing any additional usage-specific context that
may be useful. Currently this record contains only a VALIDATION_DATE field. If there is
no validation date, then a null value will be passed for VALIDATION_DATE.

The API is expected to raise an exception (with an error message) if validation fails. If
an exception is raised, then the dynamic insert operation will be aborted, and the
message in the exception displayed to the end user. The log will also record the entire
call stack, including the fact that the exception was raised from a custom validation
callout procedure. If the API returns without exception, it will be considered a success.

After you have written the custom validation callout procedure, you can register it
with the key flexfield. These procedures are registered in the FND_KEY_
FLEXFIELDS_B key flexfield registration table as shown in Table 24–5.

To learn how to generate documentation about using the FND_FLEX_KF_SETUP_APIS
PL/SQL package, see Section 24.2.1.6, "What You May Need to Know About the Key
Flexfield Setup API."

24.2.4 How to Create Key Flexfield Business Components
You must define view objects that are based on each key flexfield combinations table.
A key flexfield's base view object has the code combination ID (CCID) column and the
optional structure instance number (SIN) column as its only attributes. The SIN, if
applicable, is also the discriminator. For information about base view objects, see
Section 24.1.2, "How Key Flexfields Are Modeled in Oracle Application Development
Framework."

Figure 24–2 shows a sample configuration of a product view object that uses key
flexfields.

The base view object is extended to define view object rows of different structure
codes. Each structure code corresponds to a view object definition that includes the
appropriate flexfield columns for that structure, in addition to the inherited CCID and
SIN columns. Although flexfield view objects carry both SINs and structure codes,
only SINs are used to link to the product view object.

Table 24–5 Key Flexfield Custom Validation Callouts

Column Type
Null
Allowed? Description

DEVELOPER_VAL_CALLOUT VARCHAR2(80) Yes PL/SQL validation callout
procedure for development
use.

CUSTOMER_VAL_CALLOUT VARCHAR2(80) Yes PL/SQL validation callout
procedure for customer use.

Completing the Producer Tasks for Key Flexfields

24-20 Developer's Guide

Figure 24–2 Key Flexfields Modeled as ADF Business Components

If the combinations table has other fixed (nonflexfield) columns, then they are not
included in these view objects.

No Java implementation classes are generated for key flexfield view objects. The
product view object may or may not have Java implementation classes.

When you create and configure your key flexfield business components, you can
decide whether to support maintenance mode (for administrators) or dynamic
combination insertion (for end users). For most implementations of a key flexfield,
there are two major tasks that you will typically need to complete:

1. Build a writable maintenance model.

This model supports building a maintenance mode application, and it supports
dynamic combination insertion. It is always required unless you want all end user
access to code combinations to be strictly read-only.

2. Build a read-only reference model.

This is needed so that you or a consumer of your key flexfield can build a page
with a foreign key reference to the combinations table, which is the most likely
way that end users will access the key flexfield. This type of page is referred to as a
code-combination reference page.

You can build this model in one of the following ways:

■ Without dynamic combination insertion support.

To accomplish this, build your read-only reference model.

■ With dynamic combination insertion support.

To accomplish this, you must enable dynamic combination insertion in the
maintenance model, and then build the read-only reference model.

Before you begin:
One or more required libraries might have not been automatically included in your
project. You must ensure that all required libraries, notably the BC4J Service Runtime,
Java EE 1.5 and Java EE 1.5 API libraries, are included.

Using the Create Entity Objects wizard, create application entity objects based on the
combinations tables you have defined. Confirm the following:

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-21

■ At least one customization class is included in the adf-config.xml file. This
inclusion serves to ensure correct application behavior. It does not matter which
customization class you include.

For information about customization layers, see the "Understanding
Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.

■ These entity objects are directly modeled on the combinations tables; hence they
contain the fixed (nonflexfield) columns, if any, along with all of the flexfield
columns. In general, all columns should be included.

■ The entity objects have primary keys defined.

■ The Persistent property of every flexfield-related attribute is set to true.

■ The CCID column is of data type java.lang.Long.

■ The SIN column, if it exists, is of data type java.lang.Long.

■ The DSN column, if it exists, is of data type java.lang.Long.

■ NUMBER type segment columns are of data type java.math.BigDecimal.

■ VARCHAR2 type segment columns are of data type java.lang.String.

■ The package name and the object name prefix for each entity object are registered
with the ADF Business Components usage to which it will provide data, as
described in Section 24.2.1.9, "Registering Entity Details Using the Setup APIs."

24.2.4.1 Building a Writable Maintenance Model
A writable maintenance model is the first element required to support a
code-combination maintenance page and dynamic combination insertion in your
application.

To build a writable maintenance model:

1. Create the maintenance model key flexfield business components.

2. Link the business components to the master view object.

3. Create the maintenance application module.

4. Optionally, implement a method to override the automatic locking of code
combinations that are to be inserted or updated, which occurs by default.

24.2.4.1.1 How to Create Key Flexfield Business Components for a Maintenance Model The
first element in a writable maintenance model is a set of business components.

To implement this model, you must select the Maintenance Mode checkbox when you
encounter it on the Usage Settings page, as described in the following procedure.

Before you begin:
1. Create an updatable entity object for the combinations table and add it as an ADF

Business Components usage for your key flexfield, as described in Section 24.2.1.9,
"Registering Entity Details Using the Setup APIs."

The entity object that you select must allow maintenance operations such as
Update or Insert. The entity object class must extend the
oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl class, and the entity
definition class must extend the
oracle.apps.fnd.applcore.oaext.model.KFFMEntityDefImpl class.

Completing the Producer Tasks for Key Flexfields

24-22 Developer's Guide

2. Create a master view object for the combinations table based on the same
updatable entity object.

This view object typically contains your payload attributes, and should not
include flexfield attributes.

In the master view object, ensure that the CCID attribute's Display control hint is
set to Hide.

3. Build the project to ensure that the entity objects are available in the project's
classes. The Create Flexfield Business Components wizard relies on what is in the
project's classes.

To create key flexfield business components:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield Business Components, and click OK.

3. In the Create Flexfield Business Components wizard, on the Role page, select the
role that you are taking as you create the flexfield business components:

■ Developer: Select this role if you are incorporating the flexfield into an
application. The business components must be stored in one of your projects.
Select the desired project location from the Project Source Path dropdown list.

■ Tester: Select this role if you are planning to test or share your flexfield. In the
Output Directory field, specify the path of your desired location for the
generated business components.

For more information about testing flexfields, see Chapter 25, "Testing and
Deploying Flexfields." For more information about sharing and importing
shared flexfields, see Section 24.2.5, "How to Share Key Flexfield Business
Components."

4. Click Next. The Flexfield page appears, as shown in Figure 24–3.

Caution: Disable the delete capability for the combinations table,
because the deletion of previously created combinations might
invalidate foreign key references. If you want to disallow the use of a
combination, then disable the combination instead of deleting it.

Note: This is not a role in the security sense. It exists only during this
procedure, for the purpose of specifying where your generated
flexfield business components should be stored.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-23

Figure 24–3 Create Flexfield Business Components Wizard — Flexfield Page

5. From the Type dropdown list, select Key.

6. In the Application field, specify the full name of the application to which your key
flexfield belongs.

You can browse for the name, and filter by ID, Short Name, or Name.

7. In the Code field, specify the code of the key flexfield you want to use.

You can browse for and filter by Code.

8. In the Usage section, select the table row that contains the primary usage of the
key flexfield as it is defined on its combinations table. Every key flexfield has
exactly one primary usage.

To identify the primary usage, the Usage Code field for this type is typically the
same as the flexfield code. The Table Name field displays the name of the
combinations table, and the text in the Description field does not contain the
prefix (Partial) or (Partial Single) in parentheses.

You must select the primary usage in this procedure because you are generating
key flexfield business components for the combinations table for your
maintenance model.

9. Click Next. The Entity Object page appears, as shown in Figure 24–4.

Completing the Producer Tasks for Key Flexfields

24-24 Developer's Guide

Figure 24–4 Create Flexfield Business Components Wizard — Entity Object Page

10. Expand the tree of available models and select an entity object to use as the data
source for the key flexfield.

Select the entity object for the combinations table. It must allow maintenance
operations such as update or insert, and include all of the attributes that will be
referenced by the flexfield. For the key flexfield primary usage, this includes
attributes that represent the CCID, SIN, and segment columns, and the DSN
column if it exists in the combinations table.

11. You might wish to select an entity object for which the key flexfield attributes are
defined as transient (not based on database table columns). If you need to do this,
then select the checkbox labeled Use the entity attributes named after their
corresponding flexfield database columns. This checkbox is unselected by
default.

When a key flexfield entity object attribute is transient, there is no matching
underlying column name. When you select this checkbox, the system will match
the entity object attribute names to the key flexfield column names, and use the
matching attributes to access the flexfield data. Ensure that the entity object has a
full set of attributes with matching names before you select this option.

This entity object must be registered under the primary usage. There is no need to
register another table for this purpose, even if the entity object is based on some
other table. See Section 24.2.1.9, "Registering Entity Details Using the Setup APIs,"
for more information about registering ADF Business Components usage.

Note: If you select a polymorphic entity object, ensure that the
InheritPersonalization property for every subtype entity is set to
true.

Caution: The Create Flexfield Business Components wizard is
case-sensitive. All column names — and the names of the flexfield
entity object attributes associated with them — must be uppercase.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-25

12. Click Next. The Usage Settings page appears.

Because you specified the primary usage of the key flexfield on the Flexfield page
of this wizard, this page contains a Maintenance Mode checkbox.

Select Maintenance Mode to build your maintenance model.

13. Click Next. The Naming page appears.

To create business components, the package name and the object name prefix for
the selected entity object must first be registered with the key flexfield primary
usage. Text on the Naming page indicates whether this is the case:

■ If the selected entity object is registered with the flexfield usage, the Naming
page displays the package name and the object name prefix for the entity
object. Click Next and continue to Step 14.

■ If the selected entity object is not registered as an ADF Business Components
usage, the Naming page displays a message to that effect. Take one of the
following actions:

– Click Back to return to the Entity Object page and select an entity object
that has been properly registered.

– Click Cancel to exit this wizard and register the entity object that you
want to use as described in Section 24.2.1.9, "Registering Entity Details
Using the Setup APIs."

14. On the Summary page, review your choices and click Finish.

The business components generated will replace any existing ones that are based
on the same flexfield.

15. Refresh the project to see the newly created flexfield business components in the
Application Navigator.

24.2.4.1.2 How to Link the Master View Object to the Maintenance Model Key Flexfield Business
Components You must create a flexfield view link from the master view object for the
combinations table to the maintenance key flexfield business components. This enables
your maintenance user interface to access all of the combinations table columns using
the linked view objects for the combinations table entity object.

The master view object and the key flexfield's base view object are linked through the
combination of a CCID, and SIN, and if present, a DSN.

To create a view link for the key flexfield maintenance model:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield View Link, and click OK.

3. In the Create Flexfield View Link wizard, on the Name page, provide a package
name and a view link name, and click Next.

Note: This wizard might fail with a "ClassNotFound" exception
message. This indicates that one or more required libraries have not
been automatically included in your project, notably the BC4J
Service Runtime, Java EE 1.5 and Java EE 1.5 API libraries. You
can resolve this issue by manually adding any missing libraries; then
you can complete this procedure successfully.

Completing the Producer Tasks for Key Flexfields

24-26 Developer's Guide

4. In the Select Source View Object tree, expand the available objects from the
current project and select the master view object for the combinations table, as
shown in Figure 24–5.

Figure 24–5 Create Flexfield View Link Wizard — View Objects Page

5. In the Select Destination Flexfield tree, expand the available flexfield view objects
from your project and select your maintenance key flexfield view object as the
destination.

6. In the View Link Accessor Name field, enter an appropriate name for the view
link accessor.

7. Click Next to access the Source Attributes page.

8. Click Finish to go to the Summary page.

9. On the Summary page, review the summary, then click Finish.

24.2.4.1.3 How to Create the Maintenance Application Module You must create the
maintenance application module for the key flexfield. The application module contains
the combination view object, the maintenance model view link, and the key flexfield's
application module that was created when you created the business components in

Note: For key flexfields in maintenance mode, the Source Attributes
page is informational only. The primary key attributes of the source
view object will be used to define the view link.

If you see any controls on this page for selecting source attributes, you
are not using maintenance mode business components. Return to
Section 24.2.4.1, "Building a Writable Maintenance Model" and
re-create your maintenance mode business components according to
the instructions.

Note: You can skip the Properties page because view link-specific
properties are not supported.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-27

Section 24.2.4.1.1, "How to Create Key Flexfield Business Components for a
Maintenance Model."

For more information about creating application modules and nesting application
model instances, see the "Implementing Business Services with Application Modules"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

Before you begin:
1. Create the business components as described in Section 24.2.4.1.1, "How to Create

Key Flexfield Business Components for a Maintenance Model."

2. Create the view link as described in Section 24.2.4.1.2, "How to Link the Master
View Object to the Maintenance Model Key Flexfield Business Components."

To create the maintenance application module:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Application Module, and click OK.

3. In the Create Application Module wizard, on the Name page, provide a package
name and an application module name, and click Next.

4. In the Data Model page, move the master view object for the combinations table
and the maintenance model view link to the Data Model list, as shown in
Figure 24–6.

Figure 24–6 Create Application Module Wizard — Data Model Page

5. Click Next. The Application Modules page appears.

Tip: The object name prefix and package name are used to name the
flexfield business components, and are defined in the database along
with the key flexfield.

Completing the Producer Tasks for Key Flexfields

24-28 Developer's Guide

6. On the Application Modules page, in the Available tree, move the appropriate key
flexfield application modules to the Selected list, as shown in Figure 24–7. Include
the key flexfield application module that was created when you created the
business components in Section 24.2.4.1.1, "How to Create Key Flexfield Business
Components for a Maintenance Model."

Figure 24–7 Create Application Module Wizard — Application Modules Page

7. When you complete the Create Application Module wizard, right-click the new
application module instance and choose Run to test it.

24.2.4.1.4 How to Manage Code Combination Locking The
oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl class, which is extended
by your code combination entity object class, enables automatic code combination
locking by default. The method doDML(int, TransactionEvent) is overridden to lock

Note: For each key flexfield, only one instance of the application
module is needed. For example, even though two view links may
have been created to access the same flexfield, only one instance of the
flexfield application module is needed in the product application
module.

Note: The maintenance application module must have a
configuration named appmodule_nameLocal. By default, this is created
for you. For example, if the application module is called
MyKffMaintAM, then a configuration named MyKffMaintAMLocal must
exist.

Tip: You can publish a key flexfield application module instance as a
web service. For more information about creating and testing a key
flexfield service interface, see Section 24.5.4, "How to Publish Key
Flexfield Application Modules as Web Services."

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-29

the code combination to be inserted or updated. The lock is removed when the
transaction is committed or rolled back.

If you wish to completely overwrite doDML with your own implementation, you can
turn the automatic locking off by calling setAutoCombinationLockEnabled(false),
then calling lockCombination(DBTransaction) on your own. For more information,
see the Java documentation for
oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl.

24.2.4.2 Enabling Dynamic Combination Insertion
This task is necessary only if you want to permit end users to create new code
combinations spontaneously on an application page. You must have already built a
writable key flexfield maintenance model. For more information, see Section 24.2.4,
"How to Create Key Flexfield Business Components."

To enable this feature, you define an application module that you configure for
dynamic combination insertion, then implement the appropriate Java class in the user
interface. You can create a basic implementation of dynamic combination insertion
under the simplest conditions, create a more sophisticated version that includes added
combination attributes, or, if custom validation procedures or cross-validation rules
are registered with the flexfield, create a version that makes information available to
the custom validation procedures.

24.2.4.2.1 Enabling Dynamic Combination Insertion To enable dynamic combination
insertion, the key flexfield must be set to allow dynamic combination insertion, and
the full name of the maintenance application module that will implement
KFFCombinationCreator must be registered with the key flexfield.

To enable dynamic combination insertion:
1. Issue the following SQL update statement to enable dynamic combination

insertion:

update fnd_kf_flexfields_b
set dynamic_combo_creation_flag = 'Y'
where application_id = :app_id
and key_flexfield_code = :kff_code

Set the :app_id to the application_id that was specified when the flexfield was
created, and set :kff_code to the flexfield's key_flexfield_code. For more
information, see Section 24.2.1.6, "What You May Need to Know About the Key
Flexfield Setup API."

2. Issue the following SQL statement to set the name of the application module to be
used for dynamic combination insertion:

update fnd_kf_flexfields_b
set application_module_name = 'fully qualified name of application module'
where application_id = :app_id
and key_flexfield_code = :kff_code

The name of the application module must be fully qualified; for example,
mycompany.myproduct.flex.kff1.applicationModule.Kff1AM.

Set the :app_id to the application_id that was specified when the flexfield was
created, and set :kff_code to the flexfield's key_flexfield_code. For more
information, see Section 24.2.1.6, "What You May Need to Know About the Key
Flexfield Setup API."

Completing the Producer Tasks for Key Flexfields

24-30 Developer's Guide

24.2.4.2.2 Inserting a Code Combination — the Simplest Case In the simplest case, you need
only replace the existing base object class,
oracle.apps.fnd.applcore.oaext.model.OAApplicationModuleImpl, with
oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreatorImpl.
KFFCombinationCreatorImpl extends OAApplicationModuleImpl.

This implementation is possible only under the following conditions:

■ You have no custom Java application module class for this application module.

■ Only one key flexfield application module instance is nested in this application
module, and that nested instance is the one that represents the key flexfield of
interest.

■ You do not need to update any columns of the combinations table, including the
value attribute columns.

24.2.4.2.3 Inserting a Code Combination with Added Combination Attributes To insert a code
combination with added combination attributes, you implement the
KFFCombinationCreator Java class in the maintenance application module, and you
create a Java implementation of the maintenance application module. You can
optionally initialize the columns.

1. In the maintenance application module, implement the Java class
oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreator from the
oracle.apps.fnd.applcore.oaext.model package.

The class has only one method defined:

public void createKeyFlexfieldCombination(Long sin, Long dsn, List<Object>
segValues);

This method has the following parameters:

■ sin: The structure instance number. This should be null if this key flexfield
does not allow multiple structures.

■ dsn: The data set number. This should be null if this key flexfield does not use
data set numbers.

■ segValues: A read-only list of segment values.

If an error occurs during creation, throw the exception FlexfieldJboException.

2. Generate a Java application module class to extend your existing base object class.
By default, the base class is OAApplicationModuleImpl from the
oracle.apps.fnd.applcore.oaext.model package. An example of an application
module class is shown in Example 24–3.

Example 24–3 Implementing KFFCombinationCreator

public class MyKffMaintenanceAM
 extends OAApplicationModuleImpl
 implements KFFCombinationCreator
{
 /**
 * Container's getter for MyKffAM1.
 *
 * @return MyKffAM1
 */
 public ApplicationModuleImpl getMyKffAM1()
 {
 return (ApplicationModuleImpl) findApplicationModule("MyKffAM1");

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-31

 }

 public void createKeyFlexfieldCombination(
 Long sin, Long dsn, List<Object> segValues)
 {
 KFFCombinationAttributes combAttrs =
 ((KFFMApplicationModuleImpl)
 getMyKffAM1()).insertCombination(sin, dsn, segValues);
 }
}

By default, JDeveloper creates accessor methods (such as getMyKffAM1()) to all of
your nested application modules. You can use these accessor methods to access the
key flexfield application module, as shown in bold in Example 24–3.

If you do not need to update any combination attributes, then the implementation
in the example is sufficient; otherwise, you can use the
KFFCombinationAttributes object to update the value attribute columns, or use
the master view object to update any other columns of the combinations table, as
described in the next steps.

3. Optionally, initialize value attribute columns using KFFCombinationAttributes.

The KFFCombinationAttributes object enables you to:

■ Get the segment values and their value-attribute values.

■ Get the default values of the value attributes used.

■ Get the list of value attribute codes for a label used in this flexfield.

■ Get the current value of a value attribute column of the combinations table.

■ Update a value attribute column of the combinations table.

By default, the standard value attribute columns such as START_DATE_ACTIVE, END_
DATE_ACTIVE, and ENABLED_FLAG are initialized in the insertCombination call. The
ENABLED_FLAG is initialized to Y. The START_DATE_ACTIVE value is set to the
maximum of the START_DATE_ACTIVE values for the segments, or NULL if all values
are null. The END_DATE_ACTIVE value is set to the minimum of the END_DATE_
ACTIVE values for the segments, or NULL if all values are null. You have full access
to these value-attribute values and can update these columns of the combinations
table if you wish.

Example 24–4 demonstrates how to use the KFFCombinationAttributes object to
access these values and update the value attribute columns of the combinations
table.

Example 24–4 Using the KFFCombinationAttributes Object

public void createKeyFlexfieldCombination(
 Long sin, Long dsn, List<Object> segValues)
{
 KFFCombinationAttributes combAttrs =
 ((KFFMApplicationModuleImpl)
 getMyKffAM1()).insertCombination(sin, dsn, segValues);

 final String myLabel = "MY_LABEL";
 // Get the segment values and their value-attribute values for the label.
 List<FlexfieldSegmentValue> segValueList =
combAttrs.getSegmentValues(myLabel);
 // Loop through each segment value.
 for (FlexfieldSegmentValue segValue: segValueList)

Completing the Producer Tasks for Key Flexfields

24-32 Developer's Guide

 {
 // Get the segment code if needed.
 System.out.println("SegmentCode = " + segValue.getSegmentCode());
 // Get the segment value if needed.
 System.out.println("SegmentValue = " + segValue.getValue());
 // Iterate through each value attribute code for the label if needed.
 Iterator<String> it = combAttrs.getValueAttrCodeIterator(myLabel);
 while (it.hasNext())
 {
 String valAttrCode = it.next();
 FlexfieldSegmentValue.ValueAttributeValue valAttrValue =
 segValue.getValueAttributeValue(valAttrCode);
 // Value attribute code is also available in the value object.
 System.out.println(" ValueAttrCode = "
 + valAttrValue.getValueAttributeCode());
 // Get the default value of the value attribute.
 System.out.println(" ValueAttrDefaultValue = "
 + valAttrValue.getDefaultValue());
 // Get the value of the value attribute.
 System.out.println(" ValueAttrValue = "
 + valAttrValue.getValue());
 }
 }

 System.out.println();

 final String myValueAttrCode = "MY_VALUE_ATTRIBUTE1";

 // Get the current combination value attribute.
 System.out.println(myLabel + ":" + myValueAttrCode + " = "
 + combAttrs.getValueAttribute(myLabel, myValueAttrCode));

 // Update the combination value attribute.
 Map<String, Object> valueMap = new HashMap<String, Object>(1);
 valueMap.put(myValueAttrCode, "N");
 combAttrs.setValueAttributes(myLabel, valueMap);

 System.out.println();

 /*** Dealing with standard value attributes. ***/

 // Get the segment values with the standard value attributes.
 List<FlexfieldSegmentValue> segValueListStd = combAttrs.getSegmentValues();
 // Loop through each segment value.
 for (FlexfieldSegmentValue segValue: segValueListStd)
 {
 System.out.println("SegmentCode = " + segValue.getSegmentCode());

 // Get the START_DATE_ACTIVE attribute.
 FlexfieldSegmentValue.ValueAttributeValue startDateActive =
 segValue.getValueAttributeValue(
 FlexfieldSegmentValue.VALUE_ATTR_START_DATE_ACTIVE);
 // Get the END_DATE_ACTIVE attribute.
 FlexfieldSegmentValue.ValueAttributeValue endDateActive =
 segValue.getValueAttributeValue(
 FlexfieldSegmentValue.VALUE_ATTR_END_DATE_ACTIVE);
 // Get the ENABLED_FLAG attribute.
 FlexfieldSegmentValue.ValueAttributeValue enabledFlag =
 segValue.getValueAttributeValue(
 FlexfieldSegmentValue.VALUE_ATTR_ENABLED_FLAG);

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-33

 System.out.println(" StartDateActive = " + startDateActive.getValue());
 System.out.println(" EndDateActive = " + endDateActive.getValue());
 System.out.println(" EnabledFlag = " + enabledFlag.getValue());
 }

 System.out.println();

 // Get the current combination start date.
 System.out.println("StartDateActive = "
 + combAttrs.getValueAttribute(null,
 FlexfieldSegmentValue.VALUE_ATTR_START_DATE_ACTIVE));
 // Get the current combination end date.
 System.out.println("EndDateActive = "
 + combAttrs.getValueAttribute(null,
 FlexfieldSegmentValue.VALUE_ATTR_END_DATE_ACTIVE));
 // Get the current combination enabled flag.
 System.out.println("EnabledFlag = "
 + combAttrs.getValueAttribute(null,
 FlexfieldSegmentValue.VALUE_ATTR_ENABLED_FLAG));

 // You can update the standard value attributes by calling
 // combAttrs.setValueAttributes(Map).
}

4. If you want to initialize other columns of the combinations table, first include
them in the master view object. After insertCombination is called, the new entity
will be available to the master view object as well, as shown in Example 24–5,
which shows an alternative version of MyKffMaintenanceAM.java.

Example 24–5 Calling insertCombination to Make the New Entity Available to the Master
View Object

public void createKeyFlexfieldCombination(
 Long sin, Long dsn, List<Object> segValues)
{
 KFFCombinationAttributes combAttrs =
 ((KFFMApplicationModuleImpl)
 getMyKffAM1()).insertCombination(sin, dsn, segValues);

 // In this example, the key flexfield allows multiple structures.
 // The order of the key values must match the order of the keys;
 // see ADF Business Components Java documentation for more details.
 Key keyValues = new Key(new Object[] {combAttrs.getCodeCombinationID(),
 sin});

 // getMyKffComboAttrVO() is generated when a view object instance named
 // "MyKffComboAttrVO" is present. You can always call
 // findViewObject to find the
 // view object if no accessor method is available.
 OAViewObjectImpl vo = getMyKffComboAttrVO();

 Row[] rows = vo.findByKey(keyValues, 1);
 if (rows != null && rows.length == 1)
 {
 rows[0].setAttribute("MyCombinationAttr1", "Y");
 }
 else
 {
 throw new FlexfieldJboException(

Completing the Producer Tasks for Key Flexfields

24-34 Developer's Guide

 "Unable to find the newly created combination: CCID = "
 + combAttrs.getCodeCombinationID()
 + ", SIN = "
 + sin);
 }
}

24.2.4.2.4 Inserting a Code Combination that Uses Custom Validation Procedures or
Cross-Validation Rules If custom validation procedures or cross-validation rules are
registered with the flexfield, you must create a Java class for the maintenance
application module that implements the KFFCombinationCreatorProxy class. This
makes the information in the KFFCombinationCreatorProxy.Context object, such as
the validation date, available to the custom validation procedures.

1. In the maintenance application module, generate a Java class that implements
KFFCombinationCreatorProxy from the oracle.apps.fnd.applcore.oaext.model
package and extends your existing base object class. By default, the base class is
OAApplicationModuleImpl from the same package. An example of an application
module class is shown in Example 24–3.

Example 24–6 Implementing KFFCombinationCreatorProxy

public class MyKffMaintenanceAM extends OAApplicationModuleImpl implements
KFFCombinationCreatorProxy
{
 /**
 * Container's getter for MyKffAM1.
 *
 * @return MyKffAM1
 */
 public ApplicationModuleImpl getMyKffAM1()
 {
 return (ApplicationModuleImpl) findApplicationModule("MyKffAM1");
 }

 @Override
 public void createKeyFlexfieldCombination(
 Long sin, Long dsn, List<Object> segValues)
 {
 // Delegated to the method that takes "context".
 this.createKeyFlexfieldCombination(sin, dsn, segValues, null);
 }

 @Override
 public void createKeyFlexfieldCombination(final Long sin, final Long dsn,
 final List<Object> segValues,
 final Context context)
 {
 KFFCombinationAttributes combAttrs =
 ((KFFMApplicationModuleImpl) getMyKffAM1()).insertCombination(
 sin, dsn, segValues, context);
 }
}

Note: KFFCombinationCreatorProxy is a sub-interface of
KFFCombinationCreator.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-35

2. Optionally, initialize value attributes, as described in Step 3 of Section 24.2.4.2.3,
"Inserting a Code Combination with Added Combination Attributes."

3. Optionally, initialize other columns of the combinations table, as described in Step
4 of Section 24.2.4.2.3, "Inserting a Code Combination with Added Combination
Attributes."

24.2.4.3 Building a Read-Only Reference Model
A set of business components that constitute a read-only reference model is needed so
that you or a consumer developer can build a code-combination reference page, which
is typically a transaction page for a product table that has a foreign key reference to the
combinations table.

Before you begin:

Create a read-only entity object for your combinations table and add it as an ADF
Business Components usage for your key flexfield, as described in Section 24.2.1.9,
"Registering Entity Details Using the Setup APIs."

To create key flexfield business components for a read-only reference model:

1. Complete Step 1 through Step 9 in Section 24.2.4.1.1, "How to Create Key Flexfield
Business Components for a Maintenance Model."

2. On the Entity Object page, expand the tree of available models and select the
read-only entity object that you created for the combinations table.

The entity object you select must include all of the attributes that will be
referenced by the flexfield. For the key flexfield primary usage, this includes
attributes that represent the CCID, SIN, and segment columns, and the DSN
column if it exists in the combinations table.

3. Complete Step 11 through Step 15 in Section 24.2.4.1.1, "How to Create Key
Flexfield Business Components for a Maintenance Model."

24.2.5 How to Share Key Flexfield Business Components
Sharing flexfield business components is just like sharing any other ADF Business
Components objects. You can share the objects through an ADF Library JAR file. The
developers then can import the business components that are contained in the JAR file.

For more information, see the "Packaging a Reusable ADF Component into an ADF
Library" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

24.2.5.1 Creating an ADF Library JAR File
If you are the owner of the flexfield business components that you want to share, then
you can create a JAR file containing those business components. Generally, an entire
JDeveloper project is deployed as an ADF Library JAR file.

Note: If you want to permit end users to create new code
combinations spontaneously on an application page, you must have
already built a writable key flexfield maintenance model and have
enabled dynamic combination insertion.

For more information, see Section 24.2.4, "How to Create Key Flexfield
Business Components."

Completing the Producer Tasks for Key Flexfields

24-36 Developer's Guide

Create your shared ADF library containing the business components from the
read-only reference model you just built, then add the business components from the
writable maintenance model as well.

To create an ADF Library JAR file:

1. Right-click the project you wish to share and select Project Properties from the
menu.

2. Select Deployment.

3. If a deployment profile is already listed, you can verify that it is for an ADF
Library JAR file. Open the profile for editing and observe the window title to
confirm that it says "Edit JAR Deployment Profile Properties."

If you do not already have an appropriate deployment profile, you can create one:

a. In the Application Navigator, right-click the project and choose New.

b. In the New Gallery, expand General, select Deployment Profiles and then
ADF Library JAR File, and click OK.

c. In the Create Deployment Profile — ADF Library JAR File dialog, enter a
name for the profile and click OK.

4. Right-click the project you wish to share and select Deploy > deployment_profile_
name > To JAR File.

The JAR file is created in your project's deploy directory as deployment_profile_
name.jar. You can send it to other developers for use in their projects.

24.2.5.2 Importing Business Components from an ADF Library
After an ADF Library JAR file has been created by one developer, another developer
can import the business components that are contained in the file.

For more information, see the "Adding ADF Library Components into Projects" section
in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

To Import business components from an ADF library:

1. Obtain an ADF Library JAR file from another developer and save it to an
accessible directory for importing.

2. Right-click the project where you want to import the components and select
Project Properties.

3. Select Business Components > Imports.

4. Click Import, then go to the location of the ADF Library JAR file.

5. Select the ADF Library JAR file and click Open.

The business components in the JAR file are imported into your project.

24.2.6 How to Build a Key Flexfield Maintenance User Interface
Use the business components from a writable maintenance model to build a key
flexfield code-combination maintenance page. Building a maintenance page is fairly
straightforward. If you have already inserted a key flexfield component into a page in
either form or table layout, building a maintenance page follows a similar pattern.

Completing the Producer Tasks for Key Flexfields

Using Key Flexfields 24-37

To enable end users to select key combinations for new rows, ensure that you provide
a default value for every Structure Instance Number attribute.

24.2.6.1 Building a Key Flexfield Code-Combination Maintenance Page
Build a key flexfield code-combination maintenance page using objects from the
maintenance application module that you created over the combinations table.

Before you begin:
Create a maintenance application module for the combinations table and a writable
maintenance model for the flexfield usage as described in Section 24.2.4.1, "Building a
Writable Maintenance Model."

To build a code-combination maintenance page:
1. From the Data Controls panel, expand the maintenance application module that

you created for the combinations table.

2. Drag the master view object from the application module onto the page, and add it
as either a form or a table.

3. Select the key flexfield view object and drag it onto the page. Drop the flexfield
view object onto the form or table that you just created.

For more information, see Section 24.4, "Employing Key Flexfield UI Components on a
Page."

24.2.6.2 Ensuring Proper Handling of New Rows
When a new row that contains key flexfield columns is added on the
code-combination maintenance page, every Structure Instance Number attribute must
contain a valid value, so that the key flexfield user interface can be rendered with
appropriate structures. Without default structures, end users will not be able to select
segment values for the new row.

You can prevent application errors by defining a default value for each Structure
Instance Number. Edit the Structure Instance Number attribute in either the entity
object or the view object for the reference table, and do one of the following:

■ If the Structure Instance Number is static, set the Value Type to Literal, and
specify the static value as the default.

■ If the Structure Instance Number is dynamic, set the Value Type to Expression,
and enter a Groovy expression to retrieve the appropriate Structure Instance
Number value and set it as the default.

Note: Use the defaultSIN attribute in the JSPX file to define the
default Structure Instance Number value for situations where no rows
exist.

Completing the Consumer Tasks for Key Flexfields in Reference Mode

24-38 Developer's Guide

For more information about setting attribute defaults, see the discussion about
defining default values in the "Setting Attribute Properties" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

24.2.7 What Happens at Runtime: Creating New Combinations
At runtime, an instance of the registered application module is created. Whenever a
new combination needs to be created, the following happens:

1. The createKeyFlexfieldCombination method is invoked. When
KFFApplicationModuleImpl.insertCombination is called in the implementation, a
lock is created to ensure that no one else can insert the same combination.

2. The transaction of the registered application module is committed or rolled back.
The lock is always removed.

3. One of the following occurs:

■ If no exception is thrown, the transaction is committed.

■ If any exception occurs, the transaction is rolled back.

24.3 Completing the Consumer Tasks for Key Flexfields in Reference
Mode

You can reference flexfields from another (producer) application into your (consumer)
application. The consumer tasks for a key flexfield primary usage (also referred to as
reference mode) are:

1. Create a view link from your (consumer) product view object to the producer's key
flexfield view object.

2. Nest the producer's key flexfield application module instance in the (consumer)
application module for the application.

3. Add a key flexfield view object instance to the (consumer) application module for
your application.

Caution: The Structure Instance Number value of the first row of a
user interface table determines the column structure to be used for the
table. For any additional row that contains a different Structure
Instance Number, the columns that are not also part of the first row's
structure will not render in the table. If there are no rows, the value of
the defaultSIN tag attribute from the JSPX file, if set, determines the
column structure.

For an Applications Table component, if the end user deletes all rows
from the table, your application can again set a new default Structure
Instance Number value for the first new row, and the column
structure corresponding to that Structure Instance Number will be the
valid structure for the table.

For an ADF Table, the column structure (determined by the initial
Structure Instance Number value) cannot be changed after the table
has been created, even if all rows are deleted.

Completing the Consumer Tasks for Key Flexfields in Reference Mode

Using Key Flexfields 24-39

After you complete the consumer tasks, you can incorporate the key flexfield UI
components into your application as described in Section 24.4, "Employing Key
Flexfield UI Components on a Page."

24.3.1 How to Create Key Flexfield View Links
If a product view object references a producer's key flexfield, you must link the
product view object to the key flexfield's base view object to create a master-detail
hierarchy. You use the Create Flexfield View Link wizard two link the two view
objects. The product view object and the key flexfield's base view object are linked
through the combination of a CCID, a SIN, and if present, a DSN. The key flexfield
view object can have many incoming view links from various product view objects,
because a key flexfield is usually referenced by many product tables. For example, an
ExpenseLines view object might have a foreign key reference to the GLKff view object.
For more information about view links and master-detail hierarchies, see the "Defining
SQL Queries Using View Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

By default, when a value set is security-enabled, any key flexfield code combination
segment that uses that value set will automatically be secured. Security rules defined
on the value set are propagated automatically to the combinations table, and also to
any product table that references the combinations table. This means that when an end
user does a search on the product table, the results shown are limited to the data
referencing the code combination entries to which the user has access. You can add a
custom property to the view link to disable the propagation of the security rules to the
product table.

Before you begin:
■ Ensure that the flexfield library JAR files that were created by the producer team

have been added to your project. For more information about library JAR files, see
Section 24.2.5.1, "Creating an ADF Library JAR File" and Section 24.2.5.2,
"Importing Business Components from an ADF Library."

■ You should have already created an entity object and a view object for the
reference table (the product table with a foreign key reference to the combinations
table). You use the reference table's view object for the source of the view link.

Ensure that the view object does not include flexfield attributes such as
SEGMENT1_VARCHAR2, SEGMENT2_NUMBER, and so on. Ensure that you
include the attributes that are needed for the foreign key reference, such as CCID,
SIN, and, if present, DSN. Ensure that the CCID attribute's Display control hint is
set to Hide.

To create a key flexfield view link:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield View Link, and click OK.

3. In the Create Flexfield View Link wizard, on the Name page, provide a package
name and a view link name, and click Next.

4. In the View Objects page, in the Select Source View Object tree, expand the
available objects from your current project and select a source view object.

Completing the Consumer Tasks for Key Flexfields in Reference Mode

24-40 Developer's Guide

5. In the Select Destination Flexfield tree, expand the available flexfield view objects
from your project and select the key flexfield's base view object with which you
want to associate the source view object.

6. In the View Link Accessor Name field, enter an appropriate name for the view
link accessor.

7. Click Next. The Source Attributes page appears, as shown in Figure 24–8.

Figure 24–8 Create Flexfield View Link Wizard — Source Attributes Page for Key
Flexfields

8. From the Code-Combination ID dropdown list, select the source attribute that
corresponds to the CCID of the destination key flexfield.

The CCID must be mapped to type java.lang.Long.

9. If your destination key flexfield supports multiple structure instances, the
Structure Instance Number dropdown list appears on the Source Attributes page.
You must specify a structure instance as an additional source attribute. From the
dropdown list, select the source attribute that corresponds to the SIN of the
destination key flexfield.

The SIN must be mapped to type java.lang.Long.

10. If your destination key flexfield supports multiple structure instances and is data
set-enabled, the Data Set Number dropdown list appears on the Source Attributes
page. You must specify a data set as an additional source attribute. From the
dropdown list, select the source attribute that corresponds to the DSN of the
destination key flexfield.

The DSN must be mapped to type java.lang.Long.

11. Click Finish to go to the Summary page.

Note: The source attribute must be an entity attribute that is either
persistent or is SQL-derived.

Completing the Consumer Tasks for Key Flexfields in Reference Mode

Using Key Flexfields 24-41

12. On the Summary page, review the summary, then click Finish to create the view
link.

13. Optionally, disable the automatic propagation of value set security rules to the
product table by adding a custom property to the view link between the product
view object and the key flexfield view object, as follows:

<propertyname="FND_ACFF_MasterSecuredByFlexfield" Value="false"/>

24.3.2 How to Nest an Instance of the Key Flexfield Application Module in the Product
Application Module

Use the overview editor for the product application module to nest the application
module instance for the key flexfield. This is the application module instance that was
created when you created the flexfield business component and was named using the
prefix that you specified when you defined the usage's entity details. The nested key
flexfield application module instance shares the same transaction and entity object
caches as the application module.

Before you begin:
You should have already created a product application module.

To nest an instance of the key flexfield application module in the product
application module:
1. In the Application Navigator, double-click the product application module.

2. In overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the Application Module Instances
section and, in the Available list, select the key flexfield application module.

The New App Module Instance field below the list shows the name that will be
used to identify the next instance that you add. You can change this name.

4. With the desired application module selected, move the key flexfield application
module to the Selected list.

24.3.3 How to Add an Instance of a Key Flexfield View Object to the Product
Application Module

You must add a flexfield view object instance that reflects the master-detail hierarchy
of the view link that you created in Section 24.3.1, "How to Create Key Flexfield View
Links" to the product application module. You can use the data model that the
application module overview editor displays to create the master-detail hierarchy of
view instances. The master view object is the view object for the reference table (the
product table with a foreign key reference to the combinations table), and the detail
view object is the view object for the flexfield. For example, if you created a view link
from the ExpenseLines view object to the GLKff view object, then ExpenseLines is the
master and GLKff is the detail.

For more information about creating a hierarchy of view instances, see the "Adding
Master-Detail View Object Instances to an Application Module" section in the Oracle

Note: You can skip the Properties page because view link-specific
properties are not supported.

Employing Key Flexfield UI Components on a Page

24-42 Developer's Guide

Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

Before you begin:
1. Add an instance of the view object for the reference table to the product

application module, as described in the "How to Add a View Object to an
Application Module" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

2. Create a view link between the reference table view object and the key flexfield
view object as described in Section 24.3.1, "How to Create Key Flexfield View
Links."

To add an instance of a key flexfield view object to the product application
module:
1. In the Application Navigator, double-click the product application module.

2. In the overview editor, click the Data Model navigation tab.

3. Expand the View Object Instances section.

4. If an instance of the reference table view object does not appear in the Data Model
list, then select it in the Available View Objects list and move it over. This is the
master view object instance.

5. In the Data Model list, select the instance of the view object for the reference table
(the master view object instance) so that it appears highlighted. This will be the
target of the detail flexfield view instance that you will add.

6. In the Available View Objects list, expand the view object for the reference table
and move the nested key flexfield view object (the detail view object) to the Data
Model list. The flexfield view instance appears nested under master view instance,
as shown in Figure 24–9.

Figure 24–9 Flexfield View Instance Nested Under Master View Instance

24.4 Employing Key Flexfield UI Components on a Page
After a key flexfield's UI components have been made available to your application,
you can incorporate the flexfield into UI pages and query search forms. You can then

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-43

configure the configure various aspects of an incorporated key flexfield UI component
to customize the behavior of the flexfield as a whole, or on a segment-by-segment
basis.

24.4.1 How to Employ a Key Flexfield Component on a Page
To employ a key flexfield UI component on an application page, add the flexfield to a
form component or a table component, then configure the properties of the flexfield.

Key flexfields can be implemented on the following types of pages:

■ A page with a foreign key reference to the combinations table

The database table (or view) for this type of page contains a foreign key reference
to a combinations table that contains the actual flexfield segment columns. You
create a page with a foreign key reference if you want to use your page to
manipulate rows that contain code combination IDs. The database table is referred
to as the reference table, and the page is referred to as the code-combination
reference page.

The primary purpose of code-combination reference pages is generally unrelated
to the fact that some fields might be key flexfields. That is, the purpose of the page
is to accomplish whatever business function is required (such as entering orders,
receiving parts, and so on). You might have many code-combination reference
pages that use a given key flexfield.

■ A page with secondary usage of a key flexfield

You can invoke the secondary usage feature of key flexfields on a page. Secondary
usage occurs when one or all segments of a key flexfield that have already been
defined for a combinations table are also defined for a product table. In this way,
you can reuse a key flexfield definition for a product table as if it were a
descriptive flexfield.

■ A code-combination maintenance page

The only purpose of a code-combination maintenance page is to create and
maintain code combinations. This page is typically built by the producer. The
combinations table (or a view of it) is the base table of this page and contains all
the key flexfield segment columns. The combinations table also contains a unique
ID column. For information about creating a code-combination maintenance page,
see Section 24.2.6, "How to Build a Key Flexfield Maintenance User Interface."

A typical application has one and only one code-combinations maintenance page.
An application might not have a code-combination maintenance page if it does not
support maintenance mode for administrators.

■ A page containing a search form

An advanced search form enables end users to define criteria to search for
metadata in the application's master view object and its linked key flexfield view
object. Users can select which attributes of the key flexfield view object to use as

Note: This section assumes you are using the data-first method of
adding flexfields to your application, in which you build the data
model first, then create the user interface by dragging data controls
onto a page. The UI-first method is also available, but is not
documented here.

Employing Key Flexfield UI Components on a Page

24-44 Developer's Guide

criteria. See Section 24.4.2, "How to Incorporate Key Flexfields into a Query Search
Form" for information about using key flexfields in a search form.

In a typical application, you would have one code-combination maintenance page that
maintains the key flexfield, where the key flexfield is the representation of an entity in
your application. You would also have one or more code-combination reference pages
with foreign key references to the same combinations table. For example, in an order
entry/inventory application, you might have a code-combination maintenance page
where you define new parts with a key flexfield for the part numbers.

You would also have a code-combination reference page where you enter orders for
parts, using the key flexfield to indicate what parts are included in the order. The page
might also contain a code-combination filter, which you use to determine the
acceptable values of your part numbers. This code-combination filter references the
same key flexfield as the code-combination maintenance page and the
code-combination reference page.

The order of key flexfield segments in the application user interface corresponds to the
order in which they were defined in the key flexfield metadata. You cannot reliably
change that order at runtime. The user interface dynamically reads the displayed
attributes from the view object and displays them in the same order that they occur in
the view object. There are no attribute UI hints that you can use to override this
behavior.

Reordering key flexfield segments is not supported and can potentially create data
integrity issues for code combinations, which are sequence-aware. Because of this, it is
important that you plan the segment order of your key flexfields in advance.

The tasks to employ a key flexfield on a page include:

■ Adding the key flexfield UI component to a form or a table

■ Defining a default value for every SIN attribute to prevent application errors when
a new row that contains key flexfield columns is added on an application page

■ For ADF Form pages, adding code to ensure proper updating of reference mode
and secondary mode SIN values

■ For secondary-usage flexfield segments or for segments on a code-combination
maintenance page, where the flexfield is in an ADF Table that is wrapped in an
Applications Table component, adding functionality that dynamically refreshes
the segment columns whenever the Applications Table component is refreshed by
another component, such as a button or a search query

If you want changes in your key flexfield to trigger a partial update of another
component, set the AutoSubmit UI property of the flexfield to True, and add the key
flexfield ID to the PartialTriggers UI property of the other component.

For more information about setting user interface properties, see Section 24.4.3.1,
"Configuring Flexfield-Level User Interface Properties."

Note: You cannot use a key flexfield in a tree table component.

Caution: To ensure that the trigger works, you must append "CS" to
the key flexfield ID. For example, if you want changes in the
MyKeyFlex01 flexfield to trigger an update in another component, add
"MyKeyFlex01CS" to that component's PartialTriggers property.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-45

24.4.1.1 Adding Key Flexfield UI Components to a Form or a Table
To incorporate a key flexfield into a UI form or table, you add the master view object
to the page as a form or a table, and you drop the key flexfield view object onto the
form or table.

Note that when the page creates a new row for the master view object, the value of the
primary key of the row that references the key flexfield must be generated
automatically, and this value cannot not be changed.

To add a key flexfield UI component to a form or a table:

1. Create the user interface for the master view object:

In the Data Controls panel, select the master view object and drag it onto the page.

2. When prompted, select the type of user interface that you want to create:

■ ADF Form

■ Applications > Panel

■ ADF Table

■ Applications > Table

For an ADF Table, select the Row Selection option in the Edit Table Columns
dialog.

3. In the Data Controls panel, select the key flexfield view object and drag it onto the
page. Drop the flexfield view object onto a form or a table, and select the
appropriate flexfield UI component. Figure 24–10 shows a key flexfield being
dropped onto a form.

Figure 24–10 Key Flexfield Dropped Onto a Form

4. Using either sequence generation or default values, ensure that when the end user
adds a row to the page, a valid value is generated for the master view object's
primary key before the row is created. Also ensure that the primary key cannot be
entered or edited by the user.

Employing Key Flexfield UI Components on a Page

24-46 Developer's Guide

5. If you are creating an editable table, select the table in the Structure window,
expand the Behavior section of the Property Inspector and set the EditingMode
attribute. If you want all the rows to be editable, then select editAll. If you want to
enable the end user to click a row to make it editable, then select clickToEdit.

If you select clickToEdit, then the editable row displays the concatenated flexfield
segment values in an input text component. The end user can click an icon that is
next to the editable flexfield to open a dialog box that has an input field for each
segment. The flexfield values in the non-editable rows are displayed as read-only
values. The user can click the icon that is next to a read-only flexfield value to
open a window that displays the segment labels, values, and descriptions.

24.4.1.2 Ensuring Proper Handling of New Rows
When a new row that contains key flexfield columns is added on an application page,
every structure instance number (SIN) attribute must contain a valid value, so that the
key flexfield user interface can be rendered with appropriate structures. Without
default structures in reference mode, end users will not be able to select key
combinations for the new row. Without default structures in secondary mode, users
will not be able to select segment values for the new row.

You can prevent application errors by defining a default value for each SIN attribute.
Edit the foreign key entity object SIN attribute or the foreign key view object SIN
attribute, and do one of the following:

■ If the SIN value is static, set the Value Type to Literal, and specify the static
value as the default.

■ If the SIN value is dynamic, set the Value Type to Expression, and enter a Groovy
expression to retrieve the appropriate SIN value and set it as the default.

For an Applications Table component in reference mode, the default SIN and structure
for a new or modified row is just a starting point. You can always allow for runtime
selection of a new structure by LOV or input field.

Caution: You cannot use the code combination ID as part of the
generated primary key.

Note: For secondary-usage flexfield segments in table components,
you can use the defaultSIN attribute in the JSPX file to define the
default SIN value for situations where no rows exist.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-47

For more information about setting attribute defaults, see the discussion about
defining default values in the "Setting Attribute Properties" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

24.4.1.3 Ensuring Proper Updating of Reference Mode SIN values in an ADF Form
or ADF Applications Table
It is best to not display the CCID or, if it is displayed, to make it a read-only field.
When the end user clicks the popup icon, the popup requires the user to select a code
combination whenever the SIN is changed for a row, and the CCID is set based on the
user's selection.

If the CCID is not displayed in the user interface or if it is displayed as a read-only
value, then you must ensure that the CCID for the current row in the view object is set
to null whenever the SIN is changed by the end user.

If the form does display the CCID in an editable mode, then the application must force
the end user to set the CCID to null, change the SIN value, and then enter the CCID
value to update the concatenated value.

24.4.1.4 Ensuring Proper Updating of Secondary Mode SIN Values in an ADF Form
When an end user makes changes to an existing ADF Form row that contains key
flexfield secondary usage attributes, it might result in the need for that row to use a
different structure instance. The row's underlying view object retains the old SIN
value, which produces a mismatch with the data and generates runtime errors. Your
application must change the SIN value in the row so it uses the new structure instance.
You add code to your page to ensure that this happens, as shown in Example 24–7.

Example 24–7 Code for Updating Modified SIN Values

// Add the target for the component that contains
// the key flexfield secondary usage, which, in this case
// is a panelFormLayout component
 AdfFacesContext.getCurrentInstance().addPartialTarget(pfl1);

// Get the handle of the child iterator binding. This is the same iterator
// that you get when you drag the key flexfield secondary usage onto a JSPX page

Caution: For key flexfield secondary usages, the SIN value of the
first row of a user interface table that contains secondary mode
columns determines the secondary mode column structure to be used
for the table. For any additional row that contains a different SIN
value, the secondary mode columns that are not also part of the first
row's structure will not render in the table. If there are no rows, then
the value of the defaultSIN tag attribute from the JSPX file, if set,
determines the secondary mode column structure.

For an Applications Table component, if the end user deletes all rows
from the table, then your application can again set a new default SIN
value for the first new row, and the secondary mode column structure
corresponding to that SIN will be the valid structure for the table.

For an ADF Table, the secondary mode column structure (determined
by the initial SIN value) cannot be changed after the table has been
created, even if all rows are deleted.

Employing Key Flexfield UI Components on a Page

24-48 Developer's Guide

 DCIteratorBinding childBinding =
bindingControl.findIteratorBinding("Kff1PaInstanceIterator");

// Get the view object from the child iterator
 ViewObject childVO = childBinding.getViewObject();

// Get the current row from this view object
 ViewRowImpl childRow = (ViewRowImpl) childVO.getCurrentRow();

// Update the SIN in the child view object
 KFFPViewDefImpl childViewDef = (KFFPViewDefImpl)childRow.getViewDef();
 childRow.setAttribute(
 (childViewDef.getStructureInstanceNumberAttribute()).getName(),
 sinValue);

24.4.1.5 Dynamically Refreshing Segments on a Code-Combination Maintenance
Page or Secondary Usage Segments
If you have segments on a code-combination maintenance page or you have secondary
usage segments, and those segments are in an ADF Table that is wrapped in an
Applications Table component that is refreshed by another component, such as a
button or a search query, then you must add functionality to dynamically refresh the
segment columns.

To refresh the flexfield segments based on the current iterator rowset data, create a
listener handler method in the flexfield's backing bean and bind the listener to the
component that is initiating the table refresh. The listener must first call the default
listener and then call DescriptiveFlexfield.updateFlexColumns(RichTable), where
RichTable is the binding for the table that contains the flexfield.

Example 24–8 shows an example of a custom flexfield handler for a query event. The
method first calls invokeMethodExpression to call the original query listener, and then
calls updateFlexColumns with the table component that contains the flexfield as the
parameter. Example 24–9 shows the binding of the custom flexfield handler to the
query component.

Example 24–8 Flexfield Listener

public void customKffSearchQueryListener(QueryEvent queryEvent)
{
 invokeMethodExpression(
 "#{bindings.KffCriteriaQuery.processQuery}",
 Object.class,QueryEvent.class,queryEvent);
 DescriptiveFlexfield.updateFlexColumns(appTable);
}

Example 24–9 Binding the Flexfield Listener to the Search Query

<af:query id="qryId1"
 headerText="#{applcoreBundle.QUERY_SEARCH_HEADER_TEXT}"
 disclosed="true"
 value="#{bindings.criteriaQuery.queryDescriptor}"
 model="#{bindings.criteriaQuery.queryModel}"
 queryListener="#{backingBeanScope.dffBean.customKffSearchQueryListener}"
 queryOperationListener="#{bindings.KffCriteriaQuery.processQueryOperation}"

Caution: You cannot use this solution in an ADF Table or an
Applications Table component. Dynamically changing the SIN at
runtime is supported only for an ADF Form.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-49

 resultComponentId="::AT2:_ATp:ATt2"/>

24.4.1.6 What Happens When You Add a Key Flexfield to a Page
A key flexfield is implemented in the user interface as a code combination LOV rather
than as individual segments on the page. You can enter a combination code directly
into the code combination LOV input.

Figure 24–11 shows an example of a key flexfield used in a form on an application
page.

Figure 24–11 Example of a Key Flexfield In a Form

Figure 24–12 shows an example of a key flexfield used in a table on an application
page.

Figure 24–12 Example of a Key Flexfield in a Table

Note: You do not need to handle flexfield refreshing for standard
Applications Table create and delete operations. However, custom
create and delete operations must handle the refreshing of flexfields.

Employing Key Flexfield UI Components on a Page

24-50 Developer's Guide

Key flexfield segments always appear as form fields or table columns in the same
order that their corresponding attributes appear in the underlying view object.

In screenreader mode, a labeled icon of three horizontal bars appears next to the key
flexfield input text field. When the end user clicks the icon, instead of the standard
popup, a page is displayed that shows the segment details. The user clicks Done to
return to the prior page.

For key flexfields in forms and in tables, you can click the search icon to select a valid
new flexfield code combination using individual segment values as criteria, as shown
in Figure 24–13.

Figure 24–13 Example of a Search for a Key Flexfield Code Combination

24.4.2 How to Incorporate Key Flexfields into a Query Search Form
In reference mode, you can include key flexfield view object attributes as search
criteria in an advanced mode query search form. This form enables end users to define
extemporaneously the criteria to search for metadata in the view object for the
reference table, which is the product table that has a foreign key reference to the
combinations table, and its linked key flexfield view object. Users can select which
attributes of the key flexfield view object to use as search criteria.

Caution: When your flexfield is in a table that is displayed within a
popup, and the table's contentDelivery attribute is set to immediate,
you must also set the popup's contentDelivery attribute to immediate
to ensure that the key flexfield UI component is rendered in the table.
For any other value of the popup's contentDelivery attribute, the
flexfield column in the table will be blank.

For more information about tables and popups, see the "Using Tables
and Trees" and "Using Popup Dialogs, Menus, and Windows" chapters
of the Oracle Fusion Middleware Web User Interface Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications
Edition).

Note: You do not need to enter values for all segments when
searching for a key flexfield code combination.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-51

To incorporate key flexfields into a query search form:

1. Set up the business component model layer.

2. Create the query search form.

24.4.2.1 Setting Up the Business Component Model Layer
To set up the business component model layer for the search form, you define the view
criteria in the view object for the reference table, generate the row implementation
class for the reference view object, and override the getCriteriaItemClause() method
in that row implementation class.

For more information about defining view criteria, see the "Defining SQL Queries
Using View Objects" chapter of the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition).

Before you begin:

1. Create a view link between the view object for the reference table and the key
flexfield polymorphic view object as described in Section 24.3.1, "How to Create
Key Flexfield View Links."

2. Add the key flexfield's view instance to the product application module as
described in Section 24.3.3, "How to Add an Instance of a Key Flexfield View
Object to the Product Application Module."

3. Nest the key flexfield application module instance in the product application
module, as described in Section 24.3.2, "How to Nest an Instance of the Key
Flexfield Application Module in the Product Application Module."

4. Ensure that the discriminator attribute in the view object for the reference table,
such as the SIN attribute, is enabled to display a list of values. You can find this
information on the Attributes navigator tab for the view object. Also, ensure that
the Auto Submit property for the discriminator attribute is set to true in Control
Hints.

For information about enabling a list of values for an attribute and setting control
hints, see the "Defining SQL Queries Using View Objects" chapter of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

To set up the business component model layer:

1. In the Application Navigator, double-click the view object for the reference table.

2. In the overview editor, click the Query navigation tab.

3. In the View Criteria section, click the Add icon.

4. In the Create View Criteria dialog, enter the name of the view criteria to identify
its usage in your application.

5. Click Add Group, and click Add Item.

6. Select the discriminator, such as Sin, from the Attribute dropdown list.

7. Accept the default values of Equal to for the Operator and Literal for the
Operand.

8. Select the Group node that you just added, and click Add Item.

9. From the Attribute dropdown list, select the view accessor for the view link
between your application's reference view object and the key flexfield view object.

Employing Key Flexfield UI Components on a Page

24-52 Developer's Guide

10. Accept the default Exists value for Operator and Inline View Criteria for
Operand.

11. Select the bottom node in the View Criteria tree as shown in Figure 24–14.

Figure 24–14 Bottom Node in View Criteria Tree

12. Select the attribute that corresponds to the discriminator, such as _STRUCTURE_
INSTANCE_NUMBER, from the Attribute dropdown list.

13. Accept the default values of Equal to for the Operator and Literal for the
Operand.

14. Click OK.

15. Click the Source tab and locate the view criteria that you added in Step 3. Within
this view criteria, identify the nested view criteria that contains the
<ViewCriteriaItem> element for _STRUCTURE_INSTANCE_NUMBER.

16. In the <CustomProperties> element, add a <Property> element. Set the Property
Name to FND_ACFF_IsQueryNestedCriteria and set the Value to true as shown in
bold in Example 24–10.

Example 24–10 Property FND_ACFF_IsQueryNestedCriteria in the Nested Criteria

<ViewCriteria
 Name="AcctKffVONestedCriteria"
 ViewObjectName="oracle.apps.fnd.applcore.crmdemo.flex.acct.view.AcctKffVO"
 Conjunction="AND">
 <ViewCriteriaRow Name="vcrow487" UpperColumns="1">
<ViewCriteriaItem
 Name="_STRUCTURE_INSTANCE_NUMBER"
 ViewAttribute="_STRUCTURE_INSTANCE_NUMBER"
 Operator="="
 Conjunction="AND"
 Required="Optional"/>
 </ViewCriteriaRow>

 <Properties>
 <CustomProperties>
 <Property Name="FND_ACFF_IsQueryNestedCriteria" Value="true"/>
 </CustomProperties>
 </Properties>
</ViewCriteria>

17. Save your changes.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-53

24.4.2.2 Creating the Query Search Form
To create a query search form that contains a key flexfield, add an ADF Query Panel
with Table component to the page and drop the key flexfield into the table. Then,
create a custom bean and attach the bean to the query.

For more information about working with search forms, see the "Creating ADF
Databound Search Forms" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

Before you begin:

1. Prepare the business model component as described in Section 24.4.2.1, "Setting
Up the Business Component Model Layer."

2. If you are working with secondary-usage flexfield segments and the flexfield is an
ADF Table that is wrapped in an Applications Table component, review
Section 24.4.1.2, "Ensuring Proper Handling of New Rows" and Section 24.4.1.5,
"Dynamically Refreshing Segments on a Code-Combination Maintenance Page or
Secondary Usage Segments."

To create the query search form:

1. Open the JSPX page to which you want to add the search form.

2. From the Data Controls panel, select the reference view object's data collection and
expand the Named Criteria node to display a list of named view criteria.

3. Drag the view criteria that you created in Section 24.4.2.1, "Setting Up the Business
Component Model Layer" and drop it onto the page or onto the Structure window.

4. From the context menu, choose Query > ADF Query Panel with Table, as shown
in Figure 24–15.

Figure 24–15 Query Context Menu

5. In the Edit Table Columns dialog, you can rearrange any column and select table
options.

6. In the Data Controls panel, select the key flexfield view object, drop it into the
table, and choose Create > Oracle Key Flexfield Column to add the key flexfield
to the table, as shown in Example 24–16.

Employing Key Flexfield UI Components on a Page

24-54 Developer's Guide

Figure 24–16 Key Flexfield Column Added to Table

7. In the user interface project, create a custom bean that implements the
oracle.adf.view.rich.event.QueryOperationListener interface as shown in
Example 24–11.

Set VIEW_CRITERIA_NAME to the name of the view criteria, and set KFF_ACCESSOR_
NAME to the view accessor from the view link between the view object for the
reference table and the key flexfield view object.

Example 24–11 Custom Listener Java Class

package oracle.apps.fnd.applcore.flex.test.backing;

import java.util.List;

import javax.faces.event.AbortProcessingException;

import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.view.rich.event.QueryOperationEvent;
import oracle.adf.view.rich.event.QueryOperationListener;
import oracle.adf.view.rich.model.AttributeCriterion;
import oracle.adf.view.rich.model.Criterion;
import oracle.adf.view.rich.model.QueryDescriptor;

import oracle.jbo.uicli.binding.JUFormBinding;

import oracle.jbo.ViewCriteria;
import oracle.jbo.ViewCriteriaItem;
import oracle.jbo.ViewCriteriaRow;
import oracle.jbo.common.ViewCriteriaItemImpl;
import oracle.jbo.uicli.binding.JUSearchBindingCustomizer;

public class CustomBean implements QueryOperationListener{
 public CustomBean() {
 super();
 }

 private static final String BINDING_SUFFIX="Query";
 private static String VIEW_CRITERIA_NAME="PartsKFFQueryCriteria";
 private static String KFF_ACCCESSOR_NAME="PartsAcctKffKffVL";
 private static String KFF_DISCRIMINATOR_ATTR_NAME=
 "_STRUCTURE_INSTANCE_NUMBER";
 private static String MASTER_VO_ATTR_FROM_WHICH_KFF_DISC_DERIVED="Sin";

 public void processQueryOperation(QueryOperationEvent queryOperationEvent)

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-55

 throws AbortProcessingException{
 QueryDescriptor descriptor =
 (QueryDescriptor) queryOperationEvent.getDescriptor();
 AttributeCriterion attr = queryOperationEvent.getAttributeCriterion();
 if (queryOperationEvent.getOperation()==
 QueryOperationEvent.Operation.CRITERION_UPDATE){

 BindingContext bcx= BindingContext.getCurrent();
 DCBindingContainer bc =
 (DCBindingContainer) bcx.getCurrentBindingsEntry();
 JUFormBinding bnd =
 (JUFormBinding)
 bc.findExecutableBinding(VIEW_CRITERIA_NAME+BINDING_SUFFIX);
 if(bnd!=null){
 String vcName = JUSearchBindingCustomizer.getCriteriaName(bnd);
 applyDiscriminator(bnd, vcName);
 }
 }
 }

 public void applyDiscriminator(JUFormBinding ctr, String vcName){
 ViewCriteria vc = JUSearchBindingCustomizer.getViewCriteria(ctr, vcName);
 ViewCriteriaRow r = (ViewCriteriaRow) vc.getCurrentRow();
 List<ViewCriteriaItem> criteriaItemList = r.getCriteriaItems();
 Object proxyval = null;
 for(ViewCriteriaItem item : criteriaItemList){

 if (item.getName().equals(
 MASTER_VO_ATTR_FROM_WHICH_KFF_DISC_DERIVED)){
 proxyval = item.getValue();
 }

 if (item instanceof ViewCriteriaItem){

 ViewCriteriaItemImpl itemimpl = (ViewCriteriaItemImpl) item;
 if(itemimpl.getName().equals(KFF_ACCCESSOR_NAME)){
 ViewCriteria nvc = itemimpl.getNestedViewCriteria();

 ViewCriteriaRow nvcr =
 (ViewCriteriaRow) nvc.getCurrentRow();
 List<ViewCriteriaItem> ncriteriaItemsList =
 nvcr.getCriteriaItems();
 for(ViewCriteriaItem nitem: ncriteriaItemsList){
 if (nitem.getName().equals(KFF_DISCRIMINATOR_ATTR_NAME))
 nitem.setValue(proxyval);
 }
 }

 }//if instanceof

 }//end for
 }

}

This custom bean will be triggered when a value is selected from the LOV
component for the discriminator attribute, such as the LOV for the SIN attribute.
When invoked, the processQueryOperation() method is called. The
JUFormBinding that is associated with the view criteria is accessed to extract the
view criteria.

Employing Key Flexfield UI Components on a Page

24-56 Developer's Guide

The applyDiscriminator() method extracts the ViewCriteriaItem for the
discriminator attribute, gets the value that was selected from the discriminator's
LOV component, and loads into the query panel the key flexfield's subtypes with a
matching discriminator value.

8. Complete the following steps to attach the custom bean to the query:

a. Open the JSPX page.

b. In the Structure window, select af:query.

c. In the Property Inspector, expand the Behavior section.

d. In the QueryOperationListener field, enter an EL expression that resolves to
the custom bean's processQueryOperation() method, such as
#{CustomBean.processQueryOperation}.

24.4.3 How to Configure Key Flexfield UI Components
You can configure various aspects of a key flexfield UI component to customize the
behavior of the flexfield as a whole, or on a segment-by-segment basis. You can control
your key flexfield's behavior in the application user interface by modifying properties
at the flexfield level, at the segment label level, and at the secondary usage level.

24.4.3.1 Configuring Flexfield-Level User Interface Properties
Right-click a key flexfield's UI component on the page, then select Properties from the
context menu to view and modify its properties in the Property Inspector, as shown in
Figure 24–17.

Figure 24–17 Key Flexfield Property Inspector — Common Tab

The significant properties on the Common, Data, Style, Behavior, and Other property
tabs are listed in Table 24–6.

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-57

Table 24–6 Key Flexfield Properties

Tab > Property Description

Common > Id This property gives the ID of the flexfield.

Common > Rendered This property indicates whether the flexfield is rendered
on the application page. Values can be true (default) or
false.

When this property is set to false, the flexfield is not sent
to the client.

Expression language (EL) expressions are allowed on ADF
Form and ADF Table components. On ADF Table
components, you use expressions to control this property
on a row-by-row basis.

Common > Label This property is the prompt that should be rendered on
the page. It is also used for the title of popup components.
Note that if the Label property does not have a value, the
default title of a popup component is Key Flexfield.
Therefore, you must set this value to the name of the
flexfield to ensure that popup components display the
correct title, and not the default. The value should be
applied from a resource bundle.

Common > Value This property is the value of the flexfield. This should be
an EL expression pointing to an iterator object. This field is
also visible on the Data tab.

Data > Accessor This property is the name of the accessor between the
(consumer) product view object and the flexfield view
object.

Style > StyleClass This property is the style class of the flexfield. A style class
allows you to group a set of inline styles.

Style > InlineStyle This property is the inline style of the component. This is a
string of CSS styles that can set individual properties such
as background color, font style, or padding.

Style > Width This property is the width in characters of the text field in
which the key flexfield value is displayed on the page.
This value is 30 by default.

Behavior > Required This property indicates whether the key flexfield must
have a value. Values of this property can be true or false
(default).

When this property is set to true, the page containing this
key flexfield cannot be submitted unless the flexfield has a
value.

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

Employing Key Flexfield UI Components on a Page

24-58 Developer's Guide

Behavior > ReadOnly This property indicates whether the key flexfield is
rendered as read-only. Values can be true or false
(default).

When this property is set to true, the flexfield segment
values are rendered, but they cannot be modified, and the
associated popup or LOV lookup controls do not appear.
Instead, an icon is displayed. When the mouse hovers over
the icon, a window appears that displays the segment
labels, values, and descriptions. This behavior overrides
the Disabled property.

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

Behavior > Disabled This property indicates whether the UI control associated
with this key flexfield can be operated. Values can be true
or false (default).

When this property is set to true, the flexfield segment
values and the associated popup or LOV lookup controls
are rendered, but are dimmed and cannot be modified or
operated. The ReadOnly property, when set to true, takes
precedence over this property.

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

Note that the flexfield will be disabled if the current
master row for the flexfield does not have a valid SIN
value defined.

Behavior > PartialTriggers This property contains the IDs of the components that
should trigger a partial update in the flexfield (String[]).1
EL expressions are allowed.

Behavior > ValueChangeListener This property is a method reference to a value change
listener (javax.faces.el.MethodBinding). It requires an
EL expression.

The value change listener takes effect if the value of the
key flexfield is changed either manually in the key
flexfield text field, or by using the key flexfield LOV
popup.

Behavior > Binding This property is an EL reference that will store the
component instance on a bean
(oracle.apps.fnd.applcore.flex.ui.KFFComp). This
property requires an EL expression.

Other > AutoSubmit This property indicates whether key flexfield values that
are entered by the end user should automatically be
submitted directly upon entry. Values can be true or false
(default).

When this property is set to true, and the end user changes
the value of the flexfield in the key flexfield text field or by
using the key flexfield LOV popup, the new value will be
submitted to the product view object immediately. When
this property is set to false, the new value will be
submitted only when the entire page is submitted.1

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

Table 24–6 (Cont.) Key Flexfield Properties

Tab > Property Description

Employing Key Flexfield UI Components on a Page

Using Key Flexfields 24-59

24.4.3.2 Configuring Label-Based Segment UI Properties
Key flexfields support finer control of segments in the user interface based on their
segment labels, using a number of additional properties that you can set in the
flexfield XML with literal values or EL expressions. These properties are attributes of
the flexfieldLabeledSegmentHint component.

Other > DefaultSIN This property is for secondary usage only. It defines the
default SIN value to use to define the structure when no
rows exist.

Other > Changed This property indicates whether the changed indicator
icon is displayed on the component. Values can be true or
false (default).

When this property is set to True, the changed indicator
icon is displayed.

EL expressions are allowed on ADF Form and ADF Tables.
On ADF Table components, you use expressions to control
this property on a row-by-row basis.

Other > Simple This property indicates whether the key flexfield's label
should be hidden. Values of this property can be true or
false (default).

When this property is set to true, the label is hidden. Note
that if the Simple property is set to true and the flexfield is
placed inside a PanelLabelAndMessage component, the
flexfield might not align properly with the other
components in the PanelLabelAndMessage component.

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

Other > Visible This property indicates whether the key flexfield appears
on the page. Values can be true (default) or false.

When this property is set to false, the key flexfield is sent
to the client but the client does not display it.

EL expressions are allowed on ADF Form and ADF Table
components. On ADF Table components, you use
expressions to control this property on a row-by-row basis.

1 If you want changes in your key flexfield to trigger a partial update of another component, set the
AutoSubmit UI property of the flexfield to true, and add the key flexfield ID to the PartialTriggers UI
property of the other component. To ensure that the trigger works, you must append "CS" to the key
flexfield ID. For example, if you want changes in the MyKeyFlex01 flexfield to trigger a partial update in
another component, add "MyKeyFlex01CS" to that component's PartialTriggers property.

Note: The Behavior > Mode property defines the user interface
mode of the key flexfield component.

Only the single default value is supported, which renders the key
flexfield as a single LOV.

Note: This component can be used only to configure the segment UI
properties of key flexfield secondary usages, and only if a segment
label is applied.

Table 24–6 (Cont.) Key Flexfield Properties

Tab > Property Description

Employing Key Flexfield UI Components on a Page

24-60 Developer's Guide

The following properties can be used to define usage-specific behavior for one or more
key flexfield segments, identified by segment label. These property settings apply to
all segments that have the specified segment label assigned.

■ SegmentLabel: This string property specifies the segment label of the segment
being configured. This string property is required.

■ Rendered: This boolean property indicates whether the segment is visible on the
application page.

■ Required: This boolean property indicates whether the segment must have a
value.

■ Readonly: This boolean property indicates whether end users can modify the
segment.

■ Label: This string property provides a display label for the UI component.

■ ShortDesc: This string property provides a short description of the UI component.
This text is commonly used by user agents, such as browsers, to display tooltip
help text, in which case the behavior for the tooltip is controlled by the user agent.

■ Columns: This integer specifies the width of the text control, in terms of the number
of characters shown. The number of columns is estimated based on the default
font size of the browser.

The default values of these properties are derived from the flexfield metadata, but you
can override the default values at the page level.

For information about using EL expressions, see the "Creating ADF Data Binding EL
Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

You apply these properties by dragging and dropping the following component from
the Component Palette into the key flexfield, as a child of the keyFlexfieldpartial
component:

<fnd:flexfieldLabeledSegmentHint propertyname1="value" [propertyname2="value"
[propertyname3="value" [propertyname4="value" [propertyname5="value"
[propertyname6="value" [propertyname7="value"]]]]]]>

24.4.3.3 Configuring Secondary Usage UI Properties
Key flexfields support finer control of secondary usages in the user interface with a
number of additional properties that you can set with literal values or EL expressions.
These properties are attributes of the keyFlexfieldPartial component. By using EL
expressions at the page level, you can programmatically override the key flexfield
metadata at runtime.

Note: If you set a segment's Required property to true in the
flexfield metadata, for validation purposes you cannot override this
by resetting it to false in the page metadata. You can, however, do the
reverse: Change a nonrequired segment to be required in the page
metadata.

The Label, ShortDesc and Columns properties are expected to apply to
a single segment, so it is best to use them when only one segment has
this segment label assigned.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-61

For example, Oracle Assets has a single page that is used for both the Create Asset and
Update Asset activities. When creating an asset, the Asset Category key flexfield on
this page should be updatable; when updating an asset, the flexfield should be
read-only. This setting can be programmatically managed using the readOnly property
based on a page parameter that indicates whether the page is in Create mode or
Update mode.

The following boolean properties can be used to specify usage-specific behavior for the
entire key flexfield secondary usage:

■ rendered: Indicates whether the flexfield is visible on the application page.

■ required: Indicates whether the flexfield must have a value.

■ readOnly: Indicates whether end users can modify the flexfield.

The default values of these properties are derived from the flexfield metadata, but you
can override them at the page level.

For information about using EL expressions, see the "Creating ADF Data Binding EL
Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

You apply these properties by dragging and dropping the following component from
the Component Palette into the key flexfield element:

<fnd:keyFlexfieldPartial propertyname1="value" [propertyname2="value"
[propertyname3="value"]]>

24.5 Using Key Flexfield Advanced Features in Reference Mode
Key flexfield advanced features include code combination constraints, programmatic
access to segment labels, making key flexfields available for use in Oracle Business
Intelligence, and working with flexfields from a worksheet using ADF Desktop
Integration.

24.5.1 How to Define Code Combination Constraints
Code combination constraints are criteria for filtering the list of code combinations that
can be referenced in a given combinations table. While the set of code combinations in
the table is not changed, each reference table (product table with foreign key references
to these code combinations) can have its own associated code combination constraints.

For example, the key flexfield MTL_SYSTEM_ITEMS has a Purchasable flag, which
can be set to the value Y or N. You can implement an extra WHERE clause on the Oracle
Purchasing product view object that enables Order Management to restrict the
displayed items to only those with Purchasable set to Y.

Code combination constraints are applied in the following situations:

■ When an end user opens a key flexfield popup window to search for a code
combination.

Note: If you set a segment's required property to true in the
flexfield metadata, for validation purposes you cannot override this
by resetting it to false in the page metadata. You can, however, do the
reverse: Change a non-required segment to be required in the page
metadata.

Using Key Flexfield Advanced Features in Reference Mode

24-62 Developer's Guide

■ When the code-combination ID attribute of a view object for a reference table is set
programmatically.

Code combination constraints are not applied when an existing foreign key reference
to a code combination is resolved into individual segments (or a concatenated string)
for display.

Combination constraints are view object properties and are not applied on any entity
objects.

You create a view accessor to define a code combination constraint. You can define the
following types of code combination constraints:

■ Extra WHERE clause

■ Validation date

■ Validation rules

■ Dynamic combination creation allowed

24.5.1.1 Creating a View Accessor to Define a Code Combination Constraint
In a key flexfield ADF Business Components model, the code combination constraints
are defined in a view object that references the code combinations (the reference view
object). Although these constraints are, in a way, validation rules for code
combinations, they are not ADF Business Components validators.

You define code combination constraints as bind parameter values in a view accessor.
The name of this view accessor is derived from the name of the view link accessor to
the key flexfield view object for which you want to constrain code combinations.

To define a code combination constraint:

1. Open the foreign key view object that references the code combinations.

2. Click the Add icon in the View Accessors section to display the View Accessors
dialog.

3. Create a view accessor to the key flexfield's base view object, as shown in
Figure 24–18.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-63

Figure 24–18 Code Combination Constraint View Accessor

The destination of the view accessor is the key flexfield's base view object The
name of the view accessor must be derived from the name of the view link
accessor to the key flexfield view object, and must take the following form:

viewlinkaccessornameConstraints

For example, for a view link accessor named AcctKff, Figure 24–18 shows the
accessor name AcctKffConstraints.

4. Edit the view accessor to define the bind parameter values, as shown in
Figure 24–19.

Note: You do not need to select any view criteria for this activity.
Only the bind parameter values are needed to define a code
combination constraint.

If you do not see any bind parameters, it is likely that you have just
re-created the business components and overwritten the old ones. You
can close the application and remove it from JDeveloper. When you
open the application again, JDeveloper should load the latest
definitions, including the bind parameters.

Using Key Flexfield Advanced Features in Reference Mode

24-64 Developer's Guide

Figure 24–19 Code Combination Constraint Bind Parameter Values

There are four types of code combination constraints. To apply a constraint type,
provide a value for the appropriate bind parameter for the constraint type as
shown in the following list. If no value is provided, that constraint type is not
enabled.

■ Extra WHERE clause: This constraint is invoked with the bind parameter Bind_
ExtraWhereClause. You can also incorporate the predefined bind parameters
BindVar0 through BindVar9.

For information about how to provide a value for this bind parameter, see
Section 24.5.1.2, "Constraining Code Combinations by an Extra WHERE
Clause."

■ Validation date: This constraint is invoked with the bind parameter Bind_
ValidationDate.

For information about how to provide a value for this bind parameter, see
Section 24.5.1.3, "Constraining Code Combinations by Validation Date."

■ Value attribute validation rules: This constraint is invoked with the bind
parameter Bind_ValidationRules.

For information about how to provide a value for this bind parameter, see
Section 24.5.1.4, "Constraining Code Combinations by Validation Rules."

■ Dynamic combination creation allowed: This constraint is invoked with the
bind parameter Bind_DynamicCombinationCreationAllowed.

For information about how to provide a value for this bind parameter, see
Section 24.5.1.5, "Enabling or Disabling Dynamic Combination Creation for a
Specific Usage."

Edit only the bind parameters that you need, and leave the others blank. You can
use Groovy expressions as bind-parameter values. This means that the constraints
can come indirectly from a view attribute, the view object, or a Java method.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-65

24.5.1.2 Constraining Code Combinations by an Extra WHERE Clause
You can use the view accessor's Bind_ExtraWhereClause parameter to filter the list of
code combinations that can be referenced in a given combinations table. The extra
WHERE clause is appended to the existing WHERE clause of the key flexfield view object.

To set the Bind_ExtraWhereClause parameter:

1. Create the view accessor and open it for editing as described in Section 24.5.1,
"How to Define Code Combination Constraints."

2. In the Edit View Accessor dialog, set the Bind_ExtraWhereClause value.

The extra WHERE clause can use bind parameters. The value of Bind_
ExtraWhereClause should be a SQL fragment that may contain references to
columns of the combinations table, or the predefined bind parameters.

To refer to the combinations table, use ${COMBINATION_TABLE}]; for example,
${COMBINATION_TABLE}.MY_COLUMN.

To refer to one of the 10 predefined bind parameters, BindVar0 through BindVar9,
use a colon and the bind parameter name; for example, :BindVar3.

The following is an example of an extra WHERE clause code combination constraint
as a SQL expression:

(:BindVar0 IS NULL) OR (${COMBINATION_TABLE}.MY_COLUMN = :BindVar0)

You can also express this as a Groovy string constant. Be sure to escape the dollar
sign with a backslash:

"(:BindVar0 IS NULL) OR (\${COMBINATION_TABLE}.MY_COLUMN = :BindVar0)"

24.5.1.3 Constraining Code Combinations by Validation Date
You can use the view accessor's Bind_ValidationDate parameter to filter the list of
code combinations that can be referenced in a given combinations table. If you provide
a value for Bind_ValidationDate, then this validation date is used instead of the
current database date when searching for a code combination. The code combinations
returned are those that are active on the specified date.

If a code combination's start_date_active attribute is NULL, it is considered to have
always been active in the past, up to its end_date_active date. If a code combination's
end_date_active attribute is NULL, it is considered to be active starting from its start_
date_active date indefinitely into the future.

Note: You can ignore the Row-level bind values exist option,
because the frequency of evaluation of bind parameters is
predetermined, as follows:

❏ View object level (evaluated once)

■ Bind_ExtraWhereClause

■ Bind_ValidationRules

❏ Row level (evaluated every time)

■ BindVar0 through BindVar9

■ Bind_ValidationDate

■ Bind_DynamicCombinationCreationAllowed

Using Key Flexfield Advanced Features in Reference Mode

24-66 Developer's Guide

To set the Bind_ValidationDate parameter:

1. Create the view accessor and open it for editing as described in Section 24.5.1,
"How to Define Code Combination Constraints."

2. In the Edit View Accessor dialog, set the Bind_ValidationDate value.

The value of Bind_ValidationDate should be a normalized java.sql.Date object;
that is, the hour, minute, second, and millisecond should be set to zero. You can
use the method oracle.apps.fnd.applcore.oaext.model.OAUtility#getSQLDate
to normalize the date.

One way to construct a normalized date for testing purposes is to use
java.sql.Date.valueOf(String s) with the date as a literal string in the form
yyyy-mm-dd.

In a search user interface, the supplied validation date also affects the list of values
of a segment. For example, the end user may pick a value for a segment from a list
of values, then use the segment value to search for a code combination. The list of
values of the segment will be constrained by the supplied validation date.

24.5.1.4 Constraining Code Combinations by Validation Rules
You use validation rules to constrain code combinations. The validation rules for a
given key flexfield are authored by the product team that owns the flexfield. They are
valid only for use as code combination constraints, and should not be confused with
other types of validation rules. Validation rules are stored in the flexfield metadata
table FND_KF_VRULES and are delivered along with the key flexfield definition. The rule
authors are your best source of information about the applicability of the validation
rules for a flexfield, and the rule codes you should use to reference them.

You can use the view accessor's Bind_ValidationRules parameter to filter the list of
code combinations that can be referenced in a given combinations table. If you provide
a value for Bind_ValidationRules, the validation rules are translated into a SQL
fragment, and the SQL fragment is appended to the WHERE clause of the key flexfield
view object.

24.5.1.4.1 How to Create Validation Rules Use the create_vrule(...) procedure from the
FND_FLEX_KF_SETUP_APIS PL/SQL package to register a flexfield segment's validation
rule. Validation rules apply only to segments that are validated against a list-validated
value set. If the segment is validated against a format-only value set, the validation
rules are ignored.

Note that when a segment is labeled with multiple segment labels, its validation rules
are joined with an AND operator in the WHERE clause.

When the ALWAYS_APPLIED_FLAG is set to Y, the validation rule is always applied, such
as when a combination is validated by C or PL/SQL validation APIs or a combination

Note: Note that a date constraint is always required when searching
for a code combination. If you do not supply a validation date, the
current database date will be used.

Note: Because key flexfield secondary usages do not include a code
combination, and validation rule constraints currently apply only to
code combinations, they do not apply in the case of key flexfield
secondary usages.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-67

is validated by a business component. When the ALWAYS_APPLIED_FLAG is set to N, the
validation rule is applied only when the rule is included in the list of validation rules
as an argument to C or PL/SQL validation APIs or as a Bind_ValidationRules
parameter as described in Section 24.5.1.4.2, "How to Set the Bind_ValidationRules
Parameter."

Because the names of the segment columns that the customer will use for the code
combinations are not known during development, you must use the lexical references
listed in Table 24–7 to refer to the segment column and value attributes in the rule's
WHERE clause. In addition to the lexical references, the FLEXFIELD.VALIDATION_DATE
bind variable can be used in validation rule WHERE clauses. No other flexfield bind
variables can be used.

For example, if the following WHERE clause were registered as a validation rule for a
segment, then the derived SQL query to retrieve the segment's list of values would be
similar to Example 24–12, and the derived SQL query to retrieve the combination list
of values would be similar to Example 24–13.

GL_AFF_AWC_API_PKG.gl_valid_flex_values(
 :{FLEXFIELD.VALIDATION_DATE}, &{VALUE.VALUE}) = 'Y')

Example 24–12 SQL Query to Retrieve Segment's List of Values

SELECT ...
FROM fnd_vs_values_vl fvvv
WHERE fvvv.value_set_id = :Bind_ValueSetId
AND fvvv.value like :Bind_Value
AND (GL_AFF_AWC_API_PKG.gl_valid_flex_values(
 :Bind_ValidationDate, fvvv.value) = 'Y'))

Example 24–13 SQL Query to Retrieve Combination List of Values

SELECT ...
FROM gl_code_combinations glcc
WHERE glcc.chart_of_accounts_id = :Bind_SIN

Table 24–7 Lexical References

Lexical Type
Lexical
Code Example Notes

VALUE VALUE &{VALUE.VALUE} Represents the
VALUE column in
segment lists of
values and
represents the
segment column in
combination lists of
values.

VALUE_ATTRIBUTE value
attribute code

&{VALUE_ATTRIBUTE.GL_ACCOUNT_
TYPE}

Represents the
value table value
attribute column in
segment lists of
values and
represents the
combination table
value attribute
column in
combination lists of
values.

Using Key Flexfield Advanced Features in Reference Mode

24-68 Developer's Guide

AND ...
AND
(GL_AFF_AWC_API_PKG.gl_valid_flex_values(
 :Bind_ValidationDate, glcc.segment5) = 'Y'))

24.5.1.4.2 How to Set the Bind_ValidationRules Parameter Edit the view accessor's Bind_
ValidationRules parameter to specify the validation rules to be applied to constrain
the code-combination filters.

To set the Bind_ValidationRules parameter:
1. Create the view accessor and open it for editing as described in Section 24.5.1,

"How to Define Code Combination Constraints."

2. In the Edit View Accessor dialog, set the Bind_ValidationRules value.

The value of Bind_ValidationRules should be a semicolon-separated list of rule
codes; for example:

VALIDATION_RULE1;VALIDATION_RULE2

The validation rules are predefined as part of the key flexfield definition. The
supplied list is the list of rules must be applied when searching for a code
combination.

Note the following cautions when constructing this list:

■ The validation rule codes are case-sensitive.

■ Space characters are preserved. For example, "VRULE1; VRULE2" will be parsed
into "VRULE1" and " VRULE2" (with a leading space).

■ Unrecognized and unused rules are discarded silently. For example, if you
have a validation rule for an optional label, and the label has not been
assigned yet in the current flexfield definition, then the rule will be ignored at
runtime.

In a search user interface, the supplied validation rules also affect the list of values
of a segment. For example, the end user may pick a value for a segment from a list
of values, then use the segment value to search for a code combination. The list of
values of the segment will be constrained by the supplied validation rules.

24.5.1.5 Enabling or Disabling Dynamic Combination Creation for a Specific Usage
You can use the Bind_DynamicCombinationCreationAllowed parameter to control the
runtime entry of new code combinations for a key flexfield usage. This constraint type
takes effect only when the key flexfield allows dynamic combination insertion. For
more information, see Section 24.2.4.2, "Enabling Dynamic Combination Insertion."

To set the Bind_DynamicCombinationCreationAllowed parameter:

1. Create the view accessor and open it for editing as described in Section 24.5.1,
"How to Define Code Combination Constraints."

2. In the Edit View Accessor dialog, set the Bind_
DynamicCombinationCreationAllowed value.

Tip: To learn how to generate documentation about using the FND_
FLEX_KF_SETUP_APIS PL/SQL package, see Section 24.2.1.6, "What
You May Need to Know About the Key Flexfield Setup API."

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-69

The value of Bind_DynamicCombinationCreationAllowed can be TRUE, FALSE, or
null.

By setting this value to TRUE or FALSE, you can control whether your specific usage
of the key flexfield allows dynamic insertion even though the key flexfield as a
whole is enabled for dynamic insertion. Set the value to TRUE if you want your
usage of the key flexfield to allow dynamic insertion. Set the value to FALSE if you
do not want your usage of the key flexfield to allow dynamic insertion. Set the
value to null to indicate that the key flexfield itself should determine whether
dynamic combination insertion is allowed or not.

If the key flexfield does not allow dynamic combination insertion, this constraint is
ignored. Bind_DynamicCombinationCreationAllowed is a row-level bind
parameter.

24.5.2 How to Access Segment Labels Using the Java API
Segment labels (previously known as key flexfield qualifiers) that have been assigned
to segments by customers can be accessed programmatically. The information can be
accessed using the flexfield application module or the flexfield view row.

Example 24–14 is an example of Java code that retrieves segment label information
from a deployed flexfield using the flexfield application module.

Example 24–14 Retrieving Segment Label Information Using the Flexfield Application
Module

// First find the flexfield application module:
FlexfieldApplicationModuleImpl flexAM = (FlexfieldApplicationModuleImpl)
 rootAM.findApplicationModule("Kff1nAM1");

// Find the attributes labeled as "SEGMENT_LABEL_G1" in structure
// "VS_FRM_CHR_ON_CHR".
// If you wish to use a structure instance number, you must further
// cast the application module into KFFApplicationModuleImpl and call
// getStructureCode(long) to find the code.
// For example,
// KFFApplicationModuleImpl kffAM = (KFFApplicationModuleImpl) flexAM;
// String code = kffAM.getStructureCode(12345);
List<AttributeDef> attrs = flexAM.getLabeledAttributes("VS_FRM_CHR_ON_CHR",
 "SEGMENT_LABEL_G1");
for (AttributeDef attr: attrs)
{
 System.out.println(attr.getName());

 // You can get the segment code through a static method.
 System.out.println(FlexfieldViewDefImpl.getSegmentCode(attr));

 // If you somehow need to construct a WHERE clause using this attribute,
 // this is the identifier you should use.
 System.out.println(attr.getColumnNameForQuery());

 // You can find the "column name" defined in the entity. The column name
 // is typically the database column name.
 System.out.println(attr.getColumnName());
}

Example 24–15 is an example of Java code that retrieves segment label information
from a deployed flexfield using the flexfield view row.

Using Key Flexfield Advanced Features in Reference Mode

24-70 Developer's Guide

Example 24–15 Retrieving Segment Label Information Using the View Row

// This is just for illustration. In a real application, the
// flexfield view row should be retrieved through the view link accessor.
ViewObject vo = rootAM.findViewObject("Kff1nAM1.DefaultFlexViewUsage");
vo.executeQuery();
while (vo.hasNext())
{
 FlexfieldViewRowImpl row = (FlexfieldViewRowImpl) vo.next();
 // Given a KFF view row, you can find the labeled attributes through
 // the view def. An empty list is returned if the given label is not used
 // in the row.
 List<AttributeDef> labeledAttrs =
 row.getFlexfieldViewDef().getLabeledAttributes("SEGMENT_LABEL_RU1");
 for (AttributeDef attr: labeledAttrs)
 {
 System.out.print(attr.getName() + "=" +
 row.getAttribute(attr.getName()) + ";");
 }
 System.out.println();
}

For more information about segment labels, see Section 24.2.2, "How to Implement
Key Flexfield Segment Labels." For more information about the Java API, see the
Javadoc.

24.5.3 How to Prepare Key Flexfield Business Components for Oracle Business
Intelligence

Oracle Business Intelligence is a comprehensive collection of enterprise business
intelligence functionality that provides the full range of business intelligence
capabilities including interactive dashboards, full ad hoc, proactive intelligence and
alerts, enterprise and financial reporting, real-time predictive intelligence, and more.

While key flexfields are modeled using polymorphic view objects, flexfield technology
is not compatible with Oracle Business Intelligence, which also requires reference data,
such as lookups, to be modeled as view-linked child view objects. For a key flexfield to
be used by Oracle Business Intelligence, it must be flattened into a usable static form. To
make this possible, you must designate the flexfield as business intelligence-enabled.
When you create business components for this key flexfield, the business component
modeler recognizes the business intelligence-enabled setting, and a view object that is
flattened for business intelligence is generated alongside the standard key flexfield
polymorphic view object. You must also slightly modify the process of creating key
flexfield view links and application modules.

When the business intelligence-enabled and flattened key flexfield is configured as
part of an application, the implementor can select which individual flexfield segments
to make available for use with Oracle Business Intelligence. Only the segments that are
business-intelligence enabled are included in the flattened view object.

24.5.3.1 Enabling a Key Flexfield for Oracle Business Intelligence
If you want customers to be able to do business intelligence queries on whatever
segments they configure for a flexfield, you must business-intelligence enable the
flexfield and its segments. A flattened view object is generated only if the key flexfield
is business-intelligence enabled. A segment is included in the flattened view object
only if the segment is business-intelligence enabled.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-71

You can set the flexfield's business intelligence-enabled flag at registration time using
the fnd_flex_kf_setup_apis.create_flexfield(...) procedure, or you can set the
flag later using the fnd_flex_kf_setup_apis.update_flexfield(...) procedure. To
learn how to generate documentation about using these procedures, see
Section 24.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."

You can optionally provide flattened fact names for the flexfield's entity details. This
helps to automate the process for importing the key flexfield into Oracle Business
Intelligence. To provide the flattened fact name, set the BI_FLATTENED_FACT_NAME
value when you register the entity details using the create_adfbc_usage(...)
procedure. You can also set the flag later using the update_adfbc_usage(...)
procedure.

Use the Manage Key Flexfields task, which is accessed from the Setup and
Maintenance work area of any Oracle Fusion Setup application, to enable the segments
for business intelligence. Only the segments that are business-intelligence enabled are
included in the flattened view object.

If you want to map the business intelligence-enabled segments to logical dimensions
in the Oracle Business Intelligence logical model, use the Manage Key Flexfields task
to create segment labels and to map the labels to the logical dimensions. Then assign
the labels to the appropriate flexfield segments. By mapping the segments to the
dimensions, you minimize the steps for importing the flexfield into Oracle Business
Intelligence. For information about the logical model, see the "Working with Logical
Tables, Joins, and Columns" chapter in the Oracle Fusion Middleware Metadata Repository
Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion
Applications Edition)

24.5.3.2 Producing a Flattened Model for a Business Intelligence-Enabled Key
Flexfield
When you create business components for a business intelligence-enabled key
flexfield, the business component modeler recognizes the business
intelligence-enabled setting, and a view object that is flattened for Oracle Business
Intelligence is generated alongside the standard key flexfield polymorphic view object.
You must also slightly modify the process of creating key flexfield view links and
application modules.

Before you begin:
1. Enable the flexfield and the desired segments for Oracle Business Intelligence as

described in Section 24.5.3.1, "Enabling a Key Flexfield for Oracle Business
Intelligence."

2. If your flexfield will use hierarchical (tree structured) value sets, create
column-flattened versions of the affected view objects and import them into your
project before continuing.

If the flattened tree view objects are not in your project, the Create Flexfield
Business Components wizard will report the missing view objects as errors.

Note: When you make changes to a business intelligence-enabled
flexfield, use the Import Metadata wizard to import the changes into
the Oracle Business Intelligence repository as described in the "Using
Incremental Import to Propagate Flex Object Changes" section in the
Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle
Business Intelligence Enterprise Edition (Oracle Fusion Applications
Edition).

Using Key Flexfield Advanced Features in Reference Mode

24-72 Developer's Guide

For more information, see Section 59.8.1, "Designing a Column-Flattened View
Object for Oracle Business Intelligence."

To produce a flattened model for a business intelligence-enabled key flexfield:
1. Create key flexfield business components as described in Section 24.2.4, "How to

Create Key Flexfield Business Components."

When a flexfield is business intelligence-enabled, the Create Flexfield Business
Components wizard generates a business intelligence-specific view object and
other business components under a directory called analytics in the package
root directory. These are generated in addition to the typical key flexfield view
object. The business intelligence-specific view object is distinguished from the
typical key flexfield view object by the "BI:" prefix.

2. Create a view link using the procedure described in Section 24.3.1, "How to Create
Key Flexfield View Links." Keep the following in mind:

■ The view object that you use for the source view object can be the same source
view object that you used for the base key flexfield.

■ Create the view link from the source view object to the business
intelligence-specific view object, which is the view object with the "BI:" prefix
as shown in Figure 24–20.

Figure 24–20 Create Flexfield View Link Wizard — View Objects Page

3. Create an application module for use with Oracle Business Intelligence, as
described in Section 24.2.4.1.3, "How to Create the Maintenance Application
Module." Make the following changes:

a. On the Data Model page of the Create Application Module wizard, when you
create an instance of the master view object, there is no need for a child view
object.

b. On the Application Modules page of the wizard, add an instance of the key
flexfield Oracle Business Intelligence application module as a nested instance
of this application module. You can identify the Oracle Business Intelligence
application module by the analytics subpackage under the package root.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-73

4. Define the custom properties required to link the master view object instance to
the default view instance.

Do this in the General navigation tab of the nested instance definition of the
business intelligence-enabled flexfield application module, as shown in
Figure 24–21.

Figure 24–21 Custom Properties for Business Intelligence-Enabled Application Module

As you do this, keep the following points in mind:

■ The default view instance inside the business intelligence-enabled flexfield
application module is typically called DefaultFlexViewUsage.

■ The custom property names should be formatted as BI_VIEW_LINK_
mypropertyname.

■ The custom property values should be formatted as source_
viewobjectinstance_name, viewlink_definition_name, destination_
viewobjectinstance_name.

■ Use the fully qualified view object instance names for the source view object
and destination view object, and the fully qualified package name for the view
link definition.

■ Business intelligence joins between the view object instances you specify in
different application modules are created during import from Oracle ADF.

24.5.4 How to Publish Key Flexfield Application Modules as Web Services
You can make access to a key flexfield available through web services, which will
enable you to perform create, read, update, and delete (CRUD) operations on the
flexfield data rows. You accomplish this by exposing a key flexfield application
module as a web service and adding support utility methods for the flexfield service
data object to the product application module.

When you generate a flexfield business component, the key flexfield business
component and other artifacts are developed based on the information in the flexfield

Note: If you already have a product Oracle Business Intelligence
application module, you may use it.

Using Key Flexfield Advanced Features in Reference Mode

24-74 Developer's Guide

metadata. As illustrated in Figure 24–2, a base view object is created for the CCID and
SIN segments. If any contexts have been configured, subtype view objects are
generated for each configured context.

As an example, suppose that an application module has the master view object Fkt1
and a view link from the master view object to the detailed key flexfield view object,
Global1, which is a polymorphic view object.

The Business Component Browser view shown in Figure 24–22 corresponds to a
particular row in the master view object, displaying the segment structure in the key
flexfield with a SIN of 11.

Figure 24–22 Business Component Browser View of Flexfield Row with SIN = 11

The Business Component Browser view shown in Figure 24–23 corresponds to a
different row in the master view object, displaying the segment structure in the key
flexfield with a SIN of 25.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-75

Figure 24–23 Business Component Browser View of Flexfield Row with SIN = 25

To make a key flexfield accessible through a web service:

1. Expose the key flexfield application module as a web service.

2. Test the web service.

24.5.4.1 Exposing a Key Flexfield Application Module as a Web Service
You make key flexfield access available through web services by doing the following:

1. Setting a custom property for the flexfield view link.

2. Adding a transient attribute to the master view object to store the concatenated
flexfield key.

3. Service-enabling the master view object.

4. Creating the service interface for the product application module within which the
key flexfield application module is nested.

5. Adding flexfield service data object support utility methods to the product
application module.

Before you begin:

Note: In this section, master view object refers to the view object for
the reference table as illustrated by Figure 24–1.

Using Key Flexfield Advanced Features in Reference Mode

24-76 Developer's Guide

1. Create the master entity object and view object for the product table that references
the key flexfield.

2. Create the flexfield business component as described in Section 24.2.4.3, "Building
a Read-Only Reference Model."

3. Create a flexfield view link between the master view object and the flexfield
business component as described in Section 24.3.1, "How to Create Key Flexfield
View Links."

4. Nest the key flexfield application module instance in the product application
module as described in Section 24.3.2, "How to Nest an Instance of the Key
Flexfield Application Module in the Product Application Module."

5. Add the key flexfield view object instance to the application module as described
in Section 24.3.3, "How to Add an Instance of a Key Flexfield View Object to the
Product Application Module."

To expose a key flexfield application module as a web service:

1. Complete the following steps to ensure that Service Data Objects (SDOs) exist for
all subtype objects.

a. In the Application Navigator verify that .xsd files exist for all flexfield
subtype view objects.

b. Open the .xsd file for the key flexfield's base view object and verify that
<include> elements exist for all the flexfield subtype view objects.

Figure 24–24 The Include Elements for the Flexfield Subtype SDOs

c. If any subtype view object SDOs are missing, edit the key flexfield's base view
object, and, on the Java navigation tab, click the Edit Java options icon.

In the Select Java Options dialog shown in Figure 24–25, select Generate
Service Data Object Class, ensure that the namespace is the same location
that contains the flexfield view object XML files, and click OK.

Note: When you generate a flexfield business component,
JDeveloper automatically service-enables the business component by
generating a Service Data Object (SDO) for the base view object and
for every subtype view object.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-77

When the SDO is generated for the base view object of the key flexfield
polymorphic view object, generic SDOs are automatically generated for all the
base view object subtypes.

Figure 24–25 Generating the SDO for the Key Flexfield Base View Object

2. Edit the view link between the master view object and the flexfield view object.

3. Click the General navigation tab in the overview editor, expand the Custom
Properties section, and add a SERVICE_PROCESS_CHILDREN property set to true, if
one does not already exist.

4. Edit the master view object.

5. In the overview editor, add a transient attribute to store the key flexfield
concatenated string.

a. Click the Attributes navigation tab, and click the Add icon in the Attributes
section.

b. In the View Attribute dialog shown in Figure 24–26, enter a name for the
attribute.

Using Key Flexfield Advanced Features in Reference Mode

24-78 Developer's Guide

Figure 24–26 Adding a Transient Attribute to the Master View Object

c. Set the Java attribute type to String.

d. Leave the Mapped to Column or SQL checkbox unselected.

A transient attribute does not include a SQL expression.

e. Select the Always radio button.

f. Leave the Expression blank.

g. Click OK.

6. Click the Java navigation tab and click the Edit icon in the Java Classes section to
generate classes for the master view object.

7. In the Select Java Options dialog shown in Figure 24–27, select the following
checkboxes and click OK:

■ Generate View Object Class

■ Include bind variable accessors

■ Include custom Java data source methods

■ Generate View Row Class

■ Include accessors

■ Generate View Object Definition Class

■ Generate Service Data Object Class

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-79

Figure 24–27 Generating Java Classes for the Master View Object

8. In the Java navigation tab, click the link for the View Row Class to open it in the
editor.

9. Add the code shown in bold in Example 24–16 to the setter method for the
transient attribute that you created. Set the viewAccessorName to the name of the
view accessor from the view link between the master view object and the key
flexfield view object.

The added code stores the key flexfield concatenated string.

Example 24–16 Setter Method for the Transient Attribute

 /**
 * Sets <code>value</code> as the attribute value for the calculated attribute
KffConcatSegment
 * @param value value to set the KffConcatSegment
 */
 public void setKffConcatSegment(String value) {

 String concatAttrPrefix = FlexfieldProperty.PREFIX;
 String concatAttrPostfix =
 FlexfieldProperty.CONCATENATED_STORAGE_ATTR_POSTFIX;
 // Modify next line to set viewAccessorName to name of the VL
 String viewAccessorName = "put KFF view link acccessor name here";
 String concatAttrName =
 concatAttrPrefix + viewAccessorName + concatAttrPostfix;
 setAttributeInternal(concatAttrName, value);

Using Key Flexfield Advanced Features in Reference Mode

24-80 Developer's Guide

 setAttributeInternal(KFFCONCATSEGMENT, value);
 }

10. Edit the product application module in which the key flexfield application module
instance, master view object instance, and flexfield view object instance are nested.

11. Click the Service Interface navigation tab and click the Add icon to enable
support for the service interface. If the icon is not enabled, click the Edit icon
instead and edit the pages that are named in the following steps.

12. In the Service Interface page of the Create Service Interface wizard, the Web
Service Name and Target Namespace fields are automatically populated with
appropriate values for this application module.

Click Next to continue.

13. In the Service Custom Methods page, select the client methods in the Available list
that you want to expose as part of the service interface and move them to the
Selected list.

14. Click Next to continue.

15. In the Service View Instances page select the view objects in the Available list that
you want to expose as part of the service interface and move them to the Selected
list.

16. Highlight each view object on the Selected list to display the Basic Operations
and View Criteria Find Operations lists for the operations that are available for
that view object, as shown in Figure 24–28.

Select the checkbox for each operation of the view object that you want to expose
in the service interface and clear the rest.

Figure 24–28 Create Service Interface Wizard — Service View Instances Page

17. Click Next to continue.

18. In the Summary page, review your choices and click Finish to generate the web
service from the application module. You should see that the Service Interface
navigation tab now reflects the custom methods, view instances, basic operations,

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-81

and view criteria find operations that you chose to expose, as shown in
Figure 24–29.

Figure 24–29 Application Module Service Interface Properties

19. Click Finish.

The generated service interface components appear below the application module
in the Application Navigator, as shown in Figure 24–30.

Figure 24–30 Application Module Service Interface Structure

20. In the overview editor for the product application module, click the Java
navigation tab.

Using Key Flexfield Advanced Features in Reference Mode

24-82 Developer's Guide

21. If the Application Module Class and the Application Module Definition Class
do not appear in the list of Java classes, click the Edit icon and generate the classes.

22. In the Java Classes section, click the link for the Application Module Class.

23. Add the utility methods shown in Example 24–17 to the application module class.
These utility methods enable web service clients to obtain FlexfieldSdoSupport
objects to access the flexfield's information.

Replace Flexfield with the appropriate string for the flexfield that you are working
with. Use a string that describes how the flexfield will be used by the customers.
For example, getLedgerSdoNamespaceAndName is better than
getGLSubtypeSdoNamespaceAndName.

In the getFlexfieldSdoSupport and getFlexfieldStructureInstanceNumber methods,
replace getKffMAM1 with the name of the getter method for the nested
maintenance application module instance.

Example 24–17 Utility Methods for Flexfield Service Data Object Support

 // Change method name as appropriate
 public List<String> getFlexfieldSdoNamespaceAndName(
 String structureInstanceCode) {
 FlexfieldSdoSupport ss= getFlexfieldSdoSupport(structureInstanceCode);
 if (ss == null) {
 return null;
 }
 return Arrays.asList(ss.getSdoNamespace(), ss.getSdoName());
 }

 // Change method name as appropriate
 public String getFlexfieldSdoPath() {
 FlexfieldSdoSupport ss = getFlexfieldSdoSupport(null);
 if (ss == null) {
 return null;
 }
 return ss.getDiscriminatorSdoPath();
 }

 // Change method name as appropriate
 public List<String> getFlexfieldSegmentSdoPaths(
 String structureInstanceCode,
 List<String> segmentCodes) {
 FlexfieldSdoSupport ss = getFlexfieldSdoSupport(structureInstanceCode);
 if (ss == null) {
 return null;
 }
 ArrayList r = new ArrayList(segmentCodes.size());
 for (String segmentCode : segmentCodes) {
 r.add(ss.getSegmentSdoPath(segmentCode));
 }
 return r;
 }

 // Change method name as appropriate
 private FlexfieldSdoSupport getFlexfieldSdoSupport(
 String structureInstanceCode)
 {
 /**
 * @param structureInstanceCode set to null to get the parent (base)
 */

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-83

 // Find the nested maintenance application module instance
 KFFMApplicationModuleImpl am;
 // Change getKffMAM1 to name of the getter method for the nested KFF AM
 am = (KFFMApplicationModuleImpl) getKffMAM1();
 return am.getSdoSupport(structureInstanceCode);
 }

 // Change method name as appropriate
 public Long getFlexfieldStructureInstanceNumber(
 String structureInstanceCode) {
 // Find the maintenance application module instance
 KFFMApplicationModuleImpl am;
 // Change getKffMAM1 to name of the getter method for the nested KFF AM
 am = (KFFMApplicationModuleImpl) getKffMAM1();
 return am.getStructureInstanceNumber(structureInstanceCode);
 }

24. In the overview editor for the product application module, click the Service
Interface navigation tab for the product application module and click the Edit icon
in the Service Interface Custom Methods section.

25. In the Service Custom Methods page, move the newly added public methods to
the Selected list to make them available for clients and click OK.

The application module's remote server implementation class will be modified to
expose these methods.

24.5.4.2 Testing the Web Service
You can test the key flexfield web service access by providing web server connection
information, deploying and manually testing the web service, and optionally writing
Java client programs to call the support utility methods for the flexfield service data
object to test the service.

Before you begin:

1. Ensure that the BC4J Service Client and BC4J Service Runtime libraries are
included in your project.

2. Create a writable maintenance model as described in Section 24.2.4.1, "Building a
Writable Maintenance Model."

3. Expose the key flexfield maintenance application module as a web service as
described in Section 24.5.4.1, "Exposing a Key Flexfield Application Module as a
Web Service."

To test the web service:

1. Expand Application Resources > Descriptors > ADF Meta-INF, and open the
connections.xml file.

2. Locate the Reference element for the product application module's service
(ApplicationService in this example).

This is the service that you created in Section 24.5.4.1, "Exposing a Key Flexfield
Application Module as a Web Service" for the product application module in
which the key flexfield maintenance application module instance, master view
object instance, and flexfield view object instance are nested.

3. Add the StringRefAddr elements that are shown in bold in Example 24–18.
Modify the host and port number in the jndiProviderURL entry to point to an
instance of Oracle WebLogic Server. The port number is typically 7101.

Using Key Flexfield Advanced Features in Reference Mode

24-84 Developer's Guide

Example 24–18 StringRefAddr Elements to Add to Application Module Reference in
connections.xml

 <Reference
name="{http://xmlns.oracle.com/oracle/apps/fnd/applcore/flex/test/kff1/model/}Appl
icationService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">

<Contents>oracle.apps.fnd.applcore.flex.test.kff1.model.ApplicationService</Conten
ts>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">

<Contents>ApplicationServiceBean#oracle.apps.fnd.applcore.flex.test.kff1.model.App
licationService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>ApplicationService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/fnd/applcore/flex/test/kff1/model/</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:port_number</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityPrincipal">
 <Contents>weblogic</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityCredentials">
 <Contents>weblogic1</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>

4. Run the remote server class for the product application module to deploy the

service to an Integrated WebLogic Server instance and to manually test the web
service.

5. Optionally, create and run Java client programs to test invoking the web service.

Example 24–19 is an example of how a client test program would use the support
utility methods for the flexfield service data object that you added in
Section 24.5.4.1, "Exposing a Key Flexfield Application Module as a Web Service."

Note: The remote server class was generated when you exposed the
key flexfield as a web service in Section 24.5.4.1, "Exposing a Key
Flexfield Application Module as a Web Service." This class has a name
that ends with ServiceImpl.java.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-85

Example 24–19 Sample Java Code to Test the Web Service

 public void testSDOAPIs()
 {
 // Flexfield service data objects are created automatically based on the
 // flexfield definition. Certain information such as segment codes must be
 // transformed to be used in a service data object definition.
 AcctKffMaintService acctKffMaintService =
 (AcctKffMaintService)
 ServiceFactory.getServiceProxy(AcctKffMaintService.NAME);
 DataFactory dataFactory =
 ServiceFactory.getDataFactory(acctKffMaintService);

 // Get the namespace and name corresponding to a particular
 // structure instance code.
 List<String> accountSdoInfo =
 acctKffMaintService.getAcctSdoNamespaceAndName("CC_ACCT_LOC_PRJ_SI");
 System.out.println(accountSdoInfo);

 DataObject accountDo =
 dataFactory.create(accountSdoInfo.get(0), accountSdoInfo.get(1));
 System.out.println(accountDo);
 accountDo.set(acctKffMaintService.getAcctSDOPath(),
 acctKffMaintService.getAcctStructureInstanceNumber(
 "CC_ACCT_LOC_PRJ_SI"));

 // Get segment paths for attributes COST_CENTER and LOCATION.
 List<String> segmentPaths =
 acctKffMaintService.getAcctSegmentSdoPaths("CC_ACCT_LOC_PRJ_SI",
 Arrays.asList("COST_CENTER",
 "LOCATION"));

 System.out.println(segmentPaths);

 //Update COST_CENTER and LOCATION after obtaining their segmentPaths.
 accountDo.set(segmentPaths.get(0), "A12");
 accountDo.set(segmentPaths.get(1), "UK");

 }

24.5.5 How to Access Key Flexfields from an ADF Desktop Integration Excel Workbook
ADF Desktop Integration makes it possible to combine desktop productivity
applications with Oracle Fusion applications, so you can use a program such as
Microsoft Excel as an interface to access application data.

Using ADF Desktop Integration, you can incorporate key flexfields into an integrated
Excel workbook, so you can work with the flexfield data from within the workbook.

For more general information about integrating Oracle Fusion applications with
desktop applications, see the Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework. This guide provides most of the
information you need to complete the required activities, including the following:

■ Preparing your development environment for desktop integration.

■ Creating a page definition file that will expose the Oracle ADF bindings for use in
Excel.

■ Creating an Excel workbook to integrate with the key flexfield.

Using Key Flexfield Advanced Features in Reference Mode

24-86 Developer's Guide

■ Preparing your Excel workbook to access the column containing the flexfield.

■ Incorporating a key flexfield as a dynamic or static column in an ADF Desktop
Integration Table on a worksheet in the workbook.

There are two ways to access a key flexfield in Excel:

■ Using a dynamic column in an ADF Desktop Integration Table.

A web page in a popup dialog can be associated with a dynamic column, enabling
end users to pick flexfield segment values. Alternatively, users can enter values
directly into the segment fields. No custom code is required in either case.

This is the most typical scenario. Each key flexfield segment is displayed as a
distinct column in the ADF Desktop Integration Table. First you configure ADF
Desktop Integration with a dynamic column key flexfield, and then, if necessary,
you handle user-initiated structure code changes.

■ Using a static column in a popup dialog associated with a single cell. Use this
approach for either of the following reasons:

– The key flexfield is in a non-table area of the worksheet.

– The ADF Desktop Integration Table needs to expose the same key flexfield
instance more than once. In this case, only one instance can be dynamic. All
other instances should be exposed as static columns.

In addition to using the popup dialog, end users can enter values directly into the
segment field, with the values separated by an appropriate delimiter that you
specify.

Individual flexfield segments do not appear in the worksheet. Instead, ADF
Desktop Integration invokes a separate JSPX page on which the flexfield will be
visible. You can use this scenario with an ADF Desktop Integration form, or either
table type, by configuring ADF Desktop Integration with a static column key
flexfield.

Note: The Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework does not make
explicit reference to technologies documented in this Oracle Fusion
Applications Developer's Guide, and this guide does not repeat the
content in the Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework. Therefore, you
must read the Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework for a full
understanding of how to use ADF Desktop Integration technology in
general.

In addition to the standard implementation steps covered in that
guide, you must modify your implementation to accommodate
flexfields, as discussed in the following sections.

Note: A static column is any column for which the DynamicColumn
property is set to False.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-87

The key flexfield's segments are part of your database table, so the flexfield is
generated against the same entity object on which your worksheet view object is
based.

In addition to configuring ADF Desktop Integration with the dynamic or static column
key flexfield, you might also need to call a custom application module to handle the
update or insert of a key flexfield data row.

24.5.5.1 Configuring ADF Desktop Integration with a Dynamic Column Key
Flexfield
When you configure the ADF Desktop Integration Table, make the following changes:

■ Add the ADF Desktop Integration Model API library to your data model
project.

■ In your page definition for the worksheet, add the key flexfield that you want to
access to the master worksheet view object as a child node. Do not add any
display attribute to the child node, which expands as a dynamic column in the
worksheet.

For more information about how to create a page definition file for a desktop
integration project, see the "Working with Page Definition Files for an Integrated
Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

■ To make the key flexfield column of the ADF Desktop Integration Table
component dynamic, set the DynamicColumn property in the TableColumn array
of the ADF Desktop Integration Table to True. A dynamic column in the
TableColumn array is a column that is bound to a tree binding or tree node binding
whose attribute names are not known at design time. A dynamic column can
expand to more than a single worksheet column at runtime.

For more information about the binding syntax for dynamic columns, see the
"Adding a Dynamic Column to Your ADF Table" section of the Oracle Fusion
Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework.

■ For the table's UpdateComponent and InsertComponent properties, specify one
of the following as the subcomponent to use:

– Inputtext

– OutputText

– ModelDrivenColumnComponent

■ For the subcomponent's Value property, access the Expression Builder, expand the
Bindings node and your tree binding for the table, and select the flexfield node.

■ For the subcomponent's Label property, access the Expression Builder, expand the
Bindings node and your tree binding for the table, and select the flexfield node.

For information about the Expression Builder, see the "Using the Expression Builder"
section in the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle
Application Development Framework.

Note: The titles of the popup dialog components must be set to the
name of the key flexfield, such as "Account," to be consistent across
Oracle Fusion Applications.

Using Key Flexfield Advanced Features in Reference Mode

24-88 Developer's Guide

24.5.5.2 Handling User-Initiated Structure Code Value Changes in a Dynamic
Column Key Flexfield
ADF Desktop Integration requires that to use a dynamic column implementation, the
structure of the key flexfield should remain constant for all rows in a given result set.
However, each time a new result set is downloaded into the table, the structure code
value (and thus the structure) can be changed.

If the structure code value is set globally for the end user of the workbook, changes are
not an issue. However, if the end user can control the structure code value (for
example, using an LOV in a "header" form), your application must be able to respond
appropriately to update the key flexfield structure.

After the end user specifies a structure code value, you must invoke the worksheet
UpSync method to get the new value into the model. Then you can use the ADF
Desktop Integration Table Download method to get fresh data with the new key
flexfield structure.

24.5.5.3 Configuring ADF Desktop Integration with a Static Column Key Flexfield
ADF Desktop Integration supports key flexfields by using tree bindings in an ADF
Desktop Integration Table. If you are adding your key flexfield as a static column, you
can alternatively use an ADF Read-Only Table. Keep in mind that ADF Read-Only
Tables support static columns, but not dynamic columns. Popup dialogs support both
types.

When you configure the popup dialog, make the following changes:

■ You can use the column's action set properties to make the key flexfield web page
available for editing. You should include the attributes used in the web page in the
table's cached attributes unless the row will be committed immediately.

■ You must choose a fixed attribute (the key flexfield CCID) to represent the flexfield
in the worksheet. Add a Dialog action to the DoubleClickActionSet of an
InputText or OutputText component, then connect the Dialog action to a JSPX
page that will display the key flexfield.

For more information about how to create a page definition file for a desktop
integration project, see the "Working with Page Definition Files for an Integrated
Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

For static display of a key flexfield in an ADF Desktop Integration workbook, you
must create an updatable transient attribute in the view object on which the ADF
Desktop Integration table is based. This transient attribute will hold the concatenated
value of the key flexfield segments, separated by a delimiter. If one purpose of the

Note: For an insert-only table, the Download method is undesirable.
For these cases, use either the ADF Desktop Integration Table
DownloadForInsert method or the Initialize method to enable the
ADF Desktop Integration Table component to reconfigure to
accommodate the new flexfield structure.

Note: A key flexfield appears as a node in the tree binding at design
time. Because flexfields are built up dynamically at runtime, you will
not see any attributes under the flexfield node in the page definition,
but the node itself is present.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-89

worksheet is to display existing data from the database, the transient attribute should
be populated using custom application module methods upon returning from a popup
dialog or opening the worksheet.

24.5.5.4 Handling Update or Insert of a Key Flexfield Data Row
To handle updating or inserting a data row containing a key flexfield in an ADF
Desktop Integration table, you call a custom application module method that contains
appropriate code, as follows:

■ To update an existing row, add your code to the UpdateRowActionId property of
the table.

■ To insert a new row, add your code to the InsertAfterRowActionId property of
the table.

The following examples demonstrate the code needed to accomplish these tasks.
Example 24–20 and Example 24–21 apply to an ADF Desktop Integration
implementation with the key flexfield exposed as a dynamic column. Example 24–22
and Example 24–23 apply to an ADF Desktop Integration implementation with the key
flexfield exposed as a static column.

Example 24–20 Updating an Existing Row with a Key Flexfield Dynamic Column

You add this code as an application module method that will be invoked from the
UpdateRowActionId property of an ADF Desktop Integration Table. This code will be
invoked for every row that is updated.

Row tempRow = null;
// Get KFF child row information based on the KFF view link accessor.
KFFViewRowImpl acctRow;
ViewRowImpl kffAcctRow = (KFFViewRowImpl)linerow.getAccountLineKff();

// If it is not child row (for a new row case or cases where
// KFF data is not invalid/present for existing DB Row)
// get a dummy row from ADF Desktop Integration helper class.

if (kffAcctRow == null) {
 tempRow = ModelHelper.getAdfdiTempChildRow(linerow, "AccountLineKff");
 kffAcctRow = (ViewRowImpl)tempRow;
 }

Long kffAcctId = null;
String acctSeg=null;

// Check whether the KFF row is an instance of KFFViewRowImpl,
// which means you are updating valid KFF data.
// If not, it means you are creating new KFF data.
// Based on that, logic of deriving updated segments from worksheet differs.

if (kffAcctRow instanceof KFFViewRowImpl){
 acctRow = (KFFViewRowImpl)fkRow.getAccountLineKff();
 acctSeg = acctRow.getBufferedConcatenatedSegments();
} else {
 acctSeg = KFFViewRowImpl.getConcatenatedSegments(kffAcctRow);
}
kffAcctId = linerow.getKeyFlexfieldCombinationID("AccountLineKff",acctSeg);

// If you need dynamic insert (the creation of new segment combinations)
// from the ADF Desktop Integration worksheet, make sure the end user

Using Key Flexfield Advanced Features in Reference Mode

24-90 Developer's Guide

// supplied a valid value for at least one segment.

if (kffAcctId==null) {
 // If there was not valid CCID obtained earlier, that means you
 // are trying to add a new combination.

 String delimiter = FlexfieldViewDefImpl.getDelimiter(kffAcctRow.getViewDef());
 List segments =
 FlexfieldViewDefImpl.getFlexfieldAttributes(kffAcctRow.getViewDef());
 StringBuffer delim = new StringBuffer();
 for (int i = 0; i < segments.size() - 1; i++) {
 delim.append(delimiter);
 }

 // If getConcatenatedSegments() returns only delimiter information,
 // that means end user has not supplied valid KFF Segment values.

if (!acctSeg .equals(delim.toString())) {
 linerow.setKeyFlexfieldCombinationID("AccountLineKff",
 acctSeg);

//Get CCID value based on segment information

kffAcctId =
 linerow.getKeyFlexfieldCombinationID("AccountLineKff", acctSeg);
}
} //if kffAcctId is null

//setting CCID column with CCID value

 linerow.setDistCodeCombinationId(kffAcctId);

Example 24–21 Inserting a New Row with a Key Flexfield Dynamic Column

Add this code as an application module method that will be invoked from the
InsertAfterRowActionId property of an ADF Desktop Integration Table. This code
will be invoked for every row that is inserted.

Row tempRow = null;
// Retrieve key flexfield child row information based on
// the KFF view link accessor
ViewRowImpl kffAcctRow = (ViewRowImpl)linerow.getAccountLineKff();

// If not a child row (for new row case or cases where
// KFF data is not invalid/present for existing DB Row),
// get a dummy row from ADF Desktop Integration helper class

if (kffAcctRow == null) {
 tempRow = ModelHelper.getAdfdiTempChildRow(linerow, "AccountLineKff");
 kffAcctRow = (ViewRowImpl)tempRow;

}
Long kffAcctId = null;
kffAcctId =
 linerow.getKeyFlexfieldCombinationID("AccountLineKff",
KFFViewRowImpl.getConcatenatedSegments(kffAcctRow));

// If you need dynamic insert (creating new segment combinations)
// in the ADF Desktop Integration worksheet,
// make sure the end user supplies a valid value for at least one segment.

Using Key Flexfield Advanced Features in Reference Mode

Using Key Flexfields 24-91

if (kffAcctId==null) {
 String delimiter = FlexfieldViewDefImpl.getDelimiter(kffAcctRow.getViewDef());
 List segments =
 FlexfieldViewDefImpl.getFlexfieldAttributes(kffAcctRow.getViewDef());
 StringBuffer delim = new StringBuffer();
 for (int i = 0; i < segments.size() - 1; i++) {
 delim.append(delimiter);
 }

 // If getConcatenatedSegments() return only delimiter information,
 // that means end user has not supplied valid KFF Segment values.

 if
 (!KFFViewRowImpl.getConcatenatedSegments(kffAcctRow).equals(delim.toString())){
 linerow.setKeyFlexfieldCombinationID("AccountLineKff",
 KFFViewRowImpl.getConcatenatedSegments(kffAcctRow));

 // Get CCID value based on segment information.

 kffAcctId =
 linerow.getKeyFlexfieldCombinationID("AccountLineKff",
 KFFViewRowImpl.getConcatenatedSegments(kffAcctRow));
 }
}
// Set CCID column with CCID value.

linerow.setDistCodeCombinationId(kffAcctId);

Example 24–22 Updating or Inserting a Row with a Key Flexfield Static Column

This code should be added to the setter method of the transient attribute in your view
object RowImpl.

setAttributeInternal(TRANSIENTACCOUNT, value);
// Get KFF child row information based on the KFF view link accessor.

ViewRowImpl kffAcctRow = (ViewRowImpl)linerow.getAccountKff();
Row tempRow;

// If not child row (for new row case or cases where
// KFF data is not invalid/present for existing DB Row),
// Get a dummy row from ADF Desktop Integration helper class
if (kffAcctRow == null) {
 tempRow = ModelHelper.getAdfdiTempChildRow(this, "AccountKff");
 kffAcctRow = (ViewRowImpl)tempRow;
}
Long kffAcctId = null;

// If you need dynamic insert (creating new segment combinations)
// in the ADF Desktop Integration worksheet,
// make sure the end user supplies a valid value for at least one segment.

String delimiter = FlexfieldViewDefImpl.getDelimiter(kffAcctRow.getViewDef());
List segments =
FlexfieldViewDefImpl.getFlexfieldAttributes(kffAcctRow.getViewDef());
StringBuffer delim = new StringBuffer();
for (int i = 0; i < segments.size() - 1; i++) {
 delim.append(delimiter);
}

Completing the Development Tasks for Key Flexfields in Secondary Mode

24-92 Developer's Guide

// If getConcatenatedSegments() returns only delimiter information,
// that means the end user has not supplied a valid segment value.

 if (value!=null){
 if
(!KFFViewRowImpl.getConcatenatedSegments(kffAcctRow).equals(delim.toString()))
 this.setKeyFlexfieldCombinationID("AccountKff",value);

 kffAcctId = this.getKeyFlexfieldCombinationID("AccountKff", value);

 //set your orignal attribute with CCID value.
 this.setAcctsPayCodeCombinationId(kffAcctId);
 } }

Example 24–23 Applying Modified Segment Values to a Cell in a Key Flexfield Static
Column

You add this code as a custom application module method that will be invoked from
the ActionListener property of the OK button in the popup dialog JSPX page.

// Get a reference to your ADF DesktopIntegration table view object.
DesktopQuickInvoicesHeaderVOImpl headerVO =
 this.getDesktopQuickInvoicesHeader();

// Get a reference to the current row, which is the row from which
// popup dialog is opened
 DesktopQuickInvoicesHeaderVORowImpl headerRow =
 (DesktopQuickInvoicesHeaderVORowImpl)headerVO.getCurrentRow();
// Get a reference to your key flexfield row
 ViewRowImpl kffAcctRow = (ViewRowImpl)headerRow.getAccountKff();
 Row tempRow;

 // If that is null (for a null CCID or an invalid CCID or a new row),
 // get temp row from ADF Desktop Integration.
 if (kffAcctRow == null) {
 tempRow = ModelHelper.getAdfdiTempChildRow(headerRow, "AccountKff");
 kffAcctRow = (ViewRowImpl)tempRow;

 }
// Derive and assign value of segments to your transient attribute
// that is created for single cell display in the ADF Desktop Integration Table.

headerRow.setTransientAccount(KFFViewRowImpl.getConcatenatedSegments(kffAcctRow));

24.6 Completing the Development Tasks for Key Flexfields in Secondary
Mode

The most common use of a key flexfield is for a product table to have a foreign key to
the primary key of the combinations table. This provides the flexibility of storing all
the combinations in a single table and having references to these combinations from
the product tables. However, there are circumstances where application developers
might need to capture segment values in a transaction table or a setup table. In this
case, the key flexfield becomes a data capturing tool, and the captured data is stored in
a product table. There is no direct relationship between the product table and the key
flexfields combinations table. This type of usage is called secondary usage.

There are two types of secondary usage:

Completing the Development Tasks for Key Flexfields in Secondary Mode

Using Key Flexfields 24-93

■ Single-segment secondary usage: Use this mode when you want to capture only
one segment value in a transaction or setup table. For example, if you want to
capture the default cost center value for an employee in the EMPLOYEES table in
the DEFAULT_COST_CENTER column.

■ All-segments secondary usage: Use this mode when you want to capture all the
flexfield's segment values in a transaction or setup table. For example, if you want
to capture all the segment values in a general ledger setup table for use in filling in
missing values in the subledger account engine.

The development tasks for key flexfields in secondary mode consist of the following
steps:

1. Complete the registration of a key flexfield secondary usage (all-segments or
single-segment).

2. Create key flexfield business components that are based on the secondary usage
for use in secondary mode development tasks.

3. Create a view link between your product view object and the secondary mode key
flexfield.

4. The remainder of the development process is essentially the same as the consumer
development process for key flexfield primary usages. You can skip the section on
creating key flexfield view links and continue with the tasks described in the
following sections:

a. Section 24.3.2, "How to Nest an Instance of the Key Flexfield Application
Module in the Product Application Module"

b. Section 24.3.3, "How to Add an Instance of a Key Flexfield View Object to the
Product Application Module"

c. Section 24.4, "Employing Key Flexfield UI Components on a Page"

d. Section 24.4.3, "How to Configure Key Flexfield UI Components"

After you have completed the development tasks for secondary usages, you can
incorporate the secondary usages in the application user interface as described in
Section 24.4, "Employing Key Flexfield UI Components on a Page."

Note: To incorporate a key flexfield secondary usage into your
application, you must have already defined and registered the key
flexfield primary usage on which it is based. See Section 24.2.1.5,
"Registering and Defining Key Flexfields Using the Setup APIs,"
before continuing.

Note: This section contains additional information specific to key
flexfield secondary usages.

Note: This section contains additional information specific to key
flexfield secondary usages.

Completing the Development Tasks for Key Flexfields in Secondary Mode

24-94 Developer's Guide

24.6.1 How to Register a Key Flexfield All-Segment Secondary Usage
All-segment secondary usages have a column in the product table for every segment
column in the combinations table.

To register an all-segment secondary usage:
1. Add columns to your product table to represent all of the key flexfield segment

columns in the combinations table. The columns that you add must match exactly
in number, data type, and size, the corresponding columns in the combinations
table.

Furthermore, the column names must also be exactly the same as in the
combinations table, with the exception of an optional prefix.

For example, if the column names are A1 and A2 in the combinations table, then in
the secondary usage they could again be A1 and A2, respectively, or with a prefix
they could be X_A1 and X_A2. They cannot be B1 and Y_B2, nor any variation that
does not end in the names of the combinations table columns.

2. Use the PL/SQL registration APIs in the FND_FLEX_KF_SETUP_APIS package to
register the secondary usage.

To learn how to generate documentation about using the APIs, see Section 24.2.1.6,
"What You May Need to Know About the Key Flexfield Setup API."

3. Create an ADF Business Components usage for the flexfield table usage as
described in Section 24.2.1.9, "Registering Entity Details Using the Setup APIs."

To implement a key flexfield secondary usage, you select the usage at design time. For
more information, see Section 24.2.4, "How to Create Key Flexfield Business
Components."

If you need to change a table usage after creating it, you must delete the table usage,
then re-create it.

24.6.2 How to Register a Key Flexfield Single-Segment Secondary Usage
Single-segment secondary usages have one column in the product table to capture a
single segment column in the combinations table.

To register a single-segment secondary usage:
1. Add the key flexfield segment column that you want to capture to your product

table. The table cannot be the combinations table for the flexfield.

2. Define a segment label for the segment that you want to capture.

The segment label must be defined as Unique to ensure that only one segment in a
given structure can be associated with this label.

For more information about segment labels, see Section 24.2.2, "How to Implement
Key Flexfield Segment Labels."

3. Use the PL/SQL registration APIs in the FND_FLEX_KF_SETUP_APIS package to
register the secondary usage.

You must supply the SEGMENT_LABEL_CODE value to identify the unique
segment label, and the COLUMN_NAME value to identify the column in your
table in which the segment value will be stored.

To learn how to generate documentation about using the APIs, see Section 24.2.1.6,
"What You May Need to Know About the Key Flexfield Setup API."

Completing the Development Tasks for Key Flexfields in Secondary Mode

Using Key Flexfields 24-95

4. Create an ADF Business Components usage for the flexfield table usage as
described in Section 24.2.1.9, "Registering Entity Details Using the Setup APIs."

To implement a key flexfield secondary usage, you select the usage at design time. For
more information, see Section 24.2.4, "How to Create Key Flexfield Business
Components."

If you need to change a table usage after creating it, you must delete the table usage,
then re-create it.

24.6.3 How to Create Key Flexfield Business Components for Secondary Usage
Zero or more secondary usages can be defined for a given flexfield, each one
potentially on a different product table.

Before you begin:
1. One or more required libraries might have not been automatically included in

your project. Ensure that all required libraries, notably the BC4J Service Runtime,
Java EE 1.5 and Java EE 1.5 API libraries, are included.

2. Using the Create Entity Object wizard, create entity objects for the combinations
tables that you have defined. Verify the following:

■ At least one customization class is included in the adf-config.xml file.

For information about customization layers, see the "Understanding
Customization Layers" section in the Oracle Fusion Applications Extensibility
Guide.

■ These entity objects are directly modeled on the combinations tables; hence,
they contain the fixed (nonflexfield) columns, if any, along with all of the
flexfield columns. In general, all columns should be included.

■ The entity objects have primary keys defined.

■ The CCID column is of type data type java.lang.Long.

■ The SIN column, if it exists, is of data type java.lang.Long.

■ The NUMBER type segment columns are of data type java.math.BigDecimal.

■ The VARCHAR2 type segment columns are of data type java.lang.String.

■ The package name and the object name prefix for each entity object are
registered with the flexfield usage to which it will provide data, as described
in Section 24.2.1.9, "Registering Entity Details Using the Setup APIs."

3. Build your project to ensure that the entity objects are available in classes. The
modeler relies on what is in your classes.

Note: This serves to ensure correct application behavior. It does not
matter which customization class you include.

Caution: The SIN attribute cannot be transient with a calculated
value. It can be based on a database table column, or it can be
SQL-derived.

Completing the Development Tasks for Key Flexfields in Secondary Mode

24-96 Developer's Guide

To create key flexfield business components for a secondary usage:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield Business Components, and click OK.

3. In the Create Flexfield Business Components wizard, on the Role page, select the
role that you are taking as you create the flexfield business components:

■ Developer: select this role if you are incorporating the flexfield into an
application. The business components must be stored in one of your projects.
Select the desired project location from the Project Source Path dropdown list.

■ Tester: select this role if you are planning to test your flexfield or test a shared
flexfield. In the Output Directory field, specify the path of your desired
location for the generated business components.

For more information about testing flexfields, see Chapter 25, "Testing and
Deploying Flexfields." For more information about sharing and importing
shared flexfields, see Section 24.2.5, "How to Share Key Flexfield Business
Components."

4. Click Next. The Flexfield page appears, as shown in Figure 24–31.

Figure 24–31 Create Flexfield Business Components Wizard — Flexfield Page

5. From the Type dropdown list, select Key.

6. In the Application field, specify the full name of the application to which your key
flexfield belongs.

You can browse for the name, and filter by ID, Short Name, or Name.

7. In the Code field, specify the code of the key flexfield you want to use.

Note: This is not a role in the security sense. It exists only during this
procedure, for the purpose of specifying where your generated
flexfield business components should be stored.

Completing the Development Tasks for Key Flexfields in Secondary Mode

Using Key Flexfields 24-97

You can browse for and filter by Code.

8. In the Usage section, select the table row that contains the desired secondary key
flexfield usage. Key flexfield usage can be one of the following types:

■ An all-segment secondary usage of the key flexfield on a product table other
than the combinations table. Zero or more all-segment secondary usages can
be defined for a given flexfield, each one potentially on a different product
table. You can identify all-segment secondary usages by the presence of the
prefix (Partial) in the Description field.

■ A single-segment secondary usage of the key flexfield on a product table other
than the combinations table. Zero or more single-segment secondary usages
can be defined for a given flexfield, each one potentially on a different product
table. You can identify single-segment secondary usages by the presence of the
prefix (Partial Single) in the Description field.

Do not select a flexfield usage without a prefix in the Description field. For more
information about key flexfield secondary usages, see Section 24.6.1, "How to
Register a Key Flexfield All-Segment Secondary Usage."

9. Click Next. The Entity Object page appears, as shown in Figure 24–32.

Figure 24–32 Create Flexfield Business Components Wizard — Entity Object Page

10. Expand the tree of available models and select an entity object to use as the data
source for the key flexfield.

Because you selected a secondary usage on the Flexfield page, you must select the
entity object for the table where that usage is defined.

The entity object you select must include all of the attributes that will be
referenced by the flexfield. For secondary usages, this includes attributes that
represent the SIN column, the DSN column if it exists in the combinations table,
and all of the flexfield segment columns.

Completing the Development Tasks for Key Flexfields in Secondary Mode

24-98 Developer's Guide

11. You might wish to select an entity object for which the key flexfield attributes are
defined as transient (not based on database table columns). If you need to do this,
then select the checkbox labeled Use the entity attributes named after their
corresponding flexfield database columns. This checkbox is unselected by
default.

When a key flexfield entity object attribute is transient, there is no matching
underlying column name. When you select this checkbox, the system will match
the entity object attribute names to the key flexfield column names, and use the
matching attributes to access the flexfield data. Ensure that the entity object has a
full set of attributes with matching names before you select this option.

This entity object must be registered under the primary usage as described in
Section 24.2.1.9, "Registering Entity Details Using the Setup APIs." There is no
need to register another table for this purpose, even if the entity object is based on
some other table.

12. Click Next. The Usage Settings page appears.

This page contains a Structure Instance Number dropdown list, as shown in
Figure 24–33. From the dropdown list, select the entity attribute that corresponds
to the key flexfield SIN for the secondary usage. The SIN must be an attribute of
type java.lang.Long.

If the key flexfield is data set-enabled, this page will also contain a Data Set
Number dropdown list. From the dropdown list, select the entity attribute that
corresponds to the DSN for the secondary usage. The DSN must be an attribute of
type java.lang.Long.

Note: If you select a polymorphic entity object, ensure that the
InheritPersonalization property for every subtype entity is set to
true.

Caution: The Create Flexfield Business Components wizard is
case-sensitive. All column names — and the names of the flexfield
entity object attributes associated with them — must be uppercase.

Caution: The transient SIN attribute cannot be a calculated value; it
must be SQL-derived (computed using a SQL expression).

Note: If the entity object with transient key flexfield attributes is not
based on the primary usage, the transient attributes must be named
using the same prefix as the other attributes of that entity object (and
the corresponding table columns). For more information, see
Section 24.6.1, "How to Register a Key Flexfield All-Segment
Secondary Usage."

Completing the Development Tasks for Key Flexfields in Secondary Mode

Using Key Flexfields 24-99

Figure 24–33 Create Flexfield Business Components Wizard — Usage Settings Page

13. Click Next. The Naming page appears.

To create business components for the key flexfield secondary usage that you
previously selected, the package name and the object name prefix for the selected
entity object must first be registered with that flexfield usage. Text on the Naming
page indicates whether this is the case:

■ If the selected entity object is registered with the flexfield usage, the Naming
page displays the package name and the object name prefix for the entity
object. Click Next and continue to Step 14.

■ If the selected entity object is not registered as an ADF Business Components
usage with the flexfield usage, the Naming page displays a message to that
effect. Take one of the following actions:

– Click Back to return to the Entity Object page and select an entity object
that has been properly registered.

– Click Cancel to exit this wizard and register the entity object that you
want to use, as described in Section 24.2.1.9, "Registering Entity Details
Using the Setup APIs."

14. On the Summary page, review your choices and click Finish.

The business components generated will replace any existing ones that are based
on the same flexfield.

15. Refresh the project to see the newly created flexfield business components in the
Application Navigator.

Note: This wizard might fail with a "ClassNotFound" exception
message. This indicates that one or more required libraries have not
been automatically included in your project, notably the BC4J
Service Runtime, Java EE 1.5 and Java EE 1.5 API libraries. You
can resolve this issue by manually adding any missing libraries; then
you can complete this procedure successfully.

Completing the Development Tasks for Key Flexfields in Secondary Mode

24-100 Developer's Guide

24.6.4 How to Create Key Flexfield View Links for a Secondary Usage
A view link is needed whenever a product view object references your key flexfield.
The base view object can have many incoming view links from various product view
objects, as a key flexfield is usually shared by many product tables.

Before you begin:
You should have already created a master view object for your entity object using the
standard wizard.

Ensure that the view object does not include flexfield attributes such as SEGMENT1_
VARCHAR2, SEGMENT2_NUMBER, and so on. Ensure that you include the
attributes that are needed for the foreign key reference, such as CCID, SIN, and, if
present, DSN. Ensure that the CCID attribute's Display control hint is set to Hide.

To create a key flexfield view link for a secondary usage:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield View Link, and click OK.

3. In the Create Flexfield View Link wizard, on the Name page, provide a package
name as shown in Figure 24–34.

Figure 24–34 Create Flexfield View Link Wizard — Name Page

4. Enter a name for the secondary mode view link.

5. Click Next. The View Objects page appears, as shown in Figure 24–35.

Completing the Development Tasks for Key Flexfields in Secondary Mode

Using Key Flexfields 24-101

Figure 24–35 Create Flexfield View Link Wizard — View Objects Page

6. In the Select Source View Object tree, select a secondary usage view object.

7. In the Select Destination Flexfield tree, expand the available flexfield view objects
from your project and select the key flexfield's base view object.

8. In the View Link Accessor Name field, enter an appropriate name for the view
link accessor.

9. Click Next. The Source Attributes page appears, as shown in Figure 24–36.

Figure 24–36 Create Flexfield View Link Wizard — Source Attributes Page for Secondary
Mode Key Flexfields

Working with Code-Combination Filters for Key Flexfields

24-102 Developer's Guide

This page is informational only. The key attributes of the source view object will be
used to define the view link. The primary key attribute should be listed for this
selection.

10. Click Finish to go to the Summary page.

11. On the Summary page, review the summary, then click Finish.

The secondary mode key flexfield view link is generated.

24.7 Working with Code-Combination Filters for Key Flexfields
A code-combination filter for a key flexfield is a set of query criteria that can be
applied to a combinations table to specify a subset of code combinations. After you
incorporate a code-combination filter into your application, end users can select key
flexfield values in the user interface from the subset produced by the filter.

For example, consider the rows that are listed in Table 24–8. Note that not all columns
are shown in the table.

You could define a filter with the following conditional logic:

SIN=14 and Segment1_Varchar2='ERGO'

When you apply this filter condition to the combinations table, the result listed in
Table 24–9 is presented. Note that not all columns are shown in the table.

Combination filter conditions for key flexfields are stored in a database column of type
XMLType. This column is referred to a a filter-condition column.

There are three types of code-combination filters that you can use in your application
— standard code-combination filters, code-combination filters for Oracle Business
Intelligence Publisher (Oracle BI Publisher) reports, and cross-validation filters.

24.7.1 How to Use Standard Combination Filters
With standard code-combination filters, you determine which key flexfields your end
users should be able to filter. Then you define a dedicated filter-condition column in
your application database for each filter that you want to include in the application

Note: You can skip the Properties page because view link-specific
properties are not supported.

Table 24–8 Example Combinations Table

SIN CCID Summary_Flag Enabled_Flag Segment1_Varchar2 Segment2_Varchar2

11 77 N Y 8.5X12 YEL

11 78 N Y 8.5x14 GRN

14 2 N Y ERGO NYLON

14 3 N Y HGBAK LEATHER

Table 24–9 Example Filter Result

SIN CCID Summary_Flag Enabled_Flag Segment1_Varchar2 Segment2_Varchar2

14 2 N Y ERGO NYLON

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-103

user interface. This column can be defined in an existing reference table. You can also
create one or more dedicated tables just to store filter-condition columns.

The filter condition is stored in the filter-condition column as XML. At runtime, the
filter condition in the XML is converted to a ViewCriteria object and applied to the
key flexfield's base view object so that when the view object is executed, the filter
condition is applied and the filtered query results are produced.

In JDeveloper, you prepare business objects based on the table containing the
filter-condition column, then you associate a combination filter view object attribute
with the key flexfield. You can associate zero, one, or many combination filters with a
given key flexfield, but only one flexfield can be addressed by a given filter.

To make the code-combination filter accessible to application implementors or
administrators, add a code-combination filter UI component to an application page.
Each row contains a different filter definition that can be applied to the associated key
flexfield. The implementors or administrators will be responsible for populating the
table with filter criteria using a provided utility.

Code-combination filters for key flexfields are supported by the XML schema
FndFilter.xsd. This XML schema binds the filter XML that is defined. This schema is
registered with the FUSION database schema at the following URI:

http://www.oracle.com/apps/fnd/applcore/filter/FndFilter.xsd

The XML schema is registered to the database as BINARY_XML.

You can test the filter definitions by inserting predefined XML filter criteria into the
filter-condition column.

Code-combination filters are removed from an application by removing their
accessors.

24.7.2 How to Use Code-Combination Filters for Oracle BI Publisher Reports
The Applications Core key flexfield filter repository enables Oracle Fusion Applications
developers to include selected key flexfield segments as available parameters in an
Oracle BI Publisher report submission user interface. The filter-repository mechanism
translates report parameters for those segments into code-combination filter criteria,
which are then translated into SQL for inclusion in the report. You accomplish this by
first creating a flexfield filter view object for the public entity object
FndKfEssFiltersPEO to access a provided common filter repository table, and then by
adding to the report submission page a filter UI component that is based on the filter
view object.

When the report job is submitted, the flexfield filter XML definition produced by the
filter input criteria is saved to the filter repository. Oracle Enterprise Scheduler Service
start the reporting job with the report parameters including the filter key. The filter key
is passed to the flexfield lexical API, which returns the filter criteria as a SQL WHERE
clause, which Oracle BI Publisher integrates into the SQL statement for its report.

Note: A PL/SQL API is provided so that you can apply filters to
your SQL statements as WHERE clause conditions rather than applying
them to the user interface. For more information, see Section 24.7.8,
"How to Apply Code-Combination Filters Using the PL/SQL Filter
APIs."

Working with Code-Combination Filters for Key Flexfields

24-104 Developer's Guide

To incorporate code-combination filters for Oracle BI Publisher reports into a
maintenance user interface, you follow much of the same process as you would to
implement standard filters. The code-combination filter procedures that follow note
which procedures do not apply to these types of filters.

The kff_filter_purge(...) procedure from the fnd_flex_xml_publisher_apis
PL/SQL package enables you to remove unused filters from the filter repository.

24.7.3 How to Use Cross-Validation Filters
Cross-validation rules apply a pair of filters to new code combinations that are proposed
for a key flexfield by administrators or end users, when you have enabled them to
work with maintenance mode or dynamic combination insertion.

After enabling cross-validation for a key flexfield at registration time, you must build a
maintenance user interface that administrators can use to maintain the
implementation-specific filters that make up each rule. All filter combinations that an
administrator defines for a given key flexfield are applied automatically to cross
validate new code combinations as they are entered.

To incorporate cross-validation filters, you follow much of the same process as you
would to implement standard filters. The code-combination filter procedures that
follow note which procedures do not apply to these types of filters.

For more information about implementing cross-validation rules, see Section 24.2.3,
"How to Implement Cross-Validation Rules and Custom Validation."

24.7.4 How to Prepare the Database for Standard Code-Combination Filters
A database column of type XMLType is required to store filter data in your database.
This column is referred to as the filter-condition column. For standard
code-combination filters, you must define a filter-condition column for the filter data
in your database before you can associate code-combination filters with key flexfields
in your application.

To prepare a standard code-combination filter for modeling:
1. Select an existing table to contain your filter, or create a new one.

To create a table called, for example, FND_MYFILTER_KFF1, execute the
following script:

Create table FND_MYFILTER_KFF1 (ID Number primary key, Info Varchar2(1000));

Note: Cross-validation rule criteria should generally be created and
modified only by application implementors and administrators. For
end users, these rules automatically validate new code combinations
in the same way that value sets automatically validate new segment
values.

Note: If you are implementing code-combination filters to support
cross-validation rules, the required filter-condition columns already
exist in the FND_KF_CROSS_VAL_RULES repository table. If you are
implementing code-combination filters for use in the key flexfield
filter repository for Oracle BI Publisher reports, these columns exist in
the repository.

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-105

2. Use the following Alter script to add a filter-condition column (for example,
Filter) of type XMLType to your table:

Alter table FND_MYFILTER_KFF1 add Filter xmltype
XMLType column Filter
Store as BINARY XML
XMLSCHEMA "http://www.oracle.com/apps/fnd/applcore/flex/kff/FndFilter.xsd"
ELEMENT "KeyFlexCodeCombinationFilter";

24.7.5 How to Add Code-Combination Filters to Your Application
To add code-combination filters to your application, you complete the following tasks:

1. For standard filters only, create an entity object for the table containing the
filter-condition column.

2. Create a view object for the filter entity object.

3. Associate the code-combination filters with key flexfields.

4. Configure, deploy, and test the code-combination filters.

24.7.5.1 Creating a Filter Entity Object for a Standard Filter
For standard filters, you must create a filter-specific entity object for the table
containing the filter-condition column.

Before you begin:

1. Define a database column of XMLType to store the filter as described in
Section 24.7.4, "How to Prepare the Database for Standard Code-Combination
Filters."

Note: Your new filter-condition column must be configured as
nullable.

This script is necessary because the Database Schema Deployment
framework does not support the XMLType data type.

Note: You do not need to create a filter view object if you are
implementing one of the following types of filters:

■ If you are implementing code-combination filters for use in the
key flexfield filter repository for Oracle BI Publisher reports, use
the existing public entity object
oracle.apps.fnd.applcore.flex.kff.model.publicEntity.FndK
fEssFiltersPEO, which became available when you added the
Applications Core library to your data model project.

■ If you are implementing code-combination filters to support
cross-validation rules, use the provided configured entity object:

oracle.apps.fnd.applcore.flex.kff.model.entity.KeyFlexfieldCros
sValidationRuleEO

Working with Code-Combination Filters for Key Flexfields

24-106 Developer's Guide

2. To use code-combination filters, you must first have completed the Create
Flexfield Business Components wizard for at least one key flexfield, so that your
project contains one or more key flexfield business components.

To create the filter entity object:

1. Create an entity object (for example, Kff1Fltr1EO) for the table containing your
filter-condition column.

2. Open the entity object, and, in the overview editor, click the General navigation
tab.

3. Expand the Custom Properties section and add the FND_FILTER property with a
value of Y.

This property enables the base classes (OAEntityImpl) to recognize that the entity
object contains a filter attribute.

4. Because the column type of the filter attribute is XMLType, which is not natively
supported by ADF Business Components, you must edit the attribute to make it a
transient attribute that is computed using a SQL expression.

Click the Attributes navigation tab, select the filter attribute, and click the Edit
icon to open the Edit Attribute dialog.

5. In the Entity Attribute dialog, click the Entity Attribute node and change the
attribute from a persistent type to a calculated type, as shown in Figure 24–37.

a. Specify the ClobDomain type.

b. Select Derived from SQL Expression.

c. Enter an Expression such as the following expression:

Kff1Fltr1EO.filter.getClobVal()

Note: The GetClobVal() method is needed to manage the XMLType
column in the database because ADF Business Components currently
does not support the XMLType data type natively.

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-107

Figure 24–37 Edit Filter Attribute — Entity Attribute Page

6. Click the Custom Properties node, as shown in Figure 24–38.

Figure 24–38 Edit Filter Attribute — Custom Properties Page

7. Add the custom filter properties that are listed in Table 24–10 to the filter attribute.

Working with Code-Combination Filters for Key Flexfields

24-108 Developer's Guide

24.7.5.2 Creating a Filter View Object
You must create a filter view object (for example, Kff1Fltr1VO) for the filter entity
object. How you create the view object depends on how you will use the filter:

■ If you are implementing a standard code-combination filter, then create the view
object for the entity object that you created in Section 24.7.5.1, "Creating a Filter
Entity Object for a Standard Filter."

■ If you are implementing the filter for use in the key flexfield filter repository for
Oracle BI Publisher reports, then create the view object for the public entity object:

oracle.apps.fnd.applcore.flex.kff.model.publicEntity.FndKfEssFiltersPEO

■ If you are implementing the filter to support cross-validation rules, then create the
view object for the provided cross-validation entity object:

oracle.apps.fnd.applcore.flex.kff.model.entity.KeyFlexfieldCrossValidationRuleE
O

In the view object for the cross-validation rules, define view criteria to set the
APPLICATION_ID and KEY_FLEXFIELD_CODE attributes to static values for your
application and key flexfield.

Table 24–10 Custom Filter Properties

Name Value Description

FND_FILTER Y Indicates that the entity attribute
is a filter attribute.

FND_FILTER_TABLE table-name Indicates the name of the
underlying table on which this
filter attribute is based.

FND_FILTER_COL column-name Indicates the name of the column
on which this attribute is based in
the filter table. This is needed
because the entity object could be
based on a database view.

FND_FILTER_TABLE_COL_PKn primary-key-column-id Indicates the primary key column
of the underlying filter table.

If the table has a composite
primary key (for example: ID1,
ID2), you must add an entry for
each key. For example:

FND_FILTER_TABLE_COL_PK1=ID1
FND_FILTER_TABLE_COL_PK2=ID2

FND_FILTER_TABLE_ATTR_PKn view-object-attribute-name Indicates the name of the view
object attribute that corresponds
to the attribute in the entity object
that represents the filter table
primary key.

If the view object has attributes
that correspond to multiple entity
object primary key attributes, you
must add an entry for each key.
For example:

FND_FILTER_TABLE_ATTR_PK1=ID1
FND_FILTER_TABLE_ATTR_PK2=ID2

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-109

24.7.5.3 Associating Code-Combination Filters with Key Flexfields
You use the Create Flexfield Filter wizard to create a view accessor from the filter view
object's code-combination filter attribute to a key flexfield view object definition.

To associate a code-combination filter with a key flexfield:

1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Flexfield Filter, and click OK.

3. In the Filter Accessor dialog, expand the available view objects in your current
project on the left-hand list and select the view object attribute that corresponds to
the XML Filter column as shown in Figure 24–39.

Figure 24–39 Filter Accessor Dialog

4. Expand the available flexfields in your current project on the right-hand list and
select a key flexfield to be filtered.

5. Enter a name for the filter accessor (with no spaces), then click OK.

24.7.5.4 Configuring, Deploying, and Testing Code-Combination Filters
The final task is to configure the view object, add it to a new application module for
the filter, and test it.

Note: If you are implementing filters to support cross-validation
rules, you must complete this procedure twice — once for the
condition filter attribute and once for the validation filter attribute.

Working with Code-Combination Filters for Key Flexfields

24-110 Developer's Guide

To configure, deploy, and test a code-combination filter:

1. Open the filter view object and click the General navigation tab.

This property enables the base classes (OAViewRowImpl) to recognize that the view
object row contains a filter attribute.

2. Expand the Custom Properties section and add the property FND_FILTER with the
Value set to Y.

3. Click the Attributes navigation tab and select the filter attribute.

4. Expand the Custom Properties section and add the property FND_ACFF_SIN for the
selected filter attribute. Set the Value to the structure instance number (SIN).

This property indicates the view object's SIN attribute that is associated with this
filter attribute.

5. Create an application module for the filter. In the Data Model page, move the filter
view object to the Data Model list. In the Application Modules page, move the
flexfield application module, which was created when you created the flexfield
business component, to the Selected list.

6. Run the Business Component Browser to ensure that all attributes appear.

24.7.6 How to Employ Code-Combination Filters on an Application Page
You must add the filter view accessors that you created to an application page. This
procedure applies to conventional key flexfield filters as well as to filters that you are
implementing for use in the filter repository.

24.7.6.1 Adding Your Key Flexfield Filter to an Application Page
You add a key flexfield filter to an application page by dropping the filter view object
onto the page and modifying the XML code for the filter component.

Before you begin:

■ Ensure that the Applications Core (ViewController) tag library has been added to
the user interface project, as described in Section 3.4, "Adding the Applications
Core Tag Library to Your User Interface Project."

■ Create the view object, view accessor, and application module for the
code-combination filter as described in Section 24.7.5, "How to Add
Code-Combination Filters to Your Application."

To add your key flexfield filter to an application page:

1. In your project, create a new JSPX page.

Tip: You also can add the flexfield application module from the
Application Module Instances section in the Data Model navigation
tab for the application module.

Note: This procedure is also used to produce a user interface for
defining and maintaining cross-validation rules. Complete the
procedure twice — once for the accessor of the condition filter and
once for the accessor of the validation filter. Both filters can be
exposed on the same page.

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-111

2. Drag and drop the view object that contains your filter from the Data Controls
panel onto the page as an ADF Form or an ADF Table. Figure 24–40 shows the
filter view object dropped onto the page as a form.

Figure 24–40 Filter Dropped onto a Page as an ADF Form

3. Ensure the CreateInsert and Commit actions are included on the page.

4. If you dropped the view object onto the page as an ADF Table, select the filter
column and, in the Property Inspector, set Sortable to false.

5. If you dropped the view object onto the page as an ADF Form, select the filter
component and, in the Property Inspector, enter the name of the flexfield in the
Label field. This name is used in the title of the filter popup dialog.

6. By default, end users can choose to match on all conditions or any condition, as
shown in Figure 24–41 and Figure 24–42. If you want to restrict the filter to match
on all conditions only, add the RestrictConjunctionToAND property and set it to
true, as shown in Example 24–24 and Example 24–25

Example 24–24 Modified Form-Based Filter Code

<fnd:keyFlexFilter value="#{bindings.Kff1Fltr1_1Iterator}"
 accessor="kff1"
 label="#{bindings.Filter.hints.label}"
 id="kff1"
 restrictConjunctionToAND="true"/>

Note: These actions enable dynamic creation of new filter definitions
at runtime; they also enable you to insert new records into the filter
repository.

Note: The sorting of filter columns is not supported.

Working with Code-Combination Filters for Key Flexfields

24-112 Developer's Guide

Example 24–25 Modified Table-Based Filter Code

<af:column sortProperty="Filter" sortable="false"
 headerText="#{bindings.Kff1Fltr1_1.hints.Filter.label}"
 id="c2">
 <fnd:keyFlexFilter value="#{bindings.Kff1Fltr1_1Iterator}"
 accessor="kff1" id="kff1"
 restrictConjunctionToAND="true"/>
</af:column>

When this property is set to true, the Filter dialog box does not display the Match
options, as shown in Figure 24–43, and the conditions are automatically joined
with an AND operator.

Figure 24–41 Form-Based Code-Combination Filter User Interface

Figure 24–42 Table-Based Code-Combination Filter User Interface

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-113

Figure 24–43 Filter Dialog When RestrictConjunctionToAND is Set to true

24.7.6.2 What Happens When You Add a Filter-Repository Filter to an Application
Page
When you add a filter based on the public entity object FndKfEssFiltersPEO to your
application page as an ADF Form, the resulting Oracle BI Publisher report submission
user interface appears as shown in Figure 24–44.

Figure 24–44 Form-Based Report Submission Code-Combination Filter UI

When you add a filter-repository filter to the application page as an ADF Table, the
report submission user interface appears as shown in Figure 24–45.

Working with Code-Combination Filters for Key Flexfields

24-114 Developer's Guide

Figure 24–45 Table-Based Report Submission Code-Combination Filter UI

When you click CreateInsert, a new row is added that includes the filter XML and
other required input, along with the default values for some of the columns. Your
application must provide defaults for the columns as described in Table 24–11.

Table 24–11 Filter Repository Filter Attribute Columns

Column Description

KeyFlexfieldCode The code identifying the key flexfield to which this filter will be
applicable.This is a read-only value.

StructureInstanceNumber This is the SIN, the discriminator attribute for the key flexfield
that is used in the key flexfield filter. While creating a new filter
definition or submitting a new job, a valid value should be the
default for this attribute at the view object level. The SIN is
required for capturing the filter XML. This is a read-only
attribute.

DataSetNumber The data set number (DSN) is a secondary discriminator to the
SIN. If the key flexfield is data set-enabled, a valid DSN value
should be the default in the filter view object. This is a read-only
attribute.

FilterId The FilterId is the primary key attribute and is a unique
identifier for each filter that is inserted in the filter repository.
This value can be generated using a sequence or other methods
for generating unique identifiers.

ApplicationShortName This is the application short name of the application with which
the flexfield filter is associated.

You should set the default value to be the application with
which your key flexfield is associated. For example, if you are
using flexfield KFF1, which is associated with the Application
Object Library application, your filter repository should set the
default value for ApplicationShortName to be FND.

This is a read-only attribute.

Filter This is the XML attribute containing the WHERE condition that is
set for a particular FilterId. The WHERE condition has to be
populated by using the filter user interface. Depending on the
SIN, the filter user interface displays the related segments for a
particular key flexfield structure. Various conditions for each of
the segments can be applied to generate the WHERE condition.

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-115

When you click Commit, the new row is inserted in the FND_KF_ESS_FILTERS
database table.

24.7.7 How to Create Code-Combination Filter Definitions for Testing
For testing, you can use INSERT scripts to insert predefined XML filter criteria into the
filter-condition column of your product table.

Use the following form to build an INSERT script:

Insert into filtercolumnname values(indexnum, 'filterconditionname',
XMLType('filter_xml_code'))

The operators supported for code-combination filters are the operators supported in
the Query panel. This includes the following data types and their operators:

■ STRING data type: EQUALTO, NOTEQUALTO, CONTAINS, DOESNOTCONTAIN, LIKE,
STARTSWITH, ENDSWITH, ISNULL, ISNOTNULL

■ NUMBER data type: EQUALTO, NOTEQUALTO, NULL, ISNOTNULL, GREATERTHAN, LESSTHAN,
GREATERTHANEQUALTO, LESSTHANEQUALTO, BETWEEN, NOTBETWEEN

■ DATE data type: ISNULL, ISNOTNULL

You can also use the following hierarchical operators to query tree structures in your
filter: IS_CHILD_OF, IS_DESCENDENT_OF, IS_LAST_DESCENDENT_OF, IS_PARENT_OF, IS_
ANCESTOR_OF, IS_FIRST_ANCESTOR_OF, IS_SIBLING_OF.

For more information about trees, see Chapter 19, "Organizing Hierarchical Data with
Tree Structures."

Example 24–26 shows some example scripts. The first one inserts a filter condition that
selects for SEGMENT1_VARCHAR2 = 'Value04', and the second one selects for the
inequality SEGMENT1_VARCHAR2 != 'Value02'.

Example 24–26 Scripts for Inserting Filter Conditions into the Application Database

Example of EQUALTO filter:

Insert into KFF1_FLTR values(
1, 'EqualToFilter',
XMLType('<?xml version ="1.0" encoding ="UTF-8"?>
<FndFilter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.oracle.com/apps/fnd/applcore/filter/FndF
ilter.xsd">
 <KeyFlexFilter>
 <keyFlexfieldCode>KFF1</keyFlexfieldCode>
 <structureInstanceCode>VS_IND_CHR_ON_CHR</structureInstanceCode>
 <applicationShortName>FND</applicationShortName>
 <filterCriteriaRow>
 <filterCriteriaItem>
 <attributeName>_L10</attributeName>
 <columnName>SEGMENT1_VARCHAR2</columnName>
 <operator>EQUALTO</operator>
 <conjunction>AND</conjunction>
 <valueDataType>STRING</valueDataType>

Note: You can insert this data at any time after the filter-condition
column has been added to the product table, and before the filter is
invoked.

Working with Code-Combination Filters for Key Flexfields

24-116 Developer's Guide

 <value>Value04</value>
 <properties>
 <property>
 <name>TestProp</name>
 <value>ValueProp</value>
 </property>
 </properties>
 </filterCriteriaItem>
 <properties>
 <property>
 <name>TestProp</name>
 <value>ValueProp</value>
 </property>
 </properties>
 </filterCriteriaRow>
 </KeyFlexFilter>
</FndFilter>'));

Example of NOTEQUALTO filter:

Insert into KFF1_FLTR values(
2, 'NotEqualToFilter',
XMLType('<?xml version ="1.0" encoding ="UTF-8"?>
<FndFilter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.oracle.com/apps/fnd/applcore/filter/FndF
ilter.xsd">
 <KeyFlexFilter>
 <keyFlexfieldCode>KFF1</keyFlexfieldCode>
 <structureInstanceCode>VS_IND_CHR_ON_CHR</structureInstanceCode>
 <applicationShortName>FND</applicationShortName>
 <properties>
 <property>
 <name>TestKff</name>
 <value>Valkff</value>
 </property>
 </properties>
 <filterCriteriaRow>
 <filterCriteriaItem>
 <attributeName>_L10</attributeName>
 <columnName>SEGMENT1_VARCHAR2</columnName>
 <operator>NOTEQUALTO</operator>
 <conjunction>AND</conjunction>
 <valueDataType>STRING</valueDataType>
 <value>Value02</value>
 <properties>
 <property>
 <name>TestItemName</name>
 <value>ValItem</value>
 </property>
 </properties>
 </filterCriteriaItem>
 <conjunction>AND</conjunction>
 <properties>
 <property>
 <name>TestRowName</name>
 <value>ValRow</value>
 </property>
 </properties>
 </filterCriteriaRow>
 </KeyFlexFilter>
</FndFilter>'));

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-117

24.7.8 How to Apply Code-Combination Filters Using the PL/SQL Filter APIs
You can take advantage of code-combination filters (including filter-repository filters)
without using them in your application user interface. You use the WHERE clause API
for standard and cross-validation combination filters, and you use the XML API for
filter repository filters.

24.7.8.1 Applying Standard Filters Using the WHERE Clause API
Applications Core provides a PL/SQL API for filtering at the back end. This API takes
a filter condition as an input parameter in XMLType format, converts it to a SQL WHERE
clause, and provides the clause as an output parameter for the segments upon which
the filter condition has been defined. You use this API to integrate the WHERE clause
into your SQL statements to include the filter conditions within your SQL scripts.

The PL/SQL combination filter WHERE clause API is based on the signature shown in
Example 24–27.

Example 24–27 WHERE Clause Signature

FND_KF_COMBINATION_FILTER_API.BuildWhereClause(
 filter IN XMLType,
 tableAlias IN Varchar2,
 bindPrefix IN Varchar2,
 sin OUT Number,
 bindValues OUT NOCOPY BIND_VAL_TAB,
 filterWhereClause OUT NOCOPY Varchar2);

/** ---
-- This procedure computes the WHERE clause for the filter
-- and provides it in the filterWhereClause parameter
-- Params
-- IN Params
-- filter XMLType - Filter to be converted to SQL clause
-- tableAlias Varchar2 - Alias table name to be used in SQL clause
-- bindPrefix Varchar2 - Bind Prefix
-- OUT Params
-- sin Number - Structure Instance Number
-- bindValues BIND_VAL_TAB - List of Bind Values
-- filterWhereClause Varchar2 - WHERE clause
--*/

The bind values are defined as shown in Example 24–28.

Example 24–28 Bind Values Definition

create or replace PACKAGE FND_KF_COMBINATION_FILTER_API AS

 VARCHAR_TYPE CONSTANT Varchar2(20) :='VARCHAR2';
 NUMBER_TYPE CONSTANT Varchar2(20) :='NUMBER';
 DATE_TYPE CONSTANT Varchar2(20) := 'DATE';

TYPE BIND_VALUE IS RECORD(
 NAME Varchar2(30),

Note: You might want to test these scripts to ensure that the database
is, in fact, performing schema validation on the XML document, by
attempting to insert XML that does not conform to this schema.

Working with Code-Combination Filters for Key Flexfields

24-118 Developer's Guide

 TYPE Varchar2(20),
 VALUE_VARCHAR2 Varchar2(32767),
 VALUE_NUMBER Number,
 VALUE_DATE Date);

 TYPE BIND_VAL_TAB IS TABLE OF BIND_VALUE INDEX BY BINARY_INTEGER;

Example 24–29, Example 24–30, and Example 24–31 demonstrate how to use the WHERE
clause API for an EQUALTO condition, a BETWEEN condition, and multiple conditions.

Example 24–29 Using the WHERE Clause API for an EQUALTO Condition

Suppose that a filter condition has been defined in a combinations table as follows:

■ Combinations table = FND_KF_TEST_CCT1

■ Filter column = SEGMENT1_VARCHAR2

■ Filter condition = 123

You would call the filter API as follows:

FND_KF_COMBINATION_FILTER_API.BuildWhereClause(
 filter=>v_filter,
 tableAlias => 'FKFF1',
 bindPrefix => 'BND',
 sin => v_sin,
 bindValues => v_bind,
 filterWhereClause => v_query);

The tableAlias value should be used in WHERE clauses to represent the combinations
table name. In this example, FND_KF_TEST_CCT1.SEGMENT1_VARCHAR2 should be entered
as FKFF1.SEGMENT1_VARCHAR2.

Similarly, the bindPrefix value should be used as a prefix when referencing
individual bind values, for example, :BND1, :BND2, or :BND3.

When invoked, the filter API in this example might produce the following values for
its output parameters:

filterWhereClause - FKFF1.SEGMENT1_VARCHAR2 = :BND1
sin - 12
bindValues - bindValues(1).NAME = BND1
 - bindValues(1).TYPE = VARCHAR2
 - bindValues(1).VALUE_VARCHAR2 = 123

With this output, you can assemble the following WHERE clause for an EQUALTO filter
condition:

select code_combination_id,
 Segment1_VARCHAR2
from FND_KF_TEST_CCT1 FKFF1
where FKFF1.structure_instance_number=12
and FKFF1.SEGMENT1_VARCHAR2=123

Example 24–30 Using the WHERE Clause API for a BETWEEN Condition

The following shows an example of a BETWEEN operator used as part of a filter
expression of the form "attribute BETWEEN value1 AND value2".

<?xml version ="1.0" encoding ="UTF-8"?>
<KeyFlexCodeCombinationFilter
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-119

xsi:noNamespaceSchemaLocation=
"http://www.oracle.com/apps/fnd/applcore/flex/kff/KeyFlexCodeCombinationFilter.xsd
">
 <keyFlexfieldCode>KFF1</keyFlexfieldCode>
 <structureInstanceCode>VS_FRM_NUM_ON_CHR</structureInstanceCode>
 <applicationShortName>FND</applicationShortName>
 <filterCriteriaRow>
 <filterCriteriaItem>
 <attributeName>_P6_S0</attributeName>
 <columnName>SEGMENT1_Varchar2</columnName>
 <operator>BETWEEN</operator>
 <conjunction>AND</conjunction>
 <valueDataType>NUMBER</valueDataType>
 <value>-500</value>
 <value>1000</value>
 </filterCriteriaItem>
 </filterCriteriaRow>
</KeyFlexCodeCombinationFilter>'));

The filter expression captured in the preceding XML resolves to the following:

SEGMENT1_VARCHAR2 BETWEEN -500 and 1000

You would call the filter API as follows:

FND_KF_COMBINATION_FILTER_API.BuildWhereClause(
 filter=>v_filter,
 tableAlias => 'FKFF1',
 bindPrefix => 'BND',
 sin => v_sin,
 bindValues => v_bind,
 filterWhereClause => v_query);

When invoked, the filter API in this example might produce the following values for
its output parameters:

filterWhereClause - FKFF1.SEGMENT1_VARCHAR2 = :BND1
sin - 12
bindValues - bindValues(1).NAME = BND1
 - bindValues(1).TYPE = VARCHAR2
 - bindValues(1).VALUE_VARCHAR2 = -500
 - bindValues(2).NAME = BND2
 - bindValues(2).TYPE = VARCHAR2
 - bindValues(2).VALUE_VARCHAR2 = 1000

With this output, you can assemble the following WHERE clause for a BETWEEN filter
condition:

select code_combination_id,
 Segment1_VARCHAR2
from FND_KF_TEST_CCT1 FKFF1
where FKFF1.structure_instance_number=12
and FKFF1.SEGMENT1_VARCHAR2 BETWEEN -500 AND 1000

Example 24–31 Using the WHERE Clause API for Multiple Conditions

The following shows an example of multiple operators used as part of a filter
expression of the form "attribute1 EQUALTO value1 AND attribute2 EQUALTO value2."

<?xml version ="1.0" encoding ="UTF-8"?>
<KeyFlexCodeCombinationFilter

Working with Code-Combination Filters for Key Flexfields

24-120 Developer's Guide

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.oracle.com/apps/fnd/applcore/flex/kff/Ke
yFlexCodeCombinationFilter.xsd">
 <keyFlexfieldCode>KFF1</keyFlexfieldCode>
 <structureInstanceCode>VS_FRM_NUM_ON_CHR</structureInstanceCode>
 <applicationShortName>FND</applicationShortName>
 <filterCriteriaRow>
 <filterCriteriaItem>
 <attributeName>_P6_S0</attributeName>
 <columnName>SEGMENT1_Varchar2</columnName>
 <operator>EQUALTO</operator>
 <conjunction>AND</conjunction>
 <valueDataType>NUMBER</valueDataType>
 <value>123456</value>
 </filterCriteriaItem>
 <filterCriteriaItem>
 <attributeName>_P6_S2</attributeName>
 <columnName>SEGMENT2_Varchar2</columnName>
 <operator>EQUALTO</operator>
 <conjunction>AND</conjunction>
 <valueDataType>NUMBER</valueDataType>
 <value>123.45</value>
 </filterCriteriaItem>
 </filterCriteriaRow>
</KeyFlexCodeCombinationFilter>'));

The filter expression captured in the preceding XML resolves to the following:

SEGMENT1_VARCHAR2 = 123456 and SEGMENT2_VARCHAR2 = 123.45

You would call the filter API as follows:

FND_KF_COMBINATION_FILTER_API.BuildWhereClause(
 filter=>v_filter,
 tableAlias => 'FKFF1',
 bindPrefix => 'BND',
 sin => v_sin,
 bindValues => v_bind,
 filterWhereClause => v_query);

When invoked, the filter API in this example might produce the following values for
its output parameters:

filterWhereClause - FKFF1.SEGMENT1_VARCHAR2 = :BND1
 - FKFF1.SEGMENT2_VARCHAR2 = :BND2
sin - 12
bindValues - bindValues(1).NAME = BND1
 - bindValues(1).TYPE = VARCHAR2
 - bindValues(1).VALUE_VARCHAR2 = 123456
 - bindValues(2).NAME = BND2
 - bindValues(2).TYPE = VARCHAR2
 - bindValues(2).VALUE_VARCHAR2 = 123.45

With this output, you can assemble the following WHERE clause for a BETWEEN filter
condition:

select code_combination_id,
 Segment1_VARCHAR2, Segment2_VARCHAR2
from FND_KF_TEST_CCT1 FKFF1
where FKFF1.structure_instance_number=12
and FKFF1.SEGMENT1_VARCHAR2 = 123456
and FKFF1.SEGMENT2_VARCHAR2 = 123.45

Working with Code-Combination Filters for Key Flexfields

Using Key Flexfields 24-121

24.7.8.2 Applying Repository Filters for Oracle Enterprise Scheduler Service
The kff_filter PL/SQL procedure in the fnd_flex_xml_publisher_apis.pkb
package is the public procedure for processing key flexfield repository filter lexicals.
The signature is shown in Example 24–32.

Example 24–32 kff_filter Signature

/* PUBLIC PROCEDURE kff_filter EXPOSED FOR THIS PACKAGE */

PROCEDURE kff_filter
 (p_lexical_name IN VARCHAR2,
 p_application_short_name IN fnd_application.application_short_name%TYPE,
 p_key_flexfield_code IN fnd_kf_flexfields_b.key_flexfield_code%TYPE,
 p_filter_id IN NUMBER,
 p_code_combination_table_alias IN VARCHAR2,
 x_where_expression OUT nocopy VARCHAR2,
 x_numof_bind_variables OUT nocopy NUMBER,
 x_bind_variables OUT nocopy bind_variables);

Example 24–33 demonstrates how to use this API to obtain the WHERE clause and bind
variable information for a filter in the filter repository.

Example 24–33 Using the Filter Repository API

REM dbdrv: none
SET SERVEROUTPUT ON
WHENEVER SQLERROR CONTINUE
DECLARE
 l_tableAlias VARCHAR2(30);
 l_applicationShortName fnd_application.application_short_name%TYPE;
 l_keyFlexfieldCode fnd_kf_flexfields_b.key_flexfield_code%TYPE;
 l_filterWhereClause VARCHAR2(32767);
 l_filterId NUMBER;
 l_filterName VARCHAR2(32);
 l_bindVariables fnd_flex_xml_publisher_apis.bind_variables;
 l_numOfBindVariables NUMBER;
 CURSOR c_filter_id
 IS
 SELECT filter_id FROM fnd_kf_ess_filters;
BEGIN

 l_filterName := 'DefaultFilter';
 l_tableAlias := 'DefaultTable';
 l_keyFlexfieldCode := 'KFF1';
 l_applicationShortName := 'FND';
 DBMS_OUTPUT.PUT_LINE('kff_filter');
 FOR filter_id IN c_filter_id
 LOOP

 fnd_flex_xml_publisher_apis.kff_filter(p_lexical_name=>l_filterName,
 p_application_short_name=>l_applicationShortName,
 p_key_flexfield_code=>l_keyFlexfieldCode,
 p_filter_id=>filter_id.filter_id,
 p_code_combination_table_alias=>l_tableAlias,
 x_where_expression=>l_filterWhereClause,
 x_numof_bind_variables=>l_numOfBindVariables,
 x_bind_variables=>l_bindVariables);

Working with Code-Combination Filters for Key Flexfields

24-122 Developer's Guide

 DBMS_OUTPUT.PUT_LINE('filter Id: ' || filter_id.filter_id);
 DBMS_OUTPUT.PUT_LINE('filter Where Clause: ' || l_filterWhereClause);
 END LOOP;
 END;

24.7.9 How to Remove Code-Combination Filters from Your Application
To remove a code-combination filter, you remove the accessor that was previously
created to associate the filter with a particular key flexfield.

In your project, right-click the view object that contains the filter and select Remove
Flexfield Filters from the menu.

If the filter view object has more than one filter attribute with an accessor defined, then
you will be presented with a list of those filter accessors. Select the one that you want
to remove.

24.7.10 How to Remove Filters from the Filter Repository
The filter XML is stored in the FND_KF_ESS_FILTERS table. The number of rows in a
filter repository can become large. You use the kff_filter_purge(...) procedure
from the fnd_flex_xml_publisher_apis PL/SQL package to purge unused filters
from the filter repository. This procedure takes the filter's ID, as shown in
Example 24–34.

Example 24–34 Removing a Filter from the Filter Repository

DBMS_OUTPUT.PUT_LINE('kff_filter_purge to delete a valid filter');
l_filterId := 1001;
--valid filter id
fnd_flex_xml_publisher_apis.kff_filter_purge(p_filter_id=>l_filterId);
DBMS_OUTPUT.PUT_LINE('Filter Id: ' || l_filterId);
DBMS_OUTPUT.PUT_LINE('VALID FILTER_ID DELETED SUCCESSFULLY');

25

Testing and Deploying Flexfields 25-1

25Testing and Deploying Flexfields

This chapter discusses how to test your flexfield business components in Oracle
Fusion applications using Integrated WebLogic Server, how to deploy your flexfield
application to an instance of Oracle WebLogic Server (WebLogic Server) in order to test
the full lifecycle, how to regenerate flexfield business components programmatically,
and how to make flexfield setup task flows accessible from Oracle Fusion Functional
Setup Manager.

This chapter includes the following sections:

■ Section 25.1, "Testing Flexfields"

■ Section 25.2, "Deploying Flexfields in a Standalone WebLogic Server Environment"

■ Section 25.3, "Using the WLST Flexfield Commands"

■ Section 25.4, "Regenerating Flexfield Business Components Programmatically"

■ Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion Functional Setup
Manager"

25.1 Testing Flexfields
After your flexfields are available for testing, you can generate test business
components and use a Metadata Archive (MAR) profile to run the application.

25.1.1 How to Make Flexfields Available for Testing
Before testing a flexfield in your application, you must ensure that the ADF Business
Components model underlying the flexfield is complete. All required entities, view
links, application modules, and so on must exist either in your project, or in a library
that is included in your project. Ensure that the ApplicationDB connection points to
the database that contains the metadata for the flexfield that you want to test.

You can make a flexfield available for testing by doing one of the following:

■ Import the flexfield business components from an existing library.

■ Generate the flexfield business components that you want to test.

If you use the Create Flexfield Business Components wizard, select the Tester role on
the Role page of the wizard, and specify a location for the generated business
components. For more information about using the Create Flexfield Business
Components wizard, see the appropriate section for the type of flexfield that want to
test:

■ Section 22.3.1, "How to Create Descriptive Flexfield Business Components"

Testing Flexfields

25-2 Developer's Guide

■ Section 23.6, "Defining and Registering Extensible Flexfield Business Components"

■ Section 24.2.4, "How to Create Key Flexfield Business Components"

25.1.2 How to Test Flexfields
To test a flexfield, run the application using a MAR profile. The MAR profile that you
use points to the test business component artifacts, such as view objects, entity objects,
page fragments, and task flows.

Before you begin:
Create the test business component artifacts for the flexfield, as described in
Section 25.1.1, "How to Make Flexfields Available for Testing."

To test a flexfield:
1. From the Application menu, choose Application Properties.

2. In the Application Properties dialog, click the Deployment navigation tab and
click New to create a new deployment profile.

3. Select MAR File from the Archive Type dropdown list.

4. Enter a name for the profile, and click OK.

5. In the panel on the left-hand side of the Edit MAR Deployment Profile Properties
dialog, under MAR Options, select Metadata File Groups and click New.

6. In the Create File Group dialog, enter a name for the user metadata group, as
shown in Figure 25–1, and click OK.

Figure 25–1 New File Group in MAR Profile Properties

7. In the User Metadata Group section, add a contributor, enter the path to your test
components (a directory or archive), and click OK.

Testing Flexfields

Testing and Deploying Flexfields 25-3

8. In the panel on the left-hand side of the Edit MAR Deployment Profile Properties
dialog, under MAR Options, expand Metadata File Groups, expand the user
metadata group that you just added, and select the Directories node.

9. In the Directories section, select the root package directory of the flexfield to be
tested, as shown in Figure 25–2, and click OK.

Figure 25–2 Root Package of the Flexfield to be Tested

10. In the Application Properties dialog, expand Run and click the MDS navigation
tab.

11. Select the MAR profile that you created earlier, and click OK

12. Test your application with the MAR profile.

Caution: Ensure that you select the correct item. You must select the
directory of the root package of the flexfield to be tested, such that
only the objects that are below the level of that package come from the
test directory. The root package should match the package that you
previously registered with the business component's usage.

As soon as you select the package, Oracle JDeveloper automatically
selects the parents all the way to the top of the folder hierarchy, but
that does not mean everything under oracle is registered with Oracle
Metadata Services (MDS).

Note: If you want to run the Business Component Browser with the
business components that you created for testing, you must create a
temporary user library that points to the test components, and include
the library in your project as the first library. This is because the
flexfield view objects are generated into a temporary directory outside
the scope of the application workspace.

Deploying Flexfields in a Standalone WebLogic Server Environment

25-4 Developer's Guide

25.2 Deploying Flexfields in a Standalone WebLogic Server Environment
After you have completed the ADF Business Components models underlying the
flexfields, and all required entities, view links, application modules, and so on exist
either in your project, or in a library that is included in your project, and you have
tested your flexfields, you are ready to package and deploy the application to a
standalone Oracle WebLogic Server (WebLogic Server) environment for full lifecycle
testing.

To complete the deployment process for an application that has flexfields:

1. Package the application.

2. Deploy the application.

3. Configure the flexfields and test the application.

25.2.1 How to Package a Flexfield Application for Deployment
Just as with other Oracle Fusion applications, you must generate an enterprise archive
(EAR) file for deployment to an instance of WebLogic Server. Before generating the
EAR file, you must enable the flexfield packaging plugin.

25.2.1.1 Enabling the Flexfield Packaging Plugin
The flexfield packaging plugin is required to package flexfields from either JDeveloper
or the command line. This plugin maps namespaces to the Oracle Metadata Services
(MDS) partition.

You enable the flexfield packaging plugin for your working environment by setting
the FLEX_DEPLOY_ADDIN_ENABLED environment variable set to true. For example, in a C
shell environment you would run the following command:

setenv FLEX_DEPLOY_ADDIN_ENABLED true

25.2.1.2 Generating an EAR File for the Application
To make the flexfield artifacts available at runtime, package them into the application's
EAR file, which subsequently can be installed on the target server.

Before you begin:

Enable the flexfield packaging plugin as described in Section 25.2.1.1, "Enabling the
Flexfield Packaging Plugin."

To generate an EAR file:

1. From an environment in which the FLEX_DEPLOY_ADDIN_ENABLED environment
variable has been set to true, complete one of the following steps:

■ From the Application Navigator in JDeveloper, right-click the application and
choose Deploy > deployment profile > to EAR file. When the generation process
is done, you can find the path to the generated EAR file in the deployment log
message window.

Deploying Flexfields in a Standalone WebLogic Server Environment

Testing and Deploying Flexfields 25-5

For more information about generating EAR files from JDeveloper, see the
"Deploying Fusion Web Applications" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition).

■ From the command line, run the following ojdeploy command:

jdev_install\jdeveloper\jdev\bin\ojdeploy -profile deployment-profile \
-forcerewrite -workspace application-jws-path

2. Optionally, unzip the EAR file and inspect the adf-config.xml file to verify that
the flexfield packaging plugin added the flexfield packages to the
sessiondef-config tag and mapped all the flexfield ADF Business Components
packages to a metadata-store-usages tag. Example 25–1 shows sample tag
entries.

Example 25–1 adf-config.xml Flexfield Tag Entries

<adf-config
xmlns="http://xmlns.oracle.com/adf/config"
xmlns:adf="http://xmlns.oracle.com/adf/config/properties" ... >
...
<mdsC:sessiondef-config>
<mdsC:package
value=
"oracle.apps.fnd.applcore.crmdemo.crma.model.view.link.flex;oracle.apps.fnd.applco
re.flex.test.model.entity.flex"/>
</mdsC:sessiondef-config>
...
<mds:mds-config version="11.1.1.000">
<mds:persistence-config>
<mds:metadata-store-usages>
<mds:metadata-store-usage
default-cust-store="true"
deploy-target="true"
id="WebCenterFileMetadataStore">
</mds:metadata-store>
</mds:metadata-store-usage>
</mds:metadata-store-usages>
</mds:persistence-config>
...
</adf-config>

25.2.2 How to Deploy a Flexfield Application
Deploying a flexfield application to an instance of WebLogic Server requires additional
steps to ensure that all the flexfields' customization metadata is stored in the proper
MDS partition.

The process for deploying a flexfield application includes the following tasks:

Note: You might need to restart JDeveloper to ensure that the FLEX_
DEPLOY_ADDIN_ENABLED environment variable has taken effect and that
the flexfield packaging plugin is enabled.

When the plugin is enabled in JDeveloper, you will see log entries
with a Flexfield prefix, such as [09:25:01 PM] Flexfield: Search
library "Applications Core"...

Deploying Flexfields in a Standalone WebLogic Server Environment

25-6 Developer's Guide

1. Create an MDS partition to store flexfield customization metadata.

2. Map the product application's EAR file to the MDS partition.

3. Map the Oracle Fusion Middleware Extensions for Applications (ApplCore) Setup
application EAR file to the MDS partition.

4. Include the product application model libraries in the ApplCore Setup application.

5. Deploy the product application and the ApplCore Setup application to the
WebLogic Server domains.

6. Prime the MDS partition with seeded flexfield artifacts.

25.2.2.1 Creating an MDS Partition
An MDS repository is used to store the information that enables implementors to
customize applications. The flexfield packaging process requires a partition in the
MDS repository that is associated with the application. You can create a partition
specifically for flexfields or you can use the partition for other purposes as well.
However, all Oracle Fusion applications and setup applications must use the same
MDS partition for all flexfield artifacts.

If the application's MDS repository does not have the desired partition, use Oracle
WebLogic Scripting Tool (WLST) to create one.

For more information about creating and registering MDS repositories and working
with WLST, see the "Managing the Metadata Repository" chapter in the Oracle Fusion
Middleware Administrator's Guide.

Before you begin:

Log in to the administration console for the WebLogic Server instance and verify that a
Java Database Connectivity (JDBC) data source exists for the MDS repository. This
data source is typically named mds-ApplicationMDSDB. Note that the URL for
administration is commonly set to http://localhost:7101/console.

For more information about managing JDBC data sources, see the "Creating and
Managing JDBC Data Sources" section in the Oracle Fusion Middleware Administrator's
Guide.

To Create an MDS Partition:

1. At the command line, enter the following line to start WLST.

sh jdev_install/oracle_common/common/bin/wlst.sh

On Windows, use wlst.cmd.

2. Enter the following WLST command to connect to the WebLogic Server instance,
replacing the user name and password arguments with your user name and
password.

connect('wls_username', 'wls_password', 'wls_uri')

The values must be wrapped in single-quotes. The wls_uri value is typically
t3://localhost:7101.

3. Enter the following WLST command to create the partition.

createMetadataPartition('mds_jdbc_data_source', 'partition_name')

Deploying Flexfields in a Standalone WebLogic Server Environment

Testing and Deploying Flexfields 25-7

The mds_jdbc_data_source is the JDBC data source for the MDS repository. The
partition_name can be any string. You might want to consult with your operations
team or release team for suggested partition names.

4. Disconnect from WLST.

disconnect()

25.2.2.2 Mapping the EAR File to the MDS Partition
To configure the application to store the flexfield customization metadata in the
desired MDS partition, use the flexfield packaging plugin to update the application's
adf-config.xml file with the partition name.

Before you begin:

■ Ensure that the FLEX_DEPLOY_ADDIN_ENABLED environment variable is set to true in
your working environment, as described in Section 25.2.1.1, "Enabling the
Flexfield Packaging Plugin."

■ Generate the EAR file as described in Section 25.2.1.2, "Generating an EAR File for
the Application."

■ Ensure that an MDS partition exists for the flexfield metadata. For more
information, see Section 25.2.2.1, "Creating an MDS Partition."

■ Obtain the Java Naming and Directory Interface (JNDI) name for the MDS data
source. You can find this value in the Services > JDBC > Data Sources page in the
administration console for the WebLogic Server instance.

To map the EAR file to the MDS partition:

1. At the command line, enter the following line to start WLST.

sh jdev_install/oracle_common/common/bin/wlst.sh

On Windows, use wlst.cmd.

2. Enter the following WLST command to connect to the WebLogic Server instance,
replacing the user name and password arguments with your user name and
password.

connect('wls_username', 'wls_password', 'wls_uri')

The values must be wrapped in single-quotes. The wls_uri value is typically
t3://localhost:7101.

3. From WLST, execute the following commands.

archive=getMDSArchiveConfig('product_EAR_file_pathname')
archive.setAppMetadataRepository(
 'mds_jdbc_data_source',
 'partition_name',
 'DB',
 'mds_datasource_JNDI',
 None)
archive.save()

The mds_jdbc_data_source is the JDBC data source for the MDS repository. The
partition_name is the name of the MDS partition that you are using to store the
flexfield customization metadata for all your Oracle Fusion applications. You
might need to ask your operations team or release team for the partition name.

Deploying Flexfields in a Standalone WebLogic Server Environment

25-8 Developer's Guide

The mds_datasource_JNDI is the JNDI name for the MDS data source, such as
jdbc/mds/mds-ApplicationMDSDBDS.

4. Optionally, unzip the EAR file and inspect the adf-config.xml file to verify that
the flexfield packaging plugin updated the metadata-store-usage tags to add the
partition name. Example 25–2 shows sample tag entries.

Example 25–2 adf-config.xml metadata-store-usage tags with Added Partition Name

<mds:metadata-store-usages>
<mds:metadata-store-usage default-cust-store="true"
deploy-target="true" id="WebCenterFileMetadataStore">
<mds:metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
<mds:property value="mds-ApplicationMDSDB" name="repository-name"/>
<mds:property value="ffpartition" name="partition-name"/>
<mds:property value="jdbc/mds/mds-ApplicationMDSDBDS" name="jndi-datasource"/>
</mds:metadata-store>
</mds:metadata-store-usage>
</mds:metadata-store-usages>

25.2.2.3 Mapping the ApplCore Setup Application to the MDS Partition
In order to perform a full lifecycle test, you must configure the flexfields in the same
manner as an implementor would configure them. You use the ApplCore Setup
application to complete the flexfield configurations as described in Section 25.2.3,
"How to Configure Flexfields." Before using the ApplCore Setup application, you must
configure the application to store the flexfield customization metadata in the desired
MDS partition, just as you would with the product application's EAR file.

Before you begin:

■ Ensure that the FLEX_DEPLOY_ADDIN_ENABLED environment variable is set to true in
your working environment, as described in Section 25.2.1.1, "Enabling the
Flexfield Packaging Plugin."

■ Ensure that an MDS partition exists for the flexfield metadata. For more
information, see Section 25.2.2.1, "Creating an MDS Partition."

■ Locate the ApplCore Setup application's FndSetup.ear file. This file can typically
be found in the jdev_install/jdeveloper/jdev/oaext/external directory.

■ Obtain the JNDI name for the MDS data source. You can find this value in the
Services > JDBC > Data Sources page in the administration console for the
WebLogic Server instance.

To map the ApplCore Setup EAR file to the MDS partition:

1. At the command line, enter the following line to start WLST, if it is not currently
running.

sh jdev_install/oracle_common/common/bin/wlst.sh

On Windows, use wlst.cmd.

2. If you have not yet connected to the server, enter the following WLST command to
connect to the WebLogic Server instance, replacing the user name and password
arguments with your user name and password.

connect('wls_username', 'wls_password', 'wls_uri')

The values must be wrapped in single-quotes. The wls_uri value is typically
t3://localhost:7101.

Deploying Flexfields in a Standalone WebLogic Server Environment

Testing and Deploying Flexfields 25-9

3. From WLST, execute the following commands.

archive=getMDSArchiveConfig('ApplCore_Setup_EAR_file_pathname')
archive.setAppMetadataRepository(
 'mds_jdbc_data_source',
 'partition_name',
 'DB',
 'mds_datasource_JNDI',
 None)
archive.save()

The mds_jdbc_data_source is the JDBC data source for the MDS repository. The
partition_name is the name of the MDS partition that you are using to store the
flexfield customization metadata for all your Oracle Fusion applications. You
might need to ask your operations team or release team for the partition name.
The mds_datasource_JNDI is the JNDI name for the MDS data source, such as
jdbc/mds/mds-ApplicationMDSDBDS.

25.2.2.4 Including Product Application Model Libraries in the ApplCore Setup EAR
File
Before you deploy the ApplCore Setup EAR file, ensure that it contains all the model
libraries that are required for your product application.

To include the product application model libraries in the ApplCore Setup EAR file:

1. In a terminal window, change to the directory that contains the FndSetup.ear file.
This file can typically be found in the jdev_
install/jdeveloper/jdev/oaext/external directory.

2. Execute the following commands to expand the EAR file.

mkdir tmpDir
cd tmpDir/
unzip ../FndSetup.ear

3. If the APP-INF/lib folder does not exist, execute the following commands to create
it.

mkdir APP-INF
mkdir APP-INF/lib

4. Copy all the library Java archive (JAR) files that your product requires to the
APP-INF/lib folder.

5. Change to the tmpDir folder.

6. Execute the following commands to re-create the EAR file with the added JAR
files.

rm ../FndSetup.ear
zip -r FndSetup.ear .
mv FndSetup.ear ../
rm -Rf tmpDir

25.2.2.5 Deploying the Product and Setup Applications to the Server Domains
After you have mapped the applications as described in Section 25.2.2.2, "Mapping the
EAR File to the MDS Partition" and Section 25.2.2.3, "Mapping the ApplCore Setup
Application to the MDS Partition" and you have included the project model libraries in
the ApplCore Setup application as described in Section 25.2.2.4, "Including Product

Using the WLST Flexfield Commands

25-10 Developer's Guide

Application Model Libraries in the ApplCore Setup EAR File," you can deploy the
applications to the appropriate domains for your topology.

For information about creating domains, see the "Creating a WebLogic Domain"
chapter in Oracle Fusion Middleware Creating Domains Using the Configuration Wizard.
For information about installing EAR files, see the "Install an Enterprise Application"
section in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Online Help.

25.2.2.6 Priming the MDS Partition with Configured Flexfield Artifacts
The flexfield application is configured to obtain the flexfield customization metadata
from the MDS partition. However, no one can log in to the application until the
application has gone through an initial process to translate the flexfield metadata into
artifacts that are stored in the partition. This task must be completed, even if there is
no customization metadata yet. You use WLST to perform this task.

Before you begin:

Deploy the product and setup applications, as described in Section 25.2.2.5,
"Deploying the Product and Setup Applications to the Server Domains."

To prime the MDS partition with flexfield metadata artifacts:

■ Run the deployFlexForApp WLST command as described in Section 25.3.2, "How
to Prepare Your Environment to Use the deployFlexForApp Command."

25.2.3 How to Configure Flexfields
Customers will use the Manage Flexfields tasks in the Oracle Fusion Functional Setup
Manager to configure the flexfields. For testing purposes, you can use the same tasks
in the ApplCore Setup application. For information about using these tasks to
configure the flexfields, see the "Using Flexfields for Custom Attributes" chapter in the
Oracle Fusion Applications Extensibility Guide.

When you have configured a flexfield, click Deploy to deploy the configuration to the
product application. Because flexfield artifacts are cached per end user session, you
must log out and log back in to see the deployed configuration.

25.3 Using the WLST Flexfield Commands
You can use the Manage Key Flexfields, Manage Descriptive Flexfields, and Manage
Extensible Flexfields tasks to deploy flexfields, as described in the "Using Flexfields for
Custom Attributes" chapter in Oracle Fusion Applications Extensibility Guide. In
addition, the following WLST commands are available for priming the MDS repository
with seeded flexfield artifacts and for deploying flexfields:

■ deployFlexForApp: Use this command to prime the MDS repository with seeded
flexfield artifacts. Deploys all flexfields that do not have a status of DEPLOYED.
You can also use this comment to deploy all flexfields regardless of their status by
setting the force parameter to 'true'.

■ deployFlex: Use this command to deploy a single flexfield. Deploys the flexfield
regardless of status.

■ deleteFlexPatchingLabels: Use this command to inquire about or delete all
flexfield patching labels.

Using the WLST Flexfield Commands

Testing and Deploying Flexfields 25-11

For information about the WLST flexfield commands, see the "Deploying Flexfields
Using the Command Line: Explained" section in the Oracle Fusion Applications Common
Implementation Guide. For information about using the WLST command-line scripting
interface, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

Before you can use any WLST flexfield command from a development environment,
you must first prepare the environment as described in Section 25.3.1, "How to Prepare
Your Environment to Use the WLST Flexfield Commands." If you use the
deployFlexForApp command in a development environment, you must complete
additional steps described in Section 25.3.2, "How to Prepare Your Environment to Use
the deployFlexForApp Command."

After you execute a WLST flexfield command, you can log into the application and
view the pages that contain flexfields. If you have seeded any flexfield configurations
by defining value sets, segments, contexts, or structures, for example, the flexfields
should appear on the appropriate pages. If a flexfield has not been configured, the
corresponding user interface sections will be blank.

25.3.1 How to Prepare Your Environment to Use the WLST Flexfield Commands
Before you can use the WLST flexfield commands, you must prepare your
environment. The commands will not work until these steps are completed.

To prepare your environment for WLST flexfield commands:
1. The WLST flexfield commands can be executed only on the Administration Server

for a domain that has a running instance of the ApplCore Setup application. For
information on deploying the ApplCore Setup application, see Section 25.2.2.5,
"Deploying the Product and Setup Applications to the Server Domains."

2. Ensure that the AppMasterDB data source is registered as a JDBC data source with
the Administration Server and points to the same database as the ApplicationDB
data source.

25.3.2 How to Prepare Your Environment to Use the deployFlexForApp Command
The deployFlexForApp command translates the product application's seeded flexfield
metadata into artifacts in the MDS repository. This command must be run after you
configure your application to read the flexfield artifacts from the MDS repository and
before you log into the application for the first time, even if there is no seeded flexfield
metadata. For more information, see Section 25.2.2.6, "Priming the MDS Partition with
Configured Flexfield Artifacts."

To prepare your environment to use the deployFlexForApp command:
1. Configure the product application to store the flexfield customization metadata in

the desired MDS partition as described in Section 25.2.2.2, "Mapping the EAR File
to the MDS Partition."

2. Map the setup application as described in Section 25.2.2.3, "Mapping the ApplCore
Setup Application to the MDS Partition."

3. Deploy the product application and the ApplCore Setup application as described
in Section 25.2.2.5, "Deploying the Product and Setup Applications to the Server
Domains."

4. Prepare your environment as described in Section 25.3.1, "How to Prepare Your
Environment to Use the WLST Flexfield Commands."

Regenerating Flexfield Business Components Programmatically

25-12 Developer's Guide

25.4 Regenerating Flexfield Business Components Programmatically
After you complete the flexfield development activities to incorporate a flexfield into
your application, you might need to update the flexfield implementation in your
application at a later time by repeating the process of creating the flexfield business
components.

To re-create the flexfield business components, you can use the Create Flexfield
Business Components wizard, which invokes the flexfield business component
modeler to generate (or regenerate) the business components. Alternatively, you can
create a Java program to invoke the flexfield business component modeler and thus
automate the creation of the business components without implementor interaction.

The flexfield business component modeler can be invoked through the Java
application programming interface (API) only in a deployed web application. You
must have the following artifacts:

■ The ADF Business Components objects required for generating the flexfield
business components. Typically these are entity objects. You can deploy them in a
JAR file.

■ The MDS repository for the generated flexfield business components. If you use a
file-system based repository, the metadata path must be an existing writable path.

You either can create a new application to invoke the modeler, or, if you already have a
web application for testing, you can include the Java code required for invoking the
modeler in your application. The deployment process is the same as any other web
application.

Your project must be set up correctly for the program to run successfully. The project
configuration requirements are the same as that for the Create Flexfield Business
Components wizard.

Example 25–3 demonstrates appropriate Java code for updating the business
components for a descriptive flexfield.

Example 25–3 Java Code for Invoking the Flexfield Business Component Modeler

import oracle.apps.fnd.applcore.flex.runtime.util.BCModeler;

public class Example
{
 public static void main(String[] margs)
 {
 BCModeler.Arguments modelerArgs = new BCModeler.Arguments();

 modelerArgs.put(BCModeler.Parameter.CONNECTION_URL,
 "jdbc:oracle:thin:user/pass@dev1.companyname.com:1999:dev1");

 // Specify where the objects should be.
 modelerArgs.put(BCModeler.Option.OUTPUT_PATH,
 "/mytest/mds/");

 // The owner of the flexfield should have the following information.
 modelerArgs.put(BCModeler.Parameter.FLEXFIELD_TYPE, "DFF");
 modelerArgs.put(BCModeler.Parameter.APP_SHORT_NAME, "FND");
 modelerArgs.put(BCModeler.Parameter.FLEXFIELD_CODE, "FLEX_DFF1");
 modelerArgs.put(BCModeler.Parameter.TABLE_USAGE_CODE, "FLEX_DFF1");
 modelerArgs.put(BCModeler.Parameter.TABLE_NAME, "FND_DF_TEST_DFF1_T1");
 modelerArgs.put(BCModeler.Parameter.ENTITY_DEF_FULL_NAME,
 "oracle.apps.fnd.applcore.flex.test.model.entity.Dff1EO");

Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager

Testing and Deploying Flexfields 25-13

 // See BCModeler.Option for more usage-specific options. Consult the owner
 // of the flexfield to see if any usage-specific option is required.

 Exception e = BCModeler.run(modelerArgs.getCommandLineArgs(false),
 System.out);
 if (e != null)
 {
 e.printStackTrace();
 }
 }
}

Examine BCModeler.Option for usage-specific settings.

25.5 Integrating Flexfield Task Flows into Oracle Fusion Functional Setup
Manager

Every Oracle Fusion application registers task flows for setup activities with a product
called Oracle Fusion Functional Setup Manager. For example, a human resources (HR)
application can register setup activities such as "Create Employees" and "Manage
Employee Tree Structure." Implementors and administrators use these registered task
flows, which are accessed from the Oracle Fusion Applications Setup and Maintenance
work area of Oracle Fusion Applications, to configure the applications by defining
custom configuration templates or tasks based on their business needs.

Table 25–1 lists the flexfield setup task flows. To make these task flows available to
developers, implementors, or administrators, register the appropriate task. For more
information, see the Oracle Fusion Applications Common Implementation Guide.

For information about using the tasks for managing the flexfields, see the "Using
Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility
Guide. For more information about the Register Descriptive Flexfields task, see
Section 22.2.2, "How to Register and Define Descriptive Flexfields."

Note: The registration application task flow is not available for
extensible flexfields and key flexfields. You must use the FND_FLEX_
DF_SETUP_APIS PL/SQL to register extensible flexfields as described in
Chapter 23.5, "Defining and Registering Extensible Flexfields." You
must use the FND_FLEX_KF_SETUP_APIS PL/SQL API to register key
flexfields as described in Section 24.2.1, "How to Develop Key
Flexfields."

Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager

25-14 Developer's Guide

Table 25–1 Flexfields Task Flows and Parameters

Task Flow
Name Task Flow XML Parameters Passed Behavior

Register
Descriptive
Flexfields

/WEB-INF/oracle/apps/fnd/applcore
/flex/dff/ui/publicFlow/RegisterD
escriptiveFlexfieldsTF.xml#Regist
erDescriptiveFlexfieldsTF

To invoke search mode:

mode='search'

To restrict search mode to descriptive flexfields
belonging to a particular product module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a specific descriptive
flexfield:

mode='edit'
descriptiveFlexfieldCode=dffcode
applicationId=appid

To optionally specify a page heading for the task
flow:

pageTitle='titlestring'

Search and edit
descriptive flexfield
registration
metadata.

Manage
Descriptive
Flexfields

/WEB-INF/oracle/apps/fnd/applcore
/flex/dff/ui/publicFlow/ManageDes
criptiveFlexfieldsTF.xml#ManageDe
scriptiveFlexfieldsTF

To invoke search mode:

mode='search'

To restrict search mode to descriptive flexfields
belonging to a particular product module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a specific descriptive
flexfield:

mode='edit'
descriptiveFlexfieldCode=dffcode
applicationId=appid

To optionally specify a page heading for the task
flow:

pageTitle='titlestring'

Search and edit
descriptive flexfield
configuration.

Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager

Testing and Deploying Flexfields 25-15

For related information about functional security actions and roles based on task
flows, see Chapter 49, "Implementing Function Security".

Manage
Extensible
Flexfields

/WEB-INF/oracle/apps/fnd/applcore
/flex/dff/ui/publicFlow/ManageExt
ensibleFlexfieldsTF.xml#ManageExt
ensibleFlexfieldsTF

To invoke search mode:

mode='search'

To restrict search mode to extensible flexfields
belonging to a particular product module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a specific extensible
flexfield:

mode='edit'
extensibleFlexfieldCode=effcode
applicationId=appid

To optionally specify a page heading for the task
flow:

pageTitle='titlestring'

Search and edit
extensible flexfield
configuration.

Manage Key
Flexfields

/WEB-INF/oracle/apps/fnd/applcore
/flex/kff/ui/publicFlow/ManageKey
FlexfieldsTF.xml#ManageKeyFlexfie
ldsTF

To invoke search mode:

mode='search'

To restrict search mode to key flexfields belonging
to a particular product module:

mode='search'
moduleType='moduletype'
moduleKey='modulekey'

To invoke edit mode for a specific key flexfield:

mode='edit'
keyFlexfieldCode=kffcode
applicationId=appid

To optionally specify a page heading for the task
flow:

pageTitle='titlestring'

Search and edit key
flexfield
configuration.

Manage
Value Sets

/WEB-INF/oracle/apps/fnd/applcore
/flex/vst/ui/publicFlow/ManageVal
ueSetsTF.xml#ManageValueSetsTF

To invoke search mode for any value set:

mode='search'

To restrict search mode to value sets belonging to a
particular product module:

mode='search'
moduleType=moduletype
moduleKey=modulekey

To invoke edit mode for a specific value set:

mode='edit'
valueSetCode=vscode

To optionally specify a page heading for the task
flow:

pageTitle='titlestring'

Search and edit
flexfield value sets.

Table 25–1 (Cont.) Flexfields Task Flows and Parameters

Task Flow
Name Task Flow XML Parameters Passed Behavior

Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager

25-16 Developer's Guide

Part V
Part V Using Oracle Enterprise Crawl and Search

Framework

This part of the Developer's Guide provides information about the Oracle Enterprise
Crawl and Search Framework (ECSF). Oracle Enterprise Crawl and Search Framework
(ECSF) is an Oracle Fusion Middleware search framework that enables you to quickly
expose application context information on various business objects to enable full-text
transactional search.

The Getting Started with Oracle Enterprise Crawl and Search Framework chapter discusses
how to set up ECSF.

The Creating Searchable Objects chapter discusses how to create sets of data that make
view objects available for full text search.

The Configuring ECSF Security chapter discusses how to configure security for ECSF.

The Validating and Testing Search Metadata chapter discusses how to validate and test
the search metadata.

The Deploying and Crawling Searchable Objects chapter discusses how to deploy the sets
of data to the ECSF application and verify the crawl.

The Advanced Topics for ECSF chapter discusses the additional functionality that ECSF
offers to enhance the search experience.

This part contains the following chapters:

■ Chapter 26, "Getting Started with Oracle Enterprise Crawl and Search Framework"

■ Chapter 27, "Creating Searchable Objects"

■ Chapter 28, "Configuring ECSF Security"

■ Chapter 29, "Validating and Testing Search Metadata"

■ Chapter 30, "Deploying and Crawling Searchable Objects"

■ Chapter 31, "Advanced Topics for ECSF"

26

Getting Started with Oracle Enterprise Crawl and Search Framework 26-1

26Getting Started with Oracle Enterprise Crawl
and Search Framework

This chapter provides an introduction to Oracle Enterprise Crawl and Search
Framework (ECSF). It also describes how to set up ECSF.

This chapter includes the following sections:

■ Section 26.1, "Introduction to Using Oracle Enterprise Crawl and Search
Framework"

■ Section 26.2, "Setting Up and Running ECSF Command Line Administration
Utility"

■ Section 26.3, "Setting Up Oracle Enterprise Manager and Discovering ECSF"

26.1 Introduction to Using Oracle Enterprise Crawl and Search
Framework

Oracle Enterprise Crawl and Search Framework (ECSF) is an Oracle Fusion
Middleware search framework that enables you to quickly expose application context
information on various business objects to enable full-text transactional search.

For more information, see the "Managing Search with Oracle Enterprise Crawl and
Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.

26.1.1 ECSF Architecture
The ECSF framework abstracts an underlying search engine and provides a common
set of application programming interfaces (APIs) for developing search functionalities.
ECSF serves as an integration layer between the search engine and the Oracle Fusion
applications. Figure 26–1 illustrates the architecture of the ECSF framework.

Introduction to Using Oracle Enterprise Crawl and Search Framework

26-2 Developer's Guide

Figure 26–1 Enterprise Crawl and Search Framework Architecture

ECSF includes the following high-level components:

■ Searchable Object Manager

■ Search Designer

■ Semantic Engine

■ Fusion Applications Control

■ ECSF Command Line Administration Utility

■ Security Services

■ Data Services

■ Query Service

ECSF integrates with the Oracle Secure Enterprise Search (Oracle SES) engine to
support application search. Oracle SES provides capabilities for crawling and indexing
the metadata and objects exposed by ECSF. The Security Plug-in and Crawler Plug-in
are modules on Oracle SES that interface with ECSF.

26.1.1.1 Searchable Object Manager
Searchable Object Manager, serving as a metadata manager, manages searchable
objects and provides the runtime interface for accessing these objects. At runtime, the
Searchable Object Manager loads the searchable objects from persistent storage,
validates the searchable object definitions, and provides the searchable objects to the
Crawlable Factory component of the Data Service.

The Searchable Object Manager is also responsible for the life cycle management of
searchable objects, which administrators can deploy, customize, and enable or disable
via the Fusion Applications Control or the ECSF Command Line Administration
Utility.

26.1.1.2 Search Designer
The Search Designer is a page in Oracle JDeveloper 11g that provides the interface for
defining the metadata that describes the business objects to be indexed. You can also
use this design interface to specify the security mechanism used to protect the data, as
well as define the searchable object search characteristics, which include Advanced
Search, Faceted Navigation, and Actionable Results.

Introduction to Using Oracle Enterprise Crawl and Search Framework

Getting Started with Oracle Enterprise Crawl and Search Framework 26-3

26.1.1.3 Semantic Engine
The Semantic Engine leverages the semantic information of searchable object
definitions to create context around the search. It achieves this by interpreting the
searchable object definitions with relation to the runtime user information during both
crawl and query time. Runtime user information may include the following:

■ Facets

■ Actionable results

■ Security

■ Personalization

■ Internationalization

■ Data structure mapping

■ Tagging, commenting, rates

■ Results clustering

■ Context filtering

■ Custom weighting

26.1.1.4 Fusion Applications Control
The Fusion Applications Control is an Oracle Enterprise Manager extension that
provides a user interface for registering searchable objects in the ECSF schema in the
Oracle Fusion Applications database, as well as for administering the runtime
parameters of ECSF, the target search engine, and the configuration of parameters.

26.1.1.5 ECSF Command Line Administration Utility
The ECSF Command Line Administration Utility is a standalone command line
interface that provides a user interface for registering searchable objects in the ECSF
schema in the Oracle Fusion Applications database. You can also use this tool for
configuring and administering ECSF without external dependencies on Oracle
Enterprise Manager.

26.1.1.6 Security Service
The Security Service is the runtime server component responsible for providing
security information to SES. During query time, this service retrieves the security keys
of the user performing the search and passes them to Oracle SES, where they are used
to filter the query results.

The Security Service server component is also invoked during crawl time to add
security information (access control lists) to data before inserting or creating indexes
on the search engine (Oracle SES). An access control list (ACL) is a list that identifies
the users who can access the associated object and that specifies the user's access rights
to that object. The ACL values generated by the Security Service during crawl time
should match the corresponding keys generated during query time.

Note: In ECSF, the generic term ACL (access control list) is used to
describe how Oracle SES and ECSF pass security information and
perform security checks by using the information described in the
ACL.

Introduction to Using Oracle Enterprise Crawl and Search Framework

26-4 Developer's Guide

The Security Service component is implemented as a security engine with a plug-in
interface. The security plug-in determines the format of the ACL keys. For all custom
security models, a new Security Plug-in must be implemented. Security Service uses
Oracle Platform Security for Java to authenticate users and call the Security Plug-in to
retrieve security values for a given searchable object.

For more information about security for ECSF, see Chapter 28, "Configuring ECSF
Security."

26.1.1.7 Data Service
Data Service is the primary data interface, based on a proprietary Really Simple
Syndication (RSS) feed format, between ECSF and the search engine. In addition to
supporting the flow of metadata between ECSF and the search engine, Data Service
supports attachments, batching, and error handling.

Data Service authenticates each Oracle SES crawl request by using Oracle Platform
Security for Java to validate the user credentials and permissions for crawling the data
source.

The Crawlable Factory component, part of Data Service, determines how searchable
objects are broken down and manages the construction of RSS feeds to the search
engine.

26.1.1.8 Query Service
The Query Service provides a search interface for the applications UI and handles all
search requests. This service performs query rewrite, parameter substitution, and other
preprocessing operations before invoking the underlying configured search engine.

Search results are also serviced via this service. Hooks are provided to preprocess and
postprocess data, which facilitates the capability to filter search results.

26.1.1.9 Oracle SES Search Engine
Oracle SES enables a secure, uniform search across multiple enterprise repositories.
ECSF integrates with Oracle SES technology to provide full-text search functionality in
Oracle Fusion Applications.

For more information about Oracle SES, see Oracle Secure Enterprise Search
Administrator's Guide.

26.1.1.10 Security Plug-in
Oracle SES provides an API for writing security plug-ins (or connectors) in Java. With
this API, you can create a security plug-in to meet your requirements. ECSF Security
Service interfaces with this security plug-in. The Security Plug-in invokes the Security
Service to retrieve keys, to which the user has access, for filtering the results that are
delivered to the ECSF query service. A proxy user must be set up on the search engine
in order to invoke the Security Service. The proxy user must have security privileges
for the Oracle Fusion applications. For more information about security for ECSF, see
Chapter 28, "Configuring ECSF Security."

Note: The application server space is demarcated to identify that
ECSF runs in a separate application server, outside the search engine.
It is recommended, for performance reasons, that each search engine
instance runs on separate hardware.

Setting Up and Running ECSF Command Line Administration Utility

Getting Started with Oracle Enterprise Crawl and Search Framework 26-5

26.1.1.11 Crawler Plug-in
The Crawler Plug-in is a search engine (Oracle SES) module that implements the
modified RSS feed format between ECSF and Oracle SES. This component deserializes
the data sent from ECSF, via the Data Service component, and interfaces with the
Oracle SES components that creates the indexes.

26.2 Setting Up and Running ECSF Command Line Administration Utility
You can use the ECSF Command Line Administration Utility to quickly test and
manage the searchable objects without having to use Oracle Enterprise Manager
Fusion Applications Control.

Before you can run the utility, you must complete the following setup requirements:

1. Make the searchable objects accessible to the ECSF Command Line Admin Utility.

2. Set the class path to make sure it contains the required Oracle classes. ECSF
provides a set of scripts that you can use to set the class path.

3. Connect to the database by performing one of the following tasks:

■ Provide the connection information in the script so that the ECSF Command
Line Administration Utility automatically connects to the specified database
during startup.

■ Manually connect to the database after you start the ECSF Command Line
Administration Utility.

4. Provide the path of the JPS Config file.

5. Create ECSF query proxy users. In order to perform commands that connect to the
Oracle SES server (for example, deploy, start schedule, etc.), the engine instance
must be set up correctly so that its parameters have the required information. For
more information, see the "Managing Search with Oracle Enterprise Crawl and
Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.

6. (Optional) Configure the log settings.

7. (Optional) Set the startup parameter to support taking input from a text file.

After you have set up the ECSF Command Line Administration Utility, you can run
the utility by any of the following ways:

■ Execute the runCmdLineAdmin.bat script (Windows)

■ Execute the runCmdLineAdmin.sh script (Linux)

■ Start it as a Java program from a command line interface with the following
command:

java oracle.ecsf.cmdlineadmin.CmdLineAdmin

Enter a username and password when prompted.

Note: Administrators should use Fusion Applications Control to
manage the life cycle of searchable objects in the production
environment.

Setting Up and Running ECSF Command Line Administration Utility

26-6 Developer's Guide

All commands, responses, and error messages in the ECSF Command Line
Administration Utility are logged.

To exit the ECSF Command Line Administration Utility, enter the exit command at
the prompt.

26.2.1 How to Make Searchable Objects Accessible to the ECSF Command Line
Administration Utility

Make the searchable objects accessible to the ECSF Command Line Administration
Utility by adding the ADF library JAR file containing the view object and entity object
definitions to its class path.

The ECSF Command Line Administration Utility needs the path of the JAR file
containing the searchable objects. These metadata objects are validated during register
and unregister operations.

You can find the unpacked EAR files containing the searchable object JAR files for the
search applications in the following locations:

■ /net/mount1/appbase/fusionapps/applications/fscm/deploy/EarFscmSearch.ear
/APP-INF/lib/searchable_object_jar_file

■ /net/mount1/appbase/fusionapps/applications/crm/deploy/EarCrmSearch.ear/A
PP-INF/lib/searchable_object_jar_file

■ /net/mount1/appbase/fusionapps/applications/hcm/deploy/EarHcmSearch.ear/A
PP-INF/lib/searchable_object_jar_file

To add the ADF library JAR file containing the view object and entity object definitions
to the class path for the ECSF Command Line Administration Utility, you must first
create the ADF library. For information, see the "Adding ADF Library Components
into Projects" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

The application JAR file, which contains the searchable objects that are defined in your
application, is written to the deploy directory of the project.

In order to deploy or undeploy a searchable object, a JAR file containing the searchable
object must be specified in the class path of the ECSF Command Line Administration
Utility. For information, see Section 26.2.2, "How to Set the Class Path."

If you are deploying searchable objects from multiple applications, you must create a
JAR file for each of those applications in order to add the searchable objects to the class
path.

Note: If you enter an invalid username and password, you can either
reconnect manually by using the connect command, or exit the ECSF
Command Line Administration Utility (type exit or press Ctrl-C)
and try again.

When you update passwords in the Lightweight Directory Access
Protocol (LDAP) credential store from the ECSF Command Line
Administration Utility, the jps-config-jse.xml file must contain the
same LDAP information as the jps-config.xml file. Java Platform
Security (JPS) does not propagate the changes from jps-config.xml to
jps-config-jse.xml automatically.

Setting Up and Running ECSF Command Line Administration Utility

Getting Started with Oracle Enterprise Crawl and Search Framework 26-7

26.2.2 How to Set the Class Path
In order for the ECSF Command Line Administration Utility to run, the class path
must contain the required Oracle classes. Modify and run scripts to set the class path,
as well as optional connection information, and run the ECSF Command Line
Administration Utility.

The ECSF Command Line Administration Utility references the class path to obtain
the location of Oracle Library home, Java home, Oracle WebLogic Server home, and
the JAR files needed for the ECSF Command Line Administration Utility operations.

26.2.2.1 Setting the Class Path in Windows
Modify and run the runCmdLineAdmin.bat script to set the class path in a Windows
environment.

To set the class path in Windows:
1. In a text editor, open the runCmdLineAdmin.bat script from MW_HOME/Oracle_

atgpf1/ecsf/modules/oracle.ecsf_11.1.1/admin.

2. Specify the Oracle Library home directory path by locating the line set ORACLE_
LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME and replace SET_ORACLE_LIBRARY_HOME
with the ATGPF shiphome directory, for example, set ORACLE_LIBRARY_
HOME=C:\mw_home\oracle_common.

3. Specify the ATGPF Library home directory path by locating the line set ATGPF_
LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME and replace SET_ATGPF_LIBRARY_HOME
with the ATGPF shiphome directory, for example, set ATGPF_LIBRARY_
HOME=C:\mw_home\Oracle_atgpf1.

Specify the ATGPF Library home directory path by locating the line set ATGPF_
LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME and replace SET_ATGPF_LIBRARY_HOME
with the ATGPF Library directory, for example, set ATGPF_LIBRARY_
HOME=c:\fmwtools_view\fmwtools\mw_home\jdeveloper.

4. Specify the Oracle WebLogic Server home directory path:

a. Locate the following line: set WLS_HOME=SET_WLS_HOME

b. Replace SET_WLS_HOME with the Oracle WebLogic Server home directory path,
for example, set WLS_HOME= C:/MW_HOME/wlserver_10.3

5. Specify the Java home directory path:

■ Locate the following line: set JAVA_HOME=SET_JAVA_HOME

■ Replace SET_JAVA_HOME with the Java home directory path (where the Java
executable should be located), for example, set JAVA_HOME=C:\Java\jdk\bin.

The version of Java used must match the version required by the Oracle build.

6. Specify the directory path of the application JAR file:

■ Locate the following line: set APP_JAR=SET_APP_JAR

■ Replace SET_APP_JAR with the directory path of the application JAR file you
created in Section 26.2.1, "How to Make Searchable Objects Accessible to the

Note: If you receive a java.lang.ClassNotFoundException
exception, then add the JAR file containing that class to ADMIN_CP in
the script.

Setting Up and Running ECSF Command Line Administration Utility

26-8 Developer's Guide

ECSF Command Line Administration Utility", for example, set APP_
JAR=C:\Jdeveloper\mywork\Application1\runtime\deploy\archive1.jar.

7. Save the script file.

26.2.2.2 Setting the Class Path in Linux
Modify and run the runCmdLineAdmin.sh script to set the class path in a Linux
environment.

To set the class path in Linux:
1. In a text editor, open the runCmdLineAdmin.sh script from MW_HOME/Oracle_

atgpf1/ecsf/modules/oracle.ecsf_11.1.1/admin.

2. Specify the Oracle Library home directory path by locating the line export
ORACLE_LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME and replace SET_ORACLE_
LIBRARY_HOME with the ATGPF shiphome directory, for example, export ORACLE_
LIBRARY_HOME="/scratch/mw_home/Oracle_atgpf1".

Specify the Oracle Library home directory path by locating the line export
ORACLE_LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME and replace SET_ORACLE_
LIBRARY_HOME with the Oracle Common Library directory, for example, export
ORACLE_LIBRARY_HOME="/scratch/login/view_storage/login_fmwtools_
view/fmwtools/mw_home/oracle_common".

3. Specify the ATGPF Library home directory path by locating the line export
ATGPF_LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME and replace SET_ATGPF_LIBRARY_
HOME with the ATGPF shiphome directory, for example, set ATGPF_LIBRARY_
HOME="/scratch/fmwtools/mw_home/Oracle_atgpf1".

4. Specify the Java home directory path:

■ Locate the following line: export JAVA_HOME="set_java_home"

■ Replace set_java_home with the Java home directory path (where the Java
executable should be located), for example, export JAVA_
HOME="/Java/jdk/bin".

The version of Java used must match the version required by the Oracle build.

5. Specify the directory path of the application JAR file:

■ Locate the following line: export APP_JAR="set_app_jar"

■ Replace set_app_jar with the directory path of the application JAR file you
created in Section 26.2.1, "How to Make Searchable Objects Accessible to the
ECSF Command Line Administration Utility", for example, export APP_
JAR="/Jdeveloper/mywork/Application1/runtime/deploy/archive1.jar".

6. Save the script file.

7. Run the script.

26.2.3 How to Set the Connection Information
The ECSF Command Line Administration Utility requires an Oracle Fusion
Applications database, to which it can either be directly connected or connected
through a remote MBean. In order to use the ECSF Command Line Administration
Utility, you must supply the connection information.

Set the connection information in the runCmdLineAdmin script so that the ECSF
Command Line Administration Utility automatically connects to the specified

Setting Up and Running ECSF Command Line Administration Utility

Getting Started with Oracle Enterprise Crawl and Search Framework 26-9

database or MBean server during startup. If you do not include the connection
information in the script, then you must manually create the connection to the Oracle
Fusion Applications database after you start the ECSF Command Line Administration
Utility. For information, see Section 26.2.4, "How to Manually Connect to the Oracle
Fusion Applications Database."

The information for connecting to the database or MBean server is saved in the
runCmdLineAdmin script for the ECSF Command Line Administration Utility to use for
connecting to the Oracle Fusion Applications database at startup. You are prompted to
enter a password after you start the ECSF Command Line Administration Utility.

26.2.3.1 Setting the Connection Information in Windows
Modify the runCmdLineAdmin.bat script to set the connection information in a
Windows environment.

To set the connection information in Windows:
1. Open the runCmdLineAdmin.bat script, located in JDEV_INSTALL/ecsf, in a text

editor.

2. Locate set CONNECT_INFO= and specify the database or MBean server, using one of
the following formats:

■ connect to mbeanserver hostname port

■ Using SID:

connect to database hostname port SID

For example,

set CONNECT_INFO=connect to database fusionhost123 1566 fh123.

■ Using service name:

connect to database service hostname port servicename

For example,

set CONNECT_INFO=connect to database service fusionhost123 5521
myservice

■ Using database descriptor:

connect to database descriptor 'descriptor'

The descriptor argument must be enclosed in quotation marks and can
contain either the SID or service name. For example:

– Using SID:

set CONNECT_INFO=connect to database descriptor '(DESCRIP-
TION=(ADDRESS=(PROTO-
COL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNECT_
DATA=(SID=dbmsdb2)))'

– Using service name:

set CONNECT_INFO=connect to database descriptor '(DESCRIP-
TION=(ADDRESS=(PROTO-
COL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNECT_DATA=(SERVICE
NAME=myservice)))'

3. Save the script file.

Setting Up and Running ECSF Command Line Administration Utility

26-10 Developer's Guide

26.2.3.2 Setting the Connection Information in Linux
Modify and run the runCmdLineAdmin.sh script to set the connection information in a
Linux environment.

To set the connection information in Linux:
1. Open the runCmdLineAdmin.sh script, located in ORACLE_HOME/jdeveloper/ecsf,

in a text editor.

2. Locate export CONNECT_INFO="" and specify the database or MBean server, using
one of the following formats:

■ connect to mbeanserver hostname port

■ Using SID:

connect to database hostname port SID

For example,

set CONNECT_INFO=connect to database fusionhost123 1566 fh123

■ Using service name:

connect to database service hostname port servicename

For example,

set CONNECT_INFO=connect to database service fusionhost123 5521 myservice

■ Using database descriptor:

connect to database descriptor 'descriptor'

The descriptor argument must be enclosed in quotation marks and can
contain either the SID or service name. For example:

– Using SID:

set CONNECT_INFO=connect to database descriptor
'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(C
ONNECT_DATA=(SID=dbmsdb2)))'

– Using service name:

set CONNECT_INFO=connect to database descriptor
'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(C
ONNECT_DATA=(SERVICE NAME=myservice)))'

3. Save the script file.

26.2.4 How to Manually Connect to the Oracle Fusion Applications Database
The ECSF Command Line Administration Utility requires an Oracle Fusion
Applications database, to which it can either be directly connected or connected
through a remote MBean, for command execution. In order to use the ECSF Command
Line Administration Utility, you must supply the connection information.

You can supply connection information either before or after starting the ECSF
Command Line Administration Utility. Supplying the connection information before
startup allows the ECSF Command Line Administration Utility to automatically
connect to the specified database or MBean server during startup. For information, see
Section 26.2.3, "How to Set the Connection Information."

Setting Up and Running ECSF Command Line Administration Utility

Getting Started with Oracle Enterprise Crawl and Search Framework 26-11

If you choose not to supply the connection information before startup, you must
manually create the connection to the Oracle Fusion Applications database after you
start the ECSF Command Line Administration Utility.

To create the connection to the Oracle Fusion Applications database:
To create a connection to the Oracle Fusion Applications database directly, enter one of
the following commands at the ECSF Command Line Administration prompt, then
press Enter:

■ connect to database

The ECSF Command Line Administration Utility prompts you for the host name,
port, and SID.

■ connect to database service

The ECSF Command Line Administration Utility prompts you for the host name,
port, and service name.

■ connect to database descriptor

The ECSF Command Line Administration Utility prompts you for the descriptor.

The descriptor argument must be enclosed in quotation marks and can contain
either the SID or service name. For example:

– Using SID:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNE
CT_DATA=(SID=dbmsdb2)))'

– Using service name:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNE
CT_DATA=(SERVICE NAME=myservice)))'

■ connect to database hostname port SID

You can directly pass the required values as arguments into the command.

■ connect to database service hostname port servicename

You can directly pass the required values as arguments into the command.

■ connect to database descriptor 'descriptor'

You can directly pass the required value as an argument into the command. The
descriptor argument must be enclosed in quotation marks and can contain either
the SID or service name. For example:

– Using SID:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNE
CT_DATA=(SID=dbmsdb2)))'

– Using service name:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNE
CT_DATA=(SERVICE NAME=myservice)))'

To create a connection to the Oracle Fusion Applications database through a remote
MBean, enter one of the following commands at the ECSF Command Line
Administration prompt, then press Enter:

■ connect to mbeanserver

Setting Up and Running ECSF Command Line Administration Utility

26-12 Developer's Guide

The ECSF Command Line Administration Utility prompts you for the required
values.

■ connect to mbeanserver hostname port

You can directly pass the required values as arguments into the command.

The ECSF Command Line Administration Utility prompts you to enter a username
and password.

26.2.5 How to Provide the Path of the JPS Config File
The JPS Config file (jps-config-jse.xml) contains the credential store information
needed for running the ECSF Command Line Administration scripts. You must
provide the path of the JPS Config file by modifying the ECSF Command Line
Administration scripts.

To set the JPS Config file path:
1. Open the runCmdLineAdmin.bat (Windows) or runCmdLineAdmin.sh (Linux) script,

located in ORACLE_HOME/jdeveloper/ecsf, in a text editor.

2. Set the JPS_CONFIG parameter to point to the location of jps-config-jse.xml
(usually at DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml).

3. Save.

26.2.6 How to Configure the Log Settings
The scripts for the ECSF Command Line Administration Utility point to the logging
configuration file (ecsfcla-logging.xml), where you can configure log settings, such
as log level and log file location. The ecsfcla-logging.xml file is located in the same
directory as the ECSF Command Line Administration scripts (JDEV_INSTALL/ecsf/).
To configure log settings, modify the property values in ecsfcla-logging.xml and
save the file.

The location of ecsfcla-logging.xml can be changed by modifying the ODL_CONFIG
parameter in the ECSF Command Line Administration scripts.

All commands, responses, and error messages in the ECSF Command Line
Administration Utility are logged. The generated log files follow the format
ecsfCmdLineAdminLog*.txt, and its default location is JDEV_INSTALL/ecsf/log/.

26.2.7 How to Automate the ECSF Command Line Administration Utility
You can set the ECSF Command Line Administration Utility to automatically execute a
defined sequence of commands when you run the utility. To automate the ECSF
Command Line Administration Utility in this way, you must configure the startup
script to take inputs from a text file that you create.

The input file must contain one command per line. Any values that are not passed in
with a command and are typically prompted for (for example, username and
password) must occupy their own lines in the file. You must include a connect
command since this is not passed in during the automated startup, and you must also
include the exit command as the last command in the file in order to exit the ECSF
Command Line Administration Utility. Example 26–1 illustrates a sample list of
commands for an input file.

Setting Up Oracle Enterprise Manager and Discovering ECSF

Getting Started with Oracle Enterprise Crawl and Search Framework 26-13

Example 26–1 Sample Input File

connect to database fusionhost123 1566 fh123
fusion
fusion
manage instance 1
set param "SES_ADMIN_
SERVICE"="http://example.com:7777/search/api/admin/AdminService"
set param "SES_ADMIN_USERNAME" = "eqsys"
exit

You must know all of the object IDs when you create the input file. Using the input
file, you cannot create a new object and then manage it in one automation.

To configure the startup script to automatically run the commands you defined in the
input file, you must modify the startup script to include the AUTOMATE command in the
STARTUP_PARAMS parameter.

To set the JPS Config file path:
1. Open the runCmdLineAdmin.bat (Windows) or runCmdLineAdmin.sh (Linux) script,

located in ORACLE_HOME/jdeveloper/ecsf, in a text editor.

2. Set the STARTUP_PARAMS parameter to AUTOMATE and point to the location of input
file. For example,

STARTUP_PARAMS="AUTOMATE /scratch/commands.txt"

where commands.txt is the input filename.

3. Save.

The output of the ECSF Command Line Administration Utility is displayed on the
screen (or can be redirected), and errors are logged in the log file as usual. If the
input file cannot be found, the ECSF Command Line Administration Utility runs
in its usual mode and waits for the user to input a command through the prompt.

26.3 Setting Up Oracle Enterprise Manager and Discovering ECSF
While the ECSF Command Line Administration Utility can be used to quickly test and
manage the searchable objects, Oracle Enterprise Manager Fusion Applications
Control should be used to manage the life cycle of searchable objects in the production
environment.

The ECSF runtime application needs to register its MBean to WebLogic's Domain
Runtime MBean server, and the Oracle Enterprise Manager Fusion Applications
Control needs to invoke all ECSF runtime operations through the MBean.

To access the Fusion Applications Control, you must install and configure Oracle
Enterprise Manager (EM) to work with ECSF. You do not need to set up Oracle
Enterprise Manager if you plan to use the ECSF Command Line Administration Utility
to administer search.

To set up Oracle Enterprise Manager for ECSF, you must perform the following tasks:

1. Register the ECSF runtime application MBean.

2. Install Oracle Enterprise Manager.

3. Discover ECSF in Oracle Enterprise Manager.

4. Add users to the Administrators group.

Setting Up Oracle Enterprise Manager and Discovering ECSF

26-14 Developer's Guide

Multiple developers can share one single Oracle Enterprise Manager application with
the Fusion Applications Control.

26.3.1 How to Register the ECSF Runtime MBean to the Integrated WebLogic Server
The ECSF runtime application registers an MBean
(oracle.ecsf.mbean.SearchRuntimeAdminMXBean) in WebLogic's Domain Runtime
MBean server through a listener class
(oracle.ecsf.mbean.RegisterMbeanContextListener). All ECSF runtime operations
are invoked through the MBean.

To register the MBean:
1. Add the MBean listener to web.xml.

2. Create the application enterprise archive (EAR) file.

3. Configure the data sources.

4. Deploy the ECSF application.

5. Start the Oracle WebLogic Server instance.

Registering the ECSF runtime MBean to the Integrated WebLogic Server makes the
MBean available to remote clients such as Fusion Applications Control in Oracle
Enterprise Manager.

26.3.1.1 Adding the MBean listener to web.xml
Add the MBean listener by modifying web.xml to include
oracle.ecsf.mbean.RegisterMbeanContextListener.

To add the MBean listener:
1. In the view-controller project in the Application Navigator, expand Web Content,

then expand WEB-INF, and open web.xml.

2. Add the following <listener> element in web.xml:

<listener>

<listener-class>oracle.ecsf.mbean.RegisterMbeanContextListener</listene
r-class>

</listener>

3. Save.

26.3.1.2 Creating the Application EAR File for Deployment
Create the application EAR file to be deployed. Right-click the application name and
navigate to Deploy > ECSF application deployment profile > to EAR file. When
the deployment is complete, you can find the generated EAR file in the JDeveloper log
message window.

26.3.1.3 Configuring Data Sources in Oracle WebLogic Server
You must configure data sources in Oracle WebLogic Server for MBean integration. For
information, see Oracle Fusion Middleware Configuring Server Environments for Oracle
WebLogic Server.

Search for a data source with the JNDI name SearchDBDS. If any exist, make sure to
look at the connection and validate that SearchDBDS is pointing to the correct database.

Setting Up Oracle Enterprise Manager and Discovering ECSF

Getting Started with Oracle Enterprise Crawl and Search Framework 26-15

If SearchDBDS is not listed, you must create a data source with jdbc/SearchDBDS as the
JNDI name and with the connection information to the database against which the
Fusion web application is running.

26.3.1.4 Deploying the ECSF Application Using the EAR File
Make the MBean available by deploying the EAR file you created to Integrated
WebLogic Server. For information, see Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

Make sure that the EAR file is deployed and the application status is active in the final
step.

26.3.1.5 Starting the Oracle WebLogic Server Instance
When the MBean is available after you deploy the enterprise archive (EAR) file, you
can start the Oracle WebLogic Server instance by selecting Start Server Instance from
the Run menu.

26.3.2 How to Install Oracle Enterprise Manager
You must install Oracle Enterprise Manager in order to access the Fusion Applications
Control. Installing Enteprise Manager allows you to then enable it to discover the
ECSF custom application target in Oracle WebLogic Server.

26.3.3 How to Discover ECSF in Oracle Enterprise Manager
In order to use Fusion Applications Control in Oracle Enterprise Manager, you must
first enable Oracle Enterprise Manager to discover the ECSF custom application target
in Oracle WebLogic Server. When you discover ECSF in Oracle Enterprise Manager,
you enable Oracle Enterprise Manager to detect and display the Fusion Applications
Control. You only need to discover the ECSF custom application target in Oracle
WebLogic Server once. Once it is discovered, you can directly launch EM with the
following URL:

http://your machine name:port/em

To discover ECSF in Oracle Enterprise Manager:
1. Invoke the target discovery page in Oracle WebLogic Server with the following

URL:

http://your machine name:port/em/faces/as/discovery/addWeblogic

2. Complete the following fields and click Submit:

■ Host (the name of the machine that hosts Oracle WebLogic Server)

■ Port (the Oracle WebLogic Server runtime port number, for example, 7101)

■ Username (for example, weblogic)

■ Password (for example, weblogic)

3. Click Farm_DefaultDomain.

Note: You can discover multiple Oracle WebLogic Servers by
specifying a value for Farm Name Prefix (for example, Farm).

Setting Up Oracle Enterprise Manager and Discovering ECSF

26-16 Developer's Guide

4. At the Oracle Enterprise Manager login page (http://your machine
name:port/em), log in with the following credentials:

■ Username: weblogic

■ Password: weblogic

5. To start Fusion Applications Control, navigate to Farm_DefaultDomain > Fusion
Middleware > Enterprise Crawl and Search Framework and click
EcsfRuntimeApp.

26.3.4 How to Add Users to the Administrators Group
In order to access the ECSF pages in Fusion Applications Control, users must be
created and added to the Operator group and above on Oracle WebLogic Server. For
information, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

Note: You only need to discover the ECSF custom application target
in Oracle WebLogic Server once. Once it is discovered, you can
directly launch EM with the following URL:

http://your machine name:port/em

27

Creating Searchable Objects 27-1

27Creating Searchable Objects

This chapter describes how to create searchable objects in Oracle Fusion Applications.

This chapter includes the following sections:

■ Section 27.1, "Introduction to Creating Searchable Objects"

■ Section 27.2, "Defining Searchable Objects"

■ Section 27.3, "Securing Searchable Objects"

■ Section 27.4, "Configuring Search Features"

■ Section 27.5, "Configuring Custom Properties for Searchable Objects"

27.1 Introduction to Creating Searchable Objects
Searchable objects are sets of data that make view objects available for full text search.
They are used in an abstract way for exposing business data to search engines. For
example, a purchase order as a searchable object would be defined as a set of
searchable properties and its relationship to other searchable objects. Business data can
be both structured and unstructured, such as data residing in a database, file
attachments (including images), and documents.

The abstraction allows searchable objects to be bound to different contexts at runtime
and to be described and used within that context. Because the binding information
describes how a searchable object behaves in a given context, it is sometimes called
search metadata.

To create searchable objects, you must perform the following tasks:

1. Define the searchable objects and searchable attributes.

2. (Optional) Enable the capability to crawl searchable objects with file attachments.
For more information, see Section 31.2, "Enabling Search on Fusion File
Attachments."

3. (Optional) Enable the capability to crawl searchable objects with Oracle
WebCenter tags. For more information, see Section 31.3, "Enabling Search on
WebCenter Tags."

4. Secure the searchable objects.

5. Configure the search features.

6. Configure the custom properties for the searchable objects.

Defining Searchable Objects

27-2 Developer's Guide

27.2 Defining Searchable Objects
Oracle Enterprise Crawl and Search Framework (ECSF) is used to integrate search
functionality in Oracle Fusion Applications by defining searchable objects and its
attributes. Defining the searchable objects enables the corresponding view objects and
their attributes to search, and creates the necessary metadata for ECSF. The ECSF
metadata can be packaged into an application archive and subsequently used by the
ECSF runtime environment to deploy data sources into Oracle Secure Enterprise
Search (Oracle SES) to perform crawl and index operations. All artifacts (for example,
Java archive files, Oracle Application Development Framework objects, and so on), on
which the view objects depend, must be packaged in the enterprise archive (EAR) file
to make the searchable objects usable during runtime for both crawl and query
operations.

Consider the following when you define searchable objects and searchable attributes:

■ Rather than reuse or functionally overload view objects designed for other
purposes, construct view objects (parent and children) for search purposes (that is,
include only attributes you intend to search).

■ Exclude large objects (LOBs) from searchable objects unless you intend to search
LOB contents.

■ Restrict the use of multilevel view objects to five levels to avoid causing severe
feed performance degradation.

■ Collocate all servers (for example, ECSF, Oracle SES, database, and so on) and
follow standard performance, scalability, and reliability network performance
guidelines to minimize network latency between servers.

■ Remember that feed throughput is directly proportional to the amount of data that
is pulled from the database to be indexed.

■ Be selective with the searchable objects to ensure that only a limited portion of
data from the primary table is crawled to maximize crawling and indexing
performance.

■ Remember that attachments (Oracle Content Management SDK or LOBs) require
record by record processing, and every record requires one additional network
round-trip.

■ Store attributes only when necessary. Attributes stored in Oracle SES should be
used only for the following purposes:

– Faceted navigation

– Advanced search

– Search result actions

– Primary keys

If the value of an attribute must be searchable, then place it in the body of the
searchable object.

■ Use common attributes across Oracle Fusion Applications. Stored attributes
common to all the searchable objects must share the same name and data type. For

Note: You can also package ECSF metadata into metadata archive
(MAR) files.

Defining Searchable Objects

Creating Searchable Objects 27-3

information about preventing conflicts, see Section 27.2.10, "What You May Need
to Know About Preventing Search Attribute Naming Conflicts."

■ Use the default security plug-in (oracle.ecsf.impl.DefaultSearchPlugin) as
much as possible. Use of the default security plug-in ensures that the searchable
objects are secured properly.

■ Set the data type for stored attributes correctly and avoid conflicting attribute
names.

■ Identify the appropriate incremental crawl approach for your searchable object.
Initial crawl refers to the first time data is crawled and indexed into a search
engine. During initial crawl, all data intended to be crawled is sent to the search
engine. All subsequent crawls are incremental crawls. During incremental crawls,
only data that has been added or modified since the last crawl is sent to the search
engine for indexing.

ECSF supports two mechanisms to identify newly added or modified data. You
must choose and implement at least one of the following mechanisms:

– Configuring the Crawl Date Column searchable attribute property. For
information, see Section 27.2.6.1, "Making View Object Attributes Searchable."

– Raising change events. For information, see Section 31.8, "Raising Change
Events Synchronously."

If neither mechanism is implemented, then the data that has been added or
modified since the initial crawl will not be indexed, and therefore will not be
searchable.

To define searchable objects and searchable attributes, use the Search navigation tab of
the overview editor in Oracle JDeveloper to complete the following tasks:

1. Make view objects searchable.

2. Make view object attributes searchable.

Before you begin:
Before you can define searchable objects, you must be familiar with the following:

■ Oracle JDeveloper and Oracle Application Development Framework technology.
You must also understand how to build applications using entity objects, view
objects, and view links. For information, see the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

■ How view objects are used in ECSF. For more information, see the "Managing
Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle
Fusion Applications Administrator's Guide.

■ How to use Groovy expressions when defining search metadata. For information,
see Section 27.2.1, "How to Use Groovy Expressions in ECSF."

Note: You must choose the Oracle Fusion Applications
Customization role when start launch JDeveloper.

You can also switch to the Oracle Fusion Applications Customization
role from within JDeveloper by selecting Tools > Preferences > Roles
from the main menu and restarting JDeveloper.

Defining Searchable Objects

27-4 Developer's Guide

27.2.1 How to Use Groovy Expressions in ECSF
ECSF indexes data based on a view object, which represents the top-level view object
to crawl. Many business objects are hierarchical, and ECSF optimizes the Oracle
Application Development Framework (Oracle ADF) methods of describing such
hierarchies by using view links. ECSF supports multiple levels of a view hierarchy. By
defining additional view objects and linking the top-level view object to the additional
view objects through a view link, parent, child, grandchild, and so on relationships are
formed. After a view link is set, you can reference data in those successive objects for
indexing by using Groovy, a Java-like scripting language that is dynamically compiled
and evaluated at runtime.

When defining search metadata, Groovy expressions are used to reference the
attributes of view objects and the attributes of their child, grandchild, and so on view
objects so that the attribute (string) values can be added into the ECSF index. You are
required to enter Groovy expressions for fields such as Title, Body, and Keyword.

You can also use Groovy expressions to localize ECSF. For information, see
Section 31.10, "Localizing ECSF Artifacts."

27.2.1.1 Referencing View Object Attributes as Variables
Groovy expressions can reference view object attributes (voAttrName) as variables. For
example, you can enter the following Groovy expression in the Title field:

"Purchase Order " + RowId + " created for " + Customer + " on " +
CreatedDate

If the value for RowId is 1234, the value for Customer is ABC Inc, and the value for
CreatedDate is 1/1/2007, then a search would return the following title value:

Purchase Order 1234 created for ABC Inc on 1/1/2007

The ECSF runtime code parses, then evaluates the expressions in the context of a view
object, and returns the title with values for the variables.

Note: When you design your view object to be searchable, you must
configure view links to generate only the Destination Accessor and
not the Source Accessor.

When querying for root records during crawl time, ECSF also
traverses the view link accessors to query child view objects. ECSF
follows the parent view link accessors until it reaches the limit for the
number of view accessor levels to be crawled. The default limit is set
to 5 levels. If a parent view object has a view link accessor to its child
view object, and the child view object also has a view link accessor
pointing back to the parent view object, then the code cycles. It is not
necessary to index the data in both parent and child view objects.
When creating a view link object in Oracle JDeveloper, generate the
view link accessors in either end of the view link. Generate the view
link accessor only in the parent view object and not in the child view
object.

Note: View object attribute names are case-sensitive.

Defining Searchable Objects

Creating Searchable Objects 27-5

27.2.1.2 Referencing Child View Object Attributes
Groovy expressions can also reference child view object attributes
(viewLinkAccessorName.voAttrName) as variables by using the view link accessor
names to access child attributes.

For example, you can enter the following Groovy expression in the Title field:

"Product Codes: " + ProductsView.ProdCode

If the view object represented by the ProductsView view link accessor contains one
record, and the value of its ProdCode attribute is 1XYZ, then a search would return the
following title value:

Product Codes: 1XYZ

If a child view object referenced by an expression contains more than one record, then
the values of all the child records are concatenated. For example, if the ProductsView
view link accessor contains three records, and the values of its ProdCode attribute are
1XYZ, 2ABC, and 3STU, then a search would return the title value:

Product Codes: 1XYZ 2ABC 3STU.

The view link accessor name for a child view object is available on the view link that
points to the child view object. The name of the view link accessor is the Destination
value. In Figure 27–1, which shows the accessor information about the Relationship
navigation tab of the view link editor, the name of the view link accessor is ZipLov.

Note: To reference a stored view object attribute whose alias
corresponds with an Oracle SES default search attribute (for example,
Language), you must change the alias of the view object attribute to
something other than any name of the Oracle SES default search
attributes (for example, use alias Lang, instead of Language). Changing
the alias prevents conflicts between Oracle SES and ECSF stored view
object attributes. Alternatively, you can create view object transient
attributes and reference them in the expressions. For more
information, see Section 27.2.9, "What You May Need to Know about
Preventing Conflicts with Oracle SES Default Search Attributes."

Note: View object attribute names are case-sensitive.

Defining Searchable Objects

27-6 Developer's Guide

Figure 27–1 Location of View Link Accessor Name for Child View Object

You can also find the name of view link accessor in the <ViewLinkAccessor> tag of the
XML source code of the view object.

Alternatively, you can use the curdoc keyword to access the current document, as
shown in Example 27–1.

Example 27–1 Using curdoc to Access Child Documents and Their Attributes

 s = "";
 if (curdoc.getChildDocs("ProductsView") != null)
 {
 for (d in curdoc.getChildDocs("ProductsView"))
 {
 s = s + d.attributes.ProdCode + " ";
 }
 };
 "Product Codes: " + s;

The curdoc keyword is used to access child documents and their attributes.

27.2.1.3 Referencing View Object Attributes in Multilevel Searchable Objects
Groovy expressions can also reference view object attributes
(viewLinkAccessorName.voAttrName,
viewLinkAccessorName.viewLinkAccessorName.voAttrName, and so on) in searchable
objects with a multilevel structure.

By default, the view link depth is set to 5. To index fewer or more than five levels of
data in the view hierarchy, you must set the oracle.ecsf.max.links.depth property
in system properties to the desired value. Figure 27–2 illustrates the Purchase Order
searchable object with a five-level structure.

Defining Searchable Objects

Creating Searchable Objects 27-7

Figure 27–2 Searchable Object with Five Levels

Using Groovy expressions in the search metadata, you can access attributes in the
levels PO Line Detail, Line Item Product, and Product Doc. For example, you can
enter the following Groovy expression in the Title field:

POLine.LineDetail.AttributeX + POLine.LineDetail.LineProduct.AttributeY +
POLine.LineDetail.LineProduct.ProductDoc.AttributeZ

If a grandchild view object referenced by an expression contains more than one record,
then the values of all the grandchild records are concatenated. For example, if you
reference view object attributes with
viewLinkAccessorName.viewLinkAccessorName.voAttrName, then the result of the
expression POLine.LineDetail.AttributeX is the concatenation of all AttributeX
values for the LineDetail attribute of all POLine levels of the current PurchaseOrder
searchable object.

27.2.1.4 Formatting View Object Attribute Values
When writing Groovy expressions, it can be useful to generate strings that contain
formatted versions of view object attribute values. For example, you may want to
generate formatted strings such as "01/30/07" or "Jan 30, 2007" for an attribute
value of type java.sql.Date.

To format attribute values, you must first determine the Java data types. The data
types of view object attributes can vary. For example, some attributes may return
simple strings, while others may return java.sql.Date, java.sql.Timestamp, or
numbers like java.lang.Long.

One way to determine the types is to write a test Groovy expression that displays the
type names. For example, if the view object has an attribute called Hiredate, then you
can use the Groovy expression, as shown in Example 27–2, in the Body field.

Example 27–2 Sample Groovy Expression to Determine Attribute's Java Data Type

'Hiredate type: ' + (Hiredate != null ? Hiredate.getClass().getName() : 'null');

The class name of the Hiredate attribute's value is displayed and can be viewed in the
Data Feed:

Hiredate type: java.sql.Date.

After you determine the Java data type of a view object attribute, you can apply
standard Java formatting techniques to format its value. Example 27–3 shows a sample
Groovy expression for formatting a date.

Defining Searchable Objects

27-8 Developer's Guide

Example 27–3 Sample Groovy Expression for Formatting Dates

fmt = new java.text.SimpleDateFormat('MM/dd/yyyy'); // create a date formatter
(standard java class)
'Hire date: ' + fmt.format(Hiredate);

The Groovy expression evaluates to:

Hire date: 01/30/2007

To format a number attribute named Qty of data type java.lang.Long using comma
separators, write a Groovy expression, such as the one shown in Example 27–4.

Example 27–4 Sample Groovy Expression for Formatting Numbers

fmt = new java.text.DecimalFormat('#,###,###');
'Quantity: ' + fmt.format(Qty);

The Groovy expression evaluates to:

Quantity: 2,450

27.2.2 What Happens When You Use Groovy Expressions in ECSF
The Groovy expressions are compiled and evaluated at runtime to display the desired
string value in the crawl data feeds.

27.2.3 How to Make View Objects Searchable
Use the Search page of the overview editor in JDeveloper, as shown in Figure 27–3, to
set search property values for view objects.

Figure 27–3 Search Page for Configuring Search Properties of View Objects

Defining Searchable Objects

Creating Searchable Objects 27-9

27.2.3.1 Setting Search Property Values for View Objects
Make view objects searchable by setting search property values for them.

To set search property values for view objects:
1. In the overview editor, select the Search navigation tab.

2. Complete the Primary Table field by doing one of the following:

■ If the view object is based on an entity object, then select a value from the
Primary Table dropdown menu.

■ If the view object is not based on an entity object, then enter the schema, table
name, and table alias for the primary table. Use the format DATABASE_
SCHEMA.TABLENAME TABLE_ALIAS_NAME (for example, fusion.Emp Employee).

You can either enter text directly into the text box or use the Select Primary
Table dialog. For more information, see Section 27.2.3.2, "Using the Select
Primary Table Dialog."

3. In the Title field, enter a Groovy expression to be evaluated to a string for the
desired title of the search result. For more information, see Section 27.2.1, "How to
Use Groovy Expressions in ECSF."

The Title field allows for multiple lines of text.

You can also click the Edit icon to open the Edit Expression Editor, where you can
enter Groovy expressions for the desired title of the search result. Click OK to
save.

4. In the Body field, enter Groovy expressions to provide additional information
about the search results. This appears below the title. For more information, see
Section 27.2.1, "How to Use Groovy Expressions in ECSF."

You can also click the Edit icon to open the Edit Expression Editor, where you can
enter Groovy expressions for the desired title of the search result. Click OK to
save.

Note: The Search page is not editable if the view object or existing
searchable object is read-only.

Caution: Do not modify the Oracle Fusion Applications Help
searchable object named TopicSearchPVO.

Note: The table alias name you enter must match the table alias
name used in the view object's SQL statement. You can view the SQL
statement by selecting the view object's Query tab.

Note: Do not include attributes of type character large object (CLOB)
or binary large object (BLOB) in the Groovy expressions for the Title,
Body, and Keywords fields, or you will receive an error. All columns
with type CLOB or BLOB in a view object or its child view objects are
processed as Oracle SES attachments.

Defining Searchable Objects

27-10 Developer's Guide

5. In the Keywords field, enter the keywords in the form of Groovy expressions. For
more information, see Section 27.2.1, "How to Use Groovy Expressions in ECSF."

You can also click the Edit icon to open the Edit Expression Editor, where you can
enter Groovy expressions for the desired title of the search result. Click OK to
save.

The values of the keywords are evaluated at crawl time using Groovy expressions,
and sent to Oracle SES as part of the document for indexing. After they are
indexed, the values of the keywords are searchable for the document with which
they are associated.

6. Select the desired view object attribute from the Language Attribute dropdown
menu to specify the language of this view object record. If the object has no
language attribute, then leave it blank.

7. Complete the Search PlugIn field by using the Search PlugIn dialog. For more
information, see Section 27.2.3.3, "Using the Search PlugIn Dialog."

8. Save the view object.

27.2.3.2 Using the Select Primary Table Dialog
Use the Select Primary Table dialog to specify the primary table for the searchable
object if the view object is not based on an entity object.

To use the Select Primary Table dialog:
1. From the Search navigation tab, click the Edit icon next to the Primary Table field.

The Select Primary Table dialog appears, as shown in Figure 27–4.

Note: Currently, ECSF provides a way for you to specify if an
attribute is a language field. ECSF will assume that the value of this
field for each instance is the language for this instance. ECSF initially
supports the Oracle Fusion Applications language code. If no
language field is specified for a given searchable object, then ECSF
uses the language preference of the crawler user.

Note: To save the changes made to the Primary Table, Title, Body,
and Keywords fields, you must move the focus from those attributes
(that is, click outside each field as you complete them).

Note: If the view object is open in JDeveloper when you update the
corresponding searchable object file (view_object_name_ECSF.xml),
then you must close and reopen the view object to view the updates.

Defining Searchable Objects

Creating Searchable Objects 27-11

Figure 27–4 Select Primary Table Dialog

2. Select the desired schema from the Database Schema dropdown menu.

3. With the Tables checkbox selected in the Object Type field, click Query to list the
available tables.

4. Select the desired table name from the list under Available Objects.

5. Enter an alias for the primary table in the Table Alias field.

6. Click OK.

27.2.3.3 Using the Search PlugIn Dialog
ECSF provides an extension model to allow you to extend ECSF functionality.
Implement a search extension to implement any number of the following Java
interfaces to extend or customize ECSF functionality:

■ oracle.ecsf.Securable, used to implement a security extension

■ oracle.ecsf.PreIndexProcessor, used to customize or manipulate data before it
is sent to the search engine for indexing, such as for enabling advanced search on
child objects (that is, attribute filtering)

■ oracle.ecsf.PostQueryProcessor, used to customize results before search results
are returned

Use the Search PlugIn dialog to specify the extension you want to use for the
searchable object.

Note: The table alias entered must match the table alias used in the
view object's SQL statement. You can view the SQL statement by
selecting the view object's Query tab.

Note: You must select a primary table from the Available Objects list
to save the changes.

Defining Searchable Objects

27-12 Developer's Guide

To use the Search PlugIn dialog:
1. From the Search navigation tab, click the Edit icon next to the Search PlugIn field.

The Search PlugIn dialog appears, as shown in Figure 27–5.

Figure 27–5 Search PlugIn Dialog

2. In the PlugIn Class Name field, enter the name of the custom Java class that
implements the methods to determine security and resolve the URL.

3. Optional: Enter a parameter name in the Parameter Name field and its
corresponding value in the Value field, and click Add.

4. To update an existing parameter, select the desired parameter in the table, change
its value, and then click Update.

5. To delete an existing parameter, select the desired parameter in the table and click
Delete.

6. Click OK to save the changes.

Note: If you do not specify a search extension for your searchable
object, then the default security extension is used. The default security
extension requires you to identify a secure attribute. For information,
see Section 27.2.6.1, "Making View Object Attributes Searchable."

Note: If the search extension is in the Oracle WebLogic Server shared
library, then the ECSF library (ecsf.jar) must be present in the shared
library for ECSF to load the interface.

Note: If there is no plug-in defined in the searchable object, and you
are not using a custom security extension, then this value is null and
by default is set to oracle.ecsf.impl.DefaultSearchPlugin, which is
used at runtime.

Defining Searchable Objects

Creating Searchable Objects 27-13

27.2.4 What Happens When You Make View Objects Searchable
JDeveloper captures the search metadata for each view object and writes it to an
external XML file (searchable object) for consumption by the runtime component. Each
searchable object corresponds to a view object. The file naming convention is view_
object_name_ECSF.xml, and the file is created in the same location as its
corresponding view object.

ECSF metadata can be packaged into an EAR file or a MAR file for consumption
during crawl time and query time.

27.2.5 What You May Need to Know About Making View Objects Searchable
The searchable object reflects any change in the search metadata only after you save
the view object. Until then, the changes are in memory. When you save the view object,
the search metadata is saved to the searchable object. If there is no existing searchable
object corresponding to the view object, then a new searchable object is created and
stored in the same location as the view object.

In addition, if you rename or delete a view object with a corresponding searchable
object, then the searchable object is likewise renamed or removed from the project.

27.2.6 How to Make View Object Attributes Searchable
Making view object attributes searchable creates the necessary metadata for:

■ Advanced search

■ Faceted navigation

■ Security

■ Search result actions

Use the Search navigation tab of the overview editor in JDeveloper, shown in
Figure 27–6, to set property values for view object attributes.

Note: Manually deleting an ECSF file removes the search
functionality from the corresponding view object.

Caution: Do not manually modify the contents of the view_object_
name_ECSF.xml file. If you manually modify the search metadata in
the XML file, then the changes appear in the editor window when it is
closed and reopened in JDeveloper, but metadata changes are not
validated. Instead, use the Search navigation tab of the overview
editor in JDeveloper to modify the search metadata.

Note: The more attributes you make searchable, the larger the index
becomes, which slows the performance of the queries.

Defining Searchable Objects

27-14 Developer's Guide

Figure 27–6 Search Page for Configuring Search Properties of View Object Attributes

Using the Search navigation tab, you can perform the following tasks on view object
attributes:

■ Make view object attributes searchable.

■ Modify searchable attributes.

■ Delete searchable attributes.

27.2.6.1 Making View Object Attributes Searchable
Make view object attributes searchable by setting search property values for them.

To set search property values for view object attributes:
1. In the overview editor, select the Search navigation tab.

2. Click the Add icon in the Searchable Attributes table header to open the
Searchable Attribute Properties dialog, shown in Figure 27–7.

Figure 27–7 Searchable Attribute Properties Dialog

3. Select the desired view object attribute from the Attribute Name dropdown menu.

Defining Searchable Objects

Creating Searchable Objects 27-15

4. Complete the remaining fields to define the property set for the searchable
attribute. For information about the searchable attribute properties, see Table 27–1.

Note: Before creating new stored attributes, check the list of Oracle
SES attribute names and types to avoid conflicts. See Oracle Fusion
Applications Reference for Oracle SES Attributes.

Table 27–1 Searchable Attribute Properties

Property Description

Stored Select this checkbox to store the view object attribute in Oracle
SES as a separate custom search attribute. The view object
attribute's Alias property will be used as the name of the
custom search attribute. The Alias property can be updated and
renamed to avoid name and type conflicts. See Section 27.2.10,
"What You May Need to Know About Preventing Search
Attribute Naming Conflicts." The attributes stored in Oracle SES
are used for Advanced Search, Actionable Results, and Faceted
Navigation. For more information, see Section 27.4.1, "How to
Define Search Result Actions"and Section 27.4.4, "How to
Implement Faceted Navigation." Selecting this checkbox enables
the Weight field.

Secure Attribute Select this checkbox to use the attribute's value to secure the
document at crawl time and to determine which users can access
the indexed object at query time.

Crawl Date Column Select this date column during incremental crawls to see if that
record should be recrawled.

Select this checkbox to enable the crawler to detect changes to
the searchable object based on the date column. You must be
able to reference the Crawl Date Column checkbox in a SQL
predicate for ECSF to detect added or changed data.

During incremental crawls, scheduled using either the Oracle
Fusion Applications Control for ECSF or ECSF Command Line
Administration Utility, only objects that have been modified
since the last crawl are sent to Oracle SES.

If the Crawl Date Column checkbox is specified for multiple
searchable attributes, then all the date columns are used in the
SQL query to retrieve data that has been modified since the last
crawl. The SQL query uses the OR condition to get the
incremental set of data. For example, if the Crawl Date Column
checkbox is selected for CREATED_DATE and LAST_UPDATE_DATE in
the searchable object, and the SQL query uses select * from
EMP, then the following incremental crawl SQL query is
generated:

Select * from EMP where (CREATED_DATE between LAST_
CRAWL_TIME and CURRENT_TIME) or (LAST_UPDATE_DATE
between LAST_CRAWL_TIME and CURRENT_TIME)

ECSF will check the values of all attributes in the Searchable
View Object (SVO) that are marked as Crawl Date columns, find
the most recent one, and use the value of that column as the
LastModifiedDate stored attribute's value. In other words, ECSF
will pick the most recent Crawl Date column value to use as the
LastModifiedDate value. This allows users to perform queries
using Advanced Search for documents that were modified
within a certain date range.

Defining Searchable Objects

27-16 Developer's Guide

5. Click OK.

6. Save the view object.

27.2.6.2 Modifying Searchable Attributes
Modify a searchable attribute by editing the search property values for the view object
attribute.

To edit search property values for view object attributes:
1. In the overview editor, select the Search navigation tab.

2. Expand the Searchable Attributes table header to expose the table of searchable
attributes.

3. Select the searchable attribute you want to modify. This highlights the entire row.

4. Click the Edit icon in the Searchable Attributes table header to open the
Searchable Attribute Properties dialog, shown in Figure 27–7.

The attribute you selected on the Search navigation tab is displayed in the
Attribute Name field.

Weight Select the Stored checkbox to enable this field.

Enter a value 1 to 10 (low to high), or select from the dropdown
menu, to attach a weight to the stored attribute. Weights affect
the ranking of the search results.

If the weight is set to 1, then the stored attribute gets no boost.

If the weight is set to 2 or 3, then the stored attribute gets very
low boost (added to custom attribute Headline2).

If the weight is set to 4 or 5, then the stored attribute gets low
boost (added to custom attribute Headline1).

If the weight is set to 6 or higher, then the stored attribute gets
high boost (added to custom attribute Reference Text).

Override Source Select this property to allow facets to be based on child view
object attributes. This feature lets a stored attribute to be defined
against a child view object attribute and a facet to be defined
against this stored attribute. This allows users to filter search
results so that only results whose child view object attribute
matches a certain value will be returned.

The Override Source property will support values of the format
ViewLinkAccessorName.AttributeName.

Note: Only stored and secured view object attributes are available
for advanced search (that is, the Stored and Secure Attribute
checkboxes are selected).

Note: If the view object is open in JDeveloper when you update the
corresponding searchable object file (view_object_name_ECSF.xml),
then you must close and reopen the view object to view the updates.

Table 27–1 (Cont.) Searchable Attribute Properties

Property Description

Defining Searchable Objects

Creating Searchable Objects 27-17

5. Select or deselect the checkboxes to modify the property set for the searchable
attribute. For information about the searchable attribute properties, see Table 27–1.

6. Click OK.

7. Save the view object.

27.2.6.3 Deleting Searchable Attributes
Deleting the searchable attributes removes the search metadata for the view object
attribute.

To delete searchable attributes:
1. In the overview editor, select the Search navigation tab.

2. Expand the Searchable Attributes table header to expose the table of searchable
attributes.

3. Select the searchable attribute you want to remove. This highlights the entire row.

4. Click the Delete (red X) icon in the Searchable Attributes table header.

The attribute you selected on the Search navigation tab is removed from the table
of searchable attributes.

5. Save the view object.

27.2.7 What Happens When You Define Searchable Attributes
JDeveloper captures the search metadata for each view object, including its attributes,
and writes it to an external XML file (searchable object) for consumption by the
runtime component. Each searchable object corresponds to a view object and includes
the view object attributes. The file naming convention is view_object_name_ECSF.xml,
and the file is created in the same location as its corresponding view object.

During crawl time, the ECSF runtime server uses the view attributes that are
annotated for searching to construct documents for indexing.

ECSF implicitly adds the following attributes to Oracle SES indexes:

■ ECSF_SO_NAME. This attribute stores the fully qualified searchable object name that
corresponds to the searchable object on which the Oracle SES data source is based.

■ ECSF_TAGS. This attribute is created if Oracle WebCenter Portal tags are associated
with the searchable object. For information, see Section 31.3, "Enabling Search on
WebCenter Tags."

■ DEFAULT_ACL_KEY. ECSF uses this attribute to store access control list (ACL) keys
for the document.

Caution: Do not manually modify the contents of the view_object_
name_ECSF.xml file. If you manually modify the search metadata in
the XML file, then the changes appear in the editor window when it is
closed and reopened in JDeveloper, but metadata changes are not
validated. Instead, use the Search navigation tab of the overview
editor in JDeveloper to modify the search metadata.

Defining Searchable Objects

27-18 Developer's Guide

27.2.8 What You May Need to Know About Defining Searchable Attributes
The searchable object reflects any change in the search metadata only after you save
the view object. Until then, the changes are in memory. When you save the view object,
the search metadata is saved to the searchable object. If there is no existing searchable
object corresponding to the view object, then a new searchable object is created and
stored in the same location as the view object.

In addition, if you rename or delete a view object with a corresponding searchable
object, then the searchable object is likewise renamed or removed from the project.

27.2.9 What You May Need to Know about Preventing Conflicts with Oracle SES Default
Search Attributes

Oracle SES supports system-defined default search attributes that may conflict with
ECSF stored view object attributes. For example, for Purchase Order 123 you define a
stored view object attribute with the alias Language and value US. However, Oracle SES
contains a default search attribute also named Language, but it has en as its value.
When you reference the view object attribute in a Groovy expression, such as when
you define a search result action of URL type where
target="http://example.com/q=dj&lang="+Language, you expect the search result
action to display as http://example.com/q=dj&lang=US.

However, the search result action displays as http://example.com/q=dj&lang=en
because the Oracle SES default search attribute value overrides the value of the ECSF
stored view object attribute of the same name.

The following are the Oracle SES default search attributes:

■ Author

■ Description

■ Headline1

■ Headline2

■ Headline3

■ Host

■ Infosource

■ Infosource Path

■ Keywords

■ Language

■ LastModifiedDate

Caution: Do not manually delete an attribute that has a
corresponding search attribute from a view object, because it causes
unexpected search results.

Note: The attribute conflict does not consider case. For example, a
conflict still occurs if the stored view object attribute's alias is
LANGUAGE (all caps) and the Oracle SES default search attribute name is
Language.

Defining Searchable Objects

Creating Searchable Objects 27-19

■ Mimetype

■ Reference Text

■ Subject

■ Title

■ Url

■ Urldepth

Author, LastModifiedDate, and Subject are the exceptions, and can be used to
enhance usability of the Oracle SES UI and to decrease the number of custom
attributes in Oracle SES.

To prevent a conflict between Oracle SES default search attributes and ECSF stored
view object attributes, you can either change the alias of the stored view object
attribute to something other than any name of the Oracle SES default search attributes,
or you can create a view object transient attribute and set it as a stored attribute, and
then reference the transient attribute in the expressions.

To resolve the conflict in the given example, you can change the alias value of the
Language view object attribute from Language (default) to Lang. The view object
attribute alias is used to retrieve the value of the view object attribute in expressions.

Alternatively, you can resolve the conflict by creating a view object transient attribute,
such as one named Lang, and use it in the expressions (for example,
target="http://example.com/q=dj&lang="+Lang). By default, when the values of
transient attributes are sent to Oracle SES, ECSF assigns the transient attribute a
unique alias. When their values return as part of query results, they will not conflict
with any default search attributes in Oracle SES. When expressions containing
transient attributes are evaluated, ECSF converts the transient attribute names to the
aliases and retrieves the data correctly.

27.2.10 What You May Need to Know About Preventing Search Attribute Naming
Conflicts

Because Oracle SES supports facets only on attributes of type STRING, if a facet is
defined on a nonstring attribute, then ECSF automatically converts the stored attribute
type to a string before sending the attribute to Oracle SES.

However, a conflict may occur when a stored attribute of the same name is generated
for a view object with no facets. Searchable attributes in Oracle SES are unique across
the entire instance, so if multiple searchable objects contain the same attribute name of
different types, then only the attribute (regardless of type) of the first searchable object
crawled is used by Oracle SES. ECSF does check for stored attribute conflicts. For more
information, see Section 27.2.10.1, "Checking for Stored Attribute Conflicts."

Consider the following example:

You create a view object oracle.apps.crm.cutomer360.CustomerPVO with a set of
attributes and types that are based on the underlying tables that use the Oracle
ADF standard UI. The view object attribute contains the following information
stored as Oracle ADF metadata:

Attribute Name Attribute Alias Attribute Type

Name NAME VARCHAR2

OrganizationId ORGANIZATION_ID NUMBER

Defining Searchable Objects

27-20 Developer's Guide

You use the Search Designer to annotate a subset of these attributes (Name and
OrganizationId) to store in Oracle SES for search purposes. For more information, see
Section 26.1.1.2, "Search Designer."

When Oracle SES crawls oracle.apps.crm.cutomer360.CustomerPVO, ECSF sends a
document for each customer in the table. Each document contains the following
attribute details:

In Oracle SES, NAME and ORGANIZATION_ID are created as customer attributes with the
respective types. Due to the global nature of custom attributes in Oracle SES, if an
attribute of the same name already exists, then no new attribute is created even if its
type is different. Values for the attributes with conflicting name and type pairs are not
stored in Oracle SES.

The issue surfaces when ORGANIZATION_ID is used as a facet (to enable users to narrow
down the results per organization tree). ECSF implements a logic that detects whether
or not an attribute is used for a facet. If it is used for a facet, then ECSF automatically
changes the attribute type from NUMBER to VARCHAR2 because Oracle SES does not
support facets on attributes with type NUMBER. This causes a conflict with the already
existing ORGANIZATION_ID stored attribute of type NUMBER.

To prevent this conflict and allow Oracle SES to index both attributes, you must
change the alias of the stored attribute that is used for facets. Go to the JDeveloper
ADF view object attribute editor and update the Alias property value, as shown in
Figure 27–8. For example, in the view object attribute editor, change the Alias value
from PARTY_ID to PARTY_ID_FACET.

Description DESCRIPTION VARCHAR2

Attribute Alias Attribute Type

NAME VARCHAR2

ORGANIZATION_ID NUMBER

Attribute Name Attribute Alias Attribute Type

Securing Searchable Objects

Creating Searchable Objects 27-21

Figure 27–8 Changing the Alias Value in the Attribute Editor

Before creating new stored attributes, check the list of Oracle SES attribute names and
types to avoid conflicts. See Oracle Fusion Applications Reference for Oracle SES
Attributes.

27.2.10.1 Checking for Stored Attribute Conflicts
ECSF checks for stored attribute conflicts during Search Object deployment. If ECSF
detects that the SO has attributes in it that will cause a conflict in SES, an error
message will be shown that describes the error. Depending on the situation, the
message will appear similar to one of these:

■ The source attribute in runtime.EmpViewAdmin11gTest with name Host and type
NUMBER conflicts with the attributes defined in these sources: Source:
runtime.EmpView DataType: STRING Source: runtime.EmpView2 DataType:
STRING

■ The source attribute in runtime.EmpViewAdmin11gTest with name Mgr and type
NUMBER conflicts with the attribute defined in SES with type STRING. This
attribute is not being used by any sources.

You will have to change the SO so that the conflicting attribute either has a new name
or has the same type as the attributes already defined in SES.

27.3 Securing Searchable Objects
ECSF determines if a user has access to a search category depending on whether or not
the user has permission to access the searchable objects in the category. Search
categories, also called search groups, are the logical collections of searchable objects that

Securing Searchable Objects

27-22 Developer's Guide

facilitate group search on related items. Search categories are directly used for
querying. If all of the searchable objects in a search category are not accessible to the
user, then that category does not appear in the user's category list. In this case, ECSF
runtime does not return that category when SearchCtrl.getSearchGroups() is called.
However, if any one of the searchable objects in a search category is accessible to the
user, then that category does appear in the user's category list.

To secure searchable objects:

1. Set permissions for searchable objects

2. Create the security realm

3. Create the application policy store

27.3.1 How to Set Permissions for Searchable Objects
Set permissions for searchable objects by using the Search PlugIn dialog to enter the
permissions parameters. For information, see Section 27.2.3.3, "Using the Search
PlugIn Dialog."

To set permissions for searchable objects:
1. In the PlugIn Class Name field, enter the name of the custom Java class that

implements the methods to determine security. If you are not using a custom
security extension, enter oracle.ecsf.impl.DefaultSearchPlugin.

2. Add the following parameter names and values, and click Add for each name and
value pair:

■ Parameter Name: FUNCTION_PERMISSION_NAME

Value: PURCHASE_ORDER_VIEW_DETAILS

■ Parameter Name: FUNCTION_PERMISSION_ACTION

Value: view

■ Parameter Name: FUNCTION_PERMISSION_CLASS

Value: RegionPermission

3. Click OK.

The parameters are used to validate permissions in the ECSF security classes.
Searchable objects with no permissions set are accessible by all users.

27.3.2 How to Create the Security Realm
The user in the security realm is deployed to the Oracle WebLogic Server security
realm. Add a jazn.com realm to jazn-data.xml.

To add a security realm:
1. Expand Application Resources > Descriptors > META-INF, and open the

jazn-data.xml file.

2. Select Identity Store, and click New to add a new realm. Name it jazn.com.

Note: The value of FUNCTION_PERMISSION_NAME and FUNCTION_
PERMISSION_ACTION must be the same as the value of the permission
name and action in the jazn-data.xml file.

Securing Searchable Objects

Creating Searchable Objects 27-23

3. Navigate to jazn.com > Users, and click Add to add a user with the following
information:

Name: scott

Credentials: weblogic

The jazn-data.xml file is updated with the security realm, as shown in
Example 27–5.

Example 27–5 jazn.com Security Realm

<jazn-realm default="jazn.com">
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>scott</name>
 <credentials>{903}O/XvB3XDx97MYp4sUSWwT3Q5KPLIEciA</credentials>
 </user>
 </users>
 </realm>
</jazn-realm>

The user Scott is associated to the jazn.com security realm.

4. Save.

27.3.3 How to Create the Application Policy Store
The policy store is used to determined which users have access to which objects. Add
an application policy store to jazn-data.xml.

To add an application policy store:
1. Expand Application Resources > Descriptors > META-INF, and open the

jazn-data.xml file.

2. Select Application Policy Store, and click New to add a new policy store. Enter
TestPermission for the display name.

3. Select Application Roles, and click Add to add a new role. Name it admin.

4. Select Application Roles, and shuttle the user scott from the Available section to
the Selected section.

5. Select Application Policies, and click New to add a new policy. Enter View Orders
for the display name.

6. Select the View Orders application policy, go to the Principals tab, and click Add
to add a principal with the following information:

Name: admin

Class: oracle.security.jps.service.policystore.ApplicationRole

Type: role

Leave the Realm Name field blank.

7. Go to the Permissions tab, and click Add to add a permission with the following
information:

Name: PURCHASE_ORDER_VIEW_DETAILS

Securing Searchable Objects

27-24 Developer's Guide

Class: oracle.adf.share.security.authorization.RegionPermission

Actions: view

The jazn-data.xml file is updated with the application policy store, as shown in
Example 27–6.

Example 27–6 Application Policy Store

<policy-store>
 <applications>
 <application>
 <name>TestPermission</name>
 <app-roles>
 <app-role>
 <name>admin</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>scott</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</class>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <display-name>
 View Orders
 </display-name>
 <principals>
 <principal>
 <type>
 role
 </type>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>PURCHASE_ORDER_VIEW_DETAILS</name>
 <actions>view</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
</policy-store>

The application policy store includes the values that you specified.

Configuring Search Features

Creating Searchable Objects 27-25

27.4 Configuring Search Features
In addition to basic and advanced search, ECSF allows you to further improve the
search experience with the Actionable Results and Faceted Navigation search features,
which you must configure.

To configure search features, you can complete the following tasks:

■ Define search result actions.

■ Implement faceted navigation.

27.4.1 How to Define Search Result Actions
Associating actions with the searchable objects and exposing the action links in the
search results allows Oracle Fusion Applications users to run specific actions on a
given search result. You can either define actions as URLs so the user can then either
go to a specific web page related to the search result, or define actions as references to
ADF task flow definitions so the user can then launch a specific task on the search
result. For more information, see Section 13.2.3, "How to Add Dynamic Main Area and
Regional Area Task Flows to a Page." Figure 27–9 illustrates an example of the results
of a filtered search.

Figure 27–9 Search Results with Action Links

Note: No configuration is required for integrating Saved Search
functionality.

Configuring Search Features

27-26 Developer's Guide

Clicking the title (default action URL) opens the Sonoma - Elites page. An additional
action link allows the user to e-mail the owner.

You can perform the following tasks to define search result actions:

■ Add search result actions.

■ Modify search result actions.

■ Delete search result actions.

Use the Search navigation tab of the overview editor in JDeveloper, shown in
Figure 27–3, to define actions for search results.

To define search result actions for Oracle Fusion Applications Search, you must
complete additional configuration tasks. For information, see Section 14.6.6, "How to
Use the Actionable Results API with Oracle Fusion Applications Search."

27.4.1.1 Access URL
During runtime, the Access URL allows Oracle SES and the end user to access the
applications from the Query page. The Access URL contains the view object name, the
row's primary keys, and the action name, the values of which are used to look up the
action definition, query for the record, evaluate action parameters, and construct target
URLs. The Access URL also points to the Redirect Service.

27.4.1.2 Redirect Service
The Redirect Service is used for resolving URLs and redirecting users to the resolved
URL. Invoking the Redirect Service improves performance when attributes referenced
in the action definition not stored in the index.

The redirect logic includes the following steps following a request:

1. Use the view object name and action name to look up the action definition.

2. Use the primary key values to query for the row in the database.

Attribute values are obtained from search attributes. If an action refers to unstored
attributes, primary keys are used to obtain their values during redirect.

3. Construct an indexable document from the row.

4. Resolve the URL.

For task action type:

■ Look up the task and construct a TaskFlowID.

■ Look up the task parameters, if there are any.

■ For each task parameter, evaluate the parameter value by passing the field and
value map and the expression into an evaluator, add it to the resolved
parameters list, then construct the URL using the same
ControllerContext.getTaskFlowURL API.

For URL action type:

■ Evaluate the parameterized URL by passing the field/value map and the
expression into an evaluator.

5. Redirect the user to the resolved URL.

Configuring Search Features

Creating Searchable Objects 27-27

27.4.1.3 Adding Search Result Actions
Add search result actions to associate actions to searchable objects. The action links
you define display with the search results.

To add search result actions:
1. In the overview editor, select the Search navigation tab.

2. Click the Add icon in the Search Result Actions table header to open the Search
Result Actions dialog, shown in Figure 27–10.

Figure 27–10 Search Result Actions Dialog

3. In the Name field, enter a name for the action.

4. From the Action Type dropdown menu, select Task (default) to specify a task to
be performed on the search result or select URL to specify a web page.

5. Perform one of the following:

■ If you chose URL for Action Type in Step 4, then in the Action Target field,
define the action by entering a Groovy expression that generates the URL that
is invoked when the user clicks the action.

For URLs that point to an external site, you must configure the target
expression to generate a fully qualified URL, which includes both the protocol
(such as http://) and the host name (for example, example.com).

For internal link URLs that point to pages on the same application from which
the search is performed, configure the target expression to generate a relative
URL (for example, "/EmployeeDetailPage?empId=" + EmpId). Relative URLs

Note: No two actions can share the same name. This comparison is
case insensitive.

Note: Only bounded task flows can be launched through the URL
mechanism.

Configuring Search Features

27-28 Developer's Guide

are invoked relative to the current host name and port number. This allows for
the action to succeed on any application server on which the search is running.

You can also click the Edit icon next to the Action Target field to use the Edit
Expression Editor dialog for entering the Groovy expression. For more
information, see Section 27.2.1, "How to Use Groovy Expressions in ECSF."

The URL must be no longer than 32,000 in length. You can reference only
stored attributes. For example, you can enter
"http://www.example.com/search?hl=en&q=" + SRCompanyZip.

■ If you chose Task for Action Type in Step 4, then leave the Action Target field
blank. However, you must define the TaskName and TaskFile properties in the
Action definition. For information, see Section 27.4.1.4, "Defining Properties
for Bounded Task Flows."

6. In the Title field, enter a Groovy expression to be evaluated to a string for the
desired display title of the action as you would like it to appear on the Search
Results page. For more information, see Section 27.2.1, "How to Use Groovy
Expressions in ECSF."

You can also click the Edit icon next to the Title field to use the Edit Expression
Editor dialog for entering a Groovy expression.

7. Select the Default Action checkbox to make this action the default action to be
performed on the search results.

8. For tasks, enter a parameter name in the Parameter Name field and its
corresponding value in the Value field, then click Add.

Enter parameter values as Groovy expressions. You can use only stored attributes
(for example, SRNumber) as parameters.

You can also click the Edit icon next to the Value field to use the Edit Expression
Editor dialog for entering a Groovy expression.

Minimally, the TaskName and TaskFile parameters must be provided. The value of
the TaskName parameter is a Groovy expression that returns the name of the task
(that is, a name surrounded by double quotation marks). The value of the
TaskFile parameter is a Groovy expression that returns the name of the task
definition file. Values of other parameters are Groovy expressions that return the
desired value. These parameters are passed into the task. For more information,
see Section 27.2.1, "How to Use Groovy Expressions in ECSF."

Caution: Using unstored attributes results in an exception at query
time when the action is resolved. Also, do not refer to child
documents when defining the action definition.

Note: You can set only one action as the default action.

Note: Using unstored attributes results in an exception at query time
when the action is resolved. Also, do not refer to child documents
when defining the action definition.

Configuring Search Features

Creating Searchable Objects 27-29

9. To update an existing parameter, select the desired parameter in the table, change
its value, then click Update.

10. To delete an existing parameter, select the desired parameter in the table and click
Delete.

11. Click OK.

12. To create additional search result actions, repeat Steps 2 to 11.

13. Save the view object.

27.4.1.4 Defining Properties for Bounded Task Flows
For bounded task flows, you must define the TaskName and TaskFile properties in the
Action definition of the searchable object file (view_object_name_ECSF.xml). The task
definition file, containing the value for TaskName, is usually located in the WEB-INF
folder.

Edit the TaskFile parameter to point to the bounded task flow task definition XML
file, located in the WEB-INF folder. For example, \WEB-INF\filename.

To define the TaskName and TaskFile properties:
1. Locate the task definition file and note its location and filename, for example,

\WEB-INF\task-flow-definition.xml.

2. Open the task definition file, locate the <task-flow-definition> element, for
example, <task-flow-definition id='task-flow-definition'> and note the
value of the id attribute.

3. Open the searchable object file and locate the TaskFile parameter, then edit the
value to reflect the location and filename of the task definition file, for example,
\WEB-INF\task-flow-definition.xml.

4. Locate the TaskName parameter and edit the value to reflect the id attribute value
of the <task-flow-definition> element of the task definition file, for example,
'task-flow-definition'.

5. Save the searchable object file.

27.4.1.5 Modifying Search Result Actions
You can modify search result actions as needed to change the action links that display
with the search results.

To modify search result actions:
1. In the overview editor, select the Search navigation tab.

2. Expand the Search Result Actions table header to expose the table of actions.

3. Select the action you want to modify. This highlights the entire row.

4. Click the Edit icon in the Search Result Actions table header to open the Search
Result Actions dialog, shown in Figure 27–10.

The information of the action you selected is displayed.

5. Make the necessary changes to the desired fields. For more information about the
fields, see Section 27.4.1.3, "Adding Search Result Actions."

Configuring Search Features

27-30 Developer's Guide

6. Click OK.

7. Save the view object.

27.4.1.6 Deleting Search Result Actions
You can delete search result actions to remove action links that display with the search
results.

To delete search result actions:
1. In the overview editor, select the Search navigation tab.

2. Expand the Search Result Actions table header to expose the table of actions.

3. Select the action you want to delete. This highlights the entire row.

4. Click the Delete (red X) icon in the Search Result Actions table header.

The action you selected on the Search navigation tab is removed from the table of
actions.

5. Save the view object.

27.4.2 What Happens When You Define Search Result Actions
JDeveloper captures the search metadata for each view object, including the search
result actions you define, and writes it to an external XML file (searchable object) for
consumption by the runtime component. Each searchable object corresponds to a view
object and includes the search result actions. The file naming convention is view_
object_name_ECSF.xml, and the file is created in the same location as its
corresponding view object.

The search result actions you define during design time is parsed at runtime and
appear in a table on the search results page.

27.4.3 What You May Need to Know About Defining Search Result Actions
The Name, Action Type, Action Target, and Title fields are required fields. You must
input values for all three fields in order to save the action.

27.4.4 How to Implement Faceted Navigation
Facets are used to filter search results by attribute. A facet must point to an attribute
that contains a list of values (LOV) definition. The LOV defines a way to get a list of
values that make up the potential values for the attribute and can be used to filter
results. To implement faceted navigation, you must perform the following tasks:

Note: You must recrawl the data if you reference a new attribute that
is marked as stored.

Caution: Do not manually modify the contents of the view_object_
name_ECSF.xml file. If you manually modify the search metadata in
the XML file, the changes appear in the editor window when it is
closed and reopened in JDeveloper, but metadata changes are not
validated. Instead, use the Search page of the overview editor in
JDeveloper to modify the search metadata.

Configuring Search Features

Creating Searchable Objects 27-31

1. Create a searchable object and set it up for facets:

a. Create a view object (base object) and identify the attributes you want to bind
to facets.

b. Create a view object (LOV object) for each of the attributes you identified in
Step 1a to get a list of available values for the attributes.

c. Create a view accessor on the base object for each LOV object to be used as a
facet, and assign each LOV object to its corresponding attribute.

d. Define the facet hierarchy. Since the faceted navigation path is hierarchical,
you must form the structure so that the LOV objects form one facet definition.
For each LOV object to be used as child, create a bind variable and view
criteria.

While defining the facet hierarchy, you can constrain the LOV object by the
stored attribute.

2. Create the facets.

To better illustrate the process of defining LOVs for facets, consider the following
scenario: You want to create facet relationships for the EmpView base object. EmpView
contains two stored attributes, StateID and CityID, on which you want to create
facets. "City" is the child facet of "State." The values shown in the "City" facet are
constrained by the value selected for "State." This scenario is used in the tasks listed in
this section.

You can also configure stored transient attributes on the view object to define:

■ Facets that support number or date ranges.

■ Facets based on the values of multiple attributes.

For more information, see the "Working with List of Values (LOV) in View Object
Attributes" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

27.4.4.1 Defining Lists of Values
Defining LOVs for stored view object attributes creates facet relationships for the base
object and its stored attributes. The following procedure uses the example of the
EmpView base object and its two stored attributes, StateID and CityID.

To define list of values for stored view object attributes:
1. Define a view object (StatesView) to represent a list of values for a view attribute

(StateID).

2. Define a view accessor for StatesView (StatesView1) on EmpView.

The view accessor lets you obtain the full list of possible values from the row set of
the parent view object.

3. In the Edit Attribute dialog for the stored attribute (StateID), select List of Values
and select Enable List of Values.

4. Create a mapping from a child attribute to the stored attribute.

Note: When you design your view object for search, make sure that
you configure view links to generate only the Destination Accessor
and not the Source Accessor.

Configuring Search Features

27-32 Developer's Guide

Values from the child attribute are used to filter the parent view object.

5. Specify which attribute on the view object contains the display value.

■ In the Attribute Editor, select List of Values and select Edit List UI Hints.

■ In the List UI Hints dialog, add a child attribute to display. The first attribute
value is used as the display value.

6. Repeat Steps 1 to 5 to define a view object (CitiesView) to represent the stored
attribute that is defined as the child facet.

27.4.4.2 Constraining View Objects by Stored Attributes
Constraining the CitiesView object by StateID makes sure that only the cities of the
selected state are returned. Configure the CitiesView1 view accessor on EmpView so
that the view criteria on CitiesView is applied when the user queries using
CitiesView1. Based on the view criteria, only cities where its parent StateId is equal
to the value of EmpView.StateId (that is, the currently selected state) is returned.

To constrain CitiesView by State:
1. Define a bind variable on CitiesView (StId).

2. Create a named view criteria (CitiesViewCriteria) on CitiesView.

■ On the View Criteria page of the View Criteria Editor dialog, click the Add
Item button.

■ In the Criteria Items panel, define the criteria as follows:

– Attribute: ParStateId

– Operator: equal to

– Operand: Bind Variable

– Parameter: StId

– Usage: Required

3. Click the Edit button to edit the view accessor (CitiesView1) for CitiesView on
EmpView.

In the Edit View Accessor dialog, select the view criteria (CitiesViewCriteria) in
the Available list and click the Move icon to add it to the Selected list, as shown in
Figure 27–11.

Configuring Search Features

Creating Searchable Objects 27-33

Figure 27–11 Edit View Accessor Dialog

4. Map the StId bind variable on CitiesView to the StateId attribute of EmpView.

5. Ensure that the row-level bind values exist.

27.4.4.3 Creating Search Facets
Faceted navigation allows Oracle Fusion Applications users to narrow their search
results by setting filters, based on a set of predefined facets. For example, users can
narrow their search results first by country, then by state, and then by city.

Search facets follow a tree structure. The root facet appears above the tree control,
followed by child facets. All facets contain a name and an attribute, and can contain a
child facet.

You can define facets by creating search facets, modifying search facets, deleting root
search facets, and deleting child search facets. Use the Search navigation tab of the
overview editor in JDeveloper, shown in Figure 27–3, to define facets for faceted
navigation.

You can create search facets to specify the root facet, facet name, an attribute, and child
facets. Use the Facets dialog to add search facets.

Note: If you require both custom SQL query and facets for a view
object, you must create the view object with the Updateable object
through entity objects option and select Expert for Query Mode on
the Query page.

Configuring Search Features

27-34 Developer's Guide

Before you begin:
Define LOVs for stored view object attributes. For information, see Section 27.4.4.1,
"Defining Lists of Values."

To add search facets:
1. In the overview editor, select the Search navigation tab.

2. Click the Add icon in the Facets table header to open the Facets dialog, shown in
Figure 27–12.

Figure 27–12 Facets Dialog

3. In the Facet field, enter a valid facet name for the root facet.

4. Click the icon next to the Facet Display Name field to open and use the Select Text
Resource dialog for selecting a text resource from an existing resource bundle, or
for creating and selecting a new text resource. For more information, see
Section 27.4.4.5, "Using the Select Text Resource Dialog to Select a Matching Text
Resource" or Section 27.4.4.6, "Using the Select Text Resource Dialog to Create and
Select a New Text Resource."

Note: No two facets can share the same name at the searchable object
level. This comparison is case insensitive.

Configuring Search Features

Creating Searchable Objects 27-35

You can use resource bundles to localize ECSF. For information, see Section 31.10,
"Localizing ECSF Artifacts."

5. From the Attribute Name dropdown menu, select a searchable attribute for the
root facet.

6. To add a child facet, click Add Facet.

The new child facet is inserted below the selected facet in the tree structure. Any
existing child facets are moved below it to the next level down in the structure.

7. Enter a name for the child facet in the Facet field.

8. Select an attribute for the child facet from the Attribute Name dropdown menu.

9. Repeat Steps 5-7 to add more child facets.

10. Click OK.

11. Save the view object.

27.4.4.4 Defining a Facet to Use a Child View Object Attribute
You can use this feature to define facets to filter result records against a child VO
attribute. Without this feature, facets could only allow users to filter search results to
those results where an attribute in the result record matches a certain value, such as
Color="Red", or Status="Open". This feature allows a Stored Attribute to be defined
against a child VO attribute and for a facet to be defined against this stored attribute.
Thus, users will be able to filter search results such that only results whose child VO
attribute matches a certain value will be returned.

ECSF design time uses transient attributes to allow child VO attributes as searchable
attributes by allowing them in the facet definitions.

The Override Source property value is expressed at the view attribute level and it is
resolved at both the query time and crawl time. The Override Source drop-down list

Note: If no facet display name is specified, the label text of the view
attribute corresponding to the facet is used as the display name. If
there is no label text, then the view attribute name is used as the
display name.

Note: The Attribute Name dropdown menu lists only the searchable
attributes whose isStored property is set to true. For information, see
Section 27.2.6.1, "Making View Object Attributes Searchable."

No two facets can share the same attribute at the searchable object
level.

Note: No two facets can share the same name. This comparison is
case insensitive.

Note: No two facets can share the same attribute.

Configuring Search Features

27-36 Developer's Guide

(see Figure 27–7) is populated with all the attribute names from the view links that are
associated with the current VO.

The code for querying for facets will not change.

At query time, a FacetPath will be converted to filters against the corresponding
Stored Attributes in the facet path. With this feature, some stored attributes will
contain multiple values, and the filter will select a search document if any of the values
in its stored attribute matches the value in the filter.

Facet counts will work without any changes. When a stored attribute contains more
than one value, each value will contribute to incrementing the count for that value.

To set up a View Object with support for child attributes in facets:
1. Identify the attributes you want to bind to facets in the current VO.

2. Identify the attributes you want to bind to facets from the child VO and create
transient attributes on the current VO for each child attribute. (This assumes that
you already established a relationship between parent and child VOs using View
Link Accessors.)

3. Create a view object (LOV object) for each of the attributes you identified to create
a list of available values for the attributes.

4. Create a view accessor on the base object for each LOV object to be used as a facet,
and assign each LOV object to its corresponding attribute.

5. Create searchable attributes based on the attributes you created, including
transient attributes. Select the Stored option for the attributes.

6. For the transient attributes, select the corresponding child view attribute name
from the Override Source drop-down list in the Searchable Attributes popup. See
Figure 27–7.

7. Define the facet hierarchy.

27.4.4.5 Using the Select Text Resource Dialog to Select a Matching Text Resource
Use the Select Text Resource dialog to select a text resource from an existing resource
bundle.

To select a matching text resource:
1. From the Facets dialog, click the icon next to the Facet Display Name field to open

the Select Text Resource dialog.

2. Select a resource bundle from the Resource Bundle dropdown menu.

3. Enter values in the Display Value, Key, and Description fields to narrow down
the list of matching text resources.

4. Select the desired text resource in the Matching Text Resources table.

5. Click Select. Click the Clear Selection button to clear your selection.

Note: If there is no resource bundle associated with the view object,
then an external resource bundle is created in the application. Save the
new resource bundle externally.

Configuring Search Features

Creating Searchable Objects 27-37

27.4.4.6 Using the Select Text Resource Dialog to Create and Select a New Text
Resource
Use the Select Text Resource dialog to create and select a new text resource.

To create and select a new text resource:
1. From the Facets dialog, click the icon next to the Facet Display Name field to open

the Select Text Resource dialog.

2. Select a resource bundle from the Resource Bundle dropdown menu.

3. In the Display Value field, enter a string or any type of object to associate with the
key in the page's resource bundle.

4. In the Key field, enter a string to uniquely identify a locale-specific object in the
resource bundle.

5. In the Description field, enter a description of any length for the key and value
pair.

6. Click Save and Select.

27.4.4.7 Modifying Search Facets
You can modify existing search facets by changing the values of the facet attribute
fields, adding child facets, or deleting child facets. Use the Facets dialog to modify
search facets.

To modify search facets:
1. In the overview editor, select the Search navigation tab.

2. Expand the Facets table header to expose the table of root facets.

3. Select the root facet you want to modify. This highlights the entire row.

4. Click the Edit icon in the Facets table header to open the Facets dialog, shown in
Figure 27–12.

5. In the tree structure, select the facet you want to modify.

6. Make your desired changes:

■ Change the values of the Facet Attributes fields. For more information about
the fields, see Section 27.4.4.3, "Creating Search Facets."

■ Add child facets. For more information, see Section 27.4.4.3, "Creating Search
Facets."

■ Delete child facets. For more information, see Section 27.4.4.9, "Deleting Child
Search Facets."

7. Click OK.

8. Save the view object.

Note: If there is no resource bundle associated with the view object,
then an external resource bundle is created in the application. Save the
new resource bundle externally.

Configuring Search Features

27-38 Developer's Guide

27.4.4.8 Deleting Root Search Facets
You can delete root search facets to remove them from the table on the Search
navigation tab.

To delete root search facets:
1. In the overview editor, select the Search navigation tab.

2. Expand the Facets table header to expose the table of root facets.

3. Select the root facet you want to remove. This highlights the entire row.

4. Click the Delete (red X) icon in the Facets table header.

The root facet you selected on the Search navigation tab is removed from the table
of root facets.

5. Save the view object.

27.4.4.9 Deleting Child Search Facets
You can delete child search facets to remove them from the facet tree.

To delete child search facets:
1. In the overview editor, select the Search navigation tab.

2. Expand the Facets table header to expose the table of root facets.

3. Select the root facet you want to modify. This highlights the entire row.

4. Click the Edit icon in the Facets table header to open the Facets dialog, shown in
Figure 27–12.

5. In the tree structure, select the facet you want to delete.

6. Click Delete.

7. Click Yes, when prompted with "Are you sure you want to delete the
facets?"

The facet you selected is removed from the tree.

8. Click OK.

9. Save the view object.

27.4.4.10 Defining Facets That Support Ranges
You can define facets to support ranges for numbers and dates.

To define facets that support ranges
1. Configure on the view object a transient attribute that summarizes the numeric or

date attribute value into a range code. For example, create a transient attribute
named AmountRange that contains the following Groovy expression for the number
attribute:

if (Amount > 0 && Amount < 100) 'Range1'; else if (Amount >= 100 && Amount <
200) 'Range2'; else 'Range3';

For a date attribute, you can create a transient attribute named HireDate that
contains the following Groovy expression:

if (Hiredate.getYear() >= 80 && Hiredate.getYear() < 90) '80s'; else if
(Hiredate.getYear() >= 91 && Hiredate.getYear() < 100) '90s'; else '2000s';

Configuring Search Features

Creating Searchable Objects 27-39

2. Define a static LOV with the range codes and display values.

3. Associate the LOV to the transient attribute.

4. Create a facet with the transient attribute in the facet definition.

27.4.4.11 Defining Derived Facets
You can define facets that are based on the values of multiple attributes. For example,
Project Status=Active if Status is not Closed AND Start Date is after Today.

To define facets that support ranges
1. Configure on the view object a transient attribute to classify a record into some

code. For example, create a transient attribute named Status that contains the
following Groovy expression for the number attribute:

if (Status == 'Active' && Closed != null) 'Active'; else 'Inactive';

2. Define a static LOV with the codes and display values.

3. Associate the LOV to the transient attribute.

4. Create a facet with the transient attribute in the facet definition.

27.4.5 What Happens When You Implement Faceted Navigation
JDeveloper captures the search metadata for each view object, including the search
facets you define, and writes it to an external XML file (searchable object) for
consumption by the runtime component. Each searchable object corresponds to a view
object and includes the search facets. The file naming convention is view_object_
name_ECSF.xml, and the file is created in the same location as its corresponding view
object.

At runtime, the search interfaces provided by ECSF allow users to iterate through
facets and further filter the query by selecting facet values.

27.4.6 What You May Need to Know About Implementing Faceted Navigation
Facets can only be defined on attributes in the parent or top-level view object because
only attributes on the parent or top-level view object can be created as index attributes
in the underlying Oracle SES index. For example, if you want to create an "address"
facet consisting of the following tree, Country > State > City > Zip Code, all four
attributes (country, state, city, zip code) must be view object attributes in the parent or
top-level view object. Attributes that are used for facets must exist on the parent view
object, not on a child view object linked to the parent through a view link. If any of the
information is in a child attribute, then the attribute must be joined into the parent
view object.

Since facets can filter against only a single search category, faceted navigation is not
supported with federated search.

Caution: Do not manually modify the contents of the view_object_
name_ECSF.xml file. If you manually modify the search metadata in
the XML file, the changes appear in the editor window when it is
closed and reopened in JDeveloper, but metadata changes are not
validated. Instead, use the Search navigation tab of the overview
editor in JDeveloper to modify the search metadata.

Configuring Custom Properties for Searchable Objects

27-40 Developer's Guide

27.5 Configuring Custom Properties for Searchable Objects
You can configure custom properties for searchable objects to modify default runtime
behavior or to make searchable object public.

27.5.1 How to Modify Default Runtime Behavior of Searchable Objects
The following custom properties can be set for searchable objects through the
overview editor to modify default runtime behavior:

■ oracle.ecsf.crawl.batch.size

■ oracle.ecsf.crawl.datafeed.size

■ oracle.ecsf.max.links.depth

■ oracle.ecsf.split.mode

■ oracle.ecsf.split.threshold

These properties, described in Table 30–1, can also be set as system parameters to
apply the values to all searchable objects. For information, see Section 30.2.4, "How to
Modify the Run Configuration of the View-Controller Project."

To configure customer properties for searchable objects:
1. In the Application Navigator, open the desired view object.

2. In the overview editor, select the General navigation tab.

3. Expand the Custom Properties section.

4. Add property name and value pairs. For more information about the properties,
see Table 30–1.

27.5.2 How to Make Searchable Objects Public
Making searchable objects public allows users to perform searches without needing to
log in first. Public data sources do not require any user authentication and can support
anonymous users.

To make a searchable object public, define the custom property
oracle.ecsf.searchableobject.public, as shown in Example 27–7, in the view_
object_name.xml file.

Example 27–7 Custom Property for Making Searchable Objects Public

<Properties>
 <CustomProperties>
 <Property
 Name="oracle.ecsf.searchableobject.public"
 Value="true"/>
 </CustomProperties>
</Properties>

When this value is set to true, the Security attribute values for anonymous user
property of the data source deployed to Oracle SES from this searchable object is set to
the ACL value or values retrieved from the searchable object's plug-in class.

28

Configuring ECSF Security 28-1

28Configuring ECSF Security

This chapter describes how to configure security for ECSF.

This chapter includes the following sections:

■ Section 28.1, "Introduction to Configuring ECSF Security"

■ Section 28.2, "Securing ECSF Credentials"

■ Section 28.3, "Authorizing Users for Search Feeds"

■ Section 28.4, "Securing the Searchable Application Data"

28.1 Introduction to Configuring ECSF Security
ECSF secures credentials and searchable application data. The credentials are required
for the ECSF engine to communicate with Oracle Secure Enterprise Search (Oracle
SES) administration service, Oracle SES query service, and ECSF Security Service.
ECSF also uses Secure Socket Layer (SSL) to secure the connections through which the
credentials are transmitted. ECSF stores the credentials in the Credential Store
Framework (CSF) of the Oracle WebLogic Server domain.

Configure the HTTP protocol to restrict the maximum post and message size in order
to prevent denial-of-service (DoS) attacks, which makes the servlets unavailable. For
information, see Oracle Fusion Middleware Configuring Server Environments for Oracle
WebLogic Server.

28.2 Securing ECSF Credentials
Passwords are stored in the Credential Store Framework (CSF) of the Oracle WebLogic
Server domain. These passwords are used to perform secure interaction between the
ECSF engine and the Oracle SES server. For more information about CSF in Oracle
WebLogic Server, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

28.2.1 How to Add the Permission Policy
When the ECSF Runtime Server or the ECSF Client library is added to the projects in
Oracle JDeveloper, the permission policy, shown in Example 28–1, is automatically
added within the <jazn-policy> tag of the application's jazn-data.xml file located in
src/META-INF.

Example 28–1 Permission Policy

<grant>
 <grantee>
 <codesource>

Securing ECSF Credentials

28-2 Developer's Guide

 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/_WL_user/oracle.ecsf/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.ecsf,keyName=*</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>execute</actions>
 </permission>
 </permissions>
</grant>

Credentials are stored under mapName oracle.ecsf, oracle.apps.security, and
oracle.wsm.security with a key in the format: username#engineInstanceId (for
example, scott#1, where scott is the user on engine instance 1).

When the application is deployed, the policies in jazn-data.xml are merged into the
system-jazn-data.xml file in WebLogic_domain/config/fmwconfig on Oracle
WebLogic Server.

Make sure that the policy migrates to the target Oracle WebLogic Server domain. For
more information, see Oracle Fusion Middleware Application Security Guide.

28.2.2 How to Configure Application Identities for Search
Oracle Fusion Applications include six search-related application identities that are
seeded and are stored in the identity store:

■ FUSION_APPS_CRM_SES_CRAWL_APPID

■ FUSION_APPS_FSCM_SES_CRAWL_APPID

■ FUSION_APPS_HCM_SES_CRAWL_APPID

■ FUSION_APPS_CRM_ECSF_SEARCH_APPID

■ FUSION_APPS_FSCM_ECSF_SEARCH_APPID

■ FUSION_APPS_HCM_ECSF_SEARCH_APPID

■ FUSION_APPS_ECSF_SES_ADMIN_APPID

Each pair of application identities, one pair for each product family, are used to
integrate ECSF with Oracle Fusion Applications. The Credential Store Framework
(CSF) stores the credentials to access the identities.

However, if you are developing applications on the Integrated WebLogic Server
instance, then you must manually configure the application identities to integrate
ECSF for the crawl users: SES_ADMIN_USERNAME, SES_QUERY_PROXY_USERNAME, and
ECSF_SECURITY_USERNAME.

Note: The following security deployment options for the application
must be configured in JDeveloper for the policies to merge: policies,
credentials, and users/groups.

Securing ECSF Credentials

Configuring ECSF Security 28-3

To configure the application identities, you must complete the following tasks:

1. Make sure the SearchContext is set to FusionSearchContextImpl.

2. Create the application identities.

3. Make sure the permission policies for the identity store and the JPS
IdentityAssertion API are added to the jazn-data.xml file.

28.2.2.1 Setting the SearchContext to FusionSearchContextImpl
In order for ECSF to handle the application identities of Oracle Fusion applications,
the SearchContext must be set to FusionSearchContextImpl. The SearchContext is
automatically set at runtime based on the runtime environment. If the SearchContext is
not set properly, then set the context using the oracle.ecsf.context system property,
for example:

-Doracle.ecsf.context='oracle.ecsf.fusion.FusionSearchContextImpl'

For more information, see Section 30.2.4, "How to Modify the Run Configuration of the
View-Controller Project."

28.2.2.2 Creating the Application Identities
Each of the crawl users (SES_ADMIN_USERNAME, SES_QUERY_PROXY_USERNAME, and ECSF_
SECURITY_USERNAME) must correspond to an application identity. Use Oracle Enterprise
Manager Fusion Applications Control for ECSF to set the crawl user names and their
corresponding passwords. For information, see the "Managing Search with Oracle
Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications
Administrator's Guide.

For example, set the user names for Oracle Fusion Customer Relationship
Management to:

SES_ADMIN_USERNAME=eqsys

SES_QUERY_PROXY_USERNAME=FUSION_APPS_CRM_ECSF_SEARCH_APPID

ECSF_SECURITY_USERNAME=FUSION_APPS_CRM_SES_CRAWL_APPID

Once the user names are set, you can update the corresponding password parameters
for those users to the key names for the application identities. The format of the key
name is fullAPPID-KEY.

This creates entries in the cwallet with the correct map/key pairs for the users.

Note: To prevent duplication of crawls, crawling and indexing of
searchable object data into Oracle SES must be performed by one
crawler user. The single crawler user, specified in the search engine
instance parameter ECSF_SECURITY_USERNAME, must have access to all
searchable object data to be indexed.

The required setup of a user depends on the application setup and is
not controlled by ECSF. For example, Oracle Fusion Applications
includes three application IDs that are created for crawling data:
FUSION_APPS_CRM_SES_CRAWL_APPID, FUSION_APPS_FSCM_SES_CRAWL_
APPID, and FUSION_APPS_HCM_SES_CRAWL_APPID. You must make sure
that the proper roles, permissions, privileges, and so on are granted to
the three application IDs so they have access to the data to be crawled.

Securing ECSF Credentials

28-4 Developer's Guide

28.2.2.3 Adding the Permission Policy for the Application Identities
In order for ECSF to read and write to the application identity maps in the keystore
and access the JPS IdentityAssertion API, permissions must be granted to the three
crawl users. The permission policies, shown in Example 28–2, are seeded in the
jazn-data.xml file for Oracle Fusion applications and can be managed in Fusion
Applications Control.

Example 28–2 Permission Policies for Application Identities

 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/_WL_user/oracle.ecsf/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.ecsf,keyName=*</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.wsm.security,keyName=FUSION_APPS_FSCM_ECSF_
SEARCH_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.wsm.security,keyName=FUSION_APPS_HCM_ECSF_
SEARCH_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.wsm.security,keyName=FUSION_APPS_CRM_ECSF_
SEARCH_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.apps.security,keyName=FUSION_APPS_CRM_SES_
CRAWL_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.apps.security,keyName=FUSION_APPS_HCM_SES_
CRAWL_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.apps.security,keyName=FUSION_APPS_FSCM_SES_
CRAWL_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>

Authorizing Users for Search Feeds

Configuring ECSF Security 28-5

 <name>context=SYSTEM,mapName=oracle.apps.security,keyName=FUSION_APPS_ECSF_SES_
ADMIN_APPID-KEY</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>execute</actions>
 </permission>
 </permissions>
 </grant>

The permissions allow ECSF to read and write credential store entries that are not part
of the oracle.ecsf map.

28.3 Authorizing Users for Search Feeds
New grants are needed in order to authorize users for the search feeds. You must
manually update the application's jazn-data.xml file located in src/META-INF to
enable authorization for users. Add the grant, shown in Example 28–3, inside the
<application> section in the <jazn-policy> section.

Example 28–3 Grant for Search Feeds User Authorization

<permission>
 <class>oracle.adf.share.security.authorization.MethodPermission</class>
 <name>ECSF_All_Services</name>
 <actions>execute</actions>
</permission>

The grantee should be the users or roles that you want to authorize to use the search
feeds, as shown in Example 28–4.

Example 28–4 Granting Permission to a Role

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>AuthorizedUserRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.MethodPermission</class>
 <name>ECSF_All_Services</name>
 <actions>execute</actions>
 </permission>
 </permissions>
</grant>

The example shows how jazn-data.xml is modified to grant the permission to a role.

Securing the Searchable Application Data

28-6 Developer's Guide

28.4 Securing the Searchable Application Data
ECSF secures the searchable application data by authenticating and authorizing users
who use ECSF to perform searches.

28.4.1 How to Secure the Searchable Application Data
Secure the searchable application data by enabling the use of the security model for
authenticating and authorizing users.

To enable the use of the security model:
1. Create users in Oracle WebLogic Server. The user credentials are stored in Oracle

WebLogic Server and can be used for authentication and authorization to query
Oracle SES. For more information, see Oracle Fusion Middleware Securing Oracle
WebLogic Server.

2. Create a separate user and add it to the Operators group in order to assign that
user the Oracle WebLogic Server security role of Operator to obtain execute
privileges on ECSF MBean operations. For more information, see Oracle Fusion
Middleware Securing Oracle WebLogic Server.

3. Create an ECSF query proxy user. For more information, see the "Managing Search
with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion
Applications Administrator's Guide.

4. Set the search engine instance parameters SES_QUERY_PROXY_USERNAME and SES_
QUERY_PROXY_PASSWORD. For more information, see the "Managing Search with
Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion
Applications Administrator's Guide.

Note: ECSF also supports allowing authenticated users to search
business objects with no security policies attached to them.

29

Validating and Testing Search Metadata 29-1

29Validating and Testing Search Metadata

This chapter describes how to validate and test search metadata.

This chapter includes the following sections:

■ Section 29.1, "Introduction to Validating and Testing Search Metadata"

■ Section 29.2, "Validating the Search Metadata"

■ Section 29.3, "Testing Searchable Objects Through a Web Browser"

29.1 Introduction to Validating and Testing Search Metadata
Search metadata is dependent on view object metadata, which is used in such areas as
title, body expression, and searchable attributes. However, changes made to the view
object metadata are not automatically reflected in the search metadata. To identify
those changes, you must validate the search metadata by using the Validate button in
the Search page of the Oracle JDeveloper overview editor for Oracle Enterprise Crawl
and Search Framework (ECSF).

Testing the searchable objects ensures that they can be registered in the Oracle Fusion
Applications database without issues.

29.2 Validating the Search Metadata
To make sure that you are creating correct and valid search metadata on view object
metadata, you must validate the metadata before applying changes. When you run
validation on the search metadata, ECSF checks for the following:

■ Table and alias of the primary table exists in the view object.

■ Title, body, and keywords expressions are valid.

■ Search extension is valid.

■ Search attributes are valid, and all the search attributes exist in the view object.

■ Search actions are valid:

– Search action names are unique.

– Default action exists. Warning is displayed when it does not exist.

– Title expression is valid.

■ Search facets are valid:

– Facet name is unique.

Testing Searchable Objects Through a Web Browser

29-2 Developer's Guide

29.2.1 How to Validate Search Metadata
Use the Search navigation tab of the overview editor in JDeveloper, shown in
Figure 27–3, to validate search metadata. If you identify any errors (changes to the
view object metadata that are not reflected in the search metadata), you must manually
fix them.

To validate search metadata through the Validate button:
1. In the overview editor, select the Search navigation tab.

2. Click the Validate button.

If validation errors occur, the Search Validation Results dialog, shown in
Figure 29–1, appears.

Figure 29–1 Search Validations Dialog

The dialog shows a list of validation errors.

3. Click OK when you finish viewing the errors.

29.3 Testing Searchable Objects Through a Web Browser
Before you register searchable objects in the Oracle Fusion Applications database, you
should test the searchable objects by testing the Config Feed, Control Feed, and Data
Feed.

ECSF prohibits multiple feeds per searchable object, so after achieving the desired
results for the Config Feed, Control Feed, and Data Feed, you must reset the state of
the feeds.

Before you begin:
1. Set the following Java option in the Run configuration dialog in order to test the

searchable objects through a web browser:
-Doracle.ecsf.crawl.mode.debug=true. For more information, see Section 30.2.4,
"How to Modify the Run Configuration of the View-Controller Project."

2. Set up ECSF security. For information, see Chapter 28, "Configuring ECSF
Security."

Testing Searchable Objects Through a Web Browser

Validating and Testing Search Metadata 29-3

3. Create searchable objects. For information, see Chapter 27, "Creating Searchable
Objects."

4. Run the ECSF feed servlet. For information, see Section 29.3.1, "How to Run the
ECSF Feed Servlet."

29.3.1 How to Run the ECSF Feed Servlet
Running the ECSF feed servlet in debug mode provides the servlet access to HTTP GET,
the method that allows you to input URLs with arguments directly into the browser.

The web.xml file is automatically updated with the ECSF feed servlet, feed servlet
mapping, and filter mappings as shown in Example 29–1 when the ECSF Runtime
Server library is added to the project.

Example 29–1 ECSF Feed Servlet, Feed Servlet Mapping, and Filter Mappings

<servlet>
 <servlet-name>SearchFeedServlet</servlet-name>
 <servlet-class>oracle.ecsf.feed.SearchFeedServlet</servlet-class>
 </servlet>
<servlet-mapping>
 <servlet-name>SearchFeedServlet</servlet-name>
 <url-pattern>/searchfeedservlet/*</url-pattern>
 </servlet-mapping>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>SearchFeedServlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
<filter-mapping>
 <filter-name>ServletADFFilter</filter-name>
 <servlet-name>SearchFeedServlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

Run the ECSF feed servlet to make sure it runs properly.

To run the ECSF feed servlet:
1. Set the Application Navigator to display the Java archive (JAR) files and libraries

by clicking the Navigator Display Options button in the Projects panel and
selecting Show Libraries, as shown in Figure 29–2.

Testing Searchable Objects Through a Web Browser

29-4 Developer's Guide

Figure 29–2 Navigator Display Options

2. In the Application Navigator, expand the ECSF Runtime Server library.

3. Expand the oracle.ecsf.feed package.

4. Right-click the SearchFeedServlet.class file and select Run to start the
Integrated WebLogic Server instance. A browser opens to the following feed URL:

http://localhost:7101/approot/searchfeedservlet/%2A

You can click the Terminate (red square) button to stop the ECSF feed servlet.

29.3.2 How to Test the Config Feed
To test the Config Feed, run the ECSF feed servlet with a modified URL.

To test the Config Feed:
1. Change the feed URL http://localhost:7101/approot/searchfeedservlet/%2A

by:

■ Replacing localhost with the server name of the IP address.

■ Replacing %2A with the fully qualified name of the view object, including the
package path.

Note: The web page is an RSS feed. Depending on the browser you
use, you may not be able to view the contents of the web page. If you
cannot view the RSS feed, navigate to View > Source in the browser to
view the feed.

Testing Searchable Objects Through a Web Browser

Validating and Testing Search Metadata 29-5

■ Appending /ConfigFeed to the end of the URL.

For example, if JDeveloper is running on the Linux server wlsserver.com, and the
fully qualified package path of EmpVO is oracle.ecsf.EmpVO (case-sensitive), the
resulting Config Feed URL would be
http://wlsserver.com:8988/approot/searchfeedservlet/oracle.ecsf.EmpVO/C
onfigFeed.

2. Refresh the web page.

The resulting RSS feed, the Config Feed, should resemble the feed in
Example 29–2.

Example 29–2 Sample Results of the Config Feed

- <rsscrawler xmlns="http://xmlns.example.com/search/rsscrawlerconfig">

<feedLocation>http://localhost:8988/approot/searchfeedservlet/runtime.EmpView/Cont
rolFeed</feedLocation>
 <feedType>controlFeed</feedType>
 <errorFeedLocation>/tmp</errorFeedLocation>
 <securityType>attributeBased</securityType>
 <securityAttribute name="DEPTNO" grant="true" />
 </rsscrawler>

If the RSS feed does not appear, then either the runtime server is not set up
properly or the path to the view object is incorrect. The URL is case-sensitive.

If no attribute exists for the <securityAttribute> tag, you must mark at least one
searchable attribute as a Secure Attribute. For information, see Section 27.2.3,
"How to Make View Objects Searchable."

3. After adding the metadata, make sure to restart the Integrated WebLogic Server
instance.

29.3.3 How to Test the Control Feed
To test the Control Feed, run the ECSF feed servlet with a modified URL.

To test the Control Feed:
1. Locate the URL provided in the <feedLocation> tag of the Config Feed. For

information, see Section 29.3.2, "How to Test the Config Feed."

In the Config Feed shown in Example 29–2, the URL is
http://localhost:8988/approot/searchfeedservlet/runtime.EmpView/Control
Feed.

2. Change the feed URL by replacing localhost with the server name of the IP
address.

For example, if JDeveloper is running on the Linux server example.com, the
resulting Control Feed URL would be
http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/Contr
olFeed.

3. Refresh the web page.

4. At the login screen, enter the username and password.

The resulting RSS feed, the Control Feed, should resemble the feed in
Example 29–3.

Testing Searchable Objects Through a Web Browser

29-6 Developer's Guide

Example 29–3 Sample Results of the Control Feed

 <?xml version="1.0" encoding="UTF-8" ?>
- <rss xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0">
- <channel>
 <title>Control feed for ECSF</title>

<link>http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/ControlFee
d</link>
 <description>Control feed for Enterprise Crawl and Search
Framework</description>
 <lastBuildDate>2008-04-06T19:20:08.159Z</lastBuildDate>
- <channelDesc xmlns="http://xmlns.example.com/orarss">
 <feedType>control</feedType>
 </channelDesc>
- <item>
- <link>
- <![CDATA[
http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/DataFeed?tableNa
me=Emp&workUnitStart=AAHz%2BdADeAAA07UAAA&workUnitEnd=AAHz%2BdADeAAA07UAAV&type=RO
WID
]]>
 </link>
 </item>
 </channel>
 </rss>

29.3.4 How to Test the Data Feed
To test the Data Feed, run the ECSF feed servlet with a modified URL.

To test the Data Feed:
1. Locate the URL provided in the <link> tag under the <item> tag of the Control

Feed. For information, see Section 29.3.3, "How to Test the Control Feed."

In the Control Feed shown in Example 29–3, the URL is
http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/DataF
eed?tableName=Emp&workUnitStart=AAHz%2BdADeAAA07UAAA&workUnitEnd=AAHz%2
BdADeAAA07UAAV&type=ROWID.

2. Refresh the web page with the URL.

3. At the login screen, enter the username and password.

The resulting RSS feed, the Data Feed, should resemble the feed in Example 29–4.

Example 29–4 Sample Results of the Data Feed

 <?xml version="1.0" encoding="UTF-8" ?>
- <rss xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0">
- <channel>
 <title>RSS for Oracle Applications Search</title>

<link>http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/DataFeed</
link>
 <description>RSS for Oracle Applications Search</description>
 <lastBuildDate>2008-04-06T19:36:08.950Z</lastBuildDate>
- <channelDesc xmlns="http://xmlns.example.com/orarss">
 <feedType>incremental</feedType>
 </channelDesc>

Testing Searchable Objects Through a Web Browser

Validating and Testing Search Metadata 29-7

- <item>
- <link>
- <![CDATA[
http://ecsf.example.com/search/runtime.EmpView?EMPNO=7839
]]>
 </link>
- <title>
- <![CDATA[
KING: 5000
]]>
 </title>
- <itemDesc xmlns="http://xmlns.example.com/orarss">
- <documentMetadata>
- <accessURL>
- <![CDATA[
http://example.com/EmpNo=7839
]]>
 </accessURL>
- <keywords>
- <![CDATA[
Employee department job salary data KING
]]>
 </keywords>
- <summary>
- <![CDATA[
KING 1981-11-17T00:00:00.000Z
]]>
 </summary>
 <language>en</language>
- <docAttr name="ENAME">
- <![CDATA[
KING
]]>
 </docAttr>
- <docAttr name="CITY_ID">
- <![CDATA[
2
]]>
 </docAttr>
- <docAttr name="STATE_ID">
- <![CDATA[
1
]]>
 </docAttr>
 </documentMetadata>
- <documentAcl>
 <securityAttr name="DEPTNO">NO_SECURITY</securityAttr>
 </documentAcl>
- <documentInfo>
 <status>STATUS_OK_FOR_INDEX</status>
 </documentInfo>
- <documentContent>
- <content type="text/plain">
- <![CDATA[
Identification Number: 10.7839
]]>
 </content>
- <contentLink type="text/html">
- <![CDATA[
http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/Attachment?schem

Testing Searchable Objects Through a Web Browser

29-8 Developer's Guide

aName=null&tableName=runtime.EmpView&columnName=Attachment&keyCount=1&keyName0=EMP
NO&keyValue0=7839
]]>
 </contentLink>
 </documentContent>
 </itemDesc>
 </item>

29.3.5 How to Reset the State of the Feeds
Resetting the feed for the searchable object recrawls the object. Reset the state of the
feeds by modifying the Config Feed URL.

To reset the state of the feeds:
1. Recall the Config Feed URL of the searchable object. For information, see

Section 29.3.2, "How to Test the Config Feed."

2. Append ?forceInitialCrawl=true to the Config Feed URL, for example,
http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/Confi
gFeed?forceInitialCrawl=true

3. Paste the resulting URL in your browser and refresh the web page.

30

Deploying and Crawling Searchable Objects 30-1

30Deploying and Crawling Searchable Objects

This chapter describes how to deploy searchable objects to the Oracle Enterprise Crawl
and Search Framework (ECSF) application.

This chapter includes the following sections:

■ Section 30.1, "Introduction to Deploying and Crawling Searchable Objects"

■ Section 30.2, "Deploying Searchable Objects and Dependencies"

■ Section 30.3, "Crawling Searchable Objects"

30.1 Introduction to Deploying and Crawling Searchable Objects
The ECSF application must include the searchable objects before you deploy it to the
application server.

30.2 Deploying Searchable Objects and Dependencies
Searchable objects and their dependencies must be deployed as part of the ECSF
application's data model and user interface projects (Model and ViewController
respectively) to make the searchable objects available for search. In order to deploy
searchable objects, you must complete the following tasks:

1. Deploy the ECSF shared library to Oracle WebLogic Server.

2. Create an application.

3. If desired, change the application name and context root of the view-controller
project.

4. Modify the run configuration of the view-controller project.

5. Add the ECSF Runtime Server library and the required Java archive (JAR) files to
Model and ViewController.

30.2.1 How to Deploy the ECSF Shared Library to Oracle WebLogic Server
The ECSF shared library eliminates the need for ECSF libraries to be packaged into
each application. Instead, applications that depend on ECSF libraries can reference the
ECSF shared library that is deployed to the Oracle WebLogic Server. The ECSF shared
library contains the following Java archive (JAR) files:

■ ecsf.jar

■ search_admin_wsclient.jar

■ search_client.jar

Deploying Searchable Objects and Dependencies

30-2 Developer's Guide

■ ses_admin_ows_proxy.jar

■ soap.jar

The ECSF extension in JDeveloper controls the reference to the ECSF shared library
that is deployed to Oracle WebLogic Server. When you add the ECSF Runtime Server
or ECSF Client library to a project, the reference to the ECSF shared library, shown in
Example 30–1, is automatically added to the WebLogic deployment descriptor file
(weblogic-application.xml).

Example 30–1 Reference to the ECSF Shared Library

<library-ref>
 <library-name>oracle.ecsf</library-name>
</library-ref>

The ECSF shared library is oracle.ecsf.

If the weblogic-application.xml file does not exist, one is created and updated with
the reference to the ECSF shared library.

In addition, when you deploy an application to a Oracle WebLogic Server instance and
the project contains ECSF libraries, the code checks the descriptor for the ECSF shared
library reference. If no ECSF shared library reference is detected in the descriptor, one
is added. The WebLogic deployment descriptor also contains a list of library
dependencies for the application to be deployed to the Oracle WebLogic Server
instance.

The ECSF shared library is automatically deployed to the Integrated WebLogic Server
instance by the ECSF extension in JDeveloper through the JDeveloper Application
Development Runtime Service (ADRS). However, you must manually deploy the
ECSF shared library to the standalone WebLogic Server.

30.2.1.1 Updating the SearchDB Data Source
The ECSF shared library is automatically deployed to the Integrated WebLogic Server
instance by the ECSF extension in JDeveloper through the JDeveloper Application
Development Runtime Service (ADRS). When the Integrated WebLogic Server instance
is first started and the ECSF shared library is automatically deployed to it, the ECSF
shared library creates a SearchDB data source in the Oracle WebLogic Server domain.
The data source initially contains placeholder database connection information. You
must manually update the data source after the Integrated WebLogic Server instance is
started to include the correct connection information.

To update the SearchDB data source:
1. In the Domain Structure tree of the Oracle WebLogic Server Administration

Console, navigate to Services, then JDBC, then Data Sources.

2. On the Summary of Data Sources page, click the data source name SearchDB.

3. Click the Connection Pool tab.

4. On the Connection Properties page, replace the default values for both the
Connection URL and Properties boxes with valid connection values.

5. Click Save.

Deploying Searchable Objects and Dependencies

Deploying and Crawling Searchable Objects 30-3

30.2.1.2 Deploying the ECSF Shared Library to the Standalone WebLogic Server
Instance
You must manually deploy the ECSF shared library to the standalone WebLogic Server
instance. The ECSF shared library creates a SearchDB data source in the Oracle
WebLogic Server domain. During the process of deploying the ECSF shared library,
you must provide the database connection information for the SearchDB data source,
which is deployed together with the shared library.

To deploy the ECSF shared library to the standalone WebLogic Server instance:
1. Extend the Oracle WebLogic Server domain by using the Oracle Fusion

Middleware Configuration Wizard (execute $WL_HOME/common/bin/config.sh).

For more information, see Oracle Fusion Middleware Configuring Server Environments
for Oracle WebLogic Server.

2. Select the ECSF Shared Library Extension template (oracle.ecsf_11.1.1_
template.jar), which is located in
oracle/jdeveloper/common/templates/applications.

3. Configure the SearchDB data source by providing valid values for the following
fields:

■ DBMS Host

■ DBMS Port

■ SID

■ Username

■ User Password

For more information, see Oracle Fusion Middleware Configuring Server Environments
for Oracle WebLogic Server.

4. When a new version of the ECSF shared library is available, you must redeploy it.

a. Remove the old oracle.ecsf library.

For information, see Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help.

b. Install the library enterprise archive (EAR) file
(oracle/jdeveloper/ecsf/modules/oracle.ecsf_11.1.1/oracle.ecsf.ear)
with the name set as oracle.ecsf.

For information, see Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help.

30.2.2 How to Create an Application
Creating the application creates Model and ViewController, which must include the
searchable objects and their dependencies.

Note: You can also redeploy the ECSF shared library by using the
Oracle Fusion Middleware Configuration Wizard. For more
information, see Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

Deploying Searchable Objects and Dependencies

30-4 Developer's Guide

To create a new application:
1. From the File menu, select New.

2. In the New Gallery dialog, select the General category and select Applications.

3. Select the Fusion Web Application (ADF) template and click OK.

4. In the Create Fusion Web Application (ADF) dialog, enter a name and location for
the application in the Application Name and Directory fields.

5. Enter a value in the Application Package Prefix field.

6. Click Finish.

30.2.3 How to Change the Application Name and Context Root of the View-Controller
Project

If desired, change the application name and context root of the view-controller project
by modifying the Java EE application settings.

To change the Java EE Application settings:
1. In the Application Navigator, right-click the view-controller project and select

Project Properties.

2. In the Project Properties dialog, select Java EE Application in the left panel.

3. Change the value of the Java EE Web Application Name field to EcsfApp.

4. Change the value of the Java EE Web Context Root field to approot.

5. Click OK.

The view-controller application name is set to EcsfApp, and the context root is set
to approot.

30.2.4 How to Modify the Run Configuration of the View-Controller Project
Modify the run configuration of the view-controller project to run ECSF in debug
mode.

To modify the run configuration:
1. In the Application Navigator, right-click the view-controller project and select

Project Properties.

2. In the Project Properties dialog, select Run/Debug/Profile in the left panel.

3. Select Default in the Run Configurations list, then click the Edit button.

4. In the Edit Run Configuration dialog, select Launch Settings in the left panel.

5. If desired, enter additional parameter values in the Java Options field. Table 30–1
lists the ECSF system parameters. Separate each parameter with a space.

Deploying Searchable Objects and Dependencies

Deploying and Crawling Searchable Objects 30-5

These parameters values can also be specified at the searchable object level. For
information, see Section 27.5, "Configuring Custom Properties for Searchable
Objects."

Note: The parameters in Table 30–1 can be set in two ways:

■ Add an entry to a file named ecsf.properties. If this file is found in
the classpath by ECSF code, the property values in that file will be
used. Entries in the file should be of the format:

property=value

■ Set the parameters using the Java System Properties. For example,
add -Dproperty=value when starting the JVM.

If a property is found in both the ecsf.properties file and the Java
System Properties, the value in the Java System Properties will be
used. In other words, the Java System Properties have higher
precedence.

Table 30–1 ECSF System Parameters

Parameter Name Java Command-Line Entry Description

oracle.ecsf.admin.datao
bject.synchinterval

-Doracle.ecsf.admin.dataobje
ct.synchinterval=n

Defines the interval (n), in milliseconds, for
synchronizing the ECSF metadata in the cache
with the ECSF metadata in the database. The
default value is 30000 (30 seconds).

oracle.ecsf.connection.
name

-Doracle.ecsf.connection.nam
e=ConnectionName

Specifies the name of the database connection to
be used. If not specified, SearchDB is used.

oracle.ecsf.context -Doracle.ecsf.context=contex
t

Defines the ECSF context to be used. The value can
be set to
oracle.ecsf.fusion.FusionSearchContextImpl
for Oracle Fusion Applications; otherwise, the
default ECSF context is used. The Oracle Fusion
Applications search context handles Fusion
specific details such as application identities.

oracle.ecsf.crawl.batch
.size

-Doracle.ecsf.crawl.batch.si
ze=n

Defines the data batch size within a data feed. The
value determines the number of database rows (n)
that are processed per batch within a data feed.
The default size is 200.

oracle.ecsf.crawl.dataf
eed.size

-Doracle.ecsf.crawl.datafeed
.size=n

Defines the size for the data feed. The value
determines the number of documents (n) per data
feed. The default size is 1000.

oracle.ecsf.datasource.
name

-Doracle.ecsf.datasource.nam
e=DataSourceName

Specifies the Java Database Connectivity (JDBC)
data source name, such as jdbc/SearchDBDS.

oracle.ecsf.datesplitte
r.mode

-Doracle.ecsf.datesplitter.m
ode=mode

Defines the algorithm used to split the records in
the table since the last crawled time. The value can
be set to DateRowId or DateOnly. DateRowId is the
default value. In DateRowId mode, it takes the
records since the last crawled time and splits into
evenly sized workunits using rowid ranges. In
DateOnly mode, it splits into workunits based on
date ranges only. This may result in workunits
with too many records if there are many updated
records within a short amount of time. In that case,
using the DateRowId mode is recommended.

Deploying Searchable Objects and Dependencies

30-6 Developer's Guide

oracle.ecsf.maxfacetdef
values

-Doracle.ecsf.maxfacetdefval
ues=n

Specifies the maximum number of values (n) that a
facet may contain. ECSF does not return the values
if a facet (for example, Country) contains a number
of values (for example, USA, Canada, and so on)
that exceeds the maximum. The default value is
1000.

oracle.ecsf.max.links.d
epth

-Doracle.ecsf.max.links.dept
h=n

Specifies the maximum number of view object
hierarchy levels to limit the depth of search.

oracle.ecsf.service.ws.
timeout

-oracle.ecsf.service.ws.time
out=n

Specifies the ECSF web service invocation timeout
(n) in milliseconds. The default value is 90000 (90
seconds). Increasing the timeout value can resolve
issues related to a slow system environment.

oracle.ecsf.split.mode -Doracle.ecsf.split.mode=db

or

-Doracle.ecsf.split.mode=sim
ple

or

-Doracle.ecsf.split.mode=

Defines batching strategy. When the model is
simple, no batching is used. Use for simple testing.
The key is defined in RelationalCrawlerImpl. Its
value can be db, simple, or nothing. This value
defines how the crawler splits the database table.
If specified with value simple, then
SimpleSplitter is used. If specified with value db
(default) or nothing (value is blank, or the
parameter is not included at all), then
RowIdSplitter is used.

oracle.ecsf.split.thres
hold

-Doracle.ecsf.split.threshol
d=n

Sets the splitting algorithm threshold to the
percentage you specify (n). If the percentage of
records returned by the searchable object SQL
query versus the total number of records in the
searchable object's primary table is less than the
threshold percentage, then the view object
RowIdSplitter algorithm is used. Otherwise, the
default RowIdSplitter algorithm is used.

oracle.ecsf.cache.expir
eseconds

-Doracle.ecsf.cache.expirese
conds=n

Defines the time (n), in seconds, for items to expire
from the cache. The default value is 1800 (30
minutes).

oracle.ecsf.cache.expir
eseconds.ObjectCache

-Doracle.ecsf.cache.expirese
conds.ObjectCache=n

Defines the time (n), in seconds, for items to expire
from the Searchable Objects cache.

The default value is 24 hours.

oracle.ecsf.cache.expir
eseconds.FacetDefsCache

-Doracle.ecsf.cache.expirese
conds.FacetDefsCache=n

Defines the time (n), in seconds, for items to expire
from the Facet Definitions cache.

The default value is 24 hours.

Table 30–1 (Cont.) ECSF System Parameters

Parameter Name Java Command-Line Entry Description

Deploying Searchable Objects and Dependencies

Deploying and Crawling Searchable Objects 30-7

6. Click OK.

The run configuration is set to debug mode, and other ECSF system parameters
are set.

30.2.5 How to Add the ECSF Runtime Server Library and Required Java Archive Files
to the Model and View-Controller Projects

You must add the ECSF Runtime Server library and one of the following sets of
required Java archive (JAR) files to both the Model and view-controller projects:

■ For using ECSF for crawling and querying

– oracle/jdeveloper/soa/modules/oracle.soa.fabric_
11.1.1/fabric-runtime.jar

– oracle/wlserver_10.3/server/lib/wls-api.jar

■ For using ECSF for querying only

– oracle/jdeveloper/webservices/lib/soap.jar

You do not need to add the Java archive (JAR) files that are included in a library that
you have already added.

oracle.ecsf.cache.expir
eseconds.GroupCache

-Doracle.ecsf.cache.expirese
conds.GroupCache=n

Defines the time (n), in seconds, for items to expire
from the Searchable Group cache. This cache
caches a Searchable Group using Engine Instance
ID and Searchable Group name.

The default is the value set by
oracle.ecsf.cache.expireseconds.

oracle.ecsf.cache.expir
eseconds.GroupsCache

-Doracle.ecsf.cache.expirese
conds.GroupsCache=n

Defines the time (n), in seconds, for items to expire
from the Searchable Groups cache. This cache
caches Searchable Groups using Engine Instance
ID.

The default is the value set in
oracle.ecsf.cache.expireseconds.

oracle.ecsf.cache.expir
eseconds.EngineInstance
sCache

-Doracle.ecsf.cache.expirese
conds.EngineInstancesCache=n

Defines the time (n), in seconds, for items to expire
from the Search Engine Instances cache.

The default is the value set in
oracle.ecsf.cache.expireseconds.

Caution: Make sure that cwallet.sso and jazn-data.xml are part of
your application before adding the Java archive (JAR) files. You can do
so through the Application Navigator by navigating to Application
Resources, then Descriptors, then META-INF. The cwallet.sso file is
created when you create a database connection. To create
jazn-data.xml, right-click the META-INF folder select New Oracle
Deployment Descriptor, select jazn-data.xml, and click Finish.

Table 30–1 (Cont.) ECSF System Parameters

Parameter Name Java Command-Line Entry Description

Crawling Searchable Objects

30-8 Developer's Guide

30.2.6 How to Deploy the ECSF Application
After you update the Model and view-controller projects to include the searchable
objects and dependencies, you must deploy the ECSF application. For information, see
Chapter 3, "Setting Up Your JDeveloper Application Workspace and Projects."

30.3 Crawling Searchable Objects
Make sure that the Oracle Secure Enterprise Search (Oracle SES) engine successfully
crawls the searchable objects in the Oracle Fusion applications and indexes them as
documents.

30.3.1 How to Verify the Crawl
Use the Oracle Enterprise Manager Fusion Applications Control and Oracle SES
administration user interface to verify the crawl.

To verify the crawl:
1. Deploy the index schedule.

For information, see the "Deploy the Index Schedules" task in Oracle Fusion
Applications Administrator's Guide.

2. Start the index schedule.

For information, see the "Start the Index Schedules" task in Oracle Fusion
Applications Administrator's Guide.

3. Use the Oracle SES administration user interface to inspect whether the crawls
were successful and verify how much data is crawled.

For information, see the Oracle Secure Enterprise Search Administrator's Guide.

Note: The feed servlet must be running for Oracle SES to
successfully crawl the data.

31

Advanced Topics for ECSF 31-1

31Advanced Topics for ECSF

This chapter provides information on advanced topics for Oracle Enterprise Crawl and
Search Framework (ECSF), including enabling and managing search, and
troubleshooting ECSF.

This chapter includes the following sections:

■ Section 31.1, "Introduction to Advanced Topics for ECSF"

■ Section 31.2, "Enabling Search on Fusion File Attachments"

■ Section 31.3, "Enabling Search on WebCenter Tags"

■ Section 31.4, "Enabling Search on Tree Structure-based Source Systems"

■ Section 31.5, "Managing Recent Searches"

■ Section 31.6, "Setting Up Federated Search"

■ Section 31.7, "Federating Oracle SES Instances"

■ Section 31.8, "Raising Change Events Synchronously"

■ Section 31.9, "Using the External ECSF Web Service for Integration"

■ Section 31.10, "Localizing ECSF Artifacts"

■ Section 31.11, "Using ECSF Diagnostics"

■ Section 31.12, "Troubleshooting ECSF"

31.1 Introduction to Advanced Topics for ECSF
ECSF offers additional functionality to enhance the search experience. In addition to
search on business objects, ECSF supports search on Fusion file attachments,
WebCenter tags, and tree structure-based source systems. ECSF also allows you to set
up federated search so that users can search across Oracle Fusion Applications product
families or across multiple Oracle Secure Enterprise Search (Oracle SES) instances.

Advanced topics also include using the external ECSF web service to integrate ECSF
with Oracle Fusion Applications, localizing ECSF artifacts for international users, and
information for troubleshooting ECSF.

31.2 Enabling Search on Fusion File Attachments
ECSF supports the capability to crawl Oracle Fusion Applications file attachments that
are associated with ECSF searchable objects and stored in the Oracle WebCenter
Content repository.

Enabling Search on WebCenter Tags

31-2 Developer's Guide

31.2.1 How to Make File Attachments Crawlable
References to files in the content repository are stored in a special database table and
are retrieved by using a view object named
oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO. Using a
view link, you can make the AttachmentsVO a child of another view object. If a
searchable object has a child AttachmentsVO, then ECSF automatically makes sure that
the attachments are crawled when the searchable object is crawled.

At the time the searchable object is crawled, ECSF includes a content link in the
document that is sent to Oracle SES for each attachment. When Oracle SES receives the
data feed and finds the content link, it calls back to ECSF to retrieve the content of the
attachment. ECSF then invokes an application programming interface (API) method
that retrieves the attachment content from the content server and returns it to Oracle
SES. Oracle SES indexes the searchable object and attachment content as one item.

The API handles authentication and authorization.

To make file attachments crawlable:
1. Add the Applications Core (Attachments) library to your project.

This adds the Attachment-Model.jar and Common-Model.jar files, located in
JDEV_HOME\jdeveloper\jdev\oaext\adflib, to your projects.

2. Create a view link between the searchable object and the AttachmentsVO to make
AttachmentsVO a child of the searchable object.

3. On the searchable object, define a view link accessor that points to the view link.
For information, see Section 18.2.2, "How to Create Attachment View Links."

31.3 Enabling Search on WebCenter Tags
ECSF supports the capability to crawl searchable objects with Oracle WebCenter Portal
tags so that tags can be used as keywords or filters for search in Oracle Fusion
Applications. A tag is a meaningful term attached to an object. Tags can be used for
various purposes such as categorization, to-dos, and priorities. For more information,
see the "Integrating the Tags Service" chapter in Oracle Fusion Middleware Developer's
Guide for Oracle WebCenter Portal.

Tags are single words stored as space-separated strings in the application database and
are retrieved by using a view object called TagSVO (service view object). You must
create a view link to make TagSVO a child object. At crawl time, the view link is used to
locate TagSVO. Figure 31–1 illustrates crawl time with tags.

Note: When you design your view object for search, make sure that
you configure view links to generate only the Destination Accessor
and not the Source Accessor.

Note: ECSF does not support search using private tags.

Enabling Search on WebCenter Tags

Advanced Topics for ECSF 31-3

Figure 31–1 Crawl Time With Tags

Purchase Order 123 has two tags, Computer and Dell. ECSF adds the tags for each
record of the searchable object to the indexable document before the document is sent
to Oracle SES for indexing. ECSF also creates a reserved attribute (of type string) called
ECSF_TAGS to store tags in Oracle SES.

At query time, users can specify tag values as keywords or as filters. When tag values
are input as keywords, the tag value is treated as a query string and returns results
that include the objects with the specified tag. When tag values are used as filters, the
tags are added to QueryMetaData and the query is run with filters on ECSF_TAGS. Only
the objects with the specified tags are returned. Figure 31–2 and Figure 31–3 illustrates
the difference between query time without a tag and query time with a tag.

Note: Tags cannot be searched as individual entities.

Enabling Search on WebCenter Tags

31-4 Developer's Guide

Figure 31–2 Query Time Without Tag

In Figure 31–2, the indexed document for Purchase Order 123 contains two tags,
Computer and Dell. The query on John returns all the documents that contain John.
The results display the title, body, and all tags for the documents.

Enabling Search on WebCenter Tags

Advanced Topics for ECSF 31-5

Figure 31–3 Query Time With Tag

In Figure 31–3, query on the Purchase Order John and tag Dell returns only the
documents that contain John AND the Dell tag. The results display the title, body, and
all tags for the documents. If both Dell and Computer were specified as tags, then the
query would return only the documents that contain both tags (that is, Dell AND
Computer). You cannot specify tags using the OR condition (that is, Dell OR Computer),
so the query cannot return documents that contain either the Dell tag or the Computer
tag.

Enabling search on WebCenter Portal tags allows tags to be added to indexable
documents and stored in the reserved attribute called ECSF_TAGS in Oracle SES. Tags
can then be used as keywords or filters for search.

Perform the following tasks to enable search on WebCenter Portal tags:

1. Create a view link between the searchable object and the TagSVO. For information,
see Section 14.6.5, "How to Implement Tags in Oracle Fusion Applications Search."

The view link must use the accessor name tagSVO so that the search extension can
navigate to the child object when it crawls.

2. Add tags to the indexable document.

3. Add tags to the query.

Note: When you design your view object for search, make sure that
you configure view links to generate only the Destination Accessor
and not the Source Accessor.

Enabling Search on WebCenter Tags

31-6 Developer's Guide

You can also perform the following tasks to customize search on WebCenter Portal
tags:

1. Modify the tags in the indexable document.

2. Register change listeners.

31.3.1 How to Add Tags to Indexable Documents
In order to crawl tags, you must use Tag APIs to add tags to indexable documents. You
can use Tag APIs in the search extension code.

To add tags to indexable documents:
1. Create a search extension that extends DefaultSearchPlugin, implements

PreIndexProcessor, and includes a method called preIndexProcess that adds
tags to some objects.

2. Redeploy and crawl the objects.

You can implement code, such as the sample code shown in Example 31–1, in the
search extension to extend DefaultSearchPlugin.

Example 31–1 Sample Code for Adding Tags to Indexable Documents

public class runtime.TestPlugin extends DefaultSearchPlugin implements
PreIndexProcessor
{
 public void preIndexProcess(SearchContext ctx, List <IndexableDocument>
documents)
 {
 for(IndexableDocument doc : documents)
 {
 Object ename = doc.getFieldValue("ENAME");
 if (ename != null && "Zebra".equalsIgnoreCase(ename.toString()))
 {
 doc.addTags(new String[] { "Black","White","Stripes" });
 //doc.getTags and doc.clearTags can also be used here
 for(String tag : doc.getTags())
 {
system.err.println(tag);//print out tag to stand err
 }
}
 }
 }
}

This extension adds three tags (Black, White, and Stripes) to a user named Zebra.

Note: If you place the search extension in the Oracle WebLogic
Server shared library, then the ECSF library (ecsf.jar) must be
present in the shared library in order for ECSF to load the
PreIndexProcessor interface.

Enabling Search on WebCenter Tags

Advanced Topics for ECSF 31-7

31.3.2 How to Add Tags for Querying
After tags are crawled into Oracle SES, you can perform keyword searches on tags or
filter on tags. QueryMetaData accepts tags for querying. When one or more tags are
added to QueryMetaData, the query runs with filters on ECSF_TAGS.

Example 31–2 illustrates how tags are used for querying.

Example 31–2 Sample API for Querying With Tags

public void tagTest()
 {
 SearchCtrl searchCtrl = new SearchCtrl();
 SearchHits searchHits = null;
 SearchContext searchContext = null;
 QueryMetaDataImpl queryMetaData = new QueryMetaDataImpl();
 queryMetaData.setQueryString("%");
 queryMetaData.setPageSize(10);
 queryMetaData.setCurrentPage(1);

 String engineInstName = "SES";
 String groupName = "runtime.EmpView";
 SearchGroup[] sgs = new SearchGroup[]
{searchCtrl.getSearchGroup(engineInstName , groupName);

 queryMetaData.setSearchGroups(sgs);
 searchContext = ContextFactory.getSearchContext();
 searchContext.bindUser("scott");
 try
 {
//clear tags so query tag through keywords
 queryMetaData.clearTags();
 queryMetaData.setQueryString("Black White");
 searchHits = searchCtrl.runQuery(searchContext, queryMetaData);
//Zebra is found

//filter by tags
 queryMetaData.setQueryString("%");
 queryMetaData.addTag("White");
 searchHits = searchCtrl.runQuery(searchContext, queryMetaData);
//Mickey is found

//filter by tags
 queryMetaData.addTag("White");
 queryMetaData.addTag("Black");
 searchHits = searchCtrl.runQuery(searchContext, queryMetaData);
//Zebra is found
//filter by tag that exists and tag that does not exist
 queryMetaData.clearTags();
 queryMetaData.addTag("Stripes");
 queryMetaData.addTag("Dots");
 searchHits = searchCtrl.runQuery(searchContext, queryMetaData);
//no result is found

//filter by tag that does not exist
 queryMetaData.clearTags();
 queryMetaData.addTag("Dots");
 searchHits = searchCtrl.runQuery(searchContext, queryMetaData);
//no result is found
 }

Enabling Search on WebCenter Tags

31-8 Developer's Guide

Adding tags for querying forces the query to find results where indexed documents
contain the added tags. When more than one tag is added, the resulting documents
must contain both tags. Documents containing only one of the tags are not returned.

Query SES retrieves tags all the time. The searcher adds tags to IndexedDocument by
using setTags. In case of null in the attribute, no tags are added.
IndexedDocument.getTags returns all the tags in the document.

31.3.3 How to Modify Tags in Indexable Documents
You can override tags in the lifecycle methods provided by ECSF. For example, if
required, you can add tags to an indexable document in the IndexablePostProcess by
using the APIs provided on the IndexableDocument:

■ void addTags(String[] tags) adds a list of strings as tags to the document.
Duplicates are removed.

■ Collection<String> getTags() returns a list of tags associated with the
document.

■ void clearTags() clears tags associated with the document.

31.3.4 How to Register Change Listeners
You can extend the incremental crawling mechanism by registering change listeners,
which use the WebCenter Portal tagging framework to identify objects that need to be
updated in the search engine. Implement the oracle.ecsf.ChangeListener interface
in a search extension to customize the runtime logic that detects changes in the
searchable objects. Example 31–3 illustrates a sample implementation of
ChangeListener.

Example 31–3 Sample Implementation of ChangeListener

public class TestPlugin extends DefaultSearchPlugin implements ChangeListener
{

 public Iterator getChangeList(SearchContext ctx, String changeType)
 {
 return new MyChangeIterator(ctx, changeType);
 }
}

public class MyChangeIterator extends ChangeIterator
{
 private Date lastTimeCrawled;
 private int mCount;
 private int mIndex = 0;

 public MyChangeIterator (SearchContext ctx, String changeType)
 {
 super(ctx, changeType);
 Date lastTimeCrawled = ctx.getSearchableObject().getLastTimeCrawled();
 //if this value is null, ECSF is doing an initial crawl
 if(lastTimeCrawled==null)
 {
 setDone(true);
 }else
 {
//find how many has been changed since that date
 mCount = 100; //example

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-9

 }

 }
 protected List populate(SearchContext ctx)
 {
 List nextList = new ArrayList();
//the following code marks Zebra has been changed
PrimaryKey pk = new PrimaryKey();
Pk.put("ENAME", "Zebra");
NextList.add(pk);

setDone(true); //tells ECSF there are no more
 return nextList;
 }
}

The method Iterator getChangeList (SearchContext ctx, String changeType)
returns an iterator (ChangeIterator) over a list of primary keys for the searchable
object (ctx.getSearchableObject).

The primary keys returned from the change listener are logged in the ECSF change log
table before an incremental control feed is constructed.

31.4 Enabling Search on Tree Structure-based Source Systems
In addition to supporting the crawling and searching of relational-based objects
through view objects or Java Database Connectivity (JDBC), ECSF supports the
capability to crawl data in hierarchical tree-based data structures, or tree structures,
and to identify items for indexing to enable full-text search. A tree structure is a
common data structure, such as a file system on a computer hard disk, used to
organize a large number of items. Oracle Business Intelligence is an example of a
source system that is organized in a tree structure. For more information about Oracle
Business Intelligence Suite Enterprise Edition and its supported search functionality,
see the "Managing Objects in the Oracle BI Presentation Catalog" chapter in Oracle
Business Intelligence Suite Enterprise Edition User's Guide.

By default, ECSF supports database crawling using Oracle ADF technology. To
support crawling data that is organized in tree structures, you can extend the abstract
implementation of the CrawlableFactory
oracle.ecsf.data.tree.AbstractTreeWalker. The extension converts the data stored
at tree nodes into documents that Oracle SES receives through Really Simple
Syndication (RSS) feeds and indexes.

Note: Crawling relies on the integrator's implementation that is
based on their underlying data structures and accessibility of the
items to be indexed.

Note: ECSF currently does not provide an interface for converting
information in source systems to indexable documents. It is assumed
that data structures of an indexable item are proprietary to the source
system, and the interface for converting an item pertaining such a
structure to indexable document are the responsibility of the
integrator.

Enabling Search on Tree Structure-based Source Systems

31-10 Developer's Guide

A searchable object holds metadata about the source system. It can be either an Oracle
ADF view object with ECSF annotation or a class that extends
oracle.ecsf.meta.SearchableObject. For tree structure-based source systems, the
searchable object is not view object-based, so ECSF does not load the view object.
Instead, it loads a Java class that extends and implements the searchable object. When
requested with a ConfigFeed URL, ECSF identifies the searchable object that holds the
search metadata required by ECSF. Non-view object-based searchable objects can be
grouped into search categories. Figure 31–4 illustrates the data flow for search on tree
structure-based source systems.

Figure 31–4 Data Flow for Search Using ECSF Tree Crawler

The integration of ECSF with the source system allows an Oracle SES instance to crawl
the source system data. The Source System DataNode, which is exposed to the ECSF
tree crawler, formulates the data structure and pulls data from the source system
server using web services. ECSF converts the tree nodes into documents that Oracle
SES receives through RSS feeds and indexes. The source system implements a security
service. When data from the source system is indexed in the Oracle SES, it is guarded
against access by the security service.

A security extension is needed to implement source and document-level security. A
searchable object has a method of getting a search extension instance based on the
metadata. To associate a search extension with a searchable object, configure it from
the Search navigation tab of the overview editor in JDeveloper. For more information,
see Section 27.2.3, "How to Make View Objects Searchable."

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-11

ECSF also extends its attachment implementation to enable the implementer to open
the stream for data pulling attachments that are associated with a particular node. For
more information, see Section 31.2, "Enabling Search on Fusion File Attachments."

Enable search on tree structure-based source systems by:

1. Crawling tree structures

2. Integrating search functionality for tree structures

3. Implementing administration using ECSF interfaces

31.4.1 How to Crawl Tree Structures
ECSF offers Java classes that provide support for traversing tree structure-based data
sources and identifying items for indexing. To implement search for these data
sources, complete the following tasks:

1. Create a searchable object by extending the
oracle.ecsf.data.tree.SearchableTreeObject class.

2. Implement a crawlable tree node to extract document metadata.

3. Extend AbstractTreeWalker to traverse the tree.

4. Implement security.

5. Implement the attachments interface to stream the documents to Oracle SES.

6. Deploy and start the ECSF servlet.

7. Configure Oracle SES to crawl ECSF.

Before you begin:
Install the ECSF seed data records in the ECSF schema of the Oracle Fusion
Applications database using Seed Data Framework (SDF). For information, see
Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data Loader."

31.4.1.1 Creating a Searchable Object
Create a searchable object by extending the
oracle.ecsf.data.tree.SearchableTreeObject class, as shown in Example 31–4.
When you create a searchable object for a tree object, you create a Java class, the
SearchableTreeDirectory class, that is part of your implementation Java archive
(JAR) file.

Example 31–4 Sample Code for SearchableTreeDirectory Class

package oracle.ecsf.test.tree;
import oracle.ecsf.data.tree.SearchableTreeObject;

public class SearchableTreeDirectory extends SearchableTreeObject {
 //override the security plug to be used
 public void initializeConfig() {
 setPlugInName(SecurityPlugin.class.getName());

 //add a custom attribute
 //see processNode method where you must set attribute value
 //for this attribute for the indexable document
 DocumentDefinition docdef = this.getDocument();
 FieldDefinitionImpl field = new FieldDefinitionImpl("CUSTOM_ATTR");
 field.setBinding("CUSTOM_ATTR");
 //this flag indicates that this attribute be stored in SES

Enabling Search on Tree Structure-based Source Systems

31-12 Developer's Guide

 field.setStored(true);
 docdef.addField(field);
 }

 //override the crawlable factory to be used
 public String getCrawlableFactoryName() {
 return FileTreeCrawler.class.getName();
 }
 //override the method to get the location and the name of the last crawled
timestamp file
 //this is optional, if it is not overridden, the default location is the
temporary directory of the
 //system, that is, in unix/linux, it is "/tmp" and in Windows, it is
"c:/temp"; the default file name is
 // ".ecsf." concatenated with the object name, in this case
"oracle.ecsf.test.tree.SearchableTreeDirectory"
 public String getFileName() {
 return "./.ecsf.oracle.ecsf.test.tree.SearchableTreeDirectory";
 }

}

You must override the initializeConfig method to create search metadata
dynamically for your searchable object, including adding a custom attribute, setting
the security plug-in class name, and so on.

You must override getCrawlableFactoryName() to return the class name of your
extension of AbstractTreeWalker.

Override getFileName if you want to persist the last crawled timestamp in a particular
location.

For information, see Section 31.4.1.3, "Extending AbstractTreeWalker."

31.4.1.2 Implementing a Crawlable Tree Node
A crawlable tree node represents a node in your tree structure. When crawled, each
node on the tree structure is wrapped in this object. This node is created by the
extension of AbstractTreeWalker. For more details on each method, see the Javadoc
for ECSF.

Implement a crawlable tree node by extending the
oracle.ecsf.data.tree.CrawlableTreeNode class to create a tree node class called
CrawlableTreeNodeImpl, as shown in Example 31–5, for extracting document
metadata. The tree node class models the tree structure repository.

Example 31–5 Sample Code for CrawlableTreeNodeImpl Class

package oracle.ecsf.data.tree;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

import java.util.Date;

import oracle.ecsf.IndexableDocument;
import oracle.ecsf.meta.PrimaryKey;
import oracle.ecsf.data.tree.CrawlableTreeNode;

public class CrawlableTreeNodeImpl extends CrawlableTreeNode {

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-13

 String[] filesToHandle=new String[]{"java", "xml"};
 private File file;
 //Creates a node with a fully qualified name.
 public CrawlableTreeNodeImpl(String name) {
 super(name);
 file = new File(name);
 this.setPath(file.getPath());
 this.setName(file.getName());
 }
 //Internal. Determine whether a file should
 //be indexed.
 private boolean handleFile(File file) {
 if(file ==null)
 return false;
 if(file.isDirectory())
 return false;
 for(String ext : filesToHandle) {
 if(file.getName().endsWith(ext))
 return true;
 }
 return false;
 }
 //Test if a file needs to be indexed.
 public boolean isIndexable() {
 return handleFile(file);
 }
 /*
 * Gets the last modified date.
 */
 public Date getLastModified() {
 if (file == null) {
 return null;
 } else {
 return new Date(file.lastModified());
 }
 }

 public void processNode(IndexableDocument doc) {
 try {
 StringBuffer indexContent = new StringBuffer();
 FileReader fileReader = new FileReader(file);
 BufferedReader br = new BufferedReader(fileReader);
 String strd = br.readLine();
 while (strd != null) {
 indexContent.append("\n" + strd);
 strd = br.readLine();
 }
 if (file.getName().endsWith("xml")) {
 PrimaryKey keys = new PrimaryKey();
 keys.put("Name", file.getName());
 keys.put("Path", file.getPath());
 doc.addAttachment(new AttachmentImpl(keys));
 }
 br.close();
 fileReader.close();
 doc.setContent(indexContent.toString());
 doc.setFieldValue("CUSTOM_ATTR", "This is custom attributes to be saved in SES");
 doc.setAttributeValue("CUSTOM_ATTR", "This value is custom attribute value");
 doc.overrideAccessURL("path=" + file.getPath() + "&name="+file.getName());
 } catch (Exception e) {

Enabling Search on Tree Structure-based Source Systems

31-14 Developer's Guide

 //handle errors
 }
 }

 protected void init()
 {
 super.init();
 if (!isLeaf())
 {
 File[] files = file.listFiles();

 if (files != null)
 {
 for (int i = 0; i < files.length; i++)
 {
 addChildNode(new CrawlableTreeNodeImpl(files[i].getAbsolutePath()));
 }
 }
 }
 }
 private static boolean isLink(File file) {
 try {
 if (!file.exists()) {
 return true;
 } else {
 String cnnpath = file.getCanonicalPath();
 String abspath = file.getAbsolutePath();
 return !abspath.equals(cnnpath);
 }
 } catch (IOException ex) {
 System.err.println(ex);
 return true;
 }
 }
 public boolean isLeaf() {
 return file == null || !file.isDirectory() || isLink(file);
 }
}

In the processNode method, you must extract any metadata information about the
document (for example, setTitle, setKeyword, setContent) and populate the
indexable document that is passed in. You can also add any custom attributes to the
indexable documents, such as the isLeaf method that determines whether a node is a
folder or a document. This method is used by the crawlable factory to determine how
to traverse the tree.

31.4.1.3 Extending AbstractTreeWalker
To provide the methods that enables Oracle SES to traverse tree structures and index
the content items, extend AbstractTreeWalker by creating the abstract tree crawler
class, called FileTreeCrawler, as shown in Example 31–6. FileTreeCrawler is invoked
as a factory to create a crawlable tree node as defined in Section 31.4.1.2,
"Implementing a Crawlable Tree Node." The tree walker works with
CrawlableTreeNode to provide the generic framework for traversing a tree structure
and indexing the content items in the repository. It also uses TreeSplitter to divide
the repository into branches to enhance the crawling performance.

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-15

Example 31–6 Sample Code for FileTreeCrawler Class

package oracle.ecsf.data.tree;

import oracle.ecsf.meta.SearchableObject;

public class FileTreeCrawler extends AbstractTreeWalker {
 //
 //The application determine the root path.
 //
 String root="/home/cbrown";
 /**
 *Constructs a CrawlableFactory from a searchable object.
 */
 public FileTreeCrawler()
 {
 super();
 }

 public FileTreeCrawler(SearchableObject searchableObject)
 {
 super(searchableObject);
 }
 //
 //Creates root node
 //
 public CrawlableTreeNode createCrawlable() {
 return new CrawlableTreeNodeImpl(root);
 }
 //
 //Creates a node for a given path
 //if you cannot construct the path.
 //
 public CrawlableTreeNode createCrawlable(String path) {
 return new CrawlableTreeNodeImpl(path);
 }
 //Tests if a node is crawlable
 protected boolean isIndexable(CrawlableTreeNode node) {
 CrawlableTreeNodeImpl fNode = (CrawlableTreeNodeImpl) node;
 return fNode.isIndexable();
 }
}

When Oracle SES crawls the searchable object, an instance of FileTreeCrawler is
created by ECSF. It traverses the tree structure by calling the methods defined in the
FileTreeCrawler class. It goes through two passes. First, it collects only the structure
information, and based on that, it forms a control feed that contains all the folders that
need to be visited for collecting documents. The isIndexable method determines
whether or not a particular node is indexed by Oracle SES. You can also use it to place
filters to control the type of document to be indexed.

When creating the FileTreeCrawler class, you must implement two constructors. One
takes no parameters, and the other takes a searchable object where you can perform
configurations specific to your application, if required.

31.4.1.4 Implementing Security
Security rules on the documents indexed by Oracle SES is controlled by access control
lists (ACLs). This is achieved by creating a search plug-in that implements the
oracle.ecsf.Secure interface for the searchable object. When you implement a

Enabling Search on Tree Structure-based Source Systems

31-16 Developer's Guide

security extension for the searchable object, it is used to serve as the authorization
module for indexed content in Oracle SES.

ECSF is secured by a plugable security service, which is called when users try to
search the indexed content. By default, ECSF provides an implementation based on
Oracle Platform Security for Java. It is mainly used for authenticating and authorizing
users into the system. However, if you have a non-Oracle security provider, or you
want to use your own security implementation, you must extend the ECSF security
service. Example 31–7 illustrates the skeleton of a security extension.

Example 31–7 Sample of Security Service

package oracle.ecsf.data.tree;

import oracle.ecsf.SearchContext;
import oracle.ecsf.SecurityService;
import oracle.ecsf.util.SecurityServiceFactory;

public class SecurityServiceImpl implements SecurityService{
 public String[] listSupportedFormats() {
 return new String[]{"BIEE"};
 }

 public String authenticate(SearchContext ctx, String userName, String
password, String format) {
 return userName;
 }

 public String isUserValid(SearchContext ctx, String userName, String format) {
 return userName;
 }
 public String[] getSecurityValues(SearchContext ctx, String userName, String
attrName, String objectId) {
 //Get keys for an attribute.
 return new String[]{};
 }
}

The security extension is a Java class that implements a securable interface. There are
five methods available. Example 31–8 illustrates the skeleton of such class.

Example 31–8 Sample Security Extension

package oracle.ecsf.data.tree;

import oracle.ecsf.IndexableDocument;
import oracle.ecsf.SearchContext;
import oracle.ecsf.SearchSecurityException;
import oracle.ecsf.Securable;

public class SecurityPlugin implements Securable{
 public boolean isAclEnabled(SearchContext ctx) {
 return true;
 }

Note: ECSF uses the generic term ACL to describe how Oracle SES
and ECSF pass security information and perform security checks by
using the information described in the ACL.

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-17

 //The ACL for the document
 public String[] getAcl(SearchContext ctx, IndexableDocument doc) {
 return new String[]{"cbrown"};
 }
 //The keys to the ACL for the document for ctx.getUserName()
 public String[] getSecurityKeys(SearchContext ctx) {
 return new String[]{};
 }
 //The ACL for the document, hashed against an attribute
 public String[] getSecureAttrAcl(SearchContext ctx, IndexableDocument doc, String
attributeName) {
 return new String[]{};
 }
 //The keys to the ACL for the document for ctx.getUserName(), hashed agains an attribute
 public String[] getSecureAttrKeys(SearchContext ctx, String attributeName) {
 return new String[]{};
 }
 //Returns configuration parameters for the extension, not used often
 public String[] getSecurableParams()
 throws SearchSecurityException {
 return new String[]{};
 }
}

Your search plug-in must be assigned to the searchable object, as shown in
Example 31–4.

31.4.1.5 Implementing the Attachments Interface
Implementing the attachments interface, shown in Example 31–9, allows you to index
binary files such as Word documents, Excel spreadsheets, PDF files, and so on.

Example 31–9 Attachments Interface Implementation

package oracle.ecsf.data.tree;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.OutputStream;

import java.util.HashMap;
import java.util.Map;

import oracle.ecsf.Attachment;
import oracle.ecsf.SearchContext;
import oracle.ecsf.meta.PrimaryKey;

public class AttachmentImpl implements Attachment {
 PrimaryKey primaryKey;

 public AttachmentImpl() {
 }

 public AttachmentImpl(Map map) {
 primaryKey = new PrimaryKey();
 primaryKey.putAll(map);
 }

Enabling Search on Tree Structure-based Source Systems

31-18 Developer's Guide

 public String getType() {
 return "text/xml";
 }

 public void initialize(SearchContext ctx, Map paramMap, PrimaryKey keys) {
 primaryKey = new PrimaryKey();
 primaryKey.putAll(keys);
 }

 public void read(SearchContext ctx, OutputStream stream) {
 String path = (String)primaryKey.get("Path");
 File file = new File(path);

 try {
 FileReader fileReader = new FileReader(file);
 BufferedReader br = new BufferedReader(fileReader);
 String strd = br.readLine();
 while (strd != null) {
 stream.write(strd.getBytes());
 strd = br.readLine();
 }
 } catch (IOException e) {
 //Handle errors
 }
 }
 //Contains configuration parameters needed to read the attachment
 //This map can be an empty one as shown in this example.
 public Map getParameters() {
 Map parameters = new HashMap();
 return parameters;
 }
 //Name value pairs need to identify a specific attachment.
 public PrimaryKey getPrimaryKey() {
 return primaryKey;
 }
}

Once you implement this class, you can add any number of attachments to an
indexable document in the processNode method of CrawlableTreeNode. The
attachment must contain enough information in its primary key for you to open the
attachment when requested by the read method, where you simply use the
information stored in the primary key to read the document and write to the output
stream passed to you.

31.4.1.6 Deploying and Starting the ECSF Servlet
Before Oracle SES can crawl your file system, you need an Oracle WebLogic Server
instance to which you can deploy the ECSF servlet. For example, you can use the
Integrated WebLogic Server container.

To deploy and start the ECSF server:
1. Create a Java project in JDeveloper.

2. Add ecsf.jar to its class path.

3. Develop your extensions.

4. Edit web.xml to add the servlet mapping in Example 31–10.

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-19

Example 31–10 SearchFeedServlet Mapping

<servlet>
<servlet-name>SearchFeedServlet</servlet-name>
<servlet-class>oracle.ecsf.feed.SearchFeedServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>SearchFeedServlet</servlet-name>
<url-pattern>/searchfeedservlet/*</url-pattern>
</servlet-mapping>

5. To use a custom security service, you must add
-Doracle.ecsf.security.service=classnameOfSecurityService. Otherwise,
Oracle Platform Security for Java security service is used.

6. Open ecsf.jar, right-click oracle.ecsf.feed.SearchFeedServlet, and select
Run. The ECSF servlet starts, and the system is ready to be crawled.

31.4.1.7 Configuring Oracle SES to Crawl ECSF
Oracle SES must be installed, then configured to crawl ECSF. Install Oracle SES 11.2.1,
then perform the following steps to configure Oracle SES with the necessary
information for crawling tree structure-based data sources and identifying items for
indexing.

To configure Oracle SES:
1. In Oracle SES, create a data source of data source type, for example, Oracle Fusion.

For General, complete the following:

■ Name: your data source name

Oracle SES supports string values of up to 100 characters.

■ Configuration URL:
http://yourhost:port/appname/pathname/searchableObjectName/ConfigFe
ed

■ Authentication Type: NATIVE

■ User ID: username

■ Password: password

■ Scratch Directory: /tmp or c:\tmp or empty

■ Maximum number of connection attempts: 3

For Authentication, complete the following:

■ Authorization: ACLs Controlled by the Source

■ HTTP endpoint for authorization:
http://yourhost:port/appname/pathname/SecurityService?engineInstID=
EngineInstanceID

■ User ID: username

■ Password: password

■ Business Component: searchableObjectName

■ Display URL Prefix: prefix of url for Oracle SES UI

2. Create a data source group:

Enabling Search on Tree Structure-based Source Systems

31-20 Developer's Guide

a. From Search Tab/Source Group, click the Create button.

b. Provide a name.

c. Select Fusion Data Type to filter the data source.

d. Shuttle the data source to the right column.

e. Click Finish.

3. Activate the identity extension:

a. From Global Settings, select Identity Management Setup.

b. Select Oracle Fusion from the list.

c. Click Activate. If it is already activated, deactivate it, then reactivate it.

d. For HTTP endpoint for authentication, enter
http://yourhost:port/appname/pathname/SecurityService.

e. Enter your user name and password.

4. If Oracle SES is needed, create a federated trusted entity:

a. From Global Settings, select Federation Trusted Entities.

b. For Entity Name, enter your user name.

c. Select the Use Identity Plug-in checkbox for the authentication option.

5. (Optional) Include the Oracle SES client Java archive (JAR) in your class path, as
shown in Example 31–11, to query Oracle SES through API.

Example 31–11 Class Path with Oracle SES Client Java Archive

 public SearchHits doSearch(String soName, String query, int pageSize, int page)
 {
 SearchHits searchHits = null;
 String searchGroupName = GROUP_NAME;
 long engineInstId = -1;
 SearchContext searchContext = ContextFactory.getSearchContext();

 QueryMetaData qmd = new QueryMetaDataImpl();
 qmd.setQueryString(query);
 qmd.setPageSize(pageSize);
 qmd.setCurrentPage(page);

 SearchGroup group = new SearchGroup(searchGroupName, searchGroupName, -1, null,
SearchContext.LOCAL);
 SearchGroup[] groups = new SearchGroup[] { group };
 qmd.setSearchGroups(groups);

 SearchableGroup sg = MetaDataManager.getSearchableGroup(-1, searchGroupName);
 sg.addSearchableObject(soName);

 SearchableObject so = MetaDataManager.getSearchableObject(soName);
 searchContext.setSearchableObject(so);

 SearchEngine engine = SearchEngineManager.getSearchEngine(engineInstId);
 try
 {
 Searcher searcher = engine.getSearcher(searchContext);
 searchHits = searcher.search(searchContext, qmd);
 }
 catch (Throwable e)

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-21

 {
 return null;
 }
 return searchHits;
 }

31.4.2 How to Integrate Search Functionality for Tree Structures
In the ECSF architecture, search related artifacts can be stored in any persistent
storage. The metadata manager obtains these artifacts via configuration store
abstraction. For Oracle Fusion Applications, a database-based configuration store is
developed that is capable of loading configuration from the ECSF tables in the Oracle
Fusion Applications database.

If you decide not to use the ECSF database-based configuration store for the metadata,
you can implement your own configuration store by implementing the
oracle.ecsf.meta.Configuration interface.

The search related artifacts are loaded into memory through VOConfiguration during
runtime to be used for crawling, query, and administration. If information is not stored
in a database, as in the case of Oracle Business Intelligence that stores its information
in a tree structure-based source system, ECSF provides a flexible way to load the
runtime objects through an interface (Configuration) placed between
MetaDataManager and your configuration storage so that runtime objects are not
restricted to being loaded from the database. Figure 31–5 illustrates the runtime
architecture that includes the Configuration interface, which provides an alternative
mechanism for loading runtime objects.

Figure 31–5 Runtime Architecture with Configuration Interface

A system property determines which configuration, VOConfiguration or a custom
configuration, to use during runtime. In Figure 31–5, the BIConfiguration class is an
example of a custom configuration that extends the existing AbstractConfiguration
class.

Integrate search functionality for tree structures by extending the
AbstractConfiguration class and using your configuration class.

31.4.2.1 Setting the Configuration
The MetaDataManager class determines which configuration to call based on how you
set the oracle.ecsf.configuration.class system property. For example,

System.setProperty("oracle.ecsf_configuration_class",
"oracle.ecsf.meta.impl.BIConfiguration");

Enabling Search on Tree Structure-based Source Systems

31-22 Developer's Guide

sets the property to use BIConfiguration. If this property is not set, or an
implementation class does not exist for this property, MetaDataManager calls
VOConfiguration by default.

31.4.2.2 Using the Configuration Interface
The Configuration interface, shown in Example 31–12, contains the methods
implemented by VOConfiguration or a custom configuration to load runtime objects.

Example 31–12 Configuration Interface

public interface Configuration
{
 /**
 * Returns all search engine instances.
 * @return a list of search engine instances available.
 */
 public List<MetaEngineInstance> getEngineInstances();

 /**
 * Returns engine parameters in a hashmap for a given engine
 * instance.
 * @param engineId the engine instance id
 * @return Hashmap configuration parameter
 */
 public Map getEngineParameters(long engineId);

 /**
 * Returns a searchable group for a given search engine instance, by name.
 * @param engineId The identification of the engine instance.
 * @param name The name of the searchable group.
 * @return a searchable group. Null if not found.
 */
 public SearchableGroup getSearchableGroup(long engineId, String name);

 /**
 * Returns a searchable object for a given search engine instance by class
 * name.
 * @param engineId The identification of the engine instance.
 * @param name The class name of the searchable object.
 * @return a searchable object, null if not found.
 */
 public SearchableObject getSearchableObject(long engineId, String name);

 /**
 * Returns a list of searchable groups for a given search engine instance.
 * @param engineId The indentification of the engine instance.
 * @return a list of searchable groups, empty if not found.
 */
 public List<SearchableGroup> getSearchableGroups(long engineId);

 /**
 * Requests a reload of the configuration. Implementation should reload the
 * objects from persistent storage.
 */
 public void reload();
}

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-23

The Configuration interface includes the getEngineParameters() method so you can
get and set the search engine parameters needed for ECSF runtime in the absence of a
database.

31.4.2.3 Using the AbstractConfiguration Class
The AbstractConfiguration class implements the necessary functionalities common
to all non-database uptakers regardless of where the runtime object information is
stored. You must complete the implementation by using your own custom class that
extends AbstractConfiguration. For information, see Section 31.4.2.5, "Extending
AbstractConfiguration."

Example 31–13 illustrates the implementation of AbstractConfiguration. In this
implementation, getSearchableGroups() loads the available groups from the Oracle
SES instance. These groups are treated as external groups, and therefore advanced
search and facets are not supported in this scenario.

Example 31–13 Sample AbstractConfiguration Implementation

public abstract class AbstractConfiguration implements Configuration
{
 public AbstractConfiguration()
 {
 super();
 MetaEngineInstance engine = new MetaEngineInstance();
 engine.setId(-1L);
 engines.add(engine);

 }

 public List<MetaEngineInstance> getEngineInstances()
 {
 return engines;
 }

 public List<SearchableGroup> getSearchableGroups(long engineId)
 {
 if(groups == null)
 {
 groups = new ArrayList<SearchableGroup>();
 try
 {
 Map map = SESAdmin.getGroups(ContextFactory.getSearchContext(),
engineId);
 for (Object key : map.keySet())
 {
 SearchableGroup sg = new SearchableGroup(key.toString());
 sg.setDisplayName((String)map.get(key));
 sg.setIsExternal(true);
 sg.setEngineInstanceId(engineId);
 groups.add(sg);
 }
 }
 catch (SearchException e)
 {
 e.printStackTrace();
 }
 }
 return groups;
 }

Enabling Search on Tree Structure-based Source Systems

31-24 Developer's Guide

 public SearchableGroup getSearchableGroup(long engineId, String s)
 {
 for (SearchableGroup group : getSearchableGroups(engineId))
 {
 if (group.getName().equals(s))
 {
 return group;
 }
 }
 return null;
 }

 public SearchableObject getSearchableObject(long engineId, String s)
 {
 SearchableObject so = loadSOFromClass(s);
 if (so != null)
 {
 so.setSearchEngineInstanceId(engineId);
 }
 return so;
 }

 protected SearchableObject loadSOFromClass(String className)
 {
 try
 {
 if (className.equals(SearchableObject.class.getName()))
 {
 return null;
 }

 Class cls =
 Thread.currentThread().getContextClassLoader().loadClass(className);
 if (cls != null)
 {
 Object object = null;
 try
 {
 object = cls.newInstance();
 }
 catch (InstantiationException e)
 {

 return null;
 }
 catch (IllegalAccessException e)
 {

 return null;
 }

 if (object instanceof SearchableObject)
 {
 //this is the only path a searchable object will be created
 SearchableObject so = (SearchableObject)object;
 so.setDocument(new VODocumentImpl("root"));
 return so;
 }
 else

Enabling Search on Tree Structure-based Source Systems

Advanced Topics for ECSF 31-25

 {
 return null;
 }
 }
 else
 {
 return null;
 }
 }
 catch (ClassNotFoundException e)
 {
 return null;
 }
 }

 public void reload()
 {
 //do nothing
 }

 private List<SearchableGroup> groups = null;
 private List<MetaEngineInstance> engines= new ArrayList<MetaEngineInstance>();
}

In this implementation, there is only one engine instance but following
MetaDataManager convention, a list of engine instances is returned.

31.4.2.4 Implementing Searchable Object Classes
Since the searchable objects are not stored in the database, you must implement a Java
class to define each searchable object. Example 31–14 shows the sample
implementation for EmpView.java.

Example 31–14 Sample Searchable Object Class

package runtime; //package where runtime objects reside
import java.util.logging.Logger;

import oracle.ecsf.meta.AbstractDocumentDefinition;
import oracle.ecsf.meta.DocumentDefinition;
import oracle.ecsf.meta.FieldDefinitionImpl;
import oracle.ecsf.meta.SearchableObject;
import oracle.ecsf.util.ECSFLoggerFactory;

public class EmpView extends SearchableObject
{
 private static Logger sLogger =
 ECSFLoggerFactory.getLogger(EmpView.class.getName());

 private static final String DATE_FORMAT = "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'";

 public EmpView()
 {
 super("");
 setName(getClass().getName());
 }

 public EmpView(String name)
 {
 super(name);

Enabling Search on Tree Structure-based Source Systems

31-26 Developer's Guide

 }

 /**
 * Override to initalize document.
 * @param document
 */
 public final void setDocument(AbstractDocumentDefinition document)
 {
 super.setDocument(document);
 initDoc(document);
 }
 private void initDoc(AbstractDocumentDefinition documentDefintion)
 {
 FieldDefinitionImpl field = new FieldDefinitionImpl("Ename");
 field.setBinding("ENAME");
 field.setPrimaryKey(false);
 field.setStored(true);
 documentDefintion.addField(field);
 field = new FieldDefinitionImpl("Empno");
 field.setBinding("EMPNO");
 field.setPrimaryKey(true);
 field.setStored(true);
 documentDefintion.addField(field);
 field = new FieldDefinitionImpl(DocumentDefinition.ECSF_SO_NAME);
 field.setBinding(DocumentDefinition.ECSF_SO_NAME);
 field.setPrimaryKey(false);
 field.setStored(true);
 documentDefintion.addField(field);
 }
}

Each searchable object is loaded using a class of the same name.

31.4.2.5 Extending AbstractConfiguration
You can extend the AbstractConfiguration class with the BIConfiguration class, as
shown in Example 31–15, to define your own way of loading runtime objects that is
specific to your environment.

Example 31–15 Sample Implementation for BIConfiguration

package oracle.ecsf.meta.impl;

import java.util.HashMap;
import java.util.Map;

public class BIConfiguration extends AbstractConfiguration
{
 public BIConfiguration()
 {
 }
 public Map getEngineParameters(long engineId)
 {
 HashMap map = new HashMap();
 map.put("SES_ADMIN_USERNAME", "searchsys");
 map.put("SES_ADMIN_PASSWORD", "welcome1");
 map.put("SES_ADMIN_SESSION_TIMEOUT", "10");
 map.put("SES_ADMIN_SERVICE",

Managing Recent Searches

Advanced Topics for ECSF 31-27

"http://sesserver.com:7777/search/api/admin/AdminService");
 map.put("SES_QUERY_SERVICE",

"http://sesserver.com:7777/search/query/OracleSearch");
 map.put("SES_QUERY_PROXY_USERNAME", "scott");
 map.put("SES_QUERY_PROXY_PASSWORD", "tiger");
 map.put("SES_QUERY_SESSION_TIMEOUT", "10");
 map.put("ECSF_DATA_SERVICE",

"http://wlsserver.com:7101/approot/searchfeedservlet/");
 map.put("ECSF_SECURITY_USERNAME", "scott");
 map.put("ECSF_SECURITY_PASSWORD", "tiger");
 map.put("ECSF_SECURITY_SERVICE",

"http://wlsserver.com:7101/approot/searchfeedservlet/");
 map.put("ECSF_REDIRECT_SERVICE",

"http://wlsserver.com:7101/approot/searchfeedservlet/");
 return map;
 }

 //add search group and search object used for SESAdmin
 public List<SearchableGroup> getSearchableGroups(long engineId)
 {
 if(searchGroups == null)
 {
 searchGroups = new ArrayList(super.getSearchableGroups(engineId));
 SearchableGroup sgAdmin = new SearchableGroup(GROUP_NAME_ADMIN);
 sgAdmin.setIsExternal(false);
 sgAdmin.setEngineInstanceId(ENGINE_ID);
 SearchableObject so = super.loadSOFromClass(OBJECT_NAME_ADMIN);
 sgAdmin.addSearchableObject(so);
 searchGroups.add(sgAdmin);
 }
 return searchGroups;
 }

 private List<SearchableGroup> searchGroups = null;

 private static final long ENGINE_ID = -1L;
 private static final String GROUP_NAME_ADMIN = "runtime.EmpViewAdminTest";
 private static final String OBJECT_NAME_ADMIN = "runtime.EmpViewAdminTest";

}

31.5 Managing Recent Searches
Recent Searches will save the user's top 10 most recent searches. The maximum
number of recent searches that are saved can be configured. Recent Searches will
display in the UI with the search keywords as their name and the user can use the
recent search to requery. Recent Searches can be deleted one at a time, or all Recent
Searches for a specified user can be deleted.

The Recent Search feature uses the SaveSearch database table and dataobjects, which
already exist. The SEARCH_TYPE column added to the ECSF_SVSEARCH table
specifies whether or not a search is SAVED or RECENT. If necessary, make sure to
update the SavedSearchManager so that it handles this column.

Recent Searches uses these components:

Managing Recent Searches

31-28 Developer's Guide

■ RecentSearchManager Class

The RecentSearchManager will manage the creation, deletion and retrieval of
recent searches from the database.

■ SavedSearchManager Class

When a Saved Search is created, the SEARCH_TYPE column in the ECSF_
SVSEARCH database table will be set to the appropriate value, and the
SavedSearchManager will retrieve only searches that are of type SAVED.

■ ECSF_SVSEARCH Database Table

The existing ECSF_SVSearch database table will store the information for recent
searches, using the SEARCH_TYPE column to store the Search Type.

31.5.1 How to Use the RecentSearchManager API
This class, shown in Example 31–16, manages the Recent Searches.

Example 31–16 RecentSearchManager API

/**
* Returns a List of recent RecentSearch data objects for the
* current user defined in the SearchContext
*
* @param ctx the current SearchContext
* @return List< RecentSearch > list of recent RecentSearches
* @throws SearchException
*/
 public List<RecentSearch> getRecentSearches(SearchContext ctx)
 throws SearchException

/**
* Returns a List of recent RecentSearch data objects for the
* current user defined in the SearchContext and the specified
* caller context
* @param ctx - the current SearchContext
* @param callerCtx - the caller context
* @return List<RecentSearch> - list of recent RecentSearches ordered
* from most recent to oldest
* @throws SearchException
*/
 public List<RecentSearch> getRecentSearches(SearchContext ctx, String callerCtx)
 throws SearchException

/**
* Creates a new recent search
*
* @param ctx - the SearchContext
* @param searchDescription - the description of the saved search
* @param queryDetails - recent saved search query information
* @return RecentSearch
* @throws SearchException
*/
 public RecentSearch createRecentSearch(SearchContext ctx,
 String searchDescription,
 QueryMetaData queryDetails)
 throws SearchException

/**

Managing Recent Searches

Advanced Topics for ECSF 31-29

* Creates a new recent search
*
* @param ctx - the SearchContext
* @param searchDescription - the description of the saved search
* @param queryDetails - recent saved search query information
* @param callerCtx - the caller context
* @return RecentSearch
* @throws SearchException
*/
 public RecentSearch createRecentSearch(SearchContext ctx,
 String searchDescription,
 QueryMetaData queryDetails,
 String callerCtx)
 throws SearchException

/**
* Deletes the specified Recent Search from the database
*
* @param ctx - the SearchContext
* @param recentSearch - the Recent Search to delete
* @throws SearchException
*/
 public void deleteRecentSearch(SearchContext ctx, SavedSearch savedSearch)
 throws SearchException

/**
* Deletes all of the recent searches for the current user specified in the
SearchContext
*
* @param ctx - the SearchContext
* @throws SearchException
*/
 public void deleteRecentSearchesForUser(SearchContext ctx)
 throws SearchException

/**
* Deletes all of the recent searches for the current user specified
* in the SearchContext with the specified callerCtx
*
* @param ctx the - SearchContext
* @param callerCtx - the caller context
* @throws SearchException
*/
 public void deleteRecentSearchesForUser(SearchContext ctx, String callerCtx)
 throws SearchException

31.5.2 How Recent Searches Are Processed
Recent Searches are managed only from the current application container, so the
RecentSearchManager only handles recent searches that are found in the local
application database, regardless of the ECSF Scope (LOCAL/GLOBAL).
RecentSearchManager will not call to other search applications for recent searches.

Important: When a RecentSsearch query is run, the query is run as usual using the
defined Scope and Federation, so a federated query will go across the wire to the
search applications if required.

Recent Searches are not implicitly created by ECSF. For a Recent Search to be saved,
the RecentSearchManager.createRecentSearch API must be called.

Managing Recent Searches

31-30 Developer's Guide

The call to get the Recent Searches will return a list ordered from most recent to oldest
recent search.

For performance, the list of recent searches returned will not contain the
RecentSearchDetails information for the Recent Searches. The fact that this information
is not available in the Recent Search dataobject is transparent to the client. When the
client wants the details and calls RecentSearch.getRecentSearchDetails() on the
Recent Search, the dataobject automatically will retrieve the RecentSearchDetails from
the database.

By default, the maximum number of Recent Searches for each user is limited to 10.
This number can be configured using a Java system property:

oracle.ecsf.recent.search.max.num

This property can be set using the Java -D option or the ecsf.properties file.

When Recent Search records are retrieved from the database, the SQL limits the
number of records based on the system property (or the default of 10), so that only the
most recent records are returned.

When the RecentSearchManager creates a new Recent Search, it first checks if the user
already has the maximum number of Recent Searches stored in the database. If the
user does not, a new Recent Search is created. If the user has exceeded the maximum
number of Recent Searches allowed, the oldest Recent Search record is deleted and
then the new Recent Search is saved into the database.

During the creation of a new Recent Search, at most one older Recent Search record
may be deleted. Because the maximum number of Recent Searches is configurable, if
this property is changed, there may be more Recent Search records in the database
than allowed per user, and the Recent Search records should be manually cleaned from
the database to clean up any extra records.

When a new Recent Search is created, due to the ECSF_SVSEARCH database table
constraint on the NAME being unique per user, the RecentSearchManager will
generate a unique name for the Recent Search using the database RowId for the new
record and the queryString input by the user:

String searchName = rowId + ": " + queryDetails.getQueryString();

This will maintain the constraint of having a unique name for each recent SavedSearch
record. The UI will want to display the keyword string as the Recent Search name. The
keyword string can be obtained from the SavedSearch dataobject using its
getKeywordSrchStr method:

String recentSearchDisplayName = recentSearch. getKeywordSrchStr();

To run a Recent Search, the RecentSearchDetails can be retrieved from the
RecentSearch object and then SearchCtrl.runQuery can be used to run the query on the
queryMetaData in the RecentSearchDetails. If the query is federated, it will run as

Note: If the oracle.ecsf.recent.search.max.num property is set to an
invalid number or 0, recent searches are disabled and a message is
printed to the log.

The isEnabled(SearchContext ctx) API indicates whether or not
Recent Search functionality is enabled. If Recent Search is disabled,
calling the other methods in RecentSearchManager will result in an
UnsupportedOperationException.

Managing Recent Searches

Advanced Topics for ECSF 31-31

usual using federation. All of the necessary details for this are stored in the
queryMetaData object:

RecentSearchDetails recentSearchDetails = recentSearch.getRecentSearchDetails();
QueryMetaData qmd = recentSearchDetails.getQueryDetails();
SearchHits hits = searchCtrl.runQuery(qmd);

The callerCtx passed into some of the RecentSearchManager methods is a column used
by the UI to tag searches. For example, the Global Search UI will only want to display
recent searches that were performed inside the Global Search UI, so the callerCtx will
be used when creating and retrieving searches.

Database Schema for Recent Searches
Recent Search uses the ECSF_SVSEARCH and ECSF_SVSEARCH_DETAILS database
tables. To support Recent Search, these schema changes have been made:

■ SEARCH_TYPE has been added to ECSF_SVSEARCH:

SEARCH_TYPE VARCHAR2(20) default 'SAVED' NOT NULL

■ The unique constraint on the ECSF_SVSEARCH table includes the SEARCH_
TYPE column.

CONSTRAINT ECSF_SVSEARCH_UK1 UNIQUE (NAME, USERID, CALLER_CTX, SEARCH_TYPE)

■ The existing ECSF_SVSEARCH_N1, ECSF_SVSEARCH_N2, and ECSF_
SVSEARCH_U2 Indexes for the ECSF_SVSEARCH table include the SEARCH_
TYPE column.

CREATE INDEX ECSF_SVSEARCH_N1 ON ECSF_SVSEARCH (USERID, SEARCH_TYPE);
CREATE INDEX ECSF_SVSEARCH_N2 ON ECSF_SVSEARCH (USERID, CALLER_CTX, SEARCH_
TYPE);
CREATE INDEX ECSF_SVSEARCH_U2 ON ECSF_SVSEARCH (NAME, USERID, CALLER_CTX,
SEARCH_TYPE);

■ The ECSF_SVSEARCH_DETAILS table is constrained on the Foreign Key to ECSF_
SVSEARCH so that corresponding search details are automatically deleted
whenever an ECSF_SVSEARCH record is deleted.

ALTER TABLE ECSF_SVSEARCH_DETAILS ADD
(
 CONSTRAINT ECSF_SVSEARCH_DETAILS_FK1
 FOREIGN KEY (SVSEARCH_ID) REFERENCES ECSF_SVSEARCH (ID)
 ON DELETE CASCADE
)
;

RecentSearch Dataobject
The RecentSeach and RecentSearchDetails dataobjects are used. A RecentSearch
dataobject is just like SavedSearch except for the details method:

/**
 * Retrieve the RecentSearchDetails for this recent search.
 *
 * @return recent search details
 */
public RecentSearchDetails getRecentSearchDetails()

Setting Up Federated Search

31-32 Developer's Guide

31.6 Setting Up Federated Search
ECSF provides the services and federation to enable users to search across Oracle
Fusion Applications product families or across multiple Oracle SES instances. For
more information, see the "Managing Search with Oracle Enterprise Crawl and Search
Framework" chapter in the Oracle Fusion Applications Administrator's Guide.

Set up ECSF services and federation by:

1. Creating the SearchDB connection on Oracle WebLogic Server

2. Updating the application deployment profile with the Target Directory for
Searchable Objects

3. Updating the application to point to the ECSF Service shared library

4. Adding the ECSF Runtime Library

5. Adding searchable objects and their dependencies to the Search application

6. Setting the system parameter for web service

7. Packaging and deploying the Search application

8. Setting up the ECSF client for federation

9. Setting the SearchContext scope to GLOBAL

10. Integrating federation across Oracle Fusion Applications product families

31.6.1 How to Create the SearchDB Connection on Oracle WebLogic Server Instance
The Oracle WebLogic Server instance to which the application is deployed must have a
SearchDB connection. The application deployment descriptors are set so that the
application does not automatically generate and synchronize weblogic-jdbc.xml
descriptors during deployment. This setting prevents you from receiving the
deployment error No credential mapper entry found for password indirection
when you package or deploy from the command line or from Oracle JDeveloper.
Because of this, you must manually create the SearchDB connection on Oracle
WebLogic Server instance.

To create the SearchDB connection:
1. In the Domain Structure tree of the Oracle WebLogic Server Administration

Console, navigate to Services, then JDBC, then Data Sources.

2. See if there is any data source with Java Naming and Directory Interface (JNDI)
value jdbc/SearchDBDS. If not, proceed to the next step.

3. Click the New.

4. On the Connection Properties page, complete the fields with the following values:

■ JNDI Name: jdbc/SearchDBDS

■ Database Type: Oracle

■ Database Driver: Oracle Driver (Thin) 901,92,10,11

5. Click Next, and complete the configuration according to your data source.

Setting Up Federated Search

Advanced Topics for ECSF 31-33

31.6.2 How to Update the Application Deployment Profile with the Target Directory for
Searchable Objects

All searchable objects and their dependencies must be packaged within the Search
application enterprise archive (EAR) file for each product family. You must set the
target directory for the Java archive (JAR) files containing the searchable objects and
their dependencies in the application deployment descriptor so that they are packaged
with the enterprise archive.

To set the target directory for searchable objects:
1. In the Application Navigator, right-click the application name and navigate to

Application Properties, then Deployment.

The deployment descriptor file (for example, Search_Application1.ear, where
Search is your application name) appears in the left pane.

2. Click the deployment descriptor file and select Edit.

3. From the Edit EAR Deployment Profile Properties menu navigate to File Groups
> VOLib > Contributors, click Add, and set the directory to point to {FULL_PATH_
TO_BUILD_FILE}/deploy/lib/, for example, /ade/view_
name/fusionapps/crm/deploy/lib.

This directory is empty, but during the pre-enterprise archive step in the build file
the directory becomes populated with all of the dependent Java archive (JAR) files.
Including this directory in the application deployment descriptor ensures that
these dependent Java archive (JAR) files are packaged with the enterprise archive.

4. Click OK.

31.6.3 How to Update the Application to Reference the ECSF Service Shared Library
The ECSF Service shared library eliminates the need for ECSF libraries to be packaged
into the Search application for each product family. Instead, applications that depend
on ECSF libraries can reference the ECSF shared library that is deployed to the Oracle
WebLogic Server instance. The ECSF Service shared library contains the following Java
archive (JAR) files:

■ ecsf_MiddleTier.war

■ ecsf_MiddleTier.jar

■ ecsf_Common.jar

You must update the Oracle WebLogic Server deployment descriptor file
(weblogic-application.xml) by adding the reference to the ECSF Service shared
library (oracle.ecsf.service), as shown in Example 31–17.

Example 31–17 Reference to the ECSF Service Shared Library

<library-ref>
 <library-name>oracle.ecsf.service</library-name>
</library-ref>

<library-context-root-override>
 <context-root>searchservice</context-root>
 <override-value>REPLACE _CONTEXT_ROOT</override-value>
</library-context-root-override>

Replace REPLACE _CONTEXT_ROOT with the context root that is desired for the Search
application's ECSF Service.

Setting Up Federated Search

31-34 Developer's Guide

The ECSF Service shared library is automatically deployed to the Integrated WebLogic
Server instance by the ECSF extension in JDeveloper through the JDeveloper
Application Development Runtime Service (ADRS). However, you must manually
deploy the ECSF Service shared library to the standalone Oracle WebLogic Server.

31.6.4 How to Add the ECSF Runtime Library
After you update the application deployment profile, update the project by adding the
ECSF Runtime Library.

To add the ECSF Runtime Library:
1. Right-click the project and select Project Properties.

2. Select the Libraries and Classpath category and click the Add Library button.

3. In the Add Library dialog, select ECSF Runtime Server from the list of available
libraries.

4. Click OK to save your selection and close the Add Library dialog.

31.6.5 How to Set the System Parameter for Web Service
Set the oracle.ecsf.service.ws.timeout system parameter to specify the web service
timeout value in milliseconds. If no value is specified, then 90,000 milliseconds is used.
You can set the system parameter in either the Java system properties or in the
ecsf.properties file.

31.6.5.1 Setting the System Parameter in Java System Properties
Set the oracle.ecsf.service.ws.timeout system parameter in Java System Properties
to specify the web service timeout value.

To set the system parameter using Java system properties:
1. In the Application Navigator, right-click ViewController and select Project

Properties.

2. In the Project Properties dialog, select Run/Debug/Profile in the left panel.

3. Select Default in the Run Configurations list, then click the Edit button.

4. In the Edit Run Configuration dialog, select Launch Settings in the left panel.

5. Enter -Doracle.ecsf.service.ws.timeout=n (where n is the desired value in
milliseconds) in the Java Options field, then click OK.

6. Click OK.

31.6.5.2 Setting the System Parameter in the ecsf.properties File
Set the oracle.ecsf.service.ws.timeout system parameter in the ecsf.properties
file to specify the web service timeout value by adding the following line to the
ecsf.properties file available in the application classpath:

oracle.ecsf.service.ws.timeout=n

where n is the desired value in milliseconds.

Setting Up Federated Search

Advanced Topics for ECSF 31-35

31.6.6 How to Package and Deploy the Search Application
When the application deployment descriptor points to the right directory you can run
the ant targets to package and deploy the EAR file. You can run the ant targets from
the command line or from Oracle JDeveloper.

31.6.6.1 Running the ant Targets from the Command Line
Package and deploy the Search application by issuing the following commands in the
directory where the build file is located:

ant -f build-crmsearch.xml ear

ant -Ddeployenvfile=/scratch/deploy.xml -f build-crmsearch.xml deploy

where build-crmsearch.xml is the build file for the Search application.

The enterprise archive step in the build file includes the pre-enterprise archive step, so
there is no need to manually run the pre-enterprise archive step. The enterprise
archive target also runs a postenterprise archive step that deletes all the files from the
deploy/lib directory after the enterprise archive is packaged, resulting in a clean
folder.

31.6.6.2 Running the ant Targets from Oracle JDeveloper
You can use Oracle JDeveloper to package and deploy the Search application.

To package and deploy the Search application from Oracle JDeveloper:
1. Run the pre-enterprise archive steps by opening the build file, right-clicking the

open file editor, and selecting Run ant target > lrg - writeGraph > pre-ear.

This step runs the pre-enterprise archive steps that are required for copying
required Java archive (JAR) files to the directory specified in the Search application
deployment descriptor. All the files in that directory is packaged into the
enterprise archive file in the APP-INF/lib file where the ECSF WAR can locate
them.

2. Package the enterprise archive by right-clicking the application and selecting
Deploy > To ear.

3. Deploy the enterprise archive by right-clicking the application and selecting
Deploy > To IntegratedWebLogicServer.

31.6.7 How to Update the Search Application with New Searchable Objects or
Dependencies

The Search application must be updated if there are new searchable objects to add to
the application or if any of the dependencies for existing searchable objects change.

If there are no new searchable objects but dependencies have changed, you only need
to run the dependentJar ant target and package and deploy the enterprise archive (for
information, see Section 31.6.6, "How to Package and Deploy the Search Application").

However, if you are adding new searchable objects to the application, then you must
add the new searchable objects to the Search application build file and run the
dependentJar ant target, then repackage and redeploy the enterprise archive (for
information, see Section 31.6.6, "How to Package and Deploy the Search Application").

Setting Up Federated Search

31-36 Developer's Guide

31.6.8 How to Set Up the ECSF Client Application for Federation
In order to connect to the Search application for each Oracle Fusion Applications
product family (collectively called global search applications), you must configure the
client application so that when it sends the Search application server a request, it also
sends valid encrypted proxy user credentials to the server.

The client that calls the Search application must be configured with information on
where to find the global Search applications. This information is stored in the
connections.xml of the client application. The connections.xml file of the client
application must contain a reference name element corresponding to each remote
ECSF component to which the client application connects.

Set up the ECSF client application by:

1. Adding encryption keys to cwallet.sso and default-keystore.jks

2. Adding the keystore to jps-config.xml

3. Creating the proxy user

4. Updating connections.xml

31.6.8.1 Adding Encryption Keys to cwallet.sso and default-keystore.jks
The security header is encrypted before being sent to the server, so the cwallet and
default-keystore files for both the client and server must be configured for the
encryption to function properly. Use the Oracle WebLogic Scripting Tool to create the
encryption keys in cwallet.sso and default-keystore.jks. For more information,
see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

The following four new entries appear in cwallet.sso and default-keystore.jks:

> createCred(map="oracle.wsm.security", key="keystore-csf-key", user="owsm",
password="welcome1", desc="Keystore key")
> createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey",
password="welcome1", desc="Encryption key")
> createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey",
password="welcome1", desc="Signing key")
> createCred(map="oracle.wsm.security", key="basic.credentials", user="weblogic",
password="weblogic1", desc="User credentials key")

Oracle WebLogic Scripting Tool updates the files directly on the server you specify, so
no redeployment is necessary.

31.6.8.2 Adding the Keystore to jps-config.xml
In order for the client to be able to use the encryption keystore entries, you must
configure the jps-config.xml file for the client application.

Add the following entries to jps-config.xml:

■ Under serviceProviders:

<serviceProvider type="KEY_STORE" name="keystore.provider"
 class="oracle.security.jps.internal.keystore.KeyStoreProvider">
</serviceProvider>

■ Under serviceInstances:

<serviceInstance name="keystore" provider="keystore.provider"
location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>

Setting Up Federated Search

Advanced Topics for ECSF 31-37

 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance>

■ Under the default jpsContext:

<serviceInstanceRef ref="keystore"/>

For more information, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

31.6.8.3 Creating the Proxy User
The proxy user must exist on both the client and server. The client's cwallet.sso must
also include an entry for the proxy user so that the username and password can be
encrypted when they are placed in the security header before being sent to the server.
Use Oracle WebLogic Scripting Tool to create an entry for the user in cwallet.sso, as
shown in Example 31–18.

Example 31–18 Sample Proxy User Entry

createCred(map="oracle.wsm.security", key="test.user", user="weblogic",
password="weblogic1", desc="User credentials key")

The key (in this example, test.user) for the new entry is used in connections.xml.

31.6.8.4 Updating connections.xml
The connection between the ECSF client and each of the remote ECSF service
components is defined in the connections.xml file in the ECSF client. The
connections.xml file contains a list of reference name elements that correspond to
each ECSF service component. You must edit the connections.xml file to define the
application server connection parameters.

To define the connection parameters:
1. Expand Application Resources, then Descriptors, then ADF Meta-INF, and open

the connections.xml file.

2. Add the reference name elements, as shown in Example 31–19.

Example 31–19 Sample Reference Element

<Reference name="{/oracle/ecsf/service/query/common/crm/}SearchService"
className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl" xmlns="">
 <Factory className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
description="http://localhost:7101/CrmSearchService/AppModuleSearchService?WSDL"
service="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <model name="{/oracle/ecsf/service/query/common/}AppModuleSearchService"
xmlns="http://example.com/ws/model">
 <service name="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <port name="AppModuleSearchServiceSoapHttpPort"
binding="{/oracle/ecsf/service/query/common/}AppModuleSearchServiceSoapHttp">
 <soap
addressUrl="http://localhost:7101/CrmSearchService/AppModuleSearchService"
xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>

Setting Up Federated Search

31-38 Developer's Guide

 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
 <Reference name="{/oracle/ecsf/service/query/common/hcm/}SearchService"
className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl" xmlns="">
 <Factory className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
description="http://localhost:7101/HcmSearchService/AppModuleSearchService?WSDL"
service="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <model name="{/oracle/ecsf/service/query/common/}AppModuleSearchService"
xmlns="http://example.com/ws/model">
 <service name="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <port name="AppModuleSearchServiceSoapHttpPort"
binding="{/oracle/ecsf/service/query/common/}AppModuleSearchServiceSoapHttp">
 <soap
addressUrl="http://localhost:7101/HcmSearchService/AppModuleSearchService"
xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
 <Reference name="{/oracle/ecsf/service/query/common/fscm/}SearchService"
className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl" xmlns="">
 <Factory className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
description="http://localhost:7101/FscmSearchService/AppModuleSearchService?WSDL"
service="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <model name="{/oracle/ecsf/service/query/common/}AppModuleSearchService"
xmlns="http://example.com/ws/model">
 <service name="{/oracle/ecsf/service/query/common/}AppModuleSearchService">
 <port name="AppModuleSearchServiceSoapHttpPort"
binding="{/oracle/ecsf/service/query/common/}AppModuleSearchServiceSoapHttp">
 <soap
addressUrl="http://localhost:7101/FscmSearchService/AppModuleSearchService"
xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

Setting Up Federated Search

Advanced Topics for ECSF 31-39

Web service security must be enforced by policy at the domain or instance level by
configuration. For information, see Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help.

3. Save.

4. Redeploy the client application.

31.6.9 How to Set the SearchContext Scope to GLOBAL
ECSF Query APIs can either invoke the ECSF service component internally (GLOBAL) or
locally (LOCAL). In order to set the ECSF calls to be routed to the ECSF service
component, you must set the scope of the search context to GLOBAL, as shown in
Example 31–20.

Example 31–20 Client Methods

SearchContext ctx = ContextFactory.getSearchContext();
ctx.setScope("GLOBAL");
 ArrayList<SearchEngineInstance> engineInstances =
(ArrayList<SearchEngineInstance>)searchCtrl.getEngineInstances();

When the SearchContext scope is set to GLOBAL, the parameters defined for the remote
engine instance in the database are used to access metadata objects and perform query
related functions on the remote engine instance. For more information, see the
"Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in
the Oracle Fusion Applications Administrator's Guide.

31.6.10 How to Integrate Federation Across Oracle Fusion Applications Product
Families

Use the ECSF API, as shown in Example 31–21, to integrate federation across Oracle
Fusion Applications product families.

Example 31–21 Sample API for Implementing Federated Search

 SearchCtrl searchCtrl = new SearchCtrl();
 SearchHits searchHits = null;
 QueryMetaDataImpl queryMetaData = new QueryMetaDataImpl();
 queryMetaData.setQueryString("*");
 queryMetaData.setPageSize(10);
 queryMetaData.setCurrentPage(1);
 ctx.setScope(SearchContext.GLOBAL);
 ctx.setCurrLocale(Locale.US);

 ArrayList<SearchGroup> allGroups = new ArrayList<SearchGroup>();
 ArrayList<SearchGroup> searchGroups = new ArrayList<SearchGroup>();

 ArrayList<SearchEngineInstance> engineInstances =
 (ArrayList<SearchEngineInstance>)searchCtrl.getEngineInstances();
 for (SearchEngineInstance engineInstance : engineInstances)
 {
 allGroups.addAll(engineInstance.getSearchGroups());
 }
 for (SearchGroup searchGroup : allGroups)
 {
 if (searchGroup.getName().equals("runtime.EmpView")
|| searchGroup.getName().equals("Service Request"))
 {

Federating Oracle SES Instances

31-40 Developer's Guide

 searchGroups.add(searchGroup);
 }
 }
 SearchGroup sgs[] = searchGroups.toArray(new
SearchGroup[searchGroups.size()]);
 queryMetaData.setSearchGroups(sgs);
 try
 {
 searchHits = searchCtrl.runQuery(ctx, queryMetaData);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

In the example, ECSF runtime gets the runtime.EmpView search category (search
group) from an engine instance.

31.7 Federating Oracle SES Instances
ECSF supports federation across Oracle SES instances, which allows users to query
across multiple Oracle SES instances defined in the client's own ECSF component. In
Figure 31–6, the ECSF client is connected to one ECSF service component, which
depends on one database and two Oracle SES instances.

Figure 31–6 Federated Oracle SES

Federation occurs on the client through the Searcher class. For each Oracle SES
instance, ECSF runtime groups the search categories belonging to an Oracle SES
instance and creates a federation node for it. Separate queries are issued in separate
threads for each Oracle SES instance. The results from these queries are merged by
ECSF runtime and returned to the user.

Raising Change Events Synchronously

Advanced Topics for ECSF 31-41

Example 31–22 illustrates how you can integrate federation across Oracle SES
instances.

Example 31–22 Sample API for Integrating Federated Oracle SES

SearchContext ctx = ContextFactory.getSearchContext();
ctx.setScope(SearchContext.LOCAL);
SearchGroup[] sgs =
 new SearchGroup[] { new SearchGroup("runtime.EmpView", "runtime.EmpView", 1),
 new SearchGroup("runtime.EmpView", "runtime.EmpView", 17) };

queryMetaData.setSearchGroups(sgs);
try
{
 searchHits = searchCtrl.runQuery(ctx, queryMetaData);
}
catch (Exception e)
{
 bException = true;
}

In the example, two Oracle SES search engine instances are defined.

31.8 Raising Change Events Synchronously
You can use a Java API to raise change events synchronously with asynch flag =
false when searchable object records are modified. Raising events using SQL writes
records to the ECSF_SEARCHABLE_CHANGE_LOG table of the database.

You can raise change events synchronously by implementing code like the sample
code in Example 31–23.

Example 31–23 Sample Code for Raising Events Using SQL

SearchEventInvocation searchEventInvocation = new SearchEventInvocation();
PrimaryKey primaryKey = new PrimaryKey();
primaryKey.put("PartyId", "12322");
SearchChangeLogEvent changeEvent = new SearchChangeLogEvent(pk);
changeEvent.setSearchObjectName("oracle.ecsf.search.demo.EmpVO");
changeEvent.setChangeType(IndexableDocument.INSERT);
searchEventInvocation.raiseEvent(changeEvent, false);

You can use the following ChangeType parameters:

■ IndexableDocument.DELETE

■ IndexableDocument.UPDATE

■ IndexableDocument.INSERT

When using the SearchEventInvocation.raiseEvent(PrimaryKey eventPK, boolean
useFabric) method to create change log records, the keys in the eventPK map must be
aliases of view object attributes. A view object's alias can be found by opening the
view object in JDeveloper, or by calling the getBinding() method of the appropriate

Note: You cannot federate both Oracle SES instances and ECSF
service components in the same query. ECSF runtime can only create
federation nodes for either each Oracle SES instance (for federated
Oracle SES) or each ECSF service component (for federated search).

Using the External ECSF Web Service for Integration

31-42 Developer's Guide

oracle.ecsf.meta.FieldDefinition instance. Also, the eventPK map must contain an
entry for every attribute that is part the primary key makeup. Otherwise, the
raiseEvent method throws an exception.

For more information, see the Javadoc for ECSF.

31.9 Using the External ECSF Web Service for Integration
In addition to Java APIs, Oracle Enterprise Crawl and Search Framework (ECSF)
provides an external web service for you to integrate ECSF with Oracle Fusion
Applications. This web service allows you to build a custom search user interface that
enables Oracle Fusion Applications users to search across multiple ECSF service
components through a web service client. As an alternative to using Java APIs, you
can invoke the external ECSF web service from Oracle Fusion Applications to perform
query related functions in both LOCAL and GLOBAL scopes. Using a web service client,
users can query across multiple Oracle SES instances in LOCAL scope or across multiple
ECSF service components in GLOBAL scope.

31.9.1 Web Service Methods
The external ECSF web service reuses the web service already provided by an ECSF
component and exposes the methods described in Table 31–1.

31.9.2 ECSF Web Service WSDL and XSD
The Web Service Description Language (WSDL), shown in Example 31–24, defines the
message endpoints and the request and reply messages of the ECSF web service. The
XSD, shown in Example 31–25, defines the XML schema of the ECSF web service.
Refer to the WSDL and XSD to understand and interact with the ECSF web service.

Example 31–24 ECSF Web Service WSDL

<wsdl:definitions
 name="AppModuleSearchService"

Table 31–1 ECSF Web Service Methods

Method Description

getSavedSearch(String userName,
String savedSearchRequest)

Returns a saved search based on the name passed
in to the savedSearchRequest parameter.

getSavedSearches(String userName,
String savedSearchRequest)

Returns the saved searches based on the caller
context passed in to the savedSearchRequest
parameter.

saveSearch(String userName, String
savedSearchRequest)

Saves the search passed in to the
savedSearchRequest parameter.

deleteSearch(String userName,
String savedSearchRequest)

Deletes the saved search passed in to the
savedSearchRequest parameter.

getSavedSearchDetails(String
userName, String
savedSearchRequest)

Returns the saved search details based on the
saved search passed in to the savedSearchRequest
parameter.

search(String userName, String
queryMetaDataRequest)

Returns search hits based on the request passed in
to the QueryMetaData parameter.

getEngineInstances(String userName,
String engineInstanceRequest)

Returns the engine instances based on the engine
type ID passed in to the engineInstanceRequest
parameter.

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-43

 targetNamespace="/oracle/ecsf/service/query/common/"
 xmlns:errors="http://xmlns.example.com/adf/svc/errors/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="/oracle/ecsf/service/query/common/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:types="/oracle/ecsf/service/query/common/types/">
 <wsdl:import namespace="http://xmlns.example.com/adf/svc/errors/"
location="classpath:/META-INF/wsdl/ServiceException.wsdl"/>
 <wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="/oracle/ecsf/service/query/common/types/"
schemaLocation="AppModuleSearchService.xsd"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="AppModuleSearchService_search">
 <wsdl:part name="parameters" element="types:search"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_searchResponse">
 <wsdl:part name="parameters" element="types:searchResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_saveSearch">
 <wsdl:part name="parameters" element="types:saveSearch"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_saveSearchResponse">
 <wsdl:part name="parameters" element="types:saveSearchResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearches">
 <wsdl:part name="parameters" element="types:getSavedSearches"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearchesResponse">
 <wsdl:part name="parameters" element="types:getSavedSearchesResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearchDetails">
 <wsdl:part name="parameters" element="types:getSavedSearchDetails"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearchDetailsResponse">
 <wsdl:part name="parameters"
element="types:getSavedSearchDetailsResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearch">
 <wsdl:part name="parameters" element="types:getSavedSearch"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getSavedSearchResponse">
 <wsdl:part name="parameters" element="types:getSavedSearchResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getEngineInstances">
 <wsdl:part name="parameters" element="types:getEngineInstances"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getEngineInstancesResponse">
 <wsdl:part name="parameters" element="types:getEngineInstancesResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getDisplayName">
 <wsdl:part name="parameters" element="types:getDisplayName"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_getDisplayNameResponse">
 <wsdl:part name="parameters" element="types:getDisplayNameResponse"/>
 </wsdl:message>
 <wsdl:message name="AppModuleSearchService_deleteSearch">
 <wsdl:part name="parameters" element="types:deleteSearch"/>
 </wsdl:message>

Using the External ECSF Web Service for Integration

31-44 Developer's Guide

 <wsdl:message name="AppModuleSearchService_deleteSearchResponse">
 <wsdl:part name="parameters" element="types:deleteSearchResponse"/>
 </wsdl:message>
 <wsdl:portType name="AppModuleSearchService">
 <wsdl:documentation/>
 <wsdl:operation name="search">
 <wsdl:input message="tns:AppModuleSearchService_search"/>
 <wsdl:output message="tns:AppModuleSearchService_searchResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="saveSearch">
 <wsdl:input message="tns:AppModuleSearchService_saveSearch"/>
 <wsdl:output message="tns:AppModuleSearchService_saveSearchResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="getSavedSearches">
 <wsdl:input message="tns:AppModuleSearchService_getSavedSearches"/>
 <wsdl:output message="tns:AppModuleSearchService_
getSavedSearchesResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="getSavedSearchDetails">
 <wsdl:input message="tns:AppModuleSearchService_
getSavedSearchDetails"/>
 <wsdl:output message="tns:AppModuleSearchService_
getSavedSearchDetailsResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="getSavedSearch">
 <wsdl:input message="tns:AppModuleSearchService_getSavedSearch"/>
 <wsdl:output message="tns:AppModuleSearchService_
getSavedSearchResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="getEngineInstances">
 <wsdl:input message="tns:AppModuleSearchService_getEngineInstances"/>
 <wsdl:output message="tns:AppModuleSearchService_
getEngineInstancesResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="getDisplayName">
 <wsdl:input message="tns:AppModuleSearchService_getDisplayName"/>
 <wsdl:output message="tns:AppModuleSearchService_
getDisplayNameResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>
 <wsdl:operation name="deleteSearch">
 <wsdl:input message="tns:AppModuleSearchService_deleteSearch"/>
 <wsdl:output message="tns:AppModuleSearchService_
deleteSearchResponse"/>
 <wsdl:fault name="ServiceException"
message="errors:ServiceException"/>
 </wsdl:operation>

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-45

 </wsdl:portType>
 <wsdl:binding name="AppModuleSearchServiceSoapHttp"
type="tns:AppModuleSearchService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="search">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/search"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="saveSearch">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/saveSearch"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getSavedSearches">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/getSavedSearches"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getSavedSearchDetails">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/getSavedSearchDetails"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>

Using the External ECSF Web Service for Integration

31-46 Developer's Guide

 </wsdl:operation>
 <wsdl:operation name="getSavedSearch">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/getSavedSearch"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getEngineInstances">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/getEngineInstances"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getDisplayName">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/getDisplayName"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteSearch">
 <soap:operation
soapAction="/oracle/ecsf/service/query/common/deleteSearch"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="ServiceException">
 <soap:fault name="ServiceException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AppModuleSearchService">
 <wsdl:port name="AppModuleSearchServiceSoapHttpPort"

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-47

binding="tns:AppModuleSearchServiceSoapHttp">
 <soap:address
location="http://localhost:7101/Application1-ViewController-context-root/AppModule
SearchService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Example 31–25 ECSF Web Service XSD

<schema xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
targetNamespace="/oracle/ecsf/service/query/common/types/"
 xmlns:tns="/oracle/ecsf/service/query/common/types/"
xmlns:ns0="http://xmlns.example.com/adf/svc/errors/">
 <import namespace="http://xmlns.example.com/adf/svc/errors/"
schemaLocation="classpath:/META-INF/wsdl/ServiceException.xsd"/>
 <element name="search">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="queryMetadataRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="searchResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="saveSearch">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="savedSearchRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="saveSearchResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getSavedSearches">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="savedSearchRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getSavedSearchesResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>

Using the External ECSF Web Service for Integration

31-48 Developer's Guide

 </complexType>
 </element>
 <element name="getSavedSearchDetails">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="savedSearchRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getSavedSearchDetailsResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getSavedSearch">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="savedSearchRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getSavedSearchResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getEngineInstances">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="engineInstanceRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getEngineInstancesResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getDisplayName">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="displayNameRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getDisplayNameResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-49

 </complexType>
 </element>
 <element name="deleteSearch">
 <complexType>
 <sequence>
 <element name="userName" type="string"/>
 <element name="savedSearchRequest" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="deleteSearchResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

31.9.3 Web Service Request XSDs and XMLs
Each of the web service methods takes in a username and a request XML. The
username is used to bind to the SearchContext. The request XML is passed to the
SearchService to perform query related functions.

The request XMLs for the web service methods are based on the following request
XSDs:

■ SavedSearch Request XSD

■ QueryMetaData Request XSD

■ engineInstanceRequest Request XSD

31.9.3.1 SavedSearch Request XSD
The request XMLs for the getSavedSearch(), getSavedSearches(), saveSearch(),
deleteSearch(), and getSavedSearchDetails() methods are based on the
SavedSearch request XSD, shown in Example 31–26.

Example 31–26 SavedSearch Request XSD

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="request">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="savedSearch"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="callerctx" type="xsd:string"/>
 <xsd:element name="locale" type="xsd:string"/>
 <xsd:element name="scope" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="savedSearch">
 <xsd:complexType>

Using the External ECSF Web Service for Integration

31-50 Developer's Guide

 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="callerctx" type="xsd:string"/>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="ispublic" type="xsd:boolean"/>
 <xsd:element name="userid" type="xsd:string"/>
 <xsd:element name="detailsid" type="xsd:integer" minOccurs="0"/>
 <xsd:element ref="queryMetaData"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="id" type="xsd:integer" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="queryMetaData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="page" type="xsd:integer"/>
 <xsd:element name="lang" type="xsd:string"/>
 <xsd:element name="pageSize" type="xsd:integer"/>
 <xsd:element name="searchCtrl" type="xsd:string" minOccurs="0"/>
 <xsd:element name="soname" type="xsd:string" minOccurs="0"/>
 <xsd:element name="facetPaths" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facetPath" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" maxOccurs="unbounded"
 minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="categories" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="eid" type="xsd:integer" use="required"/>
 <xsd:attribute name="compid" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="tags" type="xsd:string" minOccurs="0"/>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-51

 <xsd:sequence>
 <xsd:element name="filter" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operator" type="xsd:string"
 use="required"/>
 <xsd:attribute name="type" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The SavedSearch request XSD describes the set of rules that the request XMLs must
follow in order to be valid. Examples of valid request XMLs include the following:

■ getSavedSearch()

<request>
 <name>ECSF_JUNIT_SVSEARCH</name>
 <callerctx>null</callerctx>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

■ getSavedSearches()

<request>
 <callerctx>%</callerctx>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

■ saveSearch()

<request>
 <savedSearch name="ECSF_JUNIT_SVSEARCH" id="1" compid="2">
 <description>
 <![CDATA[Updated Description]]>
 </description>
 <callerctx>
 <![CDATA[]]>
 </callerctx>
 <query>
 <![CDATA[]]>
 </query>
 <ispublic>
 <![CDATA[false]]>
 </ispublic>
 <userid>
 <![CDATA[junit]]>
 </userid>

Using the External ECSF Web Service for Integration

31-52 Developer's Guide

 <detailsid>
 <![CDATA[1]]>
 </detailsid>
 <queryMetaData>
 <query>
 <![CDATA[%]]>
 </query>
 <page>1</page>
 <lang>en</lang>
 <pageSize>10</pageSize>
 <categories>
 <category name="runtime.EmpView" eid="1" compid="0"></category>
 </categories>
 </queryMetaData>
 </savedSearch>
 <name></name>
 <callerctx>null</callerctx>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

■ deleteSearch()

<request>
 <savedSearch name="DeleteSavedSearch" id="100010033142848" compid="2">
 <description>
 <![CDATA[Junit Saved Search]]>
 </description>
 <callerctx>
 <![CDATA[CRM]]>
 </callerctx>
 <query>
 <![CDATA[%]]>
 </query>
 <ispublic>
 <![CDATA[false]]>
 </ispublic>
 <userid>
 <![CDATA[junit]]>
 </userid>
 <detailsid>
 <![CDATA[100010033142849]]>
 </detailsid>
 <queryMetaData>
 <query>
 <![CDATA[%]]>
 </query>
 <page>1</page>
 <lang>en</lang>
 <pageSize>10</pageSize>
 <categories>
 <category name="runtime.EmpView" eid="1" compid="3"></category>
 </categories>
 </queryMetaData>
 </savedSearch>
 <name></name>
 <callerctx>null</callerctx>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-53

■ getSavedSearchDetails()

<request>
 <savedSearch name="SavedSearch" id="100010033142848" compid="2">
 <description>
 <![CDATA[Junit Federation Saved Search]]>
 </description>
 <callerctx>
 <![CDATA[CRM]]>
 </callerctx>
 <query>
 <![CDATA[%]]>
 </query>
 <ispublic>
 <![CDATA[false]]>
 </ispublic>
 <userid>
 <![CDATA[junit]]>
 </userid>
 <detailsid>
 <![CDATA[100010033142849]]>
 </detailsid>
 </savedSearch>
 <callerctx>null</callerctx>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

31.9.3.2 QueryMetaData Request XSD
The request XML for the search(String userName, String queryMetaDataRequest)
method is based on the QueryMetaData request XSD, shown in Example 31–27.

Example 31–27 QueryMetaData Request XSD

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="request">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="queryMetaData"/>
 <xsd:element name="locale" type="xsd:string"/>
 <xsd:element name="scope" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="queryMetaData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="page" type="xsd:integer"/>
 <xsd:element name="lang" type="xsd:string"/>
 <xsd:element name="pageSize" type="xsd:integer"/>
 <xsd:element name="searchCtrl" type="xsd:string" minOccurs="0"/>
 <xsd:element name="soname" type="xsd:string" minOccurs="0"/>
 <xsd:element name="facetPaths" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>

Using the External ECSF Web Service for Integration

31-54 Developer's Guide

 <xsd:element name="facetPath" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" maxOccurs="unbounded"
 minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="categories" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="eid" type="xsd:integer" use="required"/>
 <xsd:attribute name="compid" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="tags" type="xsd:string" minOccurs="0"/>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="filter" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operator" type="xsd:string"
 use="required"/>
 <xsd:attribute name="type" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The QueryMetaData request XSD describes the set of rules that the request XMLs must
follow in order to be valid. An example of a valid request XML for search() is:

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-55

<request>
 <queryMetaData>
 <query>
 <![CDATA[*]]>
 </query>
 <page>1</page>
 <lang>en</lang>
 <pageSize>10</pageSize>
 <categories>
 <category name="runtime.EmpView" eid="1" compid="2"></category>
 </categories>
 </queryMetaData>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

31.9.3.3 engineInstanceRequest Request XSD
The request XML for the getEngineInstances(String userName, String
engineInstanceRequest) method is based on the engineInstanceRequest request XSD,
shown in Example 31–28.

Example 31–28 engineInstanceRequest Request XSD

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="request">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="enginetypeid"/>
 <xsd:element name="locale" type="xsd:string"/>
 <xsd:element name="scope" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The engineInstanceRequest request XSD describes the set of rules that the request
XMLs must follow in order to be valid. An example of a valid request XML for
getEngineInstances() is:

<request>
 <enginetypeid>-1</enginetypeid>
 <locale>en_us</locale>
 <scope>LOCAL</scope> /*use GLOBAL for global scope*/
</request>

31.9.4 Web Service Response XSDs
For each of the web service calls, if the call is successful an XML string is returned. If
the web service call results in an error, a service error XML string is returned. The
client can then call the ServiceUtil() class to deserialize the XML string into ECSF
runtime metadata objects or deserialize the service error XML string into an exception
message.

Using the External ECSF Web Service for Integration

31-56 Developer's Guide

When the query web service requests are successful, a response message is returned.
The XML strings for successful web service calls are based on the XSDs for the
following methods:

■ getSavedSearch()

■ getSavedSearches()

■ saveSearch()

■ deleteSearch()

■ getSavedSearchDetails

■ search()

■ getEngineInstances()

If any of the query web service requests result in an exception, the exception is
wrapped in a service error XML response message.The service error XML strings are
based on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="serviceError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string" minOccurs="0"/>
 <xsd:element name="message" type="xsd:string"/>
 <xsd:element name="stack" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.9.4.1 getSavedSearch()
The web service response message for the method String getSavedSearch(String
userName, String savedSearchRequest) is based on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="savedSearch">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="callerctx" type="xsd:string"/>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="ispublic" type="xsd:boolean"/>
 <xsd:element name="userid" type="xsd:string"/>
 <xsd:element name="detailsid" type="xsd:integer" minOccurs="0"/>
 <xsd:element ref="queryMetaData"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="id" type="xsd:integer" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="queryMetaData">

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-57

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="page" type="xsd:integer"/>
 <xsd:element name="lang" type="xsd:string"/>
 <xsd:element name="pageSize" type="xsd:integer"/>
 <xsd:element name="searchCtrl" type="xsd:string" minOccurs="0"/>
 <xsd:element name="soname" type="xsd:string" minOccurs="0"/>
 <xsd:element name="facetPaths" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facetPath" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" maxOccurs="unbounded"
 minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="categories" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="eid" type="xsd:integer" use="required"/>
 <xsd:attribute name="compid" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="tags" type="xsd:string" minOccurs="0"/>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="filter" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operator" type="xsd:string"
 use="required"/>
 <xsd:attribute name="type" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

Using the External ECSF Web Service for Integration

31-58 Developer's Guide

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.9.4.2 getSavedSearches()
The web service response message for the method String getSavedSearches(String
userName, String savedSearchRequest) is based on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="saved-search.xsd"/>
 <xsd:element name="savedSearches">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="savedSearch" maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.9.4.3 saveSearch()
The web service response message for the method String saveSearch(String
userName, String savedSearchRequest) is the same as the response for
getSavedSearch(). For information, see Section 31.9.4.1, "getSavedSearch()."

31.9.4.4 deleteSearch()
The web service response message for the method String deleteSearch(String
userName, String savedSearchRequest) is the string success.

31.9.4.5 getSavedSearchDetails
The web service response message for the method String
getSavedSearchDetails(String userName, String savedSearchRequest) is based
on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="savedSearchDetails">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="queryMetaData"/>
 </xsd:sequence>
 <xsd:attribute name="savedSearchId" type="xsd:integer" use="required"/>
 <xsd:attribute name="id" type="xsd:integer" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="queryMetaData">

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-59

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="page" type="xsd:integer"/>
 <xsd:element name="lang" type="xsd:string"/>
 <xsd:element name="pageSize" type="xsd:integer"/>
 <xsd:element name="searchCtrl" type="xsd:string" minOccurs="0"/>
 <xsd:element name="soname" type="xsd:string" minOccurs="0"/>
 <xsd:element name="facetPaths" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facetPath" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" maxOccurs="unbounded"
 minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="categories" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="eid" type="xsd:integer" use="required"/>
 <xsd:attribute name="compid" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="tags" type="xsd:string" minOccurs="0"/>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="filter" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operator" type="xsd:string"
 use="required"/>
 <xsd:attribute name="type" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

Using the External ECSF Web Service for Integration

31-60 Developer's Guide

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.9.4.6 search()
The web service response message for the method String search(String userName,
String queryMetaDataRequest) is based on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="query-metadata.xsd"/>
 <xsd:element name="searchResults">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="hitsMetaData" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="page" type="xsd:integer"/>
 <xsd:element name="pages" type="xsd:integer"/>
 <xsd:element name="hits" type="xsd:integer"/>
 <xsd:element ref="queryMetaData"/>
 <xsd:element name="categories" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="searchableObjects" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="searchableObject"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 <xsd:attribute name="lastTimeCrawled"
type="xsd:integer" use="optional"/>
 <xsd:attribute name="displayName"
type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-61

 <xsd:attribute name="eid" type="xsd:integer"
use="required"/>
 <xsd:attribute name="external" type="xsd:string"
use="required"/>
 <xsd:attribute name="displayName" type="xsd:string"
use="required"/>
 <xsd:attribute name="scope" type="xsd:string"
use="required"/>
 <xsd:attribute name="applid" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="altwords" type="xsd:string" minOccurs="0"/>
 <xsd:element name="timespent" type="xsd:integer"/>
 <xsd:element name="facets" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facet" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="pathEntry" maxOccurs="unbounded"
minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="pname" type="xsd:string"
use="required"/>
 <xsd:attribute name="pdispname" type="xsd:string"
use="required"/>
 <xsd:attribute name="pisleaf" type="xsd:boolean"
use="required"/>
 <xsd:attribute name="value" type="xsd:string"
use="required"/>
 <xsd:attribute name="count" type="xsd:integer"
use="required"/>
 <xsd:attribute name="displayValue" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="entries" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="entry" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="value" type="xsd:string"
use="required"/>
 <xsd:attribute name="displayValue"
type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="root" type="xsd:string"
use="required"/>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="dispname" type="xsd:string"

Using the External ECSF Web Service for Integration

31-62 Developer's Guide

use="required"/>
 <xsd:attribute name="isleaf" type="xsd:boolean"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="filter" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="operator" type="xsd:string"
use="required"/>
 <xsd:attribute name="type" type="xsd:string"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="results" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="result" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="displayUrl" type="xsd:string"/>
 <xsd:element name="score" type="xsd:integer"/>
 <xsd:element name="searchableObject" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="eid" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="content" type="xsd:string"/>
 <xsd:element name="keywords" type="xsd:string" minOccurs="0"/>
 <xsd:element name="lang" type="xsd:string"/>
 <xsd:element name="attributes">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="attribute" maxOccurs="unbounded"
minOccurs="0">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-63

use="required"/>
 <xsd:attribute name="binding" type="xsd:string"
use="required"/>
 <xsd:attribute name="type" type="xsd:string"
use="required"/>
 <xsd:attribute name="displayName"
type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="tags" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.9.4.7 getEngineInstances()
The web service response message for the method String
getEngineInstances(String userName, String engineInstanceRequest) is based
on the following XSD:

<?xml version="1.0" encoding="US-ASCII" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com"
 elementFormDefault="qualified">
 <xsd:element name="engineInstances">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="engineInstance" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="category" maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="searchableObjects" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="searchableObject"
maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="fieldDefs" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="fieldDef"
maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="name"
type="xsd:string" use="required"/>

Using the External ECSF Web Service for Integration

31-64 Developer's Guide

 <xsd:attribute name="binding"
type="xsd:string" use="required"/>
 <xsd:attribute name="dataType"
type="xsd:string" use="required"/>
 <xsd:attribute name="isStored"
type="xsd:boolean" use="required"/>
 <xsd:attribute name="isSecure"
type="xsd:boolean" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="facetDefs" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facetDef"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="facetEntryDef"
maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="value"
type="xsd:string" use="required"/>
 <xsd:attribute name="displayValue"
type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name"
type="xsd:string" use="required"/>
 <xsd:attribute name="binding"
type="xsd:string" use="required"/>
 <xsd:attribute name="displayName"
type="xsd:string" use="required"/>
 <xsd:attribute name="isleaf"
type="xsd:boolean" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="actionDefs" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="actionDef"
maxOccurs="unbounded" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="target"
type="xsd:string"/>
 <xsd:element name="title"
type="xsd:string"/>
 <xsd:element name="params"
minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="param"
maxOccurs="unbounded" minOccurs="0">

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-65

 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension
base="xsd:string">
 <xsd:attribute
name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name"
type="xsd:string" use="required"/>
 <xsd:attribute name="isDefault"
type="xsd:string" use="required"/>
 <xsd:attribute name="type"
type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 <xsd:attribute name="displayName" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="eid" type="xsd:integer" use="required"/>
 <xsd:attribute name="id" type="xsd:integer" use="required"/>
 <xsd:attribute name="external" type="xsd:boolean"
use="required"/>
 <xsd:attribute name="displayName" type="xsd:string"/>
 <xsd:attribute name="scope" type="xsd:string" use="required"/>
 <xsd:attribute name="applid" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="id" type="xsd:integer" use="required"/>
 <xsd:attribute name="engineType" type="xsd:string" use="required"/>
 <xsd:attribute name="engineTypeId" type="xsd:integer" use="required"/>
 <xsd:attribute name="displayName" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Using the External ECSF Web Service for Integration

31-66 Developer's Guide

31.9.5 How to Invoke the ECSF Web Service
Invoke the ECSF web service by creating a JAX-WS proxy using the Oracle JDeveloper
Web Service Proxy wizard. Then, modify the client Java class named
AppModuleSearchServiceSoapHttpPortClient to add calls to the ECSF web service.

31.9.5.1 Creating a JAX-WS Web Service Proxy
Creating a JAX-WS web service proxy using the Oracle JDeveloper Create Web Service
Proxy wizard generates all classes and Java files for the web service enabled methods
under the package oracle.ecsf.service.query.common.

To create a JAX-WS web service proxy:

1. In the Application Navigator, right-click the project in which you want to create
the web service proxy, and choose New.

2. In the New Gallery, expand Business Tier, select Web Services and then Web
Service Proxy, and click OK.

3. On the Select Web Service Description page of the wizard, enter the URL for the
WSDL that was generated when the application was deployed on the Oracle
WebLogic Server, for example,
http://myhost.us.example.com:7101/CrmSearchService/AppModuleSearchServi
ce?WSDL, then tab out of the field.

If the Next button is not enable, click Why Not? to understand what problem
JDeveloper encountered when trying to read the WSDL document. If necessary, fix
the problem after verifying the URL and repeat this step.

When the wizard displays an enabled Next button, then Oracle JDeveloper has
recognized and validated the WSDL document.

4. For Specify Default Mapping Options, enter or choose a Java package name for
the generated web service proxy class.

5. Click Next.

6. Continue through the pages of the wizard to specify details about the web service
proxy. For more information about each page of the wizard, press F1 or click Help.

7. Click Finish.

8. Copy the following files from the
system11.xxx/DefaultDomain/config/fmwconfig Oracle WebLogic Server
directory to the JAX-WS Client application's META-INF directory.

■ jps-config.xml

■ cwallet.sso

■ default-keystore.jks

31.9.5.2 Modifying the AppModuleSearchServiceSoapHttpPortClient Class
After you create the JAX-WS proxy, modify the
AppModuleSearchServiceSoapHttpPortClient class to include the calls to web service
methods. Example 31–29 shows an example of a modified class.

Note: It is assumed that the web service is deployed and running on
a remote Oracle WebLogic Server instance.

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-67

Example 31–29 Sample Client Class

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.net.URL;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Properties;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;

import oracle.ecsf.SearchException;
import oracle.ecsf.SearchHits;
import oracle.ecsf.client.SearchGroup;
import oracle.ecsf.client.dataobject.SavedSearch;
import oracle.ecsf.client.dataobject.SavedSearchDetails;
import oracle.ecsf.impl.QueryMetaDataImpl;
import oracle.ecsf.meta.MetaEngineInstance;

import oracle.ecsf.service.query.common.AppModuleSearchService;
import oracle.ecsf.service.query.common.AppModuleSearchService_Service;
import oracle.ecsf.service.query.ws.marshaller.ServiceUtil;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class AppModuleSearchServiceSoapHttpPortClient
{

 private AppModuleSearchService_Service appModuleSearchServiceService;
 AppModuleSearchService appModuleSearchService;

 String wlsHost = null;
 String wlsPort = null;
 String wlsPassword = null;
 final Long engineInstanceId = 1L;

 public AppModuleSearchServiceSoapHttpPortClient()
 {
 initialize();
 }

 public void initialize() throws Exception
 {
 if (System.getProperty("oracle.ecsf.debug.jdev") == null)
 {
 System.setProperty("oracle.security.jps.config",
findFile("META-INF/jps-config.xml"));
 }
 try
 {
 //calling method initializeWLSparams to read parameter from file
ecsf.properties
 initializeWLSParams();

Using the External ECSF Web Service for Integration

31-68 Developer's Guide

 URL aURL = new URL("http://" + wlsHost + ":" + wlsPort +
"/CrmSearchService/AppModuleSearchService?WSDL");
 QName qName = new QName("/oracle/ecsf/service/query/common/",
"AppModuleSearchService");

 appModuleSearchServiceService = new AppModuleSearchService_Service(aURL,
qName);
 appModuleSearchService =
appModuleSearchServiceService.getAppModuleSearchServiceSoapHttpPort();

((BindingProvider)appModuleSearchService).getRequestContext().put(BindingProvider.
USERNAME_PROPERTY, "weblogic");

((BindingProvider)appModuleSearchService).getRequestContext().put(BindingProvider.
PASSWORD_PROPERTY, wlsPassword);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.out.println("Excpetion " + e);
 }
 }

 /**
 * invoke the getEngineInstances() method exposed in WebService.
 */
 public void testGetEngineInstance()
 {
 ServiceUtil sUtil = new ServiceUtil();
 try
 {
 String query =
"<request><enginetypeid>2</enginetypeid><locale>en-US</locale><scope>LOCAL</scope>
</request>";
 String response = appModuleSearchService.getEngineInstances("weblogic",
query);
 Collection<MetaEngineInstance> instances =
sUtil.toEngineInstances(response);
 }
 catch (Exception e)
 {
 }
 }

 /**
 * invoke the search() method exposed in WebService.
 */
 public void testSearch()
 {
 ServiceUtil sUtil = new ServiceUtil();
 String request =
"<request><queryMetaData><query><![CDATA[*]]></query><page>1</page><lang>en</lang>
<pageSize>10</pageSize><categories><category name=\"EmpSearch\"
eid=\"100010024205617\"
compid=\"100010026129681\"></category></categories></queryMetaData><request>";
 try
 {
 String response = appModuleSearchService.search("weblogic", request);

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-69

 SearchHits hits = sUtil.toSearchHits(response);
 }
 catch (Exception e)
 {
 }
 }

 /**
 * invoke the getSavedSearch() method exposed in WebService.
 */
 public void testGetSavedSearch()
 {
 ServiceUtil sUtil = new ServiceUtil();
 try
 {
 String request =
"<request><name>TestServiceproxy</name><callerctx>GLOBAL</callerctx><locale>en-US<
/locale><scope></scope></request>";
 String response = appModuleSearchService.getSavedSearch("weblogic",
request);
 SavedSearch ss = sUtil.toSavedSearch(response);
 }
 catch (Exception e)
 {
 }
 }

 /**
 * invoke the getSavedSearches() method exposed in WebService.
 */
 public void testgetSavedSearches()
 {
 ServiceUtil sUtil = new ServiceUtil();
 try
 {
 String request =
"<request><name></name><callerctx>LOCAL</callerctx><locale>en-US</locale><scope>LO
CAL</scope></request>";
 String response = appModuleSearchService.getSavedSearches("weblogic",
request);
 ArrayList<SavedSearch> savedSearches = sUtil.toSavedSearches(response);
 }
 catch (Exception e)
 {
 }
 }

 /**
 * invoke the savedSearch() method exposed in WebService.
 */
 public void testSaveSearch()
 {
 ServiceUtil sUtil = new ServiceUtil();
 try
 {
 SavedSearch savedSearch = createSavedSearch("TestServiceproxy");
 String request = sUtil.toString(savedSearch, true);
 appModuleSearchService.saveSearch("weblogic", request);
 }
 catch (Exception e)

Using the External ECSF Web Service for Integration

31-70 Developer's Guide

 {
 }
 }

 /**
 * invoke the getSavedSearchDetails() method exposed in WebService.
 */
 public void testGetSavedSearchDetails()
 {
 ServiceUtil sUtil = new ServiceUtil();
 try
 {
 String ssRequest =
"<request><name>TestServiceproxy</name><callerctx>GLOBAL</callerctx><locale>en-US<
/locale><scope></scope></request>";
 String ssResponse = appModuleSearchService.getSavedSearch("weblogic",
ssRequest);

 String request = "<request>" + ssResponse +
"<callerctx>null</callerctx><locale>en_us</locale><scope>LOCAL</scope></request>";
 String response =
appModuleSearchService.getSavedSearchDetails("weblogic", request);

 SavedSearchDetails ssDetails = sUtil.toSavedSearchDetails(response);
 }
 catch (Exception e)
 {
 }
 }

 /**
 * invoke the deleteSearch() method exposed in WebService.
 */
 public void testDeleteSavedSearch()
 {
 try
 {
 String ssRequest =
"<request>QA<name>TestServiceproxy</name><callerctx>GLOBAL</callerctx><locale>en-U
S</locale><scope></scope></request>";
 String ssResponse = appModuleSearchService.getSavedSearch("weblogic",
ssRequest);

 String request = "<request>" + ssResponse +
"<callerctx>null</callerctx><locale>en_us</locale><scope>LOCAL</scope></request>";
 String response = appModuleSearchService.deleteSearch("weblogic",
request);
 }
 catch (Exception e)
 {
 }
 }

 private SavedSearch createSavedSearch(String sSearchName) throws
SearchException
 {
 QueryMetaDataImpl queryMetaData = new QueryMetaDataImpl();
 queryMetaData.setQueryString("%");
 queryMetaData.setPageSize(10);

Using the External ECSF Web Service for Integration

Advanced Topics for ECSF 31-71

 queryMetaData.setCurrentPage(1);
 SearchGroup[] sgs = new SearchGroup[] { new SearchGroup("EmpSearch",
"EmpSearch", engineInstanceId, null, null) };
 queryMetaData.setSearchGroups(sgs);

 SavedSearch savedSearch =
 new SavedSearch(SavedSearch.VAL_INVALID_ID, "weblogic", null, null, null,
sSearchName, "search created for WS interop", null,
queryMetaData.getQueryString(), false, "GLOBAL");

 SavedSearchDetails ssd = new SavedSearchDetails(1L, "weblogic", null, null,
null, SavedSearch.VAL_INVALID_ID, queryMetaData, null);
 savedSearch.setSavedSearchDetails(ssd);

 return savedSearch;
 }

 private void initializeWLSParams()
 {
 //load wls host/port and ses wls host/port from ecsf.properties
 Properties prop = new Properties();
 FileInputStream fis;

 try
 {
 fis = new FileInputStream(System.getenv("T_WORK") + File.separator +
"ecsf.properties");
 prop.load(fis);
 fis.close();

 wlsHost = prop.getProperty("WLS_HOST");
 wlsPort = prop.getProperty("WLS_PORT");
 wlsPassword = prop.getProperty("WLS_PWD");
 }
 catch (FileNotFoundException e)
 {
 System.out.println("File not found exeception : " + e.getMessage());
 }
 catch (IOException e)
 {
 System.out.println("IO exception : " + e.getMessage());
 }
 }

 private String findFile(String findme)
 {
 ClassLoader loader = Thread.currentThread().getContextClassLoader();
 URL u = loader.getResource(findme);
 String fullname = u.getFile();
 return fullname;
 }
}

The sample client class illustrates how each of the methods are called and how the
XMLs are deserialized.

Localizing ECSF Artifacts

31-72 Developer's Guide

31.10 Localizing ECSF Artifacts
When developing applications for international users, it is necessary to customize the
display of data by adding locale-specific components and translating text.

Locales identify a specific language and geographic region. You must customize how
ECSF presents and formats messages (that is, the data displayed to users) based on
their locale. Locale affects:

■ Messages that you create during design time (for example, facet display names)
and are displayed to the users who perform the queries.

■ Messages you create during deployment (for example, searchable object names,
search category names, and index schedule names displayed during crawl
management).

■ Crawlable content.

ECSF must determine the locale in order to display the messages in the appropriate
language for the user.

31.10.1 How to Translate Strings in Groovy Expressions
ECSF provides a way for you to use translated strings to define the Title, Body, and
Keywords properties of searchable objects.

The ECSFFormat class provides two functions that can be called in Groovy expressions:

■ format(String key, Object param1, Object param 2,...) takes in a resource
bundle key name, as well as up to ten parameters, to be added to the formatted
string. This function allows you to use translatable strings in the Groovy
expression for the Title, Body, and Keywords properties.

■ getLabel(String attributeName) takes in an attribute name and gets the
translated label for this attribute. This function provides a way for you to get the
translated value of an attribute label.

ECSF also reserves a Groovy entity formatter that provides two functions:

■ formatter.format(String key, Object param1, Object param 2,...) allows
you to format a string based on a template.

■ formatter.getLabel(String attributeName) can be used to retrieve the UI label
defined for an attribute.

To use translated strings in Groovy expressions, you must:

1. Associate a resource bundle to the view object.

2. Use the format() function in the Groovy expressions for the Title, Body, and
Keywords properties.

3. Associate a translated label to the attribute.

4. Use the getLabel() function in the Groovy expressions for the Title, Body, and
Keywords properties.

31.10.1.1 Associating Resource Bundles to View Objects
In order to define translatable strings for use as part of the crawlable search properties,
you must associate a resource bundle to the view object and define the translatable
strings on the resource bundle.

Localizing ECSF Artifacts

Advanced Topics for ECSF 31-73

To add resource bundles to view objects:
1. In the overview editor, select the General navigation tab.

2. Click the Add icon in the Custom Properties table header and select Translatable
Property to open the Select Text Resource dialog.

3. Select a resource bundle from the Resource Bundle dropdown menu.

4. In the Display Value field, enter a string to associate with the key in the page's
resource bundle. For example, enter

 Identification Number: {0}. {1} {2} {3} {4} {5} {6}.

5. In the Key field, enter a string to uniquely identify a locale-specific object in the
resource bundle. For example, enter EMPVIEW_BODY.

6. In the Description field, enter a description of any length for the key and value
pair. For example, enter body value for crawling.

7. Click Save and Select.

A new entry is added to the resource bundle, and the resource bundle is associated
to the view object.

31.10.1.2 Using the format() Function in Groovy Expressions
To use the translatable string in the Groovy expression for Title, Body, and Keywords,
you can write a Groovy expression to call the formatter.format() function with the
key to the resource bundle entry as an input parameter. The other input parameters
are standard Groovy input parameters.

For example, if the EMPVIEW_BODY translatable string is defined as:

EMPVIEW_BODY=Identification Number: {0}. {1} {2} {3} {4} {5} {6}

then you can use the following Groovy expression for the Body property:

formatter.format("EMPVIEW_BODY", Deptno, Empno ((DeptView.size() > 0) ? "Dept:" :
""), DeptView.Dname, ((StatesEAView.size() > 0) ? "State:" : ""),
StatesEAView.Name, TestTransient)

The resource bundle key name, as well as up to ten parameters are added to the
formatted string.

For date attributes, you can write a Groovy expression to call
formatter.format(String attributeName), without a resource bundle key as an
input parameter, to correctly format the date attribute value as part of the Groovy
expression.

31.10.1.3 Associating Translated Labels to Attributes
In order for an attribute's label to be displayed in the correct locale, you must associate
a resource bundle entry to the attribute.

To add labels to attributes:
1. In the overview editor, select the Attributes navigation tab.

Note: If there is no resource bundle associated with the view object,
then an external resource bundle is created in the application. Save the
new resource bundle externally.

Localizing ECSF Artifacts

31-74 Developer's Guide

2. Select the desired attribute in the Attributes table and click the Edit selected
attribute(s) icon.

3. In the Edit Attribute dialog, select Control Hints to open the Control Hints page.

4. Click the icon next to the Label Text field to open and use the Select Text Resource
dialog.

5. Select a resource bundle from the Resource Bundle dropdown menu.

6. In the Display Value field, enter a string to associate with the key in the page's
resource bundle.

7. In the Key field, enter a string to uniquely identify a locale-specific object in the
resource bundle.

8. In the Description field, enter a description of any length for the key and value
pair.

9. Click Save and Select.

A new entry is added to the resource bundle, and the resource bundle is associated
to the view object attribute.

31.10.1.4 Using the getLabel() function in Groovy Expressions
In order for the translated value of an attribute label to be crawled in the correct locale,
the function getLabel() must be called as part of the Groovy expression for Title,
Body, and Keywords, as shown in Figure 31–7.

Figure 31–7 Example of Calling the getLabel() Function

In the example, formatter.getLabel("Ename") retrieves the translated value of the
attribute's label from the view object definition.

Calling the getLabel() function retrieves the translated value of the attribute's label
from the view object definition for crawling.

31.10.2 How to Localize Facet Display Names
If not previously loaded for the current user's locale, facet display values are loaded by
querying the list of values (LOV) associated with the facet in the context of the current
user at query time. Whatever values or display values returned by querying the LOV
in the context of the current user are loaded and returned as part of the facet in the
query result for display in the user interface.

Note: If there is no resource bundle associated with the view object,
then an external resource bundle is created in the application. Save the
new resource bundle externally.

Localizing ECSF Artifacts

Advanced Topics for ECSF 31-75

There are many ways to configure LOVs for localization. Two of them are described
here: using the VL table and using resource bundles.

31.10.2.1 Configuring LOVs for Localization Using the VL Table
Facets are displayed in a tree.

Facet Display Name
 Facet Entry Display Name
 Facet Entry Display Name
 ...

The facet display name is translated per the resource bundle supported by Oracle
Application Development Framework (Oracle ADF). The facet entry display names are
translated per the LOV definition with context locale binding.

For example:

Organization
 Vision USA
 Vision Canada

Organization is translated via the Oracle ADF resource bundle with key
ORGANIZATION_ID.

To translate Vision USA and Vision Canada, you need to create a view object based on
the VL table that supports localization, for example, HR_ALL_ORGANIZATION_UNITS_VL.

Localizing ECSF Artifacts

31-76 Developer's Guide

After this view object is created and used as the LOV for the BUSINESS_UNIT_ID of the
base searchable object, the value for the field name is pulled from the VL table with the
correct locale of the current user. For information on how to create facets, see
Section 27.4.4, "How to Implement Faceted Navigation."

When your facet is localized, Oracle Fusion Applications Search UI requests facet
definitions from ECSF when users performs a search. ECSF will load the facet
definition, including facet names from the resource bundle based on user's locale.
When the user clicks the facet, ECSF will execute the LOV for the facet and retrieve the
data from the database based on the current user's language setting. In the example,
the organization name will be displayed to the user in his language. When the user
clicks on a particular node, such as Vision USA, ECSF will perform a query against the
search engine with a filter on Organization Id = 204 where 204 is the organization
ID for Vision USA.

31.10.2.2 Configuring LOVs for Localization Using the Resource Bundles
Facet display names can be localized with Oracle ADF resource bundles. When you
create a facet, specify the name of a facet by referring to a resource key. At runtime,
when the resource bundle is translated, the correct display name will be retrieved
based on the user's locale. Localization of facet entries are supported by view object
based LOVs. The view object must be designed to support localization.

ECSF uses LOVs to support facets, and the LOV display values must be translatable.
The data sources of the LOVs used for facets can be view objects with static data or
view objects with dynamic data (pulled from database through SQL). Display values

Note: Since facets are cached for performance, internationalized
messages must be cached with the locale.

If the display name is not available for the current locale, the facet
name is used.

Localizing ECSF Artifacts

Advanced Topics for ECSF 31-77

of LOVs whose data sources are view objects with static data are displayed using the
resource file corresponding to the application's current locale. Display values of LOVs
populated with dynamic content can be translated based on the locale in the user's
context.

You can translate the LOV display values based on the locale in the user's context by
adding a language code column to the view object. The following instructions are
based on the example provided in Section 27.4.4, "How to Implement Faceted
Navigation." It assumes that you have an EmpView base view object with a working
LOV on the StatesView view object already defined.

To translate LOV display values:
1. Add a LANG column (VARCHAR2) to the STATES table.

2. Populate the LANG column for all rows with a 2-character ISO639 code (for
example, en or fr). For information, see
http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt.

3. Add the LANG column to the States entity object and StatesView view object.
Alternatively, you can re-create it from scratch.

4. Create a view criteria on StatesView (on the view object, navigate to Query >
View Criteria > + and click the Add Criteria button) with the following values:

■ Attribute: Lang

■ Operator: equal to

■ Operand: Bind Variable

5. For Parameter, click New to create a bind variable with the following values:

■ Name: UserLang

■ ValueType: Expression

6. Click OK, and click OK again.

7. Navigate to EmpView > View Accessors, select StatesView1, and click Edit.

8. In the Edit View Accessor dialog, select the view accessor (StatesViewCriteria)
in the Available list and click the Move icon to add it to the Selected list.

9. Edit the UserLang bind variable from StatesView by entering the following
Groovy expression that evaluates to the user's current language:

adf.context.locale.getLanguage()

The view criteria (similar to a defined WHERE clause) on StatesView and a bind
variable named UserLang are created. The EmpView base view object is configured
to use the view criteria when querying StatesView and the value of the bind
variable is set to the user's current language. During runtime, only the records
where LANG matches the locale.getLanguage() of the locale is returned.

31.10.3 How to Localize Crawl Management Display Names
Crawl management display names—that is, the searchable object names, search
category names, and index schedule names displayed during crawl
management—must be translated to the language of the administration tool user.
Enabling translation for these display names is handled in the database through the
translation table so that it can be shared across runtime, the ECSF Command Line
Administration Utility, and Fusion Applications Control.

Localizing ECSF Artifacts

31-78 Developer's Guide

Localize the crawl management display names by translating the seed data that you
create in English. For information see Chapter 55, "Initializing Oracle Fusion
Application Data Using the Seed Data Loader."

31.10.4 How to Localize Crawlable Dynamic Content
Content crawled into Oracle SES can support different languages. For searchable
objects with dynamic content (content pulled from a database through view objects),
ECSF supports one language per business object instance. An example is a sales order
created by a customer with a particular language. In other words, ECSF only supports
language on a per record or row basis.

While ECSF supports only one language per object instance, each instance can be a
different language. ECSF detects the language for a given document. For information,
see Section 31.10.6, "How to Determine Locale."

31.10.5 How to Localize Crawlable Template Content
In addition to dynamic content, searchable objects can contain template content.
Templates are text formats you create to form the body, title, keywords, action titles,
parameters, and so on. In ECSF, you use Groovy scripting language to create
expressions for some fields. The language must be identified in order to translate
Groovy-enabled fields into the appropriate language before they are sent to the search
engine. Localization for Groovy-enabled fields is supported by formatting functions.

ECSF provides a set of formatting functions based on Java Text Format Function. These
formatting functions allow you more flexibility to build your desired formats.
Example 31–30 illustrates the use of a Groovy function with Java Text Formatting to
form the body for localization.

Example 31–30 Using Groovy Function to Translate the Body

formatter.format("EMPLOYEE_TEMPLATE", FirstName, LastName, EmailAddress, ZipCode)
for (item in doc.getChildDocs("Reports"))
{
 formatter.format("REPORTS_TEMPLATE", item.fields.FIRST_NAME, item.fields.LAST_
NAME);
}

EMPLOYEE_TEMPLATE and REPORTS_TEMPLATE are keys to two translatable templates that
are stored in a resource bundle. The template must be a legal format string for
java.text.MessageFormat. (FirstName, LastName, EmailAddress, and ZipCode refer to
view object attributes.)

To illustrate how the expression is resolved during runtime, see Table 31–2 for a
sample view object, Table 31–3 for a sample child view object, and Example 31–31 for a
sample resource bundle.

Note: For Fusion Applications Control, the display name for
searchable objects, search categories, and index schedules is in the
language of the object created by the administration users.

Deployment to Oracle SES is not based on translated fields.

Localizing ECSF Artifacts

Advanced Topics for ECSF 31-79

Example 31–31 Sample Resource Bundle

id=EMPLOYEE_MESSAGE,message="Employee {0} {1} with email address {2} works in
zipcode {4}"
id=REPORTS_TEMPLATE,message=" direct reports {0} {1}"

The following shows the resulting data sent to Oracle SES during runtime:

Employee John Wayne with email address john.wayne@example.com works in zipcode
94065 direct report named John Doe has a direct report named Jake Ray

Employee Chris Smith with email address chris.smith@example.com works in zipcode
94066 direct report named Bob Barley has a direct report named Chris Carpenter

Resource bundles are used to store language variations, while translation is the
responsibility of Oracle Fusion Applications i18n support infrastructure.

31.10.6 How to Determine Locale
To display messages in the appropriate language for the user, ECSF must determine
the locale. How ECSF determines locale varies by module.

31.10.6.1 Search Page
The Search page, an extension of Oracle JDeveloper, uses the locale of the Java Virtual
Machine (JVM). This locale is set at either the machine level or at JDeveloper level. For
information about setting the JVM locale for JDeveloper, see the JDeveloper online
help.

31.10.6.2 ECSF Command Line Administration Utility
The ECSF Command Line Administration Utility, a standalone and single user
application, uses the default locale returned by Locale.getDefault().

Table 31–2 Sample Parent View Object (Employee)

ID FirstName LastName EmailAddress ZipCode

1 John Wayne john.wayne@example.co
m

94065

2 Chris Smith chris.smith@example.co
m

94066

Table 31–3 Sample Child View Object (Reports)

ParentID FIRST_NAME LAST_NAME

1 John Doe

1 Jake Ray

2 Bob Barley

2 Chris Carpenter

Note: This example is strictly used to illustrate functionality.
Concatenation of words using two resource messages is not
translation friendly.

Using ECSF Diagnostics

31-80 Developer's Guide

31.10.6.3 Crawl
You can specify the locale of the data to be indexed by using any of the following
methods:

■ Language field

■ Crawler's language preference

■ Java Virtual Machine (JVM) default locale

You can specify a view object attribute as a language field for a searchable object by
using the Search page. For information, see Section 27.2.3.1, "Setting Search Property
Values for View Objects."

The value of this field for each instance is the language for the instance.

If you do not specify a language field for a given searchable object, ECSF uses the
language preference of the crawler user. This implementation is application specific.
ECSF obtains a session user through identity manager, and obtains the locale for the
user while crawling data. There must be a crawler user with a proper locale profile,
including language preference, created for Oracle Fusion Applications. This user's
language preference is used as the default language if a language field does not exist.

If no crawler language is available, JVM's default locale (Locale.getDefault()) is
used to identify the language, and the JVM default language is used.

31.10.6.4 Query
The user who calls the ECSF query time API must bind the locale to SearchContext. If
the locale is not set in the search context, ECSF attempts to get from ADFContext. If that
fails, the default locale, shown in Example 31–32, is used.

Example 31–32 Default Locale for Searcher

ADFContext adfContext = ADFContext.getCurrent();
Locale mLocale = (adfContext != null && adfContext.getLocale() != null) ?
adfContext.getLocale() : Locale.getDefault();

31.11 Using ECSF Diagnostics
This section outlines the use of the diagnostic tests available in the ECSF application.
The diagnostic service can be reached in a browser by appending Diagnostics to the
ECSF data service URL. The data service URL will be shown on the Search Engine
Instance Parameters tab in the Oracle Enterprise Manager Fusion Applications
Control.

All test results will include the number of failures and errors, and the time taken in
milliseconds to execute the test.

Tests that are marked as protected require the ECSF_All_Services permission to access.

31.11.1 Query Tests
These tests are used to diagnose issues in query functionality.

31.11.1.1 Simple Query
This test can be used as a sanity check to ensure that queries are returning data. The
test queries for all records from the selected category. Table 31–4 lists the parameters.

Using ECSF Diagnostics

Advanced Topics for ECSF 31-81

Note: The engine instance SES proxy user is used for the search and the search
keyword is "*".

Result
Indicates if any search hits and facets are returned. The actual data are not displayed
due to security reasons.

31.11.1.2 Searchable Object Metadata
This test provides information about the selected searchable object and validates
groovy expressions for the underlying view object. Table 31–5 lists the parameter of
this test.

Results
■ Searchable object configuration, including its display name, view object name, ID,

schema name, registered engine instance, associated schedule, and associated
categories.

■ Searchable object status including if it is deployed, if it is active, and if the latest
engine instance parameters have been applied to it. The deployment and crawl
statuses of the associated schedule are also displayed, along with the deployment
statuses of associated categories.

■ View object information, including the driving table, plugin class, if the plugin is
ACL enabled, view object SQL select statement, view object fields, and child
references.

■ Results of the body, title, keywords, and default action title validations.

■ Display of top-level facets. Actual data are obfuscated due to security reasons.

■ Searchable object actions.

31.11.1.3 Searchable Groups
This test displays the searchable groups for an engine instance. Table 31–6 lists the
parameters of this test.

Table 31–4 Parameters for Simple Query

Name Type Description

Searchable Group Drop-down The search category against which to invoke the
category. The format of the parameter is
<category>@<engine instance>. The selection [All
Groups] can be made to search against all of the
displayed groups.

Table 31–5 Parameter for Searchable Object Metadata

Name Type Description

Searchable Object Drop-down The search object to inspect. The format of the
parameter is <object>@<engine instance>.

Table 31–6 Parameters for Searchable Groups Test

Name Type Description

Engine Instance Name Drop-down Name of the engine instance.

Using ECSF Diagnostics

31-82 Developer's Guide

Note: All searchable groups in the search application are displayed.

Result
Searchable groups for this engine instance, along with their associated searchable
objects.

31.11.1.4 Advanced Query (Protected)
This test can be used as a more granular check to ensure that queries are returning
data. Table 31–7 lists the parameters of this test.

Results
■ Result hit count: The number of hits for the first page of results (up to 10).

■ Estimate hit count: The estimated total hit count will for this query.

■ Alternate keywords if any.

■ Top-level facets including counts.

■ Search results: The title, body, and attribute values for the first page of results (up
to 10 records) will be shown.

31.11.2 Crawl Tests
These tests are used to diagnose issues in crawler functionality, including ECSF feed
generation.

31.11.2.1 Crawl Searchable Object
This tests crawling of the object, splitting of its table, and processing of data feeds.
Table 31–8 lists the parameters of this test.

Table 31–7 Parameters for Advanced Query Test (Protected)

Name Type Description

Searchable Group Drop-down The search category to invoke the category against. The
format of the parameter is <category>@<engine
instance>. The selection [All Groups] can be made to
search against all of the displayed groups.

Query Language (optional) String Specify a language for the query (language short code,
such as "en"). If no language is specified then the
currently configured language will be used.

User Name String The user name to search with. Only data visible to this
user will be shown.

Query String String String to search for.

Table 31–8 Parameters for Crawl Searchable Object Test

Name Type Description

Searchable Object Drop-down The search object to crawl. The format of the parameter is
<object>@<engine instance>.

Incremental Crawl Checkbox Tests incremental crawl on the Searchable Object, otherwise a full
initial crawl will be simulated.

Number of Batches to
test

Input (integer) Number of data feeds to execute (such as batches). -1 can be
specified to process all data feeds/batches (not recommended for
large data sets).

Using ECSF Diagnostics

Advanced Topics for ECSF 31-83

Note: The engine instance crawl user is used for this test.

Results
■ SQL statement for the searchable object.

■ Statistics on each work unit (batch) including the number of documents crawled,
the time taken, and the rate of documents processed by ECSF.

■ Total statistics for all work units processed.

31.11.2.2 SES Instance
This test displays information about the engine instance, tests proxy login into SES,
tests ECSF security service authentication, and displays ECSF metadata as well as SES
metadata. Table 31–9 lists the parameter of this test.

Results
■ SES admin endpoint.

■ ECSF service endpoint.

■ Result of proxy login into SES with stored credentials.

■ ECSF security service authentication status.

■ Search groups in ECSF.

■ Source groups in SES.

■ Index schedules in ECSF including the statuses in ECSF.

■ Index schedules in SES including the statuses in SES.

■ Searchable objects in ECSF.

■ Data sources in SES.

■ Number of configured proxy logins (federated trusted entities) in SES.

■ Configured identity plugin URL in SES.

31.11.2.3 Control Feed
This tests splitting of the table and generates the complete control feed for a searchable
object. Table 31–10 lists the parameters of this test.

Note: The engine instance crawl user is used for this test.

Table 31–9 Parameter for SES Instance Test

Name Type Description

Engine Instance
Name

Drop-down Select the ECSF engine instance to test.

Table 31–10 Parameters for Control Feed Test

Name Type Description

Searchable Object Drop-down Select the searchable object.

Incremental Crawl Checkbox If checked, it tests incremental crawl on the searchable object; otherwise
a full initial crawl will be simulated.

Using ECSF Diagnostics

31-84 Developer's Guide

Result
Complete control feed (including list of data feeds).

31.11.2.4 Data Feed (Protected)
Tests a data feed for a searchable object. This tests crawling of the object, splitting of its
table, and processing of data feeds. Table 31–11 lists the parameters of this test.

Note: The part of the URL that points to the ECSF data service will be ignored. Instead
the data feed will be invoked against the data service stored in the database for the
object's associated engine instance.

Result
Complete XML data feed.

31.11.3 Environment and Configuration Information
These tests provide information about the configuration of the ECSF environment.

31.11.3.1 Configuration Parameters
This test lists the ECSF search engine instance parameters. Table 31–12 lists the
parameter of this test.

Result
Values of the search engine instance parameters. Usernames will be obfuscated for
security reasons.

31.11.3.2 Environment Information
This test retrieves environment information such as ECSF properties and ECSF jar
extraction path on the server.

Results
■ System properties that begin with "oracle.ecsf".

■ Location of the Java class for this test on the server.

31.11.3.3 Data Source
This tests the connection to the SearchDB data source.

Results
■ Displays if the application was able to obtain the connection successfully.

■ If connection is successful displays the connection URL.

Table 31–11 Parameter for Data Feed (Protected) Test

Name Type Description

Data Feed URL Input (String) Enter a full data feed URL for a searchable object.

Table 31–12 Parameter for Configuration Parameters Test

Name Type Description

Engine Instance Drop-down Specify the engine instance to inspect.

Using ECSF Diagnostics

Advanced Topics for ECSF 31-85

31.11.3.4 Application Extension/ApplCore Session Locale (Protected)
This tests the application extension session for the given user. Table 31–13 lists the
parameter of this test.

Results
■ Initializes the application extension session for the user.

■ Locale for the ApplCore session.

31.11.4 Security
These tests are used to diagnose issues in the security layer of the ECSF application.

31.11.4.1 Security (Protected)
This tests various security functionalities for a user. Table 31–14 lists the parameters of
this test.

Results
■ Checks that the user exists in the system.

■ Checks that the user has the given permission.

■ Checks that the user has access to the oracle.ecsf credential map.

■ Displays if the user has access to all ECSF services.

■ Displays if the user has access to the Diagnostics service if it does not have access
to all services.

■ Checks that the credentials for the user can be obtained from the credential store.

31.11.4.2 Credential Store
This tests system access to the credential store. Table 31–15 lists the parameters of this
test.

Table 31–13 Parameter for Application Extension/ApplCore Session Locale (Protected) Test

Name Type Description

User Name Input (String) Specify the user for the test.

Table 31–14 Parameters for Security (Protected) Test

Name Type Description

User Name Input (String) Specify the user to test.

Permission
(optional)

Input (String) Specify a permission to check for the user. The format of the permission
should be TYPE:NAME:ACTIONS.

Engine Instance
Name

Drop-down The engine instance is used when retrieving credentials for non APPID
users.

Table 31–15 Parameter for Credential Store Test

Name Type Description

Engine Instance
Name

Drop-down The engine instance determines which map to access in the credential
store.

Troubleshooting ECSF

31-86 Developer's Guide

Result
Checks that the system can write to the credential store by creating and removing
credentials for a dummy user.

31.11.4.3 Security Plugin (Protected)
This tests the security plugin of a searchable object for a user. Table 31–16 lists the
parameters of this test.

Results
■ Security attribute values for the user from the plugin.

■ Security principals for the user.

31.12 Troubleshooting ECSF
This section describes common problems that you might encounter when using ECSF
and explains how to solve them.

31.12.1 Problems and Solutions
The following are common problems you may encounter and solutions that solve
them:

■ Cannot See Data in Data Feeds

■ Configuration or Data Feed Execution Thread Is Busy for Longer than the
Configured Warning Timeout

■ Class Not Found Errors When Running the ECSF Servlet

■ Out of Memory Error when Deploying the ECSF Application to Oracle WebLogic
Server or Running the Application

■ Blank Oracle ADF/UI Shell Pages

■ Memory Leak on ThreadLocal Variable (SearchContext)

31.12.1.1 Cannot Remove the ECSF Runtime Server Library
You remove the ECSF Runtime Server library from the project and save, but the library
reappears in your project.

Problem
The Common-Model.jar file that you added to your project contains a dependency on
ECSF Runtime Server.

Solution
Remove the Common-Model.jar file.

Table 31–16 Parameters for Security Plugin (Protected) Test

Name Type Description

Searchable Object Drop-down The search object to test against. The format of the parameter is
<object>@<engine instance>.

User Name Input (String) Specify the user to test.

Attribute Name
(optional)

Input (String) The security attribute to use for the test. If no attribute is given then the
default security attribute will be used.

Troubleshooting ECSF

Advanced Topics for ECSF 31-87

31.12.1.2 Cannot See Data in Data Feeds
Your feed request made through either Oracle SES or the browser returns no data.

Problem
After you initially crawl the data source, subsequent feed requests result in
incremental feeds (that is, feeds that contain only changes in data).

Solution
Override the incremental feed by performing one of the following tasks:

■ Through Oracle SES, start full indexing from the Fusion Applications Control. For
information, see the "Starting Full Indexing" section in Oracle Fusion Applications
Administrator's Guide.

■ Through the browser, append ?forceInitialCrawl=true to the config feed.

31.12.1.3 Configuration or Data Feed Execution Thread Is Busy for Longer than the
Configured Warning Timeout
You receive an error indicating that the execution time of the configuration or data
feed execution thread is exceeding the timeout settings, for example:

Error: name has been busy for "elapsedTime" seconds working on the request
"curReq", which is more than the configured time (StuckThreadMaxTime) of "maxTime"
seconds.

Following are two possible causes and solutions for this issue:

Problem
A SQL script being executed by ECSF for the configuration feed or data feed is taking
a long time to execute.

Solution
Enable SQL tracing to find long-running SQL processes, and tune the SQL script to
reduce the execution time.

Problem
ECSF is unexpectedly running longer than the configured time.

Solution
Increase the Oracle WebLogic Server warning timeout setting.

31.12.1.4 Class Not Found Errors When Running the ECSF Servlet
You receive Class Not Found errors when you run the ECSF servlet.

Problem
When you created the ECSF application, you did not select the Fusion Web
Application (ADF) template.

Solution
Add the Fusion Web Application (ADF) template through Application Properties.

Troubleshooting ECSF

31-88 Developer's Guide

31.12.1.5 Out of Memory Error when Deploying the ECSF Application to Oracle
WebLogic Server or Running the Application
You receive a java.lang.OutOfMemoryError: PermGen space exception when you
deploy the ECSF application to Oracle WebLogic Server instance or when you run the
application.

Problem
MaxPermSize is set too low.

Solution
Increase MaxPermSize by starting the WebLogic JVM using the -XX:MaxPermSize=256m
parameter.

If you start the ECSF servlet from within JDeveloper using the Integrated WebLogic
Server:

1. Go to the jdev cache directory /.jdeveloper/DefaultDomain/bin.

2. Open setDomainEnv.sh.

3. Locate the line that contains -XX:MaxPermSize=128m, and change it to
-XX:MaxPermSize=256m.

31.12.1.6 Blank Oracle ADF/UI Shell Pages
Oracle ADF/UI Shell pages fail to load or a blank page appears. You receive the
following exception in the JDeveloper Log window:

java.lang.NoClassDefFoundError: oracle/ecsf/client/SearchCtrl at
oracle.apps.fnd.applcore.globalSearch.ui.ecsf.ECSFSearchUtils.getSearchControl(ECS
FSearchUtils.java:67)

Problem
The ECSF Client library is missing from the project class path.

Solution
Update the project class path with the ECSF Client library.

31.12.1.7 Memory Leak on ThreadLocal Variable (SearchContext)
You encounter memory leaks while using the ECSF query API to define the Oracle
Fusion Applications Search user interface.

Problem
SearchContext is implemented as a ThreadLocal variable, which is created when
ContextFactory.getSearchContext() is first called in the current Thread. All
subsequent calls to getSearchContext() within the same Thread results in that
instance being returned. Since the ThreadLocal variable remains associated with the
Thread, memory leaks occur.

Solution
After the completion of your Oracle Fusion Applications Search UI logic and before
results are returned to the UI for rendering, you must call the SearchContext.release
method.

Troubleshooting ECSF

Advanced Topics for ECSF 31-89

When the SearchContext.release method is called on the SearchContext, the
instance of the ThreadLocal is removed from the current Thread. A subsequent call to
getSearchContext then results in the creation of a new instance of the SearchContext
ThreadLocal variable. The SearchContext.release method also implicitly call
releaseConnection().

31.12.1.8 How to Check the Space Availability for SES Crawls in the Database
The table spaces required are:

■ SEARCH_DATA

■ SEARCH_INDEX

■ SEARCH_TEMP

Verify the details for SEARCH_DATA using this SQL statement:

select FILE_NAME, TABLESPACE_NAME, BYTES, MAXBYTES, BLOCKS, MAXBLOCKS from
sys.dba_data_files where TABLESPACE_NAME = 'SEARCH_DATA';

Use this command to add additional table space for SEARCH_DATA:

ALTER TABLESPACE SEARCH_DATA ADD DATAFILE '/slot/ems7248/oracle/db/apps_
st/data/SEARCH_DATA_3.dbf' SIZE 1052M AUTOEXTEND ON;

The DBF filepath will depend on the environment being used. To learn the exact DBF
file to be used, use the select command shown above. For example:
/slot/ems7248/oracle/db/apps_st/data/SEARCH_DATA_3.dbf

To delete an additional datafile:

ALTER TABLESPACE SEARCH_DATA DELETE DATAFILE '/slot/ems7248/oracle/db/apps_
st/data/SEARCH_DATA_9.dbf';

The same steps can be used to add additional data files for other table spaces.

31.12.1.9 How to Crawl with a Different User
On a provisioned environment, the crawls will not work for all users. The users will
need to be modified.

Pre-requisite: Find the application role for which the user needs to be added.

As an example, take the Application role ZCA_CRM_FUSION_SEARCH_CRAWL_
DUTY and assign sales_admin to this role. ZCA_CRM_FUSION_SEARCH_CRAWL_
DUTY is the application role that is necessary for a user to access the feeds.

■ Login to CRM EM with the required credentials.

■ Right-click CRMDomain and select Security > Application Roles.

■ Select the Stripe as crm and in Roles enter ZCA_CRM_FUSION_SEARCH_
CRAWL_DUTY and search.

■ Click the role ZCA_CRM_FUSION_SEARCH_CRAWL_DUTY and click Add to
add the sales_admin user.

Note: If you call SearchContext.release and then need to call
getSearchContext() again within the same Thread, then you must set
any parameters you need on the SearchContext again as it is a brand
new instance.

Troubleshooting ECSF

31-90 Developer's Guide

■ Click OK.

The user sales_admin now can be used for crawling.

31.12.1.10 "FND-6601 Search categories are not available"

Problem
The endpoints for the search applications are not up and running.

Solution
Set the correct search application endpoints in the connections.xml file of the client
application. Make sure the IS_ACTIVE parameter corresponding to this search engine
instance is set to "Y". Make sure the IS_ACTIVE parameter corresponding to this search
engine instance is set to "Y" in the ECSF_PARAMETER table.

Problem
If your search application only contains one category and the category is secured, the
Global Search UI will display this error message if this category does not pass the
permission check. In this case, no categories are available for search.

Solution
Usually this is because the permission set on the searchable object is not accessible to
the logged-in user, causing the secured category to not be returned by the search
application.

Problem
Search_Server1 is not up and running.

Solution
Bounce if required.

Problem
wsm-pm is not up and running. For example, wsm-pm is hosted in the SCM_
CommonServer for FSCM.

Solution
Bounce if required.

31.12.1.11 "FND-6603 Search is not currently available"

Problem
The identity management setup in SES administration is pointing to an invalid URL
combination and the proxy user cannot log into ECSF security service.

Solution
Change the identity management setup to point to the correct url using the correct
username and password.

Problem
The response from the Search servers may be very slow and the Search UI is unable to
fetch all the results.

Troubleshooting ECSF

Advanced Topics for ECSF 31-91

Solution
Increase the WS timeout using this parameter in the startup section on the WLS
console for the Search Server

-Doracle.ecsf.service.ws.timeout=500000

31.12.1.12 "FND-6606 An application error occurred with this search"

Problem
In B16, the category drop-down is not displayed in the main UI page. The Global
Search UI does not load categories until an initial search is performed by clicking the
Search button. The Global Search UI will show this error if getting categories failed
against all the search applications. The endpoints for the search applications are not up
and running or the search applications are inactive in the database.

Solution
Set the correct search application endpoints in the connections.xml file of the client
application. Make sure the IS_ACTIVE parameter corresponding to this search engine
instance is set to "Y". Make sure the IS_ACTIVE parameter corresponding to this search
engine instance is set to "Y" in the ECSF_PARAMETER table.

Cause
If the search applications are up and running but this error is displayed, all the search
applications probably are returning errors.

Look for the following line in the messages logged in the client server log, such as
CustomerServer-diagnostics.log:

at
oracle.ecsf.service.query.ws.marshaller.ServiceUtil.toError(ServiceUtil.java:1499)

31.12.1.13 Query Does Not Return Search Results but No Errors Are Displayed on
the UI

Cause
The crawl for the data sources under this category was not successful.

Solution
Log into SES administration and check that the schedule for the data source indexed
successfully.

31.12.1.14 FUSION_RUNTIME.FND_TABLE_OF_VARCHAR2_4000 Exception on
Schedules

Cause
This exception may occur on the SES when a user tries to run a schedule. This is
caused if the administration server and the manager servers are not started from the
correct locations. (Console/node manager)

Solution
The adminserver must be started using nodemanager and all other managed servers
must be started by using the Administration console.

Troubleshooting ECSF

31-92 Developer's Guide

31.12.1.15 Where Can I Find the SES-ESS Crawler Logs?
On most of the provisioned environments, the ESS logs will be found in
<APPLTOP>/instance/ess/rfd. This will contain the crawl records for all the crawls
run on the SES installed in that environment. If the location of these logs is changed,
log in to the Enterprise Manager farm and update the RequestFileDirectory
attribute.

31.12.1.16 My Crawls Are Failing
The SES crawls may fail due to various reasons. Some of the most common issues are
listed here.

■ Check if the ESS and search_server1 managed servers are running on the Common
domain. If these are not running, the crawls will fail.

■ Check if the corresponding Search server is in the "RUNNING" state.

■ Check if the END points mentioned in the SES Source page are accessible.

■ Check if the database has sufficient space to accommodate the crawled data.
Check first query to increase the table space.

■ Verify the security attributes for the Searchable View Object (SVO). Also verify if
the passwords for CRAWL_APPIDs are correct.

■ Check that these users are not locked: FUSION_APPS_FSCM_SES_CRAWL_
APPID, FUSION_APPS_CRM_SES_CRAWL_APPID, and FUSION_APPS_HCM_
SES_CRAWL_APPID.

31.12.1.17 How to Get the Password for the SES Administration Page
The SES Administration page uses "searchsys" as the default user for logging in. The
password for SES can be discovered using WebLogic Server Scripting Tools (WLST)
commands.

■ Connect to WLST.

■ Run the command:

listCred(map="oracle.apps.security",key="FUSION_APPS_ECSF_SES_ADMIN-KEY")

Sample output:

Already in Domain Runtime Tree
[Name : searchsys, Description : null, expiry Date : null]
PASSWORD:welcome1

31.12.2 Diagnosing ECSF Problems
To diagnose ECSF problems in the development environment, you can view the log
messages in the Oracle WebLogic Server at DOMAIN_HOME/servers/SERVER_
NAME/logs/SERVER_NAME-diagnostic.log.

You can configure the log level for ECSF by using Fusion Applications Control or
Oracle WebLogic Scripting Tool. For information, see the "Configuring Settings for Log
Files" chapter in the Oracle Fusion Middleware Administrator's Guide.

The log level for ECSF can be set to the following values:

■ TRACE for FINE

■ NOTIFICATION for INFO (default level)

■ WARNING for WARNING

Troubleshooting ECSF

Advanced Topics for ECSF 31-93

■ ERROR for SEVERE

The following ECSF loggers can be used for logger name:

■ oracle.ecsf.AdminLogger

■ oracle.ecsf.ClientLogger

■ oracle.ecsf.RuntimeLogger

31.12.3 Need More Help?
For additional assistance, you can send your inquiries to HELPECSF_US@oracle.com.

Troubleshooting ECSF

31-94 Developer's Guide

Part VI
Part VI Common Service Use Cases and Design

Patterns

This part of the developer's guide describes the fundamental patterns that Oracle
Fusion application developers should use when building applications involving
Oracle Application Development Framework (Oracle ADF) and the Oracle SOA
platform. The majority of these use cases fall into three basic patterns:

■ The use of business events to initiate business processes

■ Orchestrating over business logic implemented with Oracle ADF, Java, PL/SQL,
and SOA composite applications

■ Modeling human task flows in ADF applications

In addition to these three core categories, other chapters within this part provide
guidance on a few less common patterns that might be useful to applications
developers.

Each chapter in this section describes a use case and its associated recommended
design pattern, along with procedures for implementing the design pattern,
recommended validation procedures, and troubleshooting tips.

This part contains the following chapters:

■ Chapter 32, "Initiating a SOA Composite from an Oracle ADF Web Application"

■ Chapter 33, "Initiating a SOA Composite from a PL/SQL Stored Procedure"

■ Chapter 34, "Orchestrating ADF Business Components Services"

■ Chapter 35, "Manipulating Back-End Data from a SOA Composite"

■ Chapter 36, "Accessing a PL/SQL Service from a SOA Composite"

■ Chapter 37, "Invoking Custom Java Code from a SOA Composite"

■ Chapter 38, "Managing Tasks from an Oracle ADF Application"

■ Chapter 39, "Working with Data from a Remote ADF Business Components
Service"

■ Chapter 40, "Invoking an Asynchronous Service from a SOA Composite"

Note: When carrying out the procedures described in the following
chapters, use the Default/All technologies role for any SOA-related
activity.

■ Chapter 41, "Synchronously Invoking an ADF Business Components Service from
an Oracle ADF Application"

■ Chapter 42, "Implementing an Asynchronous Service Initiation with Dynamic UI
Update"

■ Chapter 43, "Managing Tasks Programmatically"

■ Chapter 44, "Implementing an Oracle ADF Task Flow for a Human Task"

■ Chapter 45, "Cross Family Business Event Subscription Pattern"

32

Initiating a SOA Composite from an Oracle ADF Web Application 32-1

32Initiating a SOA Composite from an Oracle
ADF Web Application

This chapter describes what a user action or other activity in an Oracle ADF web
application needs to do to invoke a SOA composite. The invocation is asynchronous
and does not require a response. Inside the SOA composite, an Oracle Mediator
component can provide routing and transformation, a BPEL component can provide
business process orchestration, a human task service can provide workflows, and a
decision service can provide complex business rules based decision making.

When to implement: A user action or other activity in an Oracle ADF web application
needs to invoke a SOA composite. The invocation is asynchronous and does not
require a response. Inside the SOA composite, an Oracle Mediator component can
provide routing and transformation, a BPEL component can provide business process
orchestration, a human task service can provide workflows, and a decision service can
provide complex business rules based decision making.

Design Pattern Summary: A business component in the ADF Business Components
Framework publishes a business event to execute a SOA composite application. The
SOA composite application subscribes to the event using the Oracle Mediator
component, and from there it can be routed to any other service component, such as
BPEL.

Involved components:

■ Oracle ADF web application that includes ADF Business Components.

■ SOA composite application that includes an Oracle Mediator service component
and an additional service component to which the event can be routed (such as a
BPEL process service component).

32.1 Introduction to the Recommended Design Pattern
Oracle Fusion applications initiate business processes in response to user actions.
Oracle ADF provides a change notification framework that is triggered at the end of a
transaction involving ADF Business Components. This notification can be
declaratively configured to raise business events that conform to an Event Description
Language (EDL) definition. When an event is raised, it is published on the Event
Delivery Network (EDN). For more information about the EDN, see the chapter
"Using Business Events and the Event Delivery Network" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

Process flows are implemented using a BPEL process service component as a bridge
from EDN to the BPEL process. Because the events raised by the ADF Business
Components are not a native BPEL construct, you use a mediator service component

Other Approaches

32-2 Developer's Guide

to subscribe to the event and to then invoke the BPEL process service component. The
mediator service component acts as a binding between the EDN and the BPEL process
service component. Whenever the event is raised by ADF Business Components
(whether through a GUI action or programatically), the BPEL process service
component is invoked. Figure 32–1 illustrates how these work together.

Figure 32–1 Mediator Service Component Subscribes to an Event and Invokes BPEL
Service Component

This approach is recommended for the following reasons:

■ Validation logic can be consolidated in the entity object.

■ Multiple user interfaces can invoke the reusable entity object that produces the
events.

■ Event subscription can be modeled on the mediator service component and not
hard wired into the UI.

■ The producer of the event (in this case, ADF Business Components) does not need
to know who the downstream consumers of the event are. If needed, the SOA
back-end service can change, without needing to change anything in the Oracle
ADF web application. Decoupling the Oracle ADF and SOA application lifecycles
makes development more manageable.

Events raised by ADF Business Components are asynchronous with no return value.
The event infrastructure leverages the WLS JMS provider, so any unconsumed events
can be de-queued by the SOA platform at some later time if the platform isn't running,
assuming the JMS implementation leverages Oracle Advanced Queuing. For
information about integrating Oracle Advanced Queuing with Oracle BPEL Process
Manager or Oracle Mediator, see the chapter "Oracle JCA Adapter for AQ" in the
Oracle Fusion Middleware User's Guide for Technology Adapters.

32.2 Other Approaches
Instead of using ADF Business Components, and the change notification publisher in
entity objects to invoke a BPEL service component, you could use one of the following

How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

Initiating a SOA Composite from an Oracle ADF Web Application 32-3

approaches. These development approaches should be used only when the
recommended approach cannot be implemented.

■ Using the Java Event API to Publish Events

■ Using a JAX-WS Proxy to Invoke a Synchronous BPEL Process

32.3 Example
A web application built using ADF Business Components and Oracle ADF Faces
allows users to register bugs found in software. An ADF Business Components entity
object is used to create a bug, and contains an event whose payload is the attribute
values for the created bug. The event is configured to be raised whenever the Create
operation is called on the entity object.

A mediator service component subscribes to the event and accepts the event payload.
A routing rule is configured for the mediator service component that routes the
payload for the event to a BPEL process service component. This component then
sends an email that contains the information from the payload to the bug's creator.

There are some cases in which one might need to propagate the end user ID of the
event raiser across the invoked services for auditing purposes. It is recommended to
propagate this information in the event payload. When raising events for CUD
operations (create, update, delete), include the last_updated_by history column in the
event definition. As this column exists in every Oracle Fusion Applications table, the
user raising the event will always be propagated.

The sample code for this use case can be downloaded from Oracle SOA Suite samples.

32.4 How to Initiate a BPEL Process Service Component from an Oracle
ADF Web Application

To initiate a BPEL process service component from a web application, you first need to
create the web application using ADF Business Components and Oracle ADF Faces.
You then create a SOA composite application that contains a mediator service
component to pass the event payload created by ADF Business Components, and
execute a BPEL process service component.

To invoke a BPEL process service component from an Oracle ADF web
application:
1. In the Oracle ADF web application, define an event on an entity object.

For more information on creating events on entity objects, see the chapter
"Creating a Business Domain Layer Using Entity Objects" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition). For more information about using business
events, see the chapter "Using Business Events and the Event Delivery Network"
in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

WARNING: The following approaches should not be used:

■ A web services data control created using a SOAP web service
on the composite to create the view in the web application.

■ A custom Java class in the web application using SOAP.

■ A direct API call, or some other means to access the SOA
composite.

How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

32-4 Developer's Guide

When you create the event, ensure the following:

– Include attributes as needed for the payload.

– Set the event point to be the database operation (create, update, delete) that
will raise the event. You can also create any conditions needed to determine
when the event should be raised.

Defining an event generates an Event Definition Language (.edl) file and XML
schema definition (.xsd). The EDL file contains all event definitions for the entity
and the XSD file defines the contents of an event's payload, in addition to other
objects needed by the BPEL process service component. These files together define
the contract between the Oracle ADF application and the SOA composite
application, as for a particular event, they identify the elements the SOA
composite expects. Both these files are placed in the events directory for the
project, and can be found in the Application Navigator as children to the
associated entity object.

In the example bug application, the BugReport entity object contains the
BugCreated event. This event carries all the attributes on the entity object as its
payload, and is published using the create operation as its event point.

2. Create the page in the view that will invoke the operation defined as the event
point for the event (for example, through a command button bound to the commit
operation or through the implicit call to the commit operation as a task flow return
activity).

In the example bug application, this is a UI command component bound to the
Commit operation on the BugReport entity object. Because this operation commits
the data to the database, and the Commit operation's corresponding DML operation
(create) is used to sync the ADF Business Components cache with the database,
the ADF Business Components framework raises the event.

For more information about creating the view, see "Part IV: Creating a Databound
Web User Interface" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

3. For verification purposes, you can either run the Oracle ADF web application from
the Integrated Oracle WebLogic Server container included with Oracle JDeveloper,
or you can deploy the Oracle ADF web application to a standalone container. This
step includes procedures for running the Oracle ADF web application within the
embedded container and the SOA composite on a standalone Oracle WebLogic
Server container. See Step 4 for procedures on deploying to a standalone container.

Note:

■ Event points can only be associated with Data Manipulation
Language (DML) operations.

■ Personally identifiable information (PII) is any piece of
information that can be used to uniquely identify a person. PII is
sensitive and must be protected from potential misuse.

When data is included in events or a BPEL flow, it is potentially
exposed. While the transport may be encrypted on the SOA side, the
data is not. The data in events, payload and BPEL variables is not
secured by the security restrictions for business objects. Consider what
data is to be exposed in the payload so as to prevent unauthorized
access.

How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

Initiating a SOA Composite from an Oracle ADF Web Application 32-5

a. Make sure that EDN data sources have been configured. Using Oracle
WebLogic Server Administration Console, verify that EDNDataSource and
EDNLocalTxDataSource have been configured.

b. Navigate to Domain Configurations > Services > JDBC > Data Sources to
verify the existence of EDN data sources.

c. If the EDN data sources have not been configured, create new EDN data
sources. Select EDNDataSource and click New. Enter the following details:

Name: EDNDataSource

JNDI Name: jdbc/EDNDataSource

Database Type: Oracle and Database Driver > Oracle Thin Driver XA:
Versions 9.0.1.9.2.0.10.11.

Driver Class Name: oracle.jdbc.xa.client.OracleXADataSource.

Click Next. In the next window, uncheck Supports Global Transactions.

Click Next and configure the following:

Database Name: DB_NAME_FUSION_EDN

Host Name/Port: Enter the host name and port for server running the FUSION_
EDN database

Database User Name/Password: Enter a username and password.

Test the data source. Set as DefaultServer and click Finish.

Define EDNLocalTxDataSource as above, but use EDNLocalTxDataSource for
the data source and jdbc/EDNLocalTxDataSource for the JNDI name.

d. Map the data source in the web.xml and weblogic.xml files associated with the
event publishing application. Add the lines shown in Example 32–1to the
WEB-INF/web.xml file.

Example 32–1 Editing the web.xml File

<resource-ref>
 <res-ref-name>jdbc/EDNDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope> </resource-ref>

e. Create an XML file called weblogic.xml with the following contents, and save
it in the WEB-INF directory. This maps the global JMS resources to local JNDI
names. The names in this file are the defaults expected by the remote
connection factory, so you do not need to specify them. An example is shown
in Example 32–2.

Example 32–2 Mapping Global JMS Resources to Local JNDI Names

<?xml version="1.0"?>

<resource-description>

Note: Oracle ADF and SOA data sources for EDN must point to the
same schema. The EDN schema cannot be shared by more than one
SOA runtime environment (such as outside a cluster).

How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

32-6 Developer's Guide

 <res-ref-name>jdbc/EDNLocalTxDataSource</res-ref-name>
 <jndi-name>jdbc/EDNLocalTxDataSource</jndi-name>
</resource-description>
<resource-description>
 <res-ref-name>jdbc/EDNDataSource</res-ref-name>
 <jndi-name>jdbc/EDNDataSource</jndi-name>
</resource-description>

4. Add event-related SOA runtime libraries, specifically ADF Business Components
uses Event Publishing APIs bundled in fabric-runtime.jar. Add a library reference
to oracle.soa.workflow.wc in order to include the event publishing APIs
bundled in the relevant JAR files.

Add the code shown in Example 32–3 to the weblogic-application.xml file.

Example 32–3 Add a Reference to oracle.soa.workflow.wc to the
weblogic-application.xml File

<library-ref>
 <library-name>
 oracle.soa.workflow.wc
 </library-name>
 </library-ref>

5. In Oracle JDeveloper, create a SOA composite application project and add a
mediator service component.

For detailed procedures on creating SOA composite application projects, see the
chapters "Developing SOA Composite Applications with Oracle SOA Suite" and
"Getting Started with Oracle Mediator" in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

When you create the project, ensure the following:

■ You choose to create a mediator service component on completion.

■ Before configuring the mediator service component, manually copy the EDL
and XSD files created in Step 1 to the SOA composite application project's
source path.

■ Open the MPLAN file for the mediator service component and create a new
subscription that points to the EDL file moved into the source path. This
means the mediator service component will now be subscribed to that event.

In the following example application, a mediator service component named
BugCreatedRouter is subscribed to the BugCreated event, as shown in Figure 32–2.

Figure 32–2 Mediator Subscription to an Event

How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application

Initiating a SOA Composite from an Oracle ADF Web Application 32-7

6. Create the BPEL process service component.

For detailed procedures, see the chapter "Getting Started with Oracle BPEL
Process Manager" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

When you create the component, ensure the following:

■ Use the Create BPEL Process dialog to configure the payload. Use the Input
Element finder icon to select the payload from the schema created for the
event.

In the example application, the input element would be the BugCreatedInfo
payload under the BugReport.xsd node, as shown in Figure 32–3.

Figure 32–3 Determining the Input Element for the Payload

■ You create an activity that accepts the payload from the input element as its
input parameters. In the sample application, an email activity is created that
takes various input parameters from the payload as assigns them to the
email's parameters.

7. In the mediator service component, add a routing rule and configure it so that it
invokes the BPEL process service and contains a subscription to the ADF Business
Components event. Ensure the following:

Alternative Approaches

32-8 Developer's Guide

■ You select the initiate operation on the client of the BPEL process service
component as the target service, as shown in Figure 32–4.

Figure 32–4 Target for a Routing Rule

8. Optionally, use the Transformation map to map the mediator service component's
schema to the input schema of the BPEL process service component. However, this
should not be necessary, as you should be using the same schema for both.

9. Deploy the SOA composite application to the SOA infrastructure. For details, see
the chapter "Deploying SOA Composite Applications" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

10. Use Oracle Enterprise Manager Fusion Middleware Control Console to view the
SOA composite application to ensure it was properly deployed. For more
information about using Oracle Enterprise Manager Fusion Middleware Control
Console, see the chapter "Deploying SOA Composite Applications" in the Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

32.5 Alternative Approaches
Following are alternative approaches to the use case pattern:

■ Section 32.5.1, "Using the Java Event API to Publish Events"

■ Section 32.5.2, "Using a JAX-WS Proxy to Invoke a Synchronous BPEL Process"

32.5.1 Using the Java Event API to Publish Events
You can programmatically raise events following an ADF Business Components CUD
operation using the publishEvent API.

Alternative Approaches

Initiating a SOA Composite from an Oracle ADF Web Application 32-9

Before you begin:
1. In Oracle WebLogic Server Console, set up EDN data sources as described in

Section 32.4, "How to Initiate a BPEL Process Service Component from an Oracle
ADF Web Application."

2. Add a library reference to oracle.soa.workflow.wc.

To publish events using the Java event API:
1. Import the required libraries into your application as shown in Example 32–4.

Example 32–4 Importing Files into Your Application

import javax.xml.namespace.QName;
import oracle.fabric.blocks.event.BusinessEventConnection;
import oracle.fabric.blocks.event.BusinessEventConnectionFactory;
import oracle.fabric.common.BusinessEvent;
import oracle.integration.platform.blocks.event.BusinessEventBuilder;
import oracle.integration.platform.blocks.event.BusinessEventConnectionFactorySupport;
import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;
import oracle.jbo.server.TransactionEvent;
import oracle.jbo.server.JTATransactionHandler;

2. Publish events as required. An example is shown in Example 32–5.

Example 32–5 Publishing Events Using the Java Event API

private final String eventName = "CreateExpenseReport";
 private final String eventNamespace = "/oracle/apps/ta/model/events/edl/ExpenseReportEO";
 private final String schemaNamespace = "/oracle/apps/ta/model/events/schema/ExpenseReportEO";

 private BusinessEventConnectionFactory cf = null;
 private BusinessEventConnection conn = null;

 public void eventSetup()
 {
 // Get event connection. Set to true for debugging only.
 BusinessEventConnectionFactory cf =
 BusinessEventConnectionFactorySupport.findRelevantBusinessEventConnectionFactory(false);
 BusinessEventConnection conn = cf.createBusinessEventConnection();

 }

 private XMLDocument getXMLPayload() {
 Element masterElem, childElem1, childElem2;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, "CreateExpenseReportInfo");
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "Id");
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace, "newValue");
 childElem2.setAttribute("value", ((BigDecimal) this.getAttribute("Id")).toString());
 childElem1.appendChild(childElem2);
 return document;
 }

 public void beforeCommit(BusinessEventConnection conn , TransactionEvent e) {

 // Determine whether this is a JTA transaction.

Alternative Approaches

32-10 Developer's Guide

 if (this.getDBTransaction() != null &&
 this.getDBTransaction().getTransactionHandler() instanceof
 JTATransactionHandler) {

 // Determine whether the row is newly created.
 if (this.getEntityState() == STATUS_NEW) {

 try {

 // Build the event.
 BusinessEventBuilder builder = BusinessEventBuilder.newInstance();

 // Specify the event name and namespace. In this example,
 // they are constants: eventNamespace and eventName.

 builder.setEventName(new QName(eventNamespace, eventName));

 // Specify the event payload. In this example, the custom
 // method getXMLPayload constructs the payload.
 builder.setBody(getXMLPayload().getDocumentElement());
 BusinessEvent event = builder.createEvent();

 // Publish the event.
 conn.publishEvent(event, 5);
 conn.close();

 // For debugging and testing purposes, print the result.
 System.out.println("Event was sent sucessfully");
 } catch (Exception exp) {
 System.out.println("Failed sending event: " + exp.getMessage());
 exp.printStackTrace();
 }
 }
 }

 super.beforeCommit(e);

 }

32.5.2 Using a JAX-WS Proxy to Invoke a Synchronous BPEL Process
Another way to invoke a SOA composite as a web service from an Oracle ADF web
application is to use a JAX-WS proxy.

Use this pattern only for synchronously invoking BPEL processes where the calling
application waits for a response. As such, any BPEL processes called using this pattern
must be synchronous and brief so as to avoid any time out issues.

Securing the Design Pattern

Initiating a SOA Composite from an Oracle ADF Web Application 32-11

For more information about this approach, see the chapter "Integrating Web Services
Into an Oracle Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

In this pattern, SOA composite services are exposed as web services. You generate a
JAX-WS proxy client to invoke the SOA composite exposed as a web service from your
ADF Business Components application module.

You use the web services wizard to generate a web service proxy, and then call the web
service using method calls.

An indirection for the web service proxy node enables retrieving the location of the
web service WSDL, username and password from connections.xml. To use the
indirection, access the proxy via
oracle.adf.model.connections.webservice.WebServiceConnection.

An example is shown in Example 32–6.

Example 32–6 Using WebServiceConnection

WebServiceConnection wsc =

(WebServiceConnection)ADFContext.getCurrent().getConnectionsContext().lookup(conne
ctionName);
 Hello hello = wsc.getJaxWSPort(Hello.class);

Use the username or SAML token policies for identity propagation and security. For
more information, see Chapter 50, "Securing Web Services Use Cases."

32.6 Securing the Design Pattern
To secure this pattern, it is recommended that you secure the Oracle ADF web
application. For more information about securing the pattern, see Chapter 50,
"Securing Web Services Use Cases."

32.6.1 Running the Mediator as an Event Publisher

To make the mediator run as an event publisher:
1. Open the composite.xml file for the SOA composite application and manually add

the runAsRoles="$publisher"' attribute to the composite subscriptions.
Example 32–7 shows the composite subscription for the sample application.

Example 32–7 runAsRoles Attribute in a Composite Subscription

<component name="BugReportMediator">
 <implementation.mediator src="BugReportMediator.mplan" />

Caution:

■ Do not use this pattern for a long running or asynchronous BPEL
process.

■ Make sure that synchronous services return immediately.
Synchronous services should be simple input/output payloads.

■ Do not use multi-record or N record services in which processing
time varies from seconds to minutes or longer.

Verifying the Deployment

32-12 Developer's Guide

 <business-events>
 <subscribe xmlns:sub1="/model/events/edl/BugReport"
 name="sub1:bugCreated"
 consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
 </business-events>
</component>

2. To validate the subject propagation in the SOA composite application, add the
following code as shown in Example 32–8 to the BPEL file for the BPEL process
flow:

Example 32–8 Using bplex:exec to Print Out Subject Information

<bpelx:exec language="java" version="1.5">
<![CDATA[
 javax.security.auth.Subject
 subject = javax.security.auth.Subject.getSubject
 (java.security.AccessController.getContext());
 System.out.println("\n\n\n\n\n\n\n");
 System.out.println ("######*****----->
 subject: " + subject.toString());
 System.out.println("\n\n\n\n\n\n\n");

]]>
 </bpelx:exec>

32.6.2 Securing Event-Driven Applications
Events enable event-driven applications and are not related to OWSM. Therefore,
OWSM policies do not apply to events.

Events raised by Oracle ADF web applications automatically propagate the event's
publisher ID in the event header. No action is required to perform identity
propagation. The publisher's ID corresponds to the end-user authenticated in the
application.

32.7 Verifying the Deployment
You can verify the deployment by testing the Oracle ADF web application.
Alternatively, you can send EDN events at the command line to verify event-raising
functionality.

32.7.1 How to Verify the Deployment
To properly verify this design pattern, you should test the Oracle ADF web application
and enable logging, use Oracle Enterprise Manager Fusion Middleware Control
Console to verify the process instance creation, and check the SOA logs.

To verify this design pattern:
1. Test your Oracle ADF web application using various testing and debugging

methods described in the chapter "Testing and Debugging ADF Components" in

Note: Currently, the only option for runAsRoles is $publisher.

Verifying the Deployment

Initiating a SOA Composite from an Oracle ADF Web Application 32-13

the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). Be sure to enable ADF
Business Components runtime logging by setting the Java VM parameter in the
run/debug profile to jbo.debugoutput=console. Doing so logs the event and its
payload in the JDeveloper log console.

2. Run the Oracle ADF web application and invoke the method that raises the event.

3. View the ADF Business Components runtime log in the JDeveloper log console to
view the event and payload.

4. Use Fusion Middleware Control Console for tracking composite instances and for
a variety of debugging, monitoring and testing functions.

Launch Fusion Middleware Control Console using the following URL:

http://<hostname>:<port number>/em

5. Open Fusion Middleware Control Console to verify the process instance has been
created. Use the Audit tab to verify that the payload is correct.

32.7.2 How to Test EDN Functionality from the Command Line
You can test EDN functionality using SendEvent and edn.debug.event-connection at
the command line.

32.7.2.1 SendEvent
SendEvent is a command line utility for sending an event to a database-based Oracle
Event Delivery Network instance. SendEvent can send an empty event (of a given
queue name) or an entire event from a file. Running the command displays a list of
command line options.

Some examples are shown in Example 32–9 and Example 32–10.

In Example 32–9, an empty event with namespace uuid:1111 and local name MyEvent
is sent to the event bus.

Example 32–9 Sending an Empty Event

oracle.integration.platform.blocks.event.SendEvent -dbconn
host.companyname.com:1521:SID -dbuser user -dbpass password -eventName
{uuid:1111}MyEvent

In Example 32–10, the event contained in the file AnEvent.xml is sent to EDN.

Example 32–10 Sending an Event to EDN

oracle.integration.platform.blocks.event.SendEvent -dbconn
host.companyname.com:1521:SID -dbuser user -dbpass password -event AnEvent.xml

32.7.2.2 BusinessEventConnectionFactorySupport
You can use BusinessEventConnectionFactorySupport in your Oracle ADF web
application to test your event publishing code. Rather than sending an event to a
queue, you can configure your Oracle ADF web application to print the event
information to the log using BusinessEventConnectionFactorySupport.

To do so, set the system property edn.debug.event-connection to true when running
your application. When the application sends an event, the information for that event

Troubleshooting the Use Case

32-14 Developer's Guide

is logged, including the event body in its entirety. This enables you to see the events
that will be sent to EDN when the application runs on a SOA server.

The log name is oracle.integration.platform.blocks.event.debug, but in most
configurations the information prints to stdout by default.

To set the system property:
When Oracle WebLogic Server starts up, add the system property shown in
Example 32–11 to the JAVA_OPTIONS environment variable.

Example 32–11 Setting the EDN Debug System Property

-Dedn.debug.event-connection=true

To access the EDN database log:
You can use the EDN database log shown in Example 32–12 for diagnostic purposes.

Example 32–12 EDN Database Log

http://HOSTNAME:7001/soa-infra/events/edn-db-log

32.8 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

32.8.1 Deployment
If deployment of the SOA composite application fails, then verify the following:

■ The location element in the EDL file located in the directory is relative to the
directory that contains the EDL file.

■ If you get an invalid XPath expression exception, use a static value instead of a
value from the payload.

32.8.2 Runtime Errors
If your Oracle ADF web application encounters a runtime class load error for
EventConnectionFactory, you need to add a library reference to
oracle.soa.workflow.wc.

32.9 What You May Need to Know About Initiating a SOA Composite from
an Oracle ADF Web Application

Before you implement these design patterns, you should be aware of the following:

■ If you change the event name or event payload, the mediator will not respond to
the raising of the event. If you need to make changes, you should create a new
event. During development, you need to change the mediator (if the name of the
event changes) and/or the BPEL process being invoked (if the payload changes).

Known Issues and Workarounds

Initiating a SOA Composite from an Oracle ADF Web Application 32-15

32.10 Known Issues and Workarounds
Following are known issues:

■ You must add a library reference to oracle.soa.workflow.wc in order to raise
events successfully.

■ You can only specify $publisher as the runAsRole for an event subscription.

Known Issues and Workarounds

32-16 Developer's Guide

33

Initiating a SOA Composite from a PL/SQL Stored Procedure 33-1

33Initiating a SOA Composite from a PL/SQL
Stored Procedure

This chapter describes what a PL/SQL stored procedure needs to do to initiate a SOA
composite application.

When to implement:.When a PL/SQL stored procedure needs to initiate a SOA
composite application.

Design Pattern Summary: A PL/SQL stored procedure raises an event through the
Event Delivery Network within the database. A mediator in the SOA composite
application subscribes to the event and routes it as appropriate.

Involved components:

■ PL/SQL stored procedures

■ Event Delivery Network database

■ SOA composite application that includes Oracle Mediator and other components
as needed.

33.1 Introduction to the Recommended Design Pattern
Oracle Fusion applications may contain stored procedures that need to invoke a
component within a SOA composite application, such as a BPEL process service
component. A stored procedure can use the Event Delivery Network database API to
publish an event whose payload is xmltype. An Oracle Mediator service component
subscribes to the event by event name or by using a XPath expression on the event
payload. The.edl file (event definition file) for the event can be supplied in the
composite or deployed separately in a MAR (metadata archive). When the stored
procedure publishes the event, the subscribed Oracle Mediator service component
forwards the payload to the BPEL process service component.

This chapter explains how to implement the recommended approach.

33.2 Other Approaches
Instead of using an event to invoke an Oracle Mediator service component from a
PL/SQL stored procedure, you could use one of the following implementations.

■ Invoke Oracle Mediator directly using UTL_HTTP or any other PL/SQL-based
APIs.

WARNING: This approach is prohibited.

Example

33-2 Developer's Guide

33.3 Example
The sample code for this use case can be downloaded from Oracle SOA Suite samples.

33.4 How to Invoke a SOA Composite Application Component Using
PL/SQL

To invoke a SOA composite application component from a stored procedure, you must
first create the event within the SOA composite application. The stored procedure
must then raise the event and pass any required data via the EDN database API.

To invoke a SOA composite application component using PL/SQL:
1. Create a SOA composite application with an Oracle Mediator component.

2. Configure Oracle Mediator to subscribe to a new event (with a name of your
choosing).

The event filter can be by event name or using an XPath expression on the event
payload and the EDL for the event can either be supplied in the composite.xml or
deployed separately in a MAR.

3. Create the SOA composite application component that will be invoked (for
example, a BPEL process service component), and create a wire between the
Oracle Mediator component reference and the component service.

4. From a PL/SQL stored procedure, call the EDN-DB API method publish_event
with the event namespace and the event payload as a CLOB type. An example is
shown in Example 33–1.

Example 33–1 Calling the publish_event Method

DECLARE
 NAMESPACE VARCHAR2(200);
 LOCAL_NAME VARCHAR2(200);
 PAYLOAD CLOB;
BEGIN
 NAMESPACE := 'http://xmlns.oracle.com/SubEventMediator/EventDefinition1';
 LOCAL_NAME := 'CustomerEvent';
 PAYLOAD := to_clob('<eb:business-event xmlns:eb=
 "http://oracle.com/fabric/businessEvent"
 xmlns:ob="http://xmlns.oracle.com/SubEventMediator/EventDefinition1">
 <eb:name>ob:CustomerEvent</eb:name><eb:content><CU:CustomerData
 xmlns:CU="http://xmlns.oracle.com/Esb/CustomerData"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <CustomerId>A22-9AXC2</CustomerId><CustomerName>
 Deserae International</CustomerName><Type>Gold</Type><Description>Accounting
 Outsourcing Partner</Description><Address>3228 Massilon Blvd</Address>
 <City>Juniper</City><State>Massachusetts</State><Zip>01854</Zip><Country>US
 </Country><Phone>877-555-9876</Phone><Status>Active</Status>
 <CreditRating>5</CreditRating><Discount>0</Discount><Terms>30n4</Terms>
 <EnrollDate>01/1/01</EnrollDate><LastOrderDate>05/05/05/</LastOrderDate>
 <Currency>USD</Currency><ContactName>Jan Forester</ContactName><ContactTitle>VP
 Finance</ContactTitle><ContactPhone>877-555-9000</ContactPhone><AccountRep>
 Geoff Seattle</AccountRep><CampaignRating>2</CampaignRating>
 <ReferedBy>Houston America Taxco</ReferedBy>
 </CU:CustomerData></eb:content></eb:business-event>');

 EDN_PUBLISH_EVENT(NAMESPACE => NAMESPACE, LOCAL_NAME => LOCAL_NAME, PAYLOAD =>
PAYLOAD);

Verifying the Deployment

Initiating a SOA Composite from a PL/SQL Stored Procedure 33-3

END;

33.5 Securing the Design Pattern
Secure Oracle Mediator by configuring the property runAsRoles=$publisher. For
details on securing the Oracle Mediator, see Section 32.6, "Securing the Design
Pattern."

When the database connection is established from the middle tier so as to invoke the
PL/SQL stored procedure, a session is established with the appropriate identity. This
identity is propagated through EDN back to the middle tier for the subscription. The
subscription runs as the identity of the publisher.

To secure this pattern, follow the instructions described in Chapter 50, "Securing Web
Services Use Cases."

33.6 Verifying the Deployment
Verifying the deployment involves the following:

■ Section 33.6.1, "Testing and Deploying the Use Case"

■ Section 33.6.2, "Verifying the SOA Composite Deployment Using Oracle Enterprise
Manager Fusion Middleware Control Console"

33.6.1 Testing and Deploying the Use Case
Testing and deploying the use case involves the following main steps:

1. Test your Oracle ADF application using various testing and debugging methods
described in the chapter "Testing and Debugging ADF Components" of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition). For information about testing the
ADF Business Components service, see the chapter "Integrating Web Services Into
a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition).

2. Deploy the SOA composite application to the standalone WLS where the SOA
infrastructure has been installed. Because you created a published event from the
SOA composite application to the ADF Business Components service, the ADF
Business Components service need not to also be deployed to the SOA
infrastructure.

3. Test the deployed SOA composite service using Oracle Enterprise Manager Fusion
Middleware Control Console. Every deployed service has its own test page, so you
can quickly test that the service functions as you expect. For more information
about using the Fusion Middleware Control Console to test deployed SOA
composite applications, see the following chapter:

"Automating Testing SOA Composite Applications" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

33.6.2 Verifying the SOA Composite Deployment Using Oracle Enterprise Manager
Fusion Middleware Control Console

You can use Oracle Enterprise Manager Fusion Middleware Control Console to verify
that the SOA composite was successfully deployed. In Oracle Enterprise Manager

Verifying the Deployment

33-4 Developer's Guide

Fusion Middleware Control Console, you can select the SOA composite instance and
display the result of the event.

Using Oracle Enterprise Manager Fusion Middleware Control Console, you can:

■ Verify the deployment of the SOA composite.

■ Test the SOA composite.

■ Verify the SOA composite test results.

To verify that the SOA composite was successfully deployed and the event was
received:
1. Using a web browser, access the Oracle Enterprise Manager Fusion Middleware

Control Console using a URL such as the following:

http://<host name>:<port number>/em

2. From the list of applications, expand the PLSQLEvent composite.

3. In the Last 5 Instances pane, click the most recent instance as shown in
Figure 33–1.

Figure 33–1 Finding the Latest PLSQLEvent Composite Instance

4. In the Flow Trace window that displays, click the Oracle Mediator component, as
shown in Figure 33–2.

What You May Need to Know About Initiating a SOA Composite from a PL/SQL Stored Procedure

Initiating a SOA Composite from a PL/SQL Stored Procedure 33-5

Figure 33–2 The Flow Trace Window

A window displays, showing the event results, as shown in Figure 33–3.

Figure 33–3 Displaying the Event

33.7 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

■ Enable logging for Oracle Mediator using logging.xml. See the troubleshooting
section in the chapter "Deploying SOA Composite Applications" of the Oracle SOA
Suite Developer's Guide for more information.

■ For the events functionality, use the Event Delivery Network database log page at
http://host:port/soa-infra/events/edn-db-log. The EDN schema name is FUSION_
EDN.

33.8 What You May Need to Know About Initiating a SOA Composite from
a PL/SQL Stored Procedure

Before you implement these design patterns, be aware of the following:

■ Run the sample provided prior to implementing your own version of this use case.
Running the sample ensures that the EDN database queue works as expected.

Known Issues and Workarounds

33-6 Developer's Guide

33.9 Known Issues and Workarounds
Following are known issues:

■ Event publishing is an asynchronous action, there is no support for synchronous
event publishing.

34

Orchestrating ADF Business Components Services 34-1

34Orchestrating ADF Business Components
Services

This chapter describes how to use a SOA composite application to invoke business
methods within an Oracle ADF web application. In this pattern, the Oracle ADF web
application business methods make changes to data, whereas the SOA composite does
not.

When to implement: This pattern describes how to use a SOA composite application
to invoke business methods within an Oracle ADF web application. In this pattern, the
Oracle ADF web application business methods make changes to data, whereas the
SOA composite does not. For example:

■ A BPEL process service component must retrieve data from a database using an
ADF Business Components service. However, the BPEL process service
component will not post any changes back to the database.

■ A BPEL process service component must access an exposed service method on an
ADF Business Components service, and that method contains only business logic
and does not update data.

■ A BPEL process service component must access an exposed service method on an
ADF Business Components service. The exposed service method on the business
component service does not require a conversational callback style of interaction.
Instead, it provides a single invocation, wrapping all of the business logic and
view object manipulation. An example of this is a service method that deletes an
order and all line items, given an order ID as a parameter.

See Chapter 35, "Manipulating Back-End Data from a SOA Composite" for information
regarding patterns in which both the Oracle ADF web application and SOA composite
must update data without conflicting.

Design Pattern Summary: A BPEL process service component uses an invoke activity
to invoke a partner link that accesses a SOAP service created for a business
component.

Involved components:

■ SOA composite application that includes a BPEL process service component

■ Oracle ADF web application that includes ADF Business Components

34.1 Introduction to the Recommended Design Pattern
Oracle Fusion applications may require that a BPEL process service component access
data values from ADF Business Components in an Oracle ADF web application.
Oracle Fusion applications may also require that a BPEL process service component

Other Approaches

34-2 Developer's Guide

invoke a method contained in ADF Business Components. Instead of directly
accessing the ADF Business Components, you can publish the component as a web
service. The composite then accesses the published component over SOAP using an
invoke activity and partner link in the BPEL process service component. Figure 34–1
shows a high-level overview of this design pattern.

Figure 34–1 SOA Composite Application Accesses ADF Business Components Using
SOAP

This approach is recommended because SOAP bindings do not require that the Oracle
ADF web application and the SOA components be co-located in the same container.

34.2 Other Approaches
There are no other approaches to implementing this use case. The only supported way
to invoke ADF Business Components services is to use a web service SOAP binding.

34.3 Example
The sample code for this use case can be downloaded from Oracle SOA Suite samples.

34.4 How to Invoke an ADF Business Components Service from a BPEL
Process Service Component

To invoke ADF Business Components using a SOAP binding, you first publish the
business component as a web service. You then create a BPEL process service
component that contains a partner link to the ADF Business Components service. The
partner link is accessed from an invoke activity. An assign activity is used to populate
data into a variable used to pass data to the ADF Business Components service.

WARNING: Using the Oracle ADF binding to invoke ADF Business
Components services is prohibited due to topology and security
requirements. (Oracle ADF services and SOA composites must be
collocated; there are no application roles and privileges cannot be
escalated.)

How to Invoke an ADF Business Components Service from a BPEL Process Service Component

Orchestrating ADF Business Components Services 34-3

To invoke ADF Business Components from a BPEL process service component:
1. Create ADF Business Components, including an application module, as

documented in "Part II: Building Your Business Services" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

2. Optionally, create any SDO classes for view objects. For detailed procedures, see
the chapter "Integrating Service-Enabled Application Modules" in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

Any top-level view objects referenced in a service interface created from an
application module will automatically be service-enabled. However, creating the
SDO classes for individual view and entity objects allows you to configure the
SDO name or namespace, or selectively service-enable child view objects.

3. Configure the service interface for the application module. For detailed
procedures, see the chapter "Integrating Service-Enabled Application Modules" in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

You can elect to include in your service interface custom methods, top-level
service view instances, and any find operations based on view criteria.

At the end of this step, Oracle JDeveloper creates the WSDL files that will be used
by the BPEL process service component to access any required methods or data.
Figure 34–2 shows the WSDL created for the StoreFrontService in the sample
application. This service accesses the customer and order information needed by
the SOA composite application.

Figure 34–2 StoreFrontService WSDL File in Oracle JDeveloper

4. Implement the security as described in Section 34.5, "Securing the Design Pattern.".

5. For verification purposes, you can either run the Oracle ADF web application from
the Integrated Weblogic Server container included with Oracle JDeveloper, or you
can deploy the Oracle ADF web application to a standalone container. To deploy
to a standalone container:

a. Create a deployment profile for the web application. For details, see the
chapter "Deploying Fusion Web Applications" of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition).

How to Invoke an ADF Business Components Service from a BPEL Process Service Component

34-4 Developer's Guide

b. Make an Oracle WebLogic Server connection to the container.

c. Deploy the profile to the container.

d. Add a library reference to oracle.soa.workflow.wc. Add the following entry
to the file in MW_HOME/user_projects/domains/<domain
name>/config/config.xml directory, and add the line shown in Example 34–1
to oracle.adf.domain.loader.

Example 34–1 Shared Library Name

<shared-library name="adf.oracle.domain" version="11.1.1"
 library-compatible="true">
...
<import-shared-library name="oracle.soa.workflow.wc"/>

6. Add the WSDL file for the ADF Business Components service to the Resource
Palette of Oracle JDeveloper. If you are using the embedded server, you first need
to run your application. You then create a new URL connection in the Resource
Palette to the embedded server. The URL is:

http://host:7101/ApplicationName-ProjectName-context-root/AppModuleService Name

The URL for the embedded server is generated at the bottom of the WSDL file.
Alternatively, you can open the file and copy the soap:address URI.

If you have deployed the Oracle ADF web application to a standalone server, then
create a new Application Server connection in the Resource Palette. For more
information about using the Resource Palette, see the Oracle JDeveloper Online
Help.

7. Create a SOA composite application that includes a BPEL process service
component. For more information, see the chapter "Developing SOA Composite
Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

8. In the SOA composite application, create the reference web service binding to the
WSDL file for the ADF Business Components service. When creating the binding,
be sure to select the WSDL from the Resource Palette.

Figure 34–3 shows the composite.xml file for the sample application.

Note: Skip this step if deploying the profile to the WLS container
included in the SOA installation.

Note: The ADF Business Components service must be running in
order for it to be discoverable.

How to Invoke an ADF Business Components Service from a BPEL Process Service Component

Orchestrating ADF Business Components Services 34-5

Figure 34–3 Composite Application

A Partner Link for the ADF Business Components is automatically created when
the reference is wired to the BPEL process.

For more information about creating bindings, see the chapter "Developing SOA
Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

9. Wire the BPEL component to the Oracle ADF web service

Use a web service binding so that the ADF Business Components service can be
remotely deployed.

For more information about wiring references, see the chapter "Developing SOA
Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

10. Create an Invoke activity that invokes the partner link for the ADF Business
Components.

For more information about creating Invoke activities, see the chapter "Getting
Started with Oracle BPEL Process Manager" in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

11. Create an Assign activity to assign any values (for example, a static XML
fragment) to variables for the BPEL process service component. These can then be
passed to the ADF Business Components service.

For more information about creating Assign activities, see the chapter "Getting
Started with Oracle BPEL Process Manager" in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

12. Repeat adding assign and invoke activities as needed. Figure 34–4 shows the BPEL
flow for the sample application.

Securing the Design Pattern

34-6 Developer's Guide

Figure 34–4 BPEL Flow for Invoking an ADF Business Components Service

13. Implement the security as described in Section 34.5, "Securing the Design Pattern".

34.5 Securing the Design Pattern
You need to secure the following:

■ Secure the ADF Business Components web service data control and the SOA
composite using SAML policies.

■ Secure the ADF Business Components web service and the SOA composite with
username token policies.

What You May Need to Know About Orchestrating ADF Business Components Services

Orchestrating ADF Business Components Services 34-7

For information about securing the design pattern, see Section 50, "Securing Web
Services Use Cases."

34.6 Verifying the Deployment
To properly verify this design pattern, you should test your ADF Business
Components, then deploy and verify the SOA composite application.

To verify this design pattern:
1. Test your Oracle ADF web application using the various testing and debugging

methods described in the chapter "Testing and Debugging ADF Components" of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). For information about
testing the ADF Business Components service, see the chapter "Integrating
Service-Enabled Application Modules" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

2. Deploy the SOA composite application to the standalone WLS where the SOA
infrastructure has been installed. Because you created a web service binding from
the SOA composite application to the ADF Business Components web service, the
ADF Business Components web service need not be deployed to the SOA
infrastructure.

3. Test the deployed SOA Composite service using Fusion Middleware Control
Console. Every deployed service has its own test page, so you can quickly test that
the service functions as you expect. For more information, see "Managing SOA
Composite Applications" in the Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

34.7 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

Use Oracle Enterprise Manager Fusion Middleware Control Console to troubleshoot
the use case:

http://localhost:8888/em

You can test your SOA composite using Fusion Middleware Control Console. For more
information, see the section "Automating Testing for SOA Composite Applications" in
the chapter "Managing SOA Composite Applications" in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

34.8 What You May Need to Know About Orchestrating ADF Business
Components Services

Before you implement these design patterns, you should be aware of the following:

Any time you invoke an ADF Business Components service, the database transaction
for that operation is committed when it completes.

There is no session propagation between the BPEL process and Oracle ADF. While the
identity is passed in when security policies are in place, a new Oracle Fusion Data
Security session is created with each invocation of the ADF Business Components
service operations.

What You May Need to Know About Orchestrating ADF Business Components Services

34-8 Developer's Guide

If you invoke ADF Business Components service operations that use event-raising
entities, those events are not raised.

35

Manipulating Back-End Data from a SOA Composite 35-1

35Manipulating Back-End Data from a SOA
Composite

This chapter describes what updates created in a SOA composite application need to
do to perform create, read, update, or delete (CRUD) operations on back-end data
stored in a database.

When to implement: When updates created in a SOA composite application need to
perform create, read, update, or delete (CRUD) operations on back-end data stored in
a database.

Design Pattern Summary: Entity variables within a BPEL process service component
access ADF Business Components view objects through a service to fetch data on the
back end. The BPEL process service component then manipulates the data, and the
changes synchronize with the ADF Business Components service when the BPEL
service dehydrates. This is also known as master detail with indexing.

An example of master detail with indexing is entity variables created on master detail
records such as an order header with lines, accessing the lines individually with array
subscripting.

Involved components:

■ SOA Composite with a BPEL process service component and a SOAP binding.

■ ADF Business Components, including view objects, with a published web service
interface.

35.1 Introduction to the Recommended Design Pattern
When a BPEL process service component needs to perform CRUD operations on
back-end data stored in a database, you use BPEL entity variables. Entity variables can
fetch data from an ADF Business Components view object through a web service
interface, and manipulate the data using common BPEL assign and XPath constructs.
These changes automatically synchronize with the ADF Business Components service
when the BPEL instance dehydrates. Using entity variables provides the following:

■ Ease-of-use by abstracting data manipulation

■ Performance gains from the use of SDO change summaries

■ Strongly typed XML document to back XML element manipulations

The transaction locking strategy for SDO is optimistic. If the BPEL engine tries to
update an SDO or entity variable and the current revision number is out of date, an
exception will be thrown by the ADF Business Components service.

Example

35-2 Developer's Guide

35.2 Example
The sample code for this use case can be downloaded from Oracle SOA Suite samples.

35.3 How to Manipulate Data from a BPEL Process Service Component
To manipulate data, first you create an ADF Business Components entity object that
accesses and updates the data. You then publish the business component as a web
service. Next, you create a SOA composite application that includes a BPEL service
component to which you add entity variables that can manipulate the data.

To manipulate data from a BPEL process service component:
1. Create ADF Business Components, including an application module, as

documented in the chapter "Implementing Business Services with Application
Modules" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

2. Optionally create any SDO classes for view objects. For detailed procedures, see
the chapter "Integrating Service-Enabled Application Modules" in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

When modeling your view objects, it is important to determine which may need to
be available for binding to SOA composite entities. It is possible to automatically
enable services in top-level view objects referenced in a service interface create
from an application module. However, you must create the SDO classes for
individual view objects so as to configure the SDO name or namespace, or
selectively service-enable child view objects.

3. Configure the service interface for the application module. For detailed
procedures, see the chapter "Integrating Service-Enabled Application Modules" in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

You can elect to include in your service interface custom methods, top-level
service view instances, and any find operations based on view criteria.

At the end of this step, JDeveloper creates the WSDL files that will be used by the
BPEL process service component to access any required methods or data.

4. Deploy the services to the Integrated Oracle WebLogic Server by right-clicking the
nameServiceImpl class and selecting Run. Alternatively, define an ADF Business
Components service interface profile and deploy it to the standalone Oracle
WebLogic Server. For more information, see the sections "How to Test the Web
Service Using Integrated Oracle WebLogic Server" and "How to Deploy Web
Services to Oracle WebLogic Server" in the chapter "Integrating Service-Enabled
Application Modules" in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

5. Add the WSDL file for the ADF Business Components service to the Resource
Palette. If you are using the integrated server, you must first run your application.
In the Resource Palette, create a new URL connection to the integrated server. The
URL is:

http://localhost:7001/ApplicationName-ProjectName-context-root/AppModuleService
Name

The URL for the embedded server is generated at the bottom of the WSDL file.
Alternatively, you can open the file and copy the soap:address URI.

How to Manipulate Data from a BPEL Process Service Component

Manipulating Back-End Data from a SOA Composite 35-3

If you have deployed the Oracle ADF web application to a standalone server, then
create a new Application Server connection in the Resource Palette. For more
information about using the Resource Palette, see JDeveloper Online Help.

6. Create a SOA composite application that includes a BPEL process service
component. For detailed procedures see the chapter "Developing SOA Composite
Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

7. In the SOA composite application, create a reference binding from the BPEL
process to the WSDL file for the ADF Business Components service. When
creating the reference binding, be sure to select the WSDL from the Resource
Palette.

For more information about creating bindings, see the section "Adding Service
Binding Components" in the chapter "Developing SOA Composite Applications
with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite and "Using ADF Model in a Fusion Web Application" in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

8. In the BPEL process service component, create an entity variable. This type of
variable delegates BPEL data manipulation operations to an underlying data
provider implementation, in this case the business component.

For more information about creating entity variables, see the chapter
"Manipulating XML Data in a BPEL Process" of the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite

When you create the entity variable, ensure that you select the business
component as the Partner Link.

9. Add a Bind activity to the BPEL process service component. This activity
establishes the key to pass to the ADF Business Components service when the
SDO will be fetched from the database.

Example 35–1 shows the XML for a bind activity that establishes OrderId as the
key that will be passed to retrieve orders.

Example 35–1 Bind Activity Establishes the Key

<bpelx:bindEntity name="BindEntity_1" variable="orderEntityVar">
 <bpelx:key keyname="ns4:OrderId">bpws:getVariableData('inputVariable',
 'payload','/client:BPELEntityVarADFBCProcessRequest/client:orderID')
 </bpelx:key>
</bpelx:bindEntity>

For more information about Bind activities, see the section "Adding Service
Binding Components" in the chapter "Developing SOA Composite Applications
with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite and "Using ADF Model in a Fusion Web Application" in the Oracle

Note: The ADF Business Components service must be running in
order for it to be discoverable.

Note: The ADF Business Components service must be running in
order for it to be discoverable.

Securing the Design Pattern

35-4 Developer's Guide

Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

10. Add an Assign activity to the BPEL process service component that will
manipulate the data.

Example 35–2 shows the XML for an assign activity that first assigns the value
from the entity variable to another variable, then takes the value of the entity
variable and manipulates it using an XPath expression. The change operations are
mapped back to the SDO automatically. For more information about using XPath
operations, see Section 35.7.2, "Support for XPath Operations."

Example 35–2 Assign Activity Manipulates an Entity Variable Value

<assign>
 <copy>
 <from expression="$orderEVar/fdsm:OrderTotal + 1" />
 <to variable="orderEVar" query="fdsm:OrderTotal" />
 </copy>
 </assign>

Once the BPEL process service component hits a breakpoint activity (receive,
onMessage, wait, onAlarm) the instance is dehydrated. When dehydration
happens, or the scope where entity variables are declared completes, all related
entity variables that have been loaded flush their changes back to the business
component, and from there to the database. For more information, see
Section 35.7.1, "When Entity Variables Flush Changes Back to ADF Business
Components."

You can use sensor variables to monitor the service data object. For more
information, see the following links:

■ "Using Oracle BPEL Process Manager Sensors" in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite

■ "Monitoring BPEL Process Service Components and Engines" in the Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

■ "Managing SOA Composite Applications" in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

11. Deploy the ADF Business Components web service to the Integrated Oracle
WebLogic Server with SOA infrastructure. Then deploy the SOA composite
application.

35.4 Securing the Design Pattern
To secure this pattern, it is recommended that you follow the same steps as described
in Section 34.5, "Securing the Design Pattern."

35.5 Verifying the Deployment
To properly verify this design pattern, you should test your ADF Business
Components service, then deploy and test the SOA composite application.

What You May Need to Know About Manipulating Back-end Data from a SOA Composite

Manipulating Back-End Data from a SOA Composite 35-5

To verify this design pattern:
1. Test your Oracle ADF web application using the various testing and debugging

methods described in the chapter "Testing and Debugging ADF Components" of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). For information about
testing the ADF Business Components service, see the chapter "Integrating
Service-Enabled Application Modules" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

2. Deploy the SOA composite application to the standalone WLS where the SOA
infrastructure has been installed. Because you created a web service binding from
the SOA composite application to the ADF Business Components web service, the
ADF Business Components web service need not be deployed to the SOA
infrastructure.

3. Test the deployed SOA Composite service using Fusion Middleware Control
Console. Every deployed service has its own test page, so you can quickly test that
the service functions as you expect. For more information, see "Managing SOA
Composite Applications" in the Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

35.6 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

To get more logging information, add logger reference oracle.soa.bpel.entity.

35.7 What You May Need to Know About Manipulating Back-end Data
from a SOA Composite

Before you implement these design patterns, you may want to know more about when
variables flush changes back to the business component, how to test variables without
invoking ADF Business Components, support for XPath operations, and how to
invoke multiple services.

35.7.1 When Entity Variables Flush Changes Back to ADF Business Components
There are three points within the flow when an entity variable flushes its changes back
to the ADF Business Components service:

■ When the BPEL instance dehydrates. This happens whenever a breakpoint activity
is reached (for example receive, onMessage, wait, onAlarm) or execution reaches
the end of the flow definition.

■ When the BPEL instance dehydrates as a result of reaching its activity processing
threshold. By default, the threshold is set to 600 activities. The property
dspMaxRequestDepth in the file bpel-config.xml sets the threshold.

■ When execution reaches the end of the scope, if the entity variable has been
declared locally (for example within a scope). If the entity variable is declared
globally, it flushes changes when the instance completes.

Tip: The use of entity variables greatly affects the ability to unit test
the process in an isolated environment. Unit tests of processes that use
entity variables usually require managing the backend database state.

What You May Need to Know About Manipulating Back-end Data from a SOA Composite

35-6 Developer's Guide

To illustrate, Example 35–3 includes a locally declared entity variable.

Example 35–3 Local Entity Variable

<scope name="myScope">
 <variables>
 <variable name="orderEVar" element="fdsm:orderInfo2SDO"
 bpelx:entity.si="OrderService" />
 </variables>
 <bpelx:bindEntity name="BindEntity_1" variable="orderEntityVar">
 <bpelx:key keyname="ns4:OrderId">bpws:getVariableData(
 'inputVariable','payload','
 /client:BPELEntityVarADFBCProcessRequest/client:orderID')</bpelx:key>
 </bpelx:bindEntity>
 <assign> ... </assign>
</scope>

Because the variable was defined locally within the scope myScope, once that scope
completes, the variable declaration is no longer accessible from the outer enclosing
scope. At this point, changes made to the variable from the Assign activity will be
flushed to the ADF Business Components service.

Example 35–4 shows an entity variable defined globally, hence its scope will
complete when the instance completes.

Example 35–4 Global Entity Variable

<process ...>
 <variables>
 <variable name="orderEVar" element="fdsm:orderInfo2SDO"
 bpelx:entity.si="OrderService" />
 </variables>
 <sequence>
 <receive ...>
 <bpelx:bindEntity name="BindEntity_1" variable="orderEntityVar">
 <bpelx:key keyname="ns4:OrderId">bpws:getVariableData(
 'inputVariable','payload','
 /client:BPELEntityVarADFBCProcessRequest/client:orderID')</bpelx:key>
 </bpelx:bindEntity>
 <assign ...>
 </sequence>
</process>

35.7.2 Support for XPath Operations
XPath operations can be used in Assign activities to manipulate data. Most XPath
operations are supported. Following are noted limitations:

■ Nested predicates, such as -nameStep1[x1[y1>3]] are not supported.

■ Multiple steps within a predicate, such as -nameStep1[x1/y1>3] are not
supported.

■ There are limitations present in the ADF Business Components SDO binding layer,
such as numeric computation and function. However, BPEL's XPath layer will
rewrite the expression into a form supported by ADF Business Components. For
example:

- nameStep1[x1 > 23 + 45 and y1 = concatenate('a', 'b'))]

What You May Need to Know About Manipulating Back-end Data from a SOA Composite

Manipulating Back-End Data from a SOA Composite 35-7

All entity variables are stored in the BPEL dehydration store. However, BPEL only
stores the key data required for the variable and not the variable in its entirety. When
loading these variables upon re-hydration, BPEL runs a find request on the variable to
reload the variable data. However, the Oracle ADF web application may have changed
the variable, leading to potential loss of data integrity.

You can check the variable for data integrity by running
bpelx:entity.doVersionCheck = "true".

doVersionCheck checks for ObjectVersionId. If this returns a different value from that
in the BPEL store, a fault is raised.

Example 35–5 illustrates the verification of variable data integrity.

Example 35–5 Checking Variable Data Integrity

// Checks the variable version.
<variable name="Variable_1" element="ns1:emp" bpelx:entity.si="Service1"
bpelx:entity.doVersionCheck="false"/>
// Enables doing a custom version check on custom fields Sal and Deptno.
<variable name="Variable_1" element="ns1:emp" bpelx:entity.si="Service1"
bpelx:entity.customVersionCheck="ns1:Sal ns10:Deptno "/>

35.7.3 Invoking an ADF Business Components Service and Entity Variables in the
Same BPEL Process Service Component

The pattern described in this chapter and the pattern described in Chapter 34,
"Orchestrating ADF Business Components Services" can be easily combined.

Note: The version fields must exist in the data object returned. If the
Xpath query fails, an exception is thrown. Make sure the custom
version fields are defined in the XSD and that the names match.

What You May Need to Know About Manipulating Back-end Data from a SOA Composite

35-8 Developer's Guide

36

Accessing a PL/SQL Service from a SOA Composite 36-1

36Accessing a PL/SQL Service from a SOA
Composite

This chapter describes what a SOA composite application needs to do to access logic
implemented as PL/SQL in the database.

When to implement: A SOA composite application needs to access logic implemented
as PL/SQL in the database.

Design Pattern Summary: The SOA composite application accesses an ADF Business
Components service, which in turn accesses the PL/SQL stored procedure.

Involved components:

■ Business component that accesses a PL/SQL stored procedure, and is published as
a service.

■ SOA composite application which includes a BPEL process service component that
accesses the ADF Business Components service.

36.1 Introduction to the Recommended Design Pattern
Oracle Fusion applications may contain stored procedures in the database that a SOA
composite application needs to access. The stored procedure must be wrapped by an
ADF Business Components service; the BPEL process then accesses the ADF Business
Components service.

36.2 Other Approaches
Instead of accessing the stored procedure through an ADF Business Components
service, you could use a SOA database binding component. However, this is not
allowed because the SOA database binding component does not handle data changes
or database schema changes gracefully. In addition, a PL/SQL stored procedure
definition cannot be considered a service contract, as there is often some needed
extrapolation.

Another alternative is to create a Web service directly on top of PL/SQL. This is not
allowed because of security issues in the PL/SQL Web service.

36.3 Example
The sample code for this use case can be downloaded from Oracle SOA Suite samples.

How to Invoke a PL/SQL Stored Procedure from a SOA Composite Application

36-2 Developer's Guide

36.4 How to Invoke a PL/SQL Stored Procedure from a SOA Composite
Application

Instead of directly accessing the stored procedure, you create a business component
that accesses the procedure, you then publish the business component as a SOAP
service. The SOA composite application component accesses the ADF Business
Components service, which in turn invokes the stored procedure.

To invoke a PL/SQL stored procedure from a SOA composite application:
1. Create a business component, including an application module, as documented in

the section "Part II: Building Your Business Services" of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

2. Write a method in your application module that accesses the PL/SQL stored
procedure. For step-by-step instructions, see the section "Invoking Stored
Procedures and Functions" in the chapter "Advanced Business Components
Techniques" of theOracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition)

3. Generate the service interface for the business component, as described in
"Integrating Web Services Into a Fusion Web Application" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

4. Invoke it through a SOAP binding, as described in Chapter 34, "Orchestrating
ADF Business Components Services."

36.5 Securing the Design Pattern
You secure this design pattern in the same way you secure a pattern with an ADF
Business Components service invoked from a SOA composite application. For details,
see Section 34.5, "Securing the Design Pattern."

Identity propagation is enabled using Application User Sessions. When the application
module initializes, an Application User Session is created with the user who is
currently logged in (assuming no such Application User Session yet exists). The
Application User Session is pushed to the database, making it accessible from
PL/SQL.

For information about accessing the Application User Session, see Section 47,
"Implementing Application User Sessions."

For information about securing the design pattern, see Section 50, "Securing Web
Services Use Cases."

36.6 Verifying the Deployment
To properly verify this design pattern, test your business component, then deploy and
test the SOA composite application.

To verify this design pattern:
1. Test your Oracle ADF application using various testing and debugging methods

described in the chapter "Testing and Debugging ADF Components" of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition). For information about testing the
ADF Business Components service, see the chapter "Integrating Web Services Into

Verifying the Deployment

Accessing a PL/SQL Service from a SOA Composite 36-3

a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition).

2. Deploy the SOA composite application to the standalone WLS where the SOA
infrastructure has been installed. Because you created a published event from the
SOA composite application to the ADF Business Components service, the ADF
Business Components service need not to also be deployed to the SOA
infrastructure.

3. Test the deployed SOA composite service using Oracle Enterprise Manager Fusion
Middleware Control Console. Every deployed service has its own test page, so you
can quickly test that the service functions as you expect. For more information
about using the Fusion Middleware Control Console to test deployed SOA
composite applications, see the following chapter:

"Automating Testing SOA Composite Applications" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

Verifying the Deployment

36-4 Developer's Guide

37

Invoking Custom Java Code from a SOA Composite 37-1

37Invoking Custom Java Code from a SOA
Composite

This chapter describes what a SOA composite application needs to do to invoke logic
implemented by a Java class.

When to implement: A SOA composite application needs to invoke logic
implemented by a Java class.

Design Pattern Summary: The logic is accessed using a web service that the SOA
composite component accesses directly. The logic can be placed within an existing
ADF Business Components service, or the Java class can be published as a web service.

Involved components:

■ Business component that contains a service method, and is published as a service;
or a Java class published as a web service.

■ SOA composite application that includes a BPEL process service component that
accesses the ADF Business Components service or the Java class web service.

37.1 Introduction to the Recommended Design Pattern
While the most common implementation of business logic will either be inside the
application module of a business component or in a SOA composite application,
Oracle Fusion applications may contain business logic implemented in a separate Java
class. A SOA composite component within the application may need to access this
logic. When the logic has some relation to the entity or view objects defined in a
business component, it is best to implement the logic as another service method on the
component. You can publish the business component as a service, and the SOA
component can access the logic through that service.

In some cases, the application does not contain a business component that accesses the
same data as the logic in the Java class. In this case, you can publish the class as a web
service, allowing the SOA component to directly access the logic through the service.

37.2 Other Approaches
Instead of accessing the logic through a SOAP binding, you could use a BPEL
component with a Java activity to invoke some custom Java code.

An alternative is to use the bpelx:exec command to programmatically call Java
methods. This is the same as using a Java activity, only without a UI. It is
recommended to use the bpelx:exec command to complete light tasks such as the
following:

Example

37-2 Developer's Guide

■ Manipulating data.

■ Calling self-contained Java classes that do not have dependencies on other system
resources.

■ Calling functions provided by the BPEL service engine, such as adding an
auditTrail component, and so on.

■ Calling Enterprise JavaBeans.

To access the application database, use a JCA database adapter. To access a SOAP
service, use a BPEL Invoke activity.

For more information about using the bpelx:exec command, see the chapter
"Incorporating Java and Java EE Code in a BPEL Process" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

Another alternative is to call custom Java classes using custom XPath functions. For
more information about using XPath functions to call a Java class, see the sub-section
"Creating User-Defined XPath Extension Functions" in the appendix "XPath Extension
Functions" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

37.3 Example
Download the sample code for this use case from the following location. Oracle SOA
Suite samples.

37.4 How to Invoke a Java Class from a SOA Composite Application
Instead of directly accessing the Java class, you can add the logic to a business
component and then publish the business component as a SOAP service. The SOA
composite application component accesses the ADF Business Components service,
which in turn invokes the Java code.

To use a business component:
1. Create a business component, including the required logic as a method on an

application module, as documented in the section "Part II: Building Your Business
Services" of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

2. Generate the service interface for the business component and from the SOA
component, invoke the service through a SOAP binding, as described in
Chapter 34, "Orchestrating ADF Business Components Services."

37.5 Securing the Design Pattern
You secure this design pattern in the same way as you secure a pattern that has an
ADF Business Components service invoked from a SOA composite application. For
details, see Section 34.5, "Securing the Design Pattern."

WARNING: Do not use the bpelx:exec command to access the
application database or a SOAP service.

What You May Need to Know About Invoking Custom Java Code from a SOA Composite

Invoking Custom Java Code from a SOA Composite 37-3

37.6 Verifying the Deployment
To properly verify this design pattern, you should test your business component, then
deploy and test the SOA composite application.

To verify this design pattern:
1. Test your Oracle ADF application using various testing and debugging methods

described in the chapter "Testing and Debugging ADF Components" of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition). For information about testing the
ADF Business Components service, see the chapter "Integrating Web Services Into
a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition).

2. Deploy the SOA composite application to the standalone WLS where the SOA
infrastructure has been installed. Because you created a published event from the
SOA composite application to the ADF Business Components service, the ADF
Business Components service need not to also be deployed to the SOA
infrastructure.

3. Test the deployed SOA composite service using Oracle Enterprise Manager Fusion
Middleware Control Console. Every deployed service has its own test page, so you
can quickly test that the service functions as you expect. For more information
about using the Fusion Middleware Control Console to test deployed SOA
composite applications, see the following chapter:

"Automating Testing SOA Composite Applications" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

37.7 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

When writing custom Java code, you may need to use logging messages for
debugging. You can then monitor the log files for troubleshooting information.

For more information about testing and debugging, see the following chapter:

"Testing and Debugging ADF Components" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

37.8 What You May Need to Know About Invoking Custom Java Code
from a SOA Composite

If you have already created a business component and the method semantics of the
needed logic fit with the other service methods already implemented in the
application module, you should add another method for the needed logic to the
application module. If the method relies on entity and or view objects on the business
component, then adding the method to the business component is the only approach
available.

If you have not created a business component or the method semantics do not fit with
the other service methods already implemented in the application module, you may
want to create a Java web service instead.

What You May Need to Know About Invoking Custom Java Code from a SOA Composite

37-4 Developer's Guide

38

Managing Tasks from an Oracle ADF Application 38-1

38Managing Tasks from an Oracle ADF
Application

This chapter describes what your ADF application needs to do to assign tasks to users
or groups.

When to implement: When your ADF application needs to assign tasks to users or
groups.

Design Pattern Summary: An ADF task flow in a web application contains a page
where a user action invokes an ADF Business Components object that performs some
logic. Because of this user action, a task must be assigned to another user. For example,
an employee uses an ADF web application to submit an expense report. The page used
to create the expense report is within an ADF task flow. When the expense report is
submitted, a task needs to be raised to the employee's manager so that he or she can
approve or reject the expense report. To make this happen, when the ADF Business
Components object is invoked, it invokes a BPEL process service component that uses
a human task service component to assign the task to the manager. Once the human
task service component is invoked, the manager uses the Worklist application to
complete the task, in this case the approval or rejection of the expense report. The
Worklist application also uses an ADF task flow to present those pages to the manager.

This design pattern uses BPEL so as to enable orchestration after the task is submitted.

Involved components:

■ ADF web application that includes an ADF Business Components object and an
ADF task flow that contains the UI pages where the end user submits data.

■ SOA composite with a mediator component that listens for events raised by the
ADF application. The mediator invokes a BPEL service component that uses an
included human task component.

Instead of using the worklist application, you could use a custom task application or
APIs.

Note: BPEL is not a requirement for working with human tasks.
However, BPEL is used when orchestrating tasks after the end-user
submits the human task, for example to approve or reject forms filled
out by the end-user.

Introduction to the Recommended Pattern

38-2 Developer's Guide

38.1 Introduction to the Recommended Pattern
Oracle Fusion applications may need to assign users tasks that they need to complete.
The application needs to notify users of assigned tasks, then provide a way for them to
complete the tasks. The SOA composite project may include a BPEL process that
assigns tasks to users as part of the process flow. The human workflow service can be
used to accomplish this. The workflow component also includes an out of the box
worklist application displaying all the tasks assigned to a particular user or group. You
can use the ADF task flow to create UI pages listing pending tasks. These are
displayed upon logging in to the worklist application.

To develop this pattern, an ADF application can invoke an SOA composite application,
as described in Chapter 32, "Initiating a SOA Composite from an Oracle ADF Web
Application." A human task service component can be included in the composite that
assigns tasks to users or roles. This component includes a task editor used to design
the metadata for the task, an ADF task flow for creating task forms for the human
interaction, and the out-of-the-box Worklist application for users to access tasks and
act on them. The Worklist application can use an ADF task flow to manage the pages
needed to complete the tasks.

This pattern is recommended for the following reasons:

■ You can do any required validation of the data in the ADF Business Components
layer as opposed to the process.

■ You can pass only minimal data from the ADF web application into the process.
Using this approach, you can pass just header level information required to route
the task, (for example an expense ID, amount, requester). All other information
remains in the database and is accessed in the task form by reference. The task
form is used to display relevant details to the user. The data is therefore not carried
through the process.

Figure 38–1 shows the recommended pattern.

How to Manage a Human Task Flow from an ADF Application

Managing Tasks from an Oracle ADF Application 38-3

Figure 38–1 Recommended Pattern

This chapter explains how to implement the recommended pattern.

38.2 Other Approaches
There are no other supported approaches to this use case.

38.3 Example
Following is an example that illustrates the design pattern.

An Expense application contains an ADF task flow used to create an expense report
and submit it for approval. When the user submits the expense report, a BPEL process
service component is invoked that contains a human task service component, which
assigns the task of approving expense report to the user's supervisor. The human task
service component notifies the supervisor that an expense report needs to be
approved. When the supervisor logs into the Worklist application, he sees notification
of an expense report that requires approval. The Worklist application contains an ADF
task flow that allows the supervisor to either approve or reject the expense report.

The sample code for this use case can be downloaded from Oracle SOA Suite samples.

38.4 How to Manage a Human Task Flow from an ADF Application
There are three high-level steps needed to invoke a human task flow from an ADF web
application:

How to Manage a Human Task Flow from an ADF Application

38-4 Developer's Guide

1. Create and deploy the ADF web application that contains the UI necessary to
invoke the SOA composite that contains the human work flow.

2. Create the SOA composite that contains a mediator, BPEL process service
component, and human task component that will assign the task to the user.

3. Create the ADF task flow based on the human task component. This will provide
the UI necessary for the user to resolve the task.

These procedures are detailed in the remainder of this section.

To invoke a human work flow from an ADF application:
1. Create an ADF application that contains a page that will raise an event, as

described in Section 32.4, "How to Initiate a BPEL Process Service Component
from an Oracle ADF Web Application".

2. Create an SOA composite application component that includes a mediator service
component, along with a BPEL process service component that the mediator
service component invokes when the ADF Business Components event is raised.
Follow the procedures as documented in Section 32.4, "How to Initiate a BPEL
Process Service Component from an Oracle ADF Web Application".

3. In the SOA composite application, create a human task service component that
uses the payload of the message received from the mediator service component to
provide any parameters needed to create the task in the workflow.

For detailed procedures on creating a human task service, see the chapter
"Designing Human Tasks" in the Oracle Fusion Middleware Developer's Guide for
Oracle SOA Suite.

When creating the human task service, note the following:

■ The task will require details about the assignee, task parameters, and so on.
However, you do not need to capture the entire object used to create the task
in the task parameters. You only need to include enough information to make
the assignment decision and to then query the object using the service
interfaces for the ADF Business Components application module.

For example, in the expense report sample application, you might create
parameters for the expense report number, the "submitted by" value, and
optionally the amount. This would be the only information needed to
dynamically assign the task to the submitter's manager.

■ You can assign tasks statically or dynamically. Make sure that any user to
whom the task is assigned is seeded in the identity management store (for
more information, see Section 38.6, "Securing the Design Pattern").

■ You should model any email or other notifications as part of the task
metadata. For example, you may want to model an email to the supervisor
when the task is assigned to them and an email to the initiator when the task is
completed. For more information about notifying users of changes to task
status, see the chapter "Designing Human Tasks" in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

4. In the BPEL process, add a human task activity and wire it to the human task
service component. In the human task activity, specify which BPEL variables map
to the data required for the task.

Once you create the human task activity, a switch statement is automatically
inserted that contains various branches based on the previously specified outcome

Other Approaches

Managing Tasks from an Oracle ADF Application 38-5

of the human task. Based on how the outcome impacts the specific use case,
additional business logic should be inserted inside the branches.

For example, in the expense report example, you might include a branch that calls
the ADF Business Components object to update the state of the expense report to
Approved. This can be done by exposing the ADF Business Components
application module as a service and then invoking it from BPEL as a SOAP
service. For more information, see Chapter 35, "Manipulating Back-End Data from
a SOA Composite."

5. Create an ADF task flow based on the human task service component. This will be
the flow used in the worklist application that displays the pages the user views to
complete the task.

For detailed procedures, see the chapter "Designing Human Tasks" in the Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

 Note the following:

■ When creating the task flow, select the .task file created in Step 3. This
automatically generates a task data control that can access the task parameters
and perform actions on the task such as Approve and Reject.

■ On the JSP pages, use the drop handlers on the task data control to insert
sections such as Task Header, Comments and Attachments, Approval History,
and so on.

■ Use the ADF Business Components data control to pull in any transactional
data, such as line items. You can use the object id (available in task
parameters) in the query API for the ADF Business Components.

■ Drag and drop any custom actions (for example, approve or reject) on the
form. You can also include system actions (for example, escalate, reassign,
delegate) on the form.

■ Note that by default, the first page in the task flow is sent in email
notifications. The buttons on the page are replaced with ReplyTo links for
actions such as Approve and Reject, allowing the user to approve or reject the
object in the task from the email. You can also model a different page for email
approval.

6. Deploy the SOA composite and the ADF task flow for the human task service to
the standalone WLS where the SOA infrastructure has been installed.

Deploy the task from the application menu and the SOA composite from the
project menu.

38.5 Other Approaches
You can deploy the human task flow to a remote server without SOA infrastructure.

For more information, see the section "How To Deploy a Task Display Form to a
non-SOA Oracle WebLogic Server" in the chapter "Designing Task Forms for Human
Tasks" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Securing the Design Pattern

38-6 Developer's Guide

38.6 Securing the Design Pattern

The human task service uses Java platform security (JPS) for accessing user/role
profile information. JPS supports multiple providers, such as XML and XS.

The default authentication provider in Oracle WebLogic Server is WLSAuthenticator,
while the authorization provider is based on the JPS policy store.

The default security configuration uses the Oracle WebLogic Server embedded LDAP
as the identity store and system-jazn-data.xml as the policy store. This configuration
is held in the workflow-identity-config.xml file, as shown in Example 38–1.

Example 38–1 Identity Service Configuration

<ISConfiguration xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig" >
 <configurations>
 <configuration realmName="jazn.com">
 <provider providerType="JPS" name="JpsProvider" service="Identity">
 <property name="jpsContextName" value="default" />
 </provider>
 </configuration>
 </configurations>
</ISConfiguration>

Fore more information regarding configuring or updating the human workflow
Identity Service, see the section "Configuring the Identity Service" in the chapter
"Configuring Human Workflow Service Components and Engines" in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

For more information, see the chapter "Configuring the OPSS Security Store" in the
Oracle Fusion Middleware Application Security Guide.

38.7 Verifying the Deployment
To properly verify this design pattern, you should test and deploy your ADF
application, deploy the SOA composite application and the ADF task from for the
Worklist application, and then run the ADF application.

To verify this design pattern:
1. Test your Oracle ADF web application using the various testing and debugging

methods described in the chapter "Testing and Debugging ADF Components" of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). Be sure to enable the
ADF Business Components runtime logging by setting the Java VM parameter

Note: In order to use the ADF Security Wizard, developers must
start up JDeveloper with a role profile that supports JAAS-XS security,
such as the Oracle CRM Application Developer Role. To deploy an
SOA composite to a WLS container, the application deployer must
start up JDeveloper using the default role.

Note: As other applications plan to use XS database as a repository,
XML-based providers must synchronize with the XS database
whenever changes occur to user or role related data.

Troubleshooting the Use Case

Managing Tasks from an Oracle ADF Application 38-7

jbo.debugoutput=console. Doing so logs the event and its payload in the
JDeveloper log console.

2. Use Oracle Enterprise Manager Fusion Middleware Control Console to view the
SOA composite application and ensure it was properly deployed. For more
information about using Fusion Middleware Control Console, see the chapter
"Deploying SOA Composite Applications" of the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

3. Run the ADF application and invoke the method that raises the event.

Alternatively, you can use the Composite initiate page in Enterprise Manager to
send a test message to the BPEL process service component. Note that this
bypasses the mediator service component and directly calls the BPEL process
service component which in turn invokes the human task service component.

The web service ending point for each of the services in the composite is

http://HOST_NAME:PORT/fabric/application name/composite_name/service_name

For example:

http://localhost:8888/fabric/OrderBookingApp/OrderProcessing/Client

4. View the ADF Business Components runtime log to view the event and payload.
For more information about the log, see the chapter "Testing and Debugging ADF
Components" of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

5. Use Oracle Enterprise Manager Fusion Middleware Control Console to check if an
instance of the SOA composite application has been created. The process should be
in running state and waiting at the human task step.

For more information about Fusion Middleware Control Console, see the chapter
"Deploying SOA Composite Applications" of the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

6. Log in to the worklist application to view the task created for the supervisor. The
worklist application is located at http://hostname/integration/worklistapp/

Click Approve or Reject to complete this task.

If successful, the status of the task will be updated on the home page the Worklist
application.

7. In Fusion Middleware Control Console, check that the human task has completed.
This ensures that the waiting BPEL process can proceed with the subsequent steps.

38.8 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when developing or
running this use case.

38.8.1 Worklist Notification Locale Does Not Honor the Regional Applications Session
Setting

When logging into the worklist application, both the worklist and human task details
honor the regional setting in the Applications Core session. However, the notification
locale does not honor the regional setting of the Applications Core session.

Troubleshooting the Use Case

38-8 Developer's Guide

Notifications cannot consider the Applications Core sessions of the worklist
application.

Consider a task being assigned to user jcooper. The user jcooper may not be logged
into the worklist at the time, but notifications must be sent to jcooper when the task is
assigned.

To do so, implement oracle.bpel.services.workflow.task.INotificationCallback.
You can add print statements to the implementation and verify the values that are
returned.

38.8.2 Task Does Not Display in Worklist Application
If you are not able to find the task in the worklist application, try the following:

■ Login to the worklist application with weblogic as the user. Navigate to the
Administration Tasks tab. This will list all the tasks in the system. Locate the task
that was created and validate the state (it should be ASSIGNED) and the
assignees.

■ Alternatively, log in to Oracle Enterprise Manager Fusion Middleware Control
Console at http://HOST_NAME:PORT/em and click the instance ID to display an
audit track window. In the audit track view, click the BPEL instance and select the
Flow-Debug tab to display the BPEL audit trail. Check the following values in the
initiateTaskResponse:

– task:task/task:systemAttributes/task:state: This should be ASSIGNED

– task:task/task:systemAttributes/task:assignees: This displays the
assignees of the task

■ Check the following log files and the shell where the server was started to make
sure that there are no errors (for information about logging, see Section 38.8.4,
"Logging").

– MW_HOME/user_projects/domains/<domain name>/config/config.xml

– MW_HOME/user_projects/domains/soainfra/logs/startsoa.log

– MW_HOME/user_projects/domains/soainfra/servers/AdminServer/tmp/_WL_
user/soa-infra/77op2b/war/WEB-INF/application.log

Any exception where the exception stack trace has classes from package
oracle/bpel/services/workflow indicates a workflow exception.

■ Use the web services page http://HOST_
NAME:PORT/integration/services/IdentityService/identity to check user and
group properties. Users and groups may be seeded differently from what is
assumed and may therefore cause unexpected results.

38.8.3 Task Details Do Not Display in the ADF Task Flow
If you are not able to see the human task details when you click on the task in the
worklist application, try the following:

■ For design time issues, make sure you start JDeveloper using jdev.exe instead of
jdevw.exe in a Windows environment. This brings up a console window in the
background that shows any error messages or stack traces.

■ If you see any errors during deployment of the ADF task flow, check the
following:

Troubleshooting the Use Case

Managing Tasks from an Oracle ADF Application 38-9

– The ADF task flow for the human task service is deployed on the same
instance as the SOA server. If it is deployed to a server without SOA
infrastructure, make sure to correctly follow the steps for deploying task
flows.

– Check if the taskflow.properties file exists in your project and has the
following settings:

human.task.lookup.type=LOCAL

– Check that all shared libraries are installed to the WLS instance where the task
flow is deployed, including adf.oracle.domain,
adf.oracle.domain.webapp, JSF, JSTL and oracle.soa.workflow or any
shared library specified in weblogic-application.xml. You can verify this by
logging into Oracle WebLogic Server Console as an administrator, and clicking
Deployments.

■ If you see the task in the task list but you get an error when clicking on the task
title, try the following:

– Determine if there were any deployment errors.

– Enable logging for ADF as described in Section 38.8.4, "Logging." Set the log
level to FINE and deploy the task flow again. Once you do this, you should
see error messages in the log file.

– If you get any errors on the task details screen when performing any
operations, check the following log files:

* MW_HOME/user_projects/domains/DOMAIN_NAME/servers/ADMIN_SERVER_
NAME/logs/DOMAIN_NAME.logl

* MW_HOME/user_projects/domains/DOMAIN_NAME/servers/SERVER_
NAME/logs/SERVER_NAME.log

38.8.4 Logging
You can set logging for the Workflow application and for the ADF task flow.

38.8.4.1 Workflow Logging
To enable debug logging for the workflow service, add a new log_handler and logger
for oracle.bpel.services in ORACLE_HOME/j2ee/home/config/j2ee-logging.xml as
shown in Example 38–2. After these changes are made, you must restart the server.
When this logger is added, the logs will be found in MW_HOME/user_
projects/domains/<domain name>/config/config.xml.

Example 38–2 Adding a New Log Handler

<?xml version="1.0" encoding="iso-8859-1"?>

<logging_configuration>

 <log_handlers>

 <log_handler name="oracle-bpel-services-handler"
 class="oracle.core.ojdl.logging.ODLHandlerFactory">
 <property name="path" value="../log/wls/bpel/services"/>
 <property name="maxFileSize" value="10485760"/>
 <property name="maxLogSize" value="104857600"/>

What You May Need to Know About Managing Tasks from an ADF Application

38-10 Developer's Guide

 <property name="encoding" value="UTF-8"/>
 <property name="supplementalAttributes"
 value="J2EE_APP.name,J2EE_MODULE.name,
 WEBSERVICE.name,WEBSERVICE_PORT.name"/>
 </log_handler>

 </log_handlers>

 <loggers>

 <logger name="oracle.bpel.services" level="FINEST" useParentHandlers="false">
 <handler name="oracle-bpel-services-handler"/>
 </logger>

 </loggers>

</logging_configuration>

38.8.4.2 ADF Task Flow Logging
To enable ADF logging for the task flow, add fragments shown in Example 38–3 to MW_
HOME/user_
projects/domains/DOMAIN/soainfra/config/fmwconfig/servers/AdminServer/logg
ing.xml and restart the server.

MW_HOME/user_projects/DOMAIN/domains/<domain name>/config/config.xml

Example 38–3 Adding Fragments to the Logging File

<logger name='oracle.adf' level='FINE' useParentHandlers='false'>
 <handler name='wls-domain'/>
 <handler name='console-handler'/>
</logger>
<logger name='oracle.adfinternal' level='FINE' useParentHandlers='false'>
 <handler name='wls-domain'/>
 <handler name='console-handler'/>
</logger>
<logger name='oracle.jbo' level='FINE' useParentHandlers='false'>
 <handler name='wls-domain'/>
 <handler name='console-handler'/>
</logger>

38.9 What You May Need to Know About Managing Tasks from an ADF
Application

Tasks are linked to the composite instance that created them. When a new version of
the BPEL process service component or workflow service component is deployed, any
existing composite and associated task instances are marked stale. You can clean up
stale composites using Oracle Enterprise Manager Fusion Middleware Control
Console. Cleaning up stale composite instances automatically deletes the associated
task instances as well.

For more information, please refer to the chapter "Managing SOA Composite
Applications" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

39

Working with Data from a Remote ADF Business Components Service 39-1

39Working with Data from a Remote ADF
Business Components Service

This chapter describes what to do when you need to work with data from a remote
Oracle ADF Fusion Business Service in the format of an ADF Business Components
component, such as rendering the data in a UI table, or creating a view link to it.

When to implement: When you need to work with data from a remote Oracle ADF
Fusion Business Service in the format of an ADF Business Components component,
such as rendering the data in a UI table, or creating a view link to it.

Design Pattern Summary: Create service-based entity objects and view objects and
use these entity objects and view objects as normal ADF Business Components either
in your business logic or for rendering on UI pages to simplify the task.

Involved components:

■ ADF Business Components service that accesses data from a different pillar.

■ Entity object based on the ADF Business Components service, and view object on
top of the entity object.

39.1 Introduction to the Recommended Design Pattern
When you want to work with data from a remote ADF Business Components service,
you can create service-based entity objects and view objects to simplify the task. A
service-based entity object is an entity object that encapsulates the details of accessing
and modifying a row of data from a remote ADF Business Components service. The
service-based entity object then can be used in the same way as a normal
database-table-based entity object.

39.2 Potential Approaches
If the data that you need to work with is always local to you, that is, available in the
same database, then a table-based entity object should be used instead. The
service-based entity object or view object will have additional performance overhead
since each has an extra service layer.

Instead of wrapping with a service-based entity object or view object, you always can
invoke the ADF Business Components service directly. For more information, see
Chapter 41, "Synchronously Invoking an ADF Business Components Service from an
Oracle ADF Application." Since UI components cannot be bound to Service Data
Objects (SDOs) directly and an ADF Business Components service only accesses SDOs,
using service-based entity objects and view objects is a simpler approach, especially if

Example

39-2 Developer's Guide

you just need to invoke a method as part of your business logic and you do not need
to bind the input/output of the method to UI components.

39.3 Example
Currently, no example is available.

39.4 How to Create Service-Based Entity Objects and View Objects
Instead of creating an entity object on top of a database schema, you create it based on
a WSDL.

To create service-based entity objects and view objects:
1. Ensure that the WSDL file of the targeted ADF Business Components service is

available, either from your file system or from a URL.

2. Create a new entity object using the Create Entity Object wizard.

3. Create a view object on top of the entity object that you created in the previous
step. This step is the same as creating a normal entity object-based view object. For
more information, see the chapter "Defining SQL Queries Using View Objects" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

4. Register the targeted service in your connections.xml file (found in Application
Resources > Descriptors > ADF META-INF). This entry is needed during runtime
to invoke the service. Note that this also requires that the targeted service be
hosted and running, since the registration requires the URL of where the service is
deployed. Example 39–1 shows sample code used in the connections.xml file.

Example 39–1 Sample connections.xml Code

<Reference name="{http://xmlns.oracle.com/apps/adfsvc/deptempService/}DeptEmpService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.adfsvc.deptempService.DeptEmpService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">
 <Contents>DeptEmpServiceBean#oracle.apps.adfsvc.deptempService.DeptEmpService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>DeptEmpService.xsd</Contents>
 </StringRefAddr>

Note: Instead of using a database schema object for the entity's data
source, select Service Interface. For more information see the section
"Accessing Remote Data Over the Service-Enabled Application
Module" in the chapter "Integrating Service-Enabled Application
Modules" in Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications
Edition).

Known Issues and Workarounds

Working with Data from a Remote ADF Business Components Service 39-3

 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/adfsvc/deptempService/</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:7101</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>

5. Get the service interface common.jar file from the service provider, and add the
file to your library. This is also required during runtime. The common.jar file is
generated when the service provider uses an ADF Business Component Service
Interface deployment profile to deploy.

39.5 Securing the Design Pattern
For more information about securing the use case, see Chapter 50, "Securing Web
Services Use Cases."

39.6 Verifying the Deployment
To properly verify this design pattern, test your service-based view object in an
application module tester, then deploy and test the application that uses the
service-based entity object and view object.

To verify this design pattern:
Test your Oracle ADF application using the various testing and debugging methods
described in the chapter "Testing and Debugging ADF Components" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

39.7 Troubleshooting the Use Case
Currently, there are no tips for troubleshooting the use case.

39.8 Understanding the Transactional Behavior of Service-Based Entity
Objects and View Objects

Note that the underlying data source for service-based entity objects and view objects
is an ADF Business Components service, which is stateless and in a different
transaction. When you commit your transaction of your local application module, a
service call will be made if there is any change in the service-based entity object that is
not part of your local transaction. If the service invocation fails, then the local
transaction also will fail. However, if the service invocation succeeds and then later
your local transaction fails, it is your error handling code that must perform a
compensating transaction against the remote service to "undo" the previous change
made.

39.9 Known Issues and Workarounds
Known limitations are the following:

Known Issues and Workarounds

39-4 Developer's Guide

■ A service-based entity object cannot be referenced as an secondary entity usage in
a view object.

■ A service-based view object cannot have secondary entity usages.

These limitations mean that you cannot create a flattened join of multiple entities if
one of them is a service-based entity object. The workaround is to use a view link to
traverse from one view object to another.

40

Invoking an Asynchronous Service from a SOA Composite 40-1

40Invoking an Asynchronous Service from a
SOA Composite

This chapter describes what a SOA composite application needs to do to invoke an
asynchronous service such as an Oracle ADF service or another SOA composite
application.

When to implement: A SOA composite application needs to invoke an asynchronous
service such as an Oracle ADF service or another SOA composite application.

Design Pattern Summary: A SOA composite is designed with a Mediator or BPEL
component that invokes an asynchronous service endpoint, after which goes into a
state of rest until the asynchronous endpoint calls back with the response payload.

Involved components:

■ One SOA composite (Consumer role).

■ One or more (Producer role) SOA Composites or Oracle ADF Services.

40.1 Introduction to the Recommended Design Pattern
Oracle Fusion web applications often include services with long-running computation
that are exposed through service interfaces. When invoking services through a
synchronous service interface, the service may not execute as desired due to time outs
or lack of resources as a result of blocked, waiting threads. To solve this problem,
service are exposed through asynchronous interfaces that wait for a response when
invoking long-running services.

The recommended approach to asynchronous invocation is to create an asynchronous
SOA composite with a BPEL process that invokes the asynchronous service.

Figure 40–1 illustrates the process flow of BPEL process invoking an asynchronous
service.

Note: Per Oracle Fusion Applications standards, a composite that
exposes a synchronous interface must not invoke an asynchronous
service.

Other Approaches

40-2 Developer's Guide

Figure 40–1 Asynchronous Service Call Flow

The client BPEL process invokes an asynchronous service through the WSDL partner
link. The service runs as required, and returns a response to the waiting client BPEL
process.

40.2 Other Approaches
Following are alternative, unsupported approaches to the use case.

■ Invoke services synchronously. This approach is not supported due to time out
issues.

■ Invoke services asynchronously, without registering a callback handler service.
This approach is not supported, as a callback handler is required when
asynchronously invoking a service.

■ Invoke a one-way service. This approach is not supported for Oracle ADF services.

■ Invoke a service asynchronously, registering another service as the callback
handler. This approach is not supported. Use business events instead.

40.3 Example
An interface table is populated by third-party entities using legacy interfaces, such as
FTP and files. Once the interface table is populated, a periodic Oracle Enterprise
Scheduler job runs, checking for new interface table rows. If the job finds new table
rows, it raises a business event that initiates a BPEL process. The BPEL process
orchestrates any required services such as those used to import and notify users,
obtain necessary approvals, and so on.

In this scenario, one or more services or tasks require several minutes or even hours to
complete, as is typical among asynchronous service interfaces. The BPEL process
invokes the service and enters a dormant state in which the process progress and
variable data are stored in the database, which frees memory and thread resources for
other BPEL processes. When the long-running service completes, the asynchronous
callback revives the process. The BPEL process continues from where it left off.

You can find the sample code for this use case here:

Oracle SOA Suite samples

Caution: These approaches are not supported and should not be
implemented.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

Invoking an Asynchronous Service from a SOA Composite 40-3

40.4 How to Invoke a SOA Composite Application from Within a SOA
Composite Application

To initiate an asynchronous service from a BPEL process, do the following:

1. Create a SOA composite with a BPEL process.

2. Create the service reference to the asynchronous web service you want to invoke.

3. Populate the BPEL process with scope, invoke, receive, assign and fault-handling
activities.

Before defining the service reference, create your composite and BPEL process with the
requisite input and output payload types. Figure 40–2 shows an example of a
minimalist composite with a new BPEL process.

Figure 40–2 Composite Before Web Service Reference Definition

Defining the service reference to the asynchronous web service endpoint involves the
following tasks:

1. Define the new web service reference.

2. Wire the BPEL process to the new service reference.

3. Invoke the asynchronous web service from the BPEL flow.

4. Deploying and testing the composite.

40.4.1 Defining a New Web Service Reference
Define the service that the composite is to invoke.

To define the new web service reference, do the following:
1. In the composite, define the asynchronous service reference by dragging a Web

Service component to the right-hand swim lane of the composite.

The Create Web Service dialog opens.

2. In the Create Web Service dialog, enter the following information:

■ Name: Enter the name of the web service reference for this composite.

■ Type: Select Reference. A Reference is a service that this composite will be
invoking.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

40-4 Developer's Guide

■ WSDL URL: Select the full URL to the WSDL of the asynchronous web service
to be invoked. Use the service explorer to navigate to and select the WSDL.

■ Port Type: Select the execute port type of the end point service. This value is
often automatically defaulted by the UI. This is the port type invoked by the
composite.

■ Callback Port Type: Select the callback port type of the end point service. This
value is often defaulted automatically by the UI. This is the port type used to
call back the composite.

Figure 40–3 shows an example of a completed Create Web Service dialog.

Figure 40–3 Create Web Service Dialog

40.4.2 Wiring the BPEL Process to the New Web Service Reference
In order to invoke a web service, a BPEL process must include a local partner link
definition. You can define a partner link in one of two ways.

■ Define a partner link in the BPEL process editor.

■ Drag the interface pin from the BPEL process to the service reference.

Defining a partner link involves additional work as compared to the alternative
approach of dragging the interface pins. However, when creating a partner link for a
web service that has not yet been defined as a service reference in the composite,
Oracle JDeveloper automatically creates the composite service reference and wires the
BPEL process to that service.

Dragging the interface pin from a component to a service is a quick and easy way to
automatically create partner links and other service component integrations, such as
wiring a Mediator to a Business Rule component. Wiring components by clicking and
dragging automatically generates the metadata files and entries used to support the
interaction between the components.

To define a partner link in the BPEL process editor:
1. In the Composite Editor, double-click the BPEL process component.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

Invoking an Asynchronous Service from a SOA Composite 40-5

2. In the right-hand swim lane of the BPEL process, right-click the area under Partner
Links.

The Create Partner Link dialog displays, as shown in Figure 40–4.

Figure 40–4 Create Partner Link Dialog

3. In the Create Partner Link dialog, enter the following information:

■ Name: Enter the name of the partner link. This defaults to the service name.

■ WSDL URL: Enter the full URL for the WSDL file of the asynchronous web
service to be invoked.

■ Partner Link Type: Enter the service partner link type. This value is
automatically filled in using the service name, as derived from the WSDL
referenced in the WSDL URL field.

■ Partner Role: From the dropdown list, select the ServiceNameProvider role.
This is the role of the producer service for which you entered the WSDL.

■ My Role: From the dropdown list, select the ServiceNameRequester role. This
is the role of the BPEL process as the consumer of the asynchronous service.

4. Alternatively, click and drag the pin from the BPEL component to the service
reference.

a. Hover the mouse over the BPEL component and the input and output icons.

b. Drag the input and output icons to the matching icons on the service reference
component, as shown in Figure 40–5.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

40-6 Developer's Guide

Figure 40–5 Dragging the Interface Pin

40.4.3 Invoking the Asynchronous Web Service from the BPEL Flow
By default, an asynchronous BPEL flow contains two activities: the receive activity that
starts the process and the invoke activity that initiates the callback response.

Asynchronous services do not throw faults, such that they must always return a valid
payload whenever possible. In the event of a business failure at the endpoint service,
services should return a payload that contains a failed status.

Invoking the asynchronous web service from the BPEL flow involves the following
steps:

1. Add required resilience and logging.

2. Add a scope activity to include the asynchronous service invocation and variable
assignment activities.

3. Add fault handlers to trap any system failures that may occur during any activities
within a scope, so as to permit logging, incident creation and error management as
required by the use case. Asynchronous services do not throw WSDL-defined
faults, necessitating a fault handler.

4. Add logging. All BPEL processes within Oracle Fusion web applications are
required to implement translatable, tokenized, message-level logging for
fault-handling scenarios.

5. Invoke the service.

6. Add invoke, receive and assign activities.

a. Invoke: This activity defines the partner link and invoke operation, and
defines the BPEL variable containing the payload to be submitted.

b. Receive: This activity defines the partner link and operation to be invoked,
and defines the variable to store the response payload when the asynchronous
callback is made.

c. Assign (1): The first assign activity copies BPEL process input data, XML
fragments and XPath expression results to the payload that is sent to the
asynchronous service.

d. Assign (2): The second assign activity copies the contents of the asynchronous
response payload to the BPEL output variable, which is then sent back to the
calling process.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

Invoking an Asynchronous Service from a SOA Composite 40-7

To invoke the asynchronous web service from the BPEL flow:
1. To adhere to Oracle Fusion Applications fault handling and logging standards,

add the following activities:

■ Scope: By default, the main BPEL flow is the top-level scope of the process.
However, should any of the activities generate a fault within that scope,
compensation or recovery options are limited. Leverage nested scopes in order
to contain errors and implement resilient functionality.

■ Fault Handlers: Each nested and top-level scope should have qualified and
catch-all fault handlers to catch business- or system-level faults and respond
accordingly to the use case.

■ Logging: Add assign activities as needed. Alternatively, add copy operations
to pre-existing assign activities in order to implement logging.

2. Add a scope activity.

a. In the Composite Editor, double-click the BPEL component to open the BPEL
process editor.

b. Drag a new scope activity onto the process and name according to the
activities it will contain, for example, InvokeAsyncServiceName.

c. To the scope activity, add the service invocation and variable assignment
activities.

3. Add a catch-all fault handler to trap any errors that may occur during assign,
invoke, receive or dehydration activities that may occur within the scope. Use
either of the following:

■ Reply Normally: Returns a payload with an error status and completes in all
cases.

■ Wait State: Sends the asynchronous response, which then sends a user
notification or updates an Oracle ADF record, and enters a correlated wait
state. The wait state allows another entity to invoke the in-flight process that
provides additional instructions.

4. Implement translatable, tokenized, message-level logging for fault-handling
scenarios. Optionally, implement bread crumb logging and incident creation,
where applicable to the use case.

5. Define an invoke activity for the asynchronous web service. In the scope
previously defined, drag an Invoke activity to the flow.

6. Double-click the activity. In the Invoke Activity dialog, enter the following
information.

■ Name: The name of the invoke activity, such as Invoke<ServiceName>.

■ Interaction Type: Select Partner Link.

■ Partner Link: Select a partner link from the list of partner links that were
previously defined in the BPEL process metadata. To select a partner link,
browse through the expanded list of partner links for the asynchronous
service defined earlier.

■ Operation: Select an operation from the list of all the available synchronous
and asynchronous operations defined on the web service of the partner link.
Be sure to select the relevant asynchronous operation.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

40-8 Developer's Guide

■ Input: Click the Add button to create a scope-local variable to contain the
payload intended for the asynchronous service invocation.

Figure 40–6 shows a completed Invoke Activity dialog.

Figure 40–6 Invoke Activity Dialog

7. Define a receive activity to handle the asynchronous callback from the endpoint
service, and store the response payload in a variable for use by the process. Drag a
receive activity immediately following the invoke activity.

8. In the Receive Activity dialog, enter the following information.

■ Name: Enter a name for the invoke activity, such as Invoke<ServiceName>.

■ Interaction Type: Select Partner Link.

■ Partner Link: Select a partner link from the list of partner links that were
previously defined in the BPEL process metadata. To select a partner link, click
the Browse button and browse through the expanded list of partner links for
the asynchronous service defined earlier.

■ Operation: Select an operation from the list of all the available synchronous
and asynchronous operations defined on the partner link's web service. Be
sure to select the appropriate asynchronous callback operation.

■ Variable: Click the Add button to define a scope-local variable to contain the
payload received from the asynchronous service invocation.

Figure 40–7 shows a completed Receive Activity dialog.

Note: For Oracle ADF Services, the operation names end with Async.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

Invoking an Asynchronous Service from a SOA Composite 40-9

Figure 40–7 Receive Activity Dialog

9. Drag an assign activity onto the flow (within the scope) just above the invoke
activity you created earlier. Drag a second assign activity onto the flow just below
the receive activity you created earlier.

10. Name each assign activity.

Double-click the activity, click the General tab and enter a meaningful name such
as AssignInputforAsync<ServiceName> or CopyOutputfrom<ServiceName>.

11. Select the Copy Operation tab and click the Add button to open the Create Copy
Operation dialog.

In the Create Copy Operation dialog, select Copy Operation.

12. Depending on the type of data you want to assign to the invoke input variable,
configure the following.

■ Variable: Select the contents of an element from the source variable, such as
the default BPEL inputVariable, as shown in Figure 40–8.

How to Invoke a SOA Composite Application from Within a SOA Composite Application

40-10 Developer's Guide

Figure 40–8 Variable Copy Operation

■ XPath Expression: Enter an XPath expression as required, such as
concat($variable1, '-', $variable2), as shown in Figure 40–9.

Figure 40–9 XPath Expression Copy Operation

How to Invoke a SOA Composite Application from Within a SOA Composite Application

Invoking an Asynchronous Service from a SOA Composite 40-11

■ XML Fragment: A fully namespace-qualified XML document that matches the
XML schema structure of the target variable or variable element, as shown in
Figure 40–10.

Figure 40–10 XML Fragment Copy Operation

■ Partner Link: The contents and properties of a Partner Link (useful for
dynamic partner links).

13. Save your files.

14. Deploy the SOA composite application to the SOA infrastructure. For more
information, see "Deploying SOA Composite Applications" in Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

15. Test the application. For more information, see the chapter "Automating Testing of
SOA Composite Applications" in Oracle Fusion Middleware Developer's Guide for
Oracle SOA Suite.

40.4.4 What Happens When You Invoke an Asynchronous Service from within a SOA
Composite Application

Defining the web service reference generates a local, abstract WSDL (.wsdl) file named
after the service for which it was created. This WSDL file contains partner link
information used by BPEL, as well as a reference to the asynchronous web service
WSDL URL for looking up message type and schema information. Typically, the

Note: If you receive an "Invalid XML" error message, ensure that all
elements are namespace qualified within the context of the fragment
as BPEL process namespaces are not scoped into fragments.

Securing the Design Pattern

40-12 Developer's Guide

WSDL file name is the same as the service name, with the suffix .wsdl appended at the
end.

40.4.5 What Happens at Runtime: How an Asynchronous Service is Invoked from
within a SOA Composite Application

At runtime, the following occurs within the BPEL process:

■ The invoke activity initiates the remote service.

■ The BPEL process is dehydrated (session and variable data is serialized) to the
database.

■ The process thread is freed such that other potential processes may use it while
waiting for the asynchronous service to complete and respond.

40.5 Securing the Design Pattern
To secure this pattern, add the Oracle Web Services Manager policies to both the
service endpoint and service reference components in the composite.

For more information, see Chapter 50, "Securing Web Services Use Cases."

40.6 Verifying the Deployment
To properly test this pattern, deploy this SOA composite to the SOA domain and
initiate the composite through the service test client page.

To verify the deployment:
1. Open a web browser and navigate to the following URL format.

http://host:port/em

You will see a list of all successfully deployed composites in this SOA
environment.

2. Click the service endpoint link beneath the name of the deployed composite. This
renders the service test client page, which then can be used to enter payload data
and invoke the composite.

3. Enter the payload fields as needed and click Initiate.

4. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console using
the following URL format.

http://host:port/em

5. Login to Oracle Enterprise Manager Fusion Middleware Control Console and take
the following actions.

a. On the left side of Oracle Enterprise Manager Fusion Middleware Control
Console, expand the SOA tree node.

b. Expand the soa-infra node for the correct SOA server and select the name of
the deployed composite.

Note: Use the HTTPS protocol instead of HTTP if your server is
configured to use SSL.

What You May Need to Know About Invoking an Asynchronous Service from Another SOA Composite

Invoking an Asynchronous Service from a SOA Composite 40-13

c. Click the instance ID link for the most recent instance of this composite. The
Flow Trace window displays.

d. In the Flow Trace window, find the entry for your BPEL process component.
Click the BPEL process component to open the Audit Flow view.

The Audit Flow view displays the activities that were executed in the BPEL
process, along with payload details that you can view by clicking the activity.

40.7 Troubleshooting the Use Case
Following are tips that may help resolve common issues that arise when deploying or
running this use case.

40.7.1 Deployment
If failures occur during compilation or deployment, observe the Oracle JDeveloper
console and compiler output to resolve any issues.

If deployment is successful but the composite does not display in the soa-infra
composites list, check the server's diagnostic log and console output for any exceptions
and resolve them.

40.7.2 Runtime
If faults occur when invoking the composite, the logging activities and fault-handling
branches should provide meaningful content in the applications diagnostic log
(defined in logging.xml) or be present in the callback payload.

Use the Audit Flow view to diagnose the problem and correct your BPEL process, then
redeploy. For more information about using the Audit Flow view, see the deployment
steps in Section 40.6, "Verifying the Deployment."

40.8 What You May Need to Know About Invoking an Asynchronous
Service from Another SOA Composite

Make sure to finalize the XML schemas before implementing the design pattern and
defining payload types and variables.

What You May Need to Know About Invoking an Asynchronous Service from Another SOA Composite

40-14 Developer's Guide

41

Synchronously Invoking an ADF Business Components Service from an Oracle ADF Application 41-1

41Synchronously Invoking an ADF Business
Components Service from an Oracle ADF

Application

This chapter describes what to do when you need to invoke an ADF Business
Components service either from an ADF Business Components object or from a UI.
Use only with synchronous processes with an immediate response.

When to implement: When you need to invoke an ADF Business Components service
either from an ADF Business Components object or from a UI. Use only with
synchronous processes with an immediate response.

Design Pattern Summary: Use ServiceFactory to generate a dynamic proxy to the
target ADF Business Components service, then use the proxy to invoke the desired
service method.

Involved components:

■ ADF Business Components service

■ A local ADF Business Components object (such as an application module or an
entity object), or from a UI via either a local ADF Business Components object or a
managed JavaBean

41.1 Introduction to the Recommended Design Pattern
When you need to invoke an ADF Business Components service from an Oracle ADF
application, use oracle.jbo.client.svc.ServiceFactory to invoke the service.

41.2 Potential Approaches
One alternative is to use JAX-WS to generate static proxy classes. This is prohibited for
ADF Business Components services because:

■ Using JAX-WS generates many proxy classes that you need to maintain, which
increases maintenance costs.

■ oracle.jbo.client.svc.ServiceFactory uses a local Java call if the service is
co-located, which offers performance benefits.

The other alternative is to use a dynamic invocation interface. This is not
recommended as it requires much more coding.

If you need to bind the input or output of the service to UI components, consider using
service-based entity objects and view objects. For more information, see Chapter 39,
"Working with Data from a Remote ADF Business Components Service."

Example

41-2 Developer's Guide

41.3 Example
Currently, no example is available.

41.4 How to Invoke an ADF Business Components Service from an
Oracle ADF Application

On the service provider side, you must create an ADF Business Components service
interface deployment profile. This profile generates two JAR files: one common JAR
file that contains only the service interface, and another file that contains the
implementation. For more information, see the chapter "Integrating Service-Enabled
Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

To invoke an ADF Business Components service from an Oracle ADF
application:
1. Navigate to Application Resources > Descriptors > ADF META-INF and open

the connections.xml file.

This entry is needed to invoke the service during runtime.

2. Register the targeted service in connections.xml, as shown in Example 41–1.

Example 41–1 Sample Code for the File connections.xml

<Reference
name="{http://xmlns.oracle.com/apps/adfsvc/deptempService/}DeptEmpService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.adfsvc.deptempService.DeptEmpService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">

<Contents>DeptEmpServiceBean#oracle.apps.adfsvc.deptempService.DeptEmpService
</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>DeptEmpService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/adfsvc/deptempService/</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:7101</Contents>
 </StringRefAddr>

Note: The targeted service must be hosted and running, as
registration requires the URL of the service deployment location.

How to Invoke an ADF Business Components Service from an Oracle ADF Application

Synchronously Invoking an ADF Business Components Service from an Oracle ADF Application 41-3

 </RefAddresses>
 </Reference>

3. Get the service interface common JAR file from the service provider and add it to
your library.

This file is required during runtime. The common JAR file is generated when the
service provider uses a ADF Business Components service interface deployment
profile for deployment.

For more information, see the chapter "Integrating Service-Enabled Application
Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

4. In your ADF Business Components service or managed Java bean class, invoke the
desired service using ServiceFactory, as shown in Example 41–2.

Example 41–2 ServiceFactory Code

OrganizationService svc =
 (OrganizationService)ServiceFactory.getServiceProxy(OrganizationService.NAME);
 List orgs = new ArrayList(2);
 Org org1 = (Org)DataFactory.INSTANCE.create(Org.class);
 org1.setOrganizationId(new Long(10000));
 org1.setOrgName("OrgName");
 org1.setName("TranslatedName");
 org1.setDescription("Your org Description"); //... and set more attributes
 orgs.add(org1);
 svc.processOrganizatiion("Merge", orgs, null);

Sample queries are shown in Example 41–3.

Example 41–3 Query Samples

// Retrieve only Dname, Loc from Dept and exclude Empno from Emp.
 DeptEmpService mSvc = (DeptEmpService)ServiceFactory.getServiceProxy(DeptEmpService.NAME);
 FindCriteria fc = (FindCriteria)DataFactory.INSTANCE.create(FindCriteria.class);
 List l = new ArrayList();
 l.add("Dname");
 l.add("Loc");
 l.add("Emp");
 fc.setFindAttribute(l);
 List cfcl = new ArrayList();
 ChildFindCriteria cfc =

(ChildFindCriteria)DataFactory.INSTANCE.create(ChildFindCriteria.class);
 cfc.setChildAttrName("Emp");
 List cl = new ArrayList();
 cl.add("Empno");
 cfc.setFindAttribute(cl);
 cfc.setExcludeAttribute(true);
 cfcl.add(cfc);
 fc.setChildFindCriteria(cfcl);
 DeptResult res = mSvc.findDept(fc, null);

 // Exclude PurchaseOrderLine from PurchaseOrder.
 PurchaseOrderService svc =
 (PurchaseOrderService)ServiceFactory.getServiceProxy(PurchaseOrderService .NAME);
 FindCriteria fc = (FindCriteria)DataFactory.INSTANCE.create(FindCriteria.class);
 List l = new ArrayList();
 fc.setExcludeAttribute(true);
 l.add("PurchaseOrderLine");

Securing the Design Pattern

41-4 Developer's Guide

 fc.setFindAttribute(l);
 PurchaseOrderResult res = svc.findPurchaseOrder(fc, null);

 // Retrieve only the 2nd Emp along with Dept with Deptno=10.
 FindCriteria fc = (FindCriteria)DataFactory.INSTANCE.create(FindCriteria.class);
 // Create the view criteria item.
 List value = new ArrayList();
 value.add(new Integer(10));
 ViewCriteriaItem vci =

(ViewCriteriaItem)DataFactory.INSTANCE.create(ViewCriteriaItem.class);
 vci.setValue(value);
 vci.setAttribute("Deptno");
 List<ViewCriteriaItem> items = new ArrayList(1);
 items.add(vci);
 // Create view criteria row.
 ViewCriteriaRow vcr = (ViewCriteriaRow) DataFactory.INSTANCE.create(ViewCriteriaRow.class);
 vcr.setItem(items);
 // Create the view criteria.
 List group = new ArrayList();
 group.add(vcr);
 ViewCriteria vc = (ViewCriteria)DataFactory.INSTANCE.create(ViewCriteria.class);
 vc.setGroup(group);
 // Set filter.
 fc.setFilter(vc);

 List cfcl = new ArrayList();
 ChildFindCriteria cfc =

(ChildFindCriteria)DataFactory.INSTANCE.create(ChildFindCriteria.class);
 cfc.setChildAttrName("Emp");
 cfc.setFetchStart(1);
 cfc.setFetchSize(1);
 cfcl.add(cfc);
 fc.setChildFindCriteria(cfcl);
 DeptResult dres = svc.findDept(fc, null);
 pw.println("### Dept 10 and 2nd Emp ###");

41.5 Securing the Design Pattern
For more information about securing the use case, see Chapter 50, "Securing Web
Services Use Cases."

41.6 Verifying the Deployment
To properly verify this design pattern, test your ADF Business Components object in
an application module tester or a UI.

To verify this design pattern:
Test your Oracle ADF application using the various testing and debugging methods
described in the chapter "Testing and Debugging ADF Components" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

42

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-1

42Implementing an Asynchronous Service
Initiation with Dynamic UI Update

This chapter describes what to do when initiating asynchronous or long-running
functionality from an Oracle ADF UI and, on completion, notifying users of the
completion of that process by dynamically updating the UI. This provides a more
dynamic experience for the end user and eliminates the need to constantly click a
refresh button.

When to implement: When initiating asynchronous or long-running functionality
from an Oracle ADF UI and, on completion, notifying users of the completion of that
process by dynamically updating the UI. This provides a more dynamic experience for
the end user and eliminates the need to constantly click a refresh button.

Design Pattern Summary: Oracle ADF UI registers an Active Data control subscriber
on top of a JMS queue. The Oracle ADF UI then raises a business event either via the
default CRUD operations on the entity or programmatically via Java. This event
initiates a BPEL process that performs work and, when completed, invokes a
synchronous ADF Business Components service method to trigger pushing the
message on the JMS queue, which then causes the Active Data Service control to
refresh the component or area of the component.

Involved components:

■ Oracle ADF UI

■ ADS

■ JMS

■ Business Events (programmatic)

■ SOA Mediator

■ SOA BPEL

■ ADF Business Components services

Notes:

■ To date, the only supported Oracle ADF UI components for Active
Data Service (ADS) update are outputText and image.

■ This pattern is in the process of being re-written for conformance
to Oracle WebLogic Server and Oracle Java Messaging Service
(JMS) guidance and, in the interim, should be implemented with
the understanding that a re-write is pending.

Introduction to the Recommended Design Pattern

42-2 Developer's Guide

42.1 Introduction to the Recommended Design Pattern
Asynchronous services cannot be invoked from Java code in Oracle Fusion
applications. When notification of completion of asynchronous, long-running
functionality is required in a UI, business events can be used for asynchrony. In
addition, ADS triggered over JMS will cause the UI update when the BPEL process
completes and invokes the ADF Business Components service to signal its completion.

This approach is recommended because supported technology is used. The approach
also supports dynamic page updates if the user navigates away and later returns.

42.2 Potential Approaches
Other than the Oracle ADF UI > Event > BPEL > ADF Business Components > ADS
approach, following are the potential approaches:

■ Invoke asynchronous service and wait for an asynchronous callback. Unsupported
due to thread blocking, pooled resources checked out until functionality completes
and returns, potentially hours and days.

■ Invoke asynchronous functionality through synchronous interface. Potential time
out issues and thread blocking caveats.

■ JAX-WS proxy to synchronously invoke the one-way initiate operation, register an
ADF Business Components service as the callback service. This is a bit of a hack,
not extendible as an integration point, and it doesn't dynamically update the UI.

42.3 Example
The following is an example that illustrates the design pattern.

In an order workbench, an end user selects an order and submits it to a scheduling
system for fulfillment. The scheduling system services take several seconds to several
minutes to acknowledge scheduling and when the user clicks the button to initiate the
scheduling process, needs to be notified in the UI upon successful scheduling for
fulfillment without the need to repeatedly refresh the page by hand.

In this implementation, entering the UI data and clicking Schedule programmatically
raises a business event, initiates a BPEL process which goes through processing and
approvals as needed, then finally invokes an order ADF Business Components service
to complete the process and publish the JMS message to trigger the ADS UI update.

42.4 How to Implement an Asynchronous Service Initiation with Dynamic
UI Update

To enable the UI for dynamic update via ADS, you must first create the ADS handler,
which uses a common set of JMS Queue handlers to broker the updates coming from
the call to ADF Business Components services.

The main steps are as follows, as shown in Figure 42–1:

1. A business event is raised to initiate BPEL, which can perform work
asynchronously.

2. The BPEL process updates the database and submits Oracle Enterprise Scheduler
jobs.

3. At the end of the BPEL process, a web service is invoked to publish the message.

4. The web service publishes the message to JMS.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-3

5. JMS delivers the message to the ActiveDataCollectionModel.

6. The ActiveDataCollectionModel decodes the message and updates the UI.

Figure 42–1 Technology Flow Diagram (with Optional Oracle Enterprise Scheduler Job
Submission)

Prerequisites (for Prototyping Only)
Create the JMS queue in your development environment. Use the prototype common
library to build this functionality into your application with minimal changes once the
dependent functionality is consumed by the infrastructure.

For prototyping only, take the following steps to set up JMS using Oracle WebLogic
Server Console:

1. In the Oracle WebLogic Server Console, navigate to Messaging > JMS Modules.

2. Click New to create the JMS Module.

3. Name the module "FusionAppsADSJMSModule" and click Next.

4. In the Targets panel, choose the AdminServer target and click Next.

5. Choose "Would you like to add resources to this JMS system module?" and click
Finish.

6. In the Summary of Resources table, click New.

7. Choose Connection Factory and click Next.

8. Name the connection factory FusionAppsADSJMSConnectionFactory, provide
the JNDI name jms/Prototype/MyQueueConnFactory, and click Next.

9. Click Finish.

10. Verify the new connection factory in the Summary of Resources table and click
New.

11. Choose Queue and click Next.

12. Name the queue FusionAppsADSJMSQueue, provide the JNDI name
jms/Prototype/MyQueue and click Finish.

Note: This procedure assumes that the JMS Module does not already
exist.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-4 Developer's Guide

42.4.1 Writing the Active Data Handler
The classes shown in Example 42–1, Example 42–2, and Example 42–3 are common to
every implementation of this pattern, and are responsible for handling JMS integration
with ADS supported events.

Example 42–1 DemoDataChangeEntry.java

package ads.demo.common;

import java.io.Serializable;

public class DemoDataChangeEntry implements Serializable {
 public enum ChangeType
 {
 /**
 * Indicates the change is row value updates
 */
 UPDATE,

 /**
 * Indicates the change is a new row insertion
 */
 INSERT,

 /**
 * Indicates the change is a new row insertion before a row
 */
 INSERT_BEFORE,

 /**
 * Indicates the change is a new row insertion after a row
 */
 INSERT_AFTER,

 /**
 * Indicates the change is a new row insertion inside a parent
 */
 INSERT_INSIDE,

 /**
 * Indicates the change is row deletion
 */
 REMOVE,

 /**
 * Indicates the change is range refresh
 */
 REFRESH
 }
 public DemoDataChangeEntry() {
 super();
 }

 public DemoDataChangeEntry(Object[] pk, ChangeType type,
 String[] attributes, Object[] values) {
 _pk = pk;
 _type = type;
 _attributes = attributes;
 _values = values;

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-5

 }

 private Object[] _pk;
 private ChangeType _type;
 private String[] _attributes;
 private Object[] _values;

 public Object[] getPk() {
 return _pk;
 }

 public ChangeType getType() {
 return _type;
 }

 public String[] getAttributes() {
 return _attributes;
 }

 public Object[] getValues() {
 return _values;
 }

 public void setPk(Object[] _pk) {
 this._pk = _pk;
 }

 public void setType(ChangeType _type) {
 this._type = _type;
 }

 public void setAttributes(String[] _attributes) {
 this._attributes = _attributes;
 }

 public void setValues(Object[] _values) {
 this._values = _values;
 }
}

Example 42–2 DemoDataUpdateEvent.java

package ads.demo.common;

import java.io.Serializable;

import java.util.List;

public class DemoDataUpdateEvent implements Serializable {
 public DemoDataUpdateEvent() {
 }

 public DemoDataUpdateEvent(List<DemoDataChangeEntry> entries) {
 _entries = entries;
 }
 private List<DemoDataChangeEntry> _entries;

 public List<DemoDataChangeEntry> getEntries() {
 return _entries;
 }

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-6 Developer's Guide

 public void setEntries(List<DemoDataChangeEntry> _entries) {
 this._entries = _entries;
 }
}

Example 42–3 JMSHelper.java

package ads.demo.common;

import java.util.Hashtable;

import javax.jms.JMSException;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;

import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;

import javax.jms.Session;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public final class JMSHelper {
 private static JMSHelper _instance = new JMSHelper();
 public static JMSHelper getInstance() {
 return _instance;
 }

 public ObjectMessage createObjectMessage() throws JMSException {
 return qsession.createObjectMessage();
 }

 public void sendMessage(ObjectMessage message) throws JMSException {
 qsender.send(message);
 }

 public QueueReceiver createQueueReceiver(MessageListener listener,
 String messageFilter) throws JMSException {
 QueueReceiver qreceiver = qsession.createReceiver(queue, messageFilter);
 qreceiver.setMessageListener(listener);
 return qreceiver;
 }

 private JMSHelper() {
 try {
 init();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // Defines the JMS context factory.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-7

 private final static String JMS_QUEUE_FACTORY=
 "jms/Prototype/MyQueueConnFactory";

 // Defines the queue.
 private final static String ADS_QUEUE="jms/Prototype/MyQueue";

 private QueueConnectionFactory qconFactory;
 private QueueConnection qcon;
 private QueueSession qsession;
 private QueueSender qsender;
 private Queue queue;

 /**
 * Creates all the necessary objects for sending
 * messages to a JMS queue.
 *
 * @param ctx JNDI initial context
 * @param queueName name of queue
 * @exception NamingException if operation cannot be performed
 * @exception JMSException if JMS fails to initialize due to internal error
 */
 private void init()
 throws NamingException, JMSException
 {
 InitialContext ctx = new InitialContext();
 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_QUEUE_FACTORY);
 qcon = qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) ctx.lookup(ADS_QUEUE);
 qsender = qsession.createSender(queue);
 qcon.start();
 }

 /**
 * Closes JMS objects.
 * @exception JMSException if JMS fails to close objects due to internal error
 */
 private void close() throws JMSException {
 qsender.close();
 qsession.close();
 qcon.close();
 }

}

To implement the Active Data Collection Model:
The Active Data Collection Model, driven by the ADS infrastructure, manages the
messages coming from the queue and propagates them to the UI as Oracle ADF Rich
Events. Implement the Active Data Collection Model by extending the
CollectionModel class in the org.apache.myfaces.trinidad.model package and
overriding the startActiveData, stopActiveData and onMessage methods. The class
must implement ActiveDataModel and MessageListener as the onMessage method
accepts JMS messages (which is a list of update events) and runs them through the
active data listener.

Note: Instead of implementing all the logic for CollectionModel,
delegate to the collection model returned by the tree binding.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-8 Developer's Guide

What you need to know before you begin:

■ The following methods must be implemented for ActiveDataModel:

– getActiveDataPolicy() always returns ActiveDataPolicy.ACTIVE;

– startActiveData(Collection<Object> rowKeys, int startChangeCount,
ActiveDataListener listener) is where you create a queue receiver of the
topic subscriber in JMS. If you are not using JMS, this is where you register
yourself with the event source as listener.

– stopActiveDate(Collection<Object> rowKeys, ActiveDataListener
listener) removes the queue receiver of the topic subscriber in JMS.

– getCurrentChangeCount(): ADS expects the events to arrive in order. Keep a
counter in the JavaBean, so that the counter increments when a new event is
pushed.

■ For ActiveDataCollectionModel to be the queue receiver or topic subscriber,
ActiveDataCollectionModel must implement the MessageListener interface
using the onMessage method. Do the following:

1. Get the payload from the message. It should be DataUpdateEvent.

2. Convert DataUpdateEvent to ActiveDataEvent. so that ADS can process the
event.

3. Deliver ActiveDataEvent to ADS.

Example 42–4 shows a collection model returned by a tree binding.

Example 42–4 Collection Model Returned by Tree Binding

package ads.demo.view;
import ads.demo.common.DemoDataChangeEntry;
import ads.demo.common.DemoDataUpdateEvent;
import ads.demo.common.JMSHelper;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import javax.jms.QueueReceiver;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCIteratorBinding;
import oracle.adf.share.ADFContext;
import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataListener;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;
import oracle.adf.view.rich.model.ActiveDataModel;
import oracle.adfinternal.view.faces.model.binding.FacesCtrlHierBinding;
import oracle.jbo.Key;
import org.apache.myfaces.trinidad.model.CollectionModel;
...

public class ActiveDataCollectionModel extends CollectionModel implements ActiveDataModel,
...
 public void startActiveData(Collection<Object> rowKeys,
 int startChangeCount,
 ActiveDataListener listener) {
 _listeners.add(listener);
 _currEventId = startChangeCount;
 if (_listeners.size() == 1) {
 // register as receiver for JMS Queue, listening to change event

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-9

 try {
 String messageFilter = "JMSCorrelationID = '" + getUuid() + "'";
 qreceiver = JMSHelper.getInstance().createQueueReceiver(this,
 messageFilter);
 } catch (Exception e) {
 e.printStackTrace();
 }

 }
 }
 public void stopActiveData(Collection<Object> rowKeys,
 ActiveDataListener listener) {
 _listeners.remove(listener);
 if (_listeners.isEmpty()) {
 // clean JMS
 try {
 qreceiver.close();
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
 }
 public int getCurrentChangeCount() {
 return _currEventId;
 }
 public void onMessage(Message message) {
 try {
 DemoDataUpdateEvent myEvent = null;
 if (message instanceof ObjectMessage) {
 myEvent =
 (DemoDataUpdateEvent)((ObjectMessage)message).getObject();
 // Convert the event to ADS DataChangeEvent
 }
 List<ActiveDataEntry> dces = new ArrayList<ActiveDataEntry>(1);
 for (DemoDataChangeEntry entry : myEvent.getEntries()) {
 oracle.jbo.Key jboKey = new Key(entry.getPk());
 ActiveDataEntry.ChangeType newType = convertChangeType(entry.getType());
 Object[] path = new Object[] { Collections.singletonList(jboKey) };
 ActiveDataEntry dce =
 new DemoActiveDataEntry(newType, path,
 new Object[0],
 entry.getAttributes(),
 entry.getValues());
 dces.add(dce);
 }
 _currEventId++;
 ActiveDataUpdateEvent event = new DemoActiveDataUpdateEvent(new Object(), _currEventId,
 dces);
 _refreshControl = true;

 // Deliver event
 for (ActiveDataListener listener : _listeners) {
 try {
 listener.dataChanged(event);
 } catch (Throwable e) {
 e.printStackTrace();
 }
 }
 } catch (Exception e) {

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-10 Developer's Guide

 e.printStackTrace();
 }
 }
 private int _currEventId = 0;
 private final List<ActiveDataListener> _listeners =
 new LinkedList<ActiveDataListener>();
 private boolean _refreshControl = false;
 private String _treeBindingName;
 private String _iterBindingName;
 private ActiveDataEntry.ChangeType convertChangeType(DemoDataChangeEntry.ChangeType
 type) {
 if (type == DemoDataChangeEntry.ChangeType.UPDATE) {
 return ActiveDataEntry.ChangeType.UPDATE;
 } else if (type == DemoDataChangeEntry.ChangeType.REFRESH) {
 return ActiveDataEntry.ChangeType.REFRESH;
 } else {
 return ActiveDataEntry.ChangeType.UPDATE;
 }

 // Return ActiveDataEntry.ChangeType.UPDATE;
 }
 private CollectionModel getModel() {
 CollectionModel cm =
 (CollectionModel)ADFContext.getCurrent().getRequestScope().get("collectionModel_" +
 this.hashCode());
 DCBindingContainer bindings =
 (DCBindingContainer)ADFContext.getCurrent().getRequestScope().get("bindings");
 if (_refreshControl) {
 DCIteratorBinding iterBinding =
 bindings.findIteratorBinding(_iterBindingName);
 iterBinding.executeQuery();
 _refreshControl = false;
 }
 if (cm == null) {
 FacesCtrlHierBinding hierBinding =
 (FacesCtrlHierBinding)bindings.findCtrlBinding(_treeBindingName);
 cm = hierBinding.getCollectionModel();
 ADFContext.getCurrent().getRequestScope().put("collectionModel_" +
 this.hashCode(), cm);
 }
 return cm;
 }
...

There are two reasons for implementing the getModel() method this way:

■ It is necessary to delegate all collection model-related logic to the model returned
by the tree binding. Inside the collection handler, you must get a handle to the
collection model returned by the tree binding by looking up the binding container.
As you reference the collection model often, store it somewhere for optimal
performance. Make sure the managed JavaBean has a view scope while the
binding container, tree binding or collection model has a request scope. You cannot
store the collection model on the JavaBean. Instead, store the collection model in
the request scope. When accessing the collection model, look it up first in the
request scope. If the value is null—for example, at the beginning of the
request—retrieve the value from the binding container.

■ When pushing the ActiveDataEvent through ADS, only the UI is updated with
the new value. The binding layer is not aware that the underlying data source has
changed. If the page is refreshed at this time, the UI displays the old data from the

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-11

binding layer. A workaround is to keep a refreshBinding flag on the
ActiveDataCollectionModel to indicate whether the binding requires refreshing.
The flag is initially set to false. When an event is received, the flag is set to true.
When getting the collection model, check for this flag first. If the flag is set to true,
programmatically refresh the related binding before returning the collection
model. Example 42–5 shows sample ActiveDataCollectionHandler code.

Example 42–5 From the ActiveDataCollectionHandler Code

 private CollectionModel getModel() {
 CollectionModel cm =
 (CollectionModel)ADFContext.getCurrent().getRequestScope().get("collectionModel_" +
 this.hashCode());
 DCBindingContainer bindings =
 (DCBindingContainer)ADFContext.getCurrent().getRequestScope().get("bindings");
 if (_refreshControl) {
 DCIteratorBinding iterBinding =
 bindings.findIteratorBinding(_iterBindingName);
 iterBinding.executeQuery();
 _refreshControl = false;
 }
 if (cm == null) {
 FacesCtrlHierBinding hierBinding =
 (FacesCtrlHierBinding)bindings.findCtrlBinding(_treeBindingName);
 cm = hierBinding.getCollectionModel();
 ADFContext.getCurrent().getRequestScope().put("collectionModel_" +
 this.hashCode(), cm);
 System.out.println("CollectionModel: " + cm.hashCode());
 }
 return cm;
 }

42.4.2 Building the Supporting Active Data Entry Classes
The ActiveDataCollectionHandler uses Oracle ADF Rich Events to propagate the
data updates and UI refresh in response to JMS queue updates. You must implement
these event classes and register them as events from the CollectionHandler.

To create the Active Data Entry implementation:
The class shown in Example 42–6 extends the Oracle ADF class
oracle.adf.view.rich.event.ActiveDataEntry and implements several methods in
that interface.

Example 42–6 Active Data Entry Class

package ads.demo.view;

import java.util.HashMap;
import java.util.Map;

import oracle.adf.view.rich.event.ActiveDataEntry;

public class DemoActiveDataEntry extends ActiveDataEntry {
 public DemoActiveDataEntry(ActiveDataEntry.ChangeType change,
 Object[] path, Object[] insertKeyPath,
 String[] names, Object[] values) {
 super();

 if (names != null) {

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-12 Developer's Guide

 for (int i = 0; i < names.length; i++) {
 String attribute = names[i];
 Object value = values[i];
 _valuesMap.put(attribute, value);
 }
 }

 _attributes = names;
 _values = values;
 _changeType = change;
 _path = path;
 _insertPath = insertKeyPath;

 }

 public ActiveDataEntry.ChangeType getChangeType() {
 return _changeType;
 }

 public Object[] getKeyPath() {
 return _path;
 }

 public Object[] getInsertKeyPath() {
 return _insertPath;
 }

 public String[] getAttributeNames() {
 return _attributes;
 }

 public Object getAttributeValue(String name)
 {
 return _valuesMap.get(name);
 }

 public Object getFormattedAttributeValue(String name)
 {
 return getAttributeValue(name);
 }

 private final Map<String, Object> _valuesMap =
 new HashMap<String, Object>();
 private String[] _attributes = null;
 private Object[] _values = null;
 private ChangeType _changeType = null;
 private Object[] _path = null;
 private Object[] _insertPath = null;

}

To implement the Active Data Update Event:
The Active Data update event takes a list of Active Data entry events and performs
them at once. The class extends from
oracle.adf.view.rich.event.ActiveDataUpdateEvent and implements several
methods, as shown in Example 42–7.

Example 42–7 Active Data Update Event

package ads.demo.view;

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-13

import java.util.Collections;
import java.util.List;

import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

public class DemoActiveDataUpdateEvent extends ActiveDataUpdateEvent {
 public DemoActiveDataUpdateEvent(Object object) {
 super(object);
 }

 public DemoActiveDataUpdateEvent(Object source, int eventId,
 List<ActiveDataEntry> changeList)
 {
 super(source);

 _changeList = changeList;
 _eventId = eventId;
 }

 /**
 * Get the change list of this event
 *
 * @return the change list of this event
 */
 public List<ActiveDataEntry> getChangeList()
 {
 return _changeList;
 }

 /**
 * Get the event ID
 * Return the event ID
 */
 public int getEventId()
 {
 return _eventId;
 }

 public long getEventTime()
 {
 return System.currentTimeMillis();
 }

 public String toString()
 {
 return super.toString() + " eventId:" + _eventId + " changeList:" + _
changeList;
 }

 private List<ActiveDataEntry> _changeList = Collections.emptyList();
 private int _eventId = 0;
}

42.4.3 Registering the Active Data Collection Model with the Oracle ADF UI Page
In order to enable the active data feature and "hook" your collection model, you need
to register the class as a managed JavaBean.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-14 Developer's Guide

ADS requires UI components to have the same model across requests. Therefore,
register the ActiveDataCollectionModel as a view scoped managed JavaBean. As long
as you stay on the same page, the table is based on the same model.

To register your collection model as a managed JavaBean:
1. Open adfc-config.xml.

2. Add the managed JavaBean named adsBean and provide the package to your
collection model class, as shown in Example 42–8.

Example 42–8 adsBean Managed JavaBean

<managed-bean>
 <managed-bean-name>adsBean</managed-bean-name>
 <managed-bean-class>ads.demo.view.ActiveDataCollectionModel</managed-bean-class>
 <managed-bean-scope>view</managed-bean-scope>
 <managed-property>
 <property-name>treeBindingName</property-name>
 <property-class>java.lang.String</property-class>
 <value>EmpView1</value>
 </managed-property>
 <managed-property>
 <property-name>iterBindingName</property-name>
 <property-class>java.lang.String</property-class>
 <value>EmpView1Iterator</value>
 </managed-property>
</managed-bean>

42.4.4 Registering the Component Managed JavaBean for Supporting Method Actions
To trigger the synchronous functionality of the use case pattern, raise a business event
in response to the click of an Oracle ADF button. In order to support a response to the
click of a button, create a managed JavaBean with which you can associate methods as
the action for these buttons.

To build your Oracle ADF component managed JavaBean:
In the prototype use case, there is a table that contains a list of employees and their
entity object attributes. Add two buttons at the top of the table in a panel collection
toolbar which, when clicked, uses the selected employee to initiate an approval
process. When completed, the approval process dynamically updates the table, as
shown in Figure 42–2.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-15

Figure 42–2 Dynamically Updated Table

The table component requires the managed JavaBean shown in Example 42–9.

Example 42–9 Table Component Managed JavaBean

package ads.demo.view;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Map;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import oracle.adf.model.OperationBinding;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.share.ADFContext;
import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.jbo.Key;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class TableHandlerBean {
 private RichTable _table;

 public TableHandlerBean() {
 super();
 }

 public void setTable(RichTable _table) {
 this._table = _table;
 }

 public RichTable getTable() {
 return _table;
 }

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-16 Developer's Guide

 public void handleRaise(ActionEvent event) {
 String correlationId =

((ActiveDataCollectionModel)ADFContext.getCurrent().getViewScope().get("adsBean")).getUuid();
 RowKeySet selectedRowKeys = getTable().getSelectedRowKeys();
 ArrayList<String> selectedEmp = new ArrayList<String>(selectedRowKeys.size());
 for (Object rowKey : selectedRowKeys) {
 Key jboKey = ((Collection<Key>)rowKey).iterator().next();
 String rowKeyString = ((Integer)jboKey.getKeyValues()[0]).toString();
 selectedEmp.add(rowKeyString);
 // Publish event
 try {
 DCBindingContainer bindings =

(DCBindingContainer)ADFContext.getCurrent().getRequestScope().get("bindings");
 OperationBinding action =

(OperationBinding)bindings.findCtrlBinding("publishEvent");
 Map params = action.getParamsMap();
 params.put("correlationId", correlationId);
 params.put("key", rowKeyString);
 params.put("eventType", "payRaise");
 action.execute();
 // addConfirmationMessage();
 } catch (Exception e) {
 log.severe("ASM: Failed to raise commission event for key: " + rowKeyString);
 } // try
 }

 // Invoke BPEL from here.
 }

 public void handleCommission(ActionEvent event) {
 String correlationId =

((ActiveDataCollectionModel)ADFContext.getCurrent().getViewScope().get("adsBean")).getUuid();
 RowKeySet selectedRowKeys = getTable().getSelectedRowKeys();
 ArrayList<String> selectedEmp = new ArrayList<String>(selectedRowKeys.size());
 for (Object rowKey : selectedRowKeys) {
 Key jboKey = ((Collection<Key>)rowKey).iterator().next();
 String rowKeyString = ((Integer)jboKey.getKeyValues()[0]).toString();
 selectedEmp.add(rowKeyString);
 // Publish event
 try {
 DCBindingContainer bindings =

(DCBindingContainer)ADFContext.getCurrent().getRequestScope().get("bindings");
 OperationBinding action =

(OperationBinding)bindings.findCtrlBinding("publishEvent");
 Map params = action.getParamsMap();
 params.put("correlationId", correlationId);
 params.put("key", rowKeyString);
 params.put("eventType", "payCommission");
 action.execute();
 // addConfirmationMessage();
 } catch (Exception e) {
 log.severe("ASM: Failed to raise commission event for key: " + rowKeyString);
 } // try
 }
 // Invoke BPEL from here.

 private void addConfirmationMessage() {
 FacesMessage msg = new FacesMessage("You request is submitted for approval.");

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-17

 FacesContext.getCurrentInstance().addMessage(null, msg);
 }
}

To register the component managed JavaBean:
As with the collection model, register the component managed JavaBean by adding an
entry to adfc-config.xml, as shown in Example 42–10.

Example 42–10 adfc-config.xml Registration Code

<managed-bean>
 <managed-bean-name>tableBean</managed-bean-name>
 <managed-bean-class>ads.demo.view.TableHandlerBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

42.4.5 Referencing the Managed JavaBean in the Page UI
Modify the page component to reference the managed JavaBean from the earlier steps,
as shown in Example 42–11.

Example 42–11 Referencing the Managed JavaBean

<af:table value="#{viewScope.adsBean}" var="row"
 rows="#{bindings.EmpView1.rangeSize}"
 fetchSize="#{bindings.EmpView1.rangeSize}"

 rowBandingInterval="0"

 filterModel="#{bindings.EmpView1Query.queryDescriptor}"

 queryListener="#{bindings.EmpView1Query.processQuery}"
 filterVisible="true" varStatus="vs"
 selectionListener="#{bindings.EmpView1.collectionModel.makeCurrent}"
 rowSelection="multiple" id="t1" width="100%"
 binding="#{tableBean.table}">

42.4.6 Creating the Data Model and Adding Application Module Methods
The data model should exist before the page is built in order to simplify laying out the
components required to display the data contained in that model. The application
module needs additional methods to support incoming service methods and,
optionally, the methods for raising the business event.

For more information about creating a data model with application modules, see the
chapter "Implementing Business Services with Application Modules" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

.

Note: You may notice that selectedRowKeys is not bound to any
method. By default, it is bound to
#{bindings.treeBinding.collectionModel.selectedRowKeys}. It
will no longer work after using ActiveDataCollectionModel.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-18 Developer's Guide

To extend the methods of your application module for the service interface:
Make sure to expose one or more application module methods in the application
module service. This facilitates the callback from BPEL upon completion of the
process, triggering the ADS UI update. These methods publish the message to the JMS
queue following the message structure shown here.

The message payload should take the format of DataUpdateEvent, which comprises
one or more DataChangeEntry items.

■ changeType: enum (UPDATE, REFRESH). Currently, there is no use case for
INSERT.

■ key: Object[]

■ insertKey: Object[]

■ attributeNames: String[], a list of names of changed attributes

■ attributeValues: Object[], a list of new values for the changed attributes

In this pattern, payRaise and payCommision are supported for one or more selected
employees. Use methods with simple string interfaces invoked by BPEL to complete
the payRaise or payCommision event for each particular employee. Call the
sendMessage method to publish the JMS message to notify ADS of the UI update.
Sample BPEL methods are shown in Example 42–12.

Example 42–12 BPEL Methods

// Simplified interface method for service call per employee

 public void performSingleRaise(String correlationId, String key) {
 ArrayList thelist = new ArrayList<String>();
 thelist.add(key);
 performRaise(correlationId, thelist);
 } //

 // List interface for call from UI and by Simplified Service Method
 public void performRaise(String correlationId, List<String> keyValues) {
 List<DemoDataChangeEntry> dces =
 new ArrayList<DemoDataChangeEntry>(keyValues.size());
 ViewObject empVO = getEmpView1();
 for (String keyVal : keyValues) {
 Key key = new Key(new Object[] { keyVal });
 Row row = empVO.findByKey(key, 1)[0];
 BigDecimal newSal = new
 BigDecimal(Math.round(((BigDecimal)row.getAttribute("Sal")).doubleValue()*(1+(new
 Random()).nextDouble()/10)));
 row.setAttribute("Sal", newSal);
 DemoDataChangeEntry dce =
 new DemoDataChangeEntry(new Object[] { new Integer(keyVal) },
 DemoDataChangeEntry.ChangeType.UPDATE,
 new String[] { "Sal" },
 new Object[] { newSal.toString() });
 dces.add(dce);
 }
 this.getDBTransaction().commit();

 DemoDataUpdateEvent event = new DemoDataUpdateEvent(dces);
 // Send a message
 sendMessage(correlationId, event);
 }

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-19

 // Simplified interface for Service method

 public void paySingleCommission(String correlationId, String key) {
 ArrayList<String> thelist = new ArrayList<String>();
 thelist.add(key);
 payCommission(correlationId, thelist);
 }

// List interface for calling from UI and by Simplified Service Method

public void payCommission(String correlationId, List<String> keyValues) {
 List<DemoDataChangeEntry> dces =
 new ArrayList<DemoDataChangeEntry>(keyValues.size());
 ViewObject empVO = getEmpView1();
 for (String keyVal : keyValues) {
 Key key = new Key(new Object[] { keyVal });
 Row row = empVO.findByKey(key, 1)[0];

 BigDecimal newComm = new BigDecimal((new Random()).nextInt(10000));
 row.setAttribute("Comm", newComm);
 DemoDataChangeEntry dce =
 new DemoDataChangeEntry(new Object[] { new Integer(keyVal) },
 DemoDataChangeEntry.ChangeType.REFRESH,
 new String[] { "Comm" },
 new Object[] { newComm.toString() });
 dces.add(dce);
 }
 this.getDBTransaction().commit();

 DemoDataUpdateEvent event = new DemoDataUpdateEvent(dces);
 // send message
 sendMessage(correlationId, event);
 }

// Private method to push ADS update to JMS queue

private void sendMessage(String correlationId, DemoDataUpdateEvent event) {
 try {
 JMSHelper helper = JMSHelper.getInstance();
 ObjectMessage message = helper.createObjectMessage();
 message.setObject(event);
 message.setJMSCorrelationID(correlationId);
 helper.sendMessage(message);
 } catch (JMSException e) {
 e.printStackTrace();
 } // try
 } // sendMessage

To define structure and compose event metadata:
The code that programmatically creates business event payloads and raises them
through the business event APIs should be deliberately built around the namespace
and event attributes defined in the appropriate EDL and XSD files.

For this pattern, a single event is used that supports multiple event types through an
attribute value such as payRaise and payComission. However, support for additional
event types only requires adding the UI facet, the programmatic method to raise that

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

42-20 Developer's Guide

new event type and a conditional branch in BPEL. If the pattern requires completely
separate event definitions, the code becomes more complex, the number of managed
metadata source files increases, and the composite becomes more complex as well.

While this is a simpler approach, it is not as flexible from an integration perspective.
Define your event types such that they support your current use case and potentially
support additional integration in the future. Example 42–13 shows a simplified event
definition, while Example 42–14 shows an event schema definition.

Example 42–13 Simplified Event Definition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
 targetNamespace="http://xmlns.oracle.com/apps/ta/adsdemo/events/edl">
 <schema-import namespace="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema"
 location="xsd/ADSDemoEventSchema.xsd"/>
 <event-definition name="ADSDemoEvent">
 <content xmlns:ns0="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema"
 element="ns0:ADSDemoEventElement"/>
 </event-definition>
</definitions>

Example 42–14 Event Schema Definition

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema"
 targetNamespace="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:element name="ADSDemoEventElement" type="ADSDemoEventElementType"/>
 <xsd:complexType name="ADSDemoEventElementType">
 <xsd:sequence>
 <xsd:element name="correlationId" type="xsd:long"/>
 <xsd:element name="key" type="xsd:long"/>
 <xsd:element name="eventType" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

To extend the application module with publishEvent and supporting methods:
In the page bindings, add the method publishEvent that binds to the application
module method of the same name. Use this binding in the handleRaise and
handleCommission methods of the TableHandlerBean to publish the event for each
employee to be updated.

For more information about extending the application module with the publishEvent
method, see Section 32.5.1, "Using the Java Event API to Publish Events."

Note: It is critical that the event name and namespace are consistent
throughout the code and metadata definitions in the subscribing SOA
composite.

How to Implement an Asynchronous Service Initiation with Dynamic UI Update

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-21

42.4.7 Creating a SOA Composite that Subscribes to the Published Event
The creation of a SOA composite that subscribes to an event is covered in Section 32,
"Initiating a SOA Composite from an Oracle ADF Web Application." A sample pattern
composite is shown in Figure 42–3.

Figure 42–3 Pattern Composite

42.4.8 Constructing a BPEL Process to Perform Asynchronous Work
The creation of a BPEL process and human task activities is described in other sections.
For more information, see Chapter 38, "Managing Tasks from an Oracle ADF
Application."

A sample BPEL process is shown in Figure 42–4.

Securing the Design Pattern

42-22 Developer's Guide

Figure 42–4 BPEL Flow

42.4.9 Invoking the ADF Business Components Service
Invoking an ADF Business Components service from a BPEL process is covered in
another section. For more information, see Chapter 34, "Orchestrating ADF Business
Components Services."

42.5 Securing the Design Pattern
The process of securing this design pattern is the same as that of securing an Oracle
ADF UI application.

For more information, see Chapter 50, "Securing Web Services Use Cases."

42.6 Verifying the Deployment
Do the following to test functionality:

1. Turn on the EDN-DB-LOG page by navigating to
http://host:port/soa-infra/events/edn-db-log and ensure it reads
"Log is Enabled." If it is not, click Enable.

2. Open the UI page and interact with the UI components that you designed to
trigger the event.

The event should immediately display in the EDN-DB-LOG page.

3. Check for the event payload shown in Example 42–15.

Example 42–15 Event Payload

Enqueing event: http://xmlns.oracle.com/apps/ta/adsdemo/events/edl::ADSDemoEvent from J

Verifying the Deployment

Implementing an Asynchronous Service Initiation with Dynamic UI Update 42-23

Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/adsdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">
 <name>ns:ADSDemoEvent</name>
 <id>494ae921-4667-4a42-8190-5a5aaa428f7e</id>
 <content>
 <ADSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema">
 <correlationId>3926ed2d-e023-4f05-85f9-bdf0b57099ae</correlationId>
 <key>7499</key>
 <eventType>payRaise</eventType>
 </ADSDemoEventElement>
 </content>
</business-event>

Subject name:
Enqueing complete

Starting EDN Agent for Event from Queue
Dequeued event: http://xmlns.oracle.com/apps/ta/adsdemo/events/edl::ADSDemoEvent
Subject name:
Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/adsdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">
 <name>ns:ADSDemoEvent</name>
 <id>494ae921-4667-4a42-8190-5a5aaa428f7e</id>
 <content>
 <ADSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/adsdemo/events/schema">
 <correlationId>3926ed2d-e023-4f05-85f9-bdf0b57099ae</correlationId>
 <key>7499</key>
 <eventType>payRaise</eventType>
 </ADSDemoEventElement>
 </content>
</business-event>

4. Check the console ($DOMAIN_HOME/as.log) or soa-diagnostic logs ($DOMAIN_
HOME/servers/<serverName>logs/<serverName>.log) to see any Mediator activity
that results from your event.

 INFO: MediatorServiceEngine received an event =
{http://xmlns.oracle.com/apps/ta/adsdemo/events/edl}ADSDemoEvent
Apr 17, 2009 1:57:26 PM
oracle.tip.mediator.common.persistence.MediatorPersistor persistCallback
INFO: No call back info set in incoming message
Apr 17, 2009 1:57:26 PM
oracle.tip.mediator.common.persistence.MediatorPersistor persistCallback
INFO: Message properties :{id=041ecfcf-8b73-4055-b5c0-0b89af04f425,
tracking.compositeInstanceId=50003,
tracking.ecid=0000I2pqzVCBLA5xrOI7SY19uEYF00004g:47979}
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
dispatch
INFO: Executing Routing Service..
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCases
INFO: Unfiltered case list size :1
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.monitor.MediatorActivityMonitor
createMediatorCaseInstance
INFO: Creating case instance with name :ADEDemoProcess.adedemoprocess_
client.process
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCase
INFO: Immediate case {ADEDemoProcess.adedemoprocess_client.process} with case
id :{5B52B4A02B9211DEAF64D3EF6E2FB21D} will be executed

Troubleshooting the Use Case

42-24 Developer's Guide

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.service.filter.FilterFactory
createFilterHandler
INFO: No Condition defined

5. Check Oracle Enterprise Manager at http://host:port/em for an instance of
your SOA composite, and check for errors.

6. If your process has no errors and is expecting a response from the human
workflow notification, do the following:

a. Navigate to the worklist at
http://host:port/integration/worklistapp.

b. Log in as the assigned approver.

c. Approve or reject the notification per your design requirements.

At this point, the BPEL process should complete and invoke the ADF Business
Components service to trigger the ADS push. The UI should promptly update. Check
the Oracle ADF UI runtime console and diagnostic logs for stack traces and log
messages.

42.7 Troubleshooting the Use Case
For the Oracle ADF UI functionality, use Fusion Middleware Control, Oracle Fusion
Applications Logger, and server diagnostic logs for information about what is failing.

For the events functionality, use the Event Delivery Network database log page at
http://host:port/soa-infra/events/edn-db-log.

For the SOA functionality, use the Oracle Enterprise Manager console for diagnostics
and Oracle Fusion Applications Logger sensor variables for logging.

For the ADF Business Components service functionality, use BPEL fault handling and
logging via Oracle Fusion Applications Logger sensor variables as well as the console,
Oracle Fusion Applications Logger and server diagnostic logs for more detailed error
messages.

42.8 What You May Need to Know About Initiating an Asynchronous
Service with Dynamic UI Update

■ Oracle ADF UI

■ ADS

■ JMS

■ Business Events (programmatic)

■ SOA Mediator

■ SOA BPEL

■ ADF Business Components services

42.9 Known Issues and Workarounds
Known issues are as follows:

■ Sparkle does not occur on selected rows.

43

Managing Tasks Programmatically 43-1

43Managing Tasks Programmatically

This chapter describes what to do when you need to programmatically create, set an
outcome for, or query task information that resides in one or more SOA domains.

When to implement: When you need to programmatically create, set an outcome for,
or query task information that resides in one or more SOA domains.

Design Pattern Summary: The design pattern involves programmatic interaction with
human task client services by an application with the following requirements:
displaying task status information, providing UI facets to enable setting task outcomes
without navigating through the worklist, and submitting new tasks without initiating
a BPEL process.

In addition, the human task services support federated task queries across several
SOA domains so as to obtain an aggregated task list across several product families.

Involved components:

■ Java code, such as an Oracle ADF application module or Oracle Enterprise
Scheduler Java job

■ SOA Domain with deployed human task

43.1 Introduction to the Recommended Design Pattern
Some Oracle Fusion web applications have use cases that require programmatically
interacting with the human workflow layer to approve, reject and display lists of tasks
using specific search criteria. All SOA runtime environments that are configured as
part of the topology are stored in the Oracle Fusion Middleware Extensions for
Applications taxonomy schema and accessed at runtime using APIs. In the taxonomy
schema, each SOA runtime environment has an entry with a unique identifying name
that maps to a corresponding endpoint URL. For example, a SOA runtime
environment called FIN_SOA_RMI has a corresponding endpoint URL
t3://fpp-02.mycompany.com:7001/.

At runtime, the taxonomy schema is queried to construct a list of servers and their
respective endpoints. This list of servers and endpoints passes to the human workflow
client service APIs as a JAXB object. In the context of the federated task query service,
some or all of these servers can be referenced. One of these servers is set as the default,
and is used in the context of non-federated task services such as the task and task
query services.

Alternatively, servers can be excluded from the list of federated servers, and exist only
in the JAXB object. This allows servers to be used only when named explicitly in the
list of requested servers. In this case, the excluded servers will not be used when the
list of requested servers is empty.

Potential Approaches

43-2 Developer's Guide

Oracle Fusion Middleware Extensions for Applications maintains the list of servers in
the taxonomy tables. An API enables building the JAXB object based on the list of SOA
domains in the Oracle Fusion Applications topology.

This pattern is recommended as it provides the following features:

■ Federated query support,

■ Programmatic access supports custom UI requirements and ADF Business
Components services and Oracle Enterprise Scheduler job integration.

43.2 Potential Approaches
■ Supported approach: Managing Tasks from an Oracle ADF application.

■ Unsupported approach: Direct invoking a service using JAX-WS proxies.

43.3 Example
The Expenses team has an Expenses Manager role with administrator privileges to
approve or reject expenses that belong to other users. The Expenses team must provide
a workbench that collectively scans all SOA domains for open expense notifications
and provide a consolidated UI to set their outcome, potentially all at once. This UI
would comprise a table listing notifications matching certain filter criteria with buttons
to select and set the appropriate outcome of the expense. This is done through RMI
interaction with the appropriate SOA domain.

43.4 Managing Human Workflow Tasks from a Java Application
These are two main high-level steps involved in this process:

■ Create and deploy a human task definition using a SOA composite that contains
the human task.

■ Develop code to do the following:

– Connect to the task services.

– Query or lookup the tasks.

– Display the task summary.

– Set the desired task outcome.

43.4.1 How to Connect to the Task Service/Task Query Service
The human workflow APIs provide three types of task services: single, query and
federated query. The type of service you use depends on the product use case. The
RMI endpoint for these services must be derived at runtime and compiled into a
server list. The server list is contained by a JAXB object, which can be passed to the
human workflow client service APIs. In order to support this runtime lookup, the
Oracle Fusion Middleware Extensions for Applications taxonomy schema and APIs
must be seeded during provisioning. You need only provide an ArrayList
(java.util.ArrayList) of server names to be used in the federated query.

Note: Consider performance requirements when using the query or
federated query service APIs. It is recommended to page the result
sets in batches, for example, in sets of 10-25.

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-3

Services are as follows:

■ Task Service: The task service programmatically sets a task outcome, such as
approve or reject for a single, particular task using a single, particular SOA
runtime.

■ Task Query Service: The task query service programmatically queries tasks for a
particular task type. Use the portlet to render a worklist and relevant tasks in your
dashboard. Alternatively, you may manually build the worklist instead.

■ Federated Task Query Service: The federated task query service programmatically
executes a federated query of tasks for a particular task type. Use the portlet to
render a worklist and relevant tasks in your dashboard. Alternatively, you may
manually build the worklist instead.

Use the following guidelines to determine the type of task or query service to use.

■ Single server task service API: Use this API to obtain a single task object using the
task number or task ID from a single, specific SOA runtime.

■ Single server task query service API: Use this API to query for tasks from a
single, specific SOA runtime.

■ Federated task query service API: Use this API to query tasks based on
namespace or task name from one or more SOA runtime domains.

43.4.2 How to Use the Single Server Task Service API
If your use case requires connecting to one SOA domain and obtaining the details of a
single task via a primary key such as task number or task ID, take the following steps.
Once obtained, configure the task detail display or set the task outcome.

■ Import libraries into the Java project.

■ Import code packages into the Java project.

■ Declare and obtain task service object references.

43.4.2.1 Import Libraries into the Java Project
Add the following libraries to the Oracle JDeveloper project:

■ Applications Core: Add this library to enable using Oracle Fusion Middleware
Extensions for Applications taxonomy APIs to obtain the necessary JAXB object
containing the RMI endpoint information for the desired server.

■ SOA Runtime: Add this library to enable using the human workflow task query
APIs.

43.4.2.2 Import Code Packages into the Java Project
Import the code packages shown in Example 43–1 into the Java source.

Example 43–1 Importing Code Packages to Enable Using the Single Server Task Service API

import java.util.ArrayList;
import java.util.List;

import java.util.logging.Logger;

import javax.jws.WebService;

import oracle.bpel.services.workflow.verification.IWorkflowContext;

Managing Human Workflow Tasks from a Java Application

43-4 Developer's Guide

import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.task.model.Task;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.task.IInitiateTaskResponse;
import oracle.bpel.services.workflow.task.ITaskService;
import oracle.bpel.services.workflow.task.model.ObjectFactory;

import oracle.apps.fnd.applcore.common.DeploymentsUtil;

import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationType;

43.4.2.3 Declare and Obtain Task Service Object References
Create the query and task service references by invoking the
WorkflowServiceClientFactory API getWorkflowServiceClient method, which
provides the JAXB object containing the server list and a logger object reference. The
human workflow task service connects to the server marked as the default in the JAXB
object. When calling the APIs to craft the JAXB object, be sure to specify the name of
the server you want to call. Example 43–2 shows sample code used to declare and
obtain task service object references.

Example 43–2 Declaring and Obtaining Task Service Object References

ITaskService taskSvc = null;
 ITaskQueryService querySvc = null;
 IWorkflowContext wfCtx = null;
 java.util.logging.Logger logger = Logger.getLogger("oracle.apps");
 try {
 WorkflowServicesClientConfigurationType wscct =
 getWorkflowClientConfigObject("FIN_SOA_RMI);
 if (wscct == null) { //Log incident
 return "FAILED!";
 } // if

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(wscct, logger);
 taskSvc = wfSvcClient.getTaskService();
 querySvc = wfSvcClient.getTaskQueryService();

Note: Previously, developers would populate the properties for EJB_
PROVIDER and EJB_SECURITY to provide the RMI endpoint and
credentials. Instead, RMI identity propagation uses the current user
context for authentication. In Oracle Fusion Applications, most UI and
services require authentication that provides the appropriate user
context. If no current user context exists, create one.

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-5

43.4.2.4 Obtain the Workflow Service Context Object
In order to sustain performance in all interactions to the workflow client service APIs,
pass the workflow service context object to any applicable APIs. To obtain the context
using the current user's identity, call the
getWorkflowContextForAuthenticatedUser() method, as shown in Example 43–3.

Example 43–3 Getting the Workflow Service Context Object

// Get the workflow task service context for use in later calls for performance
// improvement
wfCtx = querySvc.getWorkflowContextForAuthenticatedUser();

43.4.2.5 Obtain the Single Task Object and Set Task Outcome
When interacting with the task service, you must first obtain the task number or ID for
the task in order to retrieve the task details. Use the task number or task ID to invoke
the getTaskDetailsById or getTaskDetailsByNumber methods of the task query
service object.

Example 43–4 shows the approval of a task with the ID
0a6d287a-9849-4e5e-914b-805706d6b9d9.

Example 43–4 Getting the Single Task Object with the Task ID

Task t = querySvc.getTaskDetailsById(wfCtxt,
"0a6d287a-9849-4e5e-914b-805706d6b9d9");
taskSvc.updateTaskOutcome(wfCtxt, t, "APPROVE");
// Another example, using the task number to reject a task.
Task t = querySvc.getTaskDetailsByNumber(wfCtxt, 200140);
taskSvc.updateTaskOutcome(wfCtxt, t, "REJECT");

Example 43–5 shows how to use STDOUT calls to display the various task attributes
through the task API.

Example 43–5 Using STDOUT Calls to Display Task Attributes

System.out.println("Task Number: " + task.getSystemAttributes().getTaskNumber());
System.out.println("Task Id: " + task.getSystemAttributes().getTaskId());
System.out.println("Titl e: " + task.getTitle());
System.out.println("Priority: " + task.getPriority());
System.out.println("State: " + task.getSystemAttributes().getState());

43.4.3 How to Use the Single Server Task Query Service API
If your use case involves connecting to a single SOA domain and querying for all tasks
that match certain criteria, take the following steps. Once you have queried for the

Note: For performance reasons, be sure to pass this context to all
subsequent calls to the APIs.

Note: This approach assumes that you have obtained the task
number or task ID (either through the task query service or
otherwise).

Managing Human Workflow Tasks from a Java Application

43-6 Developer's Guide

relevant tasks, you can display them in an ordered list in the UI or programmatically
set task outcome all at once.

■ Import libraries into the Java project.

■ Import code packages into the Java project.

■ Declare and obtain task query service object references.

■ Manage query and task outcome states.

43.4.3.1 Import Libraries into the Java Project
Import the libraries described in Section 43.4.2.1, "Import Libraries into the Java
Project."

43.4.3.2 Import Code Packages into the Java Project
Import the code packages described in Section 43.4.2.2, "Import Code Packages into
the Java Project."

43.4.3.3 Declare and Obtain Task Query Service Object References
Create the query and task service references by invoking the
WorkflowServiceClientFactory API getWorkflowServiceClient method, which
provides the JAXB object containing the server list and a logger object reference. The
human workflow task service connects to the server marked as the default in the JAXB
object. When calling the APIs to craft the JAXB object, be sure to specify the name of
the server you want to call.

Example 43–6 shows sample code in which task query service object references are
declared and obtained.

Example 43–6 Declaring and Obtaining Task Query Service Object References

ITaskService taskSvc = null;
ITaskQueryService querySvc = null;
IWorkflowContext wfCtx = null;
try {
 java.util.logging.Logger logger = Logger.getLogger("oracle.apps");
 WorkflowServicesClientConfigurationType wscct =
 getWorkflowClientConfigObject("FIN_SOA_RMI);
if (wscct == null) { // Log incident
 return "FAILED!"; }
}

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(wscct, logger);
taskSvc = wfSvcClient.getTaskService();
querySvc = wfSvcClient.getTaskQueryService();

Note: Previously, developers would populate the properties for EJB_
PROVIDER and EJB_SECURITY to provide the RMI endpoint and
credentials. Instead, RMI identity propagation uses the current user
context for authentication. In Oracle Fusion Applications, most UI and
services require authentication that provides the appropriate user
context. If no current user context exists, create one.

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-7

43.4.3.4 Manage Query and Task Outcome States
Performing queries and interacting with the task result set is similar for both the
federated and non-federated task query services. For more information about this
process, see Section 43.4.5, "How to Query and Traverse Federated and Non-federated
Query Result Sets."

43.4.4 How to Use the Federated Server Task Query Service API
Using the federated server task query service API involves the following main steps:

■ Import libraries into the Java project.

■ Import code packages into the Java project.

■ Create a list of servers for a parallel federated query.

■ Declare task and query service references, and create the workflow client service
object.

■ Obtain the workflow service client.

■ Implement exception handling for federated queries.

■ Manage query and task outcome states.

43.4.4.1 Import Libraries into the Java Project
Import the libraries described in Section 43.4.2.1, "Import Libraries into the Java
Project."

43.4.4.2 Import Code Packages into the Java Project
Import the code packages described in Section 43.4.2.2, "Import Code Packages into
the Java Project."

In addition, import the code package shown in Example 43–7.

Example 43–7 Importing the Code Package IFederatedWorkflowContext

import oracle.bpel.services.workflow.fws.client.IFederatedWorkflowContext;

43.4.4.3 Create a List of Servers for a Parallel Federated Query
To leverage the federated query service, decide whether to query all human workflow
services in Oracle Fusion Applications or just a subset of those services. The servers
are named according to standards and are populated in a JAXB object which contain
the service endpoints for lookup at runtime. You need only know the name or names
of the product services you want to poll or provide a list

To use a subset of the human workflow services, construct a Java list of those service
names and pass that list to getFederatedTaskQueryService.

Example 43–8 shows sample code in which a list of servers is created for a parallel
federated query.

Note: Be sure to provide a list of requested servers, as all servers in
the list are polled. Failing to provide a list of servers results in all the
servers being polled, which has significant performance implications.

Managing Human Workflow Tasks from a Java Application

43-8 Developer's Guide

Example 43–8 Creating a List of Servers for a Parallel Federated Query

// Create the human workflow server subset list.
List<String> requestedServers = new ArrayList<String>();
requestedServers .add("FIN_SOA_RMI");
requestedServers .add("CRM_SOA_RMI ");
requestedServers .add("PRJ_SOA_RMI");

43.4.4.4 Declare Task and Query Service References and Create the Workflow
Client Service Object
After constructing the server list, obtain the query service object reference by invoking
the getFederatedTaskQueryService API of the WorkflowServiceClientFactory, as
shown in Example 43–9.

Example 43–9 Declaring Task and Query Service References and Creating the Workflow
Client Service Object

java.util.logging.Logger logger = Logger.getLogger("oracle.apps");
WorkflowServicesClientConfigurationType wscct =
 getWorkflowClientConfigObject("FIN_SOA_RMI");
if (wscct == null) { // Log Incident
 return "FAILED!";
 }// if
querySvc = WorkflowServiceClientFactory.getFederatedTaskQueryService(wscct,
requestedServers, logger);

43.4.4.5 Obtain the Workflow Service Context
Obtain the workflow service context from the query service, as shown in
Example 43–10. This improves performance with all workflow client service API
interactions.

Example 43–10 Obtaining the Workflow Service Context

fedWFCtx = (IFederatedWorkflowContext) querySvc.getWorkflowContextForAuthenticatedUser();

43.4.4.6 Implement Exception Handling for Federated Queries
When performing queries on federated task query services, exceptions in
communicating with any servers in the list of servers do not cause the query to fail.
Instead, the context has a boolean isFailed() operation which can be interrogated to
determine whether any failures occurred. Exceptions can be obtained from the
context's getExceptionMap() method as shown in Example 43–11.

Note: Previously, developers would populate the properties for EJB_
PROVIDER and EJB_SECURITY to provide the RMI endpoint and
credentials. Instead, RMI identity propagation uses the current user
context for authentication. In Oracle Fusion Applications, most UI and
services require authentication that provides the appropriate user
context. If no current user context exists, create one.

Note: This context is cast as IFederatedWorkflowContext. For
performance reasons, the context must be passed to all subsequent
API calls.

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-9

Example 43–11 Implementing Exception Handling

// Partial success does not throw exceptions, instead check for isFailed and
// inspect the Exception and Context maps.
if (fedWFCtx.isFailed()) {
 // Log Messages
 logger.warning("Exception map: " + fedWFCtx.getExceptionMap());
 logger.warning("Contextmap: " + fedWFCtx.getWorkflowContextMap());
} // if

43.4.4.7 Manage Query and Task Outcome States
Performing queries and interacting with the task result set is similar for both the
federated and non-federated task query services. For more information about this
process, see Section 43.4.5, "How to Query and Traverse Federated and Non-federated
Query Result Sets."

43.4.5 How to Query and Traverse Federated and Non-federated Query Result Sets
Querying and traversing federated and non-federated query result sets involves the
following main steps:

■ Determine query service search criteria.

■ Construct the predicate for the queryTasks() method.

■ Arrange the order of results returned by the queryTasks() method.

■ Construct the list of display columns for the queryTasks() method.

■ Construct a list of OptionalInfo items for the results of the queryTasks() method.

■ Invoke the queryTasks() method with the attribute lists.

■ Iterate through the result set.

■ Programmatically set the task outcome.

43.4.5.1 Determine Query Service Search Criteria
This section assumes you have implemented the task query service for either single or
federated queries by following the instructions in Section 43.4.3, "How to Use the
Single Server Task Query Service API" and Section 43.4.4, "How to Use the Federated
Server Task Query Service API."

For example, creating a human task in a composite produces a TASK file containing
the metadata that defines the task behavior for approval hierarchy as well as possible
outcomes. Examining the source of this TASK file reveals the task name, target
namespace, possible outcomes, and so on. When deploying the composite containing
this task, the WFTASK tables are updated with task-related data that supports the
human workflow infrastructure, as shown in Example 43–12.

Example 43–12 Sample *.task File Snippet

 <?xml version = '1.0' encoding = 'UTF-8'?>
<taskDefinition
targetNamespace="http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTask
Composite/Humantask1"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functi
ons.Xpath20"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functi

Managing Human Workflow Tasks from a Java Application

43-10 Developer's Guide

ons.ExtFunc"
xmlns:task="http://xmlns.oracle.com/bpel/workflow/task"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://xmlns.oracle.com/bpel/workflow/taskDefinition"
xmlns:evidence="http://xmlns.oracle.com/bpel/workflow/TaskEvidenceService"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/bpel/workflow/common"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:tsc="http://xmlns.oracle.com/bpel/workflow/common/tsc"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPa
thFunctions"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.service.c
ommon.functions.GetRequestHeaderExtnFunction">
<name>Humantask1</name>
...

The task metadata includes a value for targetNamespace, in this case
http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTaskComposite
/Humantask1.

If you can access the SOAInfra schema of your runtime environment, you can query
the details of this task with the query shown in Example 43–13.

Example 43–13 Query task details

select * from wftaskmetadata where namespace =
'http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTaskComposite/Humant
ask1';

This query results in the WFTASKMETADATA row, shown in Table 43–1 and Table 43–2.

You can then query the WFTASK table using the task ID shown in the first column of
Table 43–1, as shown in Example 43–14.

Example 43–14 Query the WFTASK table using the task ID

task:select * from wftask where taskdefinitionid =
'default/SOAComposite1!1.0*2008-12-02_08-32-41_642/Humantask1';

Table 43–1 WFTASKMETADATA Row Part One

ID URI Name Title Component

 Name

default/SOAComposite1!1.0
*2008-12-02_08-32-41_
642/Humantask1

default/SOAComposite1!
1.0*2008-12-02_
08-32-41_
642/Humantask1

Humantask1 string('Task
TItle')

Humantask1

Table 43–2 WFTASKMETADATA Row Part Two

CompositeDN Composite

Name

Composite

Version

Namespace

default/SOAComposite
1!1.0*2008-12-02_
08-32-41_642

SOAComposite1 1.0 http://xmlns.oracle.com/WFClientPatternSOAApp/WF
ClientPatternTaskComposite/Humantask1

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-11

The results of the entire table are too large to print, but the selected columns shown in
Table 43–3 may be useful.

This example focuses on tasks belonging to the current user identity, obtained
automatically from the session context and passed using a SAML token in the SOAP
header. These tasks that bear the ASSIGNED state and match the namespace
http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTaskComposite
/Humantask1.

43.4.5.2 Construct the Predicate for queryTasks()
Predicate construction is the instantiation of objects which define an expression to
model the conditional part of the underlying where clause. For example, a conditional
statement such as TASKNUMBER = 200140 equates to the predicate constructor shown in
Example 43–15.

Example 43–15 Constructing the Predicate

new Predicate(TableConstants.WFTASK_TASKNUMBER_COLUMN, Predicate.OP_EQ, 200140);

For this case, a predicate is required to match the WFTASKMETA_NAMESPACE_COLUMN and
the WFTASK_STATE_COLUMN columns to the appropriate values. First create the
namespace column predicate, then the state column predicate, followed by a predicate
combining these two predicates with a conditional, as shown in Example 43–16.

Example 43–16 Creating Namespace, State and Combination Predicates

Predicate predicate1 = new Predicate(TableConstants.WFTASK_STATE_COLUMN, Predicate.OP_EQ,
IWorkflowConstants.TASK_STATE_ASSIGNED);
Predicate predicate2 = new Predicate(TableConstants.WFTASKMETADATA_NAMESPACE_COLUMN, Predicate.OP_
EQ, TASK_TARGET_NAMESPACE);
Predicate predicate = new Predicate(predicate1, Predicate.AND, predicate2);

An additional way to construct a predicate is shown in Example 43–17, as specified in
the ITaskQueryService documentation.

Example 43–17 Another Way to Construct a Predicate

Predicate statePredicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN, Predicate.OP_NEQ,
IWorkflowConstants.TASK_STATE_ASSIGNED);
statePredicate.addClause(Predicate.AND, TableConstants.WFTASK_NUMBERATTRIBUTE1_COLUMN,
Predicate.OP_IS_NULL, nullParam);

Table 43–3 Useful Columns

Column Name Column Value

State ASSIGNED

TaskID 0a6d287a-9849-4e5e-914b-805706d6b9d9

TaskNumber 200140

WorkflowDescriptorURI default/SOAComposite1!1.0*2008-12-02_08-32-41_
642/Humantask1

TaskDefinitionID default/SOAComposite1!1.0*2008-12-02_08-32-41_
642/Humantask1

TaskDefinitionName Humantask1

CorrelationID 0a6d287a-9849-4e5e-914b-805706d6b9d9

Managing Human Workflow Tasks from a Java Application

43-12 Developer's Guide

Predicate datePredicate = new Predicate(TableConstants.WFTASK_ENDDATE_COLUMN, Predicate.OP_ON, new
Date());
Predicate predicate = new Predicate(statePredicate, Predicate.AND, datePredicate);

43.4.5.3 Arrange the Order of Results Returned by the queryTasks() Method
This step is optional.

The Ordering parameter facilitates implementing an ORDER_BY clause in the task list
query.

In Example 43–18, the TITLE_COLUMN and PRIORITY_COLUMN properties are added to the
ORDER_BY clause.

Example 43–18 Constructing the Ordering of queryTasks()

// Create the ordering
Ordering ordering = new Ordering(TableConstants.WFTASK_TITLE_COLUMN, true, true);
ordering.addClause(TableConstants.WFTASK_PRIORITY_COLUMN, true, true);

43.4.5.4 Construct the List of Display Columns for the queryTasks() Method
By default, the queryTasks() method returns only a list of tasks with their TASKID
value. If you require additional columns, such as TASKNUMBER, TITLE, PRIORITY, STATE,
ENDDATE, ASSIGNEE, COMPOSITEINSTANCEID, ROOTTASKID, and so on, construct an
ArrayList of String objects containing the names of the additional columns you want
returned in the result set. Example 43–19 shows sample code that constructs a list of
display columns for queryTasks().

Example 43–19 Constructing the List of Display Columns for queryTasks()

// List of display columns
// For those columns that are not specified here, the queried Task object will not
// hold any value.
// For example: If TITLE is not specified, task.getTitle() returns a value of
// null.
// For the list of most comonly used columns, check the table below
// Note: TASKID is fetched by default, such that it is unnecessary to explicitly
// specify it.
List queryColumns = new ArrayList();
queryColumns.add("TASKNUMBER");
queryColumns.add("TITLE");
queryColumns.add("PRIORITY");
queryColumns.add("STATE");
queryColumns.add("ENDDATE");
queryColumns.add("NUMBERATTRIBUTE1");
queryColumns.add("TEXTATTRIBUTE1");

43.4.5.5 Construct a List of OptionalInfo Items to be Returned from queryTasks()
This step is optional.

Per the API documentation, the OptionalInfo enumeration consists of additional,
optional values that can be obtained with the task in the result set. These optional
values include the available actions for a task, attachments, user comments, and so on.
An example is shown in Example 43–20.

Managing Human Workflow Tasks from a Java Application

Managing Tasks Programmatically 43-13

Example 43–20 Constructing a List of OptionalInfo Items

// List of optional info
// You can fetch any specified optionalInfo items from the Task object.
// For example: if you have specified "CustomActions", you can retrieve
// it using task.getSystemAttributes().getCustomActions();
// "Actions" (All Actions) - task.getSystemAttributes().getSystemActions()
// "GroupActions" (Only group Actions: Actions that can be permoded by the user
// as a member of a group).
// - task.getSystemAttributes().getSystemActions()
// "ShortHistory" - task.getSystemAttributes().getShortHistory()
List optionalInfo = new ArrayList();
optionalInfo.add("Actions");

43.4.5.6 Invoke queryTasks() with the Attribute Lists
Now that the attribute classes have been constructed to constrain, order and specify
the attributes returned in the query, invoke the queryTasks() method.

The query service API has the method signature shown in Example 43–21.

Example 43–21 Query Service API

queryTasks(IWorkflowContext ctx, java.util.List displayColumns,
 java.util.List<ITaskQueryService.OptionalInfo> optionalInformation,
 ITaskQueryService.AssignmentFilter assignmentFilter,
 java.lang.String keywords,
 Predicate predicate,
 Ordering ordering,
 int startRow,
 int endRow)

The queryTasks() method returns a list of tasks that match the predicate and
ordering criterion.

Example 43–22 shows how to invoke queryTasks() using the previously constructed
attribute lists.

Example 43–22 Invoking queryTasks() with the Previously Constructed Attribute Lists

List tasksList = querySvc.queryTasks(wfCtxt,
 queryColumns,
 optionalInfo,
 ITaskQueryService.ASSIGNMENT_FILTER_MY_AND_GROUP,
 keyword,
 predicate,
 ordering,
 0,0); // No Paging

More information on paging is available in the API documentation. (Look for the text
"How to use paging.")

43.4.5.7 Iterate through the Result Set
The method queryTasks returns a list of task objects. Use standard Java iteration to
iterate through the list. Then, invoke various accessors to obtain the attributes
specified in the query column list. Example 43–23 shows how to iterate through the
result set.

Managing Human Workflow Tasks from a Java Application

43-14 Developer's Guide

Example 43–23 Iterating through the Result Set

if (tasksList != null) { // There are tasks
 str = str + tasksList.size() + ":";
Task task = null;
for (int i = 0; i < tasksList.size(); i++) {
 task = (Task) tasksList.get(i);
 str = str + task.getSystemAttributes().getTaskNumber() + "/" +
task.getSystemAttributes().getTaskId();
 System.out.println("Task Number: " +
task.getSystemAttributes().getTaskNumber());
 System.out.println("Task Id: " + task.getSystemAttributes().getTaskId());
 System.out.println("Title: " + task.getTitle());
 System.out.println("Priority: " + task.getPriority());
 System.out.println("State: " + task.getSystemAttributes().getState());
 System.out.println();
 // Retrive any Optional Info specified
 // Use task service, to perform operations on the task
 str = str + ":"; }
}

43.4.5.8 Programmatically Set the Task Outcome
Once you have obtained one or more task objects through the query service, approve
or reject the tasks by calling the task service updateTaskOutcome method from the
ITaskService API, as shown in the following examples:

■ Example 43–24

■ Example 43–25

■ Example 43–26

■ Example 43–27

■ Example 43–28

■ Example 43–29

Example 43–24 Programmatically Setting the Task Outcome

updateTaskOutcome(IWorkflowContext context,Task task, java.lang.String outcome)
// Set the outcome of the task.

Example 43–25 Setting the Outcome of the Task Reference on the Single Server Task
Service

'APPROVE'.taskSvc.updateTaskOutcome(wfCtxt, t, "APPROVE");

Example 43–26 Setting the Outcome of the Task Reference on the Single Server Task
Service

'REJECT'.taskSvc.updateTaskOutcome(wfCtxt, t, "REJECT");

Example 43–27 Obtaining a Single Task Reference Using the Non-Federated Query
Service

getTaskDetailsById, then setting the outcome to 'APPROVE'.Task t =
querySvc.getTaskDetailsById(wfCtxt, "0a6d287a-9849-4e5e-914b-805706d6b9d9");
taskSvc.updateTaskOutcome(wfCtxt, t, "APPROVE");

Verifying the Deployment

Managing Tasks Programmatically 43-15

Example 43–28 Obtaining a Single Task Reference Using the Non-Federated Query
Service

getTaskDetailsByNumber, then setting the outcome to 'REJECT'.Task t =
querySvc.getTaskDetailsByNumber(wfCtxt, 200140);
taskSvc.updateTaskOutcome(wfCtxt, t, "REJECT");

Example 43–29 Updating a Single Task Outcome on the Federated Query Service

Map<String, IWorklowContext> ctxMap = fedWFCtx.getWorkflowContextMap()
String serverName = task.getServerName();
IWorklowContext taskWfCtx = ctxMap.get(serverName);

if (taskWfCtx !=null)

43.5 Other Approaches
Programmatically, it is possible to use a SOAP-based client interface and manually set
endpoint and credential information in the code from a product-specific table. This
approach is not recommended as the SOAP interface may negatively affect
performance liability. Furthermore, managing endpoint or credential information
yourself is not recommended. Endpoint implementation and credential provisioning
are best facilitated by centralized endpoint management and identity propagation.

43.6 Securing the Design Pattern
Secure your human workflow client service in the manner appropriate for the type of
code you are developing. For more information about securing your application, see
Chapter 50, "Securing Web Services Use Cases."

43.7 Verifying the Deployment
Validating your implementation involves deploying human tasks to a SOA domain, in
the following steps.

■ Section 43.7.1, "Deploying the Human Task"

■ Section 43.7.2, "Deploying Programmatic Task Functionality"

■ Section 43.7.3, "Invoking Programmatic Task Functionality"

43.7.1 Deploying the Human Task
Upon deployment of the SOA composite containing the human task metadata, the
human workflow infrastructure registers the task by name and namespace. Once the
task is deployed and registered, your code or BPEL can initiate the task and facilitate
task resolution through the code or worklist. For more information, see "Part V: Using
the Human Workflow Service Component" in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

43.7.2 Deploying Programmatic Task Functionality
Deploy the application containing the task service client code. Make sure to deploy the
SOA composite with a task before deploying the human workflow task client service.

Troubleshooting the Use Case

43-16 Developer's Guide

This ensures that the SOA composite has been deployed before creating a task
instance. For more information, see "Deploying SOA Composite Applications" in the
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business
Process Management Suite.

43.7.3 Invoking Programmatic Task Functionality
You can use Oracle ADF UI, an ADF Business Components service or an Oracle
Enterprise Scheduler Java job to implement the task client service functionality. Submit
or invoke the task functionality as you normally would, and use the Worklist
application to confirm that tasks have been created and updated. You can access the
Worklist application at the following URL.

http://host:port/integration/worklistapp

43.8 Troubleshooting the Use Case
Following are some suggestions for troubleshooting task data and the Java code in the
use case.

43.8.1 Troubleshooting Task Data
In some cases, tasks may have been initiated but the attributes required for the task
have not been set. When this happens, the task may not display in the worklist.
Alternatively, it may be assigned to the wrong user, or to no user at all.

Check the WFTASK table for tasks such as these.

43.8.2 Troubleshooting Java Code
Use Oracle Fusion Middleware Extensions for Applications AppsLogger APIs to write
execution and exception details to the diagnostic logs. You can also use the Oracle
JDeveloper remote debugger to remotely connect to the runtime JVM and step through
your code.

43.9 What You May Need to Know About Implementing Email Notification
for an Oracle ADF Task Flow for a Human Task

■ This approach uses the RMI interface to the human workflow task services for
performance and identity propagation.

■ Endpoint information for the RMI URL is stored in the Oracle Fusion Middleware
Extensions for Applications taxonomy tables and available in JAXB object form by
the taxonomy APIs.

■ Use of paging (25 or 50) to limit result set size in task query or federated task
query calls is necessary for performance reasons.

44

Implementing an Oracle ADF Task Flow for a Human Task 44-1

44Implementing an Oracle ADF Task Flow for a
Human Task

This chapter describes what to do if your SOA composite includes a human task, and
you need to define an Oracle ADF task flow for a human workflow for users to
interact with the task.

When to implement: If your SOA composite includes a human task, then you need to
define an Oracle ADF task flow for a human workflow for users to interact with the
task.

Design Pattern Summary: If your SOA composite includes a human task, then you
need a way for users to interact with the task. The integrated development
environment of Oracle SOA Suite includes Oracle Application Development
Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task
display form that depicts the human task in the SOA composite.

Involved components:

■ Oracle ADF task flow for human tasks

■ Human task service component

44.1 Introduction to the Recommended Design Pattern
When invoking a human task from a SOA composite, an interface is required so that
end users can interact with the task. You can use Oracle ADF to develop an interface
that displays the human task within the SOA composite.

44.2 Other Approaches
There are no other supported approaches to this use case.

44.3 Example
The sample code for this use case can be downloaded from Oracle SOA Suite samples.

44.4 How to Implement an Oracle ADF Task Flow for a Human Task
This section describes the procedure used to invoke an Oracle ADF task flow for a
human task. The procedure includes tasks that are detailed in the following sections:

Implementing an Oracle ADF task flow for a human task involves the following tasks:

■ Creating an Oracle ADF task flow.

How to Implement an Oracle ADF Task Flow for a Human Task

44-2 Developer's Guide

■ Creating a user interface.

■ Confirming the classpath, libraries and tag libraries.

■ Implementing product-specific sections.

■ Implementing a task detail with contextual area.

■ Implementing email notification.

■ Displaying localized translated data.

■ Displaying rows in the approval task.

■ Configuring a deployment profile.

Before You Begin:
Ensure that you do the following:

■ Define your human workflow task definition in SOA workspace. The TASK file
definition and schemas are referenced when creating the Oracle ADF task flow for
human tasks. The TASK file defines the data controls used in your task detail page.

■ Define the UI and uiModel project following the directory structure, package
structure and naming standards. Although the task detail page is associated with a
human task definition in your SOA composite, add to source control the UI project
containing the Oracle ADF task flow for human task definition with the Oracle
ADF workspace, not the SOA workspace.

■ If you plan to create other UI and uiModel projects unrelated to Oracle ADF task
flow for human tasks, you can create them in the same LBA directory as the UI
and uiModel projects associated with an Oracle ADF task flow for human tasks.
However, it is recommended to keep the other UI and uiModel projects in separate
projects, using the optional <Context> to differentiate them.

44.4.1 Creating an Oracle ADF Task Flow
The first step in the use case is to create an Oracle ADF task flow.

To create an Oracle ADF task flow:
1. Right-click your UI project and choose New.

2. In the New Gallery window, select Web Tier > JSF > ADF Task Flow Based on
Human Task and click OK.

3. In the SOA Resource Browser dialog, select the TASK file location and target TASK
file.

This creates the data control definition.

4. Create a bounded task flow. From the Create Task Flow dialog, enter a name for
the task flow and click OK.

This creates the task flow containing a View component with the default name
taskDetails1_jspx, as shown in Figure 44–1. Rename the view activity to
something meaningful to you.

Note: There is no established task flow file-naming standard.

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-3

Figure 44–1 Task Flow with View Component

5. Double-click the view activity in the task flow. From the Create JSF Page dialog
that displays, modify the file name or directory location as needed, and click OK.

6. When placing a bounded task flow on a JSPX page, make sure to handle
exceptions in the bounded task flow. If the exception is propagated to the
unbounded task flow, the bounded task flow may exit, causing the JSPX page to
behave unpredictably.

Use the template with the ID ExceptionHandlerTaskFlowTemplate in the JSPX
page to avoid any unpredictable behavior. The template is located in the
UIComponents-View.jar, as follows:
/oracle/apps/fnd/applcore/patterns/uishell/templates/ExceptionHandlerTa
skFlowTemplate.xml.

Note: Use the Property Inspector to add the template to the page, as
shown in Figure 44–2.

How to Implement an Oracle ADF Task Flow for a Human Task

44-4 Developer's Guide

Figure 44–2 Add the template with the Property Inspector

44.4.2 Creating a User Interface for the Human Task
Use the drop handler template to create a user interface for the human task.

To create a user interface:
1. Create a task detail UI and navigate to Application Navigator > Data Controls >

Task Data Control Name > getTaskDetails > Return > Task.

2. Drag and drop the task data control to your JSPX page and select Create >
Human Task > Complete Task with Payload, as shown in Figure 44–3.

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-5

Figure 44–3 Complete Task with Payload

The Edit Action Binding (getTaskDetails) dialog displays, as shown in
Figure 44–4.

Figure 44–4 Edit Action Binding (getTaskDetails) Dialog

3. In the Edit Action Binding (getTaskDetails) dialog, click OK.

The Edit Action Binding (UpdateActions) dialog displays, as shown in
Figure 44–5.

How to Implement an Oracle ADF Task Flow for a Human Task

44-6 Developer's Guide

Figure 44–5 Edit Action Binding (UpdateActions) Dialog

4. In the Edit Action Binding (UpdateActions) dialog, click OK.

5. In the Source view of the JSPX page, verify that <af:panelHeader> displays as the
top most component in the <af:form> component. Figure 44–6 shows the Source
view of a sample JSPX page.

Figure 44–6 <af:form> Component

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-7

6. Verify that the Applications Core (ViewController) library is included in the UI
project class path.

7. Verify that the following distributed libraries are included in the JSP Tag LIbraries
for the project:

■ Trinidad HTML Components,

■ Workflow Tags 1.0,

■ worklistComponents 1.0,

■ Applications Core (ViewController).

44.4.3 Implementing Product-Specific Sections
Product-specific sections include the following:

■ Instructions

■ Details

■ Recommended Actions

■ <PLACE APPLICATION SPECIFIC CONTENT HERE>

■ Related Links

■ Comments and Attachments

■ History

44.4.3.1 How to Add Instructions
You can add instructions just before the Details section.

To include instructions in the panelHeader:
Add the component <af:outputText> before the Details section, as shown in
Example 44–1.

Example 44–1 Adding instructions above the Details section

<af:panelGroupLayout layout="vertical" id="pgl3">
 <f:facet name="separator">
 <af:spacer width="15" height="15" id="s6"/>
 </f:facet>
 <af:outputText value="[Instruction text goes here]"/>
 <af:showDetailHeader size="1" text="#{resources.DETAILS}"
 shortDesc="#{resources.TASK_HEADER}"
 disclosed="true" id="sdh1">

Note: Do not modify anything in the portion of the template that
includes the following:

■ Title attribute of the of the <af:document> component

■ Text attribute of the <af:panelHeader> component

■ Toolbar facet of the <af:panelHeader> component

How to Implement an Oracle ADF Task Flow for a Human Task

44-8 Developer's Guide

44.4.3.2 How to Modify Details
The Details section, as shown in Figure 44–7, contains the required human task
information displayed in the Approvals, Request for Action, and FYI patterns in the
first column and displays optional product-specific header information for the task.

Figure 44–7 Details Section

Do not modify the code in the first column, which corresponds to the first
<trh:cellFormat> with id="cf1", as shown in Figure 44–7.

Do any or all of the following:

■ If required, change the text attribute for the <af:showDetailHeader> component.
The default is set to "#{resources.DETAILS}", for example, Details.

■ If your page does not display product-specific information in this section, skip this
section and continue to the next section.

■ If your page displays product-specific information, add it to the third
<trh:cellFormat> component, which corresponds to the <trh:cellFormat>
with id="cf6" shown in Example 44–2.

Example 44–2 Modify the third <trh:cellFormat> component

<af:showDetailHeader size="1" text="#{resources.DETAILS}"
 shortDesc="#{resources.TASK_HEADER}"
 disclosed="true" id="sdh1">
 <f:facet name="toolbar"/>
 <trh:tableLayout width="98%" id="tl1">
 <trh:rowLayout id="rl2">
 <trh:cellFormat width="50%" valign="top" id="cf1">
 ... First column of task-specific fields, do not modify ...
 </trh:cellFormat>
 <trh:cellFormat id="cf5">
 <af:spacer width="15" height="15" id="s3"/>
 </trh:cellFormat>
 <trh:cellFormat width="50%" valign="top" id="cf6">
 ... Second column containing product-specific fields ...
 </trh:cellFormat>
 </trh:rowLayout>
 </trh:tableLayout>
</af:showDetailHeader>

■ If your page requires an additional column of product-specific information, take
the following steps.

Note: Based on the UX specification, the task information displayed
in the first column should only be displayed in the first column and
should not wrap into the third column.

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-9

Add an additional column for spacing, <trh:cellFormat id="cf7">. Add an
additional column to display the product-specific information, <trh:cellFormat
id="cf8">. Change the width to 33%, for <trh:cellFormat> components with
id="cf1", id="cf6", and id="cf8" as shown in Example 44–3.

Example 44–3 Adding product-specific information

<af:showDetailHeader size="1" text="#{resources.DETAILS}"
 shortDesc="#{resources.TASK_HEADER}"
 disclosed="true" id="sdh1">
 <f:facet name="toolbar"/>
 <trh:tableLayout width="98%" id="tl1">
 <trh:rowLayout id="rl2">
 <trh:cellFormat width="33%" valign="top" id="cf1">
 ... First column of task-specific fields, do not modify ...
 </trh:cellFormat>
 <trh:cellFormat id="cf5">
 <af:spacer width="15" height="15" id="s3"/>
 </trh:cellFormat>
 <trh:cellFormat width="33%" valign="top" id="cf6">
 ... Second column containing product-specific fields ...
 </trh:cellFormat>
 <trh:cellFormat id="cf7">
 <af:spacer width="15" height="15" id="s3"/>
 </trh:cellFormat>
 <trh:cellFormat width="33%" valign="top" id="cf8">
 ... Third column containing product-specific fields ...
 </trh:cellFormat>
 </trh:rowLayout>
 </trh:tableLayout>
</af:showDetailHeader>

44.4.3.3 How to Modify Recommended Actions
The Recommended Actions section, as shown in Figure 44–8, is used in the
Information Only pattern.

Figure 44–8 Recommended Actions Section

The Oracle ADF code for the Recommended Actions <af:showDetailHeader>
component is shown in Example 44–4.

Example 44–4 Code for Recommended Actions

<af:showDetailHeader size="1" id="recommendedActionsHeader"
 text="#{resources.RECOMMENDED_ACTIONS}" disclosed="true">
 <f:facet name="info"/>
 <f:facet name="legend"/>
 <f:facet name="menuBar"/>
 <f:facet name="toolbar"/>
 <f:facet name="context"/>
</af:showDetailHeader>

How to Implement an Oracle ADF Task Flow for a Human Task

44-10 Developer's Guide

■ If your page does not display the Recommended Actions section, remove the
<af:showDetailHeader> component with text="#{resources.RECOMMENDED_
ACTIONS}" and continue to the next section.

■ If your page does display the Recommended Actions section, add the actions and
appropriate links to this section.

44.4.3.4 How to Modify <PLACE APPLICATION SPECIFIC CONTENT HERE>
The <PLACE APPLICATION SPECIFIC CONTENT HERE> section is a place holder
for product-specific information such as the Purchasing Line section in the Approval
Page Details pattern.

The Oracle ADF code for the <PLACE APPLICATION SPECIFIC CONTENT HERE>
<af:showDetailHeader> component is shown in Example 44–5.

Example 44–5 Oracle ADF code for the application specific content section

<af:showDetailHeader size="1" id="applicationContentHeader" text="<PLACE
APPLICATION SPECIFIC CONTENT HERE>" disclosed="true">
 <af:panelGroupLayout id="payload_panel" layout="vertical"
shortDesc="#{resources.CONTENTS}">
 <af:panelFormLayout id="pfl1">
 <af:inputText value="#{bindings.PayloadInput1.inputValue}"
label="#{bindings.PayloadInput1.hints.label}"
required="#{bindings.PayloadInput1.hints.mandatory}"
columns="#{bindings.PayloadInput1.hints.displayWidth}"
maximumLength="#{bindings.PayloadInput1.hints.precision}"
shortDesc="#{bindings.PayloadInput1.hints.tooltip}" id="it3">
 <f:validator binding="#{bindings.PayloadInput1.validator}"/>
 </af:inputText>
 </af:panelFormLayout>
 </af:panelGroupLayout>
</af:showDetailHeader>

Do any or all of the following:

■ If your page does not have an application-specific section, then remove the
<af:showDetailHeader> component with text="<PLACE APPLICATION SPECIFIC
CONTENT HERE>"and continue to the next section.

■ Modify the text attribute of the <af:showDetailHeader> component.

■ Modify the body of the <af:showDetailHeader> component to meet your
requirements.

■ Add links to the bottom of this section, as shown in the pattern. The link
implementation instructions are discussed in Section 44.4.3.5, "How to Implement
Links."

Note: Translation and accessibility standards state that individual
words should not be implemented as links.

Note: The Complete Task with Payload drop handler adds an
<af:inputText> component for each of the task payload fields by
default. Remove these fields if they are not required.

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-11

■ If additional product-specific sections are required, add them directly below the
<af:showDetailHeader> section. Ensure that the size of the additional
<af:showDetailHeader> components is set to 1.

44.4.3.5 How to Implement Links
Use the af:goLink component and specify targetFrame="_blank" to implement the
related link.

To construct the target URL, use the API
oracle.apps.fnd.applcore.patterns.uishell.context.UIShellContext.getURL.
This API can still be used even though the task detail page does not implement the UI
Shell. Enter a non-null webApp parameter to generate the full URL including the host
name and port.

The resulting code should be similar to that displayed in Example 44–6.

Example 44–6 Code that Results from Implementing Links

UIShellContext.getURL(java.lang.String viewId,
java.lang.String webApp,
java.lang.String pageParametersList,
java.lang.String navTaskFlowId,
java.lang.String navTaskKeyList,
java.lang.String navTaskParametersList,
java.lang.String navTaskLabel,
FndMethodParameters methodParameters)

44.4.3.6 How to Modify Comments and Attachments
The Comments and Attachment sections are used to store comments and attachments
associated with the Approval and Request for Action patterns.

Do any of the following:

■ If your page requires both comments and attachments, then leave it as is and
continue to the next section.

■ If your page does not require any comments or attachments, as in the FYI pattern,
remove the <af:switcher> component with
facetName="#{pageFlowScope.bpmClientType}" and its facets and continue to
the next section.

■ If your page requires the comments section only, move the
<af:showDetailHeader> component with text=#{resources.COMMENTS} from the
switcher facet with name="notificationClient"so that it is a peer of the switcher
with facetName="#{pageFlowScope.bpmClientType}". Then delete the
<af:switcher> component with facetName="#{pageFlowScope.bpmClientType}"
and its facets. The resulting code is shown in Example 44–7.

Example 44–7 Modifying comments and attachments

<af:showDetailHeader size="1" id="relatedLinksHeader"
 text="#{resources.RELATED_LINKS}"
 disclosed="true">
 ...
</af:showDetailHeader>
<af:showDetailHeader size="1" id="showDetailHeader1"
 text="#{resources.COMMENTS}"
 disclosed="true">

How to Implement an Oracle ADF Task Flow for a Human Task

44-12 Developer's Guide

 ...
</af:showDetailHeader>
<af:showDetailHeader size="1" id="historyHeader"
 text="#{resources.HISTORY}"
 disclosed="false">
 ...
</af:showDetailHeader>

■ If you require additional instructions in the Attachments dialog, then add an
<af:outputText> component after <af:outputText> with
value="#{resources.UPLOAD_FILE_CAVEAT}", as shown in Example 44–8.

Example 44–8 Adding additional instructions to the Attachments dialog

<af:popup id="popupAddAttachmentDialog">
 <af:dialog title="#{resources.ADD_ATTACHMENT}" okVisible="false"
 cancelVisible="false" closeIconVisible="false" id="d2">
 ...
 <af:panelGroupLayout id="pgl10">
 <f:facet name="separator">
 <af:spacer width="15" height="15" id="s2"/>
 </f:facet>
 <af:outputText value="#{resources.UPLOAD_FILE_CAVEAT}" id="ot10"/>
 ... Add additional instructions here ...
 <af:panelFormLayout id="pfl2">
 <af:selectOneRadio label="#{resources.ATTACH_TYPE}"
 value="#{readAttachmentBean.selectedAttachmentType}"
 valueChangeListener="#{readAttachmentBean.toggle}" autoSubmit="true"
 id="editAttachmentType" layout="horizontal" immediate="true">
 ...
 </af:afdialog>
</af:popup>

44.4.3.7 How to Modify Related Links
The Related Links section is used in the Information Only pattern.

Example 44–9 shows the Oracle ADF code for the Related Links
<af:showDetailHeader> component.

Example 44–9 Modifying Related Links

<af:showDetailHeader size="1" id="relatedLinksHeader"
text="#{resources.RELATED_LINKS}" disclosed="true">
 <f:facet name="info"/>
 <f:facet name="legend"/>
 <f:facet name="menuBar"/>
 <f:facet name="toolbar"/>
 <f:facet name="context"/>
</af:showDetailHeader>

■ If your page does not display the Related Links section, then remove the
<af:showDetailHeader> component with text="#{resources.RELATED_LINKS}"
and continue to the next section.

■ If your page displays the Related Links section, add the appropriate links to this
section. The link implementation instructions are described in Section 44.4.3.5,
"How to Implement Links."

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-13

44.4.3.8 How to Modify History
The History section displays the tabular and graphical displays of the task history.

Do any of the following:

■ If your page requires the history section, then leave it as is.

■ If your page does not require the history section, remove the
<af:showDetailHeader> component and its facets and child components, as
shown in Example 44–10.

Example 44–10 Modifying task history

<af:showDetailHeader size="1" id="historyHeader"
 text="#{resources.HISTORY}"
 disclosed="false">
 <f:facet name="info"/>
 <f:facet name="legend"/>
 <f:facet name="menuBar"/>
 <f:facet name="toolbar"/>
 <f:facet name="context"/>
 <af:panelGroupLayout layout="vertical" id="pgl7">
 <wlc:taskHistory initParam="#{aleComponentBean.comp}"
 showTabularView="true"
 showGraphicalView="true" id="th1"/>
 </af:panelGroupLayout>
</af:showDetailHeader>

44.4.4 Implementing a Task Detail with Contextual Area
If you are implementing a task detail page with a contextual area, do not use the
UIShellMainArea template when creating the JSF page. Instead, create the JSF page
without a template.

Use <trh:tableLayout>, <trh:rowLayout> and <trh:cellFormat> to configure the
layout of the local and contextual areas. For the local area, follow the steps outlined in
the following sections:

■ Section 44.4.1, "Creating an Oracle ADF Task Flow"

■ Section 44.4.2, "Creating a User Interface for the Human Task"

■ Section 44.4.3, "Implementing Product-Specific Sections"

■ Section 44.4.4, "Implementing a Task Detail with Contextual Area"

44.4.5 Implementing Email Notification
The email version of the task details are often called notifications, task notifications or
email notifications. Email notifications are viewed in email clients.

The goal in implementing the email version of the task detail page is to use the same
Oracle ADF task flow for human tasks definition for both the online and email
versions. As both versions are nearly identical, you can implement both as a single
page to avoid dual maintenance.

44.4.5.1 Before You Begin
Ensure that the TASK file is configured so that email notifications are actionable and
task attachments are added to the email as email attachment, as shown in Figure 44–9.

How to Implement an Oracle ADF Task Flow for a Human Task

44-14 Developer's Guide

Figure 44–9 Notification Settings

44.4.5.2 Determining the Implementation Approach
Select an implementation approach from the following:

■ If the JSPX page that you defined for your online version contains only the
following supported components, then you can use your existing JSPX page for
both online and email versions.

– af:column

– af:commandLink

– af:document

– af:goLink

– af:image

– af:inputText

– af:inputComboBoxListOfValues

– af:inputDate

– af:inputListOfValues

– af:inputNumberSlider

– af:inputNumberSpinbox

– af:inputRangeSlider

– af:outputText

– af:panelHeader

– af:panelLabelAndMessage

– af:selectOneChoice

– af:showDetailHeader (excludes helpTopicId attribute for instructions)

– af:table

– trh:tableLayout

– trh:rowLayout

– trh:cellFormat

– af:panelFormLayout

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-15

– af:panelGroupLayout

– af:panelList

– af:spacer

■ If the online version of your JSPX page includes many interactions to be made
available in the email notification, then you will need to build a second JSPX page
for your email notification.

■ Use a switcher component in the JSPX page to ensure that only supported
components are rendered in the email version. For more information, see
Section 44.4.5.3, "Using a Switcher Component."

44.4.5.3 Using a Switcher Component
Introduce a switcher component in your JSPX page when you have components that
are not supported in the email notification.

To use a switcher component in your JSPX page:
1. Move the unsupported components in the <f:facet> with name="online".

2. Add alternative rendering logic using the supported components in <f:facet>
where name="notificationClient", as shown in Example 44–11.

Example 44–11 Using a switcher component

<af:switcher defaultFacet="online"
facetName="#{pageFlowScope.bpmClientType}">
 <f:facet name="online">
 ... Place code rendered in online version here ...
 </f:facet>
 <f:facet name="notificationClient">
 ... Place code rendered in email version here ...
 </f:facet>
</af:switcher>

3. If it is not a notificationClient, the value of bpmClientType is null. Continue to
Section 44.4.5.5, "Fine-Tuning the Emailable Page."

44.4.5.4 Using a Separate View for Online and Email Versions
You can enable separate views for online and email versions for notifications.

To enable separate views for online and email notifications:
1. In the task flow, add a View Activity for the email version.

a. Add a new view to the task flow definition and rename it appropriately.

b. Define a control flow from the newly introduced view to the existing task flow
return activity called taskReturn.

c. Modify the transition value to closeTaskFlow.

2. Add a router.

a. Add a new router activity and rename it appropriately.

b. In the property inspector, set the default Outcome attribute to online.

c. Add two cases, as shown in Example 44–12.

How to Implement an Oracle ADF Task Flow for a Human Task

44-16 Developer's Guide

Example 44–12 Adding two cases to the switcher

Expression = "#{pageFlowScope.bpmClientType=="notificationClient"}" and Outcome =
"email"

Expression = "#{empty pageFlowScope.bpmClientType}" and Outcome = "online"

d. Define a control flow case from the newly introduced router to the view
associated with the online version. For the transition value, specify online.

e. Define a control flow case from the newly introduced router to the view
associated with the email version. For the transition value, specify email.

3. Set the newly introduced router as the default activity, as shown in Figure 44–10.

Figure 44–10 Setting Default Activity

44.4.5.5 Fine-Tuning the Emailable Page
In order to correctly render your JSPX page in email mode, you may need to take any
or all of following steps to fine-tune the email page.

■ Use an <af:outputText> component to render the instruction text, as there is no
style class for instruction text based on the helpTopicId of <af:panelHeader> or
<af:showDetailHeader>.

■ In the <af:showDetailHeader> component, if the disclose property is set to false,
the disclosure is closed in the page to be emailed.

Add an EL expression to the disclosed property so that the property is true when
in email mode, as shown in Example 44–13.

Example 44–13 Adding an EL expression to the disclosed property

<af:showDetailHeader size="1"
 id="histHd"
 text="#{resources.HISTORY}"
 disclosed="#{pageFlowScope.bpmClientType ==
'notificationClient'}"
...

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-17

■ Test your page to determine whether the width of <af:table> is acceptable. If the
table is not wide enough, set the <af:column> width attribute.

44.4.6 Displaying Localized Translated Data
If you are adding product-specific code to the template, ensure that your
product-specific code adheres to the localization standards for Oracle ADF user
interfaces. For more information, see the chapter "Internationalizing and Localizing
Pages" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

If you are displaying a task payload attribute in your JSPX page, you must override
the EL expression for the label attribute for each of the payload attributes. For
example, in the automatically generated Oracle ADF code shown in Example 44–14,
replace the "#{bindings.PayloadInput1.hints.label}" so that it refers to translated
text in the Xliff resource bundle associated with your UI project.

Example 44–14 Label attributes for the payload

<af:inputText value="#{bindings.PayloadInput1.inputValue}"
 label="#{bindings.PayloadInput1.hints.label}"
 required="#{bindings.PayloadInput1.hints.mandatory}"
 columns="#{bindings.PayloadInput1.hints.displayWidth}"
 maximumLength="#{bindings.PayloadInput1.hints.precision}"
 shortDesc="#{bindings.PayloadInput1.hints.tooltip}"
 id="it1">
 <f:validator binding="#{bindings.PayloadInput1.validator}"/>
</af:inputText>

■ Title: Define the title in the task definition using the Translation setting. Ensure a
translation is provided in a Java resource bundle. Do not use the properties file to
store translated text.

■ Custom actions: Ensure a translation is provided in a Java resource bundle. Do not
use the properties file to store translated text.

For more information about translation resource bundles, see the section entitled
"How to set up Resource Bundles for Translation of Your Customizations" in
Chapter 61, "Creating Customizable Applications."

44.4.7 Displaying Rows in the Approval Task
If you want to display the rows in the business object that are included in the approval
task, use the collection target data in the task data control to determine the rows to be
included. Render that information within your product-specific regions.

To use a collection target:
■ In Oracle JDeveloper, select Application Navigator > Data Controls > Task Flow

Name > getTaskDetails(String, String, String) > Return > Task > System
Attributes > Collection Target.

Note: Two strings in the Oracle ADF code template that store their
translations in the resource bundle associated with the TASK file (as
opposed to the UI project). Do not define the translations in the
resource bundle associated with your UI.

How to Implement an Oracle ADF Task Flow for a Human Task

44-18 Developer's Guide

Regardless of whether aggregation is enabled, the collection target contains
information on the rows that are being approved or rejected by the approver.

44.4.8 Configuring a Deployment Profile
Create a deployment profile as you would for any other Oracle ADF UI project. For
more information about configuring a deployment profile, see the section entitled
"How to Create Deployment Profiles for Standalone WebLogic Server Deployment" in
Chapter 3, "Setting Up Your JDeveloper Application Workspace and Projects."

To configure a deployment profile:
1. Generate an Oracle ADF library for your UI project containing the Oracle ADF

task flow for a human task definition.

2. Add the Oracle ADF library to the SuperWeb project.

Open the web.xml file for the SuperWeb project and add the code shown in
Example 44–15.

Example 44–15 Adding the Oracle ADF library to the SuperWeb project

<filter>
 <filter-name>WorkflowFilter</filter-name>
 <filter-class>
 oracle.bpel.services.workflow.client.worklist.util.WorkflowFilter
 </filter-class>
</filter>

<filter-mapping>
 <filter-name>WorkflowFilter</filter-name>
 <url-pattern>/faces/*</url-pattern>
</filter-mapping>

<servlet>
 <servlet-name>IntegrateTaskFlowWithTask</servlet-name>
 <servlet-class>
 oracle.bpel.services.workflow.client.worklist.servlet.
 IntegrateTaskFlowWithTask
 </servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>

<servlet>
 <servlet-name>secureNotificationServlet</servlet-name>
 <servlet-class>
 oracle.bpel.services.workflow.client.worklist.servlet.SecureNotificationS
 ervlet
</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>IntegrateTaskFlowWithTask</servlet-name>
 <url-pattern>/integratetaskflowwithtask</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>secureNotificationServlet</servlet-name>
 <url-pattern>/notification/secure</url-pattern>
</servlet-mapping>

How to Implement an Oracle ADF Task Flow for a Human Task

Implementing an Oracle ADF Task Flow for a Human Task 44-19

<context-param>
 <param-name>oracle.adf.view.rich.security.FRAME_BUSTING</param-name>
 <param-value>differentDomain</param-value>
</context-param>

3. Under the default source location, create the hwtaskflow.xml file and merge all
the notification task flow details. For example, if you are adding a new ADF task
flow for a human task to a project defined in a workspace called
fusionapps/fin/components/Payables.jws, then you would take the following
steps.

a. In the SuperWeb project of your workspace, manually edit the
hwtaskflow.xml file. In this example, the hwtaskflow.xml file is located in the
following directory:
fusionapps/fin/components/payables/PayablesSuperWeb/adfmsrc/hwtaskf
low.xml.

b. Under the <hwTaskFlows> element, add the relevant <hwTaskFlow> elements,
as shown in Example 44–16.

Example 44–16 Add the <hwTaskFlow> elements

<?xml version = '1.0' encoding = 'UTF-8'?>
<hwTaskFlows
xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">
 <ApplicationName>worklist</ApplicationName>
 <LookupType>LOCAL</LookupType>
 <TaskFlowDeploy>false</TaskFlowDeploy>
 <SoaServer>
 <ejbProviderUrl/>
 <aliasKeyName/>
 <keyName/>
 <connectionName/>
 </SoaServer>
 <TaskFlowServer>
 <hostName/>
 <httpPort/>
 <httpsPort/>
 </TaskFlowServer>
 <hwTaskFlow>
 <WorkflowName>FinExmReimToEmpByDepositFyi</WorkflowName>

 <TaskDefinitionNamespace>http://xmlns.oracle.com/apps/financials/components/
 payablesSoa/exm/workflow/reimbursementComposite/
 FinExmWorkflowReimbursementComposite/FinExmReimToEmpByDepositFyi
 </TaskDefinitionNamespace>
 <TaskFlowId>FinExmReimToEmpByDepositFyiTaskFlow</TaskFlowId>

 <TaskFlowFileName>WEB-INF/oracle/apps/financials/expenses/workflow/ui/
 reimToEmpByDepositTask/flow/FinExmReimToEmpByDepositFyiTaskFlow.xml
 </TaskFlowFileName>
 </hwTaskFlow>
 <hwTaskFlow>
 <WorkflowName>FinExmReimToEmpByCheckFyi</WorkflowName>

 <TaskDefinitionNamespace>http://xmlns.oracle.com/apps/financials/components/
 payablesSoa/exm/workflow/reimbursementComposite/
 FinExmWorkflowReimbursementComposite/FinExmReimToEmpByCheckFyi
 </TaskDefinitionNamespace>
 <TaskFlowId>FinExmReimToEmpByCheckFyiTaskFlow</TaskFlowId>

Securing the Design Pattern

44-20 Developer's Guide

 <TaskFlowFileName>WEB-INF/oracle/apps/financials/expenses/workflow/ui/
 reimToEmpByCheckTask/flow/FinExmReimToEmpByCheckFyiTaskFlow.xml
 </TaskFlowFileName>
 </hwTaskFlow>

 <!-- Add new <hwTaskFlow> elements here. !-->
 <hwTaskFlow>
 ...

 </hwTaskFlow>
</hwTaskFlows>

44.5 Securing the Design Pattern
To secure this pattern, follow the instructions described in Chapter 50, "Securing Web
Services Use Cases."

You may want to implement the following security tasks:

■ Secure task flows (bounded)

■ Secure page fragments

■ Secure actions

44.6 Verifying the Deployment
Verifying the deployment involves defining JNDI and foreign JNDI for the non-SOA
Oracle WebLogic Server, as well as defining a grant for bpm-services.jar.

In this use case, the Oracle ADF task flow for human tasks is deployed to a non-SOA
server as described here, including configuring foreign JNDI providers. Alternatively,
you can define a connection to the Oracle SOA Suite server using a deployment script.
For more information about using a deployment script to define a connection to the
SOA server, see the section describing the workflow client configuration file (wf_
client_config.xml) in the chapter "Introduction to Human Workflow Services" in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

If you want to deploy the Oracle ADF task flow for human task to a SOA server,
deploy your application as described in the chapter "Deploying SOA Composite
Applications" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

To verify the deployment:
1. Deploy the oracle.soa.workflow shared library to the non-SOA Oracle WebLogic

Server.

a. Navigate to http://remote_hostname:remote_port/console, where
remote_hostname and remote_port are the host name and port for the remote
non-SOA WebLogic server.

b. Select Deployments and click Install.

c. In the Path field, make sure the following value is specified.

<jdev_install>/fmwtools/fmwtools_home/jdeveloper/
soa/modules/oracle.soa.workflow_11.1.1

d. Select oracle.soa.workflow.jar and click Finish.

Verifying the Deployment

Implementing an Oracle ADF Task Flow for a Human Task 44-21

e. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is active.

2. Define the foreign JNDI on the non-SOA Oracle WebLogic Server.

a. Navigate to http://remote_hostname:remote_port/console, where
remote_hostname and remote_port are the host name and port for the remote
non-SOA WebLogic server.

b. Navigate to Domain Structure > Services > Foreign JNDI Providers and click
New.

c. Enter the name ForeignJNDIProvider-SOA, and click OK.

d. Click ForeignJNDIProvider-SOA.

e. Press Enter and then click Save.

f. Fill in the following for the SOA Oracle WebLogic Server.

Initial Context Factory: weblogic.jndi.WLInitialContextFactory

Provider URL: Enter the URL of the soa-infra application, using the
following format: t3://SOA_hostname:SOA_port/soa-infra

User/Password: Enter an administrator username and password for the server.

3. Define the JNDI links on the non-SOA Oracle WebLogic Server.

a. Navigate to http://remote_hostname:remote_port/console, where
remote_hostname and remote_port are the host name and port for the remote
non-SOA Oracle WebLogic Server.

b. Navigate to Domain Structure > Services > Foreign JNDI Providers and click
ForeignJNDIProvider-SOA.

c. Select the Link tab and click New.

d. Press Enter and click OK. Enter the following values:

Name: RuntimeConfigService

Local JNDI Name: RuntimeConfigService

Remote JNDI Name: RuntimeConfigService

Specify ejb/bpel/services/workflow/ for
ejb/bpel/services/workflow/TaskServiceBean and
ejb/bpel/services/workflow/TaskMetadataServiceBean only.

e. Repeat steps c and d for the following JNDI values:

Name/Local JNDI Name/Remote JNDI Name:
ejb/bpel/services/workflow/TaskServiceBean

Name/Local JNDI Name/Remote JNDI Name:
ejb/bpel/services/workflow/TaskMetadataServiceBean

Name/Local JNDI Name/Remote JNDI Name: TaskReportServiceBean

Name/Local JNDI Name/Remote JNDI Name: TaskEvidenceServiceBean

Name/Local JNDI Name/Remote JNDI Name: TaskQueryService

Note: The provider URL refers to the soa-infra application, not the
domain. Do not change soa-infra.

Troubleshooting the Use Case

44-22 Developer's Guide

Name/Local JNDI Name/Remote JNDI Name: UserMetadataService

4. On the remote non-SOA Oracle WebLogic Server, change jazn-data.xml (not
system-jazn-data.xml) to include the grant for bpm-services.jar, as shown in
Example 44–17.

Example 44–17 Grant for bpm-services.jar

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.home}/soa/modules/oracle.soa.workflow_11.1.1/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.
 CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=BPM-CRYPTO,keyName=BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

5. Restart the remote non-SOA Oracle WebLogic Server.

6. Deploy your application containing the human task detail UI to the remote
non-SOA Oracle WebLogic Server.

44.7 Troubleshooting the Use Case
Following are some steps you can take to fix known issues.

■ Specify oracle.soa.workflow.wc in weblogic-application.xml.

■ Set the FRAME_BUSTING attribute in web.xml.

■ Migrate from an earlier version of the drop handler template.

Tips: When accessing the task in the Oracle Business Process
Management Worklist, you may get the following message: "Details
not available for this task."

If so, take the following steps:

■ Check the WFTASKDISPLAY table in the SOAINFRA schema for entries
corresponding to the tasks. The entries should have the host and
port number of the non-SOA Oracle WebLogic Server where the
task detail page definitions are deployed.

■ If there are no entries, check the log files for errors when
deploying your task detail pages. Make sure that the grant for the
bpm-services.jar is correctly defined.

Troubleshooting the Use Case

Implementing an Oracle ADF Task Flow for a Human Task 44-23

■ Override the EL for the create button.

44.7.1 Specify oracle.soa.workflow.wc in weblogic-application.xml
By default, the drop handler generates a reference to the oracle.soa.workflow shared
library in weblogic-application.xml. Override the entry in the
weblogic-application.xml file so that it references oracle.soa.workflow.wc instead.

Example 44–18 shows a snippet of a sample weblogic-application.xml file with the
correct reference to oracle.soa.workflow.wc.

Example 44–18 Reference oracle.soa.workflow.wc

<?xml version = '1.0' encoding = 'US-ASCII'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-
application http://www.bea.com/ns/weblogic/weblogic-
application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

...
 <library-ref>
 <library-name>oracle.soa.workflow.wc</library-name>
 </library-ref>
...

</weblogic-application>

44.7.2 Set the FRAME_BUSTING Attribute in web.xml
If you receive a warning message about frame content not loading, modify web.xml to
include the code shown in Example 44–19.

Example 44–19 Set the FRAME_BUSTING attribute in web.xml

<context-param>
 <param-name>oracle.adf.view.rich.security.FRAME_BUSTING</param-name>
 <param-value>differentDomain</param-value>
</context-param>

If your SOA runtime and task detail UI are running on different domains during
development, set the value to never for testing purposes only.

44.7.3 Migrate from an Earlier Version of the Drop Handler Template
If your page is created using an earlier version of the drop handler template (which
used fnd:applicationPanel and af:panelStretchLayout), take the following steps to
migrate fnd:applicationsPanel to af:panelHeader.

To migrate from an earlier version of the drop handler template:
1. Open your JSPX page and, in the Structure pane, locate af:panelStretchLayout

under af:form.

2. When you have found af:panelStretchLayout, add af:panelHeader above
af:panelStretchLayout and set the text attribute to
text="#{binding.title.inputValue}".

Troubleshooting the Use Case

44-24 Developer's Guide

3. In fnd:applicationsPanel, find the actionButtonBar facet and select the
af:toolbar below it.

Move af:toolbar under the toolbar facet of af:panelHeader added in the
previous step.

4. Under the content facet of fnd:applicationsPanel, find af:panelGroupLayout
and move it under af:panelHeader.

5. Find af:panelStretchLayout and delete it.

6. Save and test your work.

44.7.4 Override the EL for the Create Button
Override shortDesc EL for the Create button in the Comments section:

To override the EL for the Create button:
1. In the JSPX page, locate <af:commandImageLink> and find the action property

value #{popupBean.showCommentDialog}.

2. For <af:table>, overwrite the shortDesc property value as follows:
shortDesc="#{resources.CREATE}".

3. Repeat step 2 for the second <af:commandImageLink> with the action property
value #{popupBean.showCommentDialog}. Example 44–20 shows a sample
illustrating <af:commandImageLink> after modifying the action property value.

Example 44–20 Modifying the action property value for <af:commandImageLink>

<af:commandImageLink id="adCmtBt"
 partialSubmit="true"
 actionListener="#{bindings.CreateInsert.execute}"
 action="#{popupBean.showCommentDialog}"
 shortDesc="#{resources.CREATE}"
 hoverIcon="/hw_images/new_ovr.png"
 visible="#{actionAvailable.isCommentUpdatable}"
 icon="/hw_images/new_ena.png"
 disabledIcon="/hw_images/new_dis.png"
 depressedIcon="/hw_images/new_dwn.png"/>

45

Cross Family Business Event Subscription Pattern 45-1

45Cross Family Business Event Subscription
Pattern

This chapter describes what to do when you require your SOA composite to subscribe
to a business event published on another Oracle SOA Suite cluster.

When to implement: When you require your SOA composite to subscribe to a
business event published on another Oracle SOA Suite cluster.

Design Pattern Summary: The Event Delivery Network (EDN) infrastructure supports
business event publishing and subscription within a single Oracle SOA Suite cluster.
To propagate a business event from one Oracle SOA Suite cluster to another, you must
build a mediator-to-mediator bridge. The bridge queues the event message in a global
aqueue from the Oracle SOA Suite cluster. The Oracle SOA Suite cluster publishes the
event and then dequeues the event message from the Oracle SOA Suite cluster that
subscribes to the event.

Involved components:

■ Oracle Mediator

■ Oracle Aqueue Adapter

45.1 Introduction to the Recommended Design Pattern
You can use business event publishing and subscription for asynchronous,
loosely-coupled integration between two components such as an Oracle ADF UI
application and a SOA composite. In most cases, the two components to be integrated
are within the same family, and the same Oracle SOA Suite cluster is used to both raise
and subscribe to the event. However, in some cases component integration goes across
domains. This pattern is used to implement business event propagation from one
Oracle SOA Suite cluster to another.

45.2 Potential Approaches
There are two other possible approaches to this use case.

■ A global EDN queue can be shared across all Oracle Fusion Applications families.
Although it supports cross-event subscription, the shared EDN feature is not
recommended due to the durability of subscriptions. If any of the Oracle SOA
Suite clusters sharing an event queue goes down, then the events will remain in
the queue until the cluster goes back up and dequeues the event. If the cluster is
offline for a long period, the queue could become quite large. In addition, a large
number of events may need to be dequeued by each of the Oracle SOA Suite
clusters even if there may no subscribers. This may affect performance.

Example

45-2 Developer's Guide

■ The composite with the event subscription can be deployed to the Oracle SOA
Suite cluster which publishes the event.

45.3 Example

CRM Subscribes to Event Published by HCM
HcmUsersSpmlComposite deployed in the HCM SOA cluster publishes a
post-processing event to report the success or failure of the process of creating a new
user or assigning roles to a user. In order for CRM to perform additional actions based
on the user request, the post-processing event must be propagated from HCM to CRM.

Table 45–1 lists the HCM composite components and values.

Financials Subscribes to CRM Event
When the ImportPartyData event is raised in the customer or supplier import
program in TCA, the Financials PartyImportForTCALocService service must be
invoked. The service creates a tax profile for a party which must be involved in
financial transactions.

HCM Subscribes to Event Published by CRM
The resource directory feature in CRM raises the ActiveLdapRequestEvent event to
make an LDAP request for provisioning the abstract role and security roles for newly
provisioned user accounts to existing resources. Without processing these requests,
resources will not be able to login to the resource directory used to maintain resource
information such as phone numbers, email addresses, mail addresses, and so on. The
HcmUsersSpmlComposite deployed to the HCM Oracle SOA Suite cluster subscribes to
the event and processes the request.

Table 45–2 lists the CRM composite components and values.

WARNING: This approach is not recommended.

Table 45–1 HCM Composite Components and Values

Composite Components Values

Publishing Product Per

Subscribing Product Hz

Owning Product Hz

XFamilyPub composite name FoundationPartiesPerToHzXFamilyPubComposite

XFamilySub composite name FoundationPartiesHzXFamilySubComposite

Recipient/Consumer FoundationPartiesPerToHz

SOA workspace CrmCommonSoa.jws

Table 45–2 CRM Composite Components and Values

Composite Components Values

Publishing Product Hz

Subscribing Product Per

Owning Product Hz

How to Subscribe to a Cross-Family Business Event

Cross Family Business Event Subscription Pattern 45-3

The sample code for this use case can be downloaded from Oracle SOA Suite samples.

45.4 How to Subscribe to a Cross-Family Business Event
To support cross-family event subscriptions, a global aqueue resides in the Oracle
Fusion Applications schema to enqueue messages from one Oracle SOA Suite cluster
and dequeue to another Oracle SOA Suite cluster. The messages contain information
about the event as well as the publisher's identity and application context information.

In addition to the aqueue, this pattern includes an XFamilyPub composite deployed to
the Oracle SOA Suite cluster which publishes the cross-family event, and an
XFamilySub composite deployed to the Oracle SOA Suite cluster which subscribes to
the cross-family event. The XFamilyPub composite contains a mediator and an Aqueue
adapter configured for the enqueue operation. The mediator subscribes to the event,
transforms the event information and payload and enqueues a message to the Aqueue
with the recipient set to the family subscribing to the event. The XFamilySub composite
contains an Aqueue adapter configured for the dequeue operation with itself specified
as the recipient. The mediator dequeues the message, filters the message based on the
Namespace and LocalName elements in the message, transforms the payload and raises
the event locally.

45.4.1 Before You Begin
Your installation of Oracle JDeveloper must include the following database objects,
Oracle WebLogic Server configurations and so on:

■ Make sure that the database object ACR_XFAMILY_EVENT_Q is defined in the
FUSION schema. Verify that the database object exists by navigating to the
Database Navigator in Oracle JDeveloper, defining a connection to the FUSION
schema and double-clicking Queues.

■ In Oracle WebLogic Server, define the data source JDBC/ApplicationDBXA. Verify
this configuration by running the Oracle WebLogic Server Console and navigating
to Data Sources.

■ In Oracle WebLogic Server, define a JDBC/XFamilyEventAqueue AqAdapter
connection pool. Verify this configuration by running the Oracle WebLogic Server
console and navigating to Domain Configurations > Your Deployment
Resources > Deployments > AqAdapter > Configuration > Outbound
Connection Pools. The connection pool JDBC/XFamilyEventAqueue should
display.

XFamilyPub composite name FoundationPartiesHzToPerXFamilyPubComposite

XFamilySub composite name FoundationPartiesPerXFamilySubComposite

Recipient/Consumer FoundationPartiesHzToPer

SOA workspace CrmCommonSoa.jws

Table 45–2 (Cont.) CRM Composite Components and Values

Composite Components Values

How to Subscribe to a Cross-Family Business Event

45-4 Developer's Guide

45.4.2 Determining the Composites to Be Defined
Following are the components to be defined for the pattern:

■ Publishing product: The publisher product is the product that publishes the
event.

■ Subscribing product: The subscriber product is the product that subscribes to the
event.

■ Owning product: The owning product is the product that owns the XFamilyPub
and XFamilySub composites.

The product team requiring the cross-family subscription owns both the XFamilySub
and XFamilyPub composites. This pattern assumes the composites are defined at the
product level. It is also possible to define the XFamilySub and XFamilyPub at the family
level instead.

Determine whether an XFamilySub or XFamilyPub composite has been defined for your
product. If they have not been defined, then follow these guidelines for naming the
XFamilySub and XFamilyPub composites. The naming guidelines help make
cross-family event composites easily identifiable and self-descriptive.

These composites can reside in any LBA in your product.

Composite Naming Conventions
The composite names must adhere to the following guidelines:

1. Start with the LBA short name. You can define the composite in any LBA.

2. For the subscribing and publishing composites, respectively, do the following:

■ Add <Subscribing product> if not included in LBA short name. Use the
product short name as defined in Oracle Fusion Setup. Use B2B if the
subscriber is a composite deployed to the Setup SOA cluster for B2B.

■ Add <Publisher product>To<Subscriber product> so that the name is
self-descriptive. Use the product short name as defined in Oracle Fusion
Setup.

3. Identify the purpose of the composite.

■ For a subscribing composite, add XFamilySub to the name.

■ For a publishing composite, add XFamilyPub to the name.

4. End with Composite.

XFamilySub
A product can have more than one XFamilyPub composite.

Using the naming conventions specified in Composite Naming Conventions, the
sample composite name is as follows:

■ FinInfrZxXFamilySubComposite. In this example, the LBA short name is FinInfr
and the Zx product subscribes to the cross-family event.

XFamilyPub
A product can have more than one XFamilyPub composite. There should only be one
XFamilyPub composite for each publisher product and subscriber product
combination.

How to Subscribe to a Cross-Family Business Event

Cross Family Business Event Subscription Pattern 45-5

Using the naming conventions specified in Composite Naming Conventions, sample
composite names are as follows:

■ FinInfrHzToZxXFamilyPubComposite. In this example, the LBA short name is
FinInfr and the Zx product subscribes to an event published by the Hz product.

■ FinInfrPerToZxXFamilyPubComposite. In this example, the LBA short name is
FinInfr and the Zx product subscribes to the event published by the Per product.

45.4.3 Determining the Aqueue Message Recipient
A recipient or consumer is specified in the Aqueue Adapter defined in the XFamilyPub
and XFamilySub composites. The recipient in the XFamilyPub is used to indicate which
Aqueue Adapter should receive the enqueued message. The consumer in the
XFamilySub is used to identify the Aqueue Adapter. For example, if the XFamilyPub
specifies ZX as the recipient for the enqueued message, then the XFamilySub with the
consumer set to ZX dequeues the message from the aqueue.

The recipient is the name of the XFamilyPub composite without the suffix
XFamilyPubComposite, in the format <LBA short name><Publisher
product>To<Subscriber product>.

For example:

■ FinInfrHzToZx for FinInfrHzToZxXFamilyPubComposite

■ FinInfrPerToZx for FinInfrPerToZxXFamilyPubComposite

■ PrcInfrPoToB2B for PrcInfrPoToB2BXFamilyPubComposite

45.4.4 Defining an XFamilyPub Composite
This step defines the composite which subscribes to an event on a remote family's
Oracle SOA Suite cluster and enqueues a corresponding message in the ACR_XFAMILY_
EVENT_Q aqueue.

1. In the owning team's SOA workspace, create an empty composite with the name
determined in Section 45.4.2.

2. Drag and drop an Aqueue Adapter to the right swim lane of your composite and
define the adapter as follows.

a. In the Service Name field, enter a service name for the Aqueue Adapter.

b. Define a connection for your Oracle Fusion Middleware schema and enter
JNDI name eis/AQ/XFamilyEventAqueueInterface.

c. In the Interface field, define the operation and schema.

d. For the operation type, select the Enqueue radio button. In the Operation
Name field, enter Enqueue.

e. For the queue name, enter FUSION as the database schema and ACR_
XFAMILY_EVENT_Q for the queue name.

f. On the Queue Parameters page, enter the recipient as defined in Section 45.4.3.

g. On the Message page, enter
oramds:/apps/oracle/apps/common/acr/events/FusionXFamilyEvent.xsd for
the URL and FusionXFamilyEvent for the schema element. To access
FusionXFamilyEvent.xsd from MDS, take the following steps.

 Click the search icon next to the URL field.

How to Subscribe to a Cross-Family Business Event

45-6 Developer's Guide

In the Type Chooser dialog box, select Import Schema File.

 Click the search icon next to the URL field.

At the top of the SOA Resource Browser window, select the Resource Palette.

Under IDE Connections, navigate to SOA-MDS > SOA-MDS connection
Name > oracle > common > acr > events > FusionXFamilyEvent.xsd and click
OK.

In the Import Schema File window, uncheck Copy to Project and click OK.

In the Type Chooser window, select FusionXFamilyEvent and click OK.

3. Drag and drop a mediator to your composite and name it EnqueueMediator.
Select Define Interface Later as the template and click OK. Double-click the
EnqueueMediator component.

4. For each event to which your family subscribes, define a routing rule in the
mediator. Click add button next to Event Subscriptions and select the business
event to which you want to subscribe on the remote Oracle SOA Suite cluster.
Reference the EDL file from MDS, and do not copy the file in your composite.

a. Add a static routing rule and click the Service button. Select References >
EnqueueEventMessage > Enqueue.

b. Create a transformation XSL file by clicking the transformation icon in the
routing rule and selecting Create New Mapper File.

c. In the column on the right, right-click msg_out:Namespace. Select Set Text >
Enter Text, and specify the event namespace.

d. In the column on the right, right-click msg_out:LocalName. Select Set Text >
Enter Text, and specify the event local name.

e. In the Component Palette, from XSL Constructs, drag and drop copy-of to
themsg_out:Payload element on the far right column of the XSL design tab.

In the Copy-of Type dialog, select Replace the children of the selected node
with the results of the copy-of. If an error message displays to the right of the
copy-of element, you can ignore it.

f. In the far left column, select the element just below <sources>. Drag-and-drop
the element to the copy-of in the far right column in the XSL design tab. Once
you complete this step, the error icon that displayed in the previous step
disappears.

Example 45–1 shows a sample XSL file.

Example 45–1 Sample XSL File

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="XSD">
 <schema location="../xsd/bulkImportEvents.xsd"/>
 <rootElement name="batchInfo"namespace="http://xmlns.oracle.com/apps/crm/hz/bulkImport/
 FoundationBulkImportEventsComposite"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../EnqueueEventMessage.wsdl"/>

How to Subscribe to a Cross-Family Business Event

Cross Family Business Event Subscription Pattern 45-7

 <rootElement name="FusionXFamilyEvent"
 namespace="http://xmlns.oracle.com/apps/common/acr/events"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.2.0(build 100216.1000.2230) AT [MON APR 26 14:00:00
 PDT 2010]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
 services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.
 service.common.functions.MediatorExtnFunction"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
 services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.
 tip.xref.xpath.XRefXPathFunctions"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns0="http://xmlns.oracle.com/apps/crm/hz/bulkImport/
 FoundationBulkImportEventsComposite"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.
 tip.adapter.socket.ProtocolTranslator"
 xmlns:msg_out="http://xmlns.oracle.com/apps/common/acr/events"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/XFamilyEventPattern/
 FinInfrHzToZxXFamilyPubComposite/EnqueueEventMessage"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl xsd ns0 plt wsdl msg_out tns xpath20 bpws mhdr
 oraext dvm hwf med ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <msg_out:FusionXFamilyEvent>
 <msg_out:Namespace>
 <xsl:text disable-output-escaping="no">http://xmlns.oracle.com/apps/crm/hz/bulkImport/
 FoundationBulkImportEventsComposite</xsl:text>
 </msg_out:Namespace>
 <msg_out:LocalName>
 <xsl:text disable-output-escaping="no">ImportPartyData</xsl:text>
 </msg_out:LocalName>
 <msg_out:Payload>
 <xsl:copy-of select="/ns0:batchInfo"/>
 </msg_out:Payload>
 </msg_out:FusionXFamilyEvent>
 </xsl:template>
</xsl:stylesheet>

5. In the routing rule, define an assign statement to copy the context from the
apps.context.header property into the ApplicationContext element in the
aqueue message. The Assign Value window is shown in Figure 45–1.

How to Subscribe to a Cross-Family Business Event

45-8 Developer's Guide

Use the Expression builder to generate an expression for the To region. Select
Variables > out > FusionXFamilyEvent > msg_out:FusionXFamilyEvent > msg_
out:ApplicationContext, click Insert into Expression and then click OK.

Figure 45–1 Define an Assign Statement

The mediator source code is shown in Example 45–2.

Example 45–2 Mediator Source Code

<assign>
 <copy target="$out.FusionXFamilyEvent/msg_out:FusionXFamilyEvent/msg_out:ApplicationContext"
 value="$in.property.apps.context.header"
 xmlns:msg_out="http://xmlns.oracle.com/apps/common/acr/events"/>
</assign>

6. Open the composite.xml file and search for the following line.

<binding.jca config="EnqueueEventMessage_aq.jca"/>

7. Replace the binding.jca element with the code shown in Example 45–3.

Example 45–3 Replace the JCA Binding

<binding.jca config="EnqueueEventMessage_aq.jca">
 <property name="jca.subject.xpath">/msg_out:FusionXFamilyEvent/msg_out:Subject</property>
 <property name="jca.subject.nslist">xmlns:msg_out=
 "http://xmlns.oracle.com/apps/common/acr/events"</property>
</binding.jca>

8. Add standard fault policies to the composite just above the <component> elements
in the composite.xml file, as shown in Example 45–4.

Example 45–4 Add Fault Policies to the composite.xml File

<property name="oracle.composite.faultPolicyFile">
 oramds:/apps/oracle/apps/fnd/applcore/soa/fault/fault-policies.xml</property>

How to Subscribe to a Cross-Family Business Event

Cross Family Business Event Subscription Pattern 45-9

<property name="oracle.composite.faultBindingFile">
 oramds:/apps/oracle/apps/fnd/applcore/soa/fault/fault-bindings.xml</property>

45.4.5 Defining an XFamilySub Composite
This step defines the composite which will dequeue messages from ACR_XFAMILY_
EVENT_Q and raise the event locally in your family's SOA cluster.

To define an XFamilySub composite:
1. In the owning team's SOA workspace, create an empty composite with the

XFamilySub composite name determined in Section 45.4.2, "Determining the
Composites to Be Defined."

2. Drag and drop an Aqueue Adapter onto the left swim lane of your composite and
provide the following values in the definition. When specifying the Messages
URL, you will be referencing oramds. Ensure you have a SOA-MDS defined which
points to fusionapps/soa_shared/soa-infra before proceeding.

a. In the Service Name window, enter the name DequeueEventMessage in the
Service Name text field.

b. In the Service Connection window, define a connection for the Oracle Fusion
Middleware schema. For the JNDI name, enter eis/AQ/XFamilyEventAqueue.
For the XA Data Source, accept the default value.

c. In the Adapter Interface window, accept the default selection Define from
operation and schema (this is specified later).

d. In the Operation window, select Dequeue for the operation type. In the
Operation Name text field, accept the default value of Dequeue.

e. In the Queue Name window, select the database schema and enter a queue
name.

From the Database Schema dropdown list, select Fusion.

In the Queue Name field, enter ACR_XFAMILY_EVENT_Q.

f. In the Queue Parameters window, specify the aqueue message recipient as
defined in Section 45.4.3, "Determining the Aqueue Message Recipient."

g. In the Messages window, select the message schema URL and the relevant
schema element.

In the URL field, browse for the message schema URL.

From the Schema Element dropdown list, select FusionXFamilyEvent.

3. Drag and drop a mediator component onto your composite using the Define
Interface Later template, and name it DequeueMediator.

Draw a wire between the aqueue adapter and mediator, as shown in Figure 45–2.

How to Subscribe to a Cross-Family Business Event

45-10 Developer's Guide

Figure 45–2 Connect the Mediator to the Aqueue Adaptor

4. For each cross family event to which your family subscribes, define a static routing
rule in the mediator.

a. Add a routing rule to raise the event by clicking on the add icon and the Event
button. Use oramds to reference the EDL file rather than copying the EDL file
into your composite.

b. Add a filter expression to the rule to select the aqueue messages with the
namespace and local name that match the event.

For example, if the namespace of the event is
http://xmlns.oracle.com/apps/crm/hz/bulkImport/FoundationBulkImport
EventsComposite and the local name is ImportPartyData, then the following
filter is defined, as shown in Example 45–5.

Example 45–5 A Filter Expression for the Mediator Rule

(($in.FusionXFamilyEvent/msg_out:FusionXFamilyEvent/msg_out:Namespace =
"http://xmlns.oracle.com/apps/crm/hz/bulkImport/FoundationBulkImportEventsComposite")
and ($in.FusionXFamilyEvent/msg_out:FusionXFamilyEvent/msg_out:LocalName = "ImportPartyData"))

c. Create a transformation XSL file. Click the transformation icon, select Create
New Mapper File, and click OK.

d. In the Component Palette, expand the XSLT Constructs tab. Drag and drop the
copy-of construct onto the XSLT file column on the element directly under the
<target> element.

e. In the Copy-of Type dialog, select Replace the selected node with the results
of the copy-of.

f. From the source column, drag and drop the msg_out:Payload onto the copy-of
element in the XSLT file column.

g. In the source tab, add a /child:node() element after <xsl:copy-of
select="/msg_out:FusionXFamilyEvent/msg_out:Payload>.

The XSL file should look similar to that shown in Example 45–6.

Example 45–6 XSL File

<?xml version="1.0" encoding="UTF-8" ?>

How to Subscribe to a Cross-Family Business Event

Cross Family Business Event Subscription Pattern 45-11

<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../DequeueEventMessage.wsdl"/>
 <rootElement name="FusionXFamilyEvent"
 namespace="http://xmlns.oracle.com/apps/common/acr/events"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="XSD">
 <schema location="../xsd/bulkImportEvents.xsd"/>
 <rootElement name="batchInfo"
 namespace="http://xmlns.oracle.com/apps/crm/hz/bulkImport/
 FoundationBulkImportEventsComposite"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.2.0(build 100216.1000.2230) AT [MON APR 26 15:28:04
 PDT 2010]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/oracle.
 tip.pc.services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.
 service.common.functions.MediatorExtnFunction"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.
 tip.pc.services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/XFamilyEventPattern/
 FinInfrZxXFamilySubComposite/DequeueEventMessage"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.
 tip.xref.xpath.XRefXPathFunctions"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns0="http://xmlns.oracle.com/apps/crm/hz/bulkImport/
 FoundationBulkImportEventsComposite"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.adapter.socket.
 ProtocolTranslator"
 xmlns:msg_out="http://xmlns.oracle.com/apps/common/acr/events"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl tns plt xsd wsdl msg_out ns0 xpath20 bpws
 mhdr oraext dvm hwf med ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <xsl:copy-of select="/msg_out:FusionXFamilyEvent/msg_out:Payload/child::node()">
 <?oracle-xsl-mapper-position ns0:batchInfo?>
 </xsl:copy-of>
 </xsl:template>
</xsl:stylesheet>

Verifying the Deployment

45-12 Developer's Guide

h. In the routing rule, define an assign statement to copy the context from the
ApplicationContext element in the aqueue message into the
apps.context.header property, as shown in Figure 45–3.

Figure 45–3 Defining an Assign Statement to Copy the Context

5. In the composite.xml file, replace the line <binding.jca
config="EnqueueEventMessage_aq.jca"/> with the code shown in Example 45–7.

Example 45–7 Replacing the binding.jca Element

<binding.jca config="EnqueueEventMessage_aq.jca">
 <property name="jca.subject.xpath">/msg_out:FusionXFamilyEvent/msg_out:Subject</property>
 <property name="jca.subject.nslist">xmlns:msg_out=
 "http://xmlns.oracle.com/apps/common/acr/events"</property>
</binding.jca>

6. Add standard fault policies to the composite, as shown in Example 45–8.

Example 45–8 Adding Standard Fault Policies

<property name="oracle.composite.faultPolicyFile">
 oramds:/apps/oracle/apps/fnd/applcore/soa/fault/fault-policies.xml</property>
<property name="oracle.composite.faultBindingFile">
 oramds:/apps/oracle/apps/fnd/applcore/soa/fault/fault-bindings.xml</property>

45.5 Verifying the Deployment
You can verify the deployment of the use case by confirming that the event was
successfully raised by checking the Event Delivery Network database log.

■ Section 45.5.1, "How to Verify the Deployment of the XFamilyPub Composite"

■ Section 45.5.2, "How to Verify the Deployment of the XFamilySub Composite"

Verifying the Deployment

Cross Family Business Event Subscription Pattern 45-13

45.5.1 How to Verify the Deployment of the XFamilyPub Composite

To verify the deployment of XFamilyPub composite:
1. Deploy the XFamilyPub composite to the SOA cluster which receives the cross

family business event.

2. Raise the cross family business event. Before integrating with Oracle ADF, you can
raise a business event by invoking the following PL/SQL code in the Oracle
Fusion Applications schema.

a. Replace the parameters to initialize_session with the appropriate GUID
and user.

b. Replace hcm_edn_publish_event with the relevant event name, such as fin_
edn_publish_event or crm_edn_publish_event, and so on.

c. Replace the business event content.begin with the relevant business event.

Example 45–9 shows sample PL/SQL code used to raise a business event.

Example 45–9 Raise a Business Event by Invoking the PL/SQL Code

fnd_global.initialize_session('F58679122D280FD03AD1198A55EFC6BF', 'Abraham.Mason');

hcm_edn_publish_event('/oracle/apps/hcm/users/publicModel/entity/events/edl/LdapRequestEO',
 'ActiveLdapRequestEvent',

 '<business-event xmlns="http://oracle.com/fabric/businessEvent"
 xmlns:ns="/oracle/apps/hcm/users/publicModel/entity/events/edl/LdapRequestEO">'||

 '<name>ns:ActiveLdapRequestEvent</name>'||

 '<content>'||

 '<ActiveLdapRequestEventInfo xmlns="/oracle/apps/hcm/users/publicModel/
 entity/events/schema/LdapRequestEO">'||

 '<LdapRequestId>'||

 '<newValue value="5"/>'||

 '<oldValue value="5"/>'||

 '</LdapRequestId>'||

 '</ActiveLdapRequestEventInfo>'||

 '</content>'||

 '</business-event>');

commit;

end;

/

3. Confirm the event was raised on the SOA cluster that raises the cross-family
business event by navigating to http://<SOA SERVER>:<SOA
PORT>/soa-infra/events/edn-db-log.

Troubleshooting the Use Case

45-14 Developer's Guide

4. Confirm the event name space, name, identity, payload and context matches the
event raised via the PL/SQL API.

a. In Fusion Applications Control, verify that an instance of the composite is
running.

b. Verify that a message is being enqueued (ensure the XFamilySub composite is
not deployed) by looking at the contents of the FUSION.ACR_XFAMILY_EVENTS_
QT table. The body of the message displays in the USER_DATA column. For
example:

select user_data from fusion.acr_xfamily_event_qt;

45.5.2 How to Verify the Deployment of the XFamilySub Composite
You can use Fusion Applications Control to verify that the composite is running.

To verify the deployment of XFamilySub composite:
1. Deploy the XFamilySub composite to the SOA cluster that subscribes to the

cross-family event.

The composite should pick up the message in the aqueue.

2. In Fusion Applications Control, verify that an instance of the composite is
running.

3. Confirm the event was raised on the SOA cluster that subscribes to the
cross-family business event by navigating to http://<SOA SERVER>:<SOA
PORT>/soa-infra/events/edn-db-log.

4. Confirm the event namespace, name, identity, payload and context matches the
event raised via the PL/SQL API.

45.6 Troubleshooting the Use Case
If you encounter any issue with the ACR_XFAMILY_EVENT_Q aqueue, first run the
following select statements in the FUSION schema to confirm the privileges for FUSION_
RUNTIME are correct and to confirm that the queue is configured for enqueuing and
dequeuing. You can use the FUSION_READ_ONLY user to execute these statements.

45.6.1 Privileges to FUSION_RUNTIME
To confirm the necessary privileges are granted to FUSION_RUNTIME, run the statement
shown in Example 45–10.

Example 45–10 Confirming Privileges Granted to FUSION_RUNTIME

SELECT GRANTEE, OWNER, GRANTOR, PRIVILEGE, GRANTABLE, TABLE_NAME FROM DBA_TAB_
PRIVS
WHERE TABLE_NAME like 'ACR_XFAMILY_EVENT%';

The statement should return the following results. Ensure SELECT, UPDATE, ENQUEUE,
and DEQUEUE privileges are returned, as shown in Example 45–11.

Example 45–11 Results Returned

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE TABLE_NAME
------- ------ -------- --------- --------- ----------
FUSION_RUNTIME FUSION FUSION SELECT NO ACR_XFAMILY_EVENT_QT
FUSION_RUNTIME FUSION FUSION UPDATE NO ACR_XFAMILY_EVENT_QT

Troubleshooting the Use Case

Cross Family Business Event Subscription Pattern 45-15

FUSION_RUNTIME FUSION FUSION ENQUEUE NO ACR_XFAMILY_EVENT_Q
FUSION_RUNTIME FUSION FUSION DEQUEUE NO ACR_XFAMILY_EVENT_Q

If any of these privileges are not defined in your environment, run the appropriate
command listed in Example 45–12.

Example 45–12 Granting Relevant Privileges

GRANT SELECT ON FUSION.ACR_XFAMILY_EVENT_QT TO FUSION_RUNTIME;

GRANT UPDATE ON FUSION.ACR_XFAMILY_EVENT_QT TO FUSION_RUNTIME;

execute DBMS_AQADM.GRANT_QUEUE_PRIVILEGE('ENQUEUE', 'ACR_XFAMILY_EVENT_Q',
'FUSION_RUNTIME', FALSE);

execute DBMS_AQADM.GRANT_QUEUE_PRIVILEGE('DEQUEUE', 'ACR_XFAMILY_EVENT_Q',
'FUSION_RUNTIME', FALSE);

45.6.2 Aqueue enabled for Enqueuing and Dequeuing
To confirm ACR_XFAMILY_EVENT_Q is enabled for enqueuing and dequeuing, run the
statement shown in Example 45–13.

Example 45–13 Confirming ACR_XFAMILY_EVENT_Q Is Enabled for Enqueuing and
Dequeuing

select * from sys.dba_queues where queue_table like '%ACR_XFAMILY_EVENT%';

This statement should return the results shown in Table 45–3. Confirm that the
ENQUEUE_ENABLED and DEQUEUE_ENABLED columns are set to YES for ACR_XFAMILY_
EVENT_Q.

If the queue is not enabled for enqueue or dequeue, run the command shown in
Example 45–14.

Table 45–3 Results When Confirming ACR_XFAMILY_EVENT_Q Is Enabled for
Enqueuing and Dequeuing

OWNER FUSION FUSION

NAME ACR_XFAMILY_EVENT_Q AQ$_ACR_XFAMILY_
EVENT_QT_E

QUEUE_TABLE ACR_XFAMILY_EVENT_QT ACR_XFAMILY_EVENT_QT

QID 3851358 3851357

QUEUE_TYPE NORMAL_QUEUE EXCEPTION_QUEUE

MAX_RETRIES 5 0

RETRY_DELAY 0 0

ENQUEUE_ENABLED YES NO

DEQUEUE_ENABLED YES NO

RETENTION 0 0

USER_COMMENT exception queue

NETWORK_NAME

Troubleshooting the Use Case

45-16 Developer's Guide

Example 45–14 Enabling the Queue for Enqueuing or Dequeuing

dbms_aqadm.start_queue(queue_name => 'ACR_XFAMILY_EVENT_Q');

45.6.3 AQ_INVALID_QUEUE_TYPE
If you encounter the error message, shown in Example 45–15, take the following steps.

Example 45–15 AQ_INVALID_QUEUE_TYPE Error

{{Error during invoking 1-way operation "Enqueue" on target service
"EnqueueEventMessage"
Exception occured when binding was invoked. Exception occured during invocation of
JCA binding: "JCA Binding execute of Reference operation 'Enqueue' failed due to:
AQ_INVALID_QUEUE_TYPE. Unable to obtain the correct queue type. Queue does not
exist or not defined correctly. Drop and re-create queue. ". The invoked JCA
adapter raised a resource exception. Please examine the above error message
carefully to determine a resolution. }}

This error indicates that FUSION_RUNTIME does not have the appropriate privileges to
enqueue messages in the aqueue. Take the steps described in Section 45.6.1, "Privileges
to FUSION_RUNTIME."

Part VII
Part VII Implementing Security

This part of the Developer's Guide provides information about Oracle Fusion
Applications security. It discusses how to implement Oracle Fusion Data Security and
user sessions, and how to secure specific use cases for Oracle ADF application
artifacts, Web services, and portlet applications.

Getting Started with Security introduces security concepts and features, namely
authentication and authorization. Authentication establishes the identity of the user.
Authorization ensures that users only have access to resources to which they have
been granted access.

Implementing Application User Sessions describes how to allow applications to store
security and application context on the user session, and to allow for an enhanced
security implementation. An application can easily reconnect to the same user session
for each request, maintaining the user context over the duration of the user's session
without the overhead of having to obtain and initiate a database connection each time.
The actual connection used is not guaranteed to be the same between requests. User
session roles can be enabled for a user, and dictate what privileges that user has.

Implementing Oracle Fusion Data Security describes how to enforce authorization for
access and modification of specific data records. The goal of Oracle Fusion Data
Security is to authorize a user to perform specified actions on selected data. Data
security can secure rows and attributes of a database object and addresses the question
"Who can do what on which set of data."

Implementing Function Security describes how to authorize end users to access securable
application artifacts created using Oracle ADF.

Securing Web Services Use Cases describes best practices for for securing Web services in
Oracle Fusion Applications and specifically explains the difference between global
policy attachment and local policy attachment and when to use each.

Securing End-to-End Portlet Applications describes how to authenticate and authorize
portlet services, as well as how to configure key stores and credential stores.

This part contains the following chapters:

■ Chapter 46, "Getting Started with Security"

■ Chapter 47, "Implementing Application User Sessions"

■ Chapter 48, "Implementing Oracle Fusion Data Security"

■ Chapter 49, "Implementing Function Security"

■ Chapter 50, "Securing Web Services Use Cases"

■ Chapter 51, "Securing End-to-End Portlet Applications"

46

Getting Started with Security 46-1

46Getting Started with Security

This chapter describes the components that developers use to secure Oracle Fusion
applications and web services by enforcing authentication and authorization.

This chapter includes the following sections:

■ Section 46.1, "Introduction to Securing Oracle Fusion Applications"

■ Section 46.2, "Authentication Techniques and Best Practices"

■ Section 46.3, "Authorization Techniques and Best Practices"

46.1 Introduction to Securing Oracle Fusion Applications
Oracle Fusion Applications security consists of two main components, namely
authentication and authorization. Authentication establishes the identity of the user.
Authorization ensures that users only have access to resources to which they have
been granted access.

When developing an Oracle Fusion application, it is necessary to ensure that
authentication and authorization polices are properly enforced throughout the
application. The implementation details may vary depending on the technology used
in the application.

For complete details about the Oracle Fusion security approach, including concepts
and best practices, see the Oracle Fusion Applications Security Guide.

Additionally, for information about security and extending Oracle Fusion applications,
see the Oracle Fusion Applications Extensibility Guide.

46.1.1 Architecture
Oracle Fusion applications are built on top of a fixed set of internal and third-party
technologies. This set of technologies defines what may be used to develop, build,
package, and run all Oracle Fusion applications. Each technology and component may
have its own specific requirements for security implementation.

Figure 46–1 depicts the components in the Oracle Fusion Applications security
approach.

Introduction to Securing Oracle Fusion Applications

46-2 Developer's Guide

Figure 46–1 Oracle Fusion Security Architecture

The Oracle Fusion Applications key technologies and features include:

■ Application resources including ADF task flows, ADF components, and ADF
Business Components. For more information, see:

Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

■ Oracle Platform Security Services (OPSS) security. For more information, see:

Oracle Fusion Middleware Application Security Guide.

■ Oracle Web Services Manager (Oracle WSM). For more information, see:

Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

■ Oracle WSM policy interceptors. For more information, see Chapter 50, "Securing
Web Services Use Cases."

■ Identity providers including the LDAP-based provider and the file-based provider
(jazn-data.xml file). For more information, see:

Oracle Fusion Middleware Application Security Guide.

■ Oracle Fusion application user sessions. For more information, see Chapter 47,
"Implementing Application User Sessions."

■ Oracle Fusion Data Security policies for data security. For more information, see
Chapter 48, "Implementing Oracle Fusion Data Security."

Introduction to Securing Oracle Fusion Applications

Getting Started with Security 46-3

■ Oracle Fusion Applications security policies for function security. For more
information, see Chapter 49, "Implementing Function Security."

Some of the technologies have an additional layer of security on top of the main
security technologies.

46.1.1.1 Oracle Platform Security Services (OPSS) Security Framework
OPSS security framework provides security to Oracle Fusion Middleware, including
Oracle WebLogic Server, Oracle SOA Suite applications, Oracle WebCenter Portal,
Oracle ADF applications, and Oracle Entitlements Server. OPSS is designed to be
portable to third-party application servers. Developers can therefore use OPSS as the
single security framework for both Oracle and third-party environments, thus
decreasing application development, administration, and maintenance costs.

OPSS comprises Oracle WebLogic Server security and Oracle Fusion Middleware
security. Figure 46–2 illustrates the layered architecture that combines these two
security frameworks.

Figure 46–2 Oracle Platform Security Services Architecture

Figure 46–2 depicts the various security components as layers. The uppermost layer
includes the Oracle WebLogic Server and the Java applications running on the server;
under it, is the layer consisting of APIs for Authentication, Authorization, Credential
Store Framework, User and Role, and identity virtualization; the bottom layer includes
the Security Service Provider Interface (SSPI) layer and the service providers. The
bottom layer interacts with security data repositories, such as LDAP and database
servers.

Introduction to Securing Oracle Fusion Applications

46-4 Developer's Guide

In addition to the list of providers shown in Figure 46–2, other providers include the
role mapping and audit providers.

For more information about OPSS, see the "Understanding Security Concepts" part in
the Oracle Fusion Middleware Application Security Guide.

The Security Service Provider Interface (SSPI) layer is accessed through OPSS APIs
and provides Java EE container security in permission-based (JACC) mode and in
resource-based (non-JACC) mode. It also provides resource-based authorization for
the environment, thus allowing customers to choose their security model.

46.1.1.2 Oracle Web Services Manager
Oracle Web Services Manager (Oracle WSM) provides a policy framework to
consistently secure Web services. Application developers attach policies using
JDeveloper to the clients and services. Authentication and authorization are enforced
on the services by Oracle WSM based on the policies attached to the service. The
policies determine how the client and service communicate. For the predefined
policies the naming convention indicates the behavior of the policy.

For example, given a policy called:

oracle/wss11_saml_token_with_message_protection_client_policy

■ oracle is the path of the policy,

■ ws11 indicates the Web services standard,

■ saml_token is the authentication token,

■ with_message_protection indicates whether message protection is enabled,

■ client_policy indicates the type of policy, server or client.

For more information about Oracle WSM, see Oracle Fusion Middleware Security and
Administrator's Guide for Web Services.

How Policies are Executed
When a request is made from a service consumer (also known as a client) to a service
provider (also known as a Web service), the request is intercepted by one or more
policy interceptors. These interceptors execute policies that are attached to the client
and to the Web service. There are five types of interceptors (reliable messaging,
management, WS-Addressing, security, and MTOM) that together form a policy
interceptor chain. Each interceptor executes policies of the same type. The security
interceptor intercepts and executes security policies, the MTOM interceptor intercepts
and executes MTOM policies, and so on.

Policies attached to a client or Web service are executed in a specific order via the
Policy Interceptor Pipeline, as shown in Figure 46–3.

Introduction to Securing Oracle Fusion Applications

Getting Started with Security 46-5

Figure 46–3 Policy Interceptors Acting on Messages Between a Client and Web Service

When the interceptor encounters a policy that deals with authentication or
authorization, it delegates the task to OPSS. If the authentication using OPSS is
successful, a security subject with the identity is established. Similarly, processing
continues only if the authorization using OPSS for the established identity is
successful.

46.1.1.3 Oracle ADF Security
Oracle ADF security framework is the provider of authentication and authorization
services to Oracle Fusion Applications. Oracle ADF security is built on top of OPSS
architecture, and provides declarative, permissions-based protection for ADF bounded
task flows and top-level web pages that use ADF bindings.

Oracle ADF security and Oracle JDeveloper provide the tools to interact with the
file-based identity and policy store, as well as the architecture to enforce the security
definitions on the secured resources.

For more information about ADF Security, see the "Enabling ADF Security in a Fusion
Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

46.1.1.4 Application User Sessions
Application user sessions allow applications to store the security and application
context for Oracle Fusion Applications. Session attributes contain common
information such as the current user and the user's associated roles, current language,
date and number formatting, as well as application-specific attributes.

A session is created after the security subject has been established. In the context of
Oracle ADF, a session is created using a filter, while a context is created in Oracle SOA
Suite using an interceptor. When a session is created, information about the user's
associated roles are stored in the session.

Oracle Fusion Data Security relies on the security context in the session when deciding
whether a user is allowed to access particular data. If the session is not established, the
user cannot access any secured data.

Application user sessions are associated with pillars and, ideally, there should be only
one session per pillar. In the case of web services, if the client and server are on the
same pillar then they share the same session. Subsequently, session context is specific

Introduction to Securing Oracle Fusion Applications

46-6 Developer's Guide

to a particular pillar. That is, everything running on that same pillar should see the
same context.

For details about application user sessions, see Chapter 47, "Implementing Application
User Sessions."

46.1.1.5 Oracle Fusion Data Security
Oracle Fusion Data Security implementation is a solution specifically for Oracle Fusion
Applications. The security definitions for who can access what data are stored in the
Oracle Fusion Data Security model in the Oracle Fusion Applications schema.
Developers create these definitions through SQL scripts, APIs or UIs. The definitions
are then extracted and version controlled as seed data.

Oracle Fusion Data Security definitions are enforced either declaratively or
programmatically in their application. In the context of an Oracle Fusion application,
developers can do the following:

■ Declaratively enforce security on the entity object level,

■ Declaratively enforce security on the view object level through view criteria,

■ Programmatically apply security view criteria,

■ Programmatically call APIs to check whether a user is authorized to access data or
obtain a predicate used to retrieve the data the user is authorized to access.

The data security implementation relies on the security context defined in the
application user session. Even if OPSS authenticates the user and the security subject is
established, the user cannot access any data unless the application user session is
established.

For details about Oracle Fusion Data Security, see Chapter 48, "Implementing Oracle
Fusion Data Security."

46.1.1.6 Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) enables controlling access to data on the database
level using security policies associated with database objects. Use VPD when securing
Personally Identifiable Information (PII) on the database level, for example.

For more information about VPD, see the "Using Oracle Virtual Private Database to
Control Data Access" chapter in the Oracle Database Security Guide.

46.1.1.7 Oracle Data Integrator
Oracle Data Integrator (ODI) is used to move and transform data among systems using
specific features for authentication and authorization. Authentication is based on
Oracle Platform Security Services (OPSS). Following authentication, processing
specific to ODI occurs in which OPSS principals are mapped to definitions stored in
ODI to determine identity access rights. The security definitions controlling
authorization decisions are stored in an ODI master repository.

For more information about ODI, see the "Understanding Oracle Data Integrator" part
in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

46.1.2 Authentication
Oracle Fusion applications reside in containers that automatically handle
authentication. The container intercepts all requests entering the system, and ensures
that users are properly authenticated and the security context propagated.

Introduction to Securing Oracle Fusion Applications

Getting Started with Security 46-7

Invoking the ADF Security wizard when developing an application configures the
application to enforce security at runtime.

When a request is received with no subject defined, Oracle Platform Security Services
creates a subject containing the anonymous user principal and the anonymous role
role principal. Oracle Platform Security Services is configured by the JPSFilter.
With this security subject, unauthenticated users can access public resources. When
accessing secure resources, the adfAuthentication servlet forces users to authenticate.
The security configuration determines the login module to be used for authentication.

By default, Oracle WebLogic Server is the authenticator used when developing
applications with Oracle ADF. Different configurations can also be used, such as an
Oracle Single Sign-On solution.

46.1.2.1 Oracle Identity Management Repository
Oracle Identity Management Repository stores users, enterprise roles and their
relationships. During development the identities exist in two places; the
jazn-data.xml file in Oracle JDeveloper and the embedded LDAP of JDeveloper's
Integrated WebLogic Server. In staging environments, these definitions reside in LDAP
on standalone Oracle WebLogic Server.

46.1.2.1.1 Users Test users created during development within Oracle JDeveloper
enable testing applications in development. These test users are not migrated with the
completed application. Rather, they are for testing purposes only. Enterprise users are
added by a system administrator who defines users/groups in the enterprise identity
store.

46.1.2.1.2 Roles Users are not assigned permissions directly, rather access is assigned
to roles. Roles group particular permissions required to accomplish a task; instead of
assigning individual permissions, roles match users with the permissions required to
complete their particular task.

There are two main types of roles, enterprise and application. Oracle Identity
Management Repository contains enterprise roles that are available across
applications. These are created as groups in LDAP, making them available across
applications. Application roles are stored in the application-specific policy store.

Functional roles include job, duty, data, abstract and privilege roles. Role are enforced
by a role hierarchy. In Oracle Identity Management Repository, these logical roles are
translated into technical Oracle Platform Security Services roles.

46.1.2.1.3 Segregation of Duties Segregation of Duties (SOD) ensures that no single
individual has control over two or more phases of a business transaction or operation.
The goal of segregation of duties is to prevent information misuse such that the same
user cannot both create and approve transactions.

Oracle Applications Access Controls Governor (AACG) is used to manage, remediate
and enforce user access policies. AACG ensures effective segregation of duties at the
implementation site.

46.1.2.1.4 File-Based Identity Store The data in the file-based identity store
(jazn-data.xml file) is used when authenticating within Oracle JDeveloper running
Integrated WebLogic Server. The identity data in the jazn-data.xml file should not be
synchronized with the identities in the LDAP staging server. By default, the
deployment configuration disables data synchronization between the jazn-data.xml
file and the LDAP server. This setting should not be modified.

Introduction to Securing Oracle Fusion Applications

46-8 Developer's Guide

46.1.2.1.5 File-Based Policy Store The data in the file-based security policy store
(jazn-data.xml file) is used when authorizing within Oracle JDeveloper running
Integrated WebLogic Server. Changes to the security policies in the jazn-data.xml file
must be migrated to the LDAP staging server by a security administrator. By default,
the deployment configuration disables data synchronization between the
jazn-data.xml file and the LDAP server. This setting should not be modified.

46.1.2.1.6 ODI ODI has its own concept of identities such as ODI role and stores in the
ODI schema. For authentication, OPSS is used and the OPSS principals are mapped to
the ODI identities.

46.1.2.2 Identity Propagation
Identity propagation is a fundamental requirement for securing Oracle Fusion
Applications. It provides that the same user identity is visible across different
processes and technologies boundaries. While there some cases where the identity is
implicitly propagated, in several scenarios explicit configuration is required.

Web Services and SOA
In the case of Web services and SOA applications, you can propagate identities by
attaching Oracle Web Services Manager policies to the client and service. When a client
sends a request to a service, a policy interceptor intercepts the request. On the client
side, the policy interceptor packages the identity to be transported according to the
policy attached to the client. On the service side, the interceptor processes the request
based on the policy and delegates authentication to Oracle Platform Security Services.
If the authentication succeeds, a security subject with the identity is established.

Remote Method Invocation (RMI)
The executing user is automatically propagated when using RMI. If a different identity
than the executing user needs to be propagated, it has to be explicitly passed through
Java Naming and Directory Interface (JNDI) context.

Oracle WebCenter Portal
Oracle Fusion applications deploy Web Services for Remote Portlets (WSRP). As web
services, they rely on Oracle Web Services Manager for Identity Propagation.

Oracle Data Integrator (ODI)
In a OPSS-enabled environment (Oracle Platform Security Services), ODI
authentication happens in two phases.

Figure 46–4 depicts the first phase is OPSS authentication, during which time a subject
is created using the OPSS framework. The second phase is the ODI authentication
itself, which is based on the previously created subject. ODI lists the ODI roles having
one or more OPSS principals of the subject as members. Users will need to choose one
ODI role from here. ODI will then create an ODI security token based on this role. This
ODI security token contains an ODI role and the list of principals associated with the
current OPSS subject.

Introduction to Securing Oracle Fusion Applications

Getting Started with Security 46-9

Figure 46–4 ODI Authentication

Audit Identity
When switching to the application identity, in order to preserve the submitting
identity for auditing purposes, you must propagate the identity to be audited.

Auditing is based on who columns, which are populated with session data. When the
session is established, it is initialized using the current identity. The session APIs
expose a method to manipulate the identity to be used for auditing. This method
allows teams to control which identity is stored as the audit identity. Example 46–1
illustrates the syntax of this method.

Example 46–1 Controlling which Identity Is Stored as the Audit Identity

ApplSession.setHistoryOverrideUserName()

The session is not propagated, rather only the identity is propagated. As the session is
initialized using the identity, any application specific values are lost. To prevent this,
you must pass the audit identity and override the audit identity on the session.

It is recommended for the service provider to add an extra parameter to the service so
as to store the original user ID (historyOverrideUserName, of type String). In order to
invoke the service, the service method consumer must fill in the original user ID as
part of the payload. Within the service, the value passed is populated on the session as
shown in Example 46–2.

Example 46–2 Storing the Original Identity

ApplSession session = ApplSessionUtil.getSession();
if (session != null)
session.setHistoryOverrideUserName(historyOverrideUserName);

Introduction to Securing Oracle Fusion Applications

46-10 Developer's Guide

46.1.2.3 Application User Session Propagation
Application user sessions are associated with pillars and, ideally, there should be only
one session per pillar. In the case of web services, if the client and server are on the
same pillar then they share the same session. Subsequently, session context is specific
to a particular pillar. That is, everything running on that same pillar should see the
same context.

46.1.3 Authorization
Authorization ensures that users only have access to the resources to which they have
been granted access. Authorization decisions are based on policies stored in a policy
store. There are two main types of policy stores: OPSS application security repository
and Oracle Fusion Data Security repository. The OPSS repository contains the security
definitions that control access to applications. The Oracle Fusion Data Security
repository contains the security definitions controlling data access.

46.1.3.1 OPSS Application Security Repository
The enterprise security administrator exports the OPSS application security repository
to the jazn-data.xml file policy store. The security definitions in these repositories
control access to application functions. The policies defined in the jazn-data.xml file
are used during development. For testing and implementation, the file-based policy
store content is migrated into LDAP.

Policy Store Content
Enterprise security administrators are responsible for managing application security
policies. Oracle Fusion Applications developers can add new application security
policies, but must not modify existing application security policies.

Roles
The jazn-data.xml file identity store contains the application roles specific to a given
application. These roles are not visible outside the application. The policies are created
against an application role. Permissions are grouped into a permission sets for
administrative purposes. And permission sets are granted to the application roles.
Developers must not allowed to modify role hierarchy or remove privileges defined by
the permission sets granted to existing application roles.

Design Time
During development, you can interact with the jazn-data.xml file policy store using
the tools and user interfaces provided in Oracle JDeveloper.

For more information, see the "Enabling ADF Security in a Fusion Web Application"
chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

Runtime
When Oracle ADF security is enabled in an application, the Web container uses the
policies in OPSS application policy store for authorization. Oracle ADF security
enforcement logic checks whether the user, represented by the JAAS subject, has the
correct permissions to access the resource.

The subject contains the user's principals, which include a user principal with the
user's name and list of role principals, as well as enterprise roles and application roles
obtained from the policy and identity stores. The principal is created to represent all of
the user's memberships in application roles defined in the policy store. In turn, each

Authentication Techniques and Best Practices

Getting Started with Security 46-11

application role may have multiple granted permissions in OPSS application policy
store.

At runtime, the page context determines whether the current user has view
permissions for the page being accessed. If the page includes an activity of a bounded
task flow, the task flow controller determines the permissions. If the page is a top-level
page with an associated page definition file, the Oracle ADF model determines the
permissions for the page.

The OPSS service provider interface checks whether the subject includes the roles with
the relevant permissions required to access the page. If the user is authorized to access
the page, then the task flow is initiated. If the user is not authorized, ADF Controller
throws an exception and passes control to an exception handler specified by the task
flow configuration.

It is also possible to include an API that checks whether the current user has access to a
resource.

Developer created additions to the policy store must be migrated to LDAP by a
security administrator.

46.1.3.2 Oracle Fusion Data Security Repository
Oracle Fusion Data Security repository is used to control access to data.

Policy Store Content
Enterprise security administrators are responsible for managing data security policies.
Oracle Fusion Applications developers can add new data security policies, but must
not modify existing data security policies.

For more information about Oracle Fusion Data Security, see Chapter 48,
"Implementing Oracle Fusion Data Security."

Design Time
During development, developers can interact with the Oracle Fusion Data Security
repository through the Oracle Authorization Policy Manager.

Runtime
Data security relies on session information for the user identity. When a user session is
created at runtime, the user information for that session and the flattened list of roles
for the user are propagated to the database. This information is used to identify the
user and the user's access level based on the policies in Oracle Fusion Data Security
repository.

Data security is not automatically enforced, rather developers must enforce data
security either declaratively on the entity object or view object, or programmatically,
using API calls.

46.2 Authentication Techniques and Best Practices
There are some cases in which you must implement authentication from an external
source or using a different identity. You can implement authentication using APIs,
Expression Language or a non-browser based login.

Authorization Techniques and Best Practices

46-12 Developer's Guide

46.2.1 APIs
You can implement authentication by using user and role APIs. For more information,
see the "Developing with the User and Role API" chapter in the Oracle Fusion
Middleware Application Security Guide.

46.2.2 Expression Language
You can use Expression Language to access security context information. Some useful
expressions are as follows:

■ securityContext.userName

■ securityContext.authenticated

■ securityContext.userInRole

■ securityContext.userInAllRoles

■ securityContext.userGrantedPermission

■ securityContext.userGrantedResource

■ securityContext.taskflowViewable

■ securityContext.regionViewable

Note that decisions about user's access rights should not rely on the user's role
information since role definitions may be changed. Instead access should be based on
available permissions.

For more information, see the "Enabling ADF Security in a Fusion Web Application"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

46.2.3 Non-browser Based Login
For information about using non-browser based security, see the "Securing Your
Integrated Excel Workbook" chapter in the Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

46.3 Authorization Techniques and Best Practices
Authorization is implemented using function security policies that control access to
application functions. At the most fundamental level, authorization is based on
standard JAAS (Java Authentication and Authorization Services) permissions and
OPSS permission sets (also called entitlements) which may be granted to secure
specific application artifacts. Oracle ADF defines the JAAS permissions needed to
secure certain Oracle ADF application artifacts, including ADF bounded task flows
and, in the case of top-level web pages, ADF page definitions files.

46.3.1 Function Security
Security is automatically enforced on all ADF bounded task flows and top-level web
pages that use ADF bindings and are not contained in a bounded task flow.

Security is not automatically enforced on web service methods. You can use API calls
to define permissions in the policy store and enforce security based on these
permissions.

Implementing function security requires the following main steps:

Authorization Techniques and Best Practices

Getting Started with Security 46-13

1. Consult a security administrator to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

2. Copy the exported jazn-data.xml file into the application workspace.

3. Create an entitlement to group one or more ADF resources and their
corresponding actions to entitle end users to access the resource.

4. Grant the entitlement to a custom duty role that was added to the Oracle Fusion
application policy store.

5. Enable ADF Security for the application by running the Configure ADF Security
wizard.

After running the ADF Security wizard, any web page associated with a bounded
ADF task flow will be protected. Therefore before running the application and testing
security, developers must first create security policies that grant end users access.

For more information, see Chapter 49, "Implementing Function Security."

46.3.1.1 Resource Entitlements and Permissions
In general, the JAAS permission determines the allowed operations that the end user
may perform on the application resource. However, from the standpoint of Oracle
Fusion Applications, end users typically need to interact with multiple resources to
complete the duties designated by their provisioned roles. To simplify the task of
creating function security policies, developers work with entitlement grants (defined
as OPSS permission sets) to grant privileges for a variety of securable resources,
including ADF task flows, web services, and SOA work flows to a role.

Developers use the Oracle JDeveloper to create the entitlements (with one or more
resource-action pairs) and then grant one or more entitlements to the desired
application roles (the grantee).

For details about creating entitlement-based security policies, see Chapter 49,
"Implementing Function Security."

Task flow, page definition, and web service resource permissions are tightly coupled
with code artifacts. These permissions are assumed to be associated with concrete code
artifacts. In some circumstances, permissions are required, but no code artifacts exist
with which the permissions could be associated. For example, suppose the same page
is used to view and update tasks. The same code artifact is used for both actions such
that one cannot control access to both view and update tasks separately. Resource
permissions enable creating abstract permissions which can be referred to with API
calls.

For details about resource permissions and using APIs, see the "Understanding
Security Concepts" part in the Oracle Fusion Middleware Application Security Guide.

46.3.1.2 Expression Language
You can use Expression Language to access security context information. Following
are some useful expressions:

■ securityContext.taskflowViewable

■ securityContext.regionViewable

■ securityContext.userGrantedPermission

For more information, see the "Enabling ADF Security in a Fusion Web Application"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

Authorization Techniques and Best Practices

46-14 Developer's Guide

46.3.2 Data Security
Implementing data security requires the following main steps:

1. Use Oracle Authorization Policy Manager to create security definitions based on
the Oracle Fusion Data Security model. This step is common, regardless of the
technology being used.

2. Refer to these security definitions from the code artifacts. This step varies
depending on the technology used, as well as the functional requirements of the
application.

For more information about implementing Oracle Fusion Data Security, see
Chapter 48, "Implementing Oracle Fusion Data Security."

For more information about using Oracle Authorization Policy Manager, see the Oracle
Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle
Fusion Applications Edition).

46.3.2.1 APIs and Expression Language
For information about using APIs and Expression Language to secure data, see
Chapter 48, "Implementing Oracle Fusion Data Security."

46.3.2.2 Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) enables creating security policies to control
database access at the row and column level. Access is controlled at the database level.
VPD adds a dynamic WHERE clause to a SQL statement issued against an object to
which an VPD security policy has been applied.

VPD can be useful for enforcing security when a development team must enforce
security at the database level. Using VPD affects performance. As such, make sure to
evaluate your performance requirements prior to implementing the VPD solution.

For more information regarding VPD implementation, see the "Using Oracle Virtual
Private Database to Control Data Access" chapter in the Oracle Database Security Guide.

46.3.2.3 Personally Identifiable Information
PII (Personally Identifiable Information) is any information that can be used to uniquely
identify a person. This information is considered sensitive and must be protected from
misuse for the purposes of legal regulation, financial liability and personal reputation.
For example, only authorized users should be allowed access to the social security
numbers of people stored in a system. PII authorization is only implemented on data
identified by the PII working group in the data privacy Oracle Fusion uptake
document.

PII authorization is implemented using one or more of the following technologies:

■ Encryption and decryption APIs

■ Oracle Fusion Data Security

■ Row level Oracle Virtual Private Database

The security requirements for the PII attribute determine the technologies to be used.

46.3.2.4 Data Role Templates
Installations of Oracle Fusion Applications may require a large number of roles that
must be provisioned. For data security purposes, it is often necessary to create the
roles as the data security rules are not known at design time.

Authorization Techniques and Best Practices

Getting Started with Security 46-15

For more information regarding data role templates, see the "Data Security" chapter in
the Oracle Fusion Applications Security Guide.

Authorization Techniques and Best Practices

46-16 Developer's Guide

47

Implementing Application User Sessions 47-1

47Implementing Application User Sessions

This chapter describes how to implement application user sessions in an Oracle Fusion
application to allow applications to store security and application context on the user
session.

This chapter includes the following sections:

■ Section 47.1, "Introduction to Application User Sessions"

■ Section 47.2, "Configuring Your Project to Use Application User Sessions"

■ Section 47.3, "Accessing Properties of the Applications Context"

47.1 Introduction to Application User Sessions
Configuring your user interface project for an application user session is a requirement
whenever you want to secure data and interact with Oracle Fusion Data Security.
Additionally, before you can run and test your application from a task flow or web
page, you should configure your user interface project to use an application user
session.

The application user session is used to store user and application context from the time
the user logs in until log out. When the application user session is implemented, the
Oracle Fusion application can easily reconnect to the same user session for each
request, maintaining the user context over the duration of the user's session without
the overhead of having to obtain and initiate a database connection each time. The
actual connection used is not guaranteed to be the same between requests. Application
user session roles can be enabled for a user, and dictate what actions that user has.

The application user session stores common information used in Oracle Fusion
Applications as session attributes and includes basic information about user identity
and language preferences, as well as context important to particular applications.
Specifically, session information includes the session ID, current user information,
current language, date and number formatting, and other similar properties. Session
attributes can also be used to track application specific information such as, the current
user's shopping cart, the country selection, or the currently selected operating unit.

Application user session namespaces are where attributes on the session are stored.
These attributes are then available over multiple requests whenever the session is
attached.

Oracle Fusion Applications maintains its own namespaces - one for tracking security
information, and another that developers can use to store attributes that they need to
track over the life of a session.

Additionally, developers can create their own namespaces for any product specific
attributes that they need to track over the life of a session. For example, when a large

Configuring Your Project to Use Application User Sessions

47-2 Developer's Guide

number of attributes exists, developers may want to create their own namespaces to
group the attributes together more cleanly.

Oracle Fusion Middleware Extensions for Applications provides covers on top of the
routines for getting attributes. To access the attributes of the application context, APIs
exist in both PL/SQL and Java, as described in Section 47.3, "Accessing Properties of
the Applications Context."

47.2 Configuring Your Project to Use Application User Sessions
When you create a user interface project to test or run a task flow (anything that
contains a .jspx file) you need to enable application user sessions for any JSPX pages
or task flows that you have created in your user interface project.

If the user interface project provides task flows that are only called from a page in
another project, then there is no need to configure your project to use sessions.

47.2.1 How to Configure Your Project to Use Application User Sessions
By default, application user sessions are not enabled for your project. If you wish to
access this functionality, you must configure your project.

Before you begin:
It may be helpful to have an understanding of application user sessions. For more
information, see Chapter 47, "Implementing Application User Sessions."

You may need to complete these tasks:

■ If you have any web services projects, you must configure them to maintain the
application user session across the web service request. For more information, see
Section 50.7, "Maintaining Application Session Context Across Web Service
Requests."

■ If you have any portlet projects, you must configure them to maintain the
application user session across the web service request. For more information, see
Section 51.5, "Maintaining Application Session Context Across Web Service
Requests."

To configure your project to use application user sessions:
1. In your Application Navigator, select your data model project and then right-click

and choose Project Properties. In the Categories tree, select Libraries and
Classpath and verify that the Applications Core and Web Services Data Control
libraries have been added.

2. In your Application Navigator, select the web.xml file in the WEB-INF folder of
your user interface project. Double-click to open the file. In the Categories tree,
select Filters to create a new filter. Enter the following information:

Filter Name: Enter ApplSessionFilter

Filter Class: Enter oracle.apps.fnd.applcore.common.ApplSessionFilter

3. Select the Source view to manually modify the web.xml source to add the
ApplSessionFilter mapping definition into the same section where other filters
are defined—immediately after the JpsFilter mapping definition and before any
other definitions.

Example 47–1 shows the ApplSessionFilter mapping definition to add.

Configuring Your Project to Use Application User Sessions

Implementing Application User Sessions 47-3

Example 47–1 Creating a New Filter Mapping Definition

...
<filter-mapping>
 <filter-name>ApplSessionFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
...

It is important that you add this filter mapping immediately after the JpsFilter
mapping definition and before any other definitions. This is to ensure that the
ApplSessionFilter servlet filter executes immediately after the JpsFilter servlet
handles authentication. Normally, this does not make a difference, however there
are cases, such as customization code, where this is required.

You can create the above through the Filter Mappings tab (with Mapping Type
set to Servlet, and Mapping set to Faces Servlet, and Dispatcher Type set to
Forward, Request) but in order to change the ordering of the filter mapping, you
must modify the web.xml file directly.

4. Save all changes.

You should also stop and restart any server processes that you have running to make
sure JDeveloper notices this new change. At this point you can run your page with
application user sessions enabled, but you will always be running as the anonymous
user. If you wish to require that users to authenticate, you will need to enable
authentication and define some users and roles, as described in Section 49.3, "Adding
Function Security to the Application."

47.2.2 How to Configure the ADF Business Component Browser
The steps in Section 47.2.1, "How to Configure Your Project to Use Application User
Sessions" can be used to configure the ADF Business Component Browser to run in a
mode that supports application user sessions.

If you are running a standalone Java program or a JUnit test, you must explicitly call
the ApplSessionUtil.initializeSession API at the beginning of your program to
create an applications context object. For more information about how to call the
ApplSession.initializeSession API, see Section 47.3.2.1, "Initializing Sessions."

47.2.3 How to Use the ApplSession Logger for Troubleshooting
One of the most useful diagnostic tools for applications configured for application user
sessions is the ApplSession logger. The specific logger for application users sessions
logging is named oracle.apps.fnd.applcore.common.session (also called the
ApplSession logger). You use this logger to capture runtime traces messages that are
specific to application user sessions. By default, the logger records messages at the
WARNING level. If you need to log additional details as part of troubleshooting, you can
increase the ApplSession log level to adjust the amount of information that is
recorded. For example, more detailed information may help you to quickly identify
the origin of an application user sessions error.

In JDeveloper, when you configure a logger and run the application, JDeveloper
displays runtime messages recorded by the logger in the Log window and a system
log file. You configure logging in JDeveloper using the editor for Oracle Diagnostic
Logging Configuration. After you have created a log, you can view and filter the log
messages with Oracle Diagnostic Log Analyzer. This tool allows you to set filters for

Accessing Properties of the Applications Context

47-4 Developer's Guide

different log levels, define message time frames, and search on message text. For more
information about these JDeveloper log tools, see the "Testing and Debugging ADF
Components" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

After the application is deployed to standalone Oracle WebLogic Server, a system
administrator uses Oracle Enterprise Manager Fusion Applications Control to adjust
the log level and to view the logger's recorded messages. The system administrator
may increase the ApplSession log level to gather detailed information for a particular
managed server. For more information about adjusting log levels for the ApplSession
logger, using Fusion Applications Control, see "Adjusting ApplSession Log Levels for
Troubleshooting" in the Oracle Fusion Applications Administrator's Guide.

For information about Oracle Fusion Middleware logging functionality, see the
"Managing Log Files and Diagnostic Data" chapter of the Oracle Fusion Middleware
Administrator's Guide.

47.2.4 What Happens at Runtime: How the Application User Session is Used
When you run your page, an authentication dialog displays. Login as OPERATIONS /
welcome1. An application user session for the OPERATIONS user is created and
associated with your application user session. Your page can access this application
user session through the ApplSessionUtil class, as described in Section 47.3,
"Accessing Properties of the Applications Context."

For details about enforcing security and granting access to application resources while
testing the applications, see Section 49.3, "Adding Function Security to the
Application."

47.3 Accessing Properties of the Applications Context
The applications context is a set of properties relevant to applications that is stored on
the application user session as a series of name-value pairs. You can access the core
application security context in one of two ways:

■ Through the ApplSession.java class in the oracle.apps.fnd.applcore.common
package

■ Through the FND_GLOBAL package in PLSQL

The list of context attributes includes information such as current user name and the
current language. The core attributes that are now supported were derived from the
following:

■ Customization layer hierarchy.

■ Central context attributes.

■ National Language Support (NLS) properties.

The following is the list of context attributes that are automatically captured and
maintained in the ApplSession context. The values listed are the exact names of the
attributes as they are defined in the session context. Note that developers can add their
own custom attributes as well.

Security and Customization attributes:
■ USER_GUID - The unique GUID that identifies the currently logged in user.

■ USER_NAME - The name of the currently logged in user.

■ PRODUCT_FAMILY - The current active product family.

Accessing Properties of the Applications Context

Implementing Application User Sessions 47-5

■ PRODUCT - The current active product.

■ INDUSTRY - The current active industry.

■ TERRITORY - The current active territory.

■ SITE - Returns the constant value SITE.

■ GLOBAL - Returns the constant value GLOBAL.

■ ADDTL_CUSTOM_LEVEL - Additional customization level is a context property that
can be customized by developers.

■ INDUSTRY_IN_TERRITORY - The current active industry in a particular territory.

■ ROLES - A list of roles that are currently active. (Assigned to the currently logged in
user).

Language attributes:
■ LANGUAGE - The language tag representing the current language.

■ NLS_LANG - The two-letter database language code. Derived from the language.

■ NLS_LANGUAGE - The database language. Derived from the language.

■ NLS_SORT - String sorting logic in database. This is from linguistic sorting support
project.

■ TERRITORY - Listed above as part of the customization context.

■ DATE_FORMAT - Format mask pattern for date parsing and formatting.

■ TIME_FORMAT - Format mask pattern for time parsing and formatting. This includes
time zone formatting.

■ GROUPING_SEPARATOR - Grouping separator for number formatting.

■ DECIMAL_SEPARATOR - Decimal separator for number formatting.

■ TIME_ZONE - User's preferred time zone in Oracle E-Business Suite (EBS) R12.

■ CURRENCY - The current currency code.

■ CLIENT_ENCODING - Client native encoding used for file uploading, downloading,
export, and attachment.

Miscellaneous attributes:
■ TRACE_LEVEL - The current tracing level when tracing is turned on.

■ MODULE - Stores the current module for tracing purposes.

■ ACTION - Stores the current action, such as page, being taken for tracing.

■ ACCESSIBILITY_MODE - The current accessibility mode.

The stored name-value pairs are partitioned into separate namespaces. Oracle Fusion
Applications creates namespaces to store the context attributes.

Note: All language context attributes are handled using Java
conventions, except for those that are explicitly prefixed with NLS. For
example, getLanguage() returns en-US (corresponding to
"AMERICAN" in the database) and getDateFormat() returns
dd-MMM-yy (corresponding to DD-MON-RR in the database).

Accessing Properties of the Applications Context

47-6 Developer's Guide

Developers can access the attribute-storage namespaces through the standard APIs
that are detailed below.

Developers may also choose to define their own namespaces, especially if they have a
number of attributes they wish to store on the session. Developer may currently
choose among the following APIs for initializing namespaces:

■ Java: ApplSession.initializeNamespace(String namespaceName)

■ PL/SQL: fnd_global.initialize_namespace (namespace_name IN VARCHAR2);

The Java and PL/SQL initializeNamespace routines are identical, just invoked from
different layers—these will dynamically create a new namespace associated with the
currently attached session, which you can then access and retrieve session attributes
from for the duration of that session.

47.3.1 How to Access Sessions Using Java APIs
In Java, the applications context is accessed through the ApplSession.java and
ApplSessionUtil.java classes, which can be found in the
oracle.apps.fnd.applcore.common package. Each of the attributes listed above have
corresponding APIs in the ApplSession class, along with a corresponding static API in
the ApplSessionUtil class for easier access.

For more information, see the javadoc included with Oracle Fusion Middleware
Extensions for Applications libraries.

47.3.1.1 Initializing Sessions
Because it is not possible to authenticate users in the PLSQL layer, the API to initialize
a session in PS/SQL is only expected to be called for testing. In order to use sessions,
you must first configure your project to use application user sessions. For more
information about configuring your project, see Section 47.2, "Configuring Your Project
to Use Application User Sessions."

After you have configured your project to use application user sessions, you should be
able to access sessions automatically if you are running a Java EE page.

For J2SE programs, such as JUnit tests, you must call an explicit API to initialize your
session. As Example 47–2 shows, for JUnit tests in particular, this is most likely your
setUp() or setUpBeforeClass() method along with a terminateSession call in the
corresponding tearDown() or tearDownAfterClass() method.

Example 47–2 Initializing Your Session

@BeforeClass
 public static void setUpBeforeClass()
 throws exception
 {
 //
 // Create a session for the OPERATIONS user
 //
 List<String> roleGuids = new ArrayList<String>(1);
 List<String> roleNames = new ArrayList<String>(1);
 roleGuids.add("1807EDD02DBB11DDBFDC91643D402C34");

Note: The actual names of these namespaces and which attributes
are used in which namespace is an implementation detail that you do
not need to be aware of.

Accessing Properties of the Applications Context

Implementing Application User Sessions 47-7

 roleNames.add("operationsRole");
 ApplSession session =
 ApplSessionUtil,initializeSession("43B84790D5F011DCAF4F5FFD8462C8E7",
 "OPERATIONS", roleGuids, roleNames, null);
 }

@AfterClass
 public static void tearDownAfterClass()
 throws exception
 {
 //
 // note that if a connection to the 'initializeSession' call had been passed
 // in, it would would have to be freed here. Since null is passed in, the
 // connection that was obtained in that call will be freed automatically.
 //
 ApplSessionUtil.terminateSession();
 }

47.3.1.2 Getting Context Attributes
Accessing a context attribute is simple. First, make sure your project is configured to
use application user sessions and then import the ApplSession and ApplSessionUtil
classes. As Example 47–3 shows, after you complete those tasks you can access the
session and its properties using the static APIs that are provided.

Example 47–3 Accessing the Session

ApplSession session = ApplSessionUtil.getSession();
String guid1 = session.getUserGuid();

String guid2 = ApplSessionUtil.getUserGuid();

Using the example, guid1 and guid2 should both return the same value. The
ApplSessionUtil API is a convenience method that essentially calls the same code as
the first two lines. One difference is that ApplSessionUtil.getUserGuid() raises an
exception if the session is not available. This is true for all the ApplSessionUtil get
methods, except for getSession(), which just returns null if there is no session.

All of the centrally maintained attributes listed above have corresponding get APIs
available. Example 47–4 shows a mechanism for getting generic attributes.

Example 47–4 Getting Generic Attributes

String attr1 = ApplSessionUtil.getSessionAttribute("ATTRIBUTE1");

Example 47–5 shows the API you use to fetch attributes from a particular namespace.

Example 47–5 Fetching Attributes From A Particular Namespace

String attr1 = ApplSessionUtil,getNamespaceAttribute("MY$NAMESPACE",
"ATTRIBUTE1");

47.3.1.3 Setting Context Attributes
In addition to providing getters for all of the context attributes listed above, there are
corresponding set APIs directly available in the ApplSession class. Attributes like the

Caution: Remember, every call to initializeSession should have a
corresponding terminateSession invoked after the code completes.

Accessing Properties of the Applications Context

47-8 Developer's Guide

user name or the language are set automatically on the context at creation time, but the
set APIs can also be called if an attribute needs to be changed in the middle of the
request.

Example 47–6 sets the PRODUCT_FAMILY attribute to FND and also sets a generic
attribute called ATTRIBUTE1 to VALUE1 on both the session and a private namespace
using the Java APIs.

Example 47–6 Setting Context Attributes

ApplSession session = ApplSessionUtil.getSession();
 if (session != null)
 {
 session.setProductFamily("FND");
 session.setSessionAttribute("ATTRIBUTE1", "VALUE1");
 session.setNamespaceAttribute("MY$NAMESPACE", "ATTRIBUTE1", "VALUE1");
 }

47.3.1.4 Accessing the Connection
The applications context does not hold onto connections, instead it obtains and
releases them as needed. As Example 47–7 shows, if your application explicitly obtains
a connection via the ApplSession.getConnection() API, you will need to add a
finally block that releases that connection. It is recommended that you call the newly
provided ApplSession.releaseConnection(Connection conn) API as it takes care of
clearing out session-specific PL/SQL state in the connection before closing it.

Example 47–7 Accessing the Connection of the Current ApplSession

Connection conn = null;
ApplSession session = ApplSessionUtil.getSession();
if (session != null)
{
 try
 {
 conn = session.getConnection();
 ...
 }
 finally
 {
 if (conn != null)
 {
 session.releaseConnection(conn);
 }
 }
}

Note: Sets of ApplSession attributes get cached in the middle tier,
and only written to the database when the session is detached or the
ApplSession.synchronize() method is explicitly called. If the set
operation takes place from within a request, synchronization will
happen automatically. However, if you are running standalone java or
need the attributes to get written to the database immediately, you
should add a call to session.synchronize().

Accessing Properties of the Applications Context

Implementing Application User Sessions 47-9

47.3.1.5 Accessing Session Context Using the Java API
To access the context in your Java code, just call any of the static methods in the
ApplSessionUtil class. As long as you are running from an environment where
application user sessions are enabled, there should not be anything else you need to do
aside from importing the ApplSessionUtil class.

The following is a more complex example of how you might use this:

You have a view object (TestVO) where you want to always display the current user
name as one of the fields.

To always display the current user name as one of the fields:
1. Add a non-column based UserName attribute to the TestVO object.

2. Generate the View Row Class for the view object.

3. Look for the definition of getUserName(). As shown in Example 47–8, change it to
return the value of the call to ApplSessionUtil.getUserName() in the
TestVORowImpl.java that gets autogenerated.

Example 47–8 Changing the getUserName() Value

public String getUserName()
{
 return ApplSessionUtil.getUserName();
}

Whenever the TestVO view object is displayed, by default it will include the
current user name field.

Example 47–9 uses the SysadminInfo field that was added to the TestVO view object to
display a value when running the FND product.

Example 47–9 TestVO Example

public String getSysAdminInfo()
{
 String productName = ApplSessionUtil.getProduct();
 if ("FND".equals(productName))
 {
 return (String) getAttributeInternal(SYSADMININFO);
 }
 else
 {
 return null;
 }
}

47.3.2 How to Access Sessions Using PL/SQL APIs
The applications context can also be accessed through APIs that are provided in the
FND_GLOBAL package. As in Java, functions exist to get and to set each of the core
attributes listed in Section 47.3, "Accessing Properties of the Applications Context,"

Tip: If you are running without application user sessions enabled, an
exception will be thrown when any of the above calls are made with
the exception of the getSession() API. This API returns a null if
sessions are not enabled.

Accessing Properties of the Applications Context

47-10 Developer's Guide

assuming you have initialized the connection to use sessions properly. For detailed
information about the FND_GLOBAL package, see the javadoc.

47.3.2.1 Initializing Sessions
The FND_GLOBAL.INITIALIZE_SESSION takes in the user GUID, the user name, and two
lists of roles. The first represents the list of role GUIDs, and the second represents the
list of corresponding role names. As Example 47–10 shows, the lists must be of the
same length.

Example 47–10 Initializing Sessions

DECLARE
 1_roleguids FND_TABLE_OF_VARCHAR2_4000 := FND_TABLE_OF_VARCHAR2_4000();
 1_rolenames FND_TABLE_OF_VARCHAR2_4000 := FND_TABLE_OF_VARCHAR2_4000();
BEGIN
 1_roleguids.extend(1);
 1_rolenames.extend(1);
 1_roleguids(1) := '1807EDD02DBB11DDBFDC91643D402C34';
 1_rolenames(1) := 'operationsRole';
 fnd_global.initialize_session('43B84790D5F011DCAF4F5FFD8462C8E7','OPERATIONS',
1_roleguids, 1_rolenames);
 <your code here>
 fnd_global.terminate_session;
END;
/

47.3.2.2 Getting Context Attributes
As an example, you can retrieve the current user by calling FND_GLOBAL.USER_NAME,
and you can get a generic attribute by calling FND_GLOBAL.GET_SESSION_ATTRIBUTE.

47.3.2.3 Setting Context Attributes
As an example, you can set the language by calling FND_GLOBAL.SET_LANGUAGE, and
you can set a generic attribute by calling FND_GLOBAL.SET_SESSION_ATTRIBUTE.

48

Implementing Oracle Fusion Data Security 48-1

48Implementing Oracle Fusion Data Security

This chapter describes how to use Oracle Fusion Data Security to enforce security
authorization for access and modification of specific data records in an Oracle Fusion
application.

This chapter includes the following sections:

■ Section 48.1, "Introduction to Oracle Fusion Data Security"

■ Section 48.2, "Managing Data Security Artifacts in the Oracle Fusion Data Security
Policy Tables"

■ Section 48.3, "Integrating with ADF Business Components"

■ Section 48.4, "Using Oracle Fusion Data Security to Secure New Business
Resources"

■ Section 48.5, "Getting Security Information from the Application User Session
Context"

■ Section 48.6, "Understanding Data Security Performance Best Practices"

■ Section 48.7, "Validating Data Security with Diagnostic Scripts"

■ Section 48.8, "Integrating with Data Security Task Flows"

48.1 Introduction to Oracle Fusion Data Security
Oracle Fusion Data Security is the technology that implements data security in Oracle
Fusion Applications and is not used by function security (Oracle Platform Security
Services (OPSS) is used for function security). Oracle Fusion Data Security integrates
with Oracle Platform Security Services (OPSS) by granting actions to an OPSS
principal. The grant defines who (the principal) can do what (the actions) on a given
resource. A grant in Oracle Fusion Data Security can use any enterprise user or
enterprise group as principals.

The goal of Oracle Fusion Data Security is to authorize a user to perform specified
actions on selected data. It can secure rows and attributes of a database object and
relies on OPSS to provide the authentication services for OPSS principals (users,

Note: Oracle Platform Security Services (OPSS) principal
information is not stored in the Oracle Fusion Data Security schema.
The OPSS principal may be stored in any third-party system. Only the
necessary information (user/user-role mapping) for the current user
session is propagated to the database at runtime during session
creation to determine the various actions granted for that user session.

Introduction to Oracle Fusion Data Security

48-2 Developer's Guide

groups, or roles). It answers the question "Who can do what on which set of data".
Who refers to the OPSS user or group (or role), what is the action, and which is the
subset of data that can be accessed.

You can use Oracle Fusion Data Security to either restrict the rows that are returned by
a given query based on the intended business operation or restrict the actions that are
available for a given row.

The purpose of data security is to model and enforce security authorization for a
specific data record or a set of records. Data security provides access control within
Oracle Fusion applications on the data a user can access and the actions a user can
perform on that data. Oracle Fusion application rely on data security to restrict access
to individual data that is displayed on a page that may display after the user has
selected a menu or menu option.

For additional information about Oracle Fusion Data Security, see the Oracle Fusion
Applications Security Guide.

The following are some use cases where Oracle Fusion Data Security can be utilized:

■ Grant read action on expense reports to managers of the current employee when
the manager is granted Expenses Administrator role.

■ Administer the list of documents available to an end user in a Document
Management System (DMS) based on Document Categories.

■ Show the list of Sales Opportunities available to a Sales Head of an organization
based on region.

■ Allow a Human resources (HR) Benefits Administrator to only administer the
employees whose last name begins with A-F.

■ Allow a HR Administrator to only administer the employees in a given region.

In Oracle Fusion Data Security, data that needs to be secured is identified as resources.
These resources are database tables or views. Policies that control which data that a
user has access and can perform actions, can be made on a row instance or condition.
Figure 48–1 illustrates the logical data model implemented by Oracle Fusion Data
Security.

Note: Oracle Fusion Data Security assumes that the connection or
session provided to it has been initialized properly with the
appropriate user session user context, as described in Chapter 47,
"Implementing Application User Sessions." In this chapter, the user
session is specifically an application user session (ApplCore). The
application user session is the session that Oracle Fusion Data Security
expects to see.

Introduction to Oracle Fusion Data Security

Implementing Oracle Fusion Data Security 48-3

Figure 48–1 Oracle Fusion Data Security — Logical Data Model

An instance is a row of data and is identified by the primary key value of the row in the
resource's storage table. A condition is a group of row instances whose membership is
determined by a rule in the form of a SQL predicate, which must be applicable to the
WHERE clause of a single-table query against the resource's storage table.

For example, each row in the Purchase Order table is an instance of the Purchase
Order resource. The purchase order number is the primary key that identifies a
particular purchase order instance. You can create an condition with the predicate "PO_
NUMBER=100", which contains just one row of data. Purchase orders from the West
region can be put into a condition that is defined by the predicate "REGION='WEST'". A
condition that contains all the rows of data in the resource's storage table can be
defined by the predicate "1=1".

Memberships of a condition are dynamic in many ways, such as:

■ Condition membership rules may contain any valid SQL attributes, such as
columns of a table. Adding new instances or updating existing instances may
affect the membership of a condition. Using the above Purchase Order example, if
the predicate is "REGION='WEST'", new purchase orders in the region of West will
automatically become a member of the condition.

■ When an action is granted to an OPSS application role (also called a duty role by
Oracle Fusion Applications) on a condition it can be parameterized. Using the
Purchase Order example, the condition may be defined by the predicate
"REGION=&PARAM" where the parameter PARAM is associated with different regions.
When an action is granted on a condition, it may be done for a particular value of
the parameter, such as a sales manager in the West region may have an action
granted on a Region condition with the parameter value West.

■ The condition rules may not reveal any membership at all. It can just be a WHERE
clause to filter rows based on runtime user session variables.

To grant data security actions to a user, you must first identify the resources that you
want to secure, define conditions on those resources, and then grant specific actions on
these conditions to the application role to which the user belongs.

48.1.1 Terminology
Resource: A resource on which data security is enforced, such as a purchase order.
Resources are stored in the Oracle Fusion Applications FND_OBJECTS table. Note that
Oracle Fusion Applications database tables are sometimes called FND tables, where
FND refers to resources in the "foundation" tables.

Introduction to Oracle Fusion Data Security

48-4 Developer's Guide

Instance: A particular item of an resource, such as PO_NUMBER 100. An instance
generally corresponds to a row in the database. Row instances have one or more
primary key values.

Condition: A group of row instances that are determined by a SQL predicate (WHERE
clause expression) that queries the attributes of the resource itself. The WHERE clause
can reference values from the database context to implement relative conditions where
the condition members depend on the security context of the current user. The
conditions may also be parameterized, meaning that the WHERE clause references
PARAMETER values from the policies for parameterized conditions, as described in
Section 48.4.2, "How to Use Parameterized Conditions When Securing a Business
Object."

Conditions are stored in FND_OBJECT_INSTANCE_SETS table.

Action: Secures an action (also called a function) that can be performed on a resource.
You typically build features using multiple implementation strategies, including
various ADF Business Components operations through Java code. These features must
be secured to prevent unauthorized execution of the code. These features generally
perform events on resources and actions are what is used to secure these events. An
action must be associated with a resource.

Actions are stored in FND_FORM_FUNCTIONS table.

Aggregate Action: A group of actions. Roles specify the combination of actions
necessary to perform a particular role on a row instance. For example, a Project
Administrator role may include the View, Update, Slip, and Delete actions and a Project
Worker role may include only the View and Update actions. Aggregate actions (also
called a menu) are stored in FND_MENU and FND_MENU_ENTRIES tables.

Principal (Grantee): A user or a role in Oracle Platform Security Services (OPSS) to
which Oracle Fusion Data Security has a reference. The grantee key in the FND_GRANTS
table holds the GUID of the OPSS user or role.

User (OPSS User): Any person or application that accesses information in the
database.

Role (OPSS Role): Composed of users, groups, and possibly other roles. Roles are
used to associate users with actions.

Policy: Authorization for the grantee (OPSS user or role) of an aggregate action may be
done on the specified row instance, all instances, or condition. The condition for a
policy may be static or parameterized. A policy logically joins a principal, aggregate
action, and condition. This has the following effects:

■ Any action granted on a row instance implies that the Oracle Fusion Data Security
runtime system always has the ability to query the instances. This can be used by a
standard Virtual Private Database (VPD) policy function to provide default query
filtering. However, this does not mean that you have the ability to view or query
because the ability to view a row of the resource is secured by an action.

■ Once in the context of a specific row instance, the policies specify the set of actions
that can be performed on a data record.

Resource access can be tested using the Oracle Fusion Data Security authorization
checking API. Policies are stored in FND_GRANTS table.

Note: The action name alone is not unique on the table; the
combination of an action name and resource is what makes it unique.

Introduction to Oracle Fusion Data Security

Implementing Oracle Fusion Data Security 48-5

VPD - Virtual Private Database: Provides the ability to dynamically attach a predicate
at runtime to all queries issued against a database object (table or view). This feature is
available in Oracle RDBMS. For more information about implementing VPD, see
Section 48.1.5, "Integrating Oracle Fusion Data Security with Virtual Private Database
(VPD)".

Security Policy: A PL/SQL function developed to return a predicate added by VPD to
a query. This function is bound to a table or view for some or all of DML statement
types: SELECT, INSERT, UPDATE, DELETE.

48.1.2 Integrating Oracle Fusion Data Security with Oracle Platform Security Services
(OPSS)

When integrating Oracle Fusion Data Security with Oracle Platform Security Services
(OPSS) to support making policies to OPSS principals, it is important to understand
that OPSS principals may be defined in third-party systems and this data does not
exist in the database. At runtime when a user session is created, the user information
for that session and the flattened list of roles (to include role hierarchies) for the user of
that session is propagated to the database. The roles available in a user session may be
different from all the roles that a user may potentially have based on the
authentication mechanism used, such as password vs. biometrics, authentication level
of DMZ vs. non-DMZ, and so on.

48.1.3 Integrating Data Security Task Flows into Oracle Fusion Functional Setup
Manager

Every Oracle Fusion application registers ADF task flows for setup activities with a
product called Oracle Fusion Functional Setup Manager. These task flows are available
from the Fusion Applications Setup and Maintenance work area and enable customers
and implementers to set up and configure business processes and products. For more
information about data security tasks, see the Oracle Fusion Applications Common
Implementation Guide.

If data security task flows are used in a web application, that web application must be
configured to use ADF Security in order to enable authentication and authorization so
that the correct data security predicates are generated.

Additionally, ADF Security controls access to a specific task flow, and users who do
not have the required privilege cannot view the task flow. For more information about
how to implement function security privileges and roles, see Chapter 49,
"Implementing Function Security."

Table 48–1 lists the task flows and their parameters.

Introduction to Oracle Fusion Data Security

48-6 Developer's Guide

48.1.4 Integrating Oracle Fusion Data Security with User Sessions
Oracle Fusion Data Security integrates with user sessions and relies on session context
to be implemented properly.

For information about implementing user sessions, see Chapter 47, "Implementing
Application User Sessions."

If a session has been created successfully, you will see the session created in the FND_
SESSIONS table and the user session roles in the FND_SESSION_ROLES view.

When making policies to an OPSS principal, the GRANTEE_KEY must be a valid User /
Role GUID as identified in the jazn-data.xml file. At runtime, the list of roles
available to the user is determined by the roles granted to the user in the
jazn-data.xml file and is populated in the FND_SESSION_ROLES view.

48.1.5 Integrating Oracle Fusion Data Security with Virtual Private Database (VPD)
Note that integrating with VPD is optional.

The database has a feature called Virtual Private Database (VPD). VPD allows an
arbitrary WHERE clause to be appended to a table, view, or synonym. By doing so, the
WHERE clause restricts the rows available. A PL/SQL function is written that returns the
WHERE clause and a policy is enabled on a particular view or synonym that references

Table 48–1 Data Security Task Flows and Parameters

Task Flow
Name Task Flow XML

Parameters
Passed Behavior Comments

Manage
Database
Resources

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/DBResourceTF.xml

module_id
(optional)

Goes to the
Search page
for database
resources.

None.

Manage
Database
Resource

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/CreateDBResourceTF.xml

mode = edit

dbResourceId

Goes to the
Edit page for a
database
resource.

None.

Manage
Database
Resource
Conditions

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/CreateDBResourceTF.xml

mode = edit

dbResourceId

panelTab =
conditions

Goes to the
Conditions tab
of the database
resource Edit
page.

Conditions are a child
entity of database
resource. There is no
Search page for
conditions across all
database resources;
therefore, DB resource
ID is mandatory.

Manage
Database
Resource
Actions

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/CreateDBResourceTF.xml

mode = edit

dbResourceId

panelTab =
actions

Goes to the
Actions tab of
the database
resource edit
page.

Actions are a child entity
of database resource.
There is no Search page
for actions across all
database resources;
therefore, DB resource
ID is mandatory.

Manage
Policy

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/PolicyTF.xml

grantGuid
(optional)

dbResourceId
(optional)

appId (optional)

roleName
(optional)

This is the
Create/Edit
Policy page

There is no Search here,
except to pick a specific
database resource and
pick a specific role.

Managing Data Security Artifacts in the Oracle Fusion Data Security Policy Tables

Implementing Oracle Fusion Data Security 48-7

that policy function. Policy functions based on fnd_data_security.get_security_
predicate() are used to enforce data security rules.

To integrate with VPD:
1. Create an action.

Create an action on the database resource that you want to secure. Using the
Functions form, set the object column of the action to point to the data security
object. This column is fnd_form_functions.object_id.

2. Create a view or synonym.

Create a view or synonym with the exact same name as the action.

3. Add a policy.

Add a policy in the database that will associate the policy function with the view.

At runtime, in LOVs or UIs, wherever you want to display the rows that the user has
select access to, they simply select off that view.

48.2 Managing Data Security Artifacts in the Oracle Fusion Data Security
Policy Tables

Oracle Fusion Data Security artifacts include resources, row instances, conditions,
actions, aggregate actions, and so on. Data security artifacts are stored in the Oracle
Fusion Data Security repository and are customized using Oracle Authorization Policy
Manager, which can be accessed by the developer through Oracle Fusion Functional
Setup Manager, from the Manage Data Security task available in the Setup and
Maintenance work area of any Oracle Fusion Setup application.

48.2.1 How to Get Started Managing Data Security
The user who logs in to view and manage database resources and policies must be
authorized based on one of the roles described in Table 48–2. The Oracle Fusion
reference implementation predefines an Application Developer job role that inherits all
the roles described in Table 48–2. It also seeds a user APPLICATION_DEVELOPER that
inherits the Application Developer job role.

To use the standard Application Developer role:
■ Login to Functional Setup Manager as the APPLICATION_DEVELOPER user.

Contact the system administrator for the password.

Note: After the developer selects the Manage Data Security task in
Oracle Fusion Functional Setup Manager, the environment redirects to
the data security customization user interface provided by Oracle
Authorization Policy Manager. In this document, although the data
security customization tool is identified as Oracle Authorization
Policy Manager, be aware that the tool must be accessed through
Oracle Fusion Functional Setup Manager.

For details about managing data security, see the "Managing Oracle
Fusion Applications Data Security Policies" chapter in the Oracle
Fusion Middleware Oracle Authorization Policy Manager Administrator's
Guide (Oracle Fusion Applications Edition).

Managing Data Security Artifacts in the Oracle Fusion Data Security Policy Tables

48-8 Developer's Guide

If you have your own Product Family Administration role:
1. In Oracle Authorization Policy Manager (Oracle APM), login as the user who is

assigned to the appropriate duty role for your product family.

2. inherit the appropriate duty role for your product family from the duty roles listed
in Table 48–2.

3. Define the relationship between duty role and enterprise role.

Use cases:

■ CRM Administrator logs in. He must be able to manage the CRM database
resources. He must NOT be able to access the HCM resources.

■ Super Administrator (Application Developer) logs in. He must be able to manage
conditions for all Oracle Fusion resources.

Solution based on the above use cases:

1. Oracle Fusion Applications delivers the duty roles and policies as specified.

2. Oracle Authorization Policy Manager (APM) authors enterprise roles and maps
the duty roles listed in Table 48–2. A security manager uses APM to define the
relationship between a duty role and enterprise roles.

■ APM can create three enterprise roles, one per pillar. (Multiple product
families can be included into one pillar).

■ APM can include the product family level duties into the above enterprise
roles, as appropriate.

■ APM must ensure that they have the correct role GUIDs for the duty roles.
(See the jazn-data.xml file.)

3. A security manager can create their own enterprise roles if required. They can
determine which objects can be managed by specific data security administrators
by including the duty roles into their custom enterprise roles. Security managers
are expected to use the APM console to perform enterprise role to duty role
mapping.

4. Policies runtime is based on role GUIDs only.

Reasoning:

Data security policies are made to duty roles as the default approach. This makes it
possible for the security manager to quickly assemble the duties to an enterprise role
and use the Oracle Fusion reference implementation quickly. Granting them to an
enterprise role means that the security manager must duplicate the policies to any new
enterprise roles they create. Enterprise roles are highly guarded and should be created
and used only if absolutely needed.

48.2.2 What You May Need to Know About Administering Oracle Fusion Data Security
Policy Tables

The data security administration UI is secured so that only administrators are
permitted to create and manage security policies.

Note: You cannot view the database resources or manage policies
from the Functional Setup Manager if you have not granted the
appropriate data security manage privileges to your administrators.

Integrating with ADF Business Components

Implementing Oracle Fusion Data Security 48-9

Table 48–2 lists the duty roles that have been predefined by the Oracle Fusion security
reference implementation to allow access to users to manage data security. These roles
are administered at the product family level to manage resources and policies for that
specific product family.

48.3 Integrating with ADF Business Components
In Oracle Fusion applications, the data to be secured is typically defined in the
application's data model project by an ADF Business Components entity object. Oracle
Fusion Data Security integrates with ADF Business Components so that when you are
defining an ADF Business Components entity object you can:

■ Identify the actions that are available on a given row

■ Have the ability to check at runtime if the user has access to this row based on the
policies that are available to that user.

The authorization check is done automatically by ADF Business Components for
standard operations, such as read, update, and removeCurrentRow. To perform a
security check on non-standard operations you must call Oracle Fusion Data Security
APIs directly.

You must identify your actions on the entity object. You cannot identify actions
directly on an ADF Business Components view object; however, when a view object
references an entity whose operations have been secured, the entity security policies
also apply to the view object.

Oracle Fusion Data Security provides an implementation of a data security provider
interface defined by ADF Business Components to perform the authorization check.

48.3.1 How to Configure the ADF Data Model Project
To make the Oracle Fusion Data Security Provider as your data model project's data
security provider, you can edit the Oracle Fusion application's adf-config.xml file to
define the dataSecurityProviderClass attribute for the sec:JaasSecurityContext
element, as shown in Example 48–1.

Example 48–1 Making the Oracle Fusion Data Security Provider the Data Security
Provider

dataSecurityProviderClass=
 "oracle.apps.fnd.applcore.dataSecurity.util.FndDataSecurityProvider"

Table 48–2 Duty Roles to Manage Data Security Policies

Family Duty Role

1 CRM Customer Relationship Management Database Resource
Administration Duty

2 HCM Human Capital Management Database Resource Administration
Duty

3 FSCM Financials and Supply Chain Manufacturing Database Resource
Management Duty

4 APM - CRM APM - CRM Database Resource Administration Duty

5 APM - HCM APM - HCM Database Resource Administration Duty

6 APM - FSCM APM - FSCM Database Resource Administration Duty

Integrating with ADF Business Components

48-10 Developer's Guide

For example, the adf-config.xml file would contain the sec:JaasSecurityContext
element definition shown in Example 48–2.

Example 48–2 sec:JaasSecurityContext Element Example

<sec:JaasSecurityContext intialContextFactoryClass=
 "oracle.adf.share.security.JAASIntialContextFactory"
jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurity.Context"
dataSecurityProviderClass=
 "oracle.apps.fnd.applcore.dataSecurity.utl.FndDataSecurityProvider"
authorizationEnforce="true"
authenticationRequire="true"/>

In Oracle JDeveloper, the design time tools for ADF Business Components are shaped
so that the Oracle Fusion Data Security Provider will be automatically registered as the
default when you launch JDeveloper with the Oracle Fusion Applications Developer
role selected. This occurs once the developer runs the Configure ADF Security wizard
for the ADF data model project.

At runtime, the ADF Business Components invocation of Oracle Fusion Data Security
Provider happens automatically only for standard operations. For custom operations
that are available on the entity object, you must invoke the Oracle Fusion Data
Security authorization checking API manually, as described in Section 48.3.4, "How to
Perform Authorization Checks for Custom Operations."

There may be other reasons to invoke Oracle Fusion Data Security APIs manually to
determine the SQL predicate for a given action or to do an authorization check. For
example, you might query VPD policies written based on fnd_data_
security.getSecurityPredicate() to enforce data security rules.

48.3.2 How to Secure Rows Queried By Entity-Based View Objects
At design time, you can identify the various operations on a given entity object to be
secured by using the entity's overview editor and going to the Security section, as
shown in Figure 48–2. The overview editor exposes a set of standard operations (read,
update, removeCurrentRow) as checkboxes that you can select. Based on the operations
that you select, the appropriate checks are done at runtime.

This means that when you define actions in Oracle Fusion Data Security, the actions
for those objects should be named as read, update, or delete to correspond to the
entity object security operations that get enabled.

Integrating with ADF Business Components

Implementing Oracle Fusion Data Security 48-11

Figure 48–2 Entity Object Overview Editor — Security Section

Oracle Fusion Data Security Provider only implements row-level authorization check.
It does not implement a column-level authorization checking API. Even though Oracle
Fusion Data Security can be used to perform column-level security using custom
actions, it is not integrated with ADF Business Components directly using the data
security provider interface. Wherever column-level security needs to be done, you
must use a custom action.

At runtime, for the read operation, ADF Business Components automatically invokes
the Oracle Fusion Data Security Provider (which is registered with ADF Business
Components in adf-config.xml when you secure the read operation on the entity
object), to identify the WHERE clause (if any) that needs to be added to the SQL
statement for the entity object. This is done prior to executing the query.

Once the query has been executed, ADF Business Components invokes the Oracle
Fusion Data Security Provider again to perform the authorization check for standard
operations, (update and removeCurrentRow), to see if the user has update and delete
access to that row.

In the case of custom privilege that you define, you must create a view criteria and
apply it to the view instance that you want the application module data model to filter.
In either case, the user must have sufficient privileges to view the filtered rows. The

Note: The default Oracle Fusion Data Security provider
implementation assumes that the object name in FND_OBJECTS for the
entity being secured is the database table/view name backing this
entity. If the entity is a translatable entity (MLS entity), then the
backing database table/view name is identified by Oracle Fusion
Middleware Extensions for Applications custom property fnd:OA_
BASE_TABLE. If the default behavior is not sufficient, one can set a
custom property on the entity object to identify an object name from
the Oracle Fusion Data Security repository that should be used to
secure this entity. The custom property OA_DS_BASE_TABLE should be
set to accomplish this.

Integrating with ADF Business Components

48-12 Developer's Guide

action name that you define in Oracle Fusion Data Security must match the custom
action specified on the entity object.

To secure the rows displayed to a user for read privilege:
1. In the Application Navigator, double-click the entity object.

2. In the overview editor for the entity object, click the General navigation tab and
expand the Security section.

3. In the Security section, select the read action.

To secure rows displayed to a user based on a custom privilege:
1. In the Application Navigator, double-click the view object that you will use to

filter the rows.

2. In the overview editor, click the Query navigation tab and expand the View
Criteria section, then click Add New View Criteria to add a dummy view criteria.

Figure 48–3 shows a dummy view criteria that has been added in the overview
editor for the view object.

Figure 48–3 View Object Overview Editor — View Criteria Selection

3. In the Edit View Criteria dialog, create a dummy view criteria with no view
criteria items and name the view criteria using the following format:

FNDDS__privilegeName__objectName__objectAlias

where:

privilegeName is the privilege name that is used to filter the data.

objectName is the name of the secured database resource in the FND_OBJECTS table.

objectAlias is optional and is the alias for the resource.

Integrating with ADF Business Components

Implementing Oracle Fusion Data Security 48-13

4. Select Both for the Query Execution Mode, as shown in Figure 48–4.

The query execution mode for the dummy view criteria must be set to Both. If you
leave the default setting Database selected, then the ADF Business Components
association consistency feature will not work properly.

Figure 48–4 Edit View Criteria Dialog

5. In the application module overview editor, select the Data Model navigation tab
and select the view instance to filter, then click Edit to apply the view criteria, as
shown Figure 48–5.

Alternatively, you can apply the view criteria at runtime in your code by calling
the view object's applyViewCriteria(viewCriteriaName) API.

Note: The delimiter is "__" (double underscore characters). This is
because no other special character is allowed in a view criteria name.

Integrating with ADF Business Components

48-14 Developer's Guide

Figure 48–5 Application Module Overview Editor — Edit View Instance Dialog

48.3.3 What Happens at Runtime: How Oracle Fusion Data Security Filters View
Instance Rows

The implementation for securing data by applying a view criteria on the view object
instance is handled in the Oracle Fusion Middleware Extensions for Applications
layer. It requires the use of Oracle Fusion Middleware Extensions for Applications
base classes to achieve this behavior. The OAViewCriteriaAdapter class is the default
view criteria adapter class set as the ADF Business Components application module in
the OAApplicationModuleImpl class. This functionality is provided in the
OAViewCriteriaAdapter.getCriteriaClause() method to fetch the security predicate.
In this implementation, the method uses the metadata on the view criteria to invoke
Oracle Fusion Data Security APIs in order to fetch the security predicate.

In the case of a custom operation secured by a custom action, multiple data security
view criteria can be applied to the view object. When multiple view criteria are
applied, the WHERE clause corresponding to each view criteria is AND'ed. This is
standard behavior for ADF Business Components. However, when a single data
security view criteria for a given privilege is applied, the instance sets corresponding
to that privilege are OR'ed. When multiple privilege checks are applied, the instance
sets of a privilege are AND'ed with the instance sets of another privilege. For example,
for an object, for privilege priv1, the user has instance sets IS1, IS2. For the same object
for privilege priv2, the user has instance sets IS3, IS4. If both priv1 and priv2 checks
are applied simultaneously (using view criteria), the WHERE clause would be (IS1 OR
IS2) AND (IS3 OR IS4).

48.3.4 How to Perform Authorization Checks for Custom Operations
At runtime, the ADF Business Components invocation of Oracle Fusion Data Security
Provider happens automatically only for standard operations. For custom operations

Integrating with ADF Business Components

Implementing Oracle Fusion Data Security 48-15

that are available on the entity object, you must invoke the authorization check API
manually as shown in Example 48–3.

Example 48–3 Manually Invoking the Authorization Checking API

if(row.getSecurityHints().allowsOperation("ApprovePO").hasPermission())
 // code for PO approval
else
 // display error message

There may be other reasons to invoke Oracle Fusion Data Security APIs manually to
determine either the SQL predicate for a given action or to do an authorization check.
For example, VPD policies written based on fnd_data_
security.getSecurityPredicate() to enforce data security rules.

48.3.5 How to Test Privileges Using Expression Language Expressions in the User
Interface

You can test data security actions for standard (read, update, delete) or custom actions
on an entity row using Expression Language or Groovy expression exposed on the
entity row.

The Expression Language and Groovy expressions described below work by default
when the view object is an updateable view object based on an entity object. If the
view object is a read-only view object (based on an entity object) or an expert mode
view object, then Expression Language or Groovy expression will not work unless you
create a transient attribute with a custom Groovy expression that invokes Data
Security to check action. The transient attribute can be used to control the rendering of
some other attribute in the read-only view object on the page.

■ Example 48–4 shows the Expression Language expression to use on ADF bindings
for view object attributes.

Example 48–4 Using Expression Language on View Object Attributes

#{bindings.<attrName>.hints.allows.<privilegeName>}

For example, your UI might have a button to control the grant for the
UpdateEmployeeSalary privilege; the Expression Language expression on the
button may be defined as shown in Example 48–5.

Example 48–5 Correct Expression Language Expression Example

#{bindings.PersonId.hints.allows.UpdateEmployeeSalary}

When this expression is invoked, Oracle Fusion Data Security Provider checks to
see if the user identified by the PersonId attribute has access to the current row for
UpdateEmployeeSalary privilege. Note that even though the attribute name is
included in the Expression Language expression, it is really doing a row-level
security check.

Do not use the expression shown in Example 48–6 as Oracle Fusion Data Security
Provider does not implement a column-level security check interface. If you want
to perform a column-level security, use the expression shown in Example 48–5
with a custom action.

Example 48–6 Incorrect Expression Language Expression Example

#{bindings.<attrName>.hints.<attrName>.allows.<privilegeName>}

Integrating with ADF Business Components

48-16 Developer's Guide

■ Example 48–7 shows the expression to use for table iterators:

Example 48–7 Using Expression Language for Table Iterators Example

#{row.hints.allows.<privilegeName>}

Do not use the expression shown in Example 48–8 as Oracle Fusion Data Security
Provider does not implement column-level security check interface. If you want to
do column-level security, use the expression shown in Example 48–7 with a
custom action.

Example 48–8 Incorrect Expression Language Expression Example

#{row.hints.<attrName>.allows.<privilegeName>}

■ When using Expression Language, be careful if you decide to set the expression on
the rendered attribute. When PPR is enabled, ADF Faces does not handle the
rendered attribute on a UI component well.

If you want to use Data Security expressions on the rendered attribute, you must
manually identify the partial trigger UI components on the page and then set the
partialTriggers attribute on the parent UI component of the UI component that
has the data security Expression Language expression. Do not use visible
attribute on the UI component as this could potentially be a security hole when the
UI component and its data is rendered by the server and sent to the client. The
visible attribute is a client-side attribute to show or hide the UI component on
the browser.

■ When using Groovy expressions, use the expression shown in Example 48–9 if the
view object is an updateable view object based on an entity object.

Example 48–9 Groovy Expression Example

object.getSecurityHints().allowsOperation("updateCategory").hasPermission()

■ When using Groovy expressions, use the expression shown in Example 48–10 if
the view object is a read-only view object based on an entity object or an expert
mode view object. Create a transient attribute on the view object of type Boolean
and Value Type Expression. The transient attribute can be used to control the
rendering of some other attribute in the read-only view object on the page.

Example 48–10 Groovy Expression if View Object is Read-Only Example

oracle.apps.fnd.applcore.dataSecurity.dataSecurityService.applicationModule.DataSe
curityAMImpl.
testPrivilege("VIEW_PERSON_NAME_LIKE_T","PER_EL_TEST_PERSONS",
PersonId.toString(),
null,null,null,null,object.getViewObject().getDBTransaction());

For example, you have a read-only view object with the attributes PersonId, Name,
Gender, and Age and you want to control the rendering of the Gender attribute on
the UI. First, you should create a transient attribute by name
TransientGenderAttr and set the Groovy expression as mentioned above.
Example 48–11 shows an EL expression to conditionally render the UI component
for the Gender attribute:

Tip: PPR is enabled by default in Oracle Fusion Applications.

Using Oracle Fusion Data Security to Secure New Business Resources

Implementing Oracle Fusion Data Security 48-17

Example 48–11 Implementing Attribute Security Example

<af:panelFormLayout id="pfl1" partialTriggers="it6 cb3 cb1 cb4 cb5">
<af:inputText value="#{bindings.Gender.inputValue}"
 label="#{bindings.Gender.hints.label}"
 required="#{bindings.Gender.hints.mandatory}"
 columns="#{bindings.Gender.hints.displayWidth}"
 maximumLength="#{bindings.Gender.hints.precision}"
 shortDesc="#{bindings.Gender.hints.tooltip}" id="it4"
 rendered="#{bindings.TransientGenderAttr}">
 <f:validator binding="#{bindings.Gender.validator}"/>
</af:inputText>

<af:inputText value="#{bindings.TransientGenderAttr.inputValue}"
 label="#{bindings.TransientGenderAttr.hints.label}"
 required="#{bindings.TransientGenderAttr.hints.mandatory}"
 columns="#{bindings.TransientGenderAttr.hints.displayWidth}"
 maximumLength="#{bindings.TransientGenderAttr.hints.precision}"
 shortDesc="#{bindings.TransientGenderAttr.hints.tooltip}"
 rendered="false"
 id="it1">
</af:inputText>
<f:facet name="footer">
<af:panelGroupLayout layout="vertical" id="pgl1">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:commandButton actionListener="#{bindings.First.execute}"
 text="#{applcoreBundle.FIRST}"
 disabled="#{!bindings.First.enabled}"
 partialSubmit="true" id="cb3"/>
 <af:commandButton actionListener="#{bindings.Previous.execute}"
 text="#{applcoreBundle.PREVIOUS}"
 disabled="#{!bindings.Previous.enabled}"
 partialSubmit="true" id="cb1"/>
 <af:commandButton actionListener="#{bindings.Next.execute}"
 text="#{applcoreBundle.NEXT}"
 disabled="#{!bindings.Next.enabled}"
 partialSubmit="true" id="cb4"/>
 <af:commandButton actionListener="#{bindings.Last.execute}"
 text="#{applcoreBundle.LAST}"
 disabled="#{!bindings.Last.enabled}"
 partialSubmit="true" id="cb5"/>
 </af:panelGroupLayout>
 <af:commandButton text="#{applcoreBundle.SUBMIT}" id="cb2"/>
 </af:panelGroupLayout>
</f:facet>
</af:panelFormLayout>

You must make sure that the parent UI component of this UI component has the
partialTriggers set to the appropriate UI component IDs. Also, in this scenario,
make sure to have the binding available for the transient attribute in the view
object, and to set the rendered="false" on the UI component for the transient
attribute, or comment out the UI component in the JSF page.

48.4 Using Oracle Fusion Data Security to Secure New Business
Resources

The general process for defining Oracle Fusion Data Security policies to secure
business resources that you add to your Oracle Fusion application is as follows.

Using Oracle Fusion Data Security to Secure New Business Resources

48-18 Developer's Guide

1. Identify the business resource that you want to secure:

a. Register your database view or table that you want to secure with Fusion
Oracle Data Security.

b. Populate the FND_OBJECTS and FND_OBJECTS_TL tables appropriately.

2. Identify the conditions that you want to make available on the registered business
resource:

■ Populate the FND_OBJECT_INSTANCE SETS and FND_OBJECT_INSTANCE_SETS_TL
tables appropriately.

3. Identify the actions that you want to secure this business resource:

■ Populate FND_FORM_FUNCTIONS and FND_FORM_FUNCTIONS_TL tables
appropriately.

4. Group the actions appropriately to form aggregate actions:

a. Identify the name of the aggregate action and register it.

b. Register the various actions that are part of the aggregate action.

c. Compile the aggregate actions for faster reference.

You must do this to avoid hierarchical queries against the FND_MENU_ENTRIES
table as aggregate actions may nest other aggregate actions. To compile the
menus, invoke fnd_function.fast_compile or fnd_function.compile_all_
from_scratch.

d. Populate FND_MENUS, FND_MENUS_TL, and FND_MENU_ENTRIES tables
appropriately.

5. Identify the Oracle Platform Security Services (OPSS) principals (OPSS users and
roles) for which you want to make policies.

OPSS principals do not exist in the database and are managed by OPSS Policy
Store, which may be a third-party system.

6. Make appropriate aggregate action policies on the business resource to OPSS users
and roles.

Policies can be made on a row instance, on the resource globally, or for a condition,
which may be parameterized.

■ Populate the FND_GRANTS table appropriately.

Tip: Conditions may be static or parameterized. For details about
parameterizing conditions, see Section 48.4.2, "How to Use
Parameterized Conditions When Securing a Business Object."

Note: Menu hierarchies, such as sub-menus, are currently not
supported. Menus may only include functions. This is because Seed
Data Loaders do not support hierarchies at this time.

However, this step is still required as runtime queries are fired against
the fnd_compiled_menu_functions table instead of the fnd_menu_
entries table.

Using Oracle Fusion Data Security to Secure New Business Resources

Implementing Oracle Fusion Data Security 48-19

48.4.1 How to Use Oracle Fusion Data Security to Secure a Business Object
This example shows how to secure a document categories business resource. The
document categories business data is stored in the FND_DEMO_DOC_CATEGORIES table.
Table 48–3 lists the document category definitions for the table.

Before you begin:
You must have configured your user interface project to use application user sessions
to support the data security runtime. For more information about implementing
application user sessions, see Section 47.2, "Configuring Your Project to Use
Application User Sessions."

You must enable security on your application. For more information about enabling
security, see Section 49.3.5, "How to Enforce Authorization for Securable ADF
Artifacts."

To secure a business object:
1. Create a resource named FND_DEMO_DOC_CATEGORIES and identify its primary key

as category_id.

2. Create a static condition named DMS_STATIC_INSTANCE_SET, which secures
categories 33, 34, and 35.

The predicate for this condition is 'category_id in (33,34,35)'.

3. Create a dynamic condition named DMS_PARAMETERIZED_IS to secure categories,
which can be identified at grant time.

The predicate for this condition is 'category_id in (&GRANT_
ALIAS.PARAMETER1,&GRANT_ALIAS.PARAMETER2)', where &GRANT_ALIAS refers to
the Policies table.

4. Identify the actions securing this entity object for read, update, and delete operations
as read, update, delete. Additionally, custom actions with the names FND_DEMO_
ATTACHMENT_VIEW, FND_DEMO_ATTACHMENT_UPD, and FND_DEMO_ATTACHMENT_DEL may
be created for testing.

Table 48–3 FND_DEMO_DOC_CATEGORIES Table Definition

Name Value

CATEGORY_ID NOT NULL NUMBER

APPLICATION_ID NUMBER

CREATION_DATE NOT NULL DATE

CREATED_BY NOT NULL NUMBER

LAST_UPDATE_DATE NOT NULL DATE

LAST_UPDATED_BY NOT NULL NUMBER

LAST_UPDATE_LOGIN NUMBER

NAME NOT NULL VARCHAR2(30)

START_DATE_ACTIVE DATE

END_DATE_ACTIVE DATE

ATTRIBUTE_CATEGORY VARCHAR2(30)

ATTRIBUTE1 thru ATTRIBUTE15 VARCHAR2(150)

DEFAULT_DATATYPE_ID NUMBER

Using Oracle Fusion Data Security to Secure New Business Resources

48-20 Developer's Guide

5. Identify aggregate actions for which policies are made for this entity:

■ Create an aggregate action named FND_DEMO_ATTACHMENT_VIEW for the read
operation, which contains actions named read and FND_DEMO_ATTACHMENT_
VIEW.

■ Create an aggregate action named FND_DEMO_ATTACHMENT_ADMIN, which allows
a user to administer this resource. It has read, update, and delete actions. This
aggregate action contains read, update, delete, FND_DEMO_ATTACHMENT_VIEW,
FND_DEMO_ATTACHMENT_UPD, and FND_DEMO_ATTACHMENT_DEL actions.

6. Compile the menus in the database by executing:

fnd_function.compile_all_from_scratch;

7. Create OPSS principals.

For this example the user names created are joeUser and admin. The role names
created are regularUserRole and admin.

8. Make policies to OPSS principals admin and regularUserRole for the FND_DEMO_
DOC_CATEGORIES business resource.

■ Grant FND_DEMO_ATTACHMENT_ADMIN aggregate action on the resource globally
to OPSS admin role.

■ Grant FND_DEMO_ATTACHMENT_VIEW aggregate action to regularUserRole for
static DMS_STATIC_INSTANCE_SET and dynamic (DMS_PARAMAETERIZED_IS with
parameters 37 and 38) conditions.

48.4.2 How to Use Parameterized Conditions When Securing a Business Object
Parameterized conditions allow conditions to be specified generally but granted
specifically. Parameterized conditions should be used whenever possible because they
reduce the number of predicates that the database must parse, as well as reducing the
number of conditions that the administrator needs to manage.

Example 48–12 shows how a parameterized condition can be reused.

Example 48–12 Reusing Parameterized Conditions

OIS1. Employees in a particular region.
 Predicate: "&TABLE_ALIAS.REGION = &GRANT_ALIAS.PARAMETER1"

An administrator can reuse the first condition for several different policies granted to
different locations and the second condition can be reused for policies granted to
different titles. For example, one policy might use OIS1 to grant to 'WEST' by putting
'WEST' in FND_GRANTS.PARAMETER1, while another policy would reuse the same OIS1 to
grant to 'EAST'. At runtime, the FND_DATA_SECURITY package substitutes the
PARAMETER values from the FND_GRANTS table to the OISs granted.

When the data security system runs the predicates that have been defined in the
conditions, it does a simple replace-style parsing of the predicate. For example, &TABLE_
ALIAS is replaced by the table alias of the resource table, if it was passed to the get_
security_predicate() call, and &GRANT_ALIAS is replaced by the policy table alias.

Caution: The &TABLE_ALIAS and &GRANT_ALIAS column qualifiers
must be included in the predicates of all conditions in order to keep
possible duplicate column names from causing collisions.

Using Oracle Fusion Data Security to Secure New Business Resources

Implementing Oracle Fusion Data Security 48-21

48.4.2.1 Converting Non-String Parameter Values Into Character Values
The policy parameters hold only string values so you must convert non-string values
into character values.

To convert non-string values into character values:
■ integer- NUMBER with no decimal point. For example, 123.

To store the number in the policy PARAMETER column, use to_char() without a
format mask.

■ float- NUMBER that can have a decimal point. For example, 123.456.

This should be stored in the canonical format, using FND_NUMBER.NUMBER_TO_
CANONICAL(). (The canonical format is based on the FND_NUMBER package
'FM999999999999999999999.99999999999999999999'.)

You should use canonical format because the string must be stored in a format that
doesn't need to be converted if the data is passed between systems that use
different decimal characters or other number formatting.

■ date- DATE calendar date, optional time. For example, 2009/04/30 11:32:32.

This should be stored in canonical format, using FND_DATE.DATE_TO_CANONICAL().
(The canonical format is based on the FND_DATE package, 'YYYY/MM/DD
HH24:MI:SS'.

You should use canonical format because the string must be stored in a format that
doesn't need to be converted if the data is passed between systems that use
different date formats.

■ varchar2- VARCHAR2 character string. For example, FND_THING_NAME.

This can be stored without any conversion.

However, translated values should not be stored here. This is for internal developer
key values. There is no facility for having different multilingual values in different
languages because predicates should not be comparing translated values.

48.4.2.2 Writing Performance Type Conversions in Predicates
Use the following rules when writing performance type conversions in your
predicates.

Integer Equality:
Example 48–13 shows the correct Integer equality format to use.

Example 48–13 Integer Equality Format

to_char(&TABLE_ALIAS.ITEM_ID) = &GRANT_ALIAS.PARAMETER1

Example 48–14 shows Integer equality formats that you should NOT use.

Example 48–14 Incorrect Integer Equality Formats

&TABLE_ALIAS.ITEM_ID = to_number(&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.ITEM_ID = fnd_data_security.to_int(&GRANT_ALIAS.PARAMETER1)

You must use to_char() as it is built-in and performs much faster than fnd_data_
security.to_init().

Using Oracle Fusion Data Security to Secure New Business Resources

48-22 Developer's Guide

When used with data security parameters, to_number() causes Invalid Number
exceptions. This in turn, will make SQL statements abort if the to_number() gets run
on policy parameters, which store non-numeric data such as DATE or VARCHAR2 data.
The policies table will almost certainly contain some non-numeric data in a policy.

It may be decided to run a to_number(&GRANT_ALIAS.PARAMETER1) in a big statement
on more policy rows than intended, and filter the rest of the rows later in the
execution. This will definitely cause your SQL statement to fail so therefore, you must
not have to_number() around any of the policy parameters in your predicate.

Integer Range:
Example 48–15 shows the correct Integer range format to use.

Example 48–15 Integer Range Format

&TABLE_ALIAS.LEVEL >= fnd_data_security.to_init(&GRANT_ALIAS.PARAMETER1)

Example 48–16 shows Integer range formats that you should NOT use.

Example 48–16 Incorrect Integer Range Formats

&TABLE_ALIAS.LEVEL >= to_number(&GRANT_ALIAS.PARAMETER1)
to_char(&TABLE_ALIAS.LEVEL) >= &GRANT_ALIAS.PARAMETER1

As explained previously, to_number() can fail with an Invalid Number exception if
other policy rows are processed that have non-numeric parameters. to_char() does
not produce the correct ordering. For example, '3' > '25'.

Float Equality:
Example 48–17 shows the correct Float equality format to use.

Example 48–17 Float Equality Format

to_char(&TABLE_ALIAS.TEMP,'FM999999999999999999999.99999999999999999999') =
&GRANT_ALIAS.PARAMETER1

Example 48–18 shows Float equality formats that you should NOT use.

Example 48–18 Incorrect Float Equality Formats

to_char(&TABLE_ALIAS.TEMP) = &GRANT_ALIAS.PARAMETER1
&TABLE_ALIAS.TEMP = to_number(&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.TEMP = fnd_data_security.to_decimal(&GRANT_ALIAS.PARAMETER1)

Using to_number() without a format could fail if the environment is set up to use
comma as the decimal character and the parameter is stored with a period as the
decimal character. Using to_char() without an explicit format could convert to a
comma-format number, which would not match the period-format number. Because of
these potential problems, you must explicitly provide the canonical format.

Tip: The routine fnd_data_security.to_init() was written to
avoid this problem; it is basically a wrapper over to_number(), which
traps the Invalid Number exception. Therefore, if the execution plan
involves operating against policies that don't apply, they won't cause
the whole statement to fail. However, because of performance issues,
to_char() is the preferred solution.

Using Oracle Fusion Data Security to Secure New Business Resources

Implementing Oracle Fusion Data Security 48-23

Float Range:
Example 48–19 shows the correct Float range format to use.

Example 48–19 Float Range Format

&TABLE_ALIAS.TEMP > fnd_data_security.to_decimal(&GRANT_ALIAS.PARAMETER1)

Example 48–20 shows Float range formats that you should NOT use.

Example 48–20 Incorrect Float Range Formats

to_char(&TABLE_ALIAS.TEMP,'FM999999999999999999999.99999999999999999999') >
&GRANT_ALIAS.PARAMETER1
to_char(&TABLE_ALIAS.TEMP) > &GRANT_ALIAS.PARAMETER1
&TABLE_ALIAS.TEMP > to_number(&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.TEMP > fnd_data_security.to_init(&GRANT_ALIAS.PARAMETER1)

You should not use to_char() because it does not order correctly.

You should use fnd_data_security.to_decimal() instead of fnd_data_security.to_
init() because the data may contain decimals, which to_init() cannot handle.

Date Equality:
Example 48–21 shows the correct Date equality format to use.

Example 48–21 Date Equality Format

to_char(&TABLE_ALIAS.ACTION_DATE,'YYYY/MM/DD HH24:MI:SS') = (&GRANT_
ALIAS.PARAMETER1)

Example 48–22 shows Date equality formats that you should NOT use.

Example 48–22 Incorrect Date Equality Formats

to_char(&TABLE_ALIAS.ACTION_DATE) = (&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.ACTION_DATE = fnd_data_security.to_date(&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.ACTION_DATE = to_date(&GRANT_ALIAS.PARAMETER1)

As mentioned previously, to_char() performs best because it is built-in. The format
mask is also required to make sure the canonical format is used.

Date Range:
Example 48–23 shows the correct Date range format to use.

Example 48–23 Date Range Format

to_char(&TABLE_ALIAS.HIRE_DATE,'YYYY/MM/DD HH24:MI:SS') > (&GRANT_
ALIAS.PARAMETER1)

Example 48–24 shows Date range formats that you should NOT use.

Example 48–24 Incorrect Date Range Formats

&TABLE_ALIAS.HIRE_DATE > fnd_data_security.to_date(&GRANT_ALIAS.PARAMETER1)
to_char(&TABLE_ALIAS.HIRE_DATE) > (&GRANT_ALIAS.PARAMETER1)
&TABLE_ALIAS.HIRE_DATE > to_date(&GRANT_ALIAS.PARAMETER1)

In this case, you can use to_char() with a format mask because the canonical format
maintains proper ordering of the character domain.

Using Oracle Fusion Data Security to Secure New Business Resources

48-24 Developer's Guide

48.4.3 How to Create Test Users in JDeveloper
For development purposes, you can use the OPSS jazn-data.xml flat file to create
users and roles for testing.

Example 48–25 shows an example of the identity store in the flat file used by
JDeveloper.

Example 48–25 Oracle Platform Security Services (OPSS) XML Policy Store

<?xml version="1.0" encoding="windows-1252" standalone="yes" ?>
<jazn-data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oraclass/schema/jazn-data-1
1_0.xsd">
<jazn-realm default="jazn.com">
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>admin</name>
 <credentials>{903}Qh3td3z2HHlun9ROrbvE6bYJDnNaoGir</credentials>
 </user>
 <user>
 <name>joeUser</name>
 <credentials>{903}FarN3p4C9IU9PZODN5RLmrpHf45eCw+W</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>adminRole</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 <role>
 <name>regularUserRole</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 <member>
 <type>user</type>
 <name>joeUser</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
</jazn-realm>
</jazn-data>

Getting Security Information from the Application User Session Context

Implementing Oracle Fusion Data Security 48-25

48.4.4 What You May Need to Know About Creating Application Roles
Before testing the application in the staging environment, any custom application roles
that you created will need to be created in the LDAP application policy store. These
new application roles will receive new GUIDs and any data security policies defined
for application roles of the same name must have their GUIDs reconciled. For details
about reconciling GUIDs in the data security repository, see the "Securing Oracle
Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.

48.5 Getting Security Information from the Application User Session
Context

Oracle Fusion Data Security is part of Oracle Platform Security Services. Hence data
security information can be obtained from security context as required while
developing the application.

48.5.1 How to Use the DataSecurityAM API to Get Session Context Information
The DataSecurityAMImpl class is in the
oracle.apps.fnd.applcore.dataSecurity.dataSecurityService.applicationModul
e package. It is the container for all data security resources provided by Oracle Fusion
Middleware Extensions for Applications. This class contains core methods to:

■ Check action for the current user, as shown in Example 48–26.

Example 48–26 Check Action Method

/**
 * Test if an action is accessible for a given data context for the user
 * in the current session context.
 * @param privilege the privilege to test
 * @param dataContext data context (object and primary key) to use for
 * testing the privilege.
 * If null, then no data context is used.
 * @return true if privilege is accessible, false otherwise.
 */
public boolean testPrivilege(Privilege privilege, DataContext context)

Where DataContext is a container class that represents the resource and optionally
the primary keys of that resource for which data security check needs to be done.
It has the following attributes: ObjectName, PK1, PK2, PK3, PK4, PK5.

If the action is granted to an Oracle Platform Security Services (OPSS) role in FND_
GRANTS table, then the system retrieves all the OPSS roles that the user has access
to, and checks if one of them matches with the OPSS role to which the action has
been granted.

■ Get the security predicate associated with a given action on a given resource for
the current user, as shown in Example 48–27.

Example 48–27 Get Security Predicate Method

/**
 * Return the security predicate for a given action on a resource

Note: Privilege and DataContext classes are in the
oracle.apps.fnd.applcore.dataSecurity.util package.

Getting Security Information from the Application User Session Context

48-26 Developer's Guide

 * for the user in the current session context.
 * @param privilege privilege to use to determine the predicat.
 * @param dataContext the data context, which provides the object name.
 * @param grantInstanceType the grant instance type, (such as "UNIVERSAL").
 * @param statementType the statement type, (such as "OTHER").
 * @param tableAlias alias for the table.
 * @return the security predicate.
 */
 public String getSecurityPredicate(Privilege privilege, DataContext dataContext
 grantInstanceType, String statementType, String tableAlias)

■ Get all the actions available on a given row instance for the current user, as shown
in Example 48–28.

Example 48–28 Get All Actions Available Method

/**
 * Provides the list of action names granted to the user for
 * the specified dataContext (Object/PK) in the current session context.
 * @param dataContext data context (object and primary key) to use for
 * identifying the granted actions.
 * @return list of action names.
 */
 public String[] getPrivileges(DataContext dataContext)

■ Get all the aggregate actions available on a given row instance for the current user,
as shown in Example 48–29.

Example 48–29 Get All Aggregate Actions Method

/**
 * Provides the list of aggregate action names granted to the user for
 * the specified dataContext (Object/PK) in the current session context.
 * @param dataContext data context (object and primary key) to use for
 * identifying the granted aggregate actions.
 * @return list of aggregate action names.
 */
 public String[] getAggregatePrivileges(DataContext dataContext)

As shown in Example 48–30, static APIs are also provided in the DataSecurityAMImpl
class for the above core methods that take in a DBTransaction object.

Example 48–30 Static API Examples

public static boolean testPrivilege(Privilege privilege, DataContext context,
 DBTransaction dbTxn)

public static String getSecurityPredicate(Privilege privilege,
 DataContext dataContext, String grantInstanceType, String statementType,
 String tableAlias, DBTransaction dbTxn)

public static String[] getAggregatePrivileges(DataContext dataContext,
 DBTransaction dbTxn)
public static String[] getPrivileges(DataContext dataContext, DBTransaction dbTxn)

48.5.2 How to Use the PL/SQL Data Security API to Check User Privileges
Oracle Fusion Middleware Extensions for Applications provides the FND_DATA_
SECURITY PL/SQL package for the data security system.

Getting Security Information from the Application User Session Context

Implementing Oracle Fusion Data Security 48-27

FUNCTION check_privilege determines whether the user is granted a particular action
for a particular row instance, as shown in Example 48–31. The user is determined from
the user session context.

Example 48–31 FUNCTION check_privilege API

FUNCTION check_privilege
(
 p_api_version IN NUMBER,
 /* API Version of this procedure - currently 1.0 (Required) */
 p_privilege IN VARCHAR2,
 /* Name of the action (Required) */
 p_object_name IN VARCHAR2,
 /* Resource on which the policy should be checked from FND_Objects table
 (Required) */
 p_instance_pk1_value IN NUMBER DEFAULT NULL,
 /* p_instance_pk(1...5)_value (Required)
 Primary key values for the row instance, with order corresponding
 to the order of the PKs in the FND_Objects table. Most resources have
 only a few primary key columns so let the higher, unused columns
 default to NULL.
 NOTE: The caller must pass an actual primary key and it must be the
 primary key of an actual instance (row). */
 p_instance_pk2_value IN NUMBER DEFAULT NULL,
 p_instance_pk3_value IN NUMBER DEFAULT NULL,
 p_instance_pk4_value IN NUMBER DEFAULT NULL,
 p_instance_pk5_value IN NUMBER DEFAULT NULL
)RETURN VARCHAR2;

This API returns a 1 byte result code:

T - Action is granted.

F - Action is not granted.

E - Error

U - Unexpected error.

PROCEDURE get_security_predicate gets the union of all predicates for the user on an
action, as shown in Example 48–32. The user is determined from the user session
context.

Example 48–32 PROCEDURE get_security_predicate

PROCEDURE get_security_predicate
(
 p_api_version IN NUMBER,
 /* API version of this procedure - Currently 1.0 (Required) */
 p_privilege IN VARCHAR2 DEFAULT NULL,
 /* Name of action. (Optional) */
 /* NULL represents all actions so the predicate will not take the
 action into account. */
 p_object_name IN VARCHAR2,
 /* Object on which the predicate should be checked from FND_Objects table. */
 p_grant_instance_type IN VARCHAR2 DEFAULT 'UNIVERSAL',
 /* SET, INSTANCE (Optional) */
 p_statement)_type IN VARCHAR2 DEFAULT 'OTHER',
 /* (Optionsl) statement type: 'OTHER', 'VPD', 'EXISTS' = to check existence. */
 x_predicate OUT NOCOPY VATRCHAR2,
 x_return_status OUT NOCOPY VARCHAR2,
 p_table_alias IN VARCHAR2 DEFAULT NULL

Understanding Data Security Performance Best Practices

48-28 Developer's Guide

 /* (Optional) */
);

p_grant_instance_type can take on one of the following values:

INSTANCE - Returns predicate for policies with instance_type = 'INSTANCE' or
'GLOBAL'.

SET - Returns predicate for policies with instance_type = 'SET'.

UNIVERSAL - (Default) Returns predicate for policies with any instance_type.

p_table_alias is appended in front of the column references in the returned x_
predicate. It is normally used when two security predicates are going to be ANDed
together to use with a select that joins two secured tables. The value passed here
should correspond to the table alias that the statement uses for the p_object_name
passed to this routine. The default, NULL, means there is no table alias so none is
appended.

p_statement_type can take on one of the following values:

OTHER - (Default). The predicate returned is not attached by policy to the base table
as is done for VPD. In practice, this allows the predicate to have a sub select against
the base table, which allows aliases and may improve performance.

VPD - Pass this type if the predicate is attached by policy to the base table. Use this
when VPD uses the returned predicate to control access. In practice, this means the
predicate cannot have sub selects against the base table, prevents aliases and may
lower performance.

EXISTS - Pass this type if the predicate is simply used to determine if there are any
rows at all that are available. The predicate returned is in the format like 'EXISTS...'.

X_return_status is the result of all the operations:

T - Successfully got predicate

E - Error

U - Unexpected error

L - Value too long - predicate too large for database VPD

The return value is all the available predicates from the policies on this action for this
user. They are OR'ed together to form a SQL predicate that can be dropped into the
WHERE clause to limit rows returned to those that are allowed by the security. Does not
include WHERE.

48.6 Understanding Data Security Performance Best Practices
The WHERE clause associated with a given resource is constructed by doing an OR of all
the predicates associated with the conditions granted to a user or role. Therefore, it is
important that the predicate for a condition be efficient so that it returns as small a
number of rows as possible and it also makes use of an index.

Data security should only be used when the combined predicates (Applications Code
+ Data Security Predicates) are efficient, and return only relevant rows. Most queries
should only return either one row or just a few rows. The maximum number of rows
that data security should consider operating on is 100 rows. If you are seeing

Note: 'SET' mode does not support aliases.

Validating Data Security with Diagnostic Scripts

Implementing Oracle Fusion Data Security 48-29

performance problems with queries that apply data security to more than 100 rows,
the query needs to be made more selective. Blind queries against tables secured with
data security are not allowed.

Condition predicates must be as fast as possible. All predicates that apply to a
particular context must go into the SQL statement that gets executed, therefore, all
predicates need to be efficient, whether they reject no rows, a few rows, or many rows.
Any sub selects in predicates should be on well-indexed columns. Predicates must
execute in linear time, doing simply indexed selects. Predicates that involve
connect-by or other network, hierarchical operations are not supported. The suggested
approach to hierarchical data representations is building and selecting against a
compiled representation of the data.

You should use conditions rather than row instance policies. Row instance policies are
policies where each policy maps to exactly one row in the resource table. They
generally don't scale well because they require one policy row for every resource table
row. Performance is best when the number of policies that apply in any particular
context is low. Condition policies involve just one policy, which specifies an unlimited
number of rows. If the normal use case would involve more than a few row instance
policies, then you probably need to be change the design to use conditions.

48.7 Validating Data Security with Diagnostic Scripts
Oracle Fusion Applications provides WLST (Oracle WebLogic Scripting Tool) scripts
written in the Python programming language to help administrators verify that data
security setup and configuration definitions are correct for a newly deployed
application. Other WLST scripts help administrators verify that applications context
setup and configuration definitions are correct for a newly deployed application and
that the applications context is created for a logged-in user.

Note: Data security is not designed as a means to limit the number of
rows returned; there must always be another selective WHERE clause
before the data security predicate.

Note: There are no plans to provide any APIs to answer the question
"What users have access to a particular function on a particular row
instance?" The reason being is that the condition predicates can
reference context that can be driven by the user, like profiles. The only
way to answer that question would be to loop through every user and
set up their context (including profiles, and so on), and then see if they
had access. That is not practical given the large number of users that
are possible. For the same reason, data security does not try to answer
the question "Does a particular user have access to a particular function?"

Note: The data security diagnostic scripts may be run in the WLST
scripting environment or from the Diagnostic Dashboard application
of any Oracle Fusion application. The Diagnostic Dashboard provides
administrators with a graphical user interface to execute and monitor
diagnostic tests. For more information about the Diagnostic
Dashboard, see the "Standard Diagnostic Testing Administration Tasks
and Tools" section in the Oracle Fusion Applications Administrator's
Guide.

Validating Data Security with Diagnostic Scripts

48-30 Developer's Guide

48.7.1 How to Validate Data Security Configuration with Diagnostic Scripts
The WLST script datasecurityDiagnostics.py is provided to help administrators
verify that data security setup and configuration definitions are correct for a newly
deployed application. Additionally, the script generates a report that system
integrators, developers and security managers can further use to diagnose runtime
issues related to a logged-in user's ability to access data.

To accomplish these tasks, the script performs these specific functions:

■ Validates data security configuration in the adf-config.xml file, which is archived
in the application EAR file. The scripts checks the configuration values of the
<sec:JaasSecurityContext> element to verify that the data security provider is
properly configured and outputs the result to the output file
DataSecurityDiagResults.out.

■ Validates that GUID consistency is enabled in the weblogic-application.xml file.
The script checks the value of the jps.approle.preserveguid application
parameter and outputs the result to the output file
DataSecurityDiagResults.out. The application parameter must be set to TRUE to
support deploying the policy store from a test to a production environment. This
ensures the GUID for each application role remain the same when migrated from
XML to LDAP or LDAP to LDA.

■ Optionally, takes the running application's session cookie value as an input
parameter and, using this session cookie, the script gets the corresponding session
object from the data source, inspects the session attributes and outputs the session
information to the output file DataSecurityDiagResults.out. Using the session
cookie, the script gets role information corresponding to the session's logged-in
user, along with their access privileges to various database objects and outputs it
to the output file DataSecurityDiagResults.out.

Note: If you only want the script to perform the application configuration
validation checks, you can skip this step by pressing Enter when prompted to
enter the value for session cookie.

Important Note
Before invoking a WLST script you must run the following wlst.sh script on Oracle
WebLogic Server to ensure that the required JARs are added to the class path.

>sh $ORACLE_HOME/common/bin/wlst.sh

After you invoke the wlst.sh script, you can connect to Oracle WebLogic Server in
offline mode, that is, the data security script does not require a connection to a running
server to operate.

To invoke the data security diagnostic script:
At the offline prompt, enter the following command:

>wls:/offline> execfile('datasecurityDiagnostics.py')

The script prompts you for the following information before outputting the results:

■ Output file's directory path where you want the script's output file to be saved.

■ Application name for which you want to run the script. The application name is
the deployment name in Oracle WebLogic Server. For example, SalesApp#V3.0.
Note that the version part of the application name is specified with a # symbol: for
example, #V3.0 in SalesApp#V3.0.

Validating Data Security with Diagnostic Scripts

Implementing Oracle Fusion Data Security 48-31

■ Application source path of the deployed application. For example,
/scratch/myself/view_storage/myself_main_gene_
testing/system11.1.1.4.37.56.69/DefaultDomain/servers/DefaultServer/upl
oad/DemoSecurity/V2.0/app/DemoSecurity.ear. The source path can be obtained
from Oracle WebLogic Server Administration Console, under the Deployments
section for the application.

■ Session cookie value created for the logged-in user for whom you want to validate
data security roles and privileges. Optional (you can press Enter to skip). To obtain
the session cookie, you must log into the application as the user whose roles and
privileges you want to examine. After logging into the application, from the
browser, open the cookies window (for example, in Internet Explorer, you can
display cookies from the Temporary Internet Files and History Settings dialog).
Under the site oracle.com, locate the cookie named <DATABASE_SID>_FND_SESSION
and copy the value, which is the required session cookie. If you do not find this
named session cookie, it means that the applications context is not created for your
application.

48.7.2 How to Validate Applications Context
The WLST script applsessionDiagnostics.py is provided to help administrators
verify that applications context setup and configuration definitions are correct for a
newly deployed application and that the applications context is created for a logged-in
user. Additionally, the script generates a report that system integrators, developers and
security managers can further use to diagnose the runtime issues related to an
Application Session.

To accomplish these tasks, the script performs these specific functions:

■ Validates the session filters and filter mapping definitions in the web.xml file,
which is archived in the application EAR file. The scripts checks for the presence
of the <filter-name>ApplSessionFilter</filter-name> element and verifies
that the ApplSessionFilter mapping definition appears immediately after the
JpsFilter mapping definition, and then outputs the result to the output file
ApplsessionDiagResults.out.

■ Connects to the database and gets the Oracle Fusion Applications FND table
metadata for the application context. The script checks the value of the Name,
Datatype, Precision, and isNullable attributes for each column in the tables,
validates the database schema for each table, and then outputs the result to the
output file ApplsessionDiagResults.out.

■ Optionally, takes the running application's session cookie value as an input
parameter and, using this session cookie, the script gets the corresponding session
object from the data source, inspects the session attributes and outputs the
applications context session properties to the output file
ApplsessionDiagResults.out. Using the session cookie, the script gets the
applications context properties corresponding to the session's logged-in user,
determines whether ApplSession is created properly, and outputs the result to the
output file ApplsessionDiagResults.out.

Tip: You can run the application context diagnostic script by
pressing Enter when the data security script prompt you to enter the
value for session cookie for your application. This will invoke the
applications context script and validate the applications context
configuration. For details about the applications context script, see
Section 48.7.2, "How to Validate Applications Context."

Integrating with Data Security Task Flows

48-32 Developer's Guide

Note: If you only want the script to perform the application configuration
validation and the database metadata validation checks, you can skip this step by
pressing Enter when prompted to enter the value for session cookie.

■ Connects to the database and validates the FUSION.FND_SESSION_MGMT PL/SQL
package to check for its consistency. The script checks whether a valid package
header and package body is defined for the package and outputs the result to the
output file ApplsessionDiagResults.out.

Before you begin:
Before invoking a WLST script you must run the following wlst.sh script on Oracle
WebLogic Server to ensure that the required JARs are added to the class path. Use the
following command:

>sh $ORACLE_HOME/common/bin/wlst.sh

After you invoke the wlst.sh script, you can connect to Oracle WebLogic Server in
offline mode, that is, the data security script does not require a connection to a running
server to operate.

To invoke the application context diagnostic script:
At the offline prompt, enter the following command:

>wls:/offline> execfile('applsessionDiagnostics.py')

The script prompts you for the following information before outputting the results:

■ Output file's directory path where you want the script's output file to be saved.

■ Application name for which you want to run the script. The application name is
the deployment name in Oracle WebLogic Server. For example, SalesApp#V3.0.
Note that the version part of the application name is specified with a # symbol: for
example, #V3.0 in SalesApp#V3.0.

■ Application source path of the deployed application. For example,
/scratch/myself/view_storage/myself_main_gene_
testing/system11.1.1.4.37.56.69/DefaultDomain/servers/DefaultServer/upl
oad/DemoSecurity/V2.0/app/DemoSecurity.ear. The source path can be obtained
from Oracle WebLogic Server Administration Console, under the Deployments
section for the application.

■ Session cookie value created for the logged-in user for whom you want to validate
data security roles and privileges. Optional (press Enter to skip). To obtain the
session cookie, you must log into the application as the user whose roles and
privileges you want to examine. After logging into the application, from the
browser, open the cookies window (for example, in Internet Explorer, you can
display cookies from the Temporary Internet Files and History Settings dialog).
Under the site oracle.com, locate the cookie named <DATABASE_SID>_FND_SESSION
and copy the value, which is the required session cookie. If you do not find this
named session cookie, it means that the applications context is not created for your
application.

48.8 Integrating with Data Security Task Flows
The Oracle Fusion Middleware Extensions for Applications data security task flows
are a set of four task flows that provide a simplified user interface for implementing
role-based security in Fusion applications. Consider integrating data security task
flows into an Oracle Fusion application when your application needs to support an
authorized end user's ability to secure business objects in their business domain. For

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-33

example, these task flows can give Human Resources managers the ability to secure
employee records to grant HR representatives access to defined groups of employee
records.

Oracle Fusion Middleware Extensions for Applications data security task flows use
Oracle Fusion Applications security technology to implement data security policies in
Oracle Fusion Applications FND tables and function security policies in the LDAP
policy store. At runtime, the task flows implementation performs the necessary
backend operations to both secure data exposed by a business object (data security)
and to secure the user interface (function security) that displays the business objects.

The following task flows are available and may be integrated using Oracle JDeveloper:

■ Object-centric task flow lets the end user display and secure a single business
object. The flow displays the end user's business object selection and then displays
all the application roles that may be granted access to that object. This task flow
simplifies the task of securing a business object across the organization.

■ Role-centric task flow (also called the Profile task flow) lets the end user select an
application role profile and secure multiple business objects pertaining to that
profile. The flow displays the end user's application role profile selection and
displays all the securable business objects that the profile may access. This task
flow is also called the profile task flow since every end user is assigned to a profile
that corresponds to an enterprise role mapped to a hierarchy of application roles.

Note that the role-centric task flow and the object-centric task flow present the end
user with different views of the same security functionality. Both enable data
security and functionality security policies for permissions that the end user
selects across business objects.

■ Instance-level task flow lets the end user select an instance of a securable business
object (one row) for which they have access and then confer access rights to
another user or group of users. This task flow provides a way for end users to
share access rights with other members of their organization. The scope of this
task flow is different from the role-centric and object-centric task flows in that
security is limited to the business object instance. The business object itself must
already have grants made to the end user who wishes to share access.

■ Role management task flow lets the end user create and edit application roles. This
task flow is particularly useful when the user creates custom business objects and
wishes to grant permission to that object for a custom application role.

48.8.1 About Integrating the Data Security Task Flows into Your Application
The process of integrating the data security task flows into an Oracle Fusion
application involves understanding the input parameters of the task flow. Your
application will use a managed bean to initialize the task flow's parameters before the
application displays the task flow to the end user. The way your application references
the values of the input parameters on the bean depends on how you want to display
the task flow. Your application can display the data security task flow one of two ways:

■ You can display the task flow in the application's primary browser window.

■ You can display the task flow in the application's secondary browser window that
displays a new web page and allows the user to view the primary window while
working in the task flow.

For example, the object instance task flow user interface is well-suited to run in a
dialog. When you run this task flow in a dialog, the user can select an object in the
primary browser window, make grants on the selection in the secondary window, and

Integrating with Data Security Task Flows

48-34 Developer's Guide

repeat for other objects without needing to reopen the primary window. The other task
flows, including the object-centric task flow, profile (role-centric) task flow, and role
management task flow, are large enough that you may want to display them in the
primary window.

The steps to integrate the data security task flows into your application will depend on
the method you choose to display the task flow. However, review the following
general steps for an overview of the process.

Before you begin:
Add the data security task flows to your project.

To integrate the data security task flows, follow these general steps.

1. Decide whether you want your application to display the task flow in the primary
window or in a popup dialog.

2. Create a task flow reference in your application to bind the data security task flow
to the ADF Model layer.

In JDeveloper, the reference will be generated for you when you drag and drop the
data security task flow. The way you drag and drop the data security task flow
depends on the way your application displays the task flow.

3. Define the data security task flow's input parameters so they have page flow
scope.

Page flow scope will allow the values to be passed into the task flow from a
managed bean. The ADF Model layer component that you use to define the
parameters depends on the way your application displays the task flow.

4. Create a managed bean and define an initialization method to populate the input
parameters for the data security task flows, as shown in Table 48–4.

The method you define will initialize the values before your application displays
the task flow. When displaying the page inside your application's primary
window, the initialization method must also return the value of the flow control
outcome you configure in your application's task flow to invoke the data security
task flow. The outcome return value is not needed when displaying a dialog, since
the dialog is not invoked the same way.

5. Create a navigation button that invokes the initialization method in your method
bean.

The ADF Faces component you use to create the button depends on how you want
the data security task flow to display.

6. Enable function security grants to be made by the data security task flows.

7. Grant view permission to an application role that allows the end user to access the
task flow.

8. Configure the application to access the domain LDAP policy store.

Table 48–4 describes the input parameters that your managed bean must initialize for
each task flow.

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-35

Table 48–4 Data Security Task Flows and Their Input Parameters

Task Flow Name Task Flow XML Parameters Passed Behavior

Object-centric task
flow (also referred
to as
(ObjectLevelTF)

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/ObjectLevelFT.xml

Specify the name of the object for which
the grant will be managed:

objectName

Specify the list of role categories from
which the available application roles will
be fetched:

roleCategories

Specify the list of securable actions to be
displayed in the UI for the object:

actions

Specify true/false to determine
whether the View All column (supports
global grants) should appear in the task
flow UI:

disableViewAll

Specify true/false to determine
whether the Update All column
(supports global grants) should appear in
the task flow UI:

disableUpdateAll

Create and
manage grants to
multiple
application roles
for a single
business object.

Role-centric task
flow (also referred
to as ProfileTF)

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/ProfileTF.xml

Specify the list of role categories from
which the available application roles will
be fetched:

roleCategories

Specify the list of securable actions to be
displayed in the UI for the object:

actions

Specify true/false to determine
whether the View All column (supports
global grants) should appear in the task
flow UI:

disableViewAll

Specify true/false to determine
whether the Update All column
(supports global grants) should appear in
the task flow UI:

disableUpdateAll

Create and
manage grants to
a single
application role
profile for
multiple
business objects.

Integrating with Data Security Task Flows

48-36 Developer's Guide

48.8.2 How to Configure Data Security Task Flows to Display in the Primary Window
When you integrate the task flow as a primary window, your application's task flow
invokes the data security task flow using a task flow call activity. A control flow case
defines the transition (identified with a particular outcome value) between your
application's view activity (for the calling web page) and the call activity. A navigation
button in the calling web page invokes a method on the managed bean that initializes
the task flow's input parameters and returns the expected value of the control flow
case outcome. Your application's task flow invokes the data security task flow through
the call activity reference that matches the returned outcome.

To integrate a data security task flow with your application so it appears in the
primary browser window of the application:

1. In your application's task flow, create a call activity and specify a control flow case
from the calling web page's view activity.

The calling web page is the page in your application where you want the end user
to launch the data security UI. This is the page that will be replaced in the browser
window when the data security UI is displayed.

2. Drop the desired data security task flow onto the task flow call activity.

3. Edit your application's task flow configuration file to specify the data security task
flow's input parameter values on the call activity.

Instance-level task
flow (also referred
to as
ObjectInstTF)

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/ObjectInstTF.xml

Specify the name of the parent object
from which the object instance will be
fetched:

objectName

Specify the primary key of the object
instance for which grants will be shared:

instancePk1
instancePk2
instancePk3
instancePk4
instancePk5

Specify the list of securable actions to be
displayed in the UI for the object:

actions

Specify the ID of the customized task
flow:

taskflowId

Specify the holder of the customized task
flow parameters:

parameterMap

Confer existing
grants for a
single instance of
a business object
to another user
(or user group).

Role management
task flow (also
referred to as
RoleManagementTF)

/WEB-INF/oracle/apps/fnd/
applcore/dataSecurity/ui/
taskflow/RoleManagementTF.
xml

Specify the list of role categories from
which the available application roles will
be fetched:

roleCategories

Specify the title of the task flow UI:

title

Create and edit
custom
application roles.

Table 48–4 (Cont.) Data Security Task Flows and Their Input Parameters

Task Flow Name Task Flow XML Parameters Passed Behavior

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-37

4. Create a managed bean that initializes the data security task flow's input
parameters and returns the value of the outcome for the control flow case you
specified.

5. Register the managed bean in your application's task flow configuration file.

6. In the web page associated with the view activity, drop an ADF command button
and configure the button to invoke the managed bean's initialization method.

48.8.2.1 Creating a Task Flow Call Activity in Your Application's Task Flow
You can use a task flow call activity to call any one of the data security task flows from
your application's unbounded or bounded task flow. The task flow call activity allows
you to call the data security task flows located within the same or a different
application.

To pass parameters into the data security task flow, you specify input parameter
values on the task flow call activity. These values must correspond to the input
parameter definitions on the called data security task flow.

Example 48–33 shows the task flow call activity definition with a reference to the
object-centric data security task flow. The task flow call activity also defines the input
parameter values required by the object-centric task flow.

Example 48–33 ObjectLevelTF Reference in Calling Task Flow Configuration File

<task-flow-call id="ObjectLevelTF">
 <task-flow-reference>
 <document>/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/taskflow/
 ObjectLevelTF.xml</document>
 <id>ObjectLevelTF</id>
 </task-flow-reference>
 <input-parameter>
 <name>objectName</name>
 <value>#{pageFlowScope.objectName}</value>
 </input-parameter>
 <input-parameter>
 <name>roleCategories</name>
 <value>#{pageFlowScope.roleCategories}</value>
 </input-parameter>
 <input-parameter>
 <name>actions</name>
 <value>#{pageFlowScope.actions}</value>
 </input-parameter>
 <input-parameter>
 <name>disableViewAll</name>
 <value>#{pageFlowScope.disableViewAll}</value>
 </input-parameter>
 <input-parameter>
 <name>disableUpdateAll</name>
 <value>#{pageFlowScope.disableUpdateAll}</value>
 </input-parameter>
</task-flow-call>

Example 48–34 shows the task flow call activity definition with a reference to the
role-centric data security task flow. The task flow call activity also defines the input
parameter values required by the role-centric task flow.

Example 48–34 ProfileTF Reference in Calling Task Flow Configuration File

<task-flow-call id="ProfileTF">

Integrating with Data Security Task Flows

48-38 Developer's Guide

 <task-flow-reference>
 <document>/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/
 taskflow/ProfileTF.xml</document>
 <id>ProfileTF</id>
 </task-flow-reference>
 <input-parameter>
 <name>roleCategories</name>
 <value>#{pageFlowScope.roleCategories}</value>
 </input-parameter>
 <input-parameter>
 <name>actions</name>
 <value>#{pageFlowScope.actions}</value>
 </input-parameter>
 <input-parameter>
 <name>disableViewAll</name>
 <value>#{pageFlowScope.disableViewAll}</value>
 </input-parameter>
 <input-parameter>
 <name>disableUpdateAll</name>
 <value>#{pageFlowScope.disableUpdateAll}</value>
 </input-parameter>
</task-flow-call>

Example 48–35 shows task flow call activity definition with a reference to the role
management data security task flow. The task flow call activity also defines the input
parameter values required by the role management task flow.

Example 48–35 RoleManagementTF Reference in Calling Task Flow Configuration File

<task-flow-call id="RoleManagementTF">
 <task-flow-reference>
 <document>/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/
 taskflow/RoleManagementTF.xml</document>
 <id>RoleManagementTF</id>
 </task-flow-reference>
 <input-parameter>
 <name>roleCategories</name>
 <value>#{pageFlowScope.roleCategories}</value>
 </input-parameter>
 <input-parameter>
 <name>title</name>
 <value>#{pageFlowScope.title}</value>
 </input-parameter>
</task-flow-call>

To create the task flow call activity:
1. Open your application's task flow (the calling task flow) in the diagram editor.

2. In the ADF Task Flow page of the Component Palette, drag a Task Flow Call
activity and drop it on the calling task flow.

3. In the ADF Task Flow page of the Component Palette, select Control Flow Case
and create the control flow case between the source activity (in your calling task
flow) and the call activity.

4. In the task flow diagram, enter the outcome value for the control flow case.

The value of the outcome must match the return value of the task flow
initialization method you create in the managed bean. For details about the

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-39

managed bean, see Section 48.8.2.2, "Initializing the Data Security Task Flow Using
a Managed Bean."

5. In the Application Navigator, drag the desired data security task flow and drop it
on top of the task flow call activity that is located on the calling task flow.

This action references the data security task flow as the called task flow in the
<task-flow-call> definition. JDeveloper adds the task flow reference to the
calling task flow's configuration file.

6. In the editor for the calling task flow, click the Source tab to view the new task
flow reference.

7. In the source for the calling task flow, locate the <task-flow-call> element and
create the input parameter definitions by copying and pasting from the sample
code:

■ If you dropped the object-centric task flow (the activity references task flow
<id>ObjectLevelTF</id>), add the input parameter values from
Example 48–33.

■ If you dropped the role-centric task flow (the activity references task flow
<id>ProfileTF</id>), add the input parameter values from Example 48–34.

■ If you dropped the role management task flow (the activity references task
flow <id>RoleManagementTF</id>), add the input parameter values from
Example 48–35.

Instead of copying and pasting the input parameter values from the samples, you
can also use the Property Inspector to define each input parameter value.
However, it is important that the input parameter values you create match the
parameter names specified by the called task flow. Copying from the samples
ensures the names match exactly.

48.8.2.2 Initializing the Data Security Task Flow Using a Managed Bean
Managed beans are Java classes that you register with the application in your calling
task flow's configuration file. You will create a method on a managed bean to:

■ Initialize the input parameters of the data security task flows.

■ Return a value that matches the outcome of the calling task flow.

When your application runs, and the end user clicks the button in the calling web
page, the method is invoked and the properties are declared, allowing the called data
security task flow input parameters to be populated with the declared values.

Example 48–36 shows the additional source code that your managed bean must
include to initialize the object-centric (ObjectLevelTF) task flow.

Example 48–36 Source for Populating the ObjectLevelTF Input Parameters

//Source for managed bean method to populate and pass ObjectLevelTF parameters
 String objectName = "TEST_DS_EMP";
 List actions = new ArrayList<ActionMap>();

 //for action1
 List<String> instanceSets1 = new ArrayList<String>();
 instanceSets1.add("TEST_EMP_IS1");
 instanceSets1.add("TEST_EMP_IS2");
 instanceSets1.add("TEST_EMP_IS3");

 ActionMap action1 = ActionMap.getActionMapForObjectUI("View", "VIEW_M",

Integrating with Data Security Task Flows

48-40 Developer's Guide

 "ViewPermSet", false, instanceSets1);
 actions.add(action1);

//for action 2
 List<String> instanceSets2 = new ArrayList<String>();
 instanceSets2.add("TEST_EMP_IS2");
 instanceSets2.add("TEST_EMP_IS3");
 instanceSets2.add("TEST_EMP_IS4");

 ActionMap action2 = ActionMap.getActionMapForObjectUI("Update", "UPDATE_M",
 "UpdatePermSet", false, instanceSets2);
 actions.add(action2);

//populate role categories
 List roleCategories = new ArrayList<String>();
 roleCategories.add("Category1");
 roleCategories.add("Category2");
 roleCategories.add("Category3");

//set the paramters in pageflow scope
 AdfFacesContext context = AdfFacesContext.getCurrentInstance();
 Map pageFlowScope = context.getPageFlowScope();
 pageFlowScope.put("objectName", objectName);
 pageFlowScope.put("roleCategories",roleCategories);
 pageFlowScope.put("actions", actions);
 pageFlowScope.put("disableViewAll", false);
 pageFlowScope.put("disableUpdateAll", false);

Example 48–37 shows the additional source code that your managed bean must
include to initialize the role-centric (ProfileTF) task flow.

Example 48–37 Source for Populating the ProfileTF Input Parameters

//Source for managed bean method to populate and pass ProfileTF parameters
 List roleCategories = new ArrayList<String>();
 roleCategories.add("Category1");
 roleCategories.add("Category2");

 List actions = new ArrayList<ActionMap>();

 //for action1
 List<ProfileActionObject> profileObjects1 = new ArrayList<ProfileActionObject>();
 profileObjects1.add(ProfileActionObject.getProfileActionObject("View",
 "TEST_DS_EMP", "VIEW_EMP_M","ViewEmpPermSet"));
 profileObjects1.add(ProfileActionObject.getProfileActionObject("View",
 "TEST_DS_EMP1", "VIEW_EMP1_M","ViewEmp1PermSet"));
 profileObjects1.add(ProfileActionObject.getProfileActionObject("View",
 "TEST_DS_EMP2", "VIEW_EMP2_M","ViewEmp2PermSet"));

 ActionMap action1 = ActionMap.getActionMapForProfileUI("View", profileObjects1);
 actions.add(action1);

 //for action 2
 List<ProfileActionObject> profileObjects2 = new ArrayList<ProfileActionObject>();
 profileObjects2.add(ProfileActionObject.getProfileActionObject("Update",
 "TEST_DS_EMP1", "UPDATE_EMP1_M","UpdateEmp1PermSet"));
 profileObjects2.add(ProfileActionObject.getProfileActionObject("Update",
 "TEST_DS_EMP2", "UPDATE_EMP2_M","UpdateEmp2PermSet"));

 ActionMap action2 = ActionMap.getActionMapForProfileUI("Update",profileObjects2);

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-41

 actions.add(action2);

 AdfFacesContext context = AdfFacesContext.getCurrentInstance();
 Map pageFlowScope = context.getPageFlowScope();
 pageFlowScope.clear();

 pageFlowScope.put("roleCategories", roleCategories);
 pageFlowScope.put("actions", actions);
 pageFlowScope.put("disableViewAll", false);
 pageFlowScope.put("disableUpdateAll", false);

Example 48–38 shows the additional source code that your managed bean must
include to initialize the role management (RoleManagementTF) task flow.

Example 48–38 Source for Populating the RoleManagementTF Input Parameters

//Source for managed bean method to populate & pass RoleManagementTF parameters
AdfFacesContext context = AdfFacesContext.getCurrentInstance();
Map pageFlowScope = context.getPageFlowScope();
pageFlowScope.clear();
List roleCategories = new ArrayList<String>();
roleCategories.add("Category1");
roleCategories.add("Category2");
roleCategories.add("Category3");
pageFlowScope.put("roleCategories", roleCategories);
pageFlowScope.put("title", "Role Management");

Before you begin:
Create an ADF command button component in the web page associated with the
source activity of the control flow case you create in the calling task flow. When the
end user clicks the button, the button will cause the data security task flow to display.
You will need to configure the Action attribute of the button so a click by the end user
invokes the initialization method of your managed bean.

Example 48–39 shows a command button component with an Action attribute that
invokes the method initializeRoleManagement() on the bean referenced by the bean
identifier roleManageBean. The name of the identifier corresponds to the managed
bean declaration you create when you edit the calling task flow configuration file, as
described in Section 48.8.2.3, "Registering the Managed Bean with Your Application's
Task Flow."

Example 48–39 Button Component with Action Attribute to Invoke Bean Method

<af:commandButton text="Manage Roles" id="cb1"
 action="#{backingBeanScope.roleManageBean.initializeRoleManagement}"/>

To populate task flow input parameters with a managed bean:
1. Use the New Gallery to create the managed bean class and name it for the called

task flow.

For example, you might create a bean named DSRoleManage.java for the
RoleManagementTF task flow.

2. In the class editor, create a method that you want to use to initialize the task flow
input parameters.

For example, you might create a method for the RoleManagementTF task flow,
initializeRoleManagement().

Integrating with Data Security Task Flows

48-42 Developer's Guide

3. In the method definition, create the input parameter property definitions by
copying and pasting from the sample code into the method definition:

■ If you want to initialize the object-centric task flow, add the input parameter
property declarations from Example 48–36.

■ If you want to initialize the role-centric task flow (also called the Profile task
flow), add the input parameter property declarations from Example 48–37.

■ If you want to initialize the role management task flow, add the input
parameter property declarations from Example 48–38.

Copying from the samples ensures the input parameters names match those
defined by the data security task flow.

4. In the source you pasted, edit the input parameter property definitions to specify
the default values for your application.

5. Enter a return value for the initialization method that matches the outcome of the
control flow case you specified in your calling task flow.

For example, for the outcome value "start", your method should show:

return "start";

For details about creating the control flow case in your application's task flow, see
Section 48.8.2.1, "Creating a Task Flow Call Activity in Your Application's Task
Flow."

48.8.2.3 Registering the Managed Bean with Your Application's Task Flow
To declare the manage bean in the calling task flow's configuration file, you must enter
a bean identifier name, the class path for the bean, and you must specify backing bean
scope. Example 48–40 uses the bean identifier roleManageBean to match the Action
attribute definition specified on the button component shown in Example 48–39.

Example 48–40 Managed Bean Declaration in Calling Task Flow Configuration File

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-definition id="MyCallingTaskFlow">
 <default-activity id="__1">CallRoleManageTF</default-activity>
 <managed-bean id="__4">
 <managed-bean-name id="__5">roleManageBean</managed-bean-name>
 <managed-bean-class id="__2">
 oracle.apps.fnd.applcore.dataSecurity.view.RoleManage</managed-bean-class>
 <managed-bean-scope id="__3">backingBean</managed-bean-scope>
 </managed-bean>
 </task-flow-definition>
 ...
</adfc-config>

To register the managed bean with the calling task flow:
1. Open your application's task flow (the calling task flow) in the diagram editor.

2. In the editor for the task flow, click the Source tab.

3. In the source for the calling task flow, declare the managed bean by creating the
<managed-bean> element similar to the sample shown in Example 48–40.

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-43

48.8.3 How to Configure the Object Instance Task Flow to Display in a Dialog
When you integrate a data security task flow as a dialog, your application's task flow
invokes the task flow using an executable in the ADF Model layer. This executable is
defined by JDeveloper when you drop the data security task flow as region onto a
dialog component that you add to your application's calling web page. The web page
the defines the region is associated with a view activity in your application task flow;
no task flow control flow case is needed to invoke the data security task flow.

A popup button in the calling web page defines a listener that invokes a method on
the managed bean to initialize the task flow's input parameters. The button then
displays the dialog with a region that invokes the task flow using the executable
defined on the calling page's definition. When the user clicks the dialog close button, a
listener (for the dialog's close button) saves the end user's sections from data security
UI.

To integrate the object instance task flow (ObjectInstTF) with your application so it
appears in a dialog (as a secondary browser window):

1. In your application's task flow, double-click the view activity associated with the
web page that end users will use to open the dialog.

2. In the web page, drop an ADF command button component.

3. Drop an ADF popup component onto the button and configure a popup fetch
listener to invoke an initialization method on a managed bean.

4. Drop an ADF dialog inside the popup component and configure a dialog listener
to invoke a method to save grants made by the user.

5. Drop the object instance task flow as a region onto the dialog component.

6. Edit the page definition file for the calling page to specify the data security task
flow's input parameter values on the task flow executable.

7. Create a managed bean and define a method to initialize the task flow parameters
before the dialog displays.

8. Define another method on the managed bean to trigger the task flow save action
and save the grants into the database.

9. Register the managed bean in your application's task flow configuration file.

48.8.3.1 Creating the Task Flow Executable in the Region Page Definition FIle
When you drop a data security task flow onto a web page to create an ADF region,
JDeveloper adds an af:region tag to the page. The af:region tag references an object
that implements RegionModel, as shown in Example 48–42.

JDeveloper also adds a task flow binding to the <executables> element of the page
definition file for the page that defines the ADF region. The task flow binding provides
a bridge between the ADF region and the data security task flow. It binds a specific
instance of an ADF region to the data security task flow and maintains all information
specific to the task flow. The taskFlowId attribute specifies the directory path and the
name of the source file for the bounded task flow.

To pass parameters into the data security task flow, you must specify input parameter
values on the task flow binding. These values must correspond to the input parameter
definitions on the called data security task flow.

Example 48–41 shows task flow binding in the page definition file with a reference to
the object-instance data security task flow. The task flow binding also defines the input
parameter values required by the object-instance task flow.

Integrating with Data Security Task Flows

48-44 Developer's Guide

Example 48–41 ObjectInstTF Call Entry in Page Definition File

<taskFlow id="ObjectInstTF1"
 taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/
 taskflow/ObjectInstTF.xml#ObjectInstTF"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="objectName" value="#{pageFlowScope.objectName}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="actions" value="#{pageFlowScope.actions}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="instancePK1" value="#{pageFlowScope.instancePK1}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="instancePK2" value="#{pageFlowScope.instancePK2}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="instancePK3" value="#{pageFlowScope.instancePK3}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="instancePK4" value="#{pageFlowScope.instancePK4}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="instancePK5" value="#{pageFlowScope.instancePK5}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="taskflowId" value="#{pageFlowScope.taskflowId}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="parameterMap" value="#{pageFlowScope.parameterMap}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

Before you begin:
Create an ADF command button component in the web page associated with the view
activity of the calling task flow. Then drop an ADF popup component in the panel that
contains the button. Then drop an ADF showPopupBehavior operation onto the
button and set it to the ID of the popup component. Finally, drag a dialog onto the
popup component. When the end user clicks the button, the button will invoke the
show popup operation. You will also need to specify a listener for both the popup
component and the dialog component. These listeners invoke methods on the
managed bean to initialize the input parameters and save the user selections.

Example 48–42 shows a command button component with the showPopupBehavior
operation nested on the button. The popup component appears in the same panel as
the button and defines the popupFetchListener property to identify the
launchPolicy() method on the bean referenced by the bean identifier
objectInstanceBean. The dialog component defines the dialogListener property to
identify the okCreatePolicy() method on the bean referenced by the same bean
identifier. The name of the identifier corresponds to the managed bean declaration you
create when you edit the calling task flow configuration file.

Note that the ADF region component element shown in the example will be created
when you drop the data security object instance task flow as a region.

Example 48–42 Button Component with Show Popup Operation to Invoke Dialog

...
<af:panelHeader id="phl12" text="Test Instance UI">
 <af:panelGroupLayout id="pgl13" layout="horizontal">
 <af:commandButton id="cb6" text="Launch Object Instance Popup"
 partialSubmit="true">
 <af:showPopupBehavior popupId="objInst"/>
 </af:commandButton>

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-45

 <af:popup id="objInst" contentDelivery="lazyUncached"
 popupFetchListener="#{backingBeanScope.objectInstanceBean.launchPolicy}"
 childCreation="deferred">
 <af:dialog id="polDiag" modal="true" title="Object Instance UI"
 affirmativeTextAndAccessKey="Save and Close" resize="on"
 contentWidth="600" contentHeight="330"
 stretchChildren="first"
 dialogListener="#{backingBeanScope.objectInstanceBean.okCreatePolicy}">
 <af:region value="#{bindings.ObjectInstTF1.regionModel}" id="r1"/>
 </af:dialog>
 </af:popup>
 </af:panelGroupLayout>
</af:panelHeader>

To create the task flow binding definition:
1. Open your application's task flow (the calling task flow) in the diagram editor.

2. In the ADF Task Flow page of the Component Palette, drag a View activity and
drop it on the calling task flow.

3. In the ADF Task Flow page of the Component Palette, select Control Flow Case
and create the control flow case between the source activity (in your calling task
flow) and the view activity.

4. In the task flow diagram, enter the outcome value.

The value of the outcome should match the return value of the initialization
method you create in the managed bean used to populate the data security input
parameters. For details about the managed bean, see Section 48.8.2.2, "Initializing
the Data Security Task Flow Using a Managed Bean."

5. In the Application Navigator, drag the object instance task flow and drop it on top
of the task flow call activity that is located on the calling task flow.

This action defines the data security task flow as the called task flow using a
<task-flow-call> definition. The task flow call definition appears in the calling
task flow configuration file.

6. In the editor for the task flow, click the Source tab to view the new task flow
reference.

7. In the source for the calling task flow, locate the <task-flow-call> element and
create the input parameter definitions by copying and pasting from the sample
code:

■ If you dropped the object-centric task flow (activity will show task flow
reference <id>ObjectLevelTF</id>), add the input parameter values from
Example 48–33.

■ If you dropped the role-centric task flow (activity will show task flow
reference <id>ProfileTK</id>), add the input parameter values from
Example 48–34.

■ If you dropped the role management task flow (activity will show task flow
reference <id>RoleManagementTF</id>), add the input parameter values from
Example 48–35.

Instead of copying and pasting the input parameter definitions from the samples,
you could also use the Property Inspector to define each input parameter.
However, it is important that the input parameter definitions you create match the

Integrating with Data Security Task Flows

48-46 Developer's Guide

parameter names specified by the called task flow. Copying from the samples
ensures the names match exactly.

48.8.3.2 Initializing the Object-Instance Task Flow Using a Managed Bean
Managed beans are Java classes that you register with the application in your calling
task flow's configuration file. You will define two methods on a managed bean:

■ A popup fetch listener method to add properties to the managed bean that will
initialize the input parameters of the data security task flows.

■ A dialog listener method to save the grants made by the end user to the database
when the user closes the dialog.

When your application runs, and the end user clicks the button in the calling web
page, the popup fetch listener method is invoked and the properties are declared,
allowing the called data security task flow input parameters to be populated with the
declared values.

Example 48–43 shows additional source code that your managed bean must include to
initialize the object-instance (ObjectInstlTF) task flow.

Example 48–43 Source for Populating the ObjectInstTF Input Parameters

//Source for manaaged bean to populate and pass ObjectInstTF parameters
public void launchPolicy(PopupFetchEvent popupFetchEvent)
{
 List actions = new ArrayList<ActionMap>();

 ActionMap action1 = ActionMap.getActionMapForInstanceUI("View", "VIEW_EMP_M");
 actions.add(action1);

 ActionMap action2 = ActionMap.getActionMapForInstanceUI("Update",
 "UPDATE_EMP_M");
 actions.add(action2);

 ActionMap action3 = ActionMap.getActionMapForInstanceUI("Create",
 "CREATE_EMP_M");
 actions.add(action3);
 ActionMap action4 =
 ActionMap.getActionMapForInstanceUI("Delete", "DELETE_EMP_M");
 actions.add(action4);
 ActionMap action5 =
 ActionMap.getActionMapForInstanceUI("CustomFSOnlyAction",
 "CUSTOMFSONLYACTION_EMP_M");
 actions.add(action5);

 AdfFacesContext context = AdfFacesContext.getCurrentInstance();
 Map pageFlowScope = context.getPageFlowScope();
 pageFlowScope.clear();
 pageFlowScope.put("actions", actions);
 pageFlowScope.put("objectName", "TEST_DS_EMP");

 pageFlowScope.put("instancePK1", "2");
 pageFlowScope.put("instancePK2", null);
 pageFlowScope.put("instancePK3", null);
 pageFlowScope.put("instancePK4", null);
 pageFlowScope.put("instancePK5", null);

 // If you want to use a customized task flow instead of people picker to select
 // users, you need specify values for the taskflowId and parameterMap.

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-47

 // Map<String, Object> paraMap = new HashMap<String, Object>();
 // paraMap.put("pageTitle", "Custom User Selection");
 // pageFlowScope.put("parameterMap", paraMap);
 //Taskflow name
 // pageFlowScope.put("taskflowId", "/WEB-INF/CustomDSUserTF.xml#CustomDSUserTF");

}

Example 48–44 shows the source code you must add for the method your dialog
listener invokes. In this case, the method is named okCreatePolicy() to match the
method invoked by the dialog listener in Example 48–42.

Example 48–44 Source for Saving the ObjectInstTF Grants

//Source for managed bean to save end user grant
public void okCreatePolicy(DialogEvent dialogEvent)
{
 DataSecurityUIUtils.saveInstanceGrants(dialogEvent);
 //Add your custom code if needed
}

To populate task flow input parameters with a managed bean:
1. Use the New Gallery to create the managed bean class and name it for the called

task flow.

For example, you might create a bean named DSObjectInstance.java for the
object instance task flow.

2. In the class editor, create a method that you want the popup listener to invoke to
initialize the task flow input parameters.

For example, you might create a method launchPolicy() named for the method
invoked by the popup listener (shown in Example 48–42).

3. In the method definition, create the input parameter property definitions by
copying and pasting from Example 48–43 into the new initialization method
definition.

Copying from the sample ensures the input parameters names match those
defined by the object instance task flow.

4. In the source you pasted, edit the input parameter property definitions to specify
the default values for your application.

5. In the class editor, create a method that you want the dialog listener to invoke to
save the grants after the user closes the dialog.

For example, you might create a method okCreatePolicies() named for the
method invoked by the dialog listener (shown in Example 48–42).

6. In the method definition, create the save operation by copying and pasting from
Example 48–44 into the new save grants method definition.

Copying from the sample ensures the method saveInstanceGrants() is called
exactly as shown.

48.8.3.3 Registering the Managed Bean with Your Application's Task Flow
To declare the manage bean in the calling task flow's configuration file, you must enter
a bean identifier name, the class path for the bean, and you must specify backing bean
scope. Example 48–45 uses the bean identifier objectInstanceBean to match the bean
references specified in the listener properties shown in Example 48–42.

Integrating with Data Security Task Flows

48-48 Developer's Guide

Example 48–45 Managed Bean Definition in Calling Task Flow Configuration File

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-definition id="MyCallingTaskFlow">
 <default-activity id="__1">CallObjectInstTF</default-activity>
 <managed-bean id="__4">
 <managed-bean-name id="__5">objectInstanceBean</managed-bean-name>
 <managed-bean-class id="__2">
 oracle.apps.fnd.applcore.dataSecurity.view.DSObjectInstance</managed-bean-class>
 <managed-bean-scope id="__3">backingBean</managed-bean-scope>
 </managed-bean>
 </task-flow-definition>
 ...
</adfc-config>

To register the managed bean with the calling task flow:
1. Open your application's task flow (the calling task flow) in the diagram editor.

2. In the editor for the task flow, click the Source tab.

3. In the source for the calling task flow, declare the managed bean by creating the
<managed-bean> element similar to the sample shown in Example 48–45.

48.8.4 How to Grant the End User Access to the Data Security Task Flows
The data security task flows, once integrated into your application, behave like other
web application resources secured by ADF Security. By default, ADF Security locks
down application resources and therefore requires that you grant access rights to the
members of the application roles for the task flows.

To grant view access to the task flows, you define a OPSS permission grant defined by
the oracle.adf.controller.security.TaskFlowPermission class. Example 48–46
shows the permission definition that grants the users (identified by <grantee> in your
application) view access rights to the task flows.

Note that the resources in the permission grant are identified by regular expression
metacharacters .* (dot followed by an asterisk). This expression denote any number of
arbitrary characters and effectively grants view rights on all task flows in the Oracle
Fusion Applications data security path
/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/taskflow/.

Example 48–46 Grant to View Data Security Task Flows

<grant>
 <grantee>
 ...
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/taskflow/.*</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

The grantee of the permission are the application roles that your application specifies.
If you are using custom application roles not defined by Oracle Fusion Applications, a

Integrating with Data Security Task Flows

Implementing Oracle Fusion Data Security 48-49

security manager will need to configure these application roles using Authorization
Policy Manager. For example, an application role requires a role category definition.

To enable function security for the data security task flows:
1. In JDeveloper, open the jazn-data.xml file in the overview editor.

2. In the source for the jazn-data.xml file, add the permission definition shown in
Example 48–46 to the policy store and define the grantee.

Grantee are typically application roles that your application defines. A grant is
always made to a single grantee. When you need to grant view permission to more
than one grantee, create duplicate grants and name the grantee in each.

3. Save the jazn-data.xml file.

48.8.5 How to Grant the Application Access to the Application Policy Store
A grant must be added to the jazn-data.xml policy store to allow your application to
provision the LDAP policy store. The LDAP policy store is secured so that only
authorized applications can make API calls needed to create and update grants in the
store. For this purpose, a code source grant must be made to authorize the
implementation code of the data security task flows to make credential store and
policy store API calls. Example 48–47 shows the code source grant where
<application-name> is the application name specified in the jazn-data.xml policy
store.

Example 48–47 Grant to Enable Policy Store Provisioning by Data Security Task Flow Source Code

<grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/_WL_user/<application-name>/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.policystore.PolicyStoreAccessPermission</class>
 <name>context=APPLICATION,name=<application-name></name>
 <actions>getApplicationPolicy,grant,revoke,alterAppRole,createAppRole,
 alterAppRoleCategory</actions>
 </permission>
 </permissions>
</grant>

To enable the application to access and update the domain policy store:
1. In JDeveloper, open the jazn-data.xml file in the overview editor.

2. In the source for the jazn-data.xml file, add the code source grant shown in
Example 48–47 to the policy store and enter the name of your application in the
<url> and <name> definitions.

The application name you enter must match the application name identified in the
policy store definition.

3. Save the jazn-data.xml file.

Integrating with Data Security Task Flows

48-50 Developer's Guide

48.8.6 How to Map the Application to an Existing Application Stripe
Before you deploy the application, you need to identify the application stripe in the
production environment. Once deployed, the application will make use of the
application roles and security policies defined by the application stripe. Example 48–48
shows the web.xml entry to identify the existing application stripe.

Example 48–48 web.xml Parameter Identifies Deployed Application Stripe

<init-param>
 <param-name>application.name</param-name>
 <param-value><application-name></param-value>
</init-param>

To map the application to the deployed application stripe:
1. In JDeveloper, open the web.xml file in the overview editor.

2. In the source for the web.xml file, add the web application initialization parameter
shown in Example 48–48 beneath the JPS filter.

The application name you enter must match the application name identified in the
policy store definition.

3. Save the web.xml file.

49

Implementing Function Security 49-1

49Implementing Function Security

This chapter describes how to enforce security to authorize access to securable
application artifacts created using Oracle Application Development Framework
(Oracle ADF) in Oracle Fusion applications.

This chapter contains the following sections:

■ Section 49.1, "Introduction to Function Security"

■ Section 49.2, "Function Security Implementation Process Overview"

■ Section 49.3, "Adding Function Security to the Application"

49.1 Introduction to Function Security
An important principle of Oracle Fusion function security ensures that end users do
not have unintended access to web pages and application resources in an application
that is created using Oracle Application Development Framework (Oracle ADF).

To enable access to application resources, you can use JDeveloper to create security
policies to specify "who can perform what operations on what specific application
artifacts."

To create the security policy, you must consider the additional duties the end users of
the application will perform and then grant the desired roles specific rights to:

■ Access the web pages of a custom ADF task flow that supports the duty

■ Initiate only those operations on the data required by the duty

Function security controls access to securable application artifacts including ADF task
flows and top-level web pages backed by ADF page definition files. Users who do not
have the required privilege cannot view the task flow. For example, in a sales
organization, duties such as Manage_Accounts and Manage_Invoices exist for roles,
such as Sales_Manager or Sales_Associate. A function security policy might give end
users who belong to the Sales_Manager role the ability to view and edit customer
invoices. Whereas, end users who do not belong to the Sales_Manager role, may not
enter the task flow.

Note: Securing the data of the application requires creating data
security policies. For details about creating data security policies, see
Chapter 48, "Implementing Oracle Fusion Data Security."

Introduction to Function Security

49-2 Developer's Guide

49.1.1 Function Security Development Environment
Before you can implement function security for custom application resources, a
security administrator must export the function security definitions from an
LDAP-based policy store (typically from a staging environment) into a file-based
policy store that you can work with in JDeveloper. The exported file will contain the
function security artifacts that will enable you to run your application and access the
resources that may otherwise have been secured by predefined function security
policies.

The file you receive is formatted as XML and named jazn-data.xml. The XML
definitions of the exported file comprise two major sections: an identity store to define
valid end users of the application and a policy store to define the security policies that
are specific to the application. Initially, only the policy store will be populated with
security artifacts from the LDAP stores. The exported jazn-data.xml file will not
contain the end user identities of the enterprise, thus the identity store section will
initially appear empty.

As an security implementation guideline, you should only use Oracle JDeveloper tools
to work on the exported file-based policy store, and you should not edit the security
definitions directly. JDeveloper supports iterative development of security so you can
easily create, test, and edit security policies that you create for Oracle ADF application
artifacts.

After you customize security, you use JDeveloper to add end user identities to the
identity store of the exported file for the purpose of running and testing the
application in JDeveloper's Integrated WebLogic Server. You provision a few test end
user identities by defining user groups and then assign those groups to application
roles to simulate how the actual end users of the enterprise will access the secured
application artifacts. When you deploy the application in your development
environment, JDeveloper migrates the identity store you created to the embedded
LDAP of Integrated WebLogic Server. The application policy store is migrated to a
system-jazn-data.xml file that aggregates the security policies definitions of all
applications in your workspace.

After testing in JDeveloper, you must consult with the security administrator to merge
the LDAP-based application policy store in the staging environment with the security
policies that you added to the exported jazn-data.xml file. The staging environment
is an LDAP-based Oracle WebLogic Server configured to use Oracle Internet Directory
(OID) for the enterprise's application policy store and identity store (note that the
stores of the staging server are LDAP-based and not file-based). Initially, the staging
environment allows further testing using that server's identity store before deploying
to the production environment. Thus, end user identities created in JDeveloper are not
migrated to standalone Oracle WebLogic Server and are used only in Integrated
WebLogic Server to test the extended application.

Important: As an Oracle Fusion security guideline, do not modify
the predefined function security definitions contained in the
jazn-data.xml file. Predefined security definitions include the
security definitions of the Oracle security reference implementation
and must not be modified. You should always add custom application
roles to grant access rights. For details about restrictions when
working with the file-based policy store, see Section 49.3.7, "What You
May Need to Know About Actions That Developers Must Not
Perform."

Introduction to Function Security

Implementing Function Security 49-3

49.1.2 Function Security Implementation Scenarios
As an Oracle Fusion security guideline, when you secure the functions of your
application, you should not modify the predefined security definitions specified by the
Oracle Fusion security reference implementation. When you modify the file-based
policy store, always create new security definitions.

To gather background information about function security, refer to these documents:

■ Oracle Fusion Applications Extensibility Guide

The main document addressing how to customize and extend Oracle Fusion
applications. For details about how data security and function security work
together to control access to the data and functions of the application, see the
"Customizing Security for Business Objects and Application Artifacts" chapter.

■ Oracle Fusion Applications Security Guide

The main document addressing the concepts and best practices of the Oracle
Fusion security approach.

■ Oracle Fusion Middleware Application Security Guide

The main document addressing the concepts and best practices of Oracle Platform
Security Services (OPSS) upon which Oracle Fusion security is based.

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition)

Describes ADF Security, through which ADF components interact with OPSS.

Table 49–1 summarizes the function security scenarios that Oracle Fusion security
supports. The "Application Developer Tasks" column of the table provides a brief
description of the security artifacts involved in each scenario.

Note: The term protected in this chapter refers to the default Oracle
Fusion application condition that denies end users access to database
resources and application artifacts. In contrast, the term secured refers
to resources that have been made accessible to end users through
security policies created for this purpose. Therefore, a security policy
specifically enables access to the resource based on the access rights it
confers to the end user.

Introduction to Function Security

49-4 Developer's Guide

Table 49–1 Oracle Fusion Function Security Use Cases

Security Goal Security Policy Requirement Application Developer Tasks

Control whether the end user
associated with a particular role
may access a new task flow and
view all the web pages of the
flow.

Create a new entitlement grant.

The new task flow will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

Because the end user duty being
secured is rarely addressed by grants
to a single resource, the Oracle
Fusion security best practice is to
create entitlement grants.

Entitlement grants provide the
means to aggregate multiple
securable resources into a named
security group so that privileges for
the entire group can be granted to
application roles through a single
statement.

Enable ADF Security on the user interface
project to protect all task flows (and the
web pages they contain). Then, in the
file-based policy store, create a resource
definition for the task flow and assign the
definition as a member of an entitlement
(defined in the policy store as a permission
set) that you name. Then, create the
security policy by granting the
entitlement to a custom application role
that you either created or consulted with
a security administrator to create for you.

For more information, see Section 49.3.1,
"How to Create Entitlement Grants for
Custom Application Roles."

Introduction to Function Security

Implementing Function Security 49-5

49.1.3 Function Security-Related Application Files
When you create a Fusion web application, JDeveloper creates specific files that are
needed to secure the application. Additionally, when you run the Configure ADF
Security wizard, JDeveloper updates these files to reflect the selections you make in
the wizard.

Table 49–2 lists the file related to Oracle Fusion security that are created for you when
you secure your application in JDeveloper. For more information about the
security-related files, see the Oracle Fusion Middleware Application Security Guide.

Control whether the end user
associated with a particular role
may access a new top-level
web page.

In Oracle Fusion applications, a
top-level web page is one that is
not contained by a task flow.

Create a new entitlement grant.

The new top-level web page will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

The ability to secure individual web
pages in Oracle Fusion applications
is reserved for top-level web pages
backed by an ADF page definition
file only.

Enable ADF Security on the user interface
project to protect all top-level web pages
backed by ADF page definition files.
Then, in the file-based policy store, create
a resource definition for the web page
and assign the definition as a member of
an entitlement (defined in the policy store
as a permission set) that you name. Then,
create the security policy by granting the
entitlement to a custom application role
that you either created or consulted with
a security administrator to create for you.

For more information, see Section 49.3.1,
"How to Create Entitlement Grants for
Custom Application Roles."

Control whether a new task
flow or a new top-level web
page is publicly accessible.

Publicly accessible means the
application resource may
accessed by guest users (those
who do not need to log into the
application) or it can mean
accessible to all authenticated
users who are not provisioned
with the privileges conferred by
a custom application role.

Create a new resource grant.

The new ADF artifact will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

Because the publicly accessible
artifact is a single resource, the
Oracle Fusion security best practice
is to create resource grants (rather
than entitlement grants) for publicly
accessible artifacts.

Enable ADF Security on the user interface
project to protect all ADF-backed
application artifacts. Then, in the
file-based policy store, grant an action
(defined in the policy store as a
permission) directly to the artifact. Then,
create the security policy by granting the
permission to a built-in OPSS application
role.

For more information, see Section 49.3.3,
"How to Define Resource Grants for
OPSS Built-In Roles."

Determine whether the end
user associated with a
particular role has the right to
select create, edit, or delete
buttons in the displayed web
page.

Do not create a security policy.

Access to user interface components,
such as buttons, is not controlled by a
security policy, but can be controlled
by rendering the button in the user
interface based on the end user's role.

Conditionally render the component by
entering ADF Security Expression
Language (EL) utility methods on the
rendered attribute of the button to test
whether the end user has membership in
a particular role.

For more information about rendering
components using EL utility methods,
see the "Enabling ADF Security in a
Fusion Web Application" chapter in the
Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application
Development Framework (Oracle Fusion
Applications Edition).

Table 49–1 (Cont.) Oracle Fusion Function Security Use Cases

Security Goal Security Policy Requirement Application Developer Tasks

Introduction to Function Security

49-6 Developer's Guide

Table 49–2 Oracle Fusion Application Security-Related Files

File Name Location Security Purpose

jazn-data.xml <JDevAppHome>/src/META-INF ■ Design-time policy store, containing
all the function security policies
defined for securable Oracle ADF
artifacts in the workspace. This file
must be generated by a security
administrator.

adf-config.xml <JDevAppHome>/.adf/META-INF ■ Stores the flags that control whether
authentication and authorization are
supposed to be enforced by runtime
Oracle ADF.

■ Specifies the security providers' and
OPSS factory's classes names.

weblogic-application.xml <JDevAppHome>/src/META-INF ■ Defines the listeners used by Oracle
WebLogic Server to interact with the
application.

■ Controls the application stripe to
which policies are migrated.

jps-config.xml <JDevAppHome>/src/META-INF ■ Stores definitions of OPSS service
providers and services instances.

■ Stores definitions of OPSS contexts
for the current workspace. An OPSS
context contains pointers to the
service instances used by that
application.

Function Security Implementation Process Overview

Implementing Function Security 49-7

49.2 Function Security Implementation Process Overview
An ADF bounded task flow that you add to your application is one of the main ADF
artifacts that you that you can secure. You can also directly secure top-level web pages
that are backed by ADF page definitions to specify data bindings. Although you can
secure a variety of application resources, implementing function security follows a
similar pattern.

To implement function security:

1. Decide the names of custom application roles that your application will specify as
the grantee of security privileges.

web.xml <JDevAppHome>/UserInterface/
public-html/WEB-INF

■ Stores definitions and mappings for
servlets and filters used by ADF
Security.

■ Includes security constraints for any
custom servlets.

■ Defines the OPPS JpsFilter servlet
filter to set up the OPSS policy
provider. The filter defines settings
that indicate that your servlet has
special privileges. It is important that
the JpsFilter definition be the first
filter definition in the web.xml file.

■ Adds the ADF adfAuthentication
servlet definition to require the user
to log in the first time the application
is accessed.

■ Maps the adfAuthentication servlet
to a security constraint that triggers
user authentication dynamically.

■ Defines the ADFBindingFilter servlet
filter which instantiates the
ADFContext object, which includes
context information about the
session, including the security
context.

■ Defines login configuration for the
application.

■ Define the Java EE logical
valid-users role, which is used to
trigger the security constraint that
enables dynamic authentication.

■ Contains the runtime application
stripe, which must match the
configuration in the
weblogic-application.xml file.

weblogic.xml <JDevAppHome>/UserInterface/
public-html/WEB-INF

■ Maps the Java EE valid-users role
(created by the Configure ADF
Security wizard) to the implicit users
group defined by Oracle WebLogic
Server.

cwallet.sso <JDevAppHome>/src/META-INF ■ Stores external system's password in
encrypted format.

Table 49–2 (Cont.) Oracle Fusion Application Security-Related Files

File Name Location Security Purpose

Function Security Implementation Process Overview

49-8 Developer's Guide

For information about application roles, see the "Understanding Security
Concepts" part of the Oracle Fusion Middleware Application Security Guide.

2. Optionally, ask the security administrator to create custom application roles with
the names you supply.

If a security manager creates the application roles you identify, then those custom
application roles will already appear in the policy store section of the exported
jazn-data.xml file. For details about how the security administrator creates
application roles using Oracle Authorization Policy Manager, see the "Managing
Policies and Policy Objects" chapter in the Oracle Fusion Middleware Oracle
Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications
Edition).

If you do not ask the security manager to create custom application roles, then you
must create them in JDeveloper before you define security policies.

3. Consult a security administrator to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

For details about how the security manager exports the application policy store,
see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator's Guide.

4. Copy the exported jazn-data.xml file into your application workspace.

This is the file that JDeveloper will update when you create function security
policies. In order for JDeveloper to use the file, copy the file to your application
workspace in the <JDevAppHome>/src/META-INF folder.

5. Determine which ADF artifacts should be secured and grant entitlement privileges
to custom application roles to specify the access rights of end users.

Although ADF Security permits you to define function security policies for ADF
artifacts using only resource privilege grants, an Oracle Fusion security best
practice is to define access policies using entitlement grants except for publicly
accessible application artifacts.

For details about securing application functions, see Section 49.3.1, "How to Create
Entitlement Grants for Custom Application Roles."

6. Determine which ADF artifacts should be public and grant resource privileges to
an appropriate OPSS built-in application role.

For details about making application functions public, see Section 49.3.3, "How to
Define Resource Grants for OPSS Built-In Roles."

7. Opt into the previously defined function security policies by running the
Configure ADF Security wizard to enforce OPSS authorization checking.

For details about enabling security on the user interface project, see Section 49.3.5,
"How to Enforce Authorization for Securable ADF Artifacts."

8. Determine which user interface components you want to associate with user
entitlements, and enter EL utility methods on the component to make it logically
consistent with its target.

ADF does not enforce security on user interface components, such as buttons or
links that navigate to securable artifacts (pages and task flows). For details about
using EL utility methods, see the "Enabling ADF Security in a Fusion Web
Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

Adding Function Security to the Application

Implementing Function Security 49-9

9. Define test user identities and run the application in JDeveloper to simulate the
privileges of the enterprise users who will eventually interact with the application.

For details about adding test user in JDeveloper, see Section 49.3.6, "How to Enable
Authentication and Test the Application in JDeveloper."

10. After testing is complete, remove the test users from the jazn-data.xml file and
provide the updated jazn-data.xml file to the security administrator to merge the
file-based policy store with the application policy store in the staging
environment.

JDeveloper must not be used as an identity store provisioning tool, and you must
be careful not to deploy the application with user identities that you create for
testing purposes. Deploying user identities with the application introduces the risk
that malicious users may gain unintended access.

For information about how the security administrator merges the policies using
Oracle Authorization Policy Manager, see the "Upgrading Oracle Fusion
Applications Policies" chapter in the Oracle Fusion Middleware Oracle Authorization
Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).

11. The security administrator provisions enterprise users by mapping enterprise
roles defined in the staging environment identity store to the custom application
roles.

For information about how the security administrator provisions enterprise users
using Oracle Authorization Policy Manager, see the "Managing Policies and Policy
Objects" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

12. Before running the application in the staging environment, the security
administrator must reconcile the application roles GUIDs of any data security
policies that were created based on new custom application roles.

When the file-based policy store is merged, the GUIDs of application roles are not
preserved. For information about how the security administrator reconciles GUIDs
using a WLST command, see the "Securing Oracle Fusion Applications" chapter in
the Oracle Fusion Applications Administrator's Guide.

13. Continue testing the application in the staging environment before deploying the
application to production and merging the policies into the production
environment application policy store.

For details about how to modify the application to use the identity store and
policy store of the staging environment, see Section 49.3.8, "What You May Need
to Know About Testing."

49.3 Adding Function Security to the Application
You implement function security by identifying the type of resource that corresponds
to the ADF artifact whose function you intend to secure. You then select a resource
instance of that type and select the action that corresponds to the artifact function you
intend to grant to end users. Function security aggregates these resource / action pairs
as an entitlement that serves as the grantable entity. Each entitlement can include as
many resource / action pairs as needed to describe a particular duty to be performed
by the end user. To support this goal, entitlements can include resources of different
types. To create a function security policy, you then grant the entitlement to a custom
application role, also called a duty role in Oracle Fusion applications.

Adding Function Security to the Application

49-10 Developer's Guide

In cases where a resource should be publicly accessible, you will not need to aggregate
multiple resources to define a particular duty. Instead, you can create a resource-based
function security policy with a single resource /action pair defined as the grantable
entity.

To simplify the task of securing the functions of your application, ADF provides the
ADF Security framework. ADF Security defines a containment hierarchy that lets you
define a single security policy for the ADF bounded task flow and its contains web
pages. In other words, the security policy defined at the level of the bounded task flow,
secures the flow's entry point and then all pages within that flow are secured by the
same policy. For example, a series of web pages may guide new end users through a
registration process and the bounded task flow controls page navigation for the
process.

Specifically, the ADF artifacts that you may secure are:

■ ADF bounded task flow protects the entry point to the task flow, which in turn
controls the end user's access to the pages contained by the flow

The ADF unbounded task flow is not a securable application artifact and thus
does not participate in OPSS authorization checks. When you need to secure the
constituent pages of an unbounded task flow, you define policies for the page
definition files associated with the pages instead.

■ ADF page definition files associated with top-level web pages and regions

For example, a page may display a summary of products with data coordinated by
the ADF bindings of the page's associated ADF page definition file.

To add function security to the application:

1. Determine which ADF artifacts should be secured and grant entitlement privileges
to custom application roles to define the duties of end users.

2. Determine which ADF artifacts should be public and grant resource privileges to
an appropriate OPSS built-in application role.

3. Opt into the previously defined function security policies by running the
Configure ADF Security wizard to enforce OPSS authorization checking.

4. Determine which user interface components you want to associate with user
entitlements, and enter EL utility methods on the component to make it logically
consistent with its target.

Best Practice: Although ADF Security permits you to define
function security policies for ADF artifacts using only resource
privilege grants, an Oracle Fusion security best practice is to define
access policies using entitlement grants except for publicly accessible
application artifacts.

Best Practice: Do not create entitlement grants for the individual
web pages of an ADF bounded task flow. When the end user accesses
the bounded task flow, security for all pages will be managed by the
entitlements you create for the task flow. This supports a well-defined
security model for task flows that enforces a single entry point for all
end users. For additional best practice information about ADF and
function security, see Section 49.3.9, "What You May Need to Know
About Security Best Practices."

Adding Function Security to the Application

Implementing Function Security 49-11

ADF does not enforce security on user interface components, such as buttons or
links that navigate to securable artifacts (pages and task flows). For details about
using EL utility methods, see the "Enabling ADF Security in a Fusion Web
Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

5. Define test user identities and run the application in JDeveloper to simulate the
privileges of the enterprise users who will eventually interact with the application.

49.3.1 How to Create Entitlement Grants for Custom Application Roles
Because the particular end user duty you want to secure is rarely addressed by grants
to a single resource, you define the access policy for securable ADF artifacts by
creating entitlement grants. Resource grants should be used only to define publicly
accessible application artifacts, as described in Section 49.3.3, "How to Define Resource
Grants for OPSS Built-In Roles."

You create entitlement grants in the Entitlements Grants page of the jazn-data.xml
file overview editor. The grants you create will appear as metadata in the policy store
section of the jazn-data.xml file. This metadata defines an entitlement (identified in
the XML definition as <permission-set>) comprised of resource instance /action pairs
that you select. This entitlement is a grantable entity that you then grant to a custom
application role.

The list of resource types appears in the security policy overview editor. The resource
type you select filters the resource instances defined within the projects of your
application's workspace. The resource type selection also determines the list of
available actions displayed by the overview editor. For example, when you select the
Task Flow Permission resource type, the overview editor will display all of the task
flows in the user interface projects that you select and also displays the view action
that you can associate with the available ADF bounded task flow resources.

Table 49–3 lists the resource types displayed in JDeveloper and identifies the
associated resource and actions.

To define an entitlement grant for a securable ADF artifact, use the Entitlement Grants
page of the overview editor for the jazn-data.xml file. This editor is also called the
security policy overview editor.

Table 49–3 Resource Types of Securable ADF Artifacts

Resource Type Supports These Resources and Actions

ADF Task Flow Defines personalize, customize, grant, edit, and view actions on ADF
bounded task flows in a Fusion Web application.

ADF Region Defines personalize, customize, grant, edit, and view actions on regions
and web pages backed by an ADF page definition file in a Fusion Web
application.

ADF Entity
Permission

Not used by Oracle Fusion Applications. Data security is provided by
Oracle Fusion Data Security, as described in Chapter 50, "Securing Web
Services Use Cases."

ADF Method
Resource

Defines execute, invoke, and view actions on ADF methods in a Fusion
web application.

Webservice
Resource

Defines invoke actions on Fusion Web services. For more details about
securing Web services, see Section 50.5, "Authorizing the Web Service
with Entitlement Grants."

Adding Function Security to the Application

49-12 Developer's Guide

Before you begin:
It may be helpful to have an understanding of ADF Security. For more information, see
the "Understanding Users and Roles" chapter in the Oracle Fusion Middleware
Application Security Guide.

It may also be helpful to understand the details of the ADF Security containment
model. For more information, see Section 49.3.9, "What You May Need to Know About
Security Best Practices."

You will need to complete these tasks:

■ Consult the security administrator for the enterprise to obtain the jazn-data.xml
file that contains the predefined function security policies for your application.
You must add the file to your application workspace, as explained in Section 49.2,
"Function Security Implementation Process Overview."

■ Create application roles as described in the "Enabling ADF Security in a Fusion
Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications Edition).

To define an entitlement grant for an ADF artifact:
1. In the main menu, choose Application and then Secure > Entitlement Grants.

2. In the Entitlement Grants page of security policy overview editor, click the Add
Entitlements icon in the Entitlements list.

The overview editor displays all the resources that your application defines.

3. In the Resources section, click the Add Member Resource icon to add a member
resource to the entitlement.

4. In the Select Resources dialog, select the resource from the Resource Type
dropdown and then select the desired project in the Source Projects list.

The dialog displays all the projects in your application workspace.

5. In the Available Resources list, select the resource from and click the Add icon.

The dialog displays all the resources define by your selected project.

6. In the Actions lists, select the desired action for the selected resource.

Figure 49–1 shows the overview editor with the View action selected for the task
flow and added to MyEntitlement.

Adding Function Security to the Application

Implementing Function Security 49-13

Figure 49–1 Adding a Bounded Task Flow as a Resource in an Entitlement Grant

7. Add other desired resources to the list.

8. In the Grants section of the security policy overview editor, click the Add Role
Grants icon to grant the entitlement to an application role.

9. In the Select Application Roles dialog, select one or more custom application roles.

The dialog displays all the application roles from the jazn-data.xml file. You must
not add a grant to a predefined application role (also called duty roles in the
terminology of Oracle Fusion Applications). Only select custom application roles
that either you created in JDeveloper or that were created by a security
administrator for this purpose.

10. Click OK.

11. You can repeat these steps to add other resources and make grants on those
resources to the same entitlement for the same custom application role.

49.3.2 What Happens After You Create an Entitlement Grant
When you use the security policy editor in JDeveloper to create an entitlement grant,
JDeveloper modifies the source for the application policy store in the jazn-data.xml
file. The policy store section of the file contains a <resource-type> definition (that
identifies the actions supported for resources of the selected type), a <resource>
definition (to identify the resource instance that you selected from your application
and mapped to a resource type), a <permission-set> definition (to define the
resources and actions to be granted as an entitlement), and a <grant> definition with
one or more entitlements (defined in the XML as a permission set) granted to the
desired application roles (the grantee).

As Example 49–1 shows, entitlement-based security policies in the Oracle Fusion
application are defined in the <jazn-policies> element and consist of one or more
entitlements granted to a single application role.

Example 49–1 Entitlement-Based Policy Definition in the jazn-data.xml File

<?xml version="1.0" ?>

Adding Function Security to the Application

49-14 Developer's Guide

<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <role-categories>
 <role-category>
 <name>MyAppRoleCategory</name>
 <display-name>MyAppRoleCategory display name</display-name>
 <description>MyAppRoleCategory description</description>
 </role-category>
 </role-categories>

 <!-- resource-specific OPSS permission class definition -->
 <resource-types>
 <resource-type>
 <name>APredefinedResourceType</name>
 <display-name>APredefinedResourceType display name</display-name>
 <description>APredefinedResourceType description</description>
 <provider-name>APredefinedResourceType provider</provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>write,read</actions>
 </resource-type>
 </resource-types>

 <resources>
 <resource>
 <name>MyResource</name>
 <display-name>MyResource display name</display-name>
 <description>MyResource description</description>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 </resource>
 </resources>

 <!-- entitlement definition -->
 <permission-sets>
 <permission-set>
 <name>MyEntitlement</name>
 <display-name>MyEntitlement display name</display-name>
 <description>MyEntitlement description</description>
 <member-resources>
 <member-resource>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 <resource-name>MyResource</resource-name>
 <actions>write</actions>
 </member-resource>
 </member-resources>
 </permission-set>

Adding Function Security to the Application

Implementing Function Security 49-15

 </permission-sets>

 <!-- Oracle function security policies -->
 <jazn-policy>
 <!-- function security policy is a grantee and permission set -->
 <grant>
 <!-- application role is the recipient of the privileges -->
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>

<name>AppRole</name>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>

</principal>
</principals>

</grantee>

<!-- entitlement granted to an application role -->
<permission-set-refs>
<permission-set-ref>
<name>MyEntitlement</name>

</permission-set-ref>
</permission-set-refs>

</grant>
</jazn-policy>

</application>
</applications>
</policy-store>
</jazn-data>

49.3.3 How to Define Resource Grants for OPSS Built-In Roles
A common requirement of the application is that some web pages be available to all
end users, regardless of their specific access privileges. For example, the home page
should be seen by all visitors to the site, while a corporate site should be available only
to those who have identified themselves through authentication.

In both cases, the page may be considered public, because the ability to view the page
is not defined by the end users' specific privileges. Rather, the difference is whether the
end user is anonymous or a known identity.

In the OPSS security model, you differentiate between the absence of security and
public access to content by granting access privileges to the anonymous-role principal.
The anonymous-role allows access to a resource by unauthenticated users, for
example, guest users. To provide access to authenticated users only, the policy must be
defined for the authenticated-role principal.

The built-in OPSS role authenticated-role stands for any authenticated user and is
useful to implement authorization checks for end users who do not need to be
explicitly assigned to specific custom application roles to get access to a resource. The
authenticated-role can be directly granted any resource grants.

Before you begin:
It may be helpful to have an understanding of OPSS support for public, unprotected
resources. For more information, see the "Understanding Users and Roles" chapter in
the Oracle Fusion Middleware Application Security Guide.

Adding Function Security to the Application

49-16 Developer's Guide

It may also be helpful to understand the details of the ADF Security containment
model. For more information, see Section 49.3.9, "What You May Need to Know About
Security Best Practices."

You will need to complete this task:

■ Consult the security administrator for the enterprise to obtain the jazn-data.xml
file that contains the predefined function security policies for your application.
You must add the file to your application workspace, as explained in Section 49.2,
"Function Security Implementation Process Overview."

To grant public access to securable ADF artifact:
1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of security policy overview editor, select the resource
from the Resource Type dropdown and then select the desired project in the
Source Projects list.

The overview editor displays all the projects in your application workspace.

3. In the Resources column, select the ADF artifact for which you want to grant
access rights.

Tip: Click the lock icon to show only those resources that do not yet have grants.

4. In the Granted to column, click the Add Grantee icon and choose Add
Application Role.

5. In the Select Application Roles dialog, select one of these built-in application roles:

■ anonymous-role means the resource will be accessible to anyone who visits
the site. A grant to this role is necessary if you want to make web pages
backed by securable ADF artifacts accessible before an end user logs in. For
example, you would grant to anonymous-role for an ADF bounded task flow
that manages customer registration.

■ authenticated-role means the resource will be accessible only to authenticated
users (ones who visit the site and log in). For example, you would grant to
authenticated-role for an ADF bounded task flow that manages employee
registration.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, select
the desired action.

Figure 49–2 shows the overview editor with the View action selected for the task
flow and granted to authenticated-role.

Adding Function Security to the Application

Implementing Function Security 49-17

Figure 49–2 Granting to authenticated-role in the Overview Editor

49.3.4 What Happens When You Make an ADF Resource Public
When you use the security policy editor in JDeveloper to create a resource grant,
JDeveloper modifies the source for the application policy store in the jazn-data.xml
file.

Example 49–2 shows a resource-based security policy in the jazn-data.xml file that
makes a customer registration task flow public to all authenticated users. The grant to
the OPSS built-in role authenticated-role contains a single view permission for a
bounded task flow, customer-registration-task-flow. With this grant, any
authenticated user will be able to enter the employee registration task flow.

Example 49–2 Resource-Based Policy Definition in the jazn-data.xml File

<policy-store>
...
<jazn-policy>

<grant>
<grantee>

<principals>
<principal>

<class>oracle.security.jps.internal.core.
principals.JpsAuthenticatedRoleImpl</class>

<name>authenticated-role</name>
</principal>

</principals>
</grantee>
<permissions>

<permission>
<class>oracle.adf.controller.security.TaskFlowPermission</class>
<name>/WEB-INF/customer-registration-task-flow.xml#

customer-registration-task-flow</name>
<actions>view</actions>

</permission>
...

</permissions>
...

Adding Function Security to the Application

49-18 Developer's Guide

</grant>
...

</jazn-policy>
</policy-store>

49.3.5 How to Enforce Authorization for Securable ADF Artifacts
You run the Configure ADF Security wizard to enable authorization and make the
function security policies you define effective. When you run the Configure ADF
Security wizard, it has the following affect:

■ It configures your application to enable OPSS security when running in the
JDeveloper test environment.

■ It allows the Integrated WebLogic Server to use the file-based security policies to
authorize access to application resources by the end user (where OPSS determines
at runtime whether the end user (represented by the JAAS subject) has the
privileges necessary to access the resources they intend.

Once you run the wizard, you are effectively enforcing authorization checking for all
securable ADF artifacts. The wizard also enables the ADF authentication servlet to
require the end user to log in the first time a page in the application is accessed.

This configuration requires a valid user in order to access the pages of your
application. This assumes that you will define custom application roles and assign
explicit grants to those roles to manage access to securable ADF artifacts, as described
in Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles."
Alternatively, when you want to make a page pubic and accessible by unauthenticated
user, you must explicitly grant to a built-in OPSS role, as described in Section 49.3.3,
"How to Define Resource Grants for OPSS Built-In Roles."

Before you begin:
It may be helpful to have an understanding of the configuration changes made by the
Configure ADF Security wizard. For more information, see the "Enabling ADF
Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

To enforce authorization:
1. In the main menu, choose Application and then Secure > Configure ADF

Security.

2. Update the wizard pages as follows:

ADF Security: Select ADF Authentication and Authorization (default), as shown
in Figure 49–3. Click Next.

Adding Function Security to the Application

Implementing Function Security 49-19

Figure 49–3 Configure ADF Security — ADF Security Model Page

Authentication Type: Select HTTP Basic Authentication (default). Click Next.

Automatic Policy Grant: Select No Automatic Grants (default), as shown in
Figure 49–4. Click Next.

Figure 49–4 Configure ADF Security — Automatic Policy Grants Page

Adding Function Security to the Application

49-20 Developer's Guide

Authenticated Welcome: Do not make a selection. (The Redirect Upon Successful
Authentication option should not be selected). Click Next.

Summary: Review your selections. Click Finish.

49.3.6 How to Enable Authentication and Test the Application in JDeveloper
Authentication is enabled when you run the Configure ADF Security wizard, as
described in Section 49.3.5, "How to Enforce Authorization for Securable ADF
Artifacts." This means you when you run your application, you will be prompted to
log in upon accessing any page backed by securable ADF artifacts.

To test your application, you will need to create test user identities and provision them
with the custom application roles that you defined. The end user's membership in an
application role defines their access privileges to the resources. If you prefer to be
consistent with the Oracle Fusion standard for provisioning users and simulate how
the actual end users of the enterprise access resources, you can optionally provision
test users by defining enterprise roles consisting of groups of users (called job roles in
Oracle Fusion applications) and then assign those groups to application roles (called
duty roles in Oracle Fusion applications).

For details about creating test users, see the "Enabling ADF Security in a Fusion Web
Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

Note that if you enabled the option to grant to a test role when you run the Configure
ADF Security wizard, your grants may be of the following two types:

■ For the task flows that you create before running the Configure ADF Security
wizard, the wizard automatically assigns them to the test-all role. You will need
to remove these grants and create valid grants to your custom application roles.
For each entitlement granted to a specific role, the equivalent grant to the
test-all role must be removed.

■ The new task flows you create after running the Configure ADF Security wizard
are not granted to the test-all role automatically. You need to manually grant the
entitlements for the new task flows to your custom application roles.

49.3.7 What You May Need to Know About Actions That Developers Must Not Perform
Security definitions that are predefined in the Oracle Fusion security reference
implementation must not be changed by developers. When modifying the file-based
policy store, always create custom application roles and define new entitlement grants.

Specifically, developers must not make the following changes to the predefined
security definitions of the Oracle Fusion security reference implementation.

■ Add or remove entitlement grants on predefined application roles (those supplied
by Oracle).

Note: When you select No Automatic Grants, you must define
explicit grants that are specific to your application. The test-all
application role provides a convenient way to run and test application
resources without the restricted access that ADF authorization
enforces. For more information about the test-all role, see the
"Enabling ADF Security in a Fusion Web Application" chapter in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

Adding Function Security to the Application

Implementing Function Security 49-21

■ Add or remove resources on predefined entitlements (those supplied by Oracle).

■ Add or remove actions on resources on predefined entitlements (those supplied by
Oracle).

For more information about the Oracle Fusion security reference implementation, see
Oracle Fusion Applications Security Guide.

49.3.8 What You May Need to Know About Testing
When the application needs to undergo testing either in your local environment or on
a staging server, the following changes will ensure that the application uses the
LDAP-based identity and policy stores configured on the staging server.

To configure the deployed application to use the security repositories on the
target server:
1. Set the application name in the web.xml file to point to the application stripe on

the target server.

2. Set the jps.policystore.applicationid in the weblogic-application.xml file to
point to the application stripe on the target server.

3. If you want the policies to persist on the staging server after the application is
undeployed, then set the jps.policystore.removal flag in the
weblogic-application.xml file.

4. Note that the jps-config.xml file in the application does not need to be modified.
When the application is deployed, the staging server will have its own instance of
the jps-config.xml file which is configured through a WLST command (the
reassociateSecurityStore command). Therefore, the application
jps-config.xml file can remain unchanged.

If you use JDeveloper to deploy to the application to standalone Oracle WebLogic
Server, then you must ensure the Users and Groups checkbox is not selected in the
application deployment properties (Menu Application > Secure > Configure Security
Deployment…), as shown in Figure 49–5.

Adding Function Security to the Application

49-22 Developer's Guide

Figure 49–5 Application Deployment Properties Related to Security

As a security best practice, you should not migrate users and groups that you create in
JDeveloper. If the Users and Groups checkbox is selected, test users and groups in
jazn-data.xml will be merged into the target server with different GUIDs than those
used to grant data security privileges.

Before testing the application in the staging environment, any custom application roles
that you created will need to be created in the LDAP application policy store. These
new application roles will receive new GUIDs and any data security policies defined
for application roles of the same name must have their GUIDs reconciled. For details
about reconciling GUIDs in the data security repository, see the "Securing Oracle
Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.

49.3.9 What You May Need to Know About Security Best Practices
ADF implements a particular security model. Follow these rules to address problems
you encounter when adding security to the application:

■ Bounded task flows are secured by default. Secured by default means OPSS will
check authorization on all bounded task flows once ADF Security has been
enabled.

■ Pages and page fragments backed by an ADF page definition file are also secured
by default when not embedded in a bounded task flow. Keep in mind that OPSS

Note: JDeveloper must not be used as an identity store provisioning
tool, and you must be careful not to deploy the application with user
identities that you create for testing purposes. Deploying user
identities with the application introduces the risk that malicious users
may gain unintended access. Instead, rely on the system administrator
to configure user identities through the tools provided by the
domain-level identity management system.

Adding Function Security to the Application

Implementing Function Security 49-23

will not check authorization for pages or page fragments that do not have a
corresponding ADF page definition file.

■ Pages and page fragments embedded in bounded task flows will not be checked
by OPSS for authorization. Instead, they are granted or denied as a single unit
depending on the entitlement granted to the bounded task flow. That means those
pages and page fragments do not need to be explicitly granted in the policy store.

■ Bounded task flows embedded in bounded task flows will by checked by OPSS for
authorization.

■ ADF does not enforce security on user interface components, such as buttons or
links) that navigate to securable artifacts (pages and task flows). An explicit EL
expression must be attached to the component to make it logically consistent with
its target.

■ The test-all role is just a means of not breaking the application once ADF
Security is enabled. Therefore, it should never be deployed, since it grants access
to the application for non-authenticated users.

Adding Function Security to the Application

49-24 Developer's Guide

50

Securing Web Services Use Cases 50-1

50Securing Web Services Use Cases

This chapter describes the best practices for securing Web services in an Oracle Fusion
application using an Oracle Web Services Manager (Oracle WSM) feature called global
policy attachments (GPA).

This chapter contains the following sections:

■ Section 50.1, "Introduction to Securing Web Services Use Cases"

■ Section 50.2, "Understanding Oracle Web Services Manager Best Practices"

■ Section 50.3, "Attaching Policies Globally"

■ Section 50.4, "Attaching Policies Locally"

■ Section 50.5, "Authorizing the Web Service with Entitlement Grants"

■ Section 50.6, "What Happens At Runtime: How Policies Are Enforced"

■ Section 50.7, "Maintaining Application Session Context Across Web Service
Requests"

50.1 Introduction to Securing Web Services Use Cases
The service use case patterns described in Part VI, "Common Service Use Cases and
Design Patterns" must be secured. Security requirements vary depending on service
and client implementations.

The following use case pattern represents an example of a typical pattern. The pattern
includes some possible variations that require different security implementations. The
use case example highlights the security implementation requirements of each service
component.

An example service use case:
1. A user logs into an ADF web application.

2. The application raises a business event.

3. The business event triggers an SOA composite through a Mediator component.

Alternatively, you can trigger or call a SOA composite by any one of the following:

■ Another SOA composite through a business event.

■ Java or PL/SQL code through a business event.

■ Synchronously calling the SOA composite through a JAX-WS proxy.

■ An ADF Web service data control (very rarely).

Introduction to Securing Web Services Use Cases

50-2 Developer's Guide

4. The Mediator component invokes a Business Process Execution Language (BPEL)
process (unless the JAX-WS proxy or ADF Web service data control is used).

The Mediator can invoke various BPEL processes based on the incoming event. It
can also transform the event to the payload that BPEL process takes.

5. The BPEL process interacts with ADF Business Components Web services so as to
execute the business logic of the use case.

While event generation typically begins with ADF Business Components, it is also
possible to generate events from another SOA composite, Java PL/SQL code, or Java
code and either directly or indirectly invoke the ADF Business Components Web
service. However, when the event is triggered from the user interface and ADF
Business Components, the ADF Business Components Web service can be invoked
synchronously using the ServiceFactory interface (using either RMI or SOAP).

Figure 50–1 illustrates the possible event generation use cases for Oracle Fusion
applications. The main use case flow—ADF Business Components-generated
events—is illustrated in the center, along with numbers (enclosed in circles)
illustrating the corresponding steps of the above use case. Possible alternative flows
are represented by dashed lines and numbers (enclosed in boxes, again corresponding
to the steps of the above use case).

Figure 50–1 Sample Web Service Use Case

Oracle Fusion applications typically use SOAP services. Use Oracle Web Services
Manager (Oracle WSM) to secure these services. Following are the main
recommendations when using Oracle WSM with Oracle Fusion Applications.

Understanding Oracle Web Services Manager Best Practices

Securing Web Services Use Cases 50-3

■ Attach Oracle WSM authentication service policies to Web services and BPEL
process Web service bindings.

■ Attach Oracle WSM client policies to Web services references in BPEL Partner
links, proxies and ADF Web services data controls.

■ It is a requirement to enforce authentication on all ADF Business Components Web
services and exposed BPEL processes.

■ It is a requirement to enforce authorization on all ADF Business Components Web
services.

■ No authorization is required for SOA components, although it is possible to
implement authorization checks for users and enterprise roles. You can enable
authorization checks in ADF Business Components Web services.

■ All request and response messages must be protected for integrity and
confidentiality using an XML signature and encryption. Oracle WSM
transparently handles this.

■ Oracle WSM policies do not apply to events.

50.2 Understanding Oracle Web Services Manager Best Practices
You can secure Web services and clients used in your Oracle Fusion application with
Oracle Web Services Manager (Oracle WSM). A component of Oracle SOA Suite,
Oracle Web Services Manager provides security policies that you can declaratively
attach to SOAP services and clients.

Oracle Fusion Applications make use of an Oracle WSM feature called global policy
attachments (GPA). Using GPA, policies are not attached locally, but are specified at a
global level. At runtime, components simply inherit the global policy and Oracle WSM
enforces it.

Unlike local policy attachments (LPA), which need to be added at every Web service
client and server, global policy attachment (GPA) can be attached at a domain level.
This makes it easy for the system administrator to have a uniform policy for all Web
services across the domain.

Certain scenarios exist in which GPA cannot be used:

■ Public Web services (those that do not need any user authentication) should use
LPA to locally attach a "no authentication" policy on both the client side and the
service side.

■ When a Web service client needs to connect to a service using a particular user
name and password, you need to specify the user name and password using a
configuration override.

But GPA policies do not allow configuration overrides, which means you must use
LPA to attach a username password policy on the client side. Note that even
though configuration overrides require that you implement LPA on the client side,
you still can allow the system administrator to define GPA on the server side for

Note: All Oracle Fusion application Web services should use global
policy attachment wherever possible. For complete details about how
a system administrator attaches policies globally, see the
"Understanding Oracle WSM Policy Framework" chapter in the Oracle
Fusion Middleware Security and Administrator's Guide for Web Services.

Attaching Policies Globally

50-4 Developer's Guide

username password policies. Unlike the client side, the server side need not
specify a particular username and password, instead it will accept any username
and password.

■ When a Web service requires additional security hardening, because, for example,
they want to use a key that is different from the domain key generated for Oracle
Fusion Applications, then you must use LPA and specify this key using a
configuration override.

The Oracle Fusion Applications provisioning script generates a single keypair
(public key and self signed certificate) with the alias orakey and stores the keypair
in all Oracle Fusion Applications domains. All GPA policies will use this key by
default unless you use LPA and specify a different key.

■ When a Web service exists that needs to be invoked outside of an Oracle Fusion
application that external service will be secured with message protection. The
default GPA for Oracle Fusion Applications is no message protection, which is not
sufficient for external services that can be invoked outside Oracle Fusion
applications. For external web services, you must use LPA to use a message
protection policy, for example to secure the external service to make it more secure
or less secure.

■ When a Fusion Web service can be invoked by an application outside of Oracle
Fusion applications (because an Oracle Fusion application is integrated with the
calling application) that service will most likely need to use policies to provide
additional hardening. In this case, these clients should use LPA.

■ Fusion Web service clients that need to connect to external non Fusion Web
services will most likely need to use policies that are different from the globally
attached policies. In this case, these clients should also use LPA.

You should use LPA whenever you want to override the globally attached policy. The
user name and specifying an alternate key are common examples of overriding a
globally attached policy.

In summary, use LPA when the Web service is a public service, when the service
requires elevated privileges to connect using a particular user name and password, or
when the service requires additional security hardening.

50.3 Attaching Policies Globally
All Oracle Fusion application Web services and Web service clients should use global
policy attachment wherever possible. The developer and system administrator work
together to enable GPA.

To enable global policy attachment:
1. Remove LPA from all clients and Web services (except for the situations that need

to use LPA).

A system administrator can do this using either Oracle Enterprise Manager Fusion
Middleware Control or using WebLogic Scripting Tool (WLST).

For details about creating global policy sets, see the "Managing Web Service
Policies" chapter in the Oracle Fusion Middleware Security and Administrator's Guide
for Web Services.

2. Before enabling GPA, make sure that you have attached the no_authentication_
service_policy policy to those services that do not need authentication.

Attaching Policies Locally

Securing Web Services Use Cases 50-5

Note that unless you attach a no behavior policy (oracle/no_authentication_
service_policy or oracle/no_authentication_client_policy), public Web
services will inherit GPA and will no longer be accessible.

Developers can do this in Oracle JDeveloper directly in the ADF Business
Components Web service implementation class file, as described in Section 50.4,
"Attaching Policies Locally." Also, a system administrator can do this either using
Oracle Enterprise Manager Fusion Middleware Control or using WebLogic
Scripting Tool (WLST).

For details about attaching local policies on Oracle WebLogic Server, see the
"Attaching Policies to Web Services" chapter in the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

3. Decide which policy to attach globally.

Profile choices are Authentication (AuthN), SSL and Message protection. Oracle
Fusion Applications are configured to use the AuthN profile by default. For
background about profiles choices, see Table 50–1.

For a summary of the predefined policies, see the "Predefined Policies" appendix
in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

4. Create the global policy sets.

A system administrator does this using either Oracle Enterprise Manager Fusion
Middleware Control or using WLST. They will need to define a separate GPA
policy set for each kind of service–SOA service, SOA reference, ADF Business
Components Web service, and so on.

For details about creating global policy sets, see the "Creating and Managing
Policy Sets" chapter in the Oracle Fusion Middleware Security and Administrator's
Guide for Web Services.

5. Verify that your client and Web services are using GPA.

A system administrator does this using either Oracle Enterprise Manager Fusion
Middleware Control or using WLST.

For details about creating global policy sets, see the "Creating and Managing
Policy Sets" chapter in the Oracle Fusion Middleware Security and Administrator's
Guide for Web Services.

50.4 Attaching Policies Locally
Because certain scenarios exist in which GPA cannot be used, Oracle Fusion
application developers may need to use local policy attachment (LPA) for Web services
and Web service clients. In some cases, LPA must be used on the service side and client
side, while other cases exist where only the client side requires LPA.

You should use local policy attachment:

■ When a Web service should be public (those that do not require user
authentication)

■ When a Web service client requires elevated privileges to connect using a
particular user name and password

■ When a Web service requires additional security hardening

■ When Fusion Web service clients (for example, a JRF client or a SOA client) need
to connect to external non Fusion Web services

Attaching Policies Locally

50-6 Developer's Guide

Table 50–1 shows the recommended Oracle WSM policies and the components to
which they apply.

Table 50–1 Recommended Oracle Web Services Manager Policies for Oracle Fusion Applications

Profile Service Side Policy Client Side Policy Features

Authentication
(AuthN)

wss_saml_or_username_
 token_service_policy

Username:

wss10_saml_token_
 client_policy

SAML:

wss10_saml_token_
 client_policy

Performance: High

Security: Low

 - Authentication: password in clear,
SAML token is unsigned.

 - Wire level security: No

 - Hardening: no

Configuration: Easy. No key stores to
set up.

Interoperability:

 - Username: High interoperates easily
with many different stacks, including
.NET, SOAP-UI, and more.

 - SAML: Low. Unsigned SAML SV
does not interoperate with most stacks.

SSL Profile wss_saml_or_username_
 token_over_ssl_
 service_policy

Username:

wss10_saml_token_
 client_policy

SAML:

wss10_saml_token_
 client_policy

Performance: Medium

Security: Medium

 - Authentication: passwords
encrypted because of 1-way-SSL,
SAML token is signed by virtue of
2-way-SSL.

 - Wire level security: Transport level,
using 1-way-SSL for username, and
2-way-SSL for SAML.

 - Hardening: Medium. Each
application server can have its own
separate key.

Configuration: Hard. The same Oracle
HTTP Server URI must be set up for
both 1-way and 2-way-SSL and the
client certificate needs to be set to
propagate from Oracle HTTP Server to
Oracle WebLogic Server. For details, see
the "Setting Up Your Environment for
Policies" in the Oracle Fusion Middleware
Security and Administrator's Guide for
Web Services.

Interoperatiblity:

 - Username: High

 - SAML: Medium

Attaching Policies Locally

Securing Web Services Use Cases 50-7

50.4.1 How to Make a Web Service Publicly Accessible
One side effect of enabling GPA is that even public Web services (those that do not
need any authentication) will now suddenly prompt for security credentials. To
prevent this, all such Web services should use LPA to locally attach the oracle/no_
authentication_client_policy on the client side and oracle/no_authentication_
service_policy on the service side. Once this is done, these clients and Web services
will ignore any global policy, and will work without authentication as before.

For example, suppose there is a non-Oracle external client calling a Fusion Web
service. If this Web service did not have any security policy, and you turned on GPA,
then this service will inherit the GPA setting, but because the client is an external
client, it will not. Consequently, the service will be expecting secure messages that the
client will not be sending, and the service will reject those messages.

For more information about directly attaching the no behavior policy to a Web service
endpoint, see the "Creating and Managing Policy Sets" chapter in the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

In the case of an ADF Business Components Web service, you can enter service
annotations in the Web service implementation class to specify the no behavior policy,
as shown in Example 50–1.

Example 50–1 Enabling No Behavior Policy for an ADF Business Components Web
Service

@SecurityPolicy({ "oracle/no_authentication_service_policy"})
@CallbackSecurityPolicy("oracle/no_authentication_service_policy")

For more information about ADF Business Components Web services, see the
"Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

For details about locally attaching the no behavior policy on Oracle WebLogic Server
using Fusion Middleware Control and the WebLogic Scripting Tool (WLST), see the
"Attaching Policies to Web Services" chapter in the Oracle Fusion Middleware Security
and Administrator's Guide for Web Services.

Message
Security

wss11_saml_or_
 username_token_with_
 message_protection_
 service_policy

Username:

wss10_saml_token_
 client_policy

SAML:

wss10_saml_token_
 client_policy

Performance: Medium

Security: High

 - Wire level security: Transport level

 - Hardening: High. Not only each
server, but each Web service can have
its own separate key.

Configuration: Medium. Key stores
need to be set up.

Interoperatiblity:

 - Username: Medium

 - SAML: Medium

No Behavior oracle/no_
 authentication_
 service_policy

oracle/no_
 authentication_
 client_policy

No security. Service will be accessible.

Table 50–1 (Cont.) Recommended Oracle Web Services Manager Policies for Oracle Fusion Applications

Profile Service Side Policy Client Side Policy Features

Attaching Policies Locally

50-8 Developer's Guide

50.4.2 How to Support Elevated Privileges for Web Service Clients
By default, GPA supports identity propagation on the client side. However, because
GPA is attached globally it is not possible to do any local configuration overrides. For
example, if you have a Web service client that needs to connect using a particular user
name and password (this is known as elevated privileges or identity escalation), then
you cannot use GPA. With GPA you cannot specify this user name/password on a per
client basis.

Oracle Fusion Applications can use either RMI or SOAP to invoke the service. An RMI
invocation of the service does not require security configuration. A SOAP invocation
of the service can support identity propagation or identity switch.

To support identity propagation by the client, use the SAML token policy. To support
identity switch, use the user name policy.

In the case of an ADF Business Components Web service, you can enter service
annotations in the Web service implementation class to specify the locally attached
policy, as shown in Example 50–2

Example 50–2 Attaching a Local Policy for an ADF Business Components Web Service

@SecurityPolicy({ "oracle/wss11_saml_or_username_token_with_message_protection_
service_policy"})
@CallbackSecurityPolicy("oracle/wss11_saml_token_with_message_protection_client_
policy")

Note that Fusion Web services should have asynchronous method calls enabled.

50.4.3 How to Provide Additional Security Hardening for Web Service Clients
Typically, Fusion Web services use a common domain wide key, which should be used
both for encryption and signing. Since this key is global it works very well with GPA.
However, if certain Web services requires additional security hardening, because, for
example, they want to use a key that is different from the domain key, then those
services would need to use LPA and specify this key using a configuration override.

Another use case that would require LPA to provide additional security hardening
exists when a non-Oracle Fusion application invokes an Oracle Fusion application
Web service. In this case, because Fusion Web services do not use message protection
by default, additional protection will be required to comply with the invoking
application security policies.

For details about locally attaching Web service client policy and configuring override
properties on Oracle WebLogic Server, see the "Attaching Policies to Web Services"
chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

Note: Even though you need to use LPA on the client side to perform
configuration overrides, you can still use GPA on the service side. This
is because on the service side you do not need a configuration
override to set up a particular user name, instead you just attach the
saml_or_username policy which will accept either user names (for
identity escalation) or saml (for identity propagation).

Authorizing the Web Service with Entitlement Grants

Securing Web Services Use Cases 50-9

50.4.4 How to Connect to Third Party Web Services
Fusion Web service clients that need to connect to external non-Fusion Web services
will most likely need to use policies that are different from the globally set policy.
Because the Oracle Fusion default for GPA is no message protection, this might not be
sufficient for external services. In this case, clients should also use LPA.

For details about locally attaching Web service client policy on Oracle WebLogic
Server, see the "Attaching Policies to Web Services" chapter in the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

50.5 Authorizing the Web Service with Entitlement Grants
When you want to secure an ADF Business Components Web service to require user
authorization, you use JDeveloper to define entitlement-based function security
policies directly in the file-based security repository for your Oracle Fusion
application.

Before you begin:
You will need to complete the following tasks.

1. Consult a security administrator to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

For details about how the security manager exports the application policy store,
see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator's Guide.

2. Copy the exported jazn-data.xml file into your application workspace.

This is the file that JDeveloper will update when you create function security
policies. In order for JDeveloper to use the file, copy the file to your application
workspace in the <JDevAppHome>/src/META-INF folder.

To secure an ADF Business Components Web service:

1. In the exported jazn-data.xml file, grant access to the Web service using the
JDeveloper security policy editor.

2. Enforce ADF Security authorization for the Web service in the Web service
implementation class.

50.5.1 How to Grant Access for the Service
Oracle ADF Security is responsible for authorizing Web services, that is, Oracle ADF
Security decides whether a Web service is available to a given user by checking against
the Oracle Platform Security Services (OPSS) policy store.

To grant access:

1. Create an entitlement to group one or more custom resources and their
corresponding actions that together entitle end users to access the resource when
needed to complete a specific duty.

In the Oracle Fusion Applications environment, the basic security artifact for
entitlement-based security polices is the entitlement (an entitlement is defined by
an OPSS permission set).

2. Grant access to the Web service by defining an entitlement grant with a custom
duty role that was added to the Oracle Fusion application policy store as the
grantee.

Authorizing the Web Service with Entitlement Grants

50-10 Developer's Guide

The entitlement grant to the role specifies that the end user must be a member of
the role to access the resources specified by the entitlement. You should use
custom duty roles and you should not grant entitlements to predefined duty roles.

For details about creating entitlement-based security policies using JDeveloper tools,
see Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles."

Example 50–3 shows a complete set of required grants enabling Web service
authorization.

Example 50–3 Entitlement-Based Policy Definition in the jazn-data.xml File

<?xml version="1.0" ?>
<jazn-data>
<policy-store>
<applications>
<application>
<name>MyApp</name>

<app-roles>
<app-role>
<name>AppRole</name>
<display-name>AppRole display name</display-name>
<description>AppRole description</description>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>

</app-role>
</app-roles>

<role-categories>
<role-category>
<name>MyAppRoleCategory</name>
<display-name>MyAppRoleCategory display name</display-name>
<description>MyAppRoleCategory description</description>

</role-category>
</role-categories>

<!-- resource-specific OPSS permission class definition -->
<resource-types>
<resource-type>
<name>WebserviceResourceType</name>
<display-name>WebserviceResourceType</display-name>
<description>Webservice Resource</description>
<provider-name />
<matcher-class>oracle.wsm.security.WSFunctionPermission</matcher-class>
<actions-delimiter>,</actions-delimiter>
<actions>invoke</actions>

</resource-type>
</resource-types>

<resources>
<resource>
<name>http://xmlns.oracle.com/apps/financials/subledgerAccounting

/accountingMethodSetup/accountRulesService/AccountRulesService#*
</name>
<type-name-ref>WebserviceResourceType</type-name-ref>

</resource>
<resource>
<name>http://xmlns.oracle.com/apps/contracts/termsAuthoring/deliverables

/service/DeliverableService#findDeliverableByDeliverableId
</name>

Authorizing the Web Service with Entitlement Grants

Securing Web Services Use Cases 50-11

<type-name-ref>WebserviceResourceType</type-name-ref>
</resource>

</resources>

<!-- entitlement definition -->
<permission-sets>
<permission-set>
<name>MyWebServiceEntitlement</name>
<display-name>MyEntitlement display name</display-name>
<description>MyEntitlement description</description>
<member-resources>
<member-resource>

<type-name-ref>WebserviceResourceType</type-name-ref>
<resource-name>xmlns.oracle.com/apps/financials/subledgerAccounting

/accountingMethodSetup/accountRulesService/AccountRulesService#*
</resource-name>
<actions>invoke</actions>

</member-resource>
<member-resource>
<type-name-ref>WebserviceResourceType</type-name-ref>
<resource-name>http://xmlns.oracle.com/apps/contracts/

termsAuthoring/deliverables/service/
DeliverableService#findDeliverableByDeliverableId

</resource-name>
<actions>invoke</actions>

</member-resource>
</member-resources>

</permission-set>
</permission-sets>

<!-- Oracle function security policies -->
<jazn-policy>
<!-- function security policy is a grantee and permission set -->
<grant>
<!-- application role is the recipient of the privileges -->
<grantee>
<principals>
<principal>
<class>

oracle.security.jps.service.policystore.ApplicationRole
</class>
<name>AppRole</name>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>

</principal>
</principals>

</grantee>

<!-- entitlement granted to an application role -->
<permission-set-refs>
<permission-set-ref>
<name>MyWebServiceEntitlement</name>

</permission-set-ref>
</permission-set-refs>

</grant>
</jazn-policy>

</application>
</applications>
</policy-store>
</jazn-data>

Authorizing the Web Service with Entitlement Grants

50-12 Developer's Guide

For details about the ADF Security, see the "Enabling ADF Security in a Fusion Web
Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

50.5.2 How to Enforce Authorization for the Service
In the case of ADF Business Components Web services, there is no need to run the
ADF Security wizard to enforce authorization checking on the defined Web service
security policies. Additionally, Oracle Fusion applications do not use Oracle WSM
policies for authorization. Instead, the Oracle Fusion application uses the policy
interceptor defined by the ADF Business Components to enforce authorization
checking. The service factory is used to invoke an ADF Business Components service
synchronously within a domain. Security information is passed from the calling
program to the service automatically. And, whether the service is invoked by the
service factory directly or through a BPEL process, authorization is enforced by the EJB
implementation of the ADF Business Components Web service.

Table 50–2 shows the recommended policy interceptor used to enforce
entitlement-based policies for Oracle Fusion applications and the components to
which they apply.

The ADF Business Components policy interceptor works for both RMI and SOAP
cases and supports the EJB implementation of ADF Business Components Web
services. Therefore, as long as ServicePermissionCheckInterceptor is specified in the
ADF Business Components Web service implementation class, an Oracle WSM
authorization policy is not required for Fusion Web services.

In the case of an ADF Business Components Web service, you enter the @Interceptors
annotation and import statements in the Web service implementation class to specify
the policy interceptor, as shown in Example 50–4.

Example 50–4 Enforcing Authorization with ADF Business Components Policy Interceptor

import oracle.jbo.server.svc.ServicePermissionCheckInterceptor;
import oracle.jbo.server.svc.ServiceContextInterceptor;
@Interceptors({ServiceContextInterceptor.class, ServicePermissionCheckInterceptor.class})
public class xxxServiceImpl ...

In order for this interceptor to work, you need to configure the policy interceptor in
your ejb-jar.xml file. In the Application Navigator, expand the META-INF node of
the Web service project and double-click the ejb-jar.xml node. In the source editor, add
the JpsInterceptor definition required by the EJB for authorization checking, as
shown in Example 50–5.

Example 50–5 Configuring the JPSInterceptor for the Application in the ejb-jar.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd" version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee">

Table 50–2 Recommended ADF Business Components Policy Interceptor

On this component... Use this interceptor...

ADF Business Components Web
services (at the service or
operation level)

Use ServicePermissionCheckInterceptor to
implement authorization.

What Happens At Runtime: How Policies Are Enforced

Securing Web Services Use Cases 50-13

 <enterprise-beans>
 ...
 </enterprise-beans>
 <interceptors>
 <interceptor>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ApplicationName</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>
 application_name
 </injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 ...
 <interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

For details about the ADF Business Components ServiceFactory class, see the
"Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

50.6 What Happens At Runtime: How Policies Are Enforced
When a service is invoked there is security for the client side (caller) and for the server
side (callee).

The client side can invoke the service through a SOAP service invocation, where the
client can be a JAX-WS proxy or a SOA composite (service factory via SOAP is still
JAX-WS proxy). Before passing the service to the server side, the client side will either
propagate the current user credential or switch identity, based on the client side
authentication policy.

Alternatively, the client side can invoke the service through an RMI invocation. This
type of invocation applies only to the ADF Business Component Web service. In this
case, there is no client side authentication policy, since the client side always just
propagates the identity to the server side.

Security for the server side is based on the Oracle WSM authentication policy. The
server side first authenticates the user. A SOA composite service will not perform
authorization, but ADF Business Components Web services will check whether the
user is authorized to invoke the service. This type of service performs the

Maintaining Application Session Context Across Web Service Requests

50-14 Developer's Guide

authorization check using the EJB ServicePermissionCheckInterceptor interceptor
before executing any service method.

Figure 50–2 illustrates how Oracle WSM policies are enforced within the Oracle Fusion
Applications use case described in Section 50.1, "Introduction to Securing Web Services
Use Cases."

Figure 50–2 Using Oracle Web Services Manager Security Policies

This example use case illustrates the following:

■ Each SOAP client includes an attached client policy.

■ Authorization is enforced in the ADF Business Components Web services only.

■ SOA components have no authorization policies.

■ Oracle Web Services Manager policies do not apply to events.

For more information about Oracle Web Services Manager policies, see the
"Understanding Oracle WSM Policy Framework" chapter in the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

50.7 Maintaining Application Session Context Across Web Service
Requests

When the user invokes a function defined by a web service, the current application
session context must be propagated across web service requests. The application
session context contains important information that is stored for the duration of the

Maintaining Application Session Context Across Web Service Requests

Securing Web Services Use Cases 50-15

user's HTTP session. This includes information that defines a context for the
application, such as its language preferences, date, and number formatting.

In order for application session context propagation to occur, you need to register the
ApplSessionContext class with the context interceptor infrastructure. Then when a
SOAP request is generated by the invoked web service, the request calls out to the
infrastructure and adds the application session context onto the SOAP payload.

To register the ApplSessionContext class, you must add the oracle.applcore.config
library to the weblogic-application.xml file for projects on both ends of the web
service request. In order for propagation to work, both the client sending the request
and the server receiving the request must have this library.

Before you begin:
It may be helpful to have an understanding of application user sessions. For more
information, see Chapter 47, "Implementing Application User Sessions."

You will need to complete this task:

Configure your project to use application user sessions. For more information, see
Section 47.2, "Configuring Your Project to Use Application User Sessions."

To add the Oracle Applications Core (Config) JDev library to the classpath:
1. In the Application Resources panel of the Application Navigator, double-click the

weblogic-application.xml file of the project that defines the incoming side of the
web service request.

2. In the source editor for the file, add the following lines alongside the other
<library-ref> tags:

<library-ref>
 <library-name>
 oracle.applcore.config
 </library-name>
</library-ref>

The order of the <library-ref> tags is not important; however, all <library-ref>
tags must be grouped together.

3. Repeat this change in the project that defines the outgoing side of the web service
request.

In order for propagation to work, both the client sending the request and the
server receiving the request must have the oracle.applcore.config library.

Maintaining Application Session Context Across Web Service Requests

50-16 Developer's Guide

51

Securing End-to-End Portlet Applications 51-1

51Securing End-to-End Portlet Applications

This chapter describes how to authenticate and authorize portlet services, as well as
configure key and credential stores. The process of securing portlet services is similar
to that of securing web services.

■ Section 51.1, "Introduction to Securing End-to-End Portlet Applications"

■ Section 51.2, "Securing the Portlet Service"

■ Section 51.3, "Securing the Portlet Client"

■ Section 51.4, "Registering the Key Store and Writing to the Credential Store"

51.1 Introduction to Securing End-to-End Portlet Applications
In Oracle Fusion Applications, portlets are WSRP portlets, therefore, web services.
Oracle Web Services Manager (WSM) policies secure portlets, in the same way that
they secure ordinary web services.

Oracle Web Services Manager implements web service security, and allows for run
time enforcement and declarative policy attachment within Oracle Fusion
Middleware.

Oracle Fusion applications make use of an Oracle WSM feature called global policy
attachment (GPA). In GPA, policies are not attached locally, but specified at a global
level. At runtime, components inherit the global policy and Oracle WSM enforces it.

For each portlet, these four ports require Oracle WSM policies:

■ WSRP_v2_Markup_Service

■ WSRP_v2_PortletManagement_Service

■ WSRP_v2_Registration_Service

■ WSRP_v2_ServiceDescription_Service

Only the WSRP_v2_Markup_Service markup port requires an authentication policy. By
default, no policy should be locally attached to the markup port; this port will inherit
the policy from GPA.

However, if the WSRP_v2_Markup_Service port has unique requirements not fulfilled
by GPA, then a locally attached policy will be necessary. Additionally, if the locally
attached policy specifies message protection or SSL, the necessary key store setup
must be in place.

The three non-markup ports are anonymous and therefore you will need to locally
attach a "no behavior" policy (defined by oracle/no_authentication_service_
policy) in order to override GPA.

Securing the Portlet Service

51-2 Developer's Guide

The requirements for the client counterparts for each of these ports is exactly the same.
Clients of the WSRP_v2_Markup_Service port inherit GPA, and clients of the three
non-markup ports propagate an anonymous token defined by the oracle/no_
authentication_client_policy policy.

Table 51–1 summarizes the policies attached to the portlet service and the client.

To override GPA and secure end-to-end portlet applications with a locally attached
policy:

■ Secure the portlet service.

■ Secure the portlet client.

■ Register the key store.

■ Write to the credential store.

51.2 Securing the Portlet Service
Securing the portlet service with a locally attached policy that overrides GPA involves
the following main steps:

■ Authenticating the service

■ Configuring the key store and credential store

■ Authorizing the service

51.2.1 How to Authenticate the Service
Authenticating the service is necessary only in two cases:

■ When applying the "no behavior" policy to the anonymous ports.

■ When GPA is being overridden for the WSRP_v2_Markup_Service port.

When a policy is attached locally, Oracle ADF must authenticate the portlet service
against an Oracle Web Services Manager policy, such as wss10_saml_token_with_

Table 51–1 Recommended Oracle Web Services Manager Policies for Oracle Fusion
Portlets

Port Service Side Policy Client Side Policy

WSRP_v2_Markup_Service No local policy. Inherits from
GPA, which by default is
oracle/wss_saml_or_username_
token_service_policy.

No local policy. Inherits from
GPA, which by default is
oracle/wss_saml_or_
username_token_client_
policy.

WSRP_v2_
PortletManagement_
Service

Local anonymous policy:

oracle/no_authentication_
service_policy

Local anonymous policy:

oracle/no_authentication_
client_policy

WSRP_v2_Registration_
Service

Local anonymous policy:

oracle/no_authentication_
service_policy

Local anonymous policy:

oracle/no_authentication_
client_policy

WSRP_v2_
ServiceDescription_
Service

Local anonymous policy:

oracle/no_authentication_
service_policy

Local anonymous policy:

oracle/no_authentication_
client_policy

Securing the Portlet Service

Securing End-to-End Portlet Applications 51-3

message_protection_service_policy. In addition, it is necessary to configure security
for the Oracle Fusion web application EAR file.

Authenticating the services involves the following main steps:

■ Attach the policy (for example, wss10_saml_token_with_message_protection_
service_policy) to the provider. You can do this in one of the following ways:

– Use Oracle Enterprise Manager.

– Alternatively, manually update oracle-webservices.xml. This is a packaging
artifact, meaning it is not available in Oracle JDeveloper during design time.
To edit the file, deploy your application to an EAR file. Extract the
oracle-webservices.xml file, update it and repackage it into the EAR file.

To edit the oracle-webservices.xml file when overriding GPA:
Open the oracle-webservices.xml file, find port-component name="WSRP_v2_
Markup_Service" and add the code shown in Example 51–1.

Example 51–1 Edit the oracle-webservices.xml File

<port-component name="WSRP_v2_Markup_Service" style="document"
bindingQName="{urn:oasis:names:tc:wsrp:v2:bind}WSRP_v2_Markup_Binding_SOAP" enabled="true"
schemaValidateInput="false">
 <policy-references>
 <policy-reference enabled="true" uri="oracle/wss10_saml_token_with_message_protection_
 service_policy" category="security"/>
 </policy-references>
 <operations>
 <operation name="performBlockingInteraction" inputName="performBlockingInteraction"
 outputName="performBlockingInteractionResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}performBlockingInteraction" use="literal"/>
 <operation name="releaseSessions" inputName="releaseSessions"
 outputName="releaseSessionsResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}releaseSessions" use="literal"/>
 <operation name="getMarkup" inputName="getMarkup" outputName="getMarkupResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}getMarkup" use="literal"/>
 <operation name="handleEvents" inputName="handleEvents" outputName="handleEventsResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}handleEvents" use="literal"/>
 <operation name="initCookie" inputName="initCookie" outputName="initCookieResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}initCookie" use="literal"/>
 <operation name="getResource" inputName="getResource" outputName="getResourceResponse"
 input="{urn:oasis:names:tc:wsrp:v2:types}getResource" use="literal"/>
 </operations>
 <!-- start:deployment time generated info -->
 <deployment>
 <tie-class-name>oasis.names.tc.wsrp.v2.bind.runtime.WSRP_v2_Markup_Binding_SOAP_
 Tie</tie-class-name>
 <service-qname namespaceURI="urn:oasis:names:tc:wsrp:v2:wsdl" localpart="WSRP_v2_Service"/>
 <soap-version>soap1.1</soap-version>
 </deployment>
 <!-- end:deployment time generated info -->
 <servlet-link>WSRP_v2_Markup_Service</servlet-link>
</port-component>

51.2.2 How to Configure the Key Store and Credential Store
By default, a globally attached policy profile specifies (authentication [AuthN]) and
there is no need to use Oracle Enterprise Manager to configure a key store or a

Securing the Portlet Service

51-4 Developer's Guide

credential store. You only need to perform this task when a policy has a message
protection or a SSL profile.

The key store contains the signing and encryption keys used to encrypt and decrypt
messages. The key store itself and all the keys are password protected. The keys are
also referred to using aliases, which are stored, along with their corresponding
passwords, in the credential store. When accessing the key store, query the credential
store first for the necessary aliases and passwords.

You can verify the creation of the key store and credential store as follows.

To verify the creation of the key store and credential store:
1. Open $DOMAIN_HOME/config/fmwconfig/jps-config.xml.

2. Verify the existence of the entry shown in Example 51–2. This code should be
configured out of the box.

Example 51–2 Verify the credstore and keystore serviceInstance Elements

<serviceInstance location="./" provider="credstoressp" name="credstore">
 <description>File Based Credential Store Service Instance</description>
</serviceInstance>

<serviceInstance name="keystore" provider="keystore.provider" location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance>

3. Make sure the default context references the key store and credential store service
instances as shown in Example 51–3.

Example 51–3 Default Context References to the Credential Store and Key Store

<jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.ldap"/>
 <serviceInstanceRef ref="keystore"/>
</jpsContext>

51.2.3 How to Authorize the Service
Oracle ADF Security is responsible for authorizing portlets, that is, Oracle ADF
Security decides whether a portlet is available to a given user by checking it against
the Oracle Platform Security Services (OPSS) policy store. Portlets are just one way of
exposing local task flows to remote applications. A component called a portlet bridge
is responsible for bridging between portlets and task flows. A portlet bridge enables
exposing a task flow as a portlet.

Note: There is no need to restart your domain if this configuration is
already in place.

Securing the Portlet Service

Securing End-to-End Portlet Applications 51-5

Once you create an entitlement grant for the desired task flow in jazn-data.xml, you
must create a resource grant for the portlet bridge component to the authenticated
role, as shown in Example 51–4.

Example 51–4 Resource Grant to the Authenticated Role

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.internal.core.principals.
 JpsAuthenticatedRoleImpl</class>
 <name>authenticated-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/adfp-portlet-bridge-container.xml
 #adfp-portlet-bridge-container</name>
 <actions>view</actions>
 </permission>
 </permissions>
 </grant>
...
</jazn-policy>

Example 51–5 shows an entitlement grant enabling access to the task flow.

Example 51–5 Entitlement-Based Policy Definition in the jazn-data.xml File

<?xml version="1.0" ?>
<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <!-- resource-specific OPSS permission class definition -->
 <resource-types>
 <resource-type>
 <name>TaskFlowResourceType</name>
 <display-name>Task Flow</display-name>
 <description>Task Flow resource type</description>
 <matcher-class>oracle.adf.controller.security.
 TaskFlowPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>view,customize,grant,personalize</actions>

Securing the Portlet Service

51-6 Developer's Guide

 </resource-type>
 </resource-types>

 <resources>
 <resource>

<name>/WEB-INF/my-task-flow.xml#my-task-flow</name>
 <display-name>my-task-flow</display-name>
 <description>/WEB-INF/my-task-flow</description>
 <type-name-ref>TaskFlowResourceType</type-name-ref>
 </resource>
 </resources>

 <!-- entitlement definition -->
 <permission-sets>
 <permission-set>
 <name>MyPortletEntitlement</name>
 <member-resources>
 <member-resource>
 <resource-name>/WEB-INF/my-task-flow.xml#
 my-task-flow</type-name-ref>
 <type-name-ref>TaskFlowResourceType</type-name-ref>
 <display-name>my-task-flow</resource-name>
 <actions>view</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 </permission-sets>

 <!-- Oracle function security policies -->
 <jazn-policy>
 <!-- function security policy is a grantee and permission set -->
 <grant>
 <!-- application role is the recipient of the privileges -->
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 <name>AppRole</name>
 </principal>
 </principals>
 </grantee>

 <!-- entitlement granted to an application role -->
 <permission-set-refs>
 <permission-set-ref>
 <name>MyPortletEntitlement</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
</policy-store>
</jazn-data>

Note when the Oracle Fusion application needs to provide anonymous access to a
portlet, the bridge wrapper task flow needs a grant to the anonymous-role, and the
markup port needs a no_authentication policy, or it can use GPA, but needs to

Registering the Key Store and Writing to the Credential Store

Securing End-to-End Portlet Applications 51-7

specify a Default User in the producer registration, using a valid guest user account, as
described in Section 51.3, "Securing the Portlet Client."

51.3 Securing the Portlet Client
Securing the portlet client is necessary only when applying the "no behavior" policy to
the anonymous ports.

Securing a portlet consumer, or client, means enabling identity propagation. You can
enable identity propagation while registering the portlet producer in Oracle
JDeveloper. When registering the portlet producer, make sure you select following
values in the WSRP Portlet Producer Registration wizard.

In the Configure Security Attributes window, select the following:

■ Token Profile: Select a policy that overrides GPA. For example, you might select
No Authentication Client Policy when locally attaching a policy for any of the
three non-markup ports.

■ Configuration: Select Default.

■ Default User: Leave empty or enter a valid guest user account ID to propagate to
the portlet.

Note that Default User is only used when the consumer identity is in fact
anonymous. In this case, the Default User field lets you specify some valid
identity that should be used to propagate to the portlet, when the consumer is
anonymous, and the producer needs to receive a valid identity.

Within the portlet consumer domain, make sure the key store and credential store are
the same ones used by the portlet producer or service. The key store and credential
store are located at $DOMAIN_HOME/config/fmwconfig. For more information, see the
section about verifying the creation of the key store and credential store under
Section 51.2.2, "How to Configure the Key Store and Credential Store."

51.4 Registering the Key Store and Writing to the Credential Store
By default, globally attached policy profile specifies (authentication [AuthN]) and
there is no need to use Oracle Enterprise Manager to register a key store or create a
credential store. You only need to perform this task when a policy profile offers
message protection or SSL.

However, if you need to configure another key store for your domain, use Oracle
Enterprise Manager to register the key store and write to the credential store.

51.4.1 How to Register the Key Store and Write to the Credential Store

To register the key store and write to the credential store:
1. In Oracle Enterprise Manager, expand your domain. Select WebLogic Domain >

WebLogic Domain Name.

2. In the right-hand pane, click the WebLogic Domain menu at the top of the page
and select Security > Credentials.

3. If there is no map called oracle.wsm.security, create one. If the map exists, skip
this step. Figure 51–1 displays the Create Map window.

Registering the Key Store and Writing to the Credential Store

51-8 Developer's Guide

Figure 51–1 Create a Map If None Exists

■ Click the Create Map button.

■ For the Map Name, enter oracle.wsm.security.

Do not create any keys. Keys are created when configuring the domain's
service provider.

4. In the right-hand pane, click the WebLogic Domain menu at the top of the page
and select Security > Security Provider Configuration.

5. In the Service Provider Configuration page, under the Key Store section, click the
Configure button. The Service Provider Configuration page is shown in
Figure 51–2.

Registering the Key Store and Writing to the Credential Store

Securing End-to-End Portlet Applications 51-9

Figure 51–2 Click the Configure Button

6. If the Keystore Path displays ./default-keystore.jks, follow the instructions
here. Otherwise, skip this step.

Uncheck the Configure KeyStore Management box and click OK. This displays
the window shown in Figure 51–2.

Under the Keystore section, click Configure again and enter the following
information. The file producer.jks is assumed to be located under the directory
path $DOMAIN_HOME/config/fmwconfig which contains a certificate alias called
producer. Figure 51–3 displays the Keystore Configuration page.

Maintaining Application Session Context Across Web Service Requests

51-10 Developer's Guide

Figure 51–3 Configure the Keystore

■ Keystore Path: Enter the path of the keystore, in this case ./producer.jks.

■ Password/Confirm Password: Enter the required password, then confirm the
password.

Signature Key

■ Key Alias: Enter the name of the signature key.

■ Signature Password/Confirm Password: Enter the required password, then
confirm the password.

Encryption Key

■ Crypt Alias: Enter the name of the encryption key.

■ Crypt Password/Confirm Password: Enter the required password, then
confirm the password.

7. Restart your domain.

51.4.2 What Happens When You Register the Key Store and Write to the Credential
Store

Entering this information enables the creation of keystore-csf-key, sign-csf-key
and enc-csf-key in the credential store of the domain. You can verify that the keys
have been created by viewing the credential store page of the domain in Oracle
Enterprise Manager.

51.5 Maintaining Application Session Context Across Web Service
Requests

When the user invokes a function defined by a web service, the current application
session context must be propagated across web service requests. The application
session context contains important information that is stored for the duration of the
user's HTTP session. This includes information that defines a context for the
application, such as its language preferences, date, and number formatting.

In order for application session context propagation to occur, you need to register the
ApplSessionContext class with the context interceptor infrastructure. Then when a

Maintaining Application Session Context Across Web Service Requests

Securing End-to-End Portlet Applications 51-11

SOAP request is generated by the invoked web service, the request calls out to the
infrastructure and adds the application session context onto the SOAP payload.

To register the ApplSessionContext class, you must add the oracle.applcore.config
library to the weblogic-application.xml file for projects on both ends of the web
service request. In order for propagation to work, both the portlet consumer and the
portlet producer must have this library.

Before you begin:
It may be helpful to have an understanding of application user sessions. For more
information, see Chapter 47, "Implementing Application User Sessions."

You will need to complete this task:

Configure your project to use application user sessions. For more information, see
Section 47.2, "Configuring Your Project to Use Application User Sessions."

To add the Oracle Applications Core (Config) JDev library to the classpath:
1. In the Application Resources panel of the Application Navigator, double-click the

weblogic-application.xml file of the project that defines the portlet producer.

2. In the source editor for the file, add the following lines alongside the other
<library-ref> tags:

<library-ref>
 <library-name>
 oracle.applcore.config
 </library-name>
</library-ref>

The order of the <library-ref> tags is not important; however, all <library-ref>
tags must be grouped together.

3. Repeat this change in the project that defines the portlet consumer.

In order for propagation to work, both the portlet consumer and the portlet
producer must have the oracle.applcore.config library.

Maintaining Application Session Context Across Web Service Requests

51-12 Developer's Guide

Part VIII
Part VIII Advanced Topics

This part of the Developer's Guide provides information about some of the advanced
features that are part of Oracle Fusion. These advanced features include the Oracle
WebLogic Server, repositories used in Oracle Fusion, profiles, Oracle Fusion
application seed data, and the Oracle Fusion Database Schema Deployment
Framework. Also included in this part, are procedures for debugging Oracle
Application Development Framework (Oracle ADF) and service-oriented architecture
(SOA) applications.

Oracle WebLogic Server: Deployment is the process of packaging application files as an
archive file and transferring it to a target application server. You can use JDeveloper to
deploy your ADF applications directly to the WebLogic Server or indirectly to an
archive file as the deployment target. You can then install this archive file to the target
server. You can also run applications in JDeveloper using the Integrated WebLogic
Server.

The Creating Repository Connections chapter provides information about the repositories
that are used in Oracle Fusion and describes how to connect to each of these
repositories using JDeveloper. The repositories include the Oracle Data Integrator
(ODI), and Oracle Business Activity Monitoring (Oracle BAM).

A profile is a set of changeable options that affect the way your application looks and
behaves. Profiles control how applications operate for users by the values that are set.
Profiles can be set at different levels depending on how the profiles are defined.

Oracle Fusion Middleware Application Seed Data is the essential data to enable Oracle
Fusion Middleware applications. Some examples include static lists of values,
functional or error messages, and lookup values. The Seed Data Utility, which runs
under JDeveloper, provides data extraction from the development instances of Oracle
Fusion Applications. It also loads the extracted data to the customer database
instances of Oracle Fusion Applications by integrating with Oracle ADF TaskManager.
This part discusses how to set up your seed data environment, and how to extract and
upload seed data.

The Using the Oracle Fusion Database Schema Deployment Framework (applxdf) includes
JDeveloper plugins that handle applications-specific metadata, datamodeling
standards for applications database modeling, and deployment of database schema
objects to a target application database. The database schema deployment component
can be invoked standalone outside of JDeveloper, such as from the command line,
Build scripts, or a Patching Tool like Task Director. The Database Schema Deployment
Framework is packaged and delivered to Oracle Fusion Applications and technology
teams.

The Improving Performance chapter contains performance, scalability, and reliability
(PSR) best practices documented based on performance analysis of several
prototypical Oracle Fusion Applications as well as various tests conducted by the

Oracle Fusion middleware performance team. The outcome of this analysis is captured
in this chapter. It includes best practices for coding and tuning ADF Business
Components-based applications with performance, scalability, and reliability in mind.

The Debugging Oracle ADF and Oracle SOA Suite chapter describes the process of
debugging your Oracle Application Development Framework (Oracle ADF) and
Oracle SOA Suite applications. It describes how to diagnose and correct errors and
how to use the debugging tools.

Designing and Securing View Objects for Oracle Business Intelligence Applications provides
guidelines and best practices for designing and securing view objects and other
supporting ADF Business Components objects for use by Oracle Fusion Business
Intelligence (BI) Applications.

Implementing ADF Desktop Integration describes how Oracle Application Development
Framework Desktop Integration makes it possible to combine third party desktop
productivity applications with Oracle Fusion web applications, so you can use a
program like Microsoft Excel as an interface to access Oracle Fusion web application
data. Currently, ADF Desktop Integration supports using an Excel workbook to access
descriptive and key flexfield data in your application.

The Oracle Metadata Services (MDS) framework allows you to create customizable
applications. The Creating Customizable Applications chapter describes how to configure
your application at design time so that it can be customized. It also provides
information about how to customize your applications using JDeveloper and
WebCenter Composer.

Working with Extensions to Oracle Enterprise Scheduler explains how to use extensions to
Oracle Enterprise Scheduler to manage job request submissions in the context of
Oracle Fusion Applications.

Oracle Enterprise Scheduler Security explains how Oracle Enterprise Scheduler Security
features provide access control for Oracle Enterprise Scheduler resources and
application identity propagation for job execution.

This part contains the following chapters:

■ Chapter 52, "Running and Deploying Applications on Oracle WebLogic Server"

■ Chapter 53, "Creating Repository Connections"

■ Chapter 54, "Defining Profiles"

■ Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data
Loader"

■ Chapter 56, "Using the Database Schema Deployment Framework"

■ Chapter 57, "Improving Performance"

■ Chapter 58, "Debugging Oracle ADF and Oracle SOA Suite"

■ Chapter 59, "Designing and Securing View Objects for Oracle Business Intelligence
Applications"

■ Chapter 60, "Implementing ADF Desktop Integration"

■ Chapter 61, "Creating Customizable Applications"

■ Chapter 62, "Working with Extensions to Oracle Enterprise Scheduler"

■ Chapter 63, "Oracle Enterprise Scheduler Security"

52

Running and Deploying Applications on Oracle WebLogic Server 52-1

52Running and Deploying Applications on
Oracle WebLogic Server

This chapter provides a basic overview of the Oracle WebLogic Server environment
and information about how to run your applications on Integrated WebLogic Server. It
also provides information about how to deploy your applications to the
Administration Server instance of WebLogic Server for the purpose of performing
end-to end testing of new applications. If you are deploying customizations or
extensions, see the Oracle Fusion Applications Extensibility Guide.

This chapter includes the following sections:

■ Section 52.1, "Introduction to Deploying Applications to Oracle WebLogic Server"

■ Section 52.2, "Running Applications on Integrated WebLogic Server"

■ Section 52.3, "Preparing to Deploy Oracle ADF Applications to an Administration
Server Instance of WebLogic Server"

■ Section 52.4, "Deploying Your Oracle ADF Applications to an Administration
Server Instance of WebLogic Server"

■ Section 52.5, "Deploying Your SOA Projects to an Administration Server Instance
of WebLogic Server"

The scope of this chapter is limited to what is unique in the Oracle Fusion Applications
environment. For general details about Oracle WebLogic Server, references are made
to the generic Oracle Fusion Middleware guides.

52.1 Introduction to Deploying Applications to Oracle WebLogic Server
Deployment is the process of packaging application files as an archive file and
transferring it to a target application server. You can use JDeveloper to deploy your
Oracle Applications Development Framework (Oracle ADF) applications or SOA
applications directly to Oracle WebLogic Server or indirectly to an archive file as the
deployment target, and then install this archive file to the target server. You also can
run Oracle ADF applications (but not SOA applications) in JDeveloper using
Integrated WebLogic Server.

If you are using Integrated WebLogic Server, JDeveloper already provides the
environment to run the application using the Run command. You do not need to
create deployment descriptors or create standalone WebLogic Server domains. For
more information on using Integrated WebLogic Server, see Section 52.2, "Running
Applications on Integrated WebLogic Server."

If you are deploying the application to a standalone WebLogic Server instance, you
must perform several tasks to prepare the application for deployment. You may need

Introduction to Deploying Applications to Oracle WebLogic Server

52-2 Developer's Guide

to create or edit deployment descriptors and deployment profiles to prepare the
application.

Whether you are using standalone or Integrated WebLogic servers to host the
application, you will need to configure the WebLogic domains for Oracle Fusion
Applications. You must run the Configure Fusion Domain Wizard from JDeveloper to
configure the Integrated WebLogic Server or create a property file that is used to
configure standalone WebLogic Server instances. For more information about the
wizard, see Chapter 2, "Setting Up Your Development Environment."

Table 52–1 describes some common deployment techniques that you can use during
the application development and deployment cycle.

All WebLogic Server instances within the same domain must be at the same major and
minor version. Servers within a domain can be at different maintenance pack levels as
long as the Administration Server instance of Weblogic Server is at the same
maintenance pack level or higher than WebLogic Server instances called Managed
Servers. For more information about the tasks that are required, see Section 52.3,
"Preparing to Deploy Oracle ADF Applications to an Administration Server Instance
of WebLogic Server."

After you have performed the tasks required for standalone deployment, you can use
JDeveloper to deploy directly to a WebLogic Server instance or to create an Enterprise
Archive (EAR) file and deploy the EAR file using WebLogic Server Administration
Console, Enterprise Manager, or WebLogic Scripting Tool (WLST) commands.

For more information on how to deploy an application directly using JDeveloper, see
Section 52.4, "Deploying Your Oracle ADF Applications to an Administration Server
Instance of WebLogic Server."

For more information about deploying the application using WebLogic Server
Administration Console, or WLST, see the Oracle Fusion Middleware Administrator's
Guide and the Oracle Fusion Middleware Administrator's Guide for Oracle Application
Development Framework.

Table 52–1 Deployment Techniques for Development Environments

Deployment Technique Environment When to Use

Run directly from JDeveloper Test or
Development

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Use JDeveloper to directly deploy to the
target application server

Test or
Development

When you are ready to deploy and test your
application on an application server in a test
environment.

For example, you can also use the test environment to
develop your deployment scripts.

Use JDeveloper to deploy to an EAR file,
then use the Oracle WebLogic Server
Administration console, WLST
commands, or Enterprise Manager for
deployment.

Test or
Development

When you are ready to deploy and test your
application on an application server in a test
environment. As an alternative to deploying directly
from JDeveloper, you can deploy to an EAR file. and
then use other tools to deploy to the WebLogic Server
instance.

You can also use the test environment to develop your
deployment scripts.

Introduction to Deploying Applications to Oracle WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-3

52.1.1 Prerequisites for Deployment
Before you deploy an application, you should perform the following tasks:

1. You must run the Configure Fusion Domain Wizard to set up the Integrated
WebLogic Server domain or create a property file to be used to set up the
standalone WebLogic Server domain. For instructions, see Chapter 2, "Setting Up
Your Development Environment."

2. If you want more debugging output, set the environment variable using one of the
shell commands as shown in Example 52–1, before starting the Administration
Server instance of WebLogic Server or before starting JDeveloper if you are going
to run Integrated WebLogic Server.

Example 52–1 Setting Environment Variable

For csh shell
setenv JAVA_OPTIONS "$JAVA_OPTIONS -Djbo.debugoutput=console"
#
For bash shell
export JAVA_OPTIONS="$JAVA_OPTIONS -Djbo.debugoutput=console"

3. You must disable the Auto Generate and Synchronize weblogic-jdbc.xml
Descriptors During Deployment option to use the Global Java Database
Connectivity (JDBC) datasource. To do this, open Application Properties and
choose the Deployment category as shown in Figure 52–1. Unselect the Auto
Generate and Synchronize weblogic-jdbc.xml Descriptors During Deployment
option and click OK.

Note: This chapter discusses deploying applications. If you are
deploying customizations or extension, see the "Deploying ADF
Customizations and Extensions" and the "Deploying SOA Composite
Customizations and Extensions" sections of the Oracle Fusion
Applications Extensibility Guide.

Introduction to Deploying Applications to Oracle WebLogic Server

52-4 Developer's Guide

Figure 52–1 Application Properties — Deployment Dialog

52.1.2 Introduction to the Standalone Administration Server WebLogic Server Instance
A Weblogic Server instance is a configured instance to host applications, such as Web
applications, Enterprise applications, and Web services, and resources, such as Java
Message Service (JMS), and JDBC, Diagnostics.

There are two types of WebLogic Server instances: Administration Server and
Managed Server.

The Administration Server instance is the central configuration controller for the entire
domain. Its purpose is to:

■ Host the Administration Console.

■ Enable you to start and stop the servers from a central location.

■ Enable you to migrate servers and services within the domain.

■ Enable you to deploy applications within the domain.

Introduction to Deploying Applications to Oracle WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-5

Figure 52–2 Administration Server Configuration

There is only one Administration Server instance of WebLogic Server in a domain, and
an Administration Server instance of WebLogic Server controls only one domain.

A Managed Server WebLogic Server instance is a running instance that hosts the
applications and the resources that are needed by those applications. Each Managed
Server WebLogic Server instance is independent of all other Managed Server
WebLogic Server instances in the domain, unless they are in a cluster. You can have as
many Managed Server WebLogic Server instances as you need in a domain.

The Administration Server instance of WebLogic Server stores the master copy of the
domain configuration, including the configuration for all Managed Server WebLogic
Server instances in the domain. Each Managed Server WebLogic Server instance stores
a local copy of its configuration. When a Managed Server WebLogic Server instance
starts, it connects to the Administration Server instance of WebLogic Server to
synchronize the configuration.

In most cases, a single server environment is used for development purposes. This is
where a single server acts as the Administration Server instance of WebLogic Server
and as the host for applications, as illustrated in Figure 52–3.

However, there are some teams that use a Managed Server for either Oracle Enterprise
Scheduler (ESS) runtime or Service-Oriented Architecture (SOA). When you are
setting up your standalone WebLogic server, you can choose one of the following
options:

■ Administration Server - Oracle ADF (includes ESS libraries)

■ Administration Server - Oracle ADF + ESS Runtime

■ Administration Server - Oracle ADF and Managed Server - ESS Runtime

■ Administration Server - Oracle ADF and Managed Server - SOA

■ Administration Server and Managed Server - SOA

Introduction to Deploying Applications to Oracle WebLogic Server

52-6 Developer's Guide

Figure 52–3 Single Server Environment

Figure 52–4 illustrates the structure of the domain directory:

Figure 52–4 Domain Directory Structure

You deploy applications to the Administration Server instance of WebLogic Server.
Only Administration Servers and Managed Servers are used in a production
environment. Therefore, all your end-to-end testing should be done using the
Administration Server.

There are two types of Administration Servers:

■ Non-SOA

■ SOA

Not all components are available in both. For example, WebCenter libraries are not
available in SOA and SOA libraries are not available in non-SOA. Oracle ADF

Running Applications on Integrated WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-7

applications containing UI must be deployed to the non-SOA WebLogic server, and
SOA composites must be deployed to the SOA-configured WebLogic Server.

Some services have a SDO co-location requirement and need to be deployed to the
SOA container. If the service must be deployed to the SOA-configured WebLogic
Server, create a new EAR profile containing only that service or services from your
application workspace.

For information about how to configure the SOA WebLogic Server, see Section 2.3,
"Setting Up the Personal Environment for Standalone WebLogic Server."

52.2 Running Applications on Integrated WebLogic Server
Integrated WebLogic Server is a single server that is included within JDeveloper. You
can run your applications directly on this server without needing to deploy. Integrated
WebLogic Server is sufficient to run your application to make sure it displays correctly
in browsers, or for testing and debugging portions of the application. However, real
end-to-end testing should be done in an Administration Server instance of WebLogic
Server because that is what will be used in a production environment.

Integrated WebLogic Server has already been configured with the Oracle Fusion
Middleware Extensions for Applications (ApplCore) domain extension templates so
all of the Oracle Fusion applications will run on Integrated WebLogic Server as they
would in an Administration Server instance of WebLogic Server.

JDeveloper has a default connection to Integrated WebLogic Server and does not
require any deployment profiles or descriptors.

When you run your application in JDeveloper using the run or debug commands,
Integrated WebLogic Server starts automatically and your application runs in the
target browser.

When you use JDeveloper to run an application for the first time, it automatically
creates the Integrated WebLogic Server instance.

You can also start the server directly from within JDeveloper. To do this, go to the
main menu and select Run > Start Server Instance.

The server and the application are considered separate entities, so even if you stop the
application, it does not stop the server. To terminate the application, select the
application name from the terminate button dropdown menu in the Server Instance
Log page, as shown in Figure 52–5.

Note: You cannot use Integrated WebLogic Server to run SOA
applications. You must deploy SOA applications to a standalone
WebLogic Server instance. For more information, see Section 52.5,
"Deploying Your SOA Projects to an Administration Server Instance of
WebLogic Server."

Tip: The first time Integrated WebLogic Server starts, it tries to use
the first available port in the 7101 - 7105 range. The following message
appears as the first line in the Default server log in JDeveloper. You
should use the alternate port for all access:

HTTP port conflict detected. The HTTP port will be reassigned to port 7102.

Running Applications on Integrated WebLogic Server

52-8 Developer's Guide

Figure 52–5 Terminating the Application

To terminate the server, select the server name, as shown in Figure 52–6.

Figure 52–6 Terminating the Integrated WebLogic Server Instance

52.2.1 How to Deploy an Application with Metadata to Integrated WebLogic Server
When an application is running in Integrated WebLogic Server, the Metadata Archive
(MAR) profile itself will not be deployed to a repository. Instead, a simulated Oracle
Metadata Services (MDS) repository will be configured for the application that reflects
the metadata information contained in the MAR. This metadata information is
simulated and the application runs based on their location in source control.

Any customizations or documents created by the application are written to this
simulated MDS repository directory. You can keep the default location for this
directory or you can set it to a different directory. You also have the option to preserve
customizations across different application runs or to delete the customizations before
each application run.

Before you begin, you must first create your MAR deployment profile. For information
about how to create a MAR deployment profile, see Section 52.3.2, "How to Create
Deployment Profiles for Standalone WebLogic Server Deployment".

To deploy a MAR deployment profile to Integrated WebLogic Server:
1. Go to the Application Navigator, right-click the application and select

Application Properties.

2. In the Application Properties dialog, expand Run and choose MDS. See
Figure 52–7.

Preparing to Deploy Oracle ADF Applications to an Administration Server Instance of WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-9

Figure 52–7 Setting the Run MDS Options

3. In the Run MDS page:

a. Select the MAR profile from the MAR Profile dropdown list.

b. Enter a directory path in Override Location if you want to customize the
location of the simulated repository.

c. Select the Directory Content option. You can choose to preserve the
customizations across application runs or delete customizations before each
run.

52.3 Preparing to Deploy Oracle ADF Applications to an Administration
Server Instance of WebLogic Server

You must prepare the application and the WebLogic Server instance before you
deploy applications to an Administration Server instance of WebLogic Server.

Before you begin:
Before you deploy the application to a standalone WebLogic Server instance, you need
to:

■ Create and configure the WebLogic Server domains using the Configure Fusion
Domain wizard as described in Chapter 2, "Setting Up Your Development
Environment."

■ If the application is using ADF Security, you may need to:

– Configure for Oracle Single Sign-on using Oracle Access Manager (OAM). For
more information, see the "Applications That Will Run Using Oracle Single
Sign-On (SSO)" section in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

Preparing to Deploy Oracle ADF Applications to an Administration Server Instance of WebLogic Server

52-10 Developer's Guide

– Migrate application-level security information to the WebLogic Server
instance. For more information, see the "Configuring Security for WebLogic
Server" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

– Set up JDBC URL for WebLogic Server. For more information, see the
"Applications with JDBC URL for WebLogic" section in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

– Set up JDBC datasource for WebLogic Server. For more information, see the
"Applications with JDBC Data Source for WebLogic" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

– Understand LDAP-based stores. For more information, see Section 49.3.8,
"What You May Need to Know About Testing."

52.3.1 How to Reference the Shared Libraries
Shared libraries are available in the integrated and standalone WebLogic Server
container and your projects must be updated so that they can use a shared library.

When you create your WebLogic Server domain, all the required shared libraries
should be automatically created for you. When you choose a new technology or
library in JDeveloper, the weblogic.xml and weblogic-application.xml files are
automatically updated to reference these shared libraries. If, for some reason, the
required references are not created automatically, you must update the weblogic.xml
and weblogic-application.xml files manually.

The process below shows how to reference a sample oracle.shared.library shared library
in a project.

To reference a shared library into a project:
1. Go to Application Navigator, expand Application Resources > Descriptors >

META-INF.

2. Add reference shared library to weblogic-application.xml:

a. Click the weblogic-application.xml file.

b. Create a copy of the library-ref element.

You can either accomplish this manually in the editor, or you can right-click
the existing library-ref element to use the copy and paste options.

c. Change the library-name element to oracle.shared.library. Leave the
specification and implementation version values blank.

d. Repeat steps 2b and 2c to reference additional libraries.

3. Add reference shared library to weblogic.xml using the same steps.

Caution: Make sure that there are no blank spaces between the tag
<library-ref> and the actual entry as they will cause problems.

Deploying Your Oracle ADF Applications to an Administration Server Instance of WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-11

52.3.2 How to Create Deployment Profiles for Standalone WebLogic Server Deployment
The deployment profiles determine how the application is bundled and deployed to
Standalone WebLogic Server. When running an application within JDeveloper using
Integrated WebLogic Server, these deployment profiles are not used.

To deploy the application, you must create deployment profiles applicable to the
project or projects. The deployment profiles you need depend on your application
requirements. For example, an application may include Business Components Service
Interface, Web Application Archive (WAR), and MAR profiles. Once you have defined
these, create an EAR deployment profile for the application.

You can only deploy the application as an EAR file at the application level. Creating
EAR files from the project level are incomplete and this option is disabled. The project
level deployment profiles should be included in the EAR deployment profile.

Depending on the type of projects in your application, you may need to create the
following deployment profiles:

■ Business Components Service deployment profile. For instructions, see the "How
to Deploy Web Services to Oracle WebLogic Server" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

■ EJB JAR deployment profile. For instructions, see the "Creating an EJB JAR
Deployment Profile" section of the Oracle Fusion Middleware Java EE Developer's
Guide for Oracle Application Development Framework.

■ WAR deployment profile. For instructions, see the "Creating a WAR Deployment
Profile" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition)

■ MAR deployment profile. For instructions, see the "Creating a MAR Deployment
Profile" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition)

■ EAR deployment profile. For instructions, see the "Creating an Application-Level
EAR Deployment Profile" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition)

52.4 Deploying Your Oracle ADF Applications to an Administration Server
Instance of WebLogic Server

You can deploy your Oracle ADF applications to a standalone WebLogic Server
instance using JDeveloper or Ant commands.

Any necessary MDS repositories must be registered with the WebLogic Server
instance. If the MDS repository is a database, the repository maps to a WebLogic
Server system data source with MDS-specific requirements. Before you deploy the

Tip: When you run your application in JDeveloper Integrated
WebLogic Server, these deployment profiles are not used. Instead,
JDeveloper scans the entire workspace or the current working set, (if
the Run Working Set option is enabled), to construct the class loader
classpaths. If the data model project is eligible to be an EJB then the
Libraries and Classpath entries from that project contribute to the
application root class loader. The user interface project contributes to
the web application class loader.

Deploying Your Oracle ADF Applications to an Administration Server Instance of WebLogic Server

52-12 Developer's Guide

application, make sure to target this data source to the Administration Server instance
of WebLogic Server. For more information about registering MDS, see the Oracle Fusion
Middleware Administrator's Guide.

52.4.1 How to Create an Application Server Connection Using JDeveloper
To deploy your application using JDeveloper, you create a connection to the
application server and then deploy the application.

To create an application server connection:
1. Start WebLogic Server instance.

2. Open your application in JDeveloper.

3. Launch the Application Server Connection wizard.

You can:

■ In the Application Server Navigator, right-click Application Servers and
choose New Application Server Connection.

■ In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

■ In the Resource Palette, choose New > New Connections > Application
Server.

4. Complete the wizard:

a. Enter the following information as you progress through the wizard:

b. Connection Name: Enter a name for the connection.

c. Username and Password: Enter a user name and password for the
administrative user authorized to access the application server.

d. Weblogic Hostname Administration Server): Enter the name of the WebLogic
Server instance containing the TCP/IP DNS where your application
(.jar,.war,.ear) will be deployed.

e. Port: Enter a port number for the Oracle WebLogic Server instance on which
your application (.jar,.war,.ear) will be deployed.

f. In the SSL Port field, enter an SSL port number for the Oracle WebLogic
Server instance on which your application (.jar,.war,.ear) will be deployed.

g. Select Always Use SSL to connect to the Oracle WebLogic Server instance
using the SSL port.

h. WebLogic Domain: Optionally enter a domain only if Oracle WebLogic
Server is configured to distinguish nonadministrative server nodes by name.

Note: If you are using the WebLogic Server Administrative Console
or WLST scripts to deploy an application packaged as an EAR file that
requires MDS repository configuration in adf-config.xml, you must
run the getMDSArchiveConfig WLST command to configure MDS
before deploying the EAR file. MDS configuration is required if the
EAR file contains a MAR file or if the application is enabled for Design
Time at Runtime. For more information about WLST commands, see
the Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference.

Deploying Your Oracle ADF Applications to an Administration Server Instance of WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-13

i. Test the connection.

j. Click Finish to close the wizard and create your application server connection.

52.4.2 How to Deploy the Application Using JDeveloper
After you have created an application server connection and an EAR deployment
profile, you can deploy the application to a standalone application server.

To deploy an application:
1. Deploy your project to the application server:

a. In the Application Navigator, right-click your application and choose Deploy
> deployment profile.

b. In the Deploy wizard Deployment Action page, select Deploy to Application
Server and click Next.

c. In the Select Server page, select the application server connection, and click
Next.

d. The WebLogic Options page appears. Select a deploy option and click Next.

If the adf-config.xml file in the EAR file requires MDS repository
configuration, the Deployment Configuration dialog appears for you to
choose the target metadata repository or shared metadata repositories, as
shown in Figure 52–8.

Figure 52–8 MDS Configuration and Customization For Deployment

The Repository Name dropdown list allows you to choose a target metadata
repository from a list of metadata repositories registered with the

Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server

52-14 Developer's Guide

Administration Server instance of WebLogic Server. The Partition Name
dropdown list allows you to choose the metadata repository partition to
which the application's metadata will be imported during deployment. For
more information about managing the MDS repository, see the Oracle Fusion
Middleware Administrator's Guide.

e. Click Finish.

2. Verify the run-time application as:

http://httpHost:httpPORT/<CONTEXT>/faces/<landing jspx

For example,
http://server06.us.company.com:7001/UIPatternsDemo/faces/ServiceRequest

http://server12.company.com:7001/D7Build1-ViewController-context-root/faces/TreeHom
ePage.jspx

52.4.3 How to Create an EAR File for Deployment
You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using Enterprise Manager, WLST, or the Oracle WebLogic
Server Administration Console.

Although an application is encapsulated in an EAR file (which usually includes WAR,
MAR, and JAR components), it may have parts that are not deployed with the EAR.
For instance, ADF Business Services can be deployed as a JAR.

To create an EAR archive file:
■ In the Application Navigator, right-click the application containing the

deployment profile, and choose Deploy > deployment profile > to EAR file.

52.5 Deploying Your SOA Projects to an Administration Server Instance
of WebLogic Server

You can deploy your SOA projects using either JDeveloper or the other administration
tools described in Table 52–1.

52.5.1 How to Deploy Your SOA Projects Using JDeveloper
This section discusses how to deploy your SOA projects into the Administration
Server instance of WebLogic Server using JDeveloper.

The basic steps to deploying your SOA project from within JDeveloper are:
1. Define a connection. For instructions to create an application server connection,

see the "To create an application server connection" section of the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

2. Deploy the Project. For instructions to deploy a SOA project, see the "Deploying
the Profile " section of the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite

Note: If you are deploying an Oracle ADF application, do not use the
Deploy to all instances in the domain option.

Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server

Running and Deploying Applications on Oracle WebLogic Server 52-15

3. Check the deployed SOA Project.

52.5.1.1 Check the Deployed SOA Project
You can check and run your deployed SOA project from two locations:

From Enterprise Manager on port 7001 by opening the Weblogic Hostname
(Administration Server) URL for which you created the Connection, such as:

http://xyzzy-on.companyname.com:7001/em

After you log in, a screen similar to Figure 52–9 displays (the SOA tree in the left pane
has been expanded and the first deployment has been selected):

Figure 52–9 Checking SOA Deployment from the EM

Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server

52-16 Developer's Guide

53

Creating Repository Connections 53-1

53Creating Repository Connections

This chapter provides information about Oracle WebCenter Content Server (Content
Server), Oracle Data Integrator (ODI), and Oracle Business Activity Monitoring
(Oracle BAM) Server repositories, which are used in Oracle Fusion applications, and
describes how to connect to each of these repositories using Oracle JDeveloper.

This chapter includes these sections:

■ Section 53.1, "Creating a Content Repository Connection"

■ Section 53.2, "Creating an Oracle Data Integrator Repository Connection"

■ Section 53.3, "Creating Oracle Business Activity Monitoring Server Repository
Connection"

53.1 Creating a Content Repository Connection
Oracle WebCenter Content Server (Content Server), which serves as the base for the
WebCenter Content system, provides a web-based repository that manages all phases
of the content lifecycle from creation and approval to publishing, searching,
expiration, and archiving or disposition. The Attachment component enables you to
add attachments to the user interface (UI) pages that you create for Fusion web
applications. Before you can implement attachments at design time in Oracle
JDeveloper, you must set up a content server-based content repository connection.

For more information about Attachment components, see Chapter 18, "Implementing
Attachments."

For more information about Content Server, see Oracle Fusion Middleware User's Guide
for Oracle Content Server.

For more information about content integration, see the "Introduction to Integrating
and Publishing Content" chapter of the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter Portal.

53.1.1 How to Create a Content Repository Connection
How you create a content repository connection depends upon whether your
connection is for Oracle Fusion Applications development or for ad hoc development.

53.1.1.1 Creating a Connection for Oracle Fusion Applications Development
To set up a content server-based repository connection from an Oracle Fusion
application, you run Oracle WebLogic Scripting Tool (WLST) commands to
synchronize the Oracle WebLogic Server (WebLogic Server) credential store with the

Creating a Content Repository Connection

53-2 Developer's Guide

Content Server credential store, and then you use the Create Content Repository
Connection wizard to set up a content server-based content repository connection.

For information about using the WLST command-line scripting interface, see Oracle
Fusion Middleware Oracle WebLogic Scripting Tool.

Before you begin:

■ Verify that Content Server has been deployed and you have a working server that
works with the Oracle Fusion applications.

■ Ensure that the code grant entry for the Attachments-Model.jar file exists in the
application's jazn-data.xml file, as described in Section 18.2, "Creating
Attachments." When the application is deployed, the policies in jazn-data.xml are
merged into the system-jazn-data.xml file in weblogic_server_domain_
home/config/fmwconfig.

■ Log in to the content server and verify that your user name is a member of the
AttachmentsUser role. Note that employees and contingent workers have this role
automatically.

To create a connection for Oracle Fusion Applications development:

1. Make a backup of the WebLogic Server domain's default keystore located at
weblogic_server_domain_home/config/fmwconfig/default-keystore.jks.

2. Replace the weblogic_server_domain_
home/config/fmwconfig/default-keystore.jks file with a copy of the domain
default keystore for Content Server, which is located at content_server_domain_
home/config/fmwconfig/default-keystore.jks.

3. At the command line, type the following line to start the WLST tool, if it is not
currently running.

sh jdev_install/oracle_common/common/bin/wlst.sh

On Windows, use wlst.cmd.

4. If you have not yet connected to the server, type the following WLST command to
connect to WebLogic Server, replacing the user name and password arguments
with your WebLogic Server user name and password.

connect('wls_username', 'wls_password', 'wls_uri')

The values must be wrapped in single-quotes. The wls_uri value is typically
T3://localhost:7101.

5. From WLST, execute the following commands to store the credentials. The user
names and passwords must be the same as for the Content Server domain. For
more information about the WebCenter Content keystore credentials, see the
"Configuring Oracle WebCenter Content Applications" chapter in the Oracle Fusion
Middleware Installation Guide for Oracle Enterprise Content Management Suite.

When executing the commands, replace user name and password for user with the
user names and passwords that are used in the WebCenter Content credentials.

updateCred(map="oracle.wsm.security", key="keystore-csf-key", user="user name",
password="password for user", desc="Keystore key")
updateCred(map="oracle.wsm.security", key="enc-csf-key", user="user name",
password="password for user", desc="Encryption key")
updateCred(map="oracle.wsm.security", key="sign-csf-key", user="user name",
password="password for user", desc="Signing key")
exit()

Creating a Content Repository Connection

Creating Repository Connections 53-3

6. From the Application Resources panel in JDeveloper, right-click Connections and
choose New Connection > Content Repository from the menu.

7. In the Create Content Repository Connection wizard shown in Figure 53–1,
complete the following information:

Create Connection In: Select Application Resources.

Connection Name: Enter FusionAppsContentRepository.

Repository Type: Select Oracle Content Server.

Set as Primary Connection for Document Library: Select this checkbox.

Configuration Parameters: Enter values for the parameters listed in Table 53–1. If
a parameter is not listed in the table, leave the value blank.

Contact your system administrator to obtain the correct information.

Authentication Method: Select Identity propagation.

Note: If the keys do not exist, use the following commands instead:

createCred(map="oracle.wsm.security", key="keystore-csf-key",
user="user name", password="password for user", desc="Keystore
key")
createCred(map="oracle.wsm.security", key="enc-csf-key", user="user
name", password="password for user", desc="Encryption key")
createCred(map="oracle.wsm.security", key="sign-csf-key",
user="user name", password="password for user", desc="Signing key")
exit()

Table 53–1 Example Configuration Parameters

Parameter Value

RIDC Socket Type jaxws

Admin Username The name of a user who has been granted Content
Server administration privileges.

Web Server Plugin The idcnativews web service that is defined on the
server. This is typically
http://host:port/idcnativews. Check with your
system administrator.

Creating a Content Repository Connection

53-4 Developer's Guide

Figure 53–1 Create Content Repository Connection

8. Click Test Connection and verify that the status returned is Success!

9. Click OK.

10. From the Application Resources panel, expand the Connections node to see the
new content repository connection, as shown in Figure 53–2.

Figure 53–2 JDeveloper — Application Navigator

53.1.1.2 Creating a Connection for Ad Hoc Development
Sometimes you might need a quick connection for prototyping or assessment purposes
and you do not want to use the central WebCenter Content environment. In this
situation, use the Create Content Repository Connection wizard to create a connection
in your own environment.

Before you begin:

■ Ensure that the code grant entry for the Attachments-Model.jar file exists in the
application's jazn-data.xml file, as described in Section 18.2, "Creating
Attachments." When the application is deployed, the policies in jazn-data.xml are

Note: If the test is unsuccessful, verify that the values that you
entered are correct and try again.

Creating a Content Repository Connection

Creating Repository Connections 53-5

merged into the system-jazn-data.xml file in weblogic_server_domain_
home/config/fmwconfig.

■ Ensure that the sockets on the WebCenter Content Managed Server are enabled.
For more information, see the "Completing the Initial WebCenter Content
Configuration" section in the Oracle Fusion Middleware Installation Guide for Oracle
Enterprise Content Management Suite.

■ You need the following information to create a content repository connection:

– Host name of the machine that is running the WebCenter Content Managed
Server.

– WebCenter Content Managed Server listener port.

– URL for the login page to the content server instance.

– WebCenter Content shared credentials user name and password

Contact your system administrator to obtain this information.

To set up a content repository connection for ad hoc development:

1. From the Application Resources panel in JDeveloper, right-click Connections and
choose New Connection > Content Repository from the menu.

The Create Content Repository Connection wizard is displayed, as shown in
Figure 53–3.

Figure 53–3 Create Content Repository Connection

2. Complete the following information:

Create Connection In: Select Application Resources.

Connection Name: Enter the appropriate name for this connection.

Repository Type: Select Oracle Content Server.

Set as Primary Connection for Document Library: Select this checkbox.

Creating a Content Repository Connection

53-6 Developer's Guide

Configuration Parameters: Enter values for the parameters shown in Table 53–2.
With the exception of the RIDC Socket Type parameter, all values shown are
examples only. If a parameter is not listed in the table, leave the value blank.

Contact your system administrator to obtain the correct information.

Authentication: Select External Application. Click the Add icon and complete the
following information to create a new External Application:

a. Enter a unique name for the External Application. Click Next to continue to
Step 2.

b. Enter the following information, as shown in Figure 53–4.

Login URL: Paste the URL for the login page. (Contact your system
administrator for this information). For example:

http://abc.example.com:2244/abc/abcplg?AbcService=LOGIN&Action=GetT
emplatePage&Page=HOME_PAGE&Auth=Internet

User Name/ID Field Name: Enter the field name for the user name or ID, such
as username.

Password Field Name: Enter the field name for the password, such as
password.

Figure 53–4 Register External Application Wizard — General (Step 2)

c. Click Next to continue to Step 3 and click Next to continue to Step 4.

Table 53–2 Example Configuration Parameters

Parameter Value

RIDC Socket Type socket

Server Hostname abc.example.com

Content Server Listener Port 4444

Tip: The User Name and Password field names are derived from the
HTML input field names.

Creating a Content Repository Connection

Creating Repository Connections 53-7

d. Complete the following information:

Specify Shared Credentials: Select this checkbox.

User Name and Password: Enter the Shared Credentials user name and
password. (Contact your system administrator for this information).

Click Next to continue to Step 5.

e. Complete the following information:

Specify Public Credentials: Select this checkbox.

User Name and Password: Enter the Shared Credentials user name and
password. (Contact your system administrator for this information).

Click Finish to save your entries, create the External Application, close the
wizard, and return to the Create Content Repository Connection page.

Authentication: Choose the newly created External Application from the
dropdown list.

3. Click Test Connection and verify that the status returned is Success.

4. Click OK.

5. From the Application Resources panel, expand the Connections node to see the
new content repository connection, as shown in Figure 53–5.

Figure 53–5 JDeveloper — Application Navigator

53.1.2 Troubleshooting Content Server Connections
Exceptions can occur when the connection is improperly configured. The three most
common exceptions are the following errors:

■ Insufficient user privileges error

■ WS-Security header processing error

■ Access denied error

For more information, see the "Diagnosing Problems" chapter in the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

53.1.2.1 User Does Not have Sufficient Privileges
If you are sure that the user is a member of the AttachmmentsUser role, then you must
consult logs for the cause of the insufficient privileges error message. The most
common cause is a blank or invalid signature, but this exception can be the
consequence of several different misconfiguration issues.

Note: If the test is unsuccessful, verify that the values that you
entered are correct and try again.

Creating an Oracle Data Integrator Repository Connection

53-8 Developer's Guide

To diagnose the problem, enable applications logging for the
oracle.apps.fnd.applcore.attachments.model.% module with a logging level of
FINEST. Search the application log files for the string "Unable to generate digital
signature." The stack trace might indicate the cause. For example, if it reports that the
"keystore has been tampered with, or the password is wrong," verify that the
password in credentials store for the application's server domain matches the
password in the credentials for the content server's domain. If the stack trace reports
"Access Denied," verify that the code grants described in Section 18.2, "Creating
Attachments" have been added to the jazn-data.xml file. For information about
applications logging, see the "Introduction to Troubleshooting Using Incidents, Logs,
QuickTrace, and Diagnostic Tests" chapter in the Oracle Fusion Applications
Administrator's Guide.

If your search through the application logs does not find an "Unable to generate digital
signature" string, the cause might be that the content server cannot verify the digital
signature. To diagnose the problem, set up tracing for fusionappsattachments, as
described in the "System Audit Tracing Sections Information" section in the Oracle
WebCenter Content System Administrator's Guide for Content Server. Be sure to enable full
verbose tracking and enable save. Access the system audit information server output
and search for XFND_SIGNATURE, as described in the "System Audit Information"
section in the Oracle WebCenter Content System Administrator's Guide for Content Server.
A blank signature indicates that the signature was not generated by the Oracle Fusion
application. If the signature is not blank and the "$DefaultCheckinSigningScheme:
Signature Verification Failed" message exists, the cause might be that the credentials
for the application's server domain do not match the credentials for the content
server's domain and you need to repeat the connection steps described in this section
for the appropriate application type.

53.1.2.2 Invalid Security: Error in Processing the WS-Security Header
The common cause for the WS-Security header processing exception is that global
policy attachment (GPA) has not been set up.

53.1.2.3 Access Denied: Credential AccessPermission
The following exception typically indicates that the code grants described in
Section 18.2, "Creating Attachments" have not been added to the jazn-data.xml file or
have not been merged into the system-jazn-data.xml file in weblogic_server_domain_
home/config/fmwconfig.

access denied (oracle.security.jps.service.credstore.CredentialAccessPermission
context=SYSTEM,mapName=oracle.wsm.security,keyName=enc-csf-key read)

53.2 Creating an Oracle Data Integrator Repository Connection
Oracle Data Integrator (ODI) combines all the elements of data integration—data
movement, data synchronization, data quality, data management, and data
services—to ensure that information is timely, accurate, and consistent across complex
systems.

ODI is built on several components all working together around a centralized
metadata repository. The ODI architecture is organized around a modular repository,
which is accessed in client-server mode by components.

The Oracle Fusion Applications ODI repository consists of a master repository and
and a work repository. The master repository contains the security information, the
topology information (definitions of technologies and servers), and the versions of the
objects. A work repository stores information for:

Creating Oracle Business Activity Monitoring Server Repository Connection

Creating Repository Connections 53-9

■ Models — Includes datastores, columns, data integrity constraints,
cross-references, and data lineage.

■ Projects — Includes declarative rules, packages, procedures, folders, knowledge
modules, and variables.

■ Runtime information — Includes scenarios, scheduling information, and logs.

You use Oracle Data Integrator Studio to access the repositories; administer the
infrastructure; reverse-engineer the metadata; develop projects; and perform
scheduling, operating, and monitoring executions.

To learn how to connect to the ODI master and work repositories, see the
"Administering the Oracle Data Integrator Repositories" chapter in the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

For information about the role of ODI in securing Oracle Fusion applications, see
Section 46.1.1.7, "Oracle Data Integrator,"

53.3 Creating Oracle Business Activity Monitoring Server Repository
Connection

Oracle Business Activity Monitoring (Oracle BAM) provides an active data
architecture that dynamically moves real-time data to end users through every step of
the process. This solution actively collects data, applies rules designed to monitor
changes, and delivers the information in reports to users.

For more information about Oracle Business Activity Monitoring, see Oracle Fusion
Middleware User's Guide for Oracle Business Activity Monitoring.

You must create a connection to Oracle BAM Server to browse the available data
objects and construct transformations while you are designing your applications.
When the application is running, theOracle BAM Server connection is used to publish
data to Oracle BAM data objects. Only one Oracle BAM Server connection per
Business Process Execution Language (BPEL) project is currently supported. For more
information about BPEL integration, see Oracle Fusion Middleware Developer's Guide for
Oracle SOA Suite.

When building an application in JDeveloper, the methods of connecting to Oracle
BAM Server are:

■ Oracle BAM Adapter in a service-oriented architecture (SOA) composite
application

■ Oracle BAM sensor actions in a BPEL process

53.3.1 How to Create an Oracle BAM Connection
Use the BAM Connection wizard to create a connection to Oracle BAM Server.

To create an Oracle BAM Server connection:
1. In JDeveloper, select New from the File menu to open the New Gallery dialog.

Note: Do not create an Oracle BAM Server connection through the
Resource Palette that displays when you select View > Resource
Palette. Create Oracle BAM Server connections from the Application
Resources panel, either directly or by copying an existing connection
from the Resource Catalog.

Creating Oracle Business Activity Monitoring Server Repository Connection

53-10 Developer's Guide

2. Select the General > Connections category, then select BAM Connection. Click
OK to open the Oracle BAM Connection wizard, as shown in Figure 53–6.

Figure 53–6 BAM Connection Wizard — Name Page

3. Enter a unique name to identify this connection.

4. Select Application Resources and click Next.

5. Enter the following connection information:

BAM Web Host: Enter the name of the host on which Oracle BAM Report Server
and the web server are installed. In most cases, the web host and the server host
are the same.

BAM Server Host: Enter the name of the host on which the Oracle BAM Server is
installed.

User Name and Password: Enter the Oracle BAM Server user name and password.
The user name is typically bamadmin.

HTTP Port: Enter the port number or accept the default value of 9001. This is the
HTTP port for the Oracle BAM Web Host.

JNDI Port: Enter the port number or accept the default value of 9001. The Java
Naming and Directory Interface (JNDI) port is for Oracle BAM Report Cache,
which is part of Oracle BAM Server.

Use HTTPS: Select this option if you want to use HTTP with Secure Sockets Layer
(HTTPS) to connect to the Oracle BAM Server during design time.

6. Click Next.

7. Click Test Connection to ensure that the connection is properly configured.

8. Click Finish.

Creating Oracle Business Activity Monitoring Server Repository Connection

Creating Repository Connections 53-11

53.3.2 How to Use Oracle BAM Adapter in a SOA Composite Application
Oracle BAM Adapter is a Java EE Connector Architecture (JCA) compliant adapter,
which can be used from a Java EE client to send data and events to Oracle BAM
Server. Oracle BAM Adapter supports the following operations on Oracle BAM data
objects: inserts, updates, upserts, and deletes. Oracle BAM Adapter can perform these
operations over Enterprise JavaBeans (EJB) calls or over Simple Object Access Protocol
(SOAP), all configurable in JDeveloper.

The Oracle BAM Adapter supports batching of operations, but behavior with batching
is different from behavior without batching. In general, the Oracle BAM sensor action
is not part of the BPEL transaction. When batching is enabled, BPEL does not wait for
an Oracle BAM operation to complete. It is an asynchronous call.

When batching is disabled, BPEL waits for the Oracle BAM operation to complete
before proceeding with the BPEL process, but it will not roll back or stop when there is
an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the
same sensor action logger as BPEL.

Oracle BAM Adapter provides three mechanisms by which you can send data to
Oracle BAM Server in your SOA composite application as you develop it in
JDeveloper.

■ Oracle BAM Adapter can be used as a reference binding component in a SOA
composite application. For example, Oracle Mediator can send data to Oracle
BAM using Oracle BAM Adapter.

■ TOracle BAM Adapter can also be used as a partner link in a BPEL process to send
data to Oracle BAM as a step in the process.

■ Oracle BAM sensor actions can be included within a BPEL process to publish
event-based data to Oracle BAM data objects.

For more information about using Oracle BAM Adapter in a SOA composite
application, see the "Integrating Oracle BAM With SOA Composite Applications"
chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

53.3.3 How to Integrate Sensors With Oracle BAM
You can create sensor actions in Oracle BPEL Process Manager to publish sensor data
as data objects on Oracle BAM Server. When you create the sensor action, you can
select an Oracle BPEL Process Manager variable sensor or activity sensor that you
want to get the data from, and also the data object in Oracle BAM Server in which you
want to publish the sensor data.

For more information about integrating sensors with Oracle BAM, see the "Integrating
Oracle BAM With SOA Composite Applications" chapter in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

Creating Oracle Business Activity Monitoring Server Repository Connection

53-12 Developer's Guide

54

Defining Profiles 54-1

54Defining Profiles

This chapter describes how to define a profile, which is a set of changeable options
that affect the way your application looks and behaves. Profiles control how Oracle
Fusion Applications operate for users by the values that are set. Profiles can be set at
different levels depending on how the profiles are defined.

This chapter includes the following sections:

■ Section 54.1, "Introduction to Profiles"

■ Section 54.2, "Integrating Profiles Task Flows into Oracle Fusion Functional Setup
Manager"

■ Section 54.3, "Setting and Accessing Profile Values"

■ Section 54.4, "Managing Profile Definitions"

■ Section 54.5, "Managing Profile Categories"

54.1 Introduction to Profiles
Profiles are permanent user preferences and system configuration options. They allow
for the centralized management of configuration data but with sophisticated,
customized user, security, and session-context access to the values. The Profile Service
application programming interface (API) provides the access to profile values.

Hierarchies enable system administrators to group and set profiles according to their
business needs. The hierarchy is fixed in the profile definition, you cannot just
randomly mix and match the levels. For more information about profile levels, see
Section 54.4, "Managing Profile Definitions."

Users may be able to set their own profile options, depending on settings in the profile
definition. However, not all profiles are visible to end-users, and some profiles, while
visible, may not be updated by end-users.

Categories can be used to group profiles based on their functional area. Administrators
can categorize profiles and then easily search on profiles by category.

When to define a profile:
■ Evaluate if there is a genuine need for an option before creating a profile. Do not

force the customer to make a decision about an issue that is of no concern to them.

■ Look for duplicate or similar profiles, even in other products, before creating a
new one. For example, you do not need multiple profiles to choose a preferred
currency.

Integrating Profiles Task Flows into Oracle Fusion Functional Setup Manager

54-2 Developer's Guide

■ Do not use profiles to cache temporary session attributes. Profiles are permanent
user preferences and system configuration options.

54.2 Integrating Profiles Task Flows into Oracle Fusion Functional Setup
Manager

Every Oracle application registers task flows with a product called Oracle Fusion
Functional Setup Manager. Functional Setup Manager provides a single, unified user
interface that allows customers and implementers to configure all Oracle applications
by defining custom configuration templates or tasks based on their business needs.

The Functional Setup Manager user interface (UI) enables customers and
implementers to select the business processes or products that they want to
implement.

Function Security controls your privileges to a specific task flow, and users who do not
have the required privilege cannot view the task flow. For more information about
how to implement function security privileges and roles, see Chapter 49,
"Implementing Function Security."

For more information about task flows, see theOracle Fusion Applications Common
Implementation Guide.

Table 54–1 lists the task flows related to profiles and their parameters.

Setting and Accessing Profile Values

Defining Profiles 54-3

54.3 Setting and Accessing Profile Values
You can set profile values using the Setup UI, and access them programmatically or by
using expression language.

Table 54–1 Profiles Task Flows and Parameters

Task Flow
Name Task Flow XML

Parameters
Passed Behavior Comments

Manage
Administrator
Profile Values

/WEB-INF/oracle/
apps/fnd/applcore
/profiles/ui/flow/
ManageAdminProfi
leValuesTF.xml#pro
fileValues_
task-flow-definition

mode='search'
[moduleType]
[moduleKey]
[categoryName]
[categoryApplicat
ionId]

mode='edit'
profileOptionNa
me

[pageTitle]

Search and edit all profile
values for a system
administrator.

To search all profiles, do
not pass any parameters.

To search all profiles in a
module, pass
moduleType/moduleKey

To search all profiles in a
category, pass
categoryName/categoryA
pplicationId.

moduleType/moduleKey
and
categoryName/categoryA
pplicationId are mutually
exclusive and cannot be
passed in together.

Search and edit all profile
values for a system
administrator.

To search all profiles, do
not pass any parameters.

To search all profiles in a
module, pass
moduleType/moduleKey

To search all profiles in a
category, pass
categoryName/categoryA
pplicationId.

moduleType/moduleKey
and
categoryName/categoryA
pplicationId are mutually
exclusive and cannot be
passed in together.

Manage Profile
Categories

/WEB-INF/oracle/
apps/fnd/applcore
/profiles/ui/flow/
ManageProfileCate
goriesTF.xml#profil
eCategories_
task-flow-definition

mode='search'
[moduleType]
[moduleKey]

mode='edit' name
applicationId

[pageTitle]

Search and edit profile
categories.

To search all profile
categories, do not pass any
parameters.

To search all profile
categories in a module,
pass in
moduleType/moduleKey.

To edit a specific profile
category, pass in
name/applicationId.

Search and edit profile
categories.

To search all profile
categories, do not pass
any parameters.

To search all profile
categories in a module,
pass in
moduleType/moduleKey.

To edit a specific profile
category, pass in
name/applicationId.

Manage Profile
Options

/WEB-INF/oracle/
apps/fnd/applcore
/profiles/ui/flow/
ManageProfilesTF.x
ml#profiles_
task-flow-definition

mode='search'
[moduleType]
[moduleKey]

mode='edit'
profileOptionNa
me

[pageTitle]

Search and edit profile
definitions.

In 'search' mode:

To search all profile
options, do not pass any
parameters.

To search all profile
options in a module, pass
in
moduleType/moduleKey.

In 'edit' mode:

To edit a specific profile
option, pass in
profileOptionName.

If mode is not explicitly
passed, the default is
'search'.

Search and edit profile
definitions.

In 'search' mode:

To search all profile
options, do not pass any
parameters.

To search all profile
options in a module, pass
in
moduleType/moduleKey.

In 'edit' mode:

To edit a specific profile
option, pass in
profileOptionName.

If mode is not explicitly
passed, the default is
'search'.

Setting and Accessing Profile Values

54-4 Developer's Guide

54.3.1 How to View and Set Profile Values Using the Setup UI
You can use the Profile Option Values page to view the profile values. The page is
shown in Figure 54–1.

To view or edit profile values:
1. Go to the Manage Profile Option Values page to search for the required profile

option.

Figure 54–1 Manage Profile Option Values Page

2. Enter your search criteria, then click Search.

3. In the Search Results: Profile Options section, highlight the required profile
option.

4. In the Profile Values section, add a new value or delete an existing one.

Notes:

■ Any change you make to a profile option has an immediate effect
on the way your applications run for that session. And, when you
log on again, changes you made to your User-level options in a
previous session are still in force.

■ When a profile value is changed, the user setting the value will
always see the update immediately. Other users may not see the
changed value until logging out and back in.

Note: You can also select Reset to clear your entries and start again,
or Save to save the entries for a future search.

Managing Profile Definitions

Defining Profiles 54-5

Create a new row for every value set for this profile for every level/level value
pair. The Profile Value is the value that has been defined in the profile definition's
SQL Validation.

54.3.2 How to Access Profile Values Programmatically
The ProfileServiceAM API can be found in the following package:

oracle.apps.fnd.applcore.profiles.profileService.applicationModule

Before you can use this profile, you must add the Applications Core library to your
Model project. For more information, see Section 3.3, "Adding Necessary Libraries to
Your Data Model Project."

To access profile values programmatically:
Import the Profile class and call the Profile.get()method to get the values for the
profile name provided.

For example:

import oracle.apps.fnd.applcore.Profile;

...
fndDiagnostics = Profile.get("AFLOG_ENABLED");

54.3.3 How to Access Profile Values Using Expression Language
Accessing a profile value using expression language (EL) simply requires defining the
oracle.apps.fnd.applcore.Profile managed bean with the name Profile in the
adfc-config.xml file at requestScope. See Figure 54–2.

Figure 54–2 Edit adfc-config.xml File

Once the bean is defined, you can refer to any profile value as:

{Profile.values.PROFILE_OPTION_NAME}

54.4 Managing Profile Definitions
You can update profile definitions using either Functional Setup, or a standalone
"super-web" type UI Shell page that embeds calls to the task flow directly in the menu.

When defining profile definitions you also define profile levels, which are part of a
hierarchy. When working with profile levels, carefully consider the levels you enable
for your profiles. Only enable them at the levels that make sense. You do not want
end-users changing settings for profiles that they do not understand. At this time, only
the following hierarchy is available:

Managing Profile Definitions

54-6 Developer's Guide

■ Site (lowest level)

■ Product

■ User (highest level)

As most profiles are user preferences and can potentially be set at these three levels,
this is the default hierarchy. Profiles can be set at one or more levels.

Table 54–2 describes how profile settings are used:

When a profile is set at more than one level, Site has the lowest priority, superseded by
Product, with User having the highest priority. A value entered at the Site level may be
overridden by values entered at any other level. A value entered at the User level has
the highest priority and overrides values at any other level.

For example, assume the Printer profile is set only at the Site and Product levels. When
a user logs on, the Printer profile assumes the value set at the Product level, since it is
the highest -level setting for the profile.

54.4.1 How to Edit Profile Definitions
You can use the Profile editor to update profile definitions. Figure 54–3 shows the
Manage Profiles Options page.

To edit profile definitions:
1. Go to the Manage Profiles Options page to search for the profile that you want to

update.

Note: A higher-level profile value overrides a lower-level value.

Table 54–2 Profile Settings

Hierarchy Level Profile Setting

1 (Lowest) Site All users at an installation site.

2 Product This level is intended to be the product owning the current
code module. The product level is only available if it has
been set on the session. Typically this is in a servlet filter, but
it may be in other places in other technologies.

3 (Highest) User An individual user, identified by their UserID (UserGUID)
for the current session.

Tips:

■ System administrators should set site-level profile values before
specifying values at any other level.

■ The profile values specified at the site-level work as defaults until
profile values are specified at the other levels. Profiles are
enterprise-striped. In a multi-tenant environment, VPD policies
restrict the profile values to only those defined in the relevant
enterprise. As a result, in a multi-tenant environment, a site-level
profile value behaves like an enterprise-level profile value.

Managing Profile Definitions

Defining Profiles 54-7

Figure 54–3 Manage Profiles Options Page

2. In the Search Results: Profile Options section, highlight a profile option and do
any of the following:

■ Use the Actions or View options

■ Create a new profile option

■ Edit an existing profile option. The Edit window is shown in Figure 54–4.

Figure 54–4 Edit Profile Option

■ Delete an existing profile option

■ Detach a profile option to open it in a new window

3. In the Search Results: Profile Option Levels section, do any of the following:

■ Use the Actions or View options

■ Create a new profile level

Managing Profile Categories

54-8 Developer's Guide

■ Enable or disable user access to this profile:

– Enabled: Select this option to allow user access.

– Updateable: Select this option to give the user update privileges. Leave
unselected if you want the user to have read-only access. This option is
disabled unless the Enabled option is selected.

Enabling the profile for end-user access allows the user to set their own
values.

■ Delete an existing profile level

■ Detach the profile levels child table to open it in a new window

54.4.2 Registering a New Profile Option
When registering a new profile option for a profile definition, one of the key properties
is the SQL validation property. If the values for a profile option are limited to a discrete
list from which to choose, the SQL validation property must be set.

■ It must be a valid SQL statement that selects two columns.

■ The first column should be the display value that the administrator will see in the
Manage Profile Option Values task flow. This column can be a translated value if
appropriate for the particular profile option.

■ The second column should be the code or ID that the product business logic will
understand how to process. For example:

SELECT MEANING, LOOKUP_CODE
FROM FND_LOOKUPS
WHERE LOOKUP_TYPE = 'YES_NO'

54.5 Managing Profile Categories
Grouping profiles into categories makes them easier to find because Category is the
main driver when searching for profiles. Group profiles into categories that make
sense, such as categories based on their functional areas. Categories can be used to
search for related profiles in the Administration UIs and also for defining data security
rules. You can use the Manage Profile Categories editor to add new categories or add
profiles to an existing category.

The grouping is many to many, which means that profiles can be in more than one
category and categories can have more than one profile. The basic guideline for
grouping profiles is that profiles affecting the same feature, or profiles an
Administrator would likely want to see at the same time, should all be in the same
category. Oracle seeds a number categories out of the box; customers are free to create
their own or edit those that are shipped.

Note: The Enabled and Updateable check boxes determine whether
or not you can read or write (respectively) values at that level.

Note: Deleting a Profile Option level (or never creating one) is
effectively the same as disabling it.

Managing Profile Categories

Defining Profiles 54-9

54.5.1 How to Manage Profile Categories
Like profile definitions, you can manage profile categories using either Functional
Setup, or a standalone "super-web" type UI Shell page that embeds calls to the task
flow directly in the menu.

To manage profile categories:
1. Go to the Manage Profile Categories page and search for the required profile

category, as shown in Figure 54–5.

Figure 54–5 Manage Profile Categories Page

2. In the Search Results: Profile Categories section, highlight the required profile
category and do any of the following:

■ Use the Actions or View options

■ Create a new profile category

■ Edit an existing profile category. The Edit window is shown in Figure 54–6.

Managing Profile Categories

54-10 Developer's Guide

Figure 54–6 Edit Profile Category

■ Delete an existing profile category

■ Detach a profile category to open it in a new window

3. In the Search Results: Profile Options section, do any of the following:

■ Use the Actions or View options

■ Create a new profile option

■ Delete an existing profile category

■ Detach a profile category to open it in a new window

55

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-1

55Initializing Oracle Fusion Application Data
Using the Seed Data Loader

This chapter discusses the Seed Data Loader and using it from within Oracle
JDeveloper.

This chapter includes the following sections:

■ Section 55.1, "Introduction to the Seed Data Loader"

■ Section 55.2, "Using the Seed Data Loader in JDeveloper"

■ Section 55.3, "Translating Seed Data"

55.1 Introduction to the Seed Data Loader
Application Seed Data is the essential data to enable Oracle Fusion applications. Some
examples include static lists of values, functional or error messages and lookup values.
Seed data is generally static in nature, although it is possible for customers to
customize some seed data values after delivery. Any non-transactional data values
loaded into a database at customer delivery time can be considered seed data.

Seed data is extracted from Oracle development databases at design time into external
files. These files are delivered to the customer and uploaded to the customer's
database. Seed data can be delivered and installed at any point in the application
lifecycle, such as for a new installation, a major or minor release upgrade, or a
patch/change delivery.

Applications that manage seed data need to have a certain amount of knowledge
about the seed data. This is so that data to be recreated on the target database is loaded
to the correct tables, while preserving referential integrity. This seed data knowledge,
or seed meta-data, also needs to be delivered in some form along with the extracted
seed data files. This meta-data drives how the data is extracted and uploaded.

The Seed Data Utility, which runs only under JDeveloper, will provide data extraction
from the development instances of Oracle Fusion applications. It will also load the
extracted data to the customer database instances of Oracle Fusion applications, by
integrating with Oracle Fusion Applications Patch Manager.

Note: Each entity type, such as Profile and Messages, will have its
own dedicated utility. See Table 55–1, " Available Seed Data Loaders".

Using the Seed Data Loader in JDeveloper

55-2 Developer's Guide

55.2 Using the Seed Data Loader in JDeveloper
The Seed Data Extract and Upload processes are run directly from the Seed
Data-configured Oracle Application Development Framework (Oracle ADF) Business
Components Application Modules. The Seed Data Configuration, Extract, and Upload
processes are all run from within JDeveloper, the same development environment in
which the Business Object components are defined.

55.2.1 Introduction to the Seed Data Framework
The Seed Data Framework is delivered as a plug-in extension to the JDeveloper
environment. The Seed Data Framework is installed by default; there are no other
installation or setup steps to perform to begin using the Seed Data Framework tasks.
There are support libraries that need to be present in the Business Component project
class path before running the Seed Data tasks See Section 55.2.2, "How to Set Up the
Seed Data Environment".

Available Seed Data Loaders
The loaders and view objects listed in Table 55–1 are supported.

Legend
■ Loader: Location of a seed loader-enabled application module. Assume a prefix of

oracle.apps.fnd.applcore.

■ VO: Driving view object.

■ Is the Module Striped?: Does this view object require a module argument?

Table 55–1 Available Seed Data Loaders

Loader View Object

Is the
Module
Striped?

attachments.attachmentLoader.applicationModule.attachm
entsLoaderAM

FndDocumentEntitiesVL N

attachments.attachmentLoader.applicationModule.attachm
entsLoaderAM

FndDocumentCategoriesVL Y

attachments.attachmentLoader.applicationModule.attachm
entsLoaderAM

Note: Before running this loader, you need to run the first two
loaders listed in this table that have the
FndDocumentEntitiesVL and the FndDocumentCategoriesVL
view objects.

FndDocCategoriesToEntitiesVO N

dataSecurity.dataSecurityService.applicationModule.Dat
aSecurityAM

FndMenus Y

dataSecurity.dataSecurityService.applicationModule.Dat
aSecurityAM

FndGrants Y

dataSecurity.dataSecurityService.applicationModule.Dat
aSecurityAM

FndObjects Y

dataSecurity.dataSecurityService.applicationModule.Dat
aSecurityAM

FndFormFunctions Y

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-3

docseq.docSeqService.applicationModule.DocSeqServiceAM There are four separate VOs for this,
one for each determinant type:

■ DocumentSequencesLoader

■ DocumentSequencesBULoader

■ DocumentSequencesLedgerLoader

■ DocumentSequencesLegalLoader

Use the loader appropriate for the
determinant type of your sequence,
or all four if you want to download
all document sequences for all
determinant types.

Y

docseq.docSeqService.applicationModule.DocSeqServiceAM DocSequenceCategories Y

docseq.docSeqService.applicationModule.DocSeqServiceAM DocSequenceAudit N

docseq.docSeqService.applicationModule.DocSeqServiceAM DocSequenceUsers N

flex.dff.category.categoryService.applicationModule.Ca
tegoryServiceAM

Category N

flex.dff.descriptiveFlexfieldService.applicationModule
.DescriptiveFlexfieldServiceAM

DescriptiveFlexfield Y

flex.dff.descriptiveFlexfieldService.applicationModule
.DescriptiveFlexfieldServiceAM

DescriptiveFlexfieldSecondaryUsage Y

flex.kff.keyFlexfieldService.applicationModule.KeyFlex
fieldServiceAM

KeyFlexfield Y

flex.kff.keyFlexfieldService.applicationModule.KeyFlex
fieldServiceAM

KeyFlexfieldSecondaryTableUsage Y

flex.vst.valueSetService.applicationModule.ValueSetSer
viceAM

ValueSet Y

lookups.lookupService.applicationModule.LookupServiceA
M

LookupView1 Y

lookups.lookupService.applicationModule.LookupServiceA
M

StandardLookupType1 Y

lookups.lookupService.applicationModule.LookupServiceA
M

CommonLookupType1 Y

lookups.lookupService.applicationModule.LookupServiceA
M

SetIdLookupType1 Y

messages.messageService.applicationModule.MessageServi
ceAM

Message Y

nls.currencyService.applicationModule.CurrencyServiceA
M

Currency N

nls.isoLanguageService.applicationModule.IsoLanguageSe
rviceAM

IsoLanguage N

nls.languageService.applicationModule.LanguageServiceA
M

Language N

Table 55–1 (Cont.) Available Seed Data Loaders

Loader View Object

Is the
Module
Striped?

Using the Seed Data Loader in JDeveloper

55-4 Developer's Guide

nls.naturalLanguageService.applicationModule.NaturalLa
nguageServiceAM

NaturalLanguage N

nls.territoryService.applicationModule.TerritoryServic
eAM

Territory N

nls.timezoneService.applicationModule.TimezoneServiceA
M

Timezone N

profiles.profileService.applicationModule.ProfileServi
ceAM

ProfileCategory Y

profiles.profileService.applicationModule.ProfileServi
ceAM

ProfileHierarchy N

profiles.profileService.applicationModule.ProfileServi
ceAM

ProfileLevel N

profiles.profileService.applicationModule.ProfileServi
ceAM

ProfileOption Y

ref.industryService.applicationModule.IndustryServiceA
M

Industry N

setid.setIdService.applicationModule.SetIdServiceAM SetIdSet N

setid.setIdService.applicationModule.SetIdServiceAM SetIdSummary Y

setid.setIdService.applicationModule.SetIdServiceAM There are five separate VOs for this,
one for each determinant type:

■ SetIdAssignmentsAB

■ SetIdAssignmentsBU

■ SetIdAssignmentsCST

■ SetIdAssignmentsPU

■ SetIdAssignmentsSet

Use the loader appropriate for the
determinant type of your sequence,
or all five if you want to download
all document sequences for all
determinant types.

N

setid.setIdService.applicationModule.SetIdServiceAM SetIdReferenceGroup Y

trees.loader.applicationModule.TreeStructureLoader FndTreeStructure Y

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomyVO Special
case - all
the data
extracte
d into a
single
file.

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomyHierarchyVO Special
case - all
the data
extracte
d into a
single
file

Table 55–1 (Cont.) Available Seed Data Loaders

Loader View Object

Is the
Module
Striped?

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-5

55.2.2 How to Set Up the Seed Data Environment

To set up the Seed Data environment:
Follow these steps in JDeveloper before starting the Seed Data Framework tasks:

1. Start JDeveloper using the Oracle Fusion Applications Developer Profile.

Seed Data user interface tasks are run from within a JDeveloper Business
Components project.

2. Create the ADF Business Components artifacts to represent the logical data model,
including entity objects and view objects in the project. Create the relationships
between the entity objects and view objects in accordance with the Applications
Standards. Add the objects to an application module that will serve as the entry
point for the Business Service Object. The application module also serves as the
container for the Seed Data Framework Configuration meta-data.

3. Run the Seed Data Configuration wizard.

The wizard is the graphical user interface tool used to configure Application
Modules for Seed Data.

To launch the Seed Data Configuration Wizard, right-click the application module
name in the Application Navigator tree view, and select Seed Data >
Configuration > Edit as shown in Figure 55–1.

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomyPVO

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomySeedDataVO

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomySeedDataPVO

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomyComponentsVO Y

taxonomy.taxonomyService.applicationModule.ApplTaxonom
yAM

ApplTaxonomyNodeComponentsVO Y

trees.loader.applicationModule.DefaultTreeLoader FndTree N

oracle.apps.fnd.appltest.diagfwk.seeddata.model.DiagFw
kSeedDataAM

FndDiagTag Y

oracle.apps.fnd.appltest.diagfwk.seeddata.model.DiagFw
kSeedDataAM

FndDiagTest1 Y

Table 55–1 (Cont.) Available Seed Data Loaders

Loader View Object

Is the
Module
Striped?

Using the Seed Data Loader in JDeveloper

55-6 Developer's Guide

Figure 55–1 Starting Seed Data Configuration

The Seed Data Configuration wizard launches and displays the Driver Definition
Panel.

This panel, shown in Figure 55–2, initially shows the available view objects in the
root level of the application module data model that can serve as Driver view
objects.

Figure 55–2 Seed Data Configuration Driver Panel

a. Select the Driver check box for those view objects to serve as the Driver for
Seed Data Extract. More than one Driver can exist within an application
module; however, only one Driver can be specified at Extract time.

b. Select the Configure radio button for the Driver view object to configure
during this session. Only one driver view object can be configured during a
single editing session.

Note: If the seed application module in use is derived from a
subclass of OAApplicationModuleImpl, that sub-class and its
dependencies, if any, should be made available in compiled form
using the Libraries/Classpath feature of JDeveloper. If this step is not
done, extract/upload will fail.

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-7

4. Click Container Panel.

The Container Panel, as shown in Figure 55–3, shows the contained and reference
relationships of the Driver view object. Also shown are the underlying table names
that will be extracted from and updated to during the Extract and Upload
processes.

Figure 55–3 Seed Data Configuration Container Panel

View object relationships: The tree displays the model of the Seed Data
Configuration. Relationships between the view objects are displayed. The
relationship is either contained or just a reference. View links between the view
objects that are based on Associations marked explicitly as Composition
Association are shown as contained. Seed Data operations will be performed for
all the view objects that are identified as contained.

Foreign key relationships are called reference relationships. They are identified by
the existence of a view link between view objects backed by non-composite entity
associations, or no entity associations at all, or a join between two entity objects
(the referred entity object is marked as Reference in the View Definition) and a
List of Values on the name field.

Tables Information: The list shows the tables that are updated during Seed Data
upload. A non-editable list of tables is generated based on the declared data model
indicated by a Source column value of Model. The Type column indicates whether
the table is just Referenced or Updated. These tables and the explicitly added
tables with Type Updated will be frozen for (near) Zero-Downtime patching.

Table Freeze involves making the table in the Production edition read-only and
creating a replacement table in the Patch edition. The list of seed tables that will be
inserted, updated or referenced during seed data upload is provided as metadata
to the patching utility. This is auto-generated by the Configuration wizard by
inspecting the underlying entity objects and base tables for a given driver view
object.

If the entity objects of the configuration are not ADF Business Components-based,
or custom insert/updates exist (such as through PL/SQL code), the seed data

Using the Seed Data Loader in JDeveloper

55-8 Developer's Guide

framework will not be able to accurately determine the set of tables participating
in the seed data upload. In such cases, the seed data framework will not be able to
accurately determine the set of tables to be frozen. The owner of the seed
application module is required to declare the additional tables in the container
panel. Failure to review and declare tables (such as by specifying a list that is
incorrect or incomplete) that are participating in seed data upload is likely to cause
data invalidation or corruption, as some tables will not be frozen and the
Production Instance will directly be aware of seed data upload changes that
should be limited to Patch Instance. Patch rollback could also leave orphan records
in these cases.

Use the Add and Remove buttons to add or remove additional tables that are
affected from the list. The list of updated tables is for information only. This
information is used during patch application.

Table Name: This column shows the name of the table that is affected during Seed
Data upload.

View Name: Name of the ADF Business Components view object where this table
is declared. This column can also contain the name of the Java class or PL/SQL
procedure which would be used for seed data upload.

Source: Shows the source of this definition. The value of M is reserved to indicate
that the Table Name is derived from the ADF Business Components Model. You
can define your own definitions for additional table entries.

Type: This column shows the update type of the definition. A value of Updated
indicates that the definition table will be Updated at Seed Data Upload time. A
value of Referenced indicates that this is a Referenced table only, and will not be
updated by Seed Data Upload.

Click the Surrogate Panel.

Use the Surrogate Panel, shown in Figure 55–4, to declare surrogate attributes of
the view objects of the Seed Data Configuration.

Figure 55–4 Seed Data Configuration Surrogate Panel

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-9

The tree displays the model of the Seed Data Configuration. View objects can be
selected in the tree to declare a surrogate attribute of the selected view object.

Surrogate Attribute – Available: The left panel lists the attributes of the selected
view object that can possibly be a surrogate attribute. The list will include primary
key (PK) attributes that are of data type numeric.

Surrogate Attribute: The list on the right contains the attribute of the view object
that has been identified as a Surrogate Attribute.

Alternate Key: Select the Alternate Key that will be used as the unique row
identifier for the selected view object. The Alternate Key choice is based on the
Alternate Keys available on the entity object of the selected view object. If the PK
has many attributes and one of them is being marked as a surrogate, all the other
attributes in the PK, except the one being marked as surrogate, must be included
in the alternate key for that alternate key to be displayed in the list.

For Date Effective models, the above rule has been relaxed so that Effective Start
Date, Effective End Date, Date Effective Sequence and Date Effective Flag are not
required to be in the alternate key, even if they happen to be in the PK to appear in
the list.

To declare an attribute as a Surrogate Attribute:

a. Select the view object that contains the surrogate attribute. The left bottom
panel will show the list of attributes that are potential surrogate attributes.

b. Select the Surrogate Attribute and click the shuttle button.

Click Reference Panel.

Use the Reference Panel, shown in Figure 55–5, to declare the Data Upload Mode
for the Seed Data Configuration. Provide reference information on reference view
objects.

Note: If you have an entity object with a Surrogate Id that is
involved in a parent-child relationship, but you are not able to
view/select that Surrogate Id on the Surrogate panel, check the data
model and confirm that you have checked the composition check box
for that association. See the "Creating and Configuring Associations"
section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications
Edition)

Using the Seed Data Loader in JDeveloper

55-10 Developer's Guide

Figure 55–5 Seed Data Configuration Reference Panel

The tree displays the model of the Seed Data Configuration. Reference view
objects can be selected in the tree to declare information about the Seed Data
Configuration of the referred view object. All the external references must be specified
for the patch to succeed.

a. In the tree view, select the reference view object. The bottom left panel will
contain a list of available Application Modules.

b. Select the application module that contains the Seed Data Configuration
information for the reference view object.

c. Add a reference in the current application module to this application module
by clicking the shuttle button.

Note: If there are any Service Foreign Key LOVs defined in your
model, review the different scenarios in Table 55–2, " Service Foreign
Key LOV Scenarios" and verify that the steps listed for the scenario
corresponding to your FK LOV are followed. Failure to follow the
instructions in the document can cause problems during Seed Data
Extract and Upload processes.

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-11

Table 55–2 Service Foreign Key LOV Scenarios

Scenario What needs to be done

#1: Single attribute Foreign Key and
single attribute Alternate Key (Example:
PersonVO has Deptno and Dname.
Deptno is the foreign key ID, and
Dname is the foreign alternate key.)

An LOV should be defined on the alternate key attribute, with the
foreign key ID as a derived attribute.

1. Create PersonVO based on EmpEO and a reference DeptEO. The
foreign alternate key (Dname) from the reference entity object is
included in the EmpVO.

2. Define the LOV view object (DeptVVO).

3. Define a view accessor on EmpEO/PersonVO pointing to
DeptVVO.

4. Define an LOV on the foreign alternate key (Dname) using the
above view accessor, and configure the LOV to populate the foreign
key id (Deptno) as the derived attribute.

5. Manually edit the VO.xml and add LBThrowOnMisMatch="true",
such as:

<ViewObject
xmlns="http://xmlns.oracle.com/bc4j"
Name="SdLovrefReferringVO"
Version="11.1.1.53.68"
SelectList="SdLovrefReferringEO.ID,
SdLovrefReferringEO.REFERRING_DATA,
SdLovrefReferredEO.REFERRED_ALTATTR_2,
SdLovrefReferredEO.REFERRED_ALTATTR_1,
SdLovrefReferredEO.REFERRED_ID,
SdLovrefReferringEO.REFERENCE_ID"
FromList="SD_LOVREF_REFERRING SdLovrefReferringEO, SD_
LOVREF_REFERRED SdLovrefReferredEO"
BindingStyle="OracleName"
CustomQuery="false"
RowClass="oracle.apps.fnd.applcore.oaext.model.OAViewRowIm
pl"
ComponentClass="oracle.apps.fnd.applcore.oaext.model.OAVie
wObjectImpl"
PageIterMode="Full"
LBThrowOnMisMatch="true"
UseGlueCode="false"
Where="SdLovrefReferringEO.REFERENCE_ID =
SdLovrefReferredEO.REFERRED_ID(+)">

Using the Seed Data Loader in JDeveloper

55-12 Developer's Guide

#2: Single attribute Foreign Key and
multiple attribute Alternate Key
(Example: PersonVO has
OrganizationId as foreign key ID, and
OrganizationName+BusinessGroupNa
me as the composite alternate key.)

Each alternate key attribute needs to have an LOV defined, and each
LOV should have all the alternate key attributes as the driving attribute,
and the foreign key ID as the derived attribute.

1. Create PersonVO based on EmpEO and a reference OrganizationEO
and another reference BusinessGroupEO. The foreign alternate key
(OrganizationName and BusinessGroupName) from the reference
EOs are included in the PersonVO.

2. Define the LOV view object (OrganizationVVO).

3. Define a view accessor on EmpEO/PersonVO pointing to
OrganizationVVO.

4. Define an LOV on each of the foreign alternate key attributes
(OrganizationName and BusinessGroupName) using the above
view accessor, and configure the LOV to populate the foreign key id
(OrganizationId) as a derived attribute.

5. Modify the PersonVO.xml to make the LOVs driven by all the
foreign alternate key attributes, such as:

<ListBinding
 Name="LOV_OrganizationName"
 ListVOName="OrganizationVA"
 ListRangeSize="-1"
 NullValueFlag="none"
 NullValueId="LOV_OrganizationName_LOVUIHints_
NullValueId"
 MRUCount="0">
 <AttrArray Name="AttrNames">
 <Item Value="OrganizationName"/>
 <Item Value="BusinessGroupName"/>
 </AttrArray>
 <AttrArray Name="DerivedAttrNames">
 <Item Value="OrganizationId"/>
 </AttrArray>
 <AttrArray Name="ListAttrNames">
 <Item Value="OrganizationName"/>
 <Item Value="BusinessGroupName"/>
 <Item Value="OrganizationId"/>
 </AttrArray>
...

6. Manually edit the VO.xml and add LBThrowOnMisMatch="true"

Table 55–2 (Cont.) Service Foreign Key LOV Scenarios

Scenario What needs to be done

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-13

55.2.3 How to Use the Seed Data Extract Manager
Use the Seed Data Extract Manager tool to extract seed data from the pre-configured
Application Modules. The generated extract files are partitioned by the module owner.
Data can be filtered during extract time to limit the number of data files generated.

#3: Single attribute Foreign Key and
multiple attribute Alternate Key and
one of the alternate key attributes is
another foreign key. (Example:
PersonVO has BirthOfCountry as
foreign key ID, and BirthOfCity as
another foreign key ID. BirthOfCity has
BirthOfCountry+CityName as a
composite alternate key.)

The first foreign key (BirthOfCountry) needs to be resolved first, either
based on Scenario #1 or #2. Then the second alternate key should filter
by the first alternate key.

1. Define an LOV view object based on CountryEO.

2. Define an LOV view object based on CityEO. Define a view criteria
to filter by CountryId.

3. Define a view accessor on EmpEO/PersonVO pointing to
CountryVVO.

4. Define a view accessor on EmpEO/PersonVO pointing to CityVVO,
and bind CountryId to BirthOfCountry.

5. Define an LOV on CountryName using CountryVVO view accessor,
with BirthOfCountry as a derived attribute from CountryId from
CountryVVO.

6. Define an LOV on CityName using CityVVO view accessor, with
BirthOfCity as a derived attribute from CityId from CityVVO.

7. Manually edit the VO.xml and add LBThrowOnMisMatch="true"

#4: Composite foreign key Each foreign key ID will be dealt with individually. For example, the
foreign key id is OrgId+SourceId, then orgId and SourceId should be
resolved based on solution in #1 or #2 or #3 separately. Then a validator
needs to be defined to make sure combination of OrgId and SourceId is
valid. This has the assumption that each individual attribute are a
primary key itself.

Note: A UI-only LOV can be defined without a derived attribute.
The Seed Data Framework normally would ignore such an LOV and
no external reference metadata would be generated for it.

In some cases, it might be desirable to let the Seed Data Framework
treat such an LOV as a regular LOV with derived attribute(s). To do
this, you need a "fake" derived attribute defined on the LOV.

For example:

LinesStatusEO(LineStatusId, StatusCode)
StatusEO(StatusCode)

1. Create a join between LineStatusEO and StatusEO in LineStatusVO.

2. Mark StatusEO as Reference.

3. Include the StatusCode attribute from StatusEO into LineStatusVO.

Note: The attribute would be named StatusCode1, since
StatusCode from LineStatusEO is already a part of LineStatusVO.

4. Define the LOV on StatusCode with the derived attribute as StatusCode1.

Table 55–2 (Cont.) Service Foreign Key LOV Scenarios

Scenario What needs to be done

Using the Seed Data Loader in JDeveloper

55-14 Developer's Guide

The Seed Data Extract is driven off the Driver view object, as defined in the application
module Configuration. This Driver view object serves as the root of the extract, and
any contained child objects are extracted as containing data. Only one Driver view
object is active during the Extract process.

There are two methods of starting a Seed Data Extract process:

■ From JDeveloper using the Seed Data Framework Console

■ By using an external Command Line Interface, as shown in Section 55.2.4.2, "Using
the Extract Seed Data Command Line Interface"

To launch the Seed Data Framework Console from JDeveloper:
The Seed Data Console is the graphical user interface (GUI) tool used to run both
Extract and Upload Seed Data tasks. The Console also can be used to view the
underlying table data for the view objects of the application module data model.

Right-click the application module name in the Application Navigator tree view and
select Seed Data > Extract to launch the Seed Data Framework Console, as shown in
Figure 55–6.

Figure 55–6 Launching the Seed Data Console

If there are multiple database connections in the workspace, the Seed Data Console –
Select Database dialog, shown in Figure 55–7, displays.

Although this is not the normal case, if a developer needs to debug data on two
different databases, this lets him or her choose which one to use.

Note: If you change the name of a seed data file after Extract, you
also must manually update any references to that file name also.
Otherwise, proper ordering for Upload during patching run time for
the files will not work as expected. So long as the physical file names
and the names in task references match, the patching utilities will
sequence the seed data tasks correctly.

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-15

Figure 55–7 Select Seed Data Database

Select from the list of database connections available to the project. The default
selected database is the default connection set on the Project Properties, under
Business Components.

Click OK to launch the Seed Data Console with the selected connection information.

The Seed Data Console main page, as shown in Figure 55–8, displays.

Figure 55–8 Seed Data Console Main Page

The tree view shows the selected application module name as the root node, and each
of the configured Driver view objects as child nodes under the root. Only Driver view
objects as configured by the Seed Data Configuration wizard will show in this view.

The right side of Console is the output area, where processing messages of Seed Data
tasks are displayed.

Note: The Seed Data Console does not specify the last applied
version of the seed data file. As a result, users always will see a
warning message indicating incremental uploads have been turned
off. This is harmless and can be ignored.

In the log, the warning will appear similar to:

[WARNING] 14:38:58 : -cfver parameter not passed,
incremental uploads turned off

Using the Seed Data Loader in JDeveloper

55-16 Developer's Guide

55.2.4 How to Use Seed Data Extract Processing
To start a Seed Data Extract operation, right-click the Driver view object from which
you want to extract and select Extract Seed Data from the context menu, as shown in
Figure 55–9.

Figure 55–9 Select Extract Seed Data item

The Select Extract Path dialog, shown in Figure 55–10, displays.

Figure 55–10 Select Seed Data extract path

Type a directory path location in the File Name text box, or browse to an existing
location using the directory browser. The directory location need not necessarily exist
when typing a new name, as the directory paths will be created as needed during the
Extract process. The Extract directory path selected is used as the Seed Data Extract
Root for the generated extract files.

55.2.4.1 Understanding Extract Taxonomy Partition Selection Dialogs
Seed Data Extract uses selection dialogs for Taxonomy partitions.

Functional Design
When starting the Extract process, if a Taxonomy Partition Attribute is found in the
Driver view object, Extract will show the Taxonomy Partition selection dialogs. See
"Determining the Taxonomy Partitioning Attribute" for steps taken by Extract to find
the Taxonomy partition attribute, if any.

Taxonomy Products Dialog
The Select Application Taxonomy Product Modules, as shown in Figure 55–11, will
display a fixed list of all the Taxonomy products enabled for use with the Seed Data
Framework. If the list of products for which seed data extract needs to happen is

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-17

known beforehand, users can pick them from the list of available products. Optionally,
click Filter to filter the list of products to show only those products and Logical
Business Area (LBA) modules for which records exist in the selected view object.
Occasionally, when there are a large number of records involved, the it might take a
while to filter the list of products.

Figure 55–11 Select Application Taxonomy Product Modules dialog

If any Products or LBAs are selected that are not actually available in the view object,
no attempt is made to extract for that partition. This is done by applying implicit
Partition criteria, binding for each selected partition, and verifying at least one row
exists for the Partition row set before attempting to extract.

For internal development test cases and debugging for Extract, you will need to know
which partitions are available. To do so, you have to select the ModuleIds from the
driver and discover which Product that ModuleId equates to from the Taxonomy table.
If the driver view object moduleId is an LBA, you also will need to know under which
Product that LBA falls; this involves selecting from the Taxonomy hierarchy table.

An alternate method is to just select all the Products and all the LBAs when prompted
by the dialog. Then extract files are created for only those modules that actually exist.
This will be a little slower, since building the complete LBA list from all Products can
take a few seconds or longer. Then each selected partition is bound to determine the
availability. This will not be the typical Applications use case, as developers will know
which Products to select. It is necessary in a development case in which the Products
are not known.

LBA Taxonomy Partitions
After selecting the Products, the second dialog, Select Application Taxonomy LBA
Modules, may or may not be shown. If the selected Products were parents of explicitly
available seed-enabled LBA modules, all the available LBAs for the selected Products
are shown. Again, only LBA module types found in the driver view object rows, and
set as Seed Enabled in the Taxonomy Service, are shown in the list.

If the selected Products were not parents, or there are no LBAs available, no LBA
selection dialog is shown, and Extract is started for all the selected Products.

For the LBA selection dialog, the full LBA taxonomy path is shown, showing any
parents of subLBAs, and the parent Product short name. Again, the user selects the
desired LBA values by shuttling values to Selected.

Using the Seed Data Loader in JDeveloper

55-18 Developer's Guide

Figure 55–12 shows the Select LBA Taxonomy Partitions dialog showing all the
available LBAs found for the previously selected Receivables (AR), Payments (IBY),
and Human Resources (PER) Products.

Figure 55–12 Selecting Application Taxonomy LBA Modules

Extract Processing
After selecting LBAs, Extract proceeds to extract selected LBAs and selected base
(non-parent) Product types, if any. Each Product and LBA type name value
corresponds to a unique Extract file. Each Extract file will contain all rows containing
the Taxonomy Partition Attribute (ModuleId or ApplicationId) value corresponding to
each selected type.

Extract files are placed in folders according to the taxonomy path, starting at the
Product short name, and including any LBAs and subLBAs as subdirectories. All the
Extract file names follow the same pattern: <driver view object name>SD.xml.

Figure 55–13 shows a sample output selecting the three Receivable (AR) LBAs,
creditCardErrors, customerProfileClasses, and miscellaneousReceipts, and General
Ledger (AR) and Opportunity Management (MOO) Applications. The applications,
AR and MOO, were explicitly defined in the entity, and contained no child LBAs.

Figure 55–13 Example Output Selection

Determining the Taxonomy Partitioning Attribute
The Taxonomy Partition Attribute on the Seed Driver view object is determined in the
following manner, in order of precedence:

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-19

1. Attribute serving as ViewLink to ApplTaxonomySeedDataPVO ModuleId or
AlternativeId attributes, or ApplicationPVO ApplicationId attribute.

2. Attribute serving as LOV to ApplTaxomomySeedDataPVO UserModuleName or
AlternativeName attributes.

3. Hard-coded ModuleId attribute

4. Hard-coded ApplicationId attribute

Single File Implicit Partitioning
If no driver view object attributes pass above, single file implicit partitioning will be
used and all rows will be extracted to a single extract file. In this case, no taxonomy
partitioning dialogs will be shown.

The taxonomy owner for the corresponding file path is determined from the
ApplicationModule package name.

For example, extracting from oracle.apps.fnd.lookups.service.FndLookupsAM will
create the extract file in the FND folder under the user-specified extract root path.

Extract Manager Support for Seed Data File Dependencies
The Extract function adds metadata of the file on which the current file is dependent.

For example, the metadata shown in Figure 55–1 would be added using adxml
comments for the case where the current file is dependent on it.

Example 55–1 Sample Metadata Using ADXML Comments

<!-- <run_after_tasks> -->
<!-- adxml: <task_reference te="CZ" subdir="CZ"
file_basename="ReferredSD.xml" identifier="UPLOAD"/> -->
<!-- adxml: </run_after_tasks> -->

adxml are the comments added to the extract file at the beginning of the file. They are
the same as normal xml comments except they have adxml: prepended to the
commented text.

Extract gathers this information by using the Reference view object from Reference
application module. Reference application module is configured by the user in the
Reference panel of Seed Data Configuration. See Figure 55–5.

This information is used by the Patching Utility to create the order in which the files
need to be uploaded so that the Reference data is available before the Referring data is
loaded.

Static File Dependencies
For the cases where dynamically finding the file dependencies is not possible, or
dynamic dependencies are not complete, you can set static file dependencies using an
application module custom property for a view object instance, as shown in
Table 55–3.

All files extracted from that view object would have the dependencies stamped in
adxml comments.

Using the Seed Data Loader in JDeveloper

55-20 Developer's Guide

Turning Off Dynamic File Dependency Generation
You can turn off the dynamic file dependency generation by defining the custom
property shown in Table 55–4 on the application module.

Output Log Level
The Log Level for the Seed Data tasks is used to increase or decrease the amount and
type of log messages generated during processing. The default Log Level is set to
INFO. This will display generated severe errors, warnings, and informational
processing messages. To limit the number of log messages generated, set the log level
higher, to Severe or Warning. To see more processing messages generated for
debugging purposes, set the Log Level to a lower level. Set the Log Level to FINEST to
see the most processing messages generated. These messages will generally only be
useful to developers.

55.2.4.2 Using the Extract Seed Data Command Line Interface
The Seed Data Extract process can also be initiated externally from JDeveloper using
the Command Line Interface (CLI). Seed Data Extract command line parameters can
be passed using one of two methods:

■ Directly on the Java command line

■ By using a command property file that is singularly passed on the command line

Extract Seed Data Java Command Line Syntax
java -cp $jdev_
install/jdeveloper/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar:$jdev_
install/oracle_common/modules/oracle.odl_11.1.1/ojdl.jar
oracle.apps.fnd.applseed.rt.extract.Extract
 -dburl <database connect url string without username and password>
-dbuser <database user>
 -AM <fully qualified path to seed configured AM>

Table 55–3 Application Module Custom Property for a View Object Instance

Application Module Custom
Property Name Value Example

SD_DEPENDENT_FILES_<View
object instance name>

<product>:<path>:<filename>,
<product>:<path>:<filename>,..

The static dependent file location
consists of three parts separated by
colons:

■ product: Product short name.

■ path: Relative path from the
product folder where the file exists.

■ filename: name of the seed xml file
that contains the referenced data.

Multiple static external references
should be separated by a comma.

Property: SD_DEPENDENT_FILES_
TimeDefinition1

Value:
HCM:HCM/Per:LookupsSD.xml,FND:F
ND:ValueSetSD.xml

Table 55–4 Property to Turn Off Dynamic File Dependency

Application Module Custom Property
Name Value Example

SD_NO_DYNAMIC_EXT_REFS_<view object
instance name>

true Property: SD_NO_DYNAMIC_EXT_REFS_FndObjects

Value: true

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-21

 -VO <seed Driver view object instance name>
 -dburl <database connect URL string without username and password>
 -dbuser <database user>
 -AM <fully qualified path to seed configured AM>
 -VO <seed Driver view object instance name>

 [-ExtractRootPath <output path location>]
 [-PartitionKeyIds <Taxonomy ModuleId values> | -PartitionKeyNames <Taxonomy
short name values>]
 [-PartitionKeyIds <partition key id values>]
 [-PartitionKeyNames <partition key names>]
 [-log <Used to give the log Level (SEVERE to FINEST)>]
 [-loglevel <Used to give the location of the log file>]
 [-entid <enterprise id>]

Command Property File
java -cp $jdev_
install/jdeveloper/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar:$jdev_
install/oracle_common/modules/oracle.odl_11.1.1/ojdl.jar
oracle.apps.fnd.applseed.rt.extract.Extract [command property file]

The command property file is an external file that contains the command line
properties in standard Java Properties format for each of the required and optional
Extract command line properties. The format can be name=value, or name:value.

Seed Data Extract Command Line Parameters
The available Seed Data Extract parameters are listed in Table 55–5.

Table 55–5 Available Seed Data Parameters

Property Value Required? Example

dburl database connection URL in JDBC
format without username and
password

Yes jdbc:oracle:thin:@fully_qualified_
server_name:1991:database_name

dbuser database user to be used for extract Yes fusion

AM Application module name, fully
package qualified

Yes oracle.apps.fnd.applcore.flex.dff.des
criptiveFlexfieldService.
applicationModule.DescriptiveFlexf
ieldServiceAM

VO Driver ViewObject instance name Yes DescriptiveFlexfield

ExtractRootPath Path to extract seed data files No /home/seed/data

PartitionKeyIds Comma delimited Taxonomy Id
values to extract, either ModuleId or
ApplicationId, depending on
partition strategy.

No Taxonomy Module Ids:

4F1F0DFC58F87DB4E04044981FC62
F46,
47110F64AC8F08E2E040449823C60
DB6

Application Ids:

250, 667, 10047

PartitionKeyNames Comma delimited Taxonomy name
values to extract, either Product
codes, or LBA names, or combination
thereof

No FND, HCM, invoices, receivables,
cashManagement

Using the Seed Data Loader in JDeveloper

55-22 Developer's Guide

PartitionKey<Ids|Names> Properties
The PartitionKey properties drive how the seed data extract derives the data file
partitions, which is the number of files generated. Each partition key will equate to a
single extracted seed file, with all the rows that are owned by that particular module
being extracted to its seed file.

You can use either the PartitionKeyIds or the PartitionKeyNames property, or a
combination of both, to supply to the extract each of the unique file partitions that will
be created. If no PartitionKey properties are specified, the default behavior is to extract
all file partitions found from the driver view object, and all rows extracted to each
corresponding seed data file.

You should use one of the PartitionKey parameters to limit the amount of files
generated. Otherwise, the expected partitions will need to be determined from
executing the driver view object query and perform a complete table scan of all rows.
For very large tables with many thousands of rows, this could be a potentially large
performance hit, and, depending on the complexity of the view object query and its
joins, could take several minutes to hours to determine.

Property File Comments
In the command property file, any lines beginning with a pound sign (#) will be
considered comments, and not processed in any way by the Extract tool.

You also can comment out specific entries in the multi-value comma delimited
properties. For example:

PartitionKeyNames = FND, HCM, #FCM, GL, AM

This will ignore the FCM value entry, but keep others intact. A sample
PartitionKeyNames command line option is shown in Example 55–2.

Example 55–2 Sample Command Line

java -cp $jdev_
install/jdeveloper/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar:$jdev_
install/oracle_common/modules/oracle.odl_11.1.1/ojdl.jar
oracle.apps.fnd.applseed.rt.extract.Extract
-dburl jdbc:oracle:thin:@fully_qualified_server_name:1991:database_name
-dbuser fusion
-AM
oracle.apps.fnd.applcore.flex.dff.descriptiveFlexfieldService.applicationModule.De

loglevel The Log Level (SEVERE to FINEST). No -loglevel FINE

log The location of the log file. No -log /home/seed/ex.log

Entid Enterprise Id numeric value. No -entid 1

Note: The database password would be prompted. To avoid
prompting, pipe it on the command line. The password must be piped
in when output is redirected. For example, to pipe a password from
the $FUSION_PASS environment variable to the Extract command
line:

java Extract cmdline... <<! $FUSION_PASS

Table 55–5 (Cont.) Available Seed Data Parameters

Property Value Required? Example

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-23

scriptiveFlexfieldServiceAM
-VO DescriptiveFlexfield
-ExtractRootPath /home/seed/data
-PartitionKeyNames HCM, invoices, cashManagement
-loglevel FINER

Example 55–3 shows the contents of the sample Seed Extract Command Property File,
located at /home/extract.properties:

Example 55–3 Sample Command Property File

#Sample extract property file, comment line
AM =
oracle.apps.fnd.applcore.flex.dff.descriptiveFlexfieldService.applicationModule.De
scriptiveFlexfieldServiceAM
dburl = jdbc:oracle:thin:fusion/fusion@fully_qualified_server_name:1991:database_
name
dbuser = fusion
VO = DescriptiveFlexfield
ExtractRootPath = /home/seed/data
PartitionKeyNames = FND,HCM

Sample command line showing command line parameter to
/home/extract.properties command property file.

java -cp $jdev_
install/jdeveloper/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar:$jdev_
install/oracle_common/modules/oracle.odl_11.1.1/ojdl.jar
oracle.apps.fnd.applseed.rt.extract.Extract /home/extract.properties

55.2.5 How to Use the Seed Data Upload Manager
To launch the Seed Data Framework Console, refer to "To launch the Seed Data
Framework Console from JDeveloper:" but select Seed Data > Upload.

When you right-click a Driver view object in the tree list, the menu shown in
Figure 55–14 displays so you can select the Load Seed Data option.

Figure 55–14 Upload Seed Data Menu Option

In addition to the Load Seed Data option, discussed in Section 55.2.5.1, "Uploading
Seed Data," three other options are available:

Set Log Level
Set how much information you want written to the log file. The least amount of
information will be if this is set to Severe, and the largest amount of information will
be is this is set to Finest. The default setting is Info, which will log Information,
Warning and Severe messages.

Using the Seed Data Loader in JDeveloper

55-24 Developer's Guide

Clean Mode
The default setting is Disabled. If Clean Mode is Enabled, it basically deletes all the
existing records before proceeding to upload the given file. This option is exposed both
through the command line interface for upload (-clean) and here.

Customization Mode
The default setting is Do Not Preserve.

Seed Data Loader always sets the last_updated_by and created_by to zero when it
inserts new records, and it always sets the last_updated_by to zero when it updates
existing records.

Customers who have customized some of the Seed Data records are expected to set
last_updated_by to a non-zero value.

By default when using the Seed Data Console, customizations are not preserved. They are
overwritten.

However, on the command line, which is primarily intended for use at the customer
site and for automated uploads, customizations are preserved by default. To override
this, use the -nocust option.

55.2.5.1 Uploading Seed Data
To upload Seed Data, right-click the desired Driver view object from the Consoleview
object tree list. Select Load Seed Data.

The Select a file to load dialog, shown in Figure 55–15, displays.

Caution: This option should be used extremely carefully as it might lead to
irreversible data loss.

Important: When you upload files, if the row already exists in the
database and if it has been customized (last_updated_by <> 0), a
"Skipped" message will be placed in the log and the row will not be
updated. To correct this, change last_updated_by to 0 in both the
database and the file before uploading.

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-25

Figure 55–15 Selecting a File to Load

 Select either an XML file or its corresponding translation xliff file to initiate a National
Language Support (NLS) upload.

Click OK to begin the Upload process on the selected file.

Upload Output
When the Seed Data upload finishes, the processing messages are shown in the output
tabbed view window, in the tab corresponding to the view object against which the
upload was run. See Figure 55–16.

Figure 55–16 Upload Output Messages

You may see warning messages about columns being not updateable. Review these
messages to determine if you can ignore them for your specific case.

Using the Seed Data Loader in JDeveloper

55-26 Developer's Guide

55.2.5.1.1 How to Upload Seed Data Using the Command Line Interface

The Seed Data Upload process can be initiated externally from JDeveloper using the
Command Line Interface (CLI).

To run the command line version of the Seed Data Loader from within an ADE view,
ensure the JDEV_HOME environment variable, shown in Table 55–6, is set to a valid
JDeveloper installation directory. Include the jdeveloper sub folder if you are using
JDeveloper integrated with WebLogic Server.

Command Line Syntax
Example 55–4 shows a sample Seed Data upload command entered on the CLI, and
Example 55–5 shows a sample command line command for a Key Flexfield application
module.

Example 55–4 Sample Seed Data Upload Command on the CLI

java -cp $jdev_install/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar
oracle.apps.fnd.applseed.rt.loader.Loader

Table 55–6 Environment Variables for the Seed Data Upload CLI

Variable name Required? Purpose

JDEV_HOME No Should point to the full path to the JDeveloper installation.

APPLSEED_
CLASSPATH

No Used to add additional classpath entries to the loader (in
addition to the regular CLASSPATH setting which might
not be modifiable in certain circumstances). This
parameter is expected to include folders where Apps EAR
archives are available in an exploded format (typically the
product family level deploy folders). If the same ADF
library is available from multiple locations, only one will
be added to the classpath.

APPLSEED_TS_
CLASSPATH

No Used to add additional classpath entries to the loader (in
addition to the regular CLASSPATH setting which might
not be modifiable in certain circumstances). This
parameter is expected to include folders where techstack
libraries are made available. On a provisioned system, it
should include at least these directories:

fmw1/atgpf/atgpf/modules/oracle.applcore.model_
11.1.1
fmw1/oracle_common/modules
fmw1/atgpf/modules

Note: The primary difference between APPLSEED_
CLASSPATH and APPLSEED_TS_CLASSPATH is that the
JAR files coming from APPLSEED_CLASSPATH are put
through a unique filter that filters unique JAR files by file
name. This is possible because ADF libraries follow a
naming convention. On the other hand, there is no
common naming convention across techstack libraries
(there could be a util.jar from JDBC and another from the
XML parser). Therefore, the JAR files coming from
APPLSEED_TS_CLASSPATH are not filtered by filename.

APPLSEED_
CLASSPATH_FILE

No Used to specify a file path, each line of which will be
treated as a classpath entry similar to the entries in
APPLSEED_CLASSPATH.

APPLSEED_TS_
CLASSPATH_FILE

No Used to specify a file path, each line of which will be
treated as a classpath entry similar to the entries in
APPLSEED_TS_CLASSPATH.

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-27

 -am <fully qualified application module name>
 -dburl <database url in jdbc format without username and password>
-dbuser <database user>
 -file <complete path to the data file>
 [-config <bc4j config name>] // Example:
KeyFlexfieldServiceAMLocal, KeyFlexfieldServiceAMShared, KeyFlexfieldServiceAMTest
 [-cfver <checkfile version>] // Obsolete. Do
not use.
 [-atomic] // If used, the
loader will load all the records or none of them (basically will stop after the
first failure)
 [-nls] // Used to
indicate to the loader that it should treat the given file as an xliff
 [-clean] // Cleans up any
existing records before starting to upload from the file (use with caution)
 [-loglevel] // Used to give the log Level (SEVERE to FINEST)
 [-log] // Used to give the location of the log file
 [-commitsize] // This parameter is optional. The The default value of
commitsize is 1; the maximum allowed value is 9999. The commitsize parameter is
used to decide the frequency for committing the seed loader transaction. For the
default case with commitsize at 1, the transaction is committed after every 1
records, or after all the records are processed, whichever comes first. Note that
the commits are only at the top level entity (and not in middle of child records),
so commit may not occur exactly every N records, but at the top level entity after
N records (top level and child records together) have been processed.
 // Note: The previous name for the commitsize parameter was
batchsize. However, this was getting confused with the JDBC batch value, and
hence, it was decided to rename it to commitsize.
 [-entid <enterprise id>] // load data only for the given enterprise

Example 55–5 Sample Command Line Invocation for a KFF Application Module

java -cp $jdev_
install/jdeveloper/jdev/oaext/lib/oracle.apps.fnd.applseed-rt.jar:$jdev_
install/oracle_common/modules/oracle.odl_11.1.1/ojdl.jar
oracle.apps.fnd.applseed.rt.loader.Loader

55.2.5.1.2 How to Invoke Seed Loader Modes Three modes can be invoked when running
a Seed Data Upload from the command line.

■ -clean: This flag's primary purpose is to make the set of records in the database
reflect exactly what is delivered in the seed data file. If the set of records in the
database becomes out of sync with what is delivered in the file, the -clean flag can
be used to load the seed data file and make sure the database only has those
records delivered from the file. This is turned off by default.

■ -atomic: This flag's primary purpose is to let the seed framework ensure that all
the records in a given file are loaded. If all records are not loaded, none will be
loaded. If even one record fails, the loading is stopped and all the previously
loaded records are rolled back. That is, a single commit is issued towards the end

Note: The database password would be prompted. To avoid
prompting, pipe it on the command line. The password must be piped
in when output is redirected. For example, to pipe a password from
the $FUSION_PASS environment variable to the Loader command
line:

java Loader cmdline... <<! $FUSION_PASS

Using the Seed Data Loader in JDeveloper

55-28 Developer's Guide

of the file. This is turned off by default and a commit is done after every top level
record.

■ -nocust: This flag's primary purpose is to let the seed framework know that it
should not preserve any customizations done by the customer in the database
version of the records. Data from the file is expected to overwrite anything that is
in the database. This is turned off by default.

Important Points
■ The database password would be prompted. The password can be piped in to

avoid prompting. The password must be piped in if output is redirected.

■ A failure during the cleanup stage does not prevent the subsequent loading of the
records from the file.

■ The -clean, -nocust and -atomic flags can be used independently of each other.

■ What is deleted when -clean is used?

– The clean mode deletes all the records that satisfy a particular condition. In
normal use cases, this is the partitioning criteria (ModuleId or ApplicationId)
used when the data was extracted. The Seed data file has metadata about the
partitioning attribute (ModuleId, ApplicationId or any other partitioning
scheme) and the exact values for those attributes used during extract.

Example

Using the Messages model from the Oracle Fusion Middleware Extensions for
Applications, when PER/SomePerLba developers extract their messages, they
will receive a set of Messages owned by that LBA. The seed data file captures
this metadata that is used during -clean to determine the set of records to
remove. In this case, all the messages owned by PER/SomePerLba will be
removed.

– The set of records deleted does not depend on the set of records in the file. It is
only driven by the partitioning metadata stored inside the file. The loader
would not have even read the records in the file by the time the cleanup is
made.

Example

If PER/SomePerLba owns 10 messages in the database and an incoming
MessageSD.xml brings in only six messages, which might be the same as or
different from those in the database, the 10 messages in the database are all
removed and the ones from the file are all loaded. If the loading succeeds, the
database should have only six records owned by PER/SomePerLba - exactly
what the seed data file brought in.

■ Customizations and -clean

The -clean mode currently does not preserve customizations. The seed framework
identifies customized records by a non-zero last_updated_by. Such records are not
updated by the seed framework and a warning is issued that the record has been
customized in the database. The clean mode, however, does not currently honor
this principle and deletes even the customized records.

■ When are deletes committed?

The cleanup and the subsequent loading run in a single transaction. Therefore, a
failure during the loading will roll back the deletes. Because the seed framework -
by default - commits after every top level record, the cleanup - by default - is
committed or rolled back along with the very first top level record. If subsequent

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-29

top level records fail, they all will be left out of the database. Therefore, only a
subset of the records that came in the file will remain. This behavior changes when
using the -atomic flag. This flag essentially says "make sure all the records, or none
of the records, in the file are loaded." In this case, the cleanup and the loading are
committed only once towards the end of the file. Even if one record fails, the
deletes and any intervening loads are rolled back.

55.2.6 How to Share Application Modules
In some cases, Application Modules developed and owned by one team might have to
be shared by some other team. In such cases, the team that developed the application
module owns the module and the data-model associated with it, but the team that is
consuming it owns the seed data and the relevant extract files.

In Figure 55–17, the team that is developing the application module packages the
module into an ADF Business Components library.

The consuming team includes these libraries in the project using the
Libraries/Classpath feature of JDeveloper. Once imported, developers can use these
libraries to extract and upload seed data, but cannot edit the Seed Data configuration.

Figure 55–17 Including Shared Libraries

The imported Business Components can be seen using the Business Components
Import feature of JDeveloper. Once imported, developers can use these libraries to
extract and upload seed data, but cannot edit the Seed Data configuration.

Using the Seed Data Loader in JDeveloper

55-30 Developer's Guide

Figure 55–18 Importing Business Components

Since Application Modules shared using an ADF Business Components library are not
shown by JDeveloper in the Application Navigator, users must right-click the Business
Components project into which they imported the shared libraries. The Seed Data
menus would also be available on any Business Components project node in the
Applications Navigator tree of JDeveloper.

Figure 55–19 Accessing Seed Data from Business Components Project

Using the Seed Data Loader in JDeveloper

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-31

Clicking any of the Seed Framework menu items will display a tree structure showing
all the Seed Framework-enabled Application Modules (those that have at least one
Seed Data driver view object configured within them) available to that project.

Figure 55–20 Selecting an Application Module

Users can choose an available application module and click OK to display the familiar
Seed Data console to perform and extract or upload activities.

55.2.7 How to Update Seed Data
The Seed Data Loader supports incremental updates and Java Database
Connectivity-based National Language Support updates. These are summarized in
Table 55–7.

55.2.7.1 Using Incremental Updates
The Seed Data Loader always updates all the records from the seed data file, even if
those records are already present in the target database. The Seed Data Loader only
updates the records from the seed data file that have changed in the target database.

Table 55–7 Summary of Seed Data Update Features

Feature
Applicable
to

Default
Setting Design time Control Runtime Control

Incremental
Updates

Only US
language
seed data
files

On Disabled by setting SD_INCR_
MIDTIER_<ViewDefinitionName>
to false.

Disabled by using optional command
line parameter -noincr

Disabled by setting APPLSEED_NO_
INCREMENTAL to true

JDBC Mode Only
translation
seed data
files

On for
newly
extracted
files

Disabled by setting SD_NLS_USE_
ADF_<ViewDefinitionName> to
true

Disabled by setting APPLSEED_NLS_
USE_ADF to true

Using the Seed Data Loader in JDeveloper

55-32 Developer's Guide

For certain kinds of requirements where it is desirable to have the seed data loaded as
a set, and therefore incremental updates are not desirable, the Seed Data Framework
provides an optional feature that allows product teams to disable this feature.

During extract, the Seed Data Framework computes MD5 checksums on the source
record by taking all the fields that make up the record (excluding key attributes,
history columns and non persistent fields). This checksum is embedded in the seed
data file as additional record level metadata. At load time, if the record is found
existing in the target database, the same algorithm is used to compute the checksum
on the target record. By comparing the two checksum values, the seed data loader
identifies if the record has undergone a change and needs an update. Updates are
triggered only for those records for which the checksums do not match.

This incremental update feature is applicable to only US language seed data XML files
and is enabled by default. For translated seed data, there is no provision to do
incremental updates.

To disable this feature for a particular seed data driver view object and all its child
view objects, the SD_INCR_MIDTIER_<ViewDefinitionName> property should be added
to the application module.

Set the value of this property to false to turn off incremental updates.

SD_INCR_MIDTIER_ValueSetVO false

Note that the incremental updates feature requires new metadata, in the form of
checksums, to be embedded into the seed data file. As a result, only newer seed data
files can take advantage of this feature. Note that the incremental updates feature
requires new metadata in the form of checksums to be embedded into the seed data
file. As a result, only newer seed data files can take advantage of this feature. With
older seed data files, the seed data loader shall continue to update all the records, even
if the application module has the feature enabled using the SD_INCR_MIDTIER property

As a debugging aid, the seed data loader also allows for incremental updates to be
conditionally turned off at run time. Use the -noincr optional command line
parameter to the loader or set the APPLSEED_NO_INCREMENTAL environment variable to
true.

55.2.7.2 Implementing Java Database Connectivity-based National Language
Support Updates
The Seed Data Loader loads seed data using the ADF components developed by
product teams. As a result, all the business rules, validation logic, and custom code
built into Oracle Fusion Applications ADF components also are invoked. Translation
seed data delivery usually involves only simple updates to existing records. Using
plain JDBC calls, instead of ADF, to update existing records allows for much faster
loads of translated seed data.

Newer translation seed data files have additional metadata that signal the loader to
use the JDBC mode wherever possible. This additional metadata includes SQL
fragments that the loader uses at load time to trigger JDBC updates, instead of the
well-known ADF-based loads. This JDBC mode is designed to achieve functional
parity with the existing ADF mode, and is the preferred way to deliver translation
seed data.

It is enabled by default for newly-created translation seed data files, with the exception
of date effective translation seed data, which rely on additional logic built into the
ADF. It should be noted that US language (XML) seed data files continue to be loaded
through ADF. The JDBC mode is tailored only for translation (XLF) seed data files. If

Translating Seed Data

Initializing Oracle Fusion Application Data Using the Seed Data Loader 55-33

certain kinds of translated seed data need to be always loaded using ADF, it is possible
to do so using one of these ways:

■ Design time - Define a custom property SD_NLS_USE_ADF_<ViewDefinitionName>
and set its value to true.

■ Runtime - Define an environment variable APPLSEED_NLS_USE_ADF and set its
value to true.

55.3 Translating Seed Data
The Seed Data Framework will handle localized data stored in translation tables in a
consistent manner. Translatable attribute data will be extracted separately for only the
US base language into Ora-XLIFF compliant format files.

Translation teams will translate the base US language XLIFF into the various language
translation files, one file for each supported language. The files are to be stored in a
separate language folder, named for its language code.

At upload time, Seed Data Loader will recognize an incoming translation language
XLIFF file automatically, and perform the necessary updates to the language tables.

55.3.1 How to Extract Translation Data
Ora-XLIFF format files are automatically generated for those data models which have
translatable data. Only the US language data is extracted. The XLIFF file is created in a
language sub-folder, named US, and the file name is named the same as the base seed
data XML file, with an extension of .xlf.

55.3.1.1 Treating Seed Data Base XML and Language XLIFF as a Single Entity
The seed data base and XLIFF files must be treated as a single entity. Any changes to
either base or translated attributes that would require a re-extract, would necessitate
that both the re-extracted base XML and US XLIFF files be delivered as single unit.
There is metadata in the files to ensure that the base and XLIFF files match and were
extracted together.

55.3.2 How to Process Seed Data Translations
Translation teams will create the translation XLIFF files starting from the initial US file.
Each supported language will have its own XLIFF file. The files will be stored in a
separate language sub-folder, named for the language code. The files will be named
the same as the base XML name, with the .xlf extension.

55.3.3 How to Load Translation Seed Data
At upload time, the Seed Data Loader will recognize an incoming translation language
XLIFF file automatically, and perform the necessary updates to the language tables,
based on the target language value from the XLIFF file.

Each translated language XLIFF file is loaded individually as a separate entity.

Base XML Must Be Loaded First
The base seed data XML file must be successfully loaded prior to loading any
language translation XLIFF files. No new inserts of language rows are performed, only
updates to existing rows.

Translating Seed Data

55-34 Developer's Guide

When loading the base seed XML file, the language rows are initially created using the
US translation values. Then when loading the language translation files, the rows are
updated using the incoming language values. This way, it is not necessary to have
translations for every single row. If no translations exist, the fall back is then to use the
US language row.

It is not necessary to upload the US language XLIFF file, as US translation data is
already saved in the base seed data XML file.

55.3.4 Oracle Fusion Middleware Extensions for Applications Translation Support
For the Seed Data Framework to work with translated data and perform the necessary
read and updates to the language translation tables, the application data model must
conform to the Oracle Applications Multi-language support guidelines.

See Section 9.2, "Using Multi-Language Support Features" for more information on
creating translatable data models.

56

Using the Database Schema Deployment Framework 56-1

56Using the Database Schema Deployment
Framework

This chapter discusses database modeling and database schema deployment in Oracle
Fusion Middleware.

When designing an application to interact with the database, you will need to
understand the database schema and be able to modify the schema as needed. This
chapter contains information regarding database modeling and database schema
deployment in Oracle Fusion Middleware. Developers should not use SQL DDL
scripts for deployment and source control of database objects, because they tend to be
error-prone and do not serve as a single accurate source. Instead, developers should
use the JDeveloper offline database schema object files in SXML persistence mode.

This chapter includes the following sections:

■ Section 56.1, "Introduction to Using the Database Schema Deployment
Framework"

■ Section 56.2, "Implementing Applications Data Modeling and Deployment
JDeveloper Extensions (Data Modeling Extensions)"

■ Section 56.3, "Using Schema Separation to Provide Grants"

56.1 Introduction to Using the Database Schema Deployment Framework
The Oracle Fusion Schema Deployment framework includes JDeveloper plugins that
handle applications-specific metadata, data modeling standards for applications
database modeling, and deployment of database schema objects to a target application
database. The database schema deployment component can be invoked standalone
outside of JDeveloper, such as from the command line, build scripts, or a patching tool.

56.2 Implementing Applications Data Modeling and Deployment
JDeveloper Extensions (Data Modeling Extensions)

Oracle uses source-controlled schema metadata files produced from JDeveloper. The
Offline Database is a way to persist database object definitions in a JDeveloper project
using SXML files, rather than accessing the database directly. It provides an abstract
layer that can be used to access a store of database object definitions. Therefore, it is

Note: Prior to SXML migration, these were referred to as XDF
(extension) files.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-2 Developer's Guide

possible to create, edit, delete and manipulate aspects of a database schema offline and
access database objects in a database through JDeveloper's connections.

All schema modeling can be done through JDeveloper. The XDF extension provides
developers with a set of tools to do the data physical modeling, such as create, edit,
deploy, and import the schema objects used in applications. The extension also
provides Application Data Modeling Standard validation, modification, and template
object plugins in JDeveloper to help users to follow the Data Model standards.

Developers will use XDF extensions for their database modeling development.

Information covered here includes:

■ The purpose of the offline database and how to create the database objects in the
offline database using JDeveloper.

■ The functions provided by the XDF extension how to use the XDF deployment
and import tools in JDeveloper.

■ The definitions of all User Defined Properties (UDP) that are provided by the XDF
extension user property library.

■ The UDPs developers should and can define for their schema objects in
JDeveloper.

56.2.1 How to Use the Offline Database
JDeveloper provides the tools you need to create and edit database objects, such as
tables and constraints, outside the context of a database, using the offline Database
model. You can create new tables and views, and generate the information to a
database, or you can import database objects from a database schema, make the
changes you want, and generate the changes back to the same database schema, to a
new database schema, or to a file that you can run against a database at a later date.

56.2.2 How to Create an Offline Database
Follow these directions to create an offline database.

To create an offline database:
1. In the Application navigator within JDeveloper, locate the project you want to

work in.

2. Select File > New to display the New Gallery.

3. From the New Gallery, select Database Tier > Offline Database Objects > Offline
Database, as shown in Figure 56–1.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-3

Figure 56–1 Creating a New Offline Database

4. In the Create Offline Database dialog, enter a name for the offline database, as
shown in Figure 56–2. For more information at any time, press F1 or click Help
from within the Create Offline Database dialog.

Figure 56–2 Naming the New Offline Database

The following types of objects are modeled using offline database objects.

■ Table

■ Trigger

■ View

■ Materialized View

■ Materialized View Log

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-4 Developer's Guide

■ Sequence

■ Synonym

JDeveloper offline database objects do not support these objects. However, SXML
persistence files for these object types can be imported using the applxdf extension.

■ Queue

■ Queue tables

■ Policy

56.2.3 How to Deploy an Offline Database in XML Persistence Format
See Section 56.2.9.1, "Deploying in SXML Persistence Format."

56.2.4 How to Validate Application Data Model Standards
A Framework plug-in on the JDeveloper database object editor provides warnings and
errors to enforce Data Modeling standards and XDF deployment requirements.

Additional Validations for Schema Object Deployment
To better service the Schema Deployment on Application Data Model, these
validations have been added on some User Defined Property (UDP) and other object
properties in the plugin.

■ Table Owner (UDP)

For a table object, if the User Property Table Owner is not defined, an error will be
displayed.

■ Short Name (UDP)

All schema objects:

– If the length of the object name is greater than the length standard and if the
short name is null or empty, display a warning.

If the short name is not null or empty, check if the length of the short name is
greater than the length standard. If it is, display a warning message.

– If the length of the object name is not greater than the length standard and if
the short name is null or empty, automatically set the short name to be the
same as the object name.

If the short name is not null or empty, check if the length of the short name is
greater than the length standard. If it is, display a warning message.

The name length standard for a Table is 24; for all others, it is 27.

■ Adxml (UDP)

The UDP adxml is set automatically for these schema object types:

Table.TYPE
 View.TYPE
 Synonym.TYPE
Sequence.TYPE
MaterializedViewLog.TYPE
MaterializedView.TYPE
Trigger.TYPE

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-5

The content of the UDP adxml will be determined by the current value of the UDP
adxml and the UDP useExistingAdxml.

■ AdxmlFK (UDP)

For table type only, automatically set the UDP adxmlFk according to the values of
the UDP adxmlFk and useExistingAdxml.

■ AdxmlDeferredIndexes (UDP)

For table and MaterializedView.type only, automatically set the UDP
adxmlDeferredIndexes according to the current value of this UDP and the value
of UDP useExistingAdxml.

■ Active Constraint or Index's Columns Checking

Check the status of a column to which an active constraint or index refers. If its
value is obsolete, an error message be displayed and block the work flow.

■ Index for Unique Constraint

Check if an index of unique constraint exists. If not, add one automatically.

■ Constraint Deployment Violation Checking

If a constraint is defined as disabled, but its UDP isLogical is set to N, a warning
message will be displayed, because this case will cause a deployment error.

■ Dependencies/Risk

This feature uses JDeveloper's Offline database APIs and therefore has a
dependency on all the offline database JAR files. The risk for this feature is some
enforcement of standards may fire wrongly due to potential bugs preventing
developers from modeling their objects as needed.

56.2.5 Application User Defined Properties
JDeveloper provides a large number of User Defined Properties (UDP). Their mapping
with the tables in the dictionary are detailed in:

■ User Defined Properties for Tables

■ User Defined Properties for Columns

■ User Defined Properties for Views

■ User Defined Properties for Sequence

■ User Defined Properties for Materialized View

■ User Defined Properties for Materialized View Log

■ User Defined Properties for Trigger

56.2.5.1 User Defined Properties for Tables
Table 56–1 shows the User Defined Properties that are defined for the tables.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-6 Developer's Guide

Table 56–1 User Defined Properties for Tables

UDP Display Name Values in JDeveloper
Definition in FND_
TABLES

isFlashbackAllowed

This property indicates
whether flashback of the
table is allowed. This
UDP is mandatory.

Is Flashback
Allowed

Y: Flashback of the table is allowed. That is,
you can use Flashback Query to examine the
state of a table at a previous time, or use the
FLASHBACK TABLE statement to restore an
earlier state of a table in the event of human or
application error.

N (default): Flashback of the table is not
allowed.

FLASHBACK_
ALLOWED

isLogical

The value of this UDP
indicates whether the
deployment program
will create an editioning
view for this table or not.
This UDP is required.

Editioning View Y (default): The deployment program will
create an editioning view for this table.

N: The deployment program will not create an
editioning view for this table.

LOGICAL

VARCHAR2(1) Not
Null

runTwice Run
Deployment
Twice

Y: Specifies that the table needs to be deployed
twice and the appropriate patching metadata
will be stamped in the file. This is typically
used when a product team adds or modifies a
column as a not-null column to a existing
table, and does not want to use a RBMS
default value. The column will be populated
with an upgrade script having a more
complex logic. The column needs to exist in
the target database before the upgrade script
is run. Also, the upgrade script cannot enforce
the not-null constraint since it is against the
standards to have DDL in scripts. Setting this
UDP to Y will accommodate this.

N (default).

N/A

shortName

The short name of the
table is used by the Zero
Downtime programs to
uniquely identify the
table. The maximum
length of this UDP is 24
characters.

Table Short
Name

N/A

The value of this UDP is defaulted to the table
name when the length of the table name is less
than 24 characters. When the length of the table
name is greater than 24 characters, this UDP is
required.

SHORT_NAME

VARCHAR2(30)
Null

objectOwner

This UDP stores the
Short Name of the
application that the table
belongs to.

This UDP is required.

Table Owner N/A APPLICATION_
SHORT_NAME

VARCHAR2(10)

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-7

tsClassification

This UDP stores the
Tablespace Classification
for this table. This value
is used to derive the
tablespace for the table
but it is not equivalent to
the tablespace. This UDP
is mandatory.

Tablespace
Classification

TRANSACTION TABLES (default)

REFERENCE

INTERFACE

SUMMARY

NOLOGGING

TRANSACTION_INDEXES

ARCHIVE

TOOLS

MEDIA

N/A

mlsSupportModel

The value of this UDP
indicates the language
data model for the table.

This UDP is required.

MLS Support
Model

Not MLS (default): The table is not an MLS
table.

Fully Synched: For Standard MLS (pair of _B
and _TL tables) or Single MLS (single _TL)
tables. A record will exist in the _TL table for
each licensed language in the instance. The _
TL table must have LANGUAGE and
SOURCE_LANG columns.

Partially Synched: For Partially Synchronized
MLS tables. These tables have a LANGUAGE
column but do not have a SOURCE_LANG
column. A record may or may not exist in the
table for the licensed languages in the
instance.

Single Language: For Single Language tables.
These tables do not have either a LANGUAGE
or a SOURCE_LANG column. The language
of the data in the translatable columns in the
table is considered to be the language
classified as the default or base language of
the instance.

MLS_SUPPORT_
MODEL

VARCHAR2(30)

status

The value of this UDP
indicates the status of the
table. This UDP is
required.

Status Active (default): The table is active.

Obsolete: The table is obsolete and can be
deleted from the database.

STATUS

VARCHAR2(30)

extensionOfTable

This UDP stores the
name of the base table
that is extended by this
table.

Extension of
Table

N/A EXTENSION_OF_
TABLE

VARCHAR2(30)

deployTo

The value of this UDP
indicates the deployment
mode of the table for the
Oracle Fusion
Disconnected Mobile
Framework.

This UDP is required.

Deploy To Server DB Only (default): The table is
deployed on the server database but not on
the mobile database.

All: The table is deployed both on the server
database and on the mobile database.

Mobile DB Only: The table is deployed on the
mobile database but not on the server
database.

DEPLOY_TO

VARCHAR2(30)

Table 56–1 (Cont.) User Defined Properties for Tables

UDP Display Name Values in JDeveloper
Definition in FND_
TABLES

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-8 Developer's Guide

conflictResolution

The value of this UDP
indicates how the Oracle
Fusion Disconnected
Mobile Framework
should resolve the
conflicts about duplicate
rows.

This UDP is required.

Conflict
Resolution

Duplicate (default): A new duplicate record is
added and the conflict will be handled during
the next synchronization. This value should be
used for non-intersection tables.

Merge: The records are merged. This value
should be used for intersection tables.

CONFLICT_
RESOLUTION

VARCHAR2(30)

sharedObject

The value of this UDP
indicates whether the
table is accessed by
external products.

Shared Object Y: The table can be accessed directly by
external products, other than the owning
product.

N (default): The table cannot be accessed
directly by external products.

SHARED_OBJECT

VARCHAR2(30)

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML N/A N/A

axdmlFk

The value of this UDP is
patch metadata used by
the foreign key portion of
the patching tool.

ADXML for
Foreign Keys

N/A N/A

adxmlDeferredIndexes

The value of this UDP is
patch metadata used by
the deferred indexes
portion of the patching
tool.

ADXML for
Deferred
Indexes

N/A N/A

useExistingAdxml

This UDP is mandatory.

Use Existing
ADXML

Y: Generate ADXML comment using the
existing ADXML value from the ADXML UDP

N (default): Regenerate the ADXML comment
and update the ADXML UDP.

N/A

isSelectAllowed

This property indicates
whether the select on the
table is allowed. This is
mandatory.

Is Select
Allowed

Y (default)

N

SELECT_ALLOWED

VARCHAR2(1) Not
Null

isUpdateAllowed

This property indicates
whether update on the
table is allowed. This
property is mandatory.

Is Update
Allowed

Y (default)

N

UPDATE_
ALLOWED

VARCHAR2(1) Not
Null

isInsertAllowed

This property indicates
whether the insert on the
table is allowed. This
property is mandatory.

Is Insert
Allowed

Y

N (default)

INSERT_ALLOWED

VARCHAR2(1) Not
Null

Table 56–1 (Cont.) User Defined Properties for Tables

UDP Display Name Values in JDeveloper
Definition in FND_
TABLES

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-9

56.2.5.2 User Defined Properties for Columns
Table 56–2 shows the User Defined Properties that are defined for columns.

isDeleteAllowed

This property indicates
whether delete on the
table is allowed. This
property is mandatory.

Is Delete
Allowed

Y (default)

N

DELETE_
ALLOWED

VARCHAR2(1) Not
Null

isTruncateAllowed

This property indicates
whether truncate on the
table is allowed. This
property is mandatory.

Is Truncate
Allowed

Y

N (default)

TRUNCATE_
ALLOWED

VARCHAR2(1) Not
Null

maintainPartition

Indicates whether
partitions can be
maintained on the table.
This property is
mandatory.

Maintain
Partition

Y

N (default)

MAINTAIN_
PARTITION

VARCHAR2(1) Not
Null

exchangePartition

Indicates whether it is
possible to exchange
partitions on the table.
This property is
mandatory.

Exchange
Partition

Y

N (default)

EXCHANGE_
PARTITION

VARCHAR2(1) Not
Null

maintainIndex

This property indicates
whether it is possible to
maintain indexes on the
table. This property is
mandatory.

Maintain Index Y

N (default)

MAINTAIN_INDEX

VARCHAR2(1) Not
Null

Table 56–1 (Cont.) User Defined Properties for Tables

UDP Display Name Values in JDeveloper
Definition in FND_
TABLES

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-10 Developer's Guide

Table 56–2 User Defined Properties for Columns

UDP Display Name Values in JDeveloper
Definition in FND_
COLUMNS

shortName

The short name of the
column is used by the
Zero Downtime
programs to uniquely
identify the column
within the table.

The value of this UDP is
defaulted to the column
name when the length of
the column name is less
than 27 characters. When
the length of the column
name is greater than 27
characters, this UDP is
required.

Column Short
Name

N/A SHORT_NAME

VARCHAR2(27)
Null

translateFlag

The value of this UDP
indicates whether the
column is translatable or
not.

This UDP is required.

Translate Y: The column is translatable.

N (default): The column is not translatable.

TRANSLATE_FLAG

VARCHAR2(1) Not
Null

status

The value of this UDP
indicates the status of the
column.

This UDP is required.

Status Active (default): The column is active.

Obsolete: The column is obsolete and can be
deleted from the database.

STATUS

VARCHAR2(30)

customDefaultValue Custom Default
Value

N/A N/A

denormPath

The value of this UDP
indicates the name of the
column that stores the
data that should be
copied to this column as
per the Oracle Fusion
Disconnected Mobile
Framework.

Denormalization
Path

N/A N/A

routingMode

The value of this UDP
indicates how this
column will be handled
during the
synchronization between
the server and the client
database as per the
Oracle Fusion
Disconnected Mobile
Framework.

Routing Mode Normal (default): The contents of this column
must be routed to the destination database.

Do Not Route: The contents of this column
must not be routed to the destination
database.

ROUTING_MODE

VARCHAR2(30)

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-11

56.2.5.3 User Defined Properties for Indexes
Table 56–3 shows the User Defined Properties that are defined for the indexes.

histogram

The value of this UDP
indicates if the column is
a candidate for
histogram.

This UDP is required.

Histogram Y (default): This column is a candidate for
histogram.

N: This column is not a candidate for
histogram.

N/A

histogramSize

The value of this UDP
indicates the number of
buckets to be used when
the column is defined as
a candidate for
histograms.

Histogram Size N/A

versionColumn

The value of this UDP
indicates the name of the
version column used by
the Oracle Fusion
Disconnected Mobile
Framework during
synchronization of LOB
columns.

Disconnected
Mobile Version
Column Name

N/A VERSION_
COLUMN

VARCHAR2(30
CHAR)

Table 56–2 (Cont.) User Defined Properties for Columns

UDP Display Name Values in JDeveloper
Definition in FND_
COLUMNS

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-12 Developer's Guide

56.2.5.4 User Defined Properties for Constraints
Table 56–4 shows the User Defined Properties that are defined for the constraints.

Table 56–3 User Defined Properties for Indexes

UDP Display Name Values in JDeveloper
Definition in FND_
INDEXES

shortName

The short name of the
index is used by the Zero
Down Time patching
programs to uniquely
identify the index.

The value of this UDP is
defaulted to the index
name when the length of
the index name is less
than 28 characters. When
the length of the index
name is greater than 28
characters, the developer
must enter a value that
uniquely identifies the
index.

Index Short
Name

N/A SHORT_NAME

VARCHAR2(30)
Null

deferred

The value of this UDP
indicates whether the
creation of the index will
be deferred during
deployment.

This UDP is required.

Index Deferred
(Y/N)

N (default): The creation of the index will not
be deferred.

Y: The creation of the index will be deferred.

N/A

status

The value of this UDP
indicates the status of the
index.

This UDP is required.

Status Active (default): The index is active.

Obsolete: The index is obsolete and can be
deleted from the database.

STATUS

VARCHAR2(30)

deployTo

The value of this UDP
indicates the deployment
mode of the index for the
Oracle Fusion
Disconnected Mobile
Framework.

This UDP is required.

Deploy To Server DB Only (default): The index is
deployed on the server database but not on
the mobile database.

All: The index is deployed both on the server
database and on the mobile database.

Mobile DB Only: The index is deployed on the
mobile database but not on the server
database.

DEPLOY_TO

VARCHAR2(30)

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-13

56.2.5.5 User Defined Properties for Views
Table 56–5 shows the User Defined Properties that are defined for the views.

Table 56–4 User Defined Properties for Constraints

UDP Display Name Values in JDeveloper

Definition in FND_
PRIMARY_KEYS or
FND_FOREIGN_
KEYS

isLogical Logical
Constraint

Y (default)

N

LOGICAL

VARCHAR2(1)

shortName

The short name of the
constraint is used by the
Zero Down Time
patching programs to
uniquely identify the
constraint.

The value of this UDP is
defaulted to the
constraint name when
the length of the
constraint name is less
than 28 characters. When
the length of the
constraint name is
greater than 28
characters, the developer
must enter a value that
uniquely identifies the
constraint.

Constraint
Short Name

SHORT_NAME

VARCHAR(30)

conDefer

The value of this UDP
indicates whether the
creation of the constraint
will be deferred during
deployment.

This UDP is required.

Defer
Constraint

N (default): The creation of the constraint will
not be deferred.

Y: The creation of the constraint will be
deferred.

N/A

status

The value of this UDP
indicates the status of the
constraint.

This UDP is required.

Status Active (default): The constraint is active.

Obsolete: The constraint is obsolete and can be
deleted from the database.

N/A

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-14 Developer's Guide

56.2.5.6 User Defined Properties for Sequence
Table 56–6 shows the User Defined Properties that are defined for Sequence.

Table 56–5 User Defined Properties for Views

UDP Display Name Values in JDeveloper
Definition in FND_
VIEWS

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML N/A N/A

isFlashbackAllowed

This property indicates
whether flashback of the
view is allowed. This
UDP is mandatory.

Is Flashback
Allowed

Y: Flashback of the view is allowed. That is,
you can use Flashback Query to examine the
state of a view at a previous time.

N (default): Flashback of the view is not
allowed.

FLASHBACK_
ALLOWED

useExistingAdxml Use Existing
ADXML

Y: Generate ADXML comment using existing
ADXML value from ADXML UDP.

N (default): Regenerate ADXML comment and
update ADXML UDP.

N/A

status

The value of this UDP
indicates the status of the
view.

This UDP is required.

Status Active (default): The view is active.

Obsolete: The view is obsolete and can be
deleted from the database.

STATUS

VARCHAR2(30)

isSelectAllowed

This property indicates
whether the select on the
table is allowed. This is
mandatory.

Is Select
Allowed

Y (default)

N

SELECT_ALLOWED

VARCHAR2(1) Not
Null

isUpdateAllowed

This property indicates
whether update on the
table is allowed. This
property is mandatory.

Is Update
Allowed

Y (default)

N

UPDATE_
ALLOWED

VARCHAR2(1) Not
Null

isInsertAllowed

This property indicates
whether the insert on the
table is allowed. This
property is mandatory.

Is Insert
Allowed

Y

N (default)

INSERT_ALLOWED

VARCHAR2(1) Not
Null

isDeleteAllowed

This property indicates
whether delete on the
table is allowed. This
property is mandatory.

Is Delete
Allowed

Y (default)

N

DELETE_
ALLOWED

VARCHAR2(1) Not
Null

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-15

56.2.5.7 User Defined Properties for Materialized View
Table 56–7 shows the User Defined Properties that are defined for the Materialized
View.

Table 56–6 User Defined Properties for Sequence

UDP Display Name Values in JDeveloper
Definition in FND_
SEQUENCES

objectOwner Sequence
Owner

N/A N/A

status

The value of this UDP
indicates the status of the
sequence. This UDP is
required.

Status Active (default): The sequence is active.

Obsolete: The sequence is obsolete and can be
deleted from the database.

STATUS

VARCHAR2(30)
Null

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML N/A N/A

useExistingAdxml Use Existing
ADXML

Y: Generate ADXML comment using existing
ADXML value from ADXML UDP.

N (default): Regenerate ADXML comment and
update ADXML UDP.

N/A

isSelectAllowed

This property indicates
whether select on the
table is allowed.

This UDP is mandatory.

Is Select
Allowed

Y (default)

N

SELECT_ALLOWED

VARCHAR2(1) Not
Null

resetSequence

This property indicates if
the sequence can be reset
to a specific value.

 This UDP is mandatory.

Reset Sequence Y

N (default)

RESET_SEQUENCE

VARCHAR2(1) Not
Null

Table 56–7 User Defined Properties for Materialized View

UDP Display Name Values in JDeveloper
Definition in FND_
MVIEWS

objectOwner

Short Name of the
application to which this
materialized view
belongs.

Mview Owner N/A N/A

shortName

Materialized view short
name. Max Length is 24.

Materialized
View Short
Name

N/A SHORT_NAME

VARCHAR2(30)

status

The value of this UDP
indicates the status of the
materialized view.

Status Active (default): The materialized view is
active.

Obsolete: The materialized view is obsolete
and can be deleted from the database.

STATUS

VARCHAR2(30)

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-16 Developer's Guide

56.2.5.8 User Defined Properties for Materialized View Log
Table 56–8 shows the User Defined Properties that are defined for the Materialized
View Log.

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML N/A

tsClassification Tablespace
Classification

TRANSACTION_TABLES

REFERENCE

INTERFACE

SUMMARY (default)

ARCHIVE

TOOLS

MEDIA

N/A

useExistingAdxml

This UDP is mandatory.

Use Existing
ADXML

Y: Generate ADXML comment using existing
ADXML value from ADXML UDP.

N (default): Regenerate ADXML comment and
update ADXML UDP.

N/A

isSelectAllowed

This property indicates
whether select on the
table is allowed.

This UDP is mandatory.

Is Select
Allowed

Y (default)

N

SELECT_ALLOWED

VARCHAR2(1) Not
Null

adxmlDeferredIndexes

The value of this UDP is
patch metadata used by
the deferred indexes
portion of the patching
tool.

ADXML for
Deferred
Indexes

N/A N/A

Table 56–8 User Defined Properties for Materialized View Log

UDP Display Name Values in JDeveloper

status

The value of this UDP
indicates the status of the
materialized view log.
This UDP is required.

Status Active (default): The materialized view log
is active.

Obsolete: The materialized view log is
obsolete and can be deleted from the
database.

Table 56–7 (Cont.) User Defined Properties for Materialized View

UDP Display Name Values in JDeveloper
Definition in FND_
MVIEWS

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-17

56.2.5.9 User Defined Properties for Trigger
Table 56–9 shows the User Defined Properties that are defined for Trigger.

56.2.6 How to Create an Offline Database Object
To create new offline database objects from within JDeveloper, in the Application
Navigator:

■ Right-click the offline Database or schema.

■ Select New Database Object.

■ Select any Offline database object definition that you wish to create.

You also can create an offline database object definition by importing an existing
definition from an online database schema.

56.2.7 How to Edit an Offline Database Object
To edit an offline database object:

■ In the Application Navigator, expand the workspace, project, and schema.

objectOwner

Materialized view log
owner.

MV Log Owner N/A

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML

useExistingAdxml

This UDP is mandatory.

Y

N (default)

Y: Generate ADXML comment using
existing ADXML value from ADXML UDP.

N (default): Regenerate ADXML comment
and update ADXML UDP.

Table 56–9 User Defined Properties for Trigger

UDP Display Name Values in JDeveloper

status

The value of this UDP
indicates the status of the
trigger. This UDP is
required.

Status Active (default): The trigger is active.

Obsolete: The trigger is obsolete and can be
deleted from the database.

objectOwner Trigger Owner N/A

adxml

The value of this UDP is
patch metadata used by
the patching tool.

ADXML

useExistingAdxml

This UDP is mandatory.

Use Existing
ADXML

Y: Generate ADXML comment using
existing ADXML value from ADXML UDP.

N (default): Regenerate ADXML comment
and update ADXML UDP.

Table 56–8 (Cont.) User Defined Properties for Materialized View Log

UDP Display Name Values in JDeveloper

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-18 Developer's Guide

■ Right-click the offline database object that you wish to edit and choose Properties.
Or double-click the offline database object.

The Edit offline database object dialog opens. For more information at any time,
press F1 or click Help from within the Edit dialog.

■ In the Edit dialog, select an information category on the left and change the values
in the panel on the right. Any items that are grayed out cannot be selected or
changed.

56.2.8 How to Import an Offline Database Object
Database objects from a database schema can be imported to an offline database
project in JDeveloper. JDeveloper extensions will also handle the additional Oracle
Fusion metadata, if available in the target database. The additional metadata will be
copied to an offline database object as user-defined properties. For objects not
supported by JDeveloper, such as Policy and Advanced queue tables, import of object
definitions from the database will be provided. Implementation of unsupported object
import process APIs depends on functionality provided by the Metadata team (dbms_
metadata).

Using the Import Offline Database Object Wizard
Object definitions can be generated to the Offline Database by right-clicking an Offline
Database Source and selecting the Reverse Engineer Fusion Applications Objects
option, extended to invoke the relevant import API, as shown in Figure 56–3.

Figure 56–3 Starting the Import Database Object Wizard

1. The target database connection name can be selected from the list of all defined
database connections, or a new connection can be created in the Specify Source
dialog, shown in Figure 56–4.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-19

Figure 56–4 Specifying the Source

2. Select the Project and Offline database to which the objects from the target
database need to be imported, as shown in Figure 56–5.

Figure 56–5 Specifying the Target

Filters can be applied to select the objects that are displayed as available for
import. When there are a large number of objects in the schema, you should apply
filters.

In the Object Picker, shown in Figure 56–6, you can:

■ Enter characters in the Name Filter to filter the list of available objects by
name. The Name Filter is case sensitive.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-20 Developer's Guide

■ When there are a large number of objects, you can turn off Auto-Query and
click Query once you have entered the filter you want to use.

■ Select the object types you want to view.

Figure 56–6 Picking an Object

3. Click Next to display the summary information.

4. Click Finish to import the selected objects to the specified offline database.

56.2.9 How to Deploy the Offline Database Objects
Once an offline database object is created, it can be deployed to a target database using
the deployment extension provided in JDeveloper.

56.2.9.1 Deploying in SXML Persistence Format
As part of the Oracle Middleware Extensions for Applications (Applications Core)
labels, the applxdf extensions for the JDeveloper offline database include a
deployment program that operates on JDeveloper offline database objects in SXML
format. It checks for and compares the object definitions in SXML format with the
object definitions in the target database, and then executes the necessary create/alter
DDL to deploy the objects. This deployment program is available in two forms:

■ Deployment wizard extension that can be invoked from within JDeveloper.

■ Standalone deployment program that can be invoked from the command line.

56.2.9.1.1 How to Use the Database Object Deployment Wizard in JDeveloper To start the
deployment wizard in JDeveloper, you need to choose APPS: Deploy DB Object from
the context menu on the offline object definition in the Application Navigator.

This can be used to deploy an offline database to a target online database. These
options are available for deployment:

■ Deploying a single database object file. Only one item is selected, as shown in
Figure 56–7.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-21

Figure 56–7 Deploying a Single Database Object File

■ Deploying multiple database object files (Bulk Deployment). Several items are
selected, as shown in Figure 56–8.

Figure 56–8 Deploying Multiple Database Object Files

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-22 Developer's Guide

■ Deploying offline schema object (and thereby deploying the entire designed data
model), as shown in Figure 56–9.

Figure 56–9 Deploying Offline Schema Object

The Generate Fusion Applications Objects wizard will prompt for the following
information:

■ Database Connection: The target database connection name can be selected from
the list of all defined database connections, or a new connection can be created, as
shown in Figure 56–10.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-23

Figure 56–10 Selecting a Database Connection

■ Deployment Parameters. Figure 56–11 shows how the dialog appears for single
database deployment parameters.

Figure 56–11 Single Database Object Deployment Parameters

Figure 56–12 shows how the Deployment Parameters dialog appears for multiple
database deployment parameters.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-24 Developer's Guide

Figure 56–12 Multiple Database Object Deployment Parameters

– Owner User: Oracle schema name in which the object exists or should be
created.

– Log File Path: Specify a logfile name if it has to be written to a log file. By
default, the log will be displayed in the JDeveloper log window.

For Single Database Object deployment, this is optional. For bulk Database
Object and schema deployment, it is mandatory to provide a directory for
saving log files.

– Log File Format: The format of the log file. Permitted values are text (the
default) or xml.

– Debug Level: The Debug level controls the level of detail to be captured in the
log. Debug Level=3 will show the most information. Permitted values are 0
(the default), 1, 2 or 3.

– Db Object Mode: A single database object can be deployed independently in
table and in tablefk mode.

In case of bulk and schema deployment, the database objects first will be
deployed in table mode and then tablefk mode, by default.

This is standard for bulk and schema deployment; therefore, the Db Object
Mode is not displayed on the wizard.

– Stand Alone: If this option is selected, the XDF comparison utility will execute
in a standalone mode. This mode does not have any applications
dependencies and it creates database objects without applications standards
for physical attributes such as TABLESPACE/STORAGE; the database
defaults are used.

– Change Database: This option indicates whether the deployment should just
report or execute the necessary Alter DDLs, based on comparison of the offline
Database object definition against target database. If unchecked, the

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-25

deployment will report on the differences but will not actually apply the
changes to the database.

– Force Mode: If this option is selected, any additional column, index or
constraints that are present in a target database, but not in the current object
file, will be dropped.

56.2.9.1.2 How to Use the Database Object Deployment Command Line Interface Use this
command and parameters shown in Example 56–1 to deploy a database object from
the command line.

Example 56–1 Sample Database Object Deployment Using the CLI

java oracle.apps.fnd.applxdf.comp.XdfSchemaDeploy <owner_un={schemaId}> <apps_
un={appId}> <jdbc_protocol={jdbc driver type}> <jdbc_db_addr={jdbc tns info}>
<xdf_file_name={xdf file name}> <xdf_mode={xdf mode}> [xdf_xsl_dir={xsl file
directory}] [standalone={y|n}] [changedb={y|n}] [logfileformat={text|xml}]
[logfile={log file path and name}] [debuglevel={0|1|2|3}] [from_jdev={y|n}]*

Mandatory Arguments

■ owner_un: Oracle schema name in which the object exists or should be created.

■ apps_un: Oracle schema name of the current APPS schema.

Note that in the consolidated fusion schema model, owner_un will be the same as
apps_un. These parameters are maintained for cases where they could be different.

■ jdbc_protocol: The JDBC protocol (thin or oci8).

■ jdbc_db_addr: JDBC tns information, either formatted as a Net8 connect string
enclosed in double quotes, or as hostname:port:oracle_sid.

■ xdf_mode: The object type information - table, qtable, mview, mviewlog,
sequence, type, trigger, view, policy, bootstrap.

■ xdf_file_name: The XDF file name, which contains the object definition. It is not
mandatory if the xdf_mode is bootstrap.

Password Arguments

The command line deployment tool will prompt to get the database password from
the user in an interactive mode. The password cannot be a parameter, because it is
against Security guidelines. If you have a script in which you are invoking schema
deployment, you can pipe the password in the script, such as:

$JDEV_JAVA_HOME/bin/java oracle.apps.fnd.applxdf.comp.XdfSchemaDeploy owner_
un=$FUSION_SCH apps_un=$FUSION_SCH jdbc_protocol=thin jdbc_db_addr=$JDBC_ADDR
changedb=y logfileformat=text xdf_file_name=$xdfFile xdf_mode=$xdf_mode
logfile=$logfile <<! $FUSION_PASS

Optional Parameters

■ xdf_xsl_dir: The XSL directory, which contains all the XSL files required for XSLT
transformation. This parameter is optional and is automatically determined in
most cases if the JAR file format of deploying Java class files is being used. This
parameter is maintained for flexibility, in case the format for deploying Java files
becomes similar to what existed in previous versions.

■ standalone: This option is used to execute the XDF comparison utility in a
standalone mode. Permitted values are y, Y, n or N. The default value is n.
Standalone=y does not have any applications dependency. This mode creates
database objects without applications standards for physical attributes such as

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-26 Developer's Guide

TABLESPACE/STORAGE and uses the database defaults. It also does not update
applications metadata.

■ changeDb: The default is "y." If changedb is specified as "n," the SQL statements
generated by the XDF comparison utility are not executed but are displayed on the
standard output or a log file.

■ logfileformat: The format of the log file. Permitted values are text or xml. If
logfileformat is not set, the default is text.

■ logfile: The output of the comparison utility is written to standard out. Specify a
logfile name if it has to be written to a log file. If logfile is not set, the outputs will
be displayed on the screen.

■ debuglevel: Debug levels determine how much information is to be shown in the
log. Debuglevel=3 will show the most information. Permitted values are 0, 1, 2 or
3. The default value is 0.

■ from_jdev: This parameter is set to "y" when the XDF comparison utility is called
from JDeveloper. The default value is "n."

■ force_mode: The force deployment mode introduces an additional input
parameter that when specified will drop any additional column, index or
constraints that are present in a target database. The applications metadata stored
for the object is also updated to be in sync with the new definition.

■ index_category: Values are small, large, and both. If the table is partitioned, the
index is always created. If the table is not partitioned, there is no index creation if
one of these conditions is true:

– index_category=small and unused dbms block size greater than parallel_
index_threshold

– index_category=large and unused dbms block size less than parallel_index_
threshold

■ parallel_index_threshold: Parallel index threshold, default is 0.

■ no_error: This option is used when you add a not-null column to an existing table
with data, or change a null column to a not-null column. XdfSchemaDeploy
results in FAILURE without this option. XdfSchemaDeploy results in WARNING
if you have no_error=y. Default value is "n."

■ idxnolog: Pass idxnolog=y to add a NOLOGGING clause in the Index creation to
improve the performance of creation. The default value is "n."

56.2.9.2 Setting the CLASSPATH Variable
The XdfSchemaDeploy tool requires JDK 1.6, the standard Oracle JDBC driver, the
XML parser, and the applxdf JAR file.

Set the CLASSPATH environment variable to contain these JAR files:

■ ojdl.jar (Only DROP8 Build 3)

■ ojdl2.jar (Only DROP8 Build 3)

■ xmlparserv2.jar

■ ojdbc6.jar

■ orai18n.jar

■ oracle.apps.fnd.applxdf.jar

Example 56–2 shows the set of commands to set the CLASSPATH.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-27

Example 56–2 Example of Setting CLASSPATH

setenv CLASSPATH $ADE_VIEW_ROOT/fmwtools/BUILD_HOME/oracle_
common/modules/oracle.nlsrtl_11.1.0/orai18n.jar:
$ADE_VIEW_ROOT/fmwtools/BUILD_HOME/oracle_common/modules/oracle.xdk_
11.1.0/xmlparserv2.jar:
$ADE_VIEW_ROOT/fmwtools/BUILD_HOME/wlserver_
10.3/server/ext/jdbc/oracle/11g/ojdbc6.jar:
$ADE_VIEW_ROOT/fmwtools/BUILD_HOME/oracle_common/modules/oracle.odl_
11.1.1/ojdl.jar:
$ADE_VIEW_ROOT/fmwtools/BUILD_HOME/oracle_common/modules/oracle.odl_
11.1.1/ojdl2.jar:
$MW_HOME/jdeveloper/jdev/extensions/oracle.apps.fnd.applxdf.jar

The JDeveloper installation directory could potentially change with newer versions of
JDeveloper being available. Check the JDeveloper installation directory to make sure
that it exists. You could also use the XML parser and JDBC driver that comes with the
database. Note that so far XDF has been tested with the same JAR files with which it
has been compiled. It should not be a problem setting the CLASSPATH with a higher
version of these JAR files and testing them. If you encounter any issues, try using 11g
JDBC and xmlparsers.

56.2.9.3 Using Bootstrap Mode
Bootstrap mode for XDF Schema deployment is available using the parameter xdf_
mode=bootstrap. XDF currently depends on several database components, such as
pl/sql and tables, for it to work completely in all modes. The bootstrap mode can be
used to make sure that the XDF database dependencies are set up correctly and to
avoid any manual steps to get XDF working on a particular database.

In bootstrap mode, the mandatory parameter xdf_file_name becomes optional and
only the remaining mandatory parameters are applicable.

To run XDF in bootstrap mode, use the command shown in Example 56–3.

Example 56–3 Sample of Running XDF in Bootstrap Mode

$JDEV_JAVA_HOME/bin/java oracle.apps.fnd.applxdf.comp.XdfSchemaDeploy owner_
un=fusion apps_un=fusion jdbc_protocol=thin jdbc_db_addr={jdbc tns info} xdf_
file_name="dummy" xdf_mode=bootstrap runtime_schema=<runtime schema name>

56.2.9.4 Deployment FAQ
Examining these frequently-asked questions about deployment will help you prevent
and fix problems.

To add a not-null column to an existing table with data, or change a null column
to a not-null column:
There are two options to add a not-null column to an existing table with data, or
change a null column to a not-null column.

■ Option 1

■ Adding a not null column to an existing table with data

Product teams can specify an RDBMS default value for the column which will
be used by the databases to successfully alter the table to add the not-null
column.

■ Modifying a null column to not-null in a table with data

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-28 Developer's Guide

Product teams can specify an RDBMS default value for the column. This
default value will be used by schema deployment utility to update the existing
null rows with that value before changing the column to not null.

■ Option 2

If a product team does not want to use a RDBMS default value, it can add or
modify a column as a not-null column to an existing table by using a script having
a more complex logic. The column needs to exist in the target database before the
script is run. The script cannot enforce the not-null constraint because it is against
the standards to have DDL in scripts.

To use a script to populate the column, the UDP named runTwice must be set to
Yes. This UDP will be used by XDF to ensure that the required patch metadata is
present in XDF to run it twice in a patch. In the first run, the script will not error
out if it is not able to enforce the not-null constraint, but it will error out in the
second run if it still is not able to enforce the not-null constraint.

If the user does not set this UDP, the default behavior of the deployment utility is
to error out if it is not able to enforce the not-null constraint while adding or
modifying the column.

To remove a table, column or view:
See Section 56.2.9.5.3, "How to Use fnd_cleanup_pkg and fnd_drop_obsolete_objects."

To rename a table, column or view:
Deployment does not support renaming a table, column or view. The workaround that
can be used is to make the object obsolete and introduce a new renamed object. The
development team must separately handle data migration and update information in
the Automatic Diagnostic Repository (ADR), if required.

To implement a non-additive change to the data type of a column, such as
varchar2 to number:
Developers can create a script that runs before deployment of the object to rename or
drop the column, based on whether or not data needs to be preserved or migrated.
Once the deployment successfully adds the column with the correct data type, another
script may be needed to make sure that data is migrated and that the renamed column
is dropped. This is applicable only if the initial script renames the column.

To add or change the unique constraints or indexes on a populated table:
If the populated table does not meet the criteria for creating unique constraint or
unique index, to remove the invalid data create a script to clean the table before
deploying a unique index or constraint.

56.2.9.5 Cleaning Database Objects
To maintain efficiency, database objects should be cleaned of no-longer-used data. As
part of that process, it is important to keep the FND data dictionary synchronized with
existing objects (it can be table, sequence or view) in the database. The XDF team
provides packages to make this process easier.

56.2.9.5.1 Making a Database Object Obsolete Use this information to correctly make a
database object obsolete. It is applicable after the release of the initial version of the
product to customers.

Modeling database schema for new releases or upgrades to new releases may involve
making certain database objects or certain attributes of the database object, such as

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-29

Columns, obsolete. Doing this may make a significant effect to existing customizations
or extensions currently implemented on the system. Making obsolete database objects
that contain data, such as Tables, requires particularly close analysis for potential
effects. Development teams should take the necessary steps to review and understand
the implications of such updates in these areas.

Making obsolete certain database objects or certain attributes of a database object may
require those objects to be dropped as part of clean up. Considering any existing
customization or extensions to such objects, the act of making obsolete and dropping
the object should be kept separate. Dropping the obsolete database objects or columns
should be an optional step that is invoked at the demand of customers. The Patching
(AD) utilities will provide such an option as a post-patching step.

Follow these steps to make obsolete a database object or attribute.

1. Set Status User Defined Property for the specific database objects or attributes to
Obsolete. This can be done using User Defined Properties for Applications specific
metadata that is part of the offline database model.

2. Status User Defined Property will be captured in the Applications/XDF data
dictionary as part of deploying XDF to the database.

These steps ensure that:

■ If the table does not already exist in the database, the Applications schema
deployment utilities (XDF) will create the table without columns marked as
obsolete.

■ If the column does not already exist in the table, the Applications schema
deployment utilities (XDF) will not add the column to the table.

■ If the column already exists in the table, the Applications schema deployment
utilities (XDF) will remove any NOT NULL, PK/FK constraints on the column.

■ Any indexes that comprise only the obsolete columns could be dropped. In other
cases, the development team owning the obsolete objects will be expected to
update the definition of any affected indexes.

56.2.9.5.2 How to Use the Force Mode Option in Schema Deployment During the initial
development of the product before release, product teams may not want to mark the
object as obsolete and may prefer directly dropping the object; that is, removing the
definition from the offline database file. To support this, the force_mode=y parameter
can be passed to the schema deployment tool. The additional input parameter which,
when specified, will drop any additional column, index or constraints that are present
in a target database and not present in the offline object file definition. The XDF
dictionary metadata stored for the object is also updated to be synchronized with the
new definition. Note that this option, in certain cases, will not change the definition of
the table to exactly match the definition in the file. For example, if the database does
not allow some changes, such as changing of certain column datatype, or changing an
unpartitioned table to a partitioned table, force mode will not override the database.

Force mode only handles the removal of column, index and constraints, and
synchronizing the corresponding definition in the XDF dictionary. If the primary
object, such as a table, sequence or view, is dropped, the fnd_cleanup_pkg needs to be
used to synchronize the XDF dictionary.

56.2.9.5.3 How to Use fnd_cleanup_pkg and fnd_drop_obsolete_objects Use fnd_cleanup_
pkg and fnd_drop_obsolete_objects to clean a database.

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

56-30 Developer's Guide

Using fnd_cleanup_pkg
Procedure fndcleanup(name): Remove table, sequence, or view with name that is in
fnd_tables, fnd_views or fnd_sequences tables, but not in the database. All the
required XDF dictionary tables will be updated when fnd_tables, fnd_views, or fnd_
sequences is updated.

name: Optional. This can be a table name, a view name or a sequence name. If a name
is provided, the procedure will clean only the named object and related components. If
it is not defined, the fndcleanup procedure removes all table, view, or sequences that
are in fnd_tables, fnd_views, or fnd_sequence tables, but that do not exist in the
database.

Procedure clean_fndcons(tbname): Remove the tbname table's Primary Key (PK),
Unique Keys (UKs), and Foreign Keys (FKs) that are not in the database from the fnd
constraint dictionary tables. The tbname parameter is optional. If it is not specified,
then all tables' PK, UKs, and FKs that are not in the database will be removed from the
fnd constraint tables.

Procedure TableFndCleanUp(tbname, deleteType, delname): Remove the specified
deleteType with the specified delname on the specified tbname table from related fnd
tables. The delname parameter is optional. If it is not specified, all table properties on
that deleteType will be removed from the specified table. The deleteType includes
column, index, pkuk, and fk.

Examples

■ Remove all table, view, or sequence information in fnd_tables, fnd_views, or fnd_
sequences tables, but not in the database. All the required XDF dictionary tables
will be updated when fnd_tables, fnd_views, or fnd_sequences is updated.

execute fnd_cleanup_pkg.fndcleanup

■ Remove table1 from the fnd_tables table if table1 is not in the database. All
required XDF dictionary tables will be updated when fnd_tables is updated.

execute fnd_cleanup_pkg.fndcleanup('table1')

■ Remove view1 from the fnd_views table if view1 is not in the database.

execute fnd_cleanup_pkg.fndcleanup('view1')

■ Remove all table names LIKE HZ% in fnd_tables or fnd_views tables that do not
exist in the database.

execute fnd_cleanup_pkg.fndcleanup('HZ%')

■ Remove table XF1's PK, UKs, and FKs that are not in the database, from the fnd
constraint dictionary tables.

exec fnd_cleanup_pkg.clean_fndcons('XF1');

■ Remove a Foreign Key named XF2_T1_FK on table XF2 from the fnd constraint
dictionary tables. XF2_T1_FK may or may not be in the database.

exec fnd_cleanup_pkg.tablefndcleanup('XF2', 'fk', 'XF2_T1_FK');

fnd_drop_obsolete_objects
Procedure drop_object(objectname): Drop obsolete objectname from the database.
This procedure is used to delete obsolete views, tables and columns that are marked as
Obsolete in the table.

Examples

Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)

Using the Database Schema Deployment Framework 56-31

■ Drop Table table1 from the database if it is marked as obsolete. If table1 is not
obsolete, drop any columns in table1 that are obsolete.

execute fnd_drop_obsolete_objects.drop_object(table1)

■ Drop View view1 from the database if it is marked as obsolete.

execute fnd_drop_obsolete_objects.drop_object(view1)

■ Verify all tables and views with name like 'HZ_%" for dropping tables and views,
or drop columns if the tables are not obsolete.

execute fnd_drop_obsolete_objects.drop_object('HZ_%')

56.2.9.5.4 Frequently Asked Questions Use this information when dropping an object in
the database.

■ How do I make an object obsolete?

1. Select the object in JDeveloper.

2. Right-click and select Properties > User Properties.

3. Change the Status to Obsolete.

■ What happens when you deploy an obsolete object or an object that has obsolete
columns or indexes?

Only the FND dictionary is updated. Objects in the database are not dropped.

■ How do I remove an object from the database and keep the FND data dictionary
synchronized?

There are three ways this can be done. SQL scripts can be used to achieve the same
outcome.

■ If the object is not a primary object and is a column, index or constraint that is
being dropped:

– Use JDeveloper to remove the definition of these secondary objects from
the offline database file definition.

– Use the force_mode optional parameter to deploy the object to the target
database.

■ If the object is a primary object, such as a table, sequence or view:

– Drop the object obj from sqlplus.

– Execute this command from sqlplus:

execute fnd_cleanup_pkg.fndcleanup(' obj')

■ Change the object obj status UDP to Obsolete from JDeveloper. Deploy the
object to the database either by command line (XdfSchemaDeploy) or use
Generate Fusion Applications Objects from JDeveloper.

– Execute this command from sqlplus:

execute fnd_drop_obsolete_objects.drop_object(' obj')

– Execute this command from sqlplus:

execute fnd_cleanup_pkg.fndcleanup(' obj')

■ How do I clean up the FND data dictionary if many objects are no longer in the
database?

Execute this command from sqlplus or use a SQL script.

Using Schema Separation to Provide Grants

56-32 Developer's Guide

execute fnd_cleanup_pkg.fndcleanup

■ How do I clean up the FND data dictionary if I had deleted columns and indexes
from table, but did not cleanup from the FND data dictionary.

Execute this command from sqlplus or use a SQL script.

execute fnd_cleanup_pkg.fndcleanup

■ How do I remove obsolete columns/indexes in objects from FND data?

Execute this command from sqlplus.

execute fnd_cleanup_pkg.fndcleanup

■ How do I remove all table/view/sequence name LIKE HZ% in fnd_tables/fnd_
views/fnd_sequences tables that do not exist in the database?

Execute this command from sqlplus.

execute fnd_cleanup_pkg.fndcleanup('HZ%')

■ How do I drop table/view/sequence name xyz in fnd_tables/fnd_views/fnd_
sequences tables from the database if it is marked as obsolete?

Execute this command from sqlplus.

execute fnd_drop_obsolete_objects.drop_object('xyz')

■ How do I drop table/view/sequence name LIKE HZ% in fnd_tables/fnd_
views/fnd_sequences tables from the database if it is marked as obsolete?

Execute this command from sqlplus.

execute fnd_drop_obsolete_objects.drop_object('HZ%')

56.3 Using Schema Separation to Provide Grants
The application runtime schema could be different from the database object owning
schema for security reasons. To support this model as part of schema deployment,
there is a mechanism to granularly provide grants on various database objects. These
are granted to a set of fixed roles which are eventually available to runtime schema.

Privilege will be granted on the database object to the role based on privilege User
defined properties defined for the object. Table 56–10, Table 56–11, Table 56–12, and
Table 56–13 present the user defined properties that will be defined for each object
type.

Table 56–10 Table Object Type Properties

UDP Name Description Values

Insert Allowed Grant Insert Privilege on the
table to the required role

Y/N Default Y

Update Allowed Grant Update Privilege on the
table to the required role

Y/N Default Y

Delete Allowed Grant Delete Privilege on the
table to the required role

Y/N Default Y

Select Allowed Grant Select Privilege on the
table to the required role

Y/N Default Y

Using Schema Separation to Provide Grants

Using the Database Schema Deployment Framework 56-33

Truncate Allowed The value of this UDP
indicates whether a
TRUNCATE statement is
allowed on the table

Y/N Default Y

Maintain Partition The value of this UDP
indicates whether partitions
can be maintained on the
table. The ADM_DDL
program when handling
requests for dynamic DDL
operations uses this
information.

Y/N Default Y

Exchange Partitions The value of this UDP
indicates whether it is possible
to exchange partitions on the
table. The ADM_DDL
program when handling
requests for dynamic DDL
operations uses this
information.

Y/N Default Y

Maintain Index The value of this UDP
indicates whether it is possible
to maintain indexes on the
table. The ADM_DDL
program when handling
requests for dynamic DDL
operations uses this
information.

Y/N Default Y

Table 56–11 View Object Type Properties

UDP Name Description Values

Insert Allowed Grant Insert Privilege on the
view to the required role

Y/N Default Y

Update Allowed Grant Update Privilege on the
view to the required role

Y/N Default Y

Delete Allowed Grant Delete Privilege on the
view to the required role

Y/N Default Y

Select Allowed Grant Select Privilege on the
view to the required role

Y/N Default Y

Table 56–12 Sequence Object Type Properties

UDP Name Description Values

Select Allowed Grant Select Privilege on the
sequence to the required role

Y/N Default Y

Reset Sequence The value of this UDP
indicates if the sequence can
be reset to a specific value.
The ADM_DDL program
when handling requests for
dynamic DDL operations uses
this information.

Y/N Default Y

Table 56–10 (Cont.) Table Object Type Properties

UDP Name Description Values

Using Schema Separation to Provide Grants

56-34 Developer's Guide

Table 56–13 Materialized Views Object Type Properties

UDP Name Description Values

Select Allowed Grant Select Privilege on the
materialized view to the
required role

Y/N Default Y

57

Improving Performance 57-1

57Improving Performance

This chapter provides guidelines for you to write high-performing, highly scalable,
and reliable applications on Oracle Fusion Middleware.

This chapter includes the following sections:

■ Section 57.1, "Introduction to Improving the Performance of Applications"

■ Section 57.2, "ADF Business Components Guidelines"

■ Section 57.3, "ADF ViewController Layer Guidelines"

■ Section 57.4, "SOA Guidelines for Human Workflow and Approval Management
Extensions"

■ Section 57.5, "Oracle Fusion Middleware Extensions for Applications Guidelines"

■ Section 57.6, "General Java Guidelines"

■ Section 57.7, "Caching Data"

■ Section 57.8, "Profiling and Tracing Oracle Fusion Applications"

■ Section 57.9, "Set up a Debug Breakpoint"

57.1 Introduction to Improving the Performance of Applications
The outcome of performance assessments of several prototypical Oracle Fusion
Applications as well as various tests conducted by the Oracle Fusion Middleware
performance team are captured in this chapter. It includes best practices for coding
and tuning the Oracle Application Development Framework (ADF) Business
Components-based applications with performance, scalability, and reliability (PSR) in
mind. Other topics discussed include performance improvement guidelines for ADF
ViewController layers and Oracle Fusion Middleware Extensions for applications.

This chapter assumes you are familiar with the concepts described in the Oracle Fusion
Middleware Performance and Tuning Guide.

57.2 ADF Business Components Guidelines
To maximize performance while working with ADF Business Components, such as
entity objects, view objects, application modules, and services, consider best practices.
For more information about tuning Oracle ADF, see the "Oracle Application
Development Framework Performance Tuning" chapter in the Oracle Fusion Middleware
Performance and Tuning Guide.

ADF Business Components Guidelines

57-2 Developer's Guide

57.2.1 Working with Entity Objects
When working with entity objects, consider the following suggestions for improving
performance. For more information see the "What You May Need to Know About
Optimizing View Object Runtime" in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

57.2.1.1 Enable Batch Updates for your Entity Objects
You can enable batch updates of your entity objects by selecting the Use Update
Batching property on the Entity Object Editor - Tuning section as shown in
Figure 57–1. You should also set the Threshold property to 1, which is important for _
TL multi language entities.

Figure 57–1 Entity Object Editor — Tuning

When enabled, ADF Business Components combines multiple Data Manipulation
Language (DML) operations and executes them in a single round trip. Modified rows
are grouped into batches.

You should always enable batch updates, except in the following three cases where
you should not:

■ You override the DML (PL/SQL entity objects are in this category).

■ You have one or more streaming attributes, such as character large object (CLOB)
or binary large object (BLOB).

■ One or more attributes are marked as retrieve-on-insert or retrieve on-update.

For more information, see the "Batch Processing" section in the Oracle Fusion
Middleware Performance and Tuning Guide.

57.2.1.2 Children Entity Objects in Composite Entity Associations Should not set
the Foreign Key Attribute Values of the Parent
Children entity objects can expect that their parent primary key attribute values are
passed through the attributeList parameter in create(attributeList) and ADF
Business Components calls super.create(attributeList) to populate these foreign
key attribute values. Repopulating the foreign key attribute values in the children
entity object unnecessarily decreases performance.

57.2.1.3 Avoid Using List Validator Against Large Lists
When you use list validator, it scans the values in a linear fashion. Therefore, you
should limit the list to not more than 20 to 30 values for frequently used list validators.
Instead of using the list validator, you can use either an expression validator or a
method validator. If this is a foreign key, then you can use a key exist validator.

ADF Business Components Guidelines

Improving Performance 57-3

57.2.1.4 Avoid Repeated Calls to the same Association Accessor
There is some cost to getting the parent or children via the association accessor. For
example, if you are calling the same association accessor on the same entity object in a
loop, then you should move the call to outside the loop.

57.2.1.5 Close Unused RowSets
There are various places in ADF Business Components that loop through all rowsets of
a view object. You should call RowSet.closeRowSet on any rowsets that you no longer
need. The typical case where you would have opened a rowset is when you get the
"many" end of an association, for example, when retrieving Emp from Dept.

By default, the rowset is cleared when a garbage collection occurs. However, if you can
close the rowset as soon as you finish using it, it improves performance and reduces
the amount of work done during garbage collection. To close a rowset, call
RowSet.closeRowSet. You should close it only if you know you no longer need it, and
would not make calls such as previous(). If you are getting a row iterator from an
association accessor, you can cast it to a RowSet and call closeRowSet on it.

The same principle applies for view accessor rowsets. If your view accessor returns
more than one row, then every time you start fetching rows from the view accessor
with a different bind value, a new row set is created, along with a new underlying
database cursor to execute the query. If you do not need all the rows, then you should
configure the MaxFetchSize setting on the view accessor to include only the number of
rows you need. Then Oracle ADF closes the database cursor immediately upon
fetching all the rows up to MaxFetchSize. Alternatively, for cases where you expect to
execute the view accessor several times with different bind values, in a single request,
you should consider calling closeRowSet on the view accessor rowset explicitly.

57.2.1.6 Use "Retain Association Accessor RowSet" when Appropriate
By default, the entity object creates a new RowSet object each time you retrieve an
entity association accessor rowset, to allow you to work with the rows. However,
creating a new RowSet object does not imply re-executing the query to produce the
results each time, since only a new instance of a RowSet object is created, with its
default iterator reset to the "slot" before the first row. There is some overhead to
creating all these new rowsets even though the ones not in use are cleared on Java
Virtual Machine (JVM) garbage collections. You may also see additional query
executions due to the rowsets (and hence the underlying query collections) not being
retained.

For high-traffic entity objects, such as those used for bulk loading, where the same
association accessor is called many times, consider using the Retain Association
Accessor Rowset option to improve performance. Typically, an association accessor
would be used multiple times if:

■ Your entity object is Multi-Language Support (MLS)-enabled and has more than
one translated attribute.

■ You have defaulting logic or multiple validators that need to access the same
association attribute.

Using the Retain Association Accessor RowSet option may adversely affect memory
usage since it postpones when the retained rowset becomes garbage collectible. Before

Caution: If you use the Retain Association Accessor RowSet option,
then you should not call closeRowSet.

ADF Business Components Guidelines

57-4 Developer's Guide

you enable this option, (as shown in Figure 57–2), you should profile your flow to
make sure you would indeed get a noticeable benefit.

Figure 57–2 Entity Object Editor — Tuning: Retain Association Accessor RowSet

If you see the top CPU consumers (sort by exclusive CPU) are related to code that
loops through the rowsets, then you would likely get a benefit by using this option. An
example where you may want to consider using the Retain Association Accessor
RowSet option is if you profile your code and see that
oracle.jbo.server.ViewObjectImpl.addRowSet is using a lot of CPU, and most of the
CPU is in a call stack that includes AssociationDefImpl.get. Figure 57–3 illustrates an
example profiler output showing addRowSet being expensive.

Figure 57–3 Profiler Output Example

Before you decide to retain association accessor, you should try the guideline
Section 57.2.1.5, "Close Unused RowSets."

If you decide to use the Retain Association Accessor RowSet option, you should be
aware of the potential behavior changes. For more information, see the Advanced Entity
Association Techniques section in the "Advanced Entity Object Techniques" chapter of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

57.2.1.7 Mark the Change Indicator Column
If your table has an OBJECT_VERSION_NUMBER column, make sure you check the Change
Indicator attribute property. Columns marked as Change Indicator are automatically
in any view object that includes that particular entity object.

57.2.2 Working with View Objects
When working with view objects, consider the following suggestions for improving
performance.

57.2.2.1 Tune the View Object SQL Statement
You should tune both the list of attributes included in the view object as well as the
underlying SQL statement. Avoid using the "one-size fits all" view objects which
include many other attributes that are not needed for your usage. These additional
attributes consume unnecessary memory.

ADF Business Components Guidelines

Improving Performance 57-5

You should capture the SQLs the view object is generating, with relevant view criteria
applied, by enabling Java Business Objects (JBO) debug logging. (For expert-mode
view objects, you should capture the SQL that you are providing). You should also
generate explain plans against a volume database to ensure performance is optimal
and the correct indexes are in place.

If you must use hints to get a desirable execution plan for your query, set the Query
Optimizer Hint field in the View Object Editor - Tuning section as shown in
Figure 57–4.

Figure 57–4 View Object Editor — Tuning

For user interface (UI) driven queries, the FIRST_ROWS(10) hint should be used to
instruct the optimizer to pick a plan that is optimized to return the first set of rows.
You should set this hint for view objects that are used for UI components, which
typically just displays the initial set of rows (such as table). If you are fetching all the
rows, then do not use the FIRST_ROWS hint.

57.2.2.2 Select the Correct Usage for View Objects
To maximize view object performance, the view object should match the intended
usage. For more information about correct usage for view objects, see the "Creating
View Objects" section in the Oracle Fusion Middleware Performance and Tuning Guide.

57.2.2.3 Set Appropriate Fetch Size and Max Fetch Size
How the view object is configured to fetch data plays a large role in the view object
performance. For more information about tuning the fetch options for the application,
see the "Configuring View Object Data Fetching" section in the Oracle Fusion
Middleware Performance and Tuning Guide.

Due to the memory requirements for large batch size, we do not recommend using a
fetch size of over 100. For view objects used on UIs, fetch size should not exceed 30.

If you have a view object that is used in both query and insert, then you should call
setMaxFetchSize(0) programmatically when you know it is being used in insert
mode. In this case, you need to unset it when using it in query mode. You cannot set
the No Rows option because the same view object is used in both insert and query
mode in the same application module.

Caution: Java Database Connectivity (JDBC) pre-allocates memory
to hold return data based on fetch size, so the practice of applying a
fixed fetch size, such as 30, to all view objects should be avoided.

ADF Business Components Guidelines

57-6 Developer's Guide

For view objects used for the List of Values (LOV) combo box, the number of rows
fetched by Oracle ADF is controlled by the ListRangeSize setting in the LOV
definition. The default value is 10 and a fetch size of 11 is appropriate. You should
modify the value to 11.

For LOV text output, Oracle ADF fetches about 31 rows in the LOV search results
window. To simplify retrieval, a fetch size of 11 is acceptable, to make it the same fetch
size as the view object used in the LOV combo box. In this case, the data comes back in
three round-trips which is also acceptable.

Fetch size can be set based on the usage of the view object. This is the appropriate
place to set the fetch size for view objects that are used in different scenarios and the
fetch size cannot be pre-determined when the view object is created. You can edit the
setting per view object usage by selecting the view object in the Data Model panel of
the Application Module editor, clicking Edit, and then selecting the Tuning panel.

Fetch size can also be set at the view accessor level. This should be used by teams
consuming public view objects from other teams, such as for LOVs. The producer team
would likely not set a fetch size since they cannot anticipate how their public view
object would be used. For more information, see the "Working with List of Values
(LOV) in View Object Attributes" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

57.2.2.4 Use Bind Variables
Always use bind variables when setting the WHERE clause or when defining view
criteria, as this allows the SQLs to be shared. However, there are some limited cases
where you cannot use bind variables, such as when you need to use histograms. For
more information, see the "Additional View Object Configurations" section in the
Oracle Fusion Middleware Performance and Tuning Guide.and the "Working with Bind
Variables" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

57.2.2.5 Include at Least One Required or Selectively Required View Criteria Item
When creating view criteria, include at least one view criteria item that is required or
selectively required, in order to use a database index and avoid a full table scan.
Otherwise, the SQL generated will be of the form:

((MyTableColumn_name = :bvOrgId) OR (:bvOrgId IS NULL))

In this example, the query cannot be derived from an index on MyTable.Column_name
due to the presence of the :bvOrgId IS NULL condition.

57.2.2.6 Use Forward-Only Mode when Possible
If a dataset is only traversed going forward, then forward-only mode can help
performance when iterating through the dataset. For more information, see the

Note: ADF Business Components only recognizes fetch size if the
SQL flavor is Oracle, which is what you should be using.

Note: The :bind IS NULL condition is generated only if the View
Criteria Item (VCI) is against a bind variable and the Ignore Null
Values option is selected.

ADF Business Components Guidelines

Improving Performance 57-7

"Configuring View Object Data Fetching" section in the Oracle Fusion Middleware
Performance and Tuning Guide.

The setForwardOnly API is actually defined on the RowSet interface, which
ViewObjectImpl implements, so you can use it on secondary rowsets that you create
via ViewObjectImpl.createRowSet(String name) as well.

57.2.2.7 Avoid Calling getRowCount
Calling getRowCount on a view object results in all rows being fetched into memory.
Unless you intend to actually fetch all the rows, this call should be avoided. Use a
combination of vo.hasNext,hasPrevious,getCurrent, or vo.getFetchedRowCount,if
the row set has been executed and you are attempting to see if there is at least 1 row
fetched.

If you really need to find out how many rows are in the result set, and you know the
result set is likely going to contain more than 50 rows, you should use
getEstimatedRowCount. This triggers a count query but does not fetch all of the
matching rows into memory.

There is also a method on the view object, getCappedRowCount(n), which executes a
query and a count up to n number of rows. If the row count is less than n, it returns a
positive number, and it returns a negative number if row count is more than n.

57.2.2.8 Avoid Entity Object Fault-in by Selecting Necessary Attributes Up-Front
If your view object is based on entity objects, and you request an attribute that is not
fetched in the initial view object query, ADF Business Components must execute a
"fault-in" SQL to fetch the entire entity object. This is expensive and can be avoided by
initially selecting the list of attributes you are fetching in a view object. For example, if
you know your validation logic accesses an attribute that is not displayed in the UI,
you should fetch it in the initial view object query.

By default, only the key attributes are selected when executing a Declarative view
object programmatically. A "fault-in" query is executed to get the rest of the attributes
if they are referenced. To avoid this, you should use the following ViewObjectImpl
methods to specify the columns that need to be selected when executing a Declarative
view object programmatically: resetSelectedAttributeDefs, selectAttributeDefs,
and unselectAttributeDefs.

If your view object is a declarative-mode view object that is accessed using view
accessor, you may still be able to specify which attributes are accessed. If the code
looks like the following example, the first line calls the accessor getter. The query is not
executed until hasNext() is called on the last line. Therefore, you can use
selectAttributeDefs to control which attributes are select after calling the getter and
before calling hasNext.

RowSet rowSet = this.getPartySitePartySiteUseVVO();
RowSetIterator iterator = rowSet.createRowSetIterator("sellToUseIterator");
iterator.reset();
Row row = null;
if (iterator.hasNext()){

57.2.2.9 Reduce the Number of View Object Key Attributes to a Minimum
If your view object is based on multiple entity objects, restrict the number of Key
Attributes to a minimal set that uniquely identifies the row.

ADF Business Components Guidelines

57-8 Developer's Guide

For those attributes that do not need to be part of the key, deselect the Key Attribute
option in the View Object Attribute Editor. However, ensure that you include
sufficient attributes. If your view object is updateable, comply with
File.AdfModel.112.

57.2.2.10 Use Range Paging when Jumping to Different Row Ranges
View objects provide a mechanism to page through large datasets giving users the
ability to jump to a specific page in the results. To implement this feature, select Range
Paging Incremental from the Access Mode dropdown list in the View Object Editor -
Tuning section as shown in Figure 57–5.

Figure 57–5 View Object Editor — Tuning: Access Mode

For more information, see the "Optimize large data sets" row in the "Additional View
Object Configurations" table in the Oracle Fusion Middleware Performance and Tuning
Guide.

57.2.2.11 Use setListenToEntityEvents(false) for Non-UI Scenarios
The setListenToEntityEvents(false) method instructs the view object not to listen
to entity events and therefore, the view object and all its row sets does not receive
events generated from changes to entity row data. This is useful for batch processing
because suppressing events improves performance.

When you call an association accessor, an internal view object is created. If you insert
or update via the association accessor, you can call setListenToEntityEvents(false)
for the internal view object by casting it to a RowSet as shown in Example 57–1.

Example 57–1 Use setListenToEntityEvents(false)

RowSet myRowSet = (RowSet) myEntityImpl.getAttribute("<Accessor Name>");
((ViewObjectImpl) MyRowSet.getViewObject()).setListenToEntityEvents(false);

Note: By default, the primary key of the view object is the
concatenation of the primary key of all the underlying entity objects,
which typically will be a lot more columns than what is actually
needed to uniquely identify a row.

Note: These events are not related to the business events that you
may have defined in the entity object.

ADF Business Components Guidelines

Improving Performance 57-9

57.2.2.12 Use Appropriate Getter or Setter on View Row
If you have a ViewRowImpl class generated for your view object, you should call the
named getter or setter if possible. For example, getEmployeeName or setEmployeeName,
rather than the generic getAttribute or setAttribute.

If you must use the generic getAttribute or setAttribute, consider using the index
instead of the name for a small performance gain. It may be more troublesome to
maintain the numeric attribute indexes, but for cases where you are looping through a
large number of attributes, you should consider using getAttribute(int index) and
setAttribute(int index).

57.2.2.13 Use Appropriate Indexes with Case-Insensitive View Criteria Items
A view criteria item on a varchar2 column is, by default, marked as case-insensitive.
The generated predicate is in the form of UPPER (column_name) operator UPPER
(:bindVariable). Since the left-hand side is UPPER(column_name), the existing
non-function-based indexes created based on column_name is of no use for this kind of
clause, and as a result, expensive table scans can result if this view criteria item is
supposed to be the driving filter. You should make sure there are appropriate function
indexes to support case-insensitive searches.

57.2.2.14 Avoid View Object Leaks
In general, avoid creating a view object at runtime. You should add the view object
instance to the application module and let the framework create it for you. If you have
a use case where you must call createViewObject to create the view object, you
should explicitly give it a name and first check if a view object with that name already
exists in the application module. If it is already there, you should reuse it rather than
create another one. If you no longer intend to use a dynamically created view object,
remove it from the application module to avoid memory leaks.

57.2.2.15 Provide a "Smart" Filter when Using LOV Combobox
When you define a Combo Box with List of Values, you should provide an additional
view criteria using the Filter Combo Box Using option so that the user only sees a list
of frequently used choices. It typically does not meet business needs to return
something like the first 10 customers in the system.

57.2.2.16 Use Small ListRangeSize for LOVs
When you define a LOV for a view object attribute, there is a ListRangeSize property
(visible only in source), which defaults to 10. This controls the number of values to
fetch when the combo box is selected on the UI. You should not change the
ListRangeSize to a large value. In particular, -1 should never be used as it brings back
all the rows.

57.2.2.17 Avoid Reference Entity Objects when not Needed
If your view object includes reference entity objects, they are loaded in via separate
queries whenever the key column values are changed. Therefore, if you have a
scenario where attributes from the reference entity objects are not needed, you should
use a view object that do not include reference entity objects. An example of this is

Note: Performance alone is not a sufficient reason for creating a
custom ViewRowImpl class.

ADF Business Components Guidelines

57-10 Developer's Guide

when you are programmatically inserting rows and the reference entity object
attributes do not need to be shown.

57.2.2.18 Do Not Use the "All at Once" Fetch Mode in View Objects
If you select the "All at Once" view object fetch mode, the view object query returns all
rows, even though you are looking at only the first row. Depending on the query, this
could cause OutOfMemory errors as the result of too many rows being fetched. Use
the default "As Needed" fetch mode instead.

57.2.2.19 Do Not Use the "Query List Automatically" List of Value Setting
If you use the "Query List Automatically" option in the UI hints panel in the edit LOV
screen, a query is executed by default, which could be expensive. This setting impacts
only whether a search is executed by default when the LOV search list displays. For
LOV combo boxes, regardless of this setting, the smart filter executes when the LOV
combo is clicked and the dropdown list displays.

57.2.2.20 Avoid the "CONTAINS" or "ENDSWITH" Operator for Required or
Selectively Required View Criteria Items
Required or Selectively Required view criteria items should use indexes so that their
queries are efficient. If you use the "CONTAINS" or the "ENDSWITH" operator on a
view criteria, the indexes cannot be used efficiently, resulting in poor query
performance. Use an "Equals" or "Starts With" operator instead.

57.2.3 Working with Application Modules
When working with application modules, consider the following suggestions for
improving performance.

57.2.3.1 Enable Lazy Delivery
When the Lazy Delivery option is enabled, ADF Business Components defers the
creation of view object instances and nested application modules until they are
requested. For more information, see the "Data Delivery - Lazy versus Immediate"
section in the Oracle Fusion Middleware Performance and Tuning Guide.

57.2.3.2 Make Application Code Passivation-Safe
An application module is an ADF Business Components container that encapsulates
business service methods and active data model for a logical unit of work related to an
end-user task. It is a wrapper for view objects and entity objects in a business model,
handles all database transactions, and performs custom tasks by invoking application
module specific service methods. For an ADF Business Components based web
application, a HTTP request, if related to data operation, can not be processed without
involvement of an application module instance. Figure 57–6 illustrates the application
module position in the Oracle ADF applications architecture.

ADF Business Components Guidelines

Improving Performance 57-11

Figure 57–6 Oracle ADF Applications Architecture — Application Module Functions

Application module state management and application module pooling are very
important features provided out of the box by Oracle ADF. The combination of
application module state management and pooling makes ADF Business Components
based web application more scalable by multiplexing application module instances in
pool to serve large volume concurrent HTTP user sessions, and more reliable (failover)
by serializing pending user session state into persistent storage (Database or File
system).

Passivation is the process of serializing current states of an active application module
instance to persist it to make it passive. Activation is its reverse process to activate a
passive application module instance.

After coding and debugging all functional issues of an ADF Business Components
based application, it is necessary to disable application module pooling to test and
verify the application code is passivation-safe. Disabling application module pooling
enforces the application module instance to be released at the end of each request and
be immediately removed (destructed), and passivation is triggered before its removal.
On subsequent requests made by the same user session, a new application module
instance must be created to handle this user request. A pending state must be restored
from the passivation storage to activate this application module instance.

To disable application pooling for all application module pools, add
-Djbo.ampool.doampooling=false to the JVM options when you run your page. You
can also disable application pooling for select application modules.

To disable application pooling for select application modules:
1. Launch Oracle JDeveloper.

2. Right-click Application Module and select Configurations.

3. Click Edit, and select the Pooling and Scalability tab. See Figure 57–7.

4. Deselect Enable Application Module Pooling.

ADF Business Components Guidelines

57-12 Developer's Guide

Figure 57–7 Application Module: Configurations — Pooling and Scalability

For more information about application module state management, see the
"Application State Management" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

For more information about application module pooling, see the "Tuning Application
Module Pools and Connection Pools" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

57.2.3.3 Avoid Passivating Read-Only View Objects
There is performance overhead associated with passivation and activation. It is
important to know of cases of where not to use this feature without impacting
scalability and reliability. For example, there is no need to passivate LOV view objects
and validator view objects where the bind values are coming from the target data row
via the view accessor relationship. Similarly, if you have View objects where none of
the attribute values are used across requests, such as view objects used only in service
calls, then you should disable passivation.

To disable passivation for a view object, uncheck the Passivate State option in the
View Object Editor, as shown in Figure 57–8.

ADF Business Components Guidelines

Improving Performance 57-13

Figure 57–8 View Object Editor — Tuning

57.2.3.4 Avoid Passivating Certain Transient Attributes of a View Object
In addition to read-only view objects, some transient values of a view object, including
transient view object attribute and calculated view object attribute, are read-only or their
values are derived from other attributes via getter or groovy logic. There is no need
passivate them.

■ A transient view object attribute is an attribute which is not mapped to a table
column or SQL calculation value, but its value is provided by Accessor function
code.

■ A calculated view object attribute is an attribute which is not mapped to a table
column but is a SQL calculation expression.

To disable passivation for a subset of view objects' transient values, deselect Include
All Transient Values in the View Object Editor - Tuning section as shown in
Figure 57–8. Then check the Passivate check box only for the attributes that require
passivation in the view object attribute editor.

For more information, see "Managing the State of View Objects" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

57.2.3.5 Maintain Application Session User Tables
By default, Oracle ADF takes care of passivating all necessary states of an application
module instance, but some custom information must be addressed by application
code. Some examples of custom information are:

■ Private member fields in view objects, entity objects, or application modules.

■ User session state cached in Application Session UserData hash table. Go through:

ApplicationModule.getDBTransaction().getSession().getUserData()

It is easy to confuse an Application Module session object with an HTTPSession object,
which also provides a hash table to cache some session user information. The
difference is the HTTPSession exists at the ADF Controller layer and the state cached in

Caution: This is not the user session. This is the Application Module
session that ties to an application module and is maintained by ADF
Business Components.

ADF Business Components Guidelines

57-14 Developer's Guide

it can be across HTTP requests independent of the application module instance. On the
other hand, Application Session exists at the ADF Model layer and is per application
module instance, so state cached in it can not be across HTTP requests once the
application module instance switching happens.

It is strongly suggested to avoid saving a lot of custom session states in HTTPSession
because it increases memory usage and impacts scalability. This is the exact problem
that application module state management and application module pooling is
expected to solve.

To handle custom session states, you need to override passivateState() and
activateState() functions in your ApplicationModuleImpl class or relevant VOImpl
class.

For more information about how to manage custom user information, see the
"Application State Management" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

The following is sample code from the Pathfinder Application to passivate and
activate the UserLoginPrincipal object. Example 57–2 shows one way that you can
passivate custom state.

Example 57–2 Passivating and Activating UserLoginPrincipal

public void passivateState(Document doc, Element parent)
 {
 super.passivateState(doc,parent);

 UserLoginPrincipal principal = (UserLoginPrincipal)
getSession().getUserData().get(Constants.LOGIN_PRINCIPAL);

 ByteArrayOutputStream baos=new ByteArrayOutputStream();

 try{
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(principal);
 oos.flush();
 }
 catch(IOException e)
 {}

 String strPrincipal = baos.toString();

 Node node = doc.createElement(Constants.LOGIN_PRINCIPAL); // Login should
easily be converted into String
 Node cNode = doc.createCDATASection(Constants.LOGIN_PRINCIPAL);
 cNode.setNodeValue(strPrincipal);
 node.appendChild(cNode);
 parent.appendChild(node);

 }

 public void activateState(Element elem)
 {
 super.activateState(elem);

Note: XML documents can only handle String. Therefore, an object
must be serialized before saving.

ADF Business Components Guidelines

Improving Performance 57-15

 if (elem != null) {
 NodeList nl = elem.getElementsByTagName(Constants.LOGIN_PRINCIPAL); //
no idea what tags can be used
 if (nl != null) {
 for (int i=0, length = nl.getLength(); i < length; i++)
 {
 Node child = nl.item(i).getFirstChild();
 if (child != null) {

 String strPrincipal = (String)child.getNodeValue();
 ByteArrayInputStream bais=new
ByteArrayInputStream(strPrincipal.getBytes());
 ObjectInputStream ois;
 UserLoginPrincipal principal = null;
 try
 {
 ois = new ObjectInputStream(bais);
 principal = (UserLoginPrincipal)ois.readObject();
 }
 catch (IOException e)
 {}
 catch (ClassNotFoundException e)
 {}
 getSession().getUserData().put(Constants.LOGIN_
PRINCIPAL,principal);
 break;
 }
 }
 }
 }
 }

57.2.3.6 Tune the Application Module Release Level
The default release level is Managed, which implies that the application module's state
is relevant and has to be preserved for this data control to span over several HTTP
requests. In some cases you can programmatically set the release level to Unmanaged
("Stateless") at run time for particular pages to achieve better performance (no
passivation). A classic example is the Logout page. Usually you can programmatically
release the application module with the unmanaged level when you want to signal
that the user has ended a logical unit of work.

Setting the release level to Reserved makes Data Control "sticky" to an application
module instance and all requests from the same HTTPSession associated with this Data
Control are served by the same application module instance. This is contrary to the
initiative of introducing application module state management and application
module pooling, so using this release level is strongly discouraged.

Caution: When using DCDataControl::resetState() to set an
Unmanaged release level, it only affects the current application module
instance in the current request. For the next request, the application
module instance automatically uses the default Managed release level
again.

ADF Business Components Guidelines

57-16 Developer's Guide

Table 57–1 illustrates application module release mode comparisons.

Caution: Once the release level is changed to Reserved by calling
DCJboDataControl::setReleaseLevel() with input argument
ApplicationModule.RELEASE_LEVEL_RESERVED, it stays at this level
until explicitly changed.

Table 57–1 Application Module Release Mode Comparison

Release Mode Unmanaged (Stateless) Managed (Stateful) Reserved

Application
Module
Behavior

Does not preserve the
state of the application
module instance between
page-processing requests.
The instance is
immediately released
when a JavaServer Page
(JSP) page terminates.

Note: Select this option
when you expect many
users to access your JSP
application
simultaneously. The
stateless option allows
more users to access a JSP
application
simultaneously at the cost
of requiring the user to
reconnect to a new
application module
instance every time a JSP
page is invoked (or
re-invoked).

Preserves the
application module
instance's state in the
database between
page-processing
requests. This permits
the application to
maintain a user's data
without involving a
single application
module instance for
long periods of time.

Note: Stateful mode
provides failover
support for the HTTP
session and is the
preferred choice when
the application
module uses a
standard JDBC
connection.

Allocates the
application
module instance
for the duration of
the browser
session. The
instance is released
only at the end of
the session. This
mode is provided
primarily for
compatibility with
certain application
module
definitions.
Failover is not
supported in this
mode.

Note: Reserved
mode is primarily
useful when the
application
module requires a
non-standard
JDBC connection
definition. Failover
is not supported in
this mode.

ADF Business Components Guidelines

Improving Performance 57-17

For more information about application module release level and state management,
see the "Application State Management" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

DBTransaction
& User Action

Oracle ADF automatically
posts and commits any
changes because the
application module state
is not maintained between
requests in stateless mode.
The user is not expected
to initiate the commit in
stateless mode: the
Commit and Rollback
buttons are disabled in the
JSP page.

Oracle ADF merely
saves the application
module state,
including the data
changes, to the
database at the end of
a page request. In this
mode, the user is
expected to initiate the
commit by clicking the
Commit button in the
process JSP page. Once
the user clicks the
Commit button,
Oracle ADF
immediately initiates a
post and commit
(together, as one step)
on the database.
Optionally, the user
can click the Rollback
button to prevent their
changes from entering
the database without
ever initiating a post.
Because the
application module
state is preserved, the
user can initiate the
Commit or Rollback at
any point during the
HTTP session.

Oracle ADF
automatically
posts any changes
to the database
(and initiates
DML-specified
database triggers
on the effected
tables). In this
mode, the user is
expected to click
either the Commit
button or Rollback
button in the
process JSP page.
Because the
application
module itself is not
released for the
duration of the
HTTP session, the
user can initiate
the Commit or
Rollback at any
point.

Application
Module Locking
Behavior

In stateless mode, it is
recommended that the
Business Components
property
jbo.locking.mode should
be set to optimistic.
Pessimistic locking is not
compatible with stateless
mode because the
database transaction is
always rolled back to
allow the connection to be
reused by another user.
This results in the lock
being released and makes
pessimistic locking
unusable.

In stateful mode, it is
recommended that the
Business Components
property
jbo.locking.mode
should be set to
optimistic. Pessimistic
locking is not
compatible with
stateful mode because
after the application
module is preserved,
the database
transaction is rolled
back to allow the
connection to be
reused by another
user. This results in the
lock being released
and makes pessimistic
locking unusable.

In release mode,
you can reliably
use pessimistic
locking and may
set the property
jbo.locking.mode
to pessimistic.

Table 57–1 (Cont.) Application Module Release Mode Comparison

Release Mode Unmanaged (Stateless) Managed (Stateful) Reserved

ADF Business Components Guidelines

57-18 Developer's Guide

57.2.3.7 Do Not Leave Uncommitted Database Updates Across Requests
If you make database updates during a request, using either a DBTransactionImpl.pst
changes call or PLSQL, ensure the changes are committed within the same request, or
rolled back if there are errors. All exceptions must be caught and rolled back to
prevent partial updates from lingering in the database.

57.2.3.8 Release Dynamically Created Root Application Modules
If you create an application module using createRootApplicationModule calls, you
should call the releaseRootApplicationModule to avoid a memory leak. Oracle ADF
internally maintains references to these application modules, so they are not freed
until you release them. You must also call releaseRootApplicationModule if you call
one of the *AMImpl.getInstance calls for the various Applcore application modules.

57.2.3.9 Do Not Destroy the Application Module when Calling
Configuration.releaseRoot ApplicationModule.
Call Configuration.releaseRootApplicationModule(am, false) instead of
Configuration.releaseRootApplicationModule(am, true). If true is passed, the
application module is destroyed and the next request for this application module will
be expensive because it needs to be created. If false is passed, the application module
is released back to the application module pool and the next request can simply check
out the application module from the pool, thereby avoiding the creation cost.

57.2.4 Working with Services
When working with services, consider the following suggestions for improving
performance.

57.2.4.1 Set the Find Criteria to Fetch Only Attributes that are Needed
By default, when you call the find service, the child service data objects are also
fetched. If you do not need those children, then make sure you set the find criteria to
fetch only the attributes you need.

Example 57–3 is sample code showing how to create a find criteria.

Example 57–3 How to Create Find Criteria

FindCriteria fc = (FindCriteria)DataFactory.INSTANCE.create(FindCriteria.class);
 //create the view criteria item
 List value = new ArrayList();
 value.add(new integer(10));
 ViewCriteriaItem vci =
(ViewCriteriaItem)DataFactory.INSTANVCE.create(ViewCriteraItem.class);
 vci.setValue(value);
 vci.setAttribute("Deptno");
 List<ViewCriteriaItem> items = new ArrayList(1);
 items.add(vci);
 //create view criteria row
 ViewCriteriaRow vcr =
(ViewCriteriaRow)DataFactory.INSTANCE.create(ViewCriteriaRow.class);
 vcr.setItem(items);
 //create the view criteria
 List group = new ArrayList();
 group.add(vcr);
 ViewCriteria vc = (ViewCriteria)DataFactory.INSTANCE.create(ViewCriteria.class);
 vc.setGroup(group);
 //set filter

ADF ViewController Layer Guidelines

Improving Performance 57-19

 fc.setFilter(vc);

 List cfcl = new ArrayList();
 ChildFindCriteria cfc =
(ChildFindCriteria)DataFactory.INSTANCE.create(ChildFindCriteria.class);
 cfc.setChildAttrName("Emp");
 cfc.setFetchStart(1);
 cfc.setFetchSize(1);
 cfcl.add(cfc);
 fc.setChildFindCriteria(cfcl);
 DeptResult dres = svc.fndDept(fc, null);
 pw.println("### Dept 10 and 2nd Emp ###");
.......

57.2.4.2 Expose Service for Frequently Used Logical Entities
If you are doing frequent fetches of a business entity that is not the top level of a
business object, it is better to expose a find service for that business entity rather than
expose a find service for the highest level. Otherwise, the service call must be made
against the topmost level entity, incurring unnecessary cost.

57.2.4.3 Use Correct ChangeOperation when Calling a Service
When you are using the processXXX() method to insert new rows, call the
processXXX() method using ChangeOperation.CREATE. Do not use
ChangeOperation.MERGE. Calling the processXXX() method with
ChangeOperation.MERGE issues extra queries to the database to check if the rows
already exist.

57.2.4.4 Set Only Changed Columns on Service Data Objects for Update
When creating a list of service data objects to pass for update using the processXXX()
method, if possible, set only the columns that you really need to change. Service data
objects with fewer attributes that have been set are updated faster than service data
objects with all the attributes set.

57.3 ADF ViewController Layer Guidelines
Follow the best practices described in this section while working with various ADF
ViewController layer components such as geometry management, page templates, and
partial page refresh.

57.3.1 Working with Various ADF ViewController Components
When working with ADF ViewController components, consider the following
suggestions for improving performance.

57.3.1.1 Minimize the Number of Application Module Data Controls
For a specific page or page fragment, try to use only one application module data
control. You should use nested application modules rather than a separate application
module data control because this minimizes the number of database connections your
page uses. When using a nested application module, be sure to drag the nested
application module from under the root application module in the data control panel.

Note: If you use nested application modules, you can not pull data
from different databases.

ADF ViewController Layer Guidelines

57-20 Developer's Guide

57.3.1.2 Use the Visible and Rendered Attributes
All ADF Faces Rich Client display components have two properties that relate to
whether the component is displayed on the page. For more information about how to
use these properties, see "ADF Faces Component Attributes" in the Oracle Fusion
Middleware Performance and Tuning Guide.

57.3.1.3 Remove Unused Items from Page Bindings
If you decide to remove an unused item, such as a column from a table, remove the
corresponding item from the tree binding. If you forget to do so for an expensive
computed attribute, the logic to compute the attribute still executes even after
removing the computed attribute from the table. In addition, remove any unused
iterator bindings from the page definition file.

57.3.1.4 Disable Column Stretching
Columns in the table and treeTable components can be stretched so that there is no
unused space between the end of the last column and the edge of the table or
treeTable component. This feature is turned off by default due to high performance
impact. Turning this feature on has a performance impact on the client rendering time
so it should not be used for complex tables.

57.3.1.5 Use Appropriate Values for Refresh and RefreshCondition
The default values of the Refresh and RefreshCondition properties of iterator binding
and action binding are deferred and NULL, which means that the related action binding
will be invoked only if needed. The default value is appropriate for most cases. If you
select the value ifNeeded for the Refresh property, the iterator or action may get
refreshed twice and therefore impact performance. Figure 57–9 shows how the
JavaServer Faces (JSF) and Oracle ADF phases integrate in the lifecycle of a page
request.

Figure 57–9 Lifecycle of a Page Request in an Oracle Fusion Web Application

In particular, the value always should not be used as the Refresh property for
invokeAction bindings. Using ifNeeded is the best option for most cases. Note that if
invokeAaction binds to the methodAction, which does not accept any parameters, or

ADF ViewController Layer Guidelines

Improving Performance 57-21

to any action then it will fire twice per request. To avoid this situation, use the
RefreshCondition attribute on invokeAction to control when the action needs to fire.

For more information about the Refresh property, see the What You May Need to Know
About Using the Refresh Property Correctly section in the "Understanding the Fusion
Page Lifecycle" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

57.3.1.6 Disable Estimated Row Count if Necessary
In addition to the query used to fetch the data for display, Oracle ADF issues a count
query to calculate the estimated result set size for view objects that are bound to a
table on the UI. This is used to size the scroll bar and is capped at a certain threshold to
avoid scanning the entire result set. If your query is expensive and this additional
query results in your page not meeting your performance target, consider setting the
RowCountThreshold setting to a negative value. This turns off the row count query.

You consider disabling row count completely by setting RowCountThreshold to -1
after extensive tuning. Then you could apply the global RowCountThreshold if your
count query still has performance issues.

57.3.1.7 Use HTTPSession Hash Table in Moderation
HTTPSession provides a hash table to cache user information. However, all the
information is saved in memory, so inappropriate use of HTTPSession cache causes
some scalability issues, including:

■ High memory usage on the server

■ User information loss if the server is down

■ Increased network traffic to replicate session state in a clustered environment

Putting critical, large volume information in HTTPSession cache is not recommended.
Instead, you should leverage application module state management and application
module pooling. See Section 57.2.3.2, "Make Application Code Passivation-Safe."

Example 57–4 shows how to use HTTPSession cache in a backing bean.

Example 57–4 HTTPSession Cache in a Backing Bean

((HttpServletRequest)
 (FacesContext.getCurrentInstance().getExternalContext().getRequest())))
 .getSession().setAttribute("UserLoginPrincipal",sessionLoginPrincipal);

57.3.1.8 Use Short Component IDs
Sometimes you must provide an ID for a UI component. For example, an ID is
required for a component that is a source of a partial page refresh (PPR) event. Also,
Oracle ADF generates default component IDs for certain components, such as when a
task flow is added to a page as a region. (The default region ID is the first 5 characters
of the task flow name plus a digit). If you have pages with a region ID that is greater
than 7 characters, you should shorten the IDs of the task flow regions to 7 characters or
fewer (including the digit), with 3 characters being ideal.

Caution: When you disable the estimated row count, the scrolling
behavior of your table is different. The user can scroll forward only
one range at a time.

ADF ViewController Layer Guidelines

57-22 Developer's Guide

If IDs are specified for other naming containers (such as tables), a length of 3 or fewer
is best. Using short naming for container IDs helps to reduce the size of each response,
as well as network traffic, because the IDs of the parent naming containers are
appended to a child's generated ID.

57.3.1.9 Follow UI Standards when Using Search
When using Search, follow these UI standards:

■ Blind queries are not allowed.

■ Match All should be used instead of Match Any when there are multiple criteria.

57.3.1.10 Avoid Executing Component Subtree by Adding a Condition Check
In some cases it is possible to find out during the jsp tag execution phase if a particular
jsp subtree needs to be executed or not by using the <c:if test...> tag. Example 57–5 is
an example for panelAccordion. (Note the use of $ instead of #).

Example 57–5 Using the <c:if test...> Tag

<af:panelAccordion>
 <af:showDetailItem disclosed="#{item.disclosed}">
 <c:if test="${item.disclosed}">
 <!--Content here will not be executed in jsp engine if item is not
disclosed-->
 </c:if>
 </af:showDetailItem>
</af:panelAccordion>

Example 57–6 shows how to use this technique with lazy popups.

Example 57–6 Using <c:if test...> Tag with Lazy Popups

<af:popup id="popupRegion" contentDelivery="lazyUncached"
 launcherVar="source" eventContext="launcher">
 <!-- param passed to taskflow -->
 <af:setPropertyListener from="#{source.attributes.param}"
 to="#{requestScope.param}" type="popupFetch"/>
 <!-- reset taskflow and turn on activateSubtree (session scoped) -->
 <af:setPropertyListener from="Y" to="#{testBean.refreshTaskflow}"
 type="popupFetch"/>
 <af:panelWindow id="window" title="Task Flow">
 <!-- conditionally includes the nested components -->
 <c:if test="${testBean.activateSubtree}">
 <af:region value="#{bindings.dynamicRegion1.regionModel}"
 id="dynamicRegion1"

regionNavigationListener="#{testBean.navigationListener}"/>
 </c:if>
 </af:panelWindow>

 <!-- toggles off the activateSubtree flag -->
 <af:serverListener type="serverPopupClosed"
 method="#{testBean.popupClosedListener}"/>
 <!-- queues a custom event on close of the popup to invoke the

Note: Using this technique is not recommended. For other
techniques, see Section 57.3.1.20, Section 57.3.1.21, and
Section 57.3.1.22.

ADF ViewController Layer Guidelines

Improving Performance 57-23

serverListener -->
 <af:clientListener method="popupClosedListener" type="popupClosed"/>
</af:popup>

57.3.1.11 Do not set Client Component Property to True
ADF Rich Client has a sparse component tree on the client. This means only required
components are created on the client. The component instance is instantiated on the
client if:

■ Client component property is true by default. For example, as required by Oracle
ADF

■ Client-side event listener is registered, which you should not be using

■ Due to needed client-side interaction with component, the client component
property is set to true

To achieve the best performance, do not set the client component property to true.

57.3.1.12 Set Immediate Property to True when Appropriate
ADF Rich Client components have an immediate attribute. There are some cases
where setting immediate to true can lead to better performance. For more information,
see the "ADF Faces Component Attributes" section in the Oracle Fusion Middleware
Performance and Tuning Guide.

57.3.1.13 Use Appropriate ContentDelivery Mode for a Table or a Tree Table
By default, the data for Table, Tree and other stamped components uses the lazy data
delivery mechanism. This means that page content is delivered with the first response
from the server and the next request fetches the data. This option should be used when
the page has enough content to be displayed and a table query may be slow.
Underneath, the data fetch request uses the table streaming feature, which delivers
table data to the client as soon as it is available. Also, it provides the ability to execute
data fetch requests on the server in parallel, making them faster. To enable fetching
data in parallel, set the RenderHint property of the iterator to background. This option
could increase the number of database connections.

The other option to deliver data is immediate mode, which is set on the table. In this
mode, the data is delivered with the initial page. This is better in terms of CPU and
memory consumption on the server, and should be used if the table is the main context
of the page.

For more information, see "Data Delivery - Lazy versus Immediate" in the Oracle
Fusion Middleware Performance and Tuning Guide

57.3.1.14 Set the Appropriate Fetch Size for a Table
Tables have a fetch size which defines the number of rows to be sent to the client in
one round-trip. To get the best performance, keep this number low while still allowing
enough rows to fulfill the initial table view port. This ensures the best performance
while eliminating extra server requests.

In addition, consider keeping the table fetch size and iterator range size in sync. By
default, the table fetch size is set to the EL expression #{bindings.<name>.rangeSize}
and should be equal to the iterator size. The iterator range size should be set to
number of displayed rows + 1. In particular, for auto-height tables, you should set
iterator range size to the value of autoHeightRows + 1.

ADF ViewController Layer Guidelines

57-24 Developer's Guide

57.3.1.15 Avoid Frozen Columns and Header Columns if Possible
Frozen columns and header columns in the table are very expensive on the client side
and should be avoided if possible. Overhead can be 20% to over 100% for a simple
page with limited content when there are frozen columns. If frozen columns must be
used, make sure the row height of the columns to the left and the right of the frozen
column are of the same height.

57.3.1.16 Avoid Unnecessary Regions
Regions are very powerful and provide extreme flexibility. However, there is an
associated cost with every region. In order to have the best performance, make sure to
use the region only when it is needed.

Generally, the Oracle ADF guideline is to not have more the 15 regions on the page.

57.3.1.17 Set the Data Control Scope to "Shared"
Set the Data Control Scope to Shared for a task flow to allow sharing of the data control.
(This is the default). This reduces the number of database connection. There may be
some cases where using Isolated is functionally necessary. For more information, see
the "Sharing Data Control Instances" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

If you use the same taskflow multiple times on a page, and you are using shared data
control scope, by default it may not work because the data controls will show the same
data. To address this, instead of switching to isolated data control scope, follow the
approach described in
https://blogs.oracle.com/groundside/entry/maintaining_row_
currency_separation_in.

57.3.1.18 Select the No Save Point Option on a Task Flow when Appropriate
Select the No Save Point option if you do not need the functionality to roll back
changes at the end of the task flow. If you do not use this option, the model state is
passivate at the beginning of the task flow, which is expensive.

57.3.1.19 Use Click-To-Edit Tables when Appropriate
For tables where most rows are usually view-only and rarely edited, set the Edit mode
property to Click-To-Edit. This reduces the response size significantly and improves
performance.

57.3.1.20 Avoid Unnecessary Task Flow Activation for Regions Under Popups
By default, task flows that use a region under popups are activated when the page
loads, not when the popup displays. This causes unnecessary memory and CPU usage
if the user does not use the popup. There are two approaches for activating the task
flow region only when the popup displays:

1. Set the following properties to "deferred":

■ The childCreation property on the popup.

■ The activation property on the task flow binding. (This is under the
Executables section in the page definition file.)

2. Set the activation property on the task flow binding to "conditional" and specify a
condition in the "active" to an EL expression that returns true when the popup
displays. Usually this requires creating a view scope variable that is set using a

ADF ViewController Layer Guidelines

Improving Performance 57-25

setPropertyListener executed on popupFetch. The EL expression must return
true as long as the popup is displayed. (A request scope variable will not work in
most cases unless you cannot submit any server requests from the popup.)

Approach (1) is simpler but you must use approach (2) for these cases:

■ Any of the following tags are present inside the popup attribute:

– f:attribute

– af:setPropertyListener

– af:clientListener

– af:serverListener

■ You need to refer to any child components of the popup before the popup is
displayed. Setting childCreation="deferred" postpones the creation of any child
components of the popup and you cannot refer to them until after the popup
displays.

57.3.1.21 Delay Creation of Popup Child Components
This recommendation is similar to Section 57.3.1.20, "Avoid Unnecessary Task Flow
Activation for Regions Under Popups", but is applicable to popups that do not contain
regions. By default, the child components under a popup are created even when the
popup is not accessed. This causes unnecessary memory and CPU usage if the user
does not use the popup. To avoid this overhead, set the childCreation property on the
popup to "deferred".

This approach cannot be used for these cases:

■ Any of the following tags are present inside the popup attribute:

– f:attribute

– af:setPropertyListener

– af:clientListener

– af:serverListener

■ You need to refer to any child components of the popup before the popup is
displayed. Setting childCreation="deferred" postpones the creation of any child
components of the popup and you cannot refer to them until after the popup
displays.

57.3.1.22 Avoid Unnecessary Task Flow Activation for Regions Under Switchers
By default, task flows that use an af:region under switchers are activated regardless
of whether the facet displays. This causes unnecessary memory and CPU usage for the
facets that do not display. To activate the task flow region only when it displays, set
the "activation" property on the task flow binding to "conditional", under the
Executables section in the page definition file. Also specify a condition in the "active"
to an EL expression that returns true when the facet displays.

Typically, you may already have an EL expression to control the return value for the
facetName property in the switcher. For example, if your switcher looks like this:

<af:switcher id="s1" defaultFacet="1" facetName="#{pageFlowScope.facet}">
<f:facet name="1">
<af:region value="#{bindings.TF1.regionModel}" id="r1"/>
</f:facet>
<f:facet name="2">
<af:region value="#{bindings.TF2.regionModel}" id="r2"/>

ADF ViewController Layer Guidelines

57-26 Developer's Guide

</f:facet>
</af:switcher>

The associated binding should have activation set to "conditional", and active set to an
EL, as follows:

<taskFlow id="tTF1" taskFlowId="<some task flow>"
active="#{pageFlowScope.facet=='1'}" activation="conditional"
xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

<taskFlow id="tTF2" taskFlowId="<some other task flow>"
active="#{pageFlowScope.facet=='2'}" activation="conditional"
xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

57.3.1.23 Avoid Unnecessary Root Application Module Creation from UI-layer Code
Creating additional root application modules is expensive when you can reuse the root
application module that is associated with the data bindings on your page. For
example, do not access an application module instance by calling the
Configuration.createRootApplicationModule() API from a backing bean. This results
in creating additional application module instances which are distinct from the
application module instance that is automatically checked out and in by the Oracle
ADF data binding layer, used by UI pages and task flow method call activities. This
can lead to performance and memory issues if your backing bean calls
Configuration.createRootApplicationModule() API without calling
releaseRootApplicationModule().

You should use an ADFM action binding to invoke a client interface method
declaratively on an application module instead. This approach requires no code and
often prevents the need for a backing bean. It also ensures that any exceptions are
handled in a consistent way as if Oracle ADF had invoked the method declaratively.
You should also ensure that your backing bean is invoked in a context where a
pageDef has been defined.

The following code excerpt is an example that follows our recommendation:

private ComponentReference<RichTable> allocationTableRef;
public void setAllocationTable(RichTable allocationTable) {
if(this.allocationTableRef == null)
this.allocationTableRef =
ComponentReference.newUIComponentReference(allocationTable);}
public RichTable getAllocationTable() {
return allocationTableRef==null ? null : allocationTableRef.getComponent();

The following example is not recommended:

private RichTable allocationTable;
public void setAllocationTable(RichTable allocationTable) {
this.allocationTable = allocationTable; }
public RichTable getAllocationTable() {
return allocationTable; }

57.3.1.24 Avoid Unnecessary Savepoints on Task Flow Entry
When the transaction setting of a task flow is "Always Use Existing Transaction" or
"Reuse Existing Transaction if Possible", and the "No savepoint on taskflow entry" box
is not checked, Oracle ADF automatically creates a savepoint when entering the
taskflow. You should check the box to avoid the savepoint cost if you do not have
functionality to rollback to this particular savepoint.

Oracle Fusion Middleware Extensions for Applications Guidelines

Improving Performance 57-27

57.3.1.25 Cache Return Values in Backing Bean Getters
The common usage of backing beans is to reference values from EL expressions. Bean
getters may also be called from other places in the code, as well as being called
multiple times in a request. If you have expensive computations inside the bean getter
logic, consider caching the results inside the bean. This should be fairly safe to do for
request-scope beans unless you expect the result to change within the request. For
view-scope or page flow-scope beans, be careful about when to invalidate the cached
results.

57.3.1.26 Do Not Maintain References to UI Components in Managed Beans
If you maintain direct references to UI Component instances from view scope or
pageflow scope beans, this could cause both functional errors and impact
performance. If you must maintain a reference, use the ComponentReference pattern
instead.

57.3.2 Enable ADF Rich Client Geometry Management
ADF Rich Client supports Geometry Management of the browser layout where parent
components in the UI explicitly size the children components to stretch and fill up
available space in the browser. While this feature makes the UI look better, it has a
cost. For more information, see the "Enable ADF rich client geometry management"
row in the "Configuration Parameters for ADF Faces" table in the Oracle Fusion
Middleware Performance and Tuning Guide.

57.3.3 Use Page Templates
Page templates allow you to build reusable, data-bound templates that can be used as
a shell for any page. For important considerations when using templates, see the "Use
page templates" row in the "Configuration Parameters for ADF Faces" table in the
Oracle Fusion Middleware Performance and Tuning Guide.

57.3.4 Use ADF Rich Client Partial Page Rendering (PPR)
You should always consider using partial page refresh instead of a full page refresh.
For more information, see the "Use ADF Rich Client Partial Page Rendering" row in
the "Configuration Parameters for ADF Faces" table in the Oracle Fusion Middleware
Performance and Tuning Guide.

57.4 SOA Guidelines for Human Workflow and Approval Management
Extensions

For best practices while working with Human Workflow and Approval Management
extensions (AMX), see the Oracle Human Workflow Performance Tuning chapter in
Oracle Fusion Middleware Performance and Tuning Guide.

57.5 Oracle Fusion Middleware Extensions for Applications Guidelines
When working with application modules, consider these best practices related to using
a nested service and releasing application modules returned from getInstance calls.

57.5.1 Use Profile.get to Get Profile Option Values
To get a profile option value, use

Oracle Fusion Middleware Extensions for Applications Guidelines

57-28 Developer's Guide

oracle.apps.fnd.applcore.Profile.get(<Profile Option Name>)

This is optimized to first find the profile value in an internal cache, so it checks out an
application module only if needed. Avoid calling ProfileServiceAM.getInstance as it
checks out a ProfileService application module instance, which is expensive.

57.5.2 Release any Application Modules Returned from getInstance Calls
If you have no other option and must use getInstance to get an application module
back, such as ProfileServiceAM.getInstance, you must release it to avoid a memory
leak via a Configuration.releaseRootApplicationModule call as shown in
Example 57–7.

Example 57–7 Release Application Module

ProfileServiceAM profileService = null;

try {
 profileService = ProfileServiceAMImpl.getInstance();
 String value = profileService.getProfileValue("<ProfileOptionName>");
}
finally {
 Configuration.releaseRootApplicationModule(profileService, false);
}

57.5.3 Avoid Unnecessary Activation of Attachments Taskflow
When the attachments feature is used, it creates a new taskflow in the page bindings.
For example:

<taskFlow id="attachmentRepositoryBrowseTaskFlow1"
taskFlowId="#{backingBeanScope.AttachmentBean.taskFlowId}"

or:

<taskFlow id="attachmentRepositoryBrowseTaskFlow1"
taskFlowId="/WEB-INF/oracle/apps/fnd/applcore/attachments/ui/attachments-docpicker
-taskflow.xml"
This task flow is unnecessarily activated. To avoid this situation, navigate to the
bindings tab of the page where the Attachments component was added. Select
attachments task flow, attachmentRepositoryBrowseTaskFlow1, from the list of
Executables. Set the following attributes in the property inspector under Common:

■ activation="conditional"

■ active="#{pageFlowScope.FND_ATTACHMENTS_LOAD_TF==true}"

57.5.4 Use Static APIs on Message Get Message Text
Use static APIs from oracle.apps.fnd.applcore.messages.Message to get message
text. Avoid using MessageServiceAMImpl.getInstance,or calling
createRootApplicationModule to get MessageServiceAM, as this results in checking
out and initializing an instance of MessageServiceAM from the AM pool, which has a
cost.

57.5.5 Set the Data Control Scope to Isolated for Page Level Item Nodes
If the data control scope is shared for taskflows pointed to by certain item nodes, then
the life span of these taskflow data controls is tied to the parent, which is either Main

General Java Guidelines

Improving Performance 57-29

TF or Regional TF in the UI shell. This scenario applies to those item nodes with
taskType equal to "defaultMain", "dynamicMain", or "defaultRegional". This means
that DC frame is no removed for the duration of the session, regardless of any
navigation or closing tab. This is due to the fact that Main TF and Regional TF in the
UI shell has the DC scope set to shared, due to the requirement to share CE between
the regional and main areas.

If there is no requirement to share transactional data between the regional and main
areas, then set dataControlScope="isolated" on the page level item node in the menu
file. This recommendation assumes that the underlying taskflows used in the regional
area or the task menu already have data control scope set to isolated. Note that you
should not change the data control scope on the taskflow itself.

57.6 General Java Guidelines
When working with Java, consider these best practices related to Strings and
StringBuilder, Collections, Synchronization, as well as other Java features.

57.6.1 Working with Strings and StringBuilder
When working with Strings and StringBuilder, consider the following suggestions
for improving performance.

57.6.1.1 Use StringBuilder Rather than the String Concatenation Operator (+)
When doing String concatenations inside a loop, see if the operation can be moved
outside of the loop. Frequently, the concatenation code is put inside the loop even
though the value can never change there.

The String concatenation operator + involves the following:

■ A new StringBuilder is created.

■ The two arguments are added to it with append().

■ The final result is converted back with a toString().

This increases cost in both space and time, especially if you're appending more than
one String. You should consider using a StringBuilder directly instead.

StringBuilder was introduced in Java Development Kit (JDK) 1.5 and is more
efficient than StringBuffer since the methods are not synchronized. When using
StringBuilder (or StringBuffer), optimally size the StringBuilder instance based on
the expected length of the elements you are appending to it. The default size of a
StringBuilder is 16. When its capacity is exceeded, the JVM has to resize the
StringBuilder which is expensive. For example, instead of:

String key = granteeType + ":" + granteeKey;

You should follow this example:

String key = new StringBuilder(granteeType.length() + 1 +
 granteeKey.length()).append(granteeType).append(":").append(granteeKey)
 .toString();

This way, the StringBuilder object is initialized with the correct capacity so it can
hold all the appended strings it needs to resize its internal storage structure.

For the sake of simplicity, it is acceptable to do String concatenation using "+" for
debug log messages, as long as you follow the logging standard and check log level
before constructing the log message.

General Java Guidelines

57-30 Developer's Guide

Avoid unnecessary use of String.substring calls since it creates new String objects.
For example, instead of doing this:

if (formattedNumericValue.substring(0,1).equals("-")) negValue = true;

Do this instead:

if (formattedNumericValue.charAt(0) == '-') negValue = true;

The hashCode method is another common place where you do String concatenation.
Example 57–8 uses the hashCode implementation and requires String concatenation on
every call.

Example 57–8 Hashcode with String Concatenation

public int hashCode()
{
 … … …
 h = new StringBuffer(len).append(resp).append(rapl).toString().hashCode();
 return h;
}

Example 57–9 does not use String concatenation.

Example 57–9 Hashcode without String Concatenation

public int hashCode()
{
 … … …
 h = 37*h + (int)(m_respID ^ (m_respID >>> 32));
 h = 37*h + (int)(m_respApplID ^ (m_respApplID >>> 32));
 return h;
}

Plan carefully before deciding to concatenate Strings. There are often alternative ways
to implement the intended logic without concatenation.

57.6.1.2 Check the Log Level Before Making a Logging Call
You should always check the log level before you make a logging call, otherwise,
many objects may be constructed unnecessarily. For example, if logging is disabled,
but your code still calls the logging API that passes in the log message. This
concatenates several String objects together and the String concatenation is a waste of
resources.

The log message is constructed and passed into the logging API, and then discarded
since logging is disabled. If you first check if the target log level is enabled, then the
log message does not need to be created unless it is actually needed. For more
information see the "Set Logging Levels" section in the Oracle Fusion Middleware
Performance and Tuning Guide.

Note: This example was taken from the book Effective Java.

General Java Guidelines

Improving Performance 57-31

57.6.1.3 Use Proper Logging APIs for Debug Logging
Use proper logging APIs, such as AppsLogger, instead of using System.out.println
and System.err.println for debug logging. This way, log messages are properly
formatted with the correct context information.

57.6.1.4 Lazy Instantiation
Avoid instantiating objects until they are needed. For example, if you are coding a
method to do String replacement, do not allocate a StringBuilder object to do the
replacement until you have found a fragment that needs to be replaced. For more
information, see the "Application Module Design Considerations" section in the Oracle
Fusion Middleware Performance and Tuning Guide.

57.6.2 Configure Collections
When working with Collections, consider the following:

■ Legacy collections (like Vector and Hashtable) are synchronized, whereas new
collections (like ArrayList and HashMap) are unsynchronized, and must be wrapped
via Collections.SynchronizedList or Collections.synchronizedMap if
synchronization is desired. Do not use synchronized classes collections, including
collections from java.util.concurrent package, that are not shared among
threads.

■ Do not use object collections for primitive data types. Use custom collection
classes instead.

■ Size a collection based on the number of elements it is intended to hold to avoid
frequent reallocations and rehashing in case of hashtables or hashmaps.

For more information about Collections, see "Configuring Garbage Collection" in the
Oracle Fusion Middleware Performance and Tuning Guide.

57.6.3 Manage Synchronization
When working with synchronization methods you should consider the following:

Avoid synchronized methods if possible, because even with the latest versions of the
JVM, there is still significant overhead.

Bad candidates for synchronization are:

■ Read-only objects

■ Thread local objects

Minimize the size of the synchronized block of code. For example, instead of
synchronizing the entire method, it may be possible to synchronize only part of the
method.

In JDK 1.5, there is a new package, java.util.concurrent, that contains many classes
designed to reduce contention. For example,
java.util.concurrent.ConcurrentHashMap provides efficient read access while still
maintaining synchronized write access. These new classes should be evaluated instead
of simply using a Hashtable whenever synchronization is required.

57.6.4 Work with Other Java Features
When working with Java features, you should consider the following:

General Java Guidelines

57-32 Developer's Guide

57.6.4.1 Avoid Autoboxing
Autoboxing is a feature introduced in JDK 1.5, which allows direct assignment of
primitive types to the corresponding object type, such as int => Integer. Avoid using
autoboxing in code that is called repeatedly, as shown in this example:

Integer myInterger = 1000;

Example 57–10 shows how the compiled code basically creates a new Integer object
based on the int value:

Example 57–10 Compiled Code

8: bipush 100
10: invokestatic #2;
//Method
java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
13: astore_2

If this piece of code is called repeatedly, then each call creates one Integer object and
could have adverse performance impact.

57.6.4.2 Do not use Exceptions for Code Path Execution
Exception object and snapshot of stack have to be created. This is expensive especially
for typical Oracle ADF applications, which have very deep execution stacks. For
example, if your code needs to detect whether a certain object can be casted to a
certain type, use instanceOf instead of doing the cast and catching the exception. In
other words, use instanceOf instead of relying on ClassCastException.

57.6.4.3 Reuse Pattern Object for Regular Expression Matches
If using regular expression classes to match against a known pattern, create the
Pattern object only once and reuse it for subsequent matches. Only the Matcher object
needs to be created each time.

57.6.4.4 Avoid Repeated Calls to the same APIs that have Non-Trivial Costs
Avoided repeated calls to the same APIs that have non-trivial costs. Use a local
variable to hold the result instead. For example, instead of:

if (methodA() >= 0)
 return methodA() + methodB();

Use:

int res = methodA();
If (res >= 0)
 return res + methodB();

57.6.4.5 Close Unused JDBC Statements to Avoid Memory Leaks
To avoid memory leaks, closed unused JDBC statements. Example 57–11 depicts a
statement leak in java code.

Example 57–11 Statement Leak in Java Code

String s1 = "BEGIN FND_GRANTS_PKG.UPDATE_GRANT("+
 " :1, "+
 " :2, "+
 " :3, "+
 " :4, "+

General Java Guidelines

Improving Performance 57-33

 " :5);"+
 " END;";

 setGrant = txn.createCallableStatement(s1,1);

 setGrant.setInt(1,v);
 setGrant.setString(2,guid);
 setGrant.setDate(3,sd);
 setGrant.setDate(4,edt);
 setGrant.registerOutParameter(5,Types.VARCHAR);
 setGrant.execute();

There should be a setGrant.close() call to close the statement.

For every call to createStatement(), prepareStatement(), prepareCall(),
createCallableStatement(), or createPreparedStatement() there should be a
close() to prevent memory leaks.

In the case of query execution, it is possible that the result set may be closed, but the
underlying statement has not been closed, as shown in Example 57–12.

Example 57–12 Underlying Statement Not Closed

public static AppsCtxtFileInfo readAppsCtxtFile(Connection pCon,
 AppsCtxtFileInfo fileInfo,boolean update)
 {
 AppsCtxtFileInfo ret = null;
 try
 {

 String query = getReadAppsCtxtFileString(false,update);

 PreparedStatement stmt = pCon.prepareStatement(query);

 stmt.setString(1,fileInfo.getNodeName());
 stmt.setString(2,fileInfo.getPath());

 ResultSet rs = stmt.executeQuery();

 if (rs.next())
 {
 ret = getAppsCtxtFileInfoFromResultSet(rs);
 }

 rs.close();

 }catch(SQLException e)
 {
 Logger.println(e,Logger.DEV_LEVEL);
 if (update)
 {
 if (e.getErrorCode()== ROW_LOCKED_ERROR_CODE)
 throw new RowLockedException();
 }
 else
 throw e;
 }
 return ret;
 }

Caching Data

57-34 Developer's Guide

In this case, the result set is being closed via rs.close(). However, the statement
(stmt) has not been closed. For every statement opened, you should close it in the final
block of a try-catch, as shown in Example 57–13.

Example 57–13 Close Statement Example

try
{
...
<open the statement>
<process the statement>
...
}
catch
{
...
<process any exceptions>
...
}
finally
{
...
 try
 {
 <close the statement>
 }
 catch
 {
 <process any exceptions>
 }
...
}

Make sure to catch exceptions around something like stmt.execute().

57.6.4.6 Use registerOutParameter to Specify Bind Types and Precisions
In Java files, whenever a callable statement is fired, such as in a begin-end block, the
out bind types and precision have to be specified. This is done after creating the
callable statement but before the query is executed. The method call to specify the type
is called registerOutParameter(). This call should exist for every out bind in the
callable statement regardless of its return type. There are two overloaded versions of
this method call that can be used:

registerOutParameter(int paramIndex, int sqlType, int scale, int maxLength)
registerOutParameter(int paramIndex, int sqlType)

57.6.4.7 Avoid JDBC Connection Leaks
If you are getting a connection directly from Data Source or through
ApplSessionUtil.getConnection, make sure you release the connection in a final
block.

57.7 Caching Data
Caching is one of the most common approaches for improving the performance of
accessing commonly used data. Shared application module and view object provide a

Caching Data

Improving Performance 57-35

mechanism for storing database results and other objects, such as in-memory ADF
Business Components objects for repeated usage. This minimizes expensive object
initializations and database round-trips, which ultimately results in improved
application performance.

57.7.1 Identifying Data to Cache
It is important to correctly identify the best data to cache. Generally, this is the data
that is common to different users, frequently used and infrequently changed,
expensive to retrieve from the database or data source, and expensive to create. Data
suitable for caching should have some or all of the following characteristics:

■ Shared Objects: Data that is common across users is more appropriate than user
specific data.

■ Long-Lived: Data that is long-lived is more appropriate than short-lived data that is
valid only for a user request.

■ Expensive to Retrieve: Objects that take a long time to retrieve, such as objects that
are obtained from expensive SQL queries, are good candidates.

■ Expensive to Create: Objects that are frequently created or take a long time to create
are appropriate. Frequent creation can be avoided by caching the instances.

■ Frequent Use: Objects that have a high probability of being frequently used are
appropriate. Caching objects that are not actively used needlessly occupy JVM
memory.

■ Infrequently Changed: The cached data is invalidated and removed from cache
whenever it is changed, which makes caching frequently changed data more
costly.

Lookup codes are an example of data that meets most of the above criteria.

57.7.2 How to Add Data to Cache
Cached objects are stored in view objects, which are added to an application module.
This application module is configured as shared at the application level so that the
cached objects are available to all users. To stripe cached data, view criteria with bind
parameters are used. For example, a view accessor on top of a shared DeptVO with a
view criteria such as location=:bindLocation results in one cache for each distinct
value of :bindLocation.

To add data to cache:
1. Create a view object or identify an existing view object to store the cached data.

2. (Optional) Create commonly used view criteria for the shared view object.

3. (Optional) Configure the shared view object's property, such as time to live, and so
on.

4. Create one application module for each product that contains all the view objects
to store the cached data.

For information about how to create a shared application module, see the "Sharing
Application Module View Instances" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

5. Cache a short list of data by pre-loading all the data into memory. This prevents
subsequent queries requiring additional database trips. To do this, generate the

Caching Data

57-36 Developer's Guide

VOImpl class for the shared view object and override the create() function of
VOImpl to fully populate the view object cache as shown in Example 57–14.

Example 57–14 Pre-load all Data into Memory

protected void create()
{
super.create();
setRangeSize(-1);
executeQuery();
getAllRowsInRange();
}

57.7.3 How to Cache Multi-Language Support Data
In addition to the instructions provided in Section 57.7.2, "How to Add Data to Cache",
you must also perform the following steps to cache multi-language support (MLS)
data. These steps are required because the shared application module and view object
cache only stripes data by bind parameters. Therefore, you must build your MLS view
objects for caching differently than other normal MLS view objects. For example, you
must add bind parameters to the MLS cache view objects.

57.7.3.1 Creating ADF Business Components objects for shared MLS data
The procedure for creating ADF Business Components objects for shared MLS data
varies depending on where the shared data requirement exists. The steps you follow
are different for sharing data from the base table, from the translatable, or _TL, table or
from both the base and the _TL table.

57.7.3.1.1 How to create objects if only the data from the base table needs to be shared

1. Create an entity object on top of the base table if you need the change notification
feature. This means that your data in cache is refreshed when there is a change in
the underlying table. This is required because the database change notification
feature doesn't work against database views.

2. Create a view object on top of the _VL entity object if you do not require change
notification. Otherwise, create a view object on top of the entity object created
from the previous step

3. Exclude all language dependent attributes from the _VL entity object.

57.7.3.1.2 How to create objects if only the data from the _TL table needs to be shared

1. Create the entity object on top of the _TL table.

This is required by MLS Framework. For more information, see Section 9.2, "Using
Multi-Language Support Features."

2. Create a view object on top of the _TL entity object.

3. Create commonly used view criteria, with language being part of the criteria using
a bind variable.

Note: This step is optional as there may be caches, such as profile
cache, that you would want to populate lazily.

Caching Data

Improving Performance 57-37

57.7.3.1.3 How to create objects if both the data from the base table and the _TL table needs to
be shared

1. Create the entity object on top of the _TL table.

This is required by MLS Framework. For more information, see Section 9.2, "Using
Multi-Language Support Features."

2. Create an entity object on top of the base table if you need the change notification
feature. This means that your data in cache is refreshed when there is a change in
the underlying table. This is required because the database change notification
feature does not work against database views.

If you do not need the change notification feature, then you can use the existing _
VL entity object, which should have been created already because it is required by
MLS Framework.

3. Create a view object to join the entity object created in the previous step (either a _
VL entity object or an entity object based on the base table) and the _TL entity
object. The view object should have all the language dependent attributes from the
_VL entity object excluded, which allows the language dependent attribute to
always come from the _TL entity object.

4. Create commonly used view criteria, with language being part of the criteria using
a bind variable.

57.7.3.2 Creating ADF Business Components Objects that Join to MLS tables
The procedure for creating ADF Business Components objects that join to MLS tables
varies depending on where the data requirement exists. The steps you follow are
different if the data is from the base table, from the translatable, or _TL, table, or from
both the base and the _TL table.

57.7.3.2.1 How to create objects if only the data from the base table is required

1. Create an entity object on top of the base table if you need the change notification
feature. This means that your data in cache is refreshed when there is a change in
the underlying table. This is required because the database change notification
feature does not work against database views.

2. Create a view object that joins to the _VL entity object if you do not need the
change notification feature, or create one that joins to the entity object created in
previous step if change notification feature is required.

3. Exclude all the language dependent attributes from the _VL entity object.

57.7.3.2.2 How to create objects if only data from the _TL table is required

1. Create a view object that joins to the _TL entity object.

Caution: The language must always be part of any view criteria. This
is very important.

Tip: This is important as it allows different users to see data for their
language.

Caution: The language must always be part of any view criteria. This
is very important.

Caching Data

57-38 Developer's Guide

2. Create view criteria with language being part of the criteria using a bind variable.

57.7.3.2.3 How to create objects if data from both the base table and the _TL table is required
1. Create an entity object on top of the base table if you need the change notification

feature. This means that your data in cache is refreshed when there is a change in
the underlying table. This is required because the database change notification
feature does not work against database views.

2. Create a view object that joins to the _VL entity object or the entity object created in
the previous step, and the _TL entity object.

3. Exclude all the language dependent attributes from the _VL entity object so that
the language dependent attributes always come from the _TL entity object.

4. Create commonly used view criteria, with language being part of the criteria using
a bind variable.

57.7.4 How to Consume Cached Data
The most common approach for accessing the shared data is to create a view accessor.
You can also instantiate a shared application module programmatically if your use
case requires it.

57.7.4.1 Consuming Shared Data Using a View Accessor
Follow these steps to consume shared data using a view accessor:

1. Identify the shared application module that contains the shared data.

2. (Optional) Create view accessors on top of a shared view object.

If the shared view object contains language specific attributes, make sure to
include a view criteria that filters by language and bind the language to the
current session language when defining your view accessor.

For information about how to create view accessors, see the Accessing View
Instances of the Shared Service section of the "Sharing Application Module View
Instances" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework (Oracle Fusion Applications Edition).

3. (Optional) Build validators on top of the view accessors that you created in Step 2.

This allows defaulting and derivation, and other business logic to utilize these
view accessors.

4. (Optional) Use the shared view object instead of using entity object as the
validation target type for the key exist validator that validates shared data.

Caution: The language must always be part of any view criteria. This
is very important.

Tip: This is important as it allows different users to see data for their
language.

Caution: The language must always be part of any view criteria. This
is very important.

Profiling and Tracing Oracle Fusion Applications

Improving Performance 57-39

57.7.4.2 Creating a shared application module programmatically
If you have an existing local application module, use the
findOrCreateSharedApplicationModule method to create a shared application
module. If you do not have a handle to an existing local application module, then use
createRootApplicationModuleHandle from the oracle.jbo.client.Configuration
class. Ensure that you release the application module after you are done, for example:

ApplicationModuleHandle handle =
Configuration.createRootApplicationModuleHandle("mypkg.AppModule",
"AppModuleShared");
ApplicationModule sharedAM = handle.useApplicationModule();
...
Configuration.releaseRootApplicationModuleHandle(handle, false);

If you rely upon the database change notification feature to refresh your shared AM
cache, then you also need to manually invoke the processChangeNotification
method on the shared AM in order to get the latest data. For more information, see the
"Sharing Application Module View Instances" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

57.7.5 What Happens at Runtime: When Another Service Accesses the Shared
Application Module Cache

During runtime, only one instance of a shared application module is created in the
application module pool. If there is an existing application module in the pool, then
the existing application module instance is returned when you request a shared
application module. For more information, see the "What Happens at Runtime: When
Another Service Accesses the Shared Application Module Cache" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

57.8 Profiling and Tracing Oracle Fusion Applications
To monitor performance in Oracle Fusion Applications you can use the JDeveloper
Profiler and capture SQL Trace for Oracle Fusion Applications. For detailed
information about monitoring and debugging techniques, see the "Monitoring Oracle
Fusion Middleware" chapter in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

57.8.1 How to Profile Oracle Fusion Applications with JDeveloper Profiler
The JDeveloper Profiler is used to provide information about the CPU, elapsed time,
and memory metrics, as well as call counts. It can be very helpful when you are
dealing with a performance issue or just trying to understand the performance
characteristics of your code.

For more information about JDeveloper Profiler, consult the JDeveloper Help
documentation.

Useful profiling modes are:

Tip: If you use entity object target type, it does not use
application-level cache.

Set up a Debug Breakpoint

57-40 Developer's Guide

■ Sample CPU time with Collect Elapsed Time: Using this mode, you can find the
methods using the most CPU. The Collect Elapsed Time option also shows the
method taking the most time, including time spent in the database. This mode has
low overhead and does not significantly slow down the application.

Figure 57–10 Edit Run Configuration — Profiler: CPU

If you find a method with a high elapsed time but low CPU time and that method
includes a database call, this could indicate either a slow query or too many
database roundtrips between the database and the middle-tier over a slow
network. Look for methods with the highest exclusive CPU (sort on the CPUx
field), and use the stack trace to determine where they are called from and if they
can be optimized.

■ Memory Profiling: Using this mode, you can find out how much memory is
allocated during the test.

■ Call Count Profiling: This is part of the CPU profiler and can be used to find out
how many times each method is called.

57.9 Set up a Debug Breakpoint
If you are interested in where a certain method is called, you can set a breakpoint on
that method and capture the stack trace. You can do this either interactively or
preferably, you can set up a debug breakpoint at the target line and print the stack
automatically.

To set up a debug breakpoint at the target line:
1. Highlight your breakpoint in the Breakpoints page.

2. Click Edit and select the Actions tab.

Caution: Call count profiling has very high overhead and therefore,
you should increase Oracle JDeveloper starting memory before using
it.

To reduce resource consumption, you should set appropriate filters to
include only the classes you are interested in.

Set up a Debug Breakpoint

Improving Performance 57-41

3. Deselect the Halt Execution option and select the Log Breakpoint Occurrence and
the Stack option. Selecting the Stack option gives you the stack trace, as shown in
Figure 57–11.

Figure 57–11 Edit Breakpoint

Each time the breakpoint is hit, the stack is written to the console. To capture this, you
must log the console output to a file.

To log the console output to a file:
1. Go to Tools, Preferences and select the Environment: Log category.

2. Select the Save Logs to File option and specify the Log directory, as shown in
Figure 57–12.

Figure 57–12 Preferences — Environment: Log

After running your project, you can find the console logged to a file in the
specified directory.

Set up a Debug Breakpoint

57-42 Developer's Guide

58

Debugging Oracle ADF and Oracle SOA Suite 58-1

58Debugging Oracle ADF and Oracle SOA
Suite

This chapter describes the process of debugging your Oracle Application
Development Framework (Oracle ADF) and Oracle SOA Suite applications. It
describes how to diagnose and correct errors and how to use the debugging tools.

This chapter includes the following sections:

■ Section 58.1, "Introduction to Debugging Oracle ADF Debugging and Oracle SOA
Suite"

■ Section 58.2, "Collecting Diagnostics"

■ Section 58.3, "Diagnosing Problems"

■ Section 58.4, "Debugging in JDeveloper"

■ Section 58.5, "Troubleshooting Oracle ADF"

■ Section 58.6, "Testing and Troubleshooting Oracle SOA Suite"

58.1 Introduction to Debugging Oracle ADF Debugging and Oracle SOA
Suite

Debugging Oracle Application Development Framework (Oracle ADF) is a process of
collecting and isolating factors that contribute to problems that occur when the web
page components interact with the ADF Model layer.

You can use diagnostics tools for collecting contextual information for isolating the
problem. One of the most useful diagnostic tools is the ADF Logger. You use this
logging mechanism in JDeveloper to capture runtime traces messages. With Oracle
ADF logging enabled, JDeveloper displays the application trace in the Message Log
window. The trace includes runtime messages that may help you to quickly identify
the origin of an application error. Another useful diagnostic tool is SQL trace, which
enables tracing of the current database session and logs all SQL statements to a
server-side trace file.

Once you have gathered the diagnostic information, you can use the JDeveloper
debugging tools to investigate where your application failure occurs. These include
the JDeveloper Debugger, which is a comprehensive debugger to assess and repair
your code, and the ADF Declarative Debugger for declaratively setting breakpoints on
ADF task flow activities, page definition executables, method, action, and value
bindings, and Oracle ADF lifecycle phases.

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Test cases enable you to

Collecting Diagnostics

58-2 Developer's Guide

simulate the interaction between a SOA composite application and its web service
partners before deployment in a production environment. This helps to ensure that a
process interacts with web service partners as expected by the time it is ready for
deployment to a production environment.

58.2 Collecting Diagnostics
Collecting diagnostics information helps you to obtain more contextual information
for isolating the problem.

58.2.1 How to Collect Diagnostics in the Integrated WebLogic Server Environment
In the Integrated WebLogic Server environment, you can maximize the availability of
diagnostics information by:

■ Enabling diagnostic logging in the development environment

■ Enabling database tracing

58.2.1.1 Enabling Diagnostic Logging in the Development Environment
You can also enable logging in the development environment by setting the Java
system property named jbo.debugoutput to the value console. For information, see
the "How to Turn On Diagnostic Logging" section in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

58.2.1.2 Enabling Database Tracing in Integrated WebLogic Server Instances
Database tracing can be a very useful way of verifying whether the queries executed
by ADF Business Components are actually returning any data. The ADF Business
Components tracing output (-Djbo.debugoutput=console) lists the query and the
bind variable, but it is not always clear how many rows are fetched or how the
fetching takes place, that is, in batches or one row at a time. If you are investigating a
suspected bug or performance issue in ADF Business Components, it is always good
to have the database trace to help understand the problem.

Database tracing is usually used for performance tuning. You should know how to
generate a SQL trace, find the query you are interested in, check the bind variables,
and tell how many rows were returned. It is usually the quickest way of telling
whether missing data in your application is a middle tier application bug, or missing
data in the Relational Database Management System (RDBMS). It is also useful when
you are investigating ORA errors being returned from the database.

You should consider the following with database tracing:

■ When you test using Integrated WebLogic Server with Oracle WebLogic Server
data sources, the database connection is obtained from fusion_apps_
wls.properties and not from connections.xml. However, when you use the
application module tester to run an application module, the connection details
from connections.xml are used, even when you set your application module
configuration to use an Oracle WebLogic Server data source. Since the application
module tester does not use Oracle WebLogic Server, it builds a database
connection from the information in connections.xml.

■ If you change the database details in fusion_apps_wls.properties, the updates
are not picked up until the Oracle WebLogic Server domain is re-created. Shutting
down the Integrated WebLogic Server instance is not enough. The domain for the
Integrated WebLogic Server is automatically created when you launch the

Collecting Diagnostics

Debugging Oracle ADF and Oracle SOA Suite 58-3

Integrated WebLogic Server instance for the first time in a new Oracle Fusion
Applications ADE view, or re-created the next time you run the Integrated
WebLogic Server instance after deleting the domain directory. If in doubt, you can
view the ApplicationDBDS JDBC data source in the Oracle WebLogic Server
Administration Console to see what database it is pointing to. You can change the
database in the Oracle WebLogic Server Administration Console to point to the
new database, but the next time the domain is re-created it will be set to the
connection defined in fusion_apps_wls.properties.

■ When you try to examine data from a SQL*Plus session for views based on
translated data, check that select userenv('lang') from dual; returns US. If it
does not, change the language with:

alter session set nls_language='American';

If you do not do this, some of the translated view will not return any data. For
example, if you are based in the United Kingdom, select userenv('lang') may
return GB by default, which does not match any of the data in the TL tables. This is
particularly important in the development environment where only the US
messages are available.

■ There may be other security restrictions that prevent you from viewing certain
data from a SQL*Plus session, such as data that is protected by virtual private
database (VPD) or data that requires you to initialize your userenv.

■ You may receive ORA-600 errors, which typically manifest themselves as
ORA-3114 or ORA-3113 on the client and indicate that the database session has
terminated abnormally. In this case, a trace file is always created automatically,
and the RDBMS alert log is updated with a record of the failure and the name of
the trace file. You do not need to enable SQL trace in this case because the trace file
is always created and should include a full dump, which will help RDBMS
Support and Development diagnose the cause. Both the alert log and the trace file
will be in the RDBMS User Directory.

You can also enable Oracle ADF tracing. For information, see the "Use SQL Tracing to
Identify Ill-Performing Queries" section in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition).

58.2.2 How to Collect Diagnostics in the Standalone WebLogic Server Environment
In the standalone WebLogic Server environment, you can maximize the availability of
diagnostics information by:

■ Enabling diagnostic logging

■ Adding debug messages to your code

■ Enabling database tracing

58.2.2.1 Enabling Diagnostic Logging in the Provisioned Environment
Use logging profile options to enable diagnostic logging in the provisioned
environment so you can view your log statements in the directory configured against
your apps-handler.

${domain.home}/servers/${weblogic.Name}/logs/apps/${weblogic.Name}-diagnostic-log

Collecting Diagnostics

58-4 Developer's Guide

To enable diagnostic logging in the provisioned environment:
1. Get the user GUID for which you want to enable JBO logging. You can obtain the

user GUID from the WLS_Users_and_Groups.ldift file by searching for "uid=".
The string for orclguid is the user GUID.

2. Add the following logging profile options for the required user:

■ AFLOG_ENABLED USER Y to enable logging for the user.

■ AFLOG_LEVEL USER 300 to set the level to the lowest severity (FINEST) for the
user.

■ AFLOG_MODULE USER % to enable logging for all modules for the user.

For information on setting the profile options for logging, see Chapter 54,
"Defining Profiles".

3. Make sure your logging.xml has the oracle.apps logger configured against a
handler. In your standalone server, logging.xml is located in the standalone
domain at <....> / domains/fusion_
domain/config/fmwconfig/servers/AdminServer/logging.xml.

The following logger should exist in logging.xml:

<logger name='oracle.apps' level='ALL'
useParentHandlers='false'>
 <handler name='apps-handler'/>
</logger>

The handler apps-handler should also exist in the handlers section.

58.2.2.2 Adding Debug Messages to Your Code
To help you investigate problems in the standalone WebLogic Server instance, you can
add debug messages to your code so that messages, such as System.out.println(),
which are normally displayed on the Java console, are written to the server log file
(AdminServer.log) in the default domain.

Since the log file may get rather large, particularly if more than one user is using the
environment, you may want to prefix your messages with an identifier that you can
easily find through a search.

Log in to the Environment Management System (EMS) WebLogic Server host using the
Applmgr username and password. The default password is the username in
uppercase letters, but your family environment owner may have changed it, so check
with them if necessary. The server log should be in the Applmgr home directory. To
locate other log files, use the find . -name "*.log" command.

58.2.2.3 Enabling Database Tracing in Standalone WebLogic Server Instances
Enabling database tracing allows the standalone WebLogic Server instance to write all
your actions to an associated trace file. When an internal error is detected by a process,
it dumps information about the error to its corresponding trace file.

58.2.2.3.1 Enabling Database Tracing Enable database tracing before you start your test
flow.

To enable database tracing:
1. Sign in to the Oracle Fusion application with a user account that is provisioned

with the necessary role, such as the predefined Application Implementation
Consultant role. Contact your security administrator for details.

Diagnosing Problems

Debugging Oracle ADF and Oracle SOA Suite 58-5

2. From the Help menu in the work area of the Oracle Fusion application, choose
Troubleshooting and select Troubleshooting Options.

3. In the Options dialog, select the Database trace checkbox.

This option enables SQL trace for all database connections used by the current
user session.

You can also select options to enable the SQL trace option to capture bind variables
and wait events.

58.2.2.3.2 Locating Your Trace File The trace file can be found in the USER_DUMP_DEST
directory specified by the user_dump_dest init.ora parameter, which is usually
ORACLE_HOME/log/diag/rdbms/sid/sid/trace. The trace filename includes the FND
session ID appended to the end, for example, mysid_ora_4473_
881497BF7770BEEEE040E40A0D807BB1.trc. You must identify the session ID to locate
your trace file.

To identify the session ID in Mozilla Firefox:
1. From the Tools menu in Firefox, choose Options, then select the Privacy panel.

2. From the Firefox will list, select Use custom settings for history, then click Show
Cookies.

3. In the Search field, enter Oracle, then look for a cookie that contains FND_SESSION
in the name.

4. Inspect the value of the cookie, for example, DEFAULT_
PILLAR:BsdhOZScx9NeAA..:1249055856737.

Note the middle portion (using : as separator), for example, BsdhOZScx9NeAA...

5. Open a SQL*Plus session (log in as fusion user) and locate your Applications Core
session ID by executing:

select session_id from fnd_sessions where session_cookie = value from Step 4

For example,

select session_id from fnd_sessions where session_cookie = 'BsdhOZScx9NeAA..'

The value returned if your session ID, which you can use to locate your trace file.

58.3 Diagnosing Problems
In addition to reviewing the diagnostics information, you can perform various tasks to
diagnose problems in your server environment.

58.3.1 How to Diagnose Problems in the Integrated WebLogic Server Environment
Perform the following tasks to diagnose problems in the Integrated WebLogic Server
environment:

■ Test the JDBC data source connections

■ View the application module pooling statistics

Note: From SQL*Plus, you can execute SQL> show parameter user
to show user_dump_dest. An operation system login is required to
access this directory.

Diagnosing Problems

58-6 Developer's Guide

■ Sanity check your enterprise archive (EAR) file

58.3.1.1 Testing the JDBC Data Source Connections
While you are diagnosing problems in the Integrated WebLogic Server environment,
you may want to verify that the JDBC data source connections are pointing to the
correct database connection string.

To test the connections:

1. From the JDeveloper menu, select Run, then Start Server Instance.

2. Select Application Server Navigator from the View menu.

3. Expand the Application Servers folder, then right-click
IntegratedWebLogicServer, and select Launch WebLogic Console.

4. Log in to the Integrated WebLogic Server console using the username and
password weblogic and weblogic1.

5. In the Domain Structure tree of the Oracle WebLogic Server Administration
Console, navigate to Services, then JDBC, then Data Sources.

6. From the list of configured data sources, select each data source and click the Test
button to make sure that the specified database can be reached with the connection
information.

58.3.1.2 Viewing the Application Module Pooling Statistics
When running on Integrated WebLogic Server, you can view the application module
pooling statistics to verify that the domain is properly configured for Oracle ADF. For
more information about application module pools, see the "Tuning Application
Module Pools and Connection Pools" chapter in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

To view the application module pooling statistics:
1. Point your browser to http://localhost:7101/dms/Spy.

2. Log in as an administrator.

3. Click the ampool metric.

4. Scroll your browser to the right to view all the statistics.

58.3.1.3 Sanity Checking Your EAR File in the Integrated WebLogic Server
Environment
Sanity checking your EAR file helps to diagnose problems in the Integrated WebLogic
Server environment. Download the EAR file and open it using a decompression utility.
You can then drill down into the WAR file and individual Oracle ADF libraries.

While sanity checking your EAR file, verify the following:

■ The UI libraries are in the WEB-INF/lib directory of the WAR file.

■ The Model libraries are in the APP-INF/lib directory of the EAR file.

■ The service middle tier JAR and the service WAR files are directly under the EAR
file.

■ The service common JAR file is directly under the EAR file or under the
APP-INF/lib directory, depending on how it was set up.

Diagnosing Problems

Debugging Oracle ADF and Oracle SOA Suite 58-7

■ The individual Oracle ADF libraries only contain components from the project that
was deployed to create the Oracle ADF library, and do not contain any
components from referenced projects. (This could happen if you have "build
output" dependencies.) If components from other projects were included, it should
be obvious from the package, since every project has a unique default package.

■ All standalone components (that is, those not in an Oracle ADF library) in the
WAR file belong to the UI project that was deployed (such as SuperWeb for Oracle
Fusion Applications). There should therefore be no standalone model components
in the WAR file.

■ None of the Model and Service Oracle ADF libraries have a public_html directory.

■ No technology JAR files are included in the EAR and WAR files. Tech stack JAR
files added to the WAR or EAR file take precedence over the ones in the shared
libraries, but the shared libraries contain the correct versions. The technology JAR
files in your EAR or WAR file may not be the correct versions.

58.3.2 How to Diagnose Problems in the Standalone WebLogic Server Environment
Perform the following tasks to diagnose problems in the standalone WebLogic Server
environment:

■ Sanity check your enterprise archive (EAR) file

■ Examine the Oracle WebLogic Server classloaders

58.3.2.1 Sanity Checking Your EAR File in the Standalone WebLogic Server
Environment
The procedure for sanity checking your EAR file in the standalone WebLogic Server
environment is the same as the procedure for Integrated WebLogic Server. For
information, see Section 58.3.1.3, "Sanity Checking Your EAR File in the Integrated
WebLogic Server Environment".

58.3.2.2 Examining the Oracle WebLogic Server Classloaders
Using a tool called CATX (Classloader Analysis Tool), you can diagnose problems in
the standalone WebLogic Server environment by examining the JAR files and loaded
classes when your application is running from Oracle WebLogic Server.

CATX is a web application that is deployed by default to every Oracle Fusion
Applications Oracle WebLogic Server domain. To launch CATX, run
http://host:port/catx/.

With CATX, you can identify a duplicate class by determining from which JAR file a
class file was loaded. You can also identify any other locations where the class is
duplicated in the J2EE application classpath or web application classpath.

As an alternative to CATX, you can add the following code to your custom classes to
display in the console the JAR file from which the class was loaded:

File moduleFile = new File
(YOURCLASSHERE.class.getProtectionDomain().getCodeSource().getLocation().
toURI());
System.out.println("Jar file name = "+moduleFile.fullPath());

This method may be useful if you are actively debugging code from JDeveloper or
using the AM Tester.

Debugging in JDeveloper

58-8 Developer's Guide

58.4 Debugging in JDeveloper
The following debugging tools are available for debugging in JDeveloper:

■ JDeveloper Debugger.

For information, see the JDeveloper online help.

■ ADF Declarative Debugger.

For information, see the "Using the ADF Declarative Debugger" section in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

58.4.1 How to Debug an Application Remotely
Use JDeveloper to perform remote debugging for your application.

Oracle WebLogic Server logs and Fusion Middleware ODL (Oracle Diagnostic
Logging) logs are located in the following directory:

JDEV_USER_HOME/system11.1.1.1.32.52.37/DefaultDomain/servers/DefaultServer/logs/

To perform remote debugging of your application:
1. setenv debugFlag true

2. Start Oracle WebLogic Server.

3. Using JDeveloper, go to Application Navigator and select your ViewController
project.

4. Select Run, Choose Active Run Configuration, Manage Run Configurations.

5. Select New and enter a name for the new profile. For example, Remote Debug.

6. Click OK.

7. Edit the new Remote Debug profile by entering the following information:

a. Add a default Run Target. For example:

JDEV_system_
dir/SvcValidation/Supplier/src/oracle/apps/sv/supplier/supplierService/appl
icationModule/server/SupplierServiceImpl.java

b. Select the remote Debugging and Profiling option.

c. Go to Debugger, Remote. Enter the following information:

Protocol: Attach to (Java Platform Debugger Architecture (JPDA))

Host: Enter the host where Oracle WebLogic Server is running.

Port: Enter the Java Debugger Wire Protocol (JDWP) port number.

The Java Virtual Machine (JVM) is listening for JDPA requests. The default
port is 8453. Use the setenv DEBUG_PORT new port number command to
change the port number.

Note: Alternatively, you can create a profile by selecting your
ViewController project, right-click and select Project Properties,
Run/Debug/Profile.

Troubleshooting Oracle ADF

Debugging Oracle ADF and Oracle SOA Suite 58-9

8. On the toolbar, click the Bug icon. Select the new Remote Debug profile. A dialog
appears to confirm attaching to the Administration Server.

The debugging log file will contain an entry similar to the following:

Debugger attempting to connect to remote process at ab6052cdef.us.example.com
8453.
Debugger connected to remote process at ab6052cdef.us.example.com 8453.
Processing 10008 classes that have already been prepared...
Finished processing prepared classes.
Debugger process virtual machine is Java HotSpot(TM) Server VM.

Set your break points and initiate your program. When you have finished, click the red
Stop button, and a dialog will appear asking if you want to Detach, Terminate, or
Cancel. Detach detaches from the remote Oracle WebLogic Server, and Terminate
terminates the remote Oracle WebLogic Server.

58.5 Troubleshooting Oracle ADF
This section describes common problems that you might encounter when using Oracle
ADF with Oracle Fusion Applications and explains how to solve them.

58.5.1 Problems and Solutions
The following are common problems you may encounter and solutions that solve
them:

■ "Too many files" Error Occurs on Local Linux Servers

■ Compilation Error Occurs

■ "No def found" or "No class def found" Exception Occurs

■ Breakpoints Are Not Functioning Correctly

■ Empty List in the Data Controls Panel

■ Runtime Error Related to DataBindings.cpx File

■ "Application module not found" Errors Related to DataBindings.cpx File

■ Oracle WebLogic Server Hot Reloading Does Not Work

■ Missing ADF Component at Runtime in Oracle WebLogic Server

■ Odd ADF Component Errors

■ Oracle WebLogic Server is Not Responding

■ Missing Base Class

■ Unavailable FND Components

■ JavaServer Pages Compilation Errors

■ ApplicationDB Errors While Running the Integrated WebLogic Server

■ Metadata Services Runtime Exception

■ Application Cannot Fetch Data from Oracle Fusion Applications Database

■ "The task cannot be processed further" Message Appears

Tip: Only one developer can debug at a given time on a specific port.

Troubleshooting Oracle ADF

58-10 Developer's Guide

■ TimedOut Exception Occurs

58.5.1.1 "Too many files" Error Occurs on Local Linux Servers
You receive an error that indicates that too many files are open.

Problem
The open file limit on local Linux servers has been exceeded.

Solution
Increase the open file limit.

For information, see Section 2.2.1.2, "Increasing Open File Limit on Local Linux
Servers".

58.5.1.2 Compilation Error Occurs
You encounter a compilation error.

Problem
A reference to an Oracle ADF business component or Java class in an Oracle ADF
library cannot be resolved, such that it does not exist or is incompatible with the
existing reference.

Solution
All references to components contained in Oracle ADF libraries are resolved when the
workspace is loaded in JDeveloper. Refresh the library in one of the following ways:

■ Close the workspace and re-open it to refresh the references to the Oracle ADF
libraries. (Closing and restarting JDeveloper with a workspace open does not
refresh the references to the Oracle ADF libraries.)

■ If you have a specific project selected in the JDeveloper navigator pane, select
View, then Refresh ADF Library Dependencies for ….jpr to refresh the
references to the Oracle ADF libraries.

58.5.1.3 "No def found" or "No class def found" Exception Occurs
Either a No Def Found or No Class Def Found runtime exception occurs.

Problem
Lower level dependency changes were made outside of the design time session.

Note: When you make any changes to the components in a project,
where the components are being referenced as an Oracle ADF library
by your user interface (UI) project, you must redeploy the Oracle ADF
library and refresh the Oracle ADF library dependencies for your UI
project. The same applies to one model project referencing from
another model project. If you are developing or debugging code in a
model project while running the referencing UI project to test it, it may
be easier to add the model project as a build output dependency, so
you do not need to go through the cycle of redeploying the Oracle
ADF library or refreshing the Oracle ADF library references each time
you make a change.

Troubleshooting Oracle ADF

Debugging Oracle ADF and Oracle SOA Suite 58-11

Solution
Refresh the library in one of the following ways:

■ Close the workspace and re-open it to refresh the references to the Oracle ADF
libraries. (Closing and restarting JDeveloper with a workspace open does not
refresh the references to the Oracle ADF libraries.)

■ If you have a specific project selected in the JDeveloper navigator pane, select
View, then Refresh ADF Library Dependencies for ….jpr to refresh the
references to the Oracle ADF libraries.

58.5.1.4 Breakpoints Are Not Functioning Correctly
Execution stops before or after the line with the breakpoint, depending on whether
you have added or removed lines of code from the source.

Problem
If you consume the components from another project in the same workspace and run
in debug mode, you can open the source Java classes from the referenced project in the
JDeveloper edit window and set breakpoints. However, if you consume the
components at runtime through an Oracle ADF library, the compiled objects from the
Oracle ADF library may not be synchronized with the source if you made changes
since you last deployed the Oracle ADF library. If you are using a build output
dependency, then you are not affected by this issue.

Solution
Redeploy the Oracle ADF library to synchronize the source code.

58.5.1.5 Empty List in the Data Controls Panel
The Applications Core wizards display an empty list of data controls after you make
changes to an application model and add additional view object instances or
additional view criteria to the view objects.

Problem
The Data Controls panel in JDeveloper was not opened in a new view or refreshed
following changes made to the data bound Applications Core component.

Solution
If using the Applications Core wizards to create an applications panel, applications
table, or other data bound Applications Core component, you must open the Data
Controls panel in JDeveloper at least once in a new view, or at least once after deleting
the system directory, before launching the Applications Core wizards. If necessary you

Note: When you make any changes to the components in a project,
where the components are being referenced as an Oracle ADF library
by your user interface (UI) project, you must redeploy the Oracle ADF
library and refresh the Oracle ADF library dependencies for your UI
project. The same applies to one model project referencing from
another model project. If you are developing or debugging code in a
model project while running the referencing UI project to test it, it may
be easier to add the model project as a build output dependency, so
you do not need to go through the cycle of redeploying the Oracle
ADF library or refreshing the Oracle ADF library references each time
you make a change.

Troubleshooting Oracle ADF

58-12 Developer's Guide

should refresh from the Data Controls panel before launching the Applications Core
component wizards.

58.5.1.6 Runtime Error Related to DataBindings.cpx File
A runtime error occurs while the runtime model is being located using the information
in the DataBindings.cpx file.

Problem
You have more than one UI project (for example, task flows referenced from an Oracle
ADF library) when the DataBindings.cpx files are merged at runtime.

Solution
Make sure that each instance of DataBindings.cpx resides in its own package.

58.5.1.7 "Application module not found" Errors Related to DataBindings.cpx File
An Application module not found error occurs.

Problem
The DataBindings.cpx file was moved because the default package was set incorrectly.

Solution
Make sure that the package defined in the Application tag of DataBindings.cpx
matches the current package location.

58.5.1.8 Oracle WebLogic Server Hot Reloading Does Not Work
You get unexpected behavior, blank components, or unexpected exceptions when you
hot reload in either of the following ways:

■ In the Message Log window, select the Running Integrated WebLogic Server tab
and click the URL that launched your page in Integrated WebLogic Server.

■ Remove the Oracle ADF state related information from the URL displayed in the
browser (for example, ?_adf.ctrl-state=ku8guslcz_4) and reload the page.

Problem
Changes were made to the page binding definition file (PageDef), the resource (XLF)
files, or the Oracle ADF libraries.

Solution
Generally if the change you make is contained within a page or page fragment of the
current project, you do not need to redeploy your application. However, if changes are
made to the page binding definition file (PageDef), the resource (XLF) files, or the
Oracle ADF libraries then you must redeploy your application.

58.5.1.9 Missing ADF Component at Runtime in Oracle WebLogic Server
You discover a missing ADF component at runtime in Oracle WebLogic Server.

Problem
There is a second version of the ADF component erroneously included when the
Oracle ADF libraries and WAR or EAR files were built.

Troubleshooting Oracle ADF

Debugging Oracle ADF and Oracle SOA Suite 58-13

Solution
Check the EAR file to make sure that the missing component is actually present in the
expected location.

58.5.1.10 Odd ADF Component Errors
You receive odd errors related to an ADF component that suggests a recent change
was not picked up.

Problem
A second copy of that component is incorrectly referenced in another Oracle ADF
library via a build output reference.

Solution
Perform one of the following tasks to resolve the problem:

■ Refresh the library in one of the following ways:

– Close the workspace and re-open it to refresh the references to the Oracle ADF
libraries. (Closing and restarting JDeveloper with a workspace open does not
refresh the references to the Oracle ADF libraries.)

– If you have a specific project selected in the JDeveloper navigator pane, select
View, then Refresh ADF Library Dependencies for ….jpr to refresh the
references to the Oracle ADF libraries.

■ Force recompilation by right-clicking the JSP and selecting Build, then Clean All,
then rebuild and redeploy.

58.5.1.11 Oracle WebLogic Server is Not Responding
The Oracle WebLogic Server instance may seem unresponsive.

Problem
The Oracle WebLogic Server Java process may be CPU intensive.

Solution
Use kill –3 pid to write a Java thread dump to the administration console for
Integrated WebLogic Server or to the server log file for standalone WebLogic Server.

kill –3 pid is the same as kill –QUIT pid, which sends SIGQUIT to the process.

The Java process implements a signal.

Note: When you make any changes to the components in a project,
where the components are being referenced as an Oracle ADF library
by your user interface (UI) project, you must redeploy the Oracle ADF
library and refresh the Oracle ADF library dependencies for your UI
project. The same applies to one model project referencing from
another model project. If you are developing or debugging code in a
model project while running the referencing UI project to test it, it may
be easier to add the model project as a build output dependency, so
you do not need to go through the cycle of redeploying the Oracle
ADF library or refreshing the Oracle ADF library references each time
you make a change.

Troubleshooting Oracle ADF

58-14 Developer's Guide

58.5.1.12 Missing Base Class
The base class is missing when you test the Model project in the Oracle Business
Component Browser.

Problem
The Model project is missing the Applications Core library.

Solution
Add the Applications Core library to the Model project.

58.5.1.13 Unavailable FND Components
The FND components are not available when you add components to your page or
page fragment.

Problem
The Applications Core (ViewController) tag library is missing.

Solution
Add the Applications Core (ViewController) library to your project to automatically
add the Applications Core (ViewController) tag library. You may need to close the
Project Properties dialog, save the changes, and reopen the Project Properties dialog
before you see all the dependent changes made when adding the Applications Core
library.

58.5.1.14 JavaServer Pages Compilation Errors
You get JavaServer Pages (JSP) compilation errors or other JSP errors.

Problem
The page or page fragment is invalid. In the source editor, you can see that there are
errors in the page, often because of malformed XML (for example, missing or
mismatched XML tags) or some other error reported by the design time audits. This
can occur if you cut and paste directly into the XML source. JDeveloper allows you to
run the page even though it is invalid.

Solution
In the Preferences option of the Tools menu, you can set an audit to run during
compilation. If there are failures, it will prevent the run. However, the audit only
executes during compilation. The first time you try to run, it may need to compile and
the audit kicks in and it fails, which causes the run to stop. The second time you try to
run, everything that needs to compile may have already successfully compiled. In this
case, there is no compilation, so there is no audit.

58.5.1.15 ApplicationDB Errors While Running the Integrated WebLogic Server
You get errors related to ApplicationDB when you are running the Integrated
WebLogic Server.

Problem
The settings for ApplicationDB are not configured correctly.

Troubleshooting Oracle ADF

Debugging Oracle ADF and Oracle SOA Suite 58-15

Solution
Check the settings for the ApplicationDB in the Oracle WebLogic Server
Administration Console.

58.5.1.16 Metadata Services Runtime Exception
You get the following Metadata Services (MDS) runtime exception:

oracle.mds.exception.MDSRuntimeException: MDS-02401: The operation ModifyAttribute
on the showDetailItem node is not allowed.
MDS-02404: The subelement RAshowdetail2 in the MDX document does not allow
customization of
/oracle/apps/fnd/applcore/patterns/uishell/RegionalArea.jsff#RAshowdetail2.

Problem
The CHANGE_PERSISTENCE parameter value is incorrect.

Solution
Locate the following context parameter in web.xml:

<context-param>
 <description>
 This parameter turns on the session change persistence.
 </description>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>

 <param-value>oracle.adf.view.rich.change.MDSDocumentChangeManager</param-value>
</context-param>

Change the value of CHANGE_PERSISTENCE to
oracle.adf.view.page.editor.change.ComposerChangeManager.

58.5.1.17 Application Cannot Fetch Data from Oracle Fusion Applications Database
Your application is unable to fetch data from the Oracle Fusion Applications database.

Problem
The fusion_apps_wls.properties file does not contain the correct connection strings
for the application's data source.

Solution
Run the Configure Fusion Domain Wizard to create or update the fusion_apps_
wls.properties file with the correct connection information. For instructions on using
the wizard, see Chapter 2, "Setting Up Your Development Environment."

58.5.1.18 "The task cannot be processed further" Message Appears
You get the following message:

Deployer: 149140 The task cannot be processed further until the current edit
session is activated.

Problem
You modified the configuration of the server and did not activate the changes.

Testing and Troubleshooting Oracle SOA Suite

58-16 Developer's Guide

Solution
Go to the Administration Console (http://localhost:7101/console). Check the upper left
hand corner regarding messages about changes not being activated.

58.5.1.19 TimedOut Exception Occurs
You get the following exception:

weblogic.transaction.internal.TimedOutException

Problem
Service logic is taking longer than the default 300 seconds defined for Java Transaction
API (JTA). Services may have heavy validation which will take more time to create
row.

Solution
Set the JTA timeout condition to more than 300.

1. Launch the Administration Server instance of Oracle WebLogic Server
(http://localhost:7101/console).

2. Log in using your username and password.

3. Go to Domain Structure, choose Service.

4. Go to Services and select JTA.

5. Increase the value of the Timeout Seconds property based on the expected
completion time of the longest transaction. The default value is 300.

58.6 Testing and Troubleshooting Oracle SOA Suite
For more information about testing and troubleshooting SOA composite applications,
see the "Testing and Troubleshooting" section in Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

You can also automate the SOA composite applications testing. For information, see
the "Automating Testing of SOA Composite Applications" section in Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

59

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-1

59Designing and Securing View Objects for
Oracle Business Intelligence Applications

This chapter provides guidelines and best practices for designing and securing Oracle
Application Development Framework (Oracle ADF) view objects and other
supporting business component objects for use by Oracle Business Intelligence
Applications.

This chapter includes the following sections:

■ Section 59.1, "Introduction to View Objects for Oracle Business Intelligence
Applications"

■ Section 59.2, "General Design Guidelines"

■ Section 59.3, "Understanding Oracle Business Intelligence Design Patterns"

■ Section 59.4, "Designing and Securing Fact View Objects"

■ Section 59.5, "Designing and Securing Dimension View Objects"

■ Section 59.6, "Designing Date Dimensions"

■ Section 59.7, "Designing Lookups as Dimensions"

■ Section 59.8, "Designing and Securing Tree Data"

■ Section 59.9, "Supporting Flexfields for Oracle Business Intelligence"

■ Section 59.10, "Supporting SetID"

■ Section 59.11, "Supporting Multi-Currency"

59.1 Introduction to View Objects for Oracle Business Intelligence
Applications

The view objects that are designed and created for Oracle Business Intelligence
Applications (Oracle BI Applications) are shared between Oracle Transactional
Business Intelligence and Oracle BI Applications.

The Oracle BI Applications warehouse is populated from Fusion application databases
using an ETL (extract, transform, and load) process. The ETL process uses the tool to
source data from the source system (Oracle Fusion Applications) to the target Oracle
BI Applications tables. The extract from the source system is done using the Oracle
Application Development Framework (Oracle ADF) view objects.

Figure 59–1 illustrates the Oracle Business Intelligence architecture.

General Design Guidelines

59-2 Developer's Guide

Figure 59–1 Oracle Business Intelligence Architecture

Oracle BI Enterprise Edition (Oracle BI EE) needs to efficiently access data from two or
more master/detail-linked view objects in order to aggregate, present, or report on
that combined data set. An essential requirement is to efficiently retrieve the
multiple-levels of related information as a single, flattened query result, in order to
perform subsequent aggregation or transformation on it. Oracle ADF Composite View
Object API allows the caller to create a new view object at runtime that composes the
hierarchical results from two or more existing view-linked view objects into a single,
flattened query retrieving the same effective set of data.

From a performance perspective, such queries would need to be performed on
low-level data in Oracle BI EE, since the Oracle ADF layer does not directly support
aggregation. This would generally slow query performance down. Also, going
through additional servers (that is, JavaHost and Oracle ADF) in the network would
also be slower than directly querying the database. Therefore, the SQL Bypass feature
has been introduced to directly query the database and push aggregations and other
transformations down to the database server, where possible, thereby reducing the
amount of data streamed and worked on by Oracle BI EE.

The SQL Bypass functionality in Oracle BI EE utilizes the Composite View Object API
feature to construct and return a flattened SQL Bypass query that incorporates all of the
required columns, filters, and joins required by the Oracle Business Intelligence query.
Oracle BI EE then executes this query directly against the database.

59.2 General Design Guidelines
When designing view objects for Oracle Business Intelligence Applications, you
should use the following guidelines with regards to entity objects, associations, view
objects, view links, and view criteria.

General Design Guidelines

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-3

59.2.1 Entity Object Guidelines
An entity object represents a row in a database table and simplifies modifying its data
by handling all data manipulation language (DML) operations for you. It can
encapsulate business logic for the row to ensure that your business rules are
consistently enforced. Entity objects are required for all Oracle Business Intelligence
view objects to support SQL pruning of declarative view objects and to leverage many
Fusion specific features. For more information see "Creating a Business Domain Layer
Using Entity Objects" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

All attributes from the physical table (with the exception of special, highly sensitive
attributes) should be exposed on the entity objects.

59.2.2 Association Guidelines
An association reflects relationships between entity objects and can be by either
reference or composition. All view objects composed of multiple entity objects are
flattened using entity object associations.

For more information about associations, see "Creating Entity Objects and
Associations" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition). For more information about
flattening, see Section 59.3.1, "Understanding Flattened View Objects."

59.2.3 View Object Guidelines
A view object represents a SQL query. You use the full power of the familiar SQL
language to join, filter, sort, and aggregate data into exactly the shape required by the
end-user task. For more information, see "Defining SQL Queries Using View Objects"
in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

This section includes some technical requirements, how to use declarative SQL mode,
and guidelines regarding view object attributes and outer joins.

59.2.3.1 Technical Requirements
The following are the technical requirements driven by use of the Composite View
Object API, SQL Bypass, and SQL Pruning.

Composite View Object API
■ Use view links to establish relationships between view objects.

■ View links must not contain custom SQL functions such as TRUNC and BETWEEN.

■ Use the BI_JOINTYPE custom view link property to define outer joins on view
links.

■ There is no support for Java or Groovy calculated attributes.

■ Programmatic view objects, transient view objects, and transient attributes are not
supported.

SQL Bypass
■ Full SQL can be obtained at runtime using vo.getQuery().

■ There is no support for transient attributes.

■ View objects must not contain bind parameters.

General Design Guidelines

59-4 Developer's Guide

■ There is no support for Java logic or Java calculated attributes.

■ Do not apply data security view criteria programmatically.

■ If you are using Multi-Organization Access Control (MOAC) you must not enable
MOAC for the view objects for Oracle Business Intelligence Applications. You
should use the underlying Fusion Data Security instead.

For more information, see "About Specifying a SQL Bypass Database" in Oracle Fusion
Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise
Edition (Oracle Fusion Applications Edition).

SQL Pruning
■ You should create your view objects in Declarative SQL Mode.

For more information about Declarative SQL Mode, see "Working with View
Objects in Declarative SQL Mode" in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework (Oracle Fusion Applications
Edition).

■ You should set primary entity usage to identify the fact and dimension grain
because primary entity usage cannot be pruned.

■ You must set the Selected in Query property for non-primary key and unsecured
attributes to false.

■ You should limit view criteria on non-primary entity derived attributes because
attributes used in applied view criteria cannot be pruned.

■ You should limit order by clauses on non-primary entity derived attributes
because attributes used in applied order by clauses cannot be pruned.

59.2.3.2 View Object Attributes Guidelines
■ As a general rule, you should include all attributes from the underlying primary

and reference entity objects in your view objects.

Flex attributes are an exception from this rule. These attributes are not required
because they are exposed using the Flex Extender utility.

■ You should only include name and description attributes from the reference entity
objects that are included to only resolve ID and Code columns.

■ You should include Standard Who Columns from all participating entity objects on
your view objects for Oracle Business Intelligence Applications. This is to support
Oracle BI Applications's Change Data Capture requirements.

Exceptions include entity objects that are only included to resolve ID and Codes
into meaningful descriptions. For example, entity objects included to only resolve
Business Transactional Intelligence-only attributes into a view object using entity
object associations.

Table 59–1 shows the Standard Who Columns.

Table 59–1 Standard Who Columns

Standard Who Columns Description

CREATED_BY The user who created the row.

CREATION_DATE The date and time the row was created.

LAST_UPDATED_BY The user who last updated the row.

LAST_UPDATE_DATE The date and time the row was last updated.

General Design Guidelines

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-5

■ You should set the Selected in Query property to be false on all non-primary key
view object attributes.

■ You should resolve duplicate attribute names on view objects, which are made up
of multiple entities, by using an attribute prefix.

Use an alias property as both the table alias and column alias in the SQL as well as
the view object attribute prefix. For example:

– The POLinesVO includes both the HeaderEO and the LinesEO.

– The LinesEO is specified as the primary entity on POLinesVO. The HeaderEO is
specified as a reference entity.

– This view object includes HeaderId attributes from both HeaderEO and
LinesEO.

– To avoid duplication of attributes across Header and Lines entities, an entity
object alias is specified. For example, Header and Lines for HeaderEO and
LinesEO respectively.

– The POLinesVO is then created using Header as the prefix for all Header
attributes, and Lines as the prefix for all Lines attributes. For example,
HeaderHeaderId and LinesHeaderId; HeaderBusinessUnitId and
LinesBusinessUnitId.

■ Use the following guidelines to resolve view object foreign keys:

– If the foreign key is a dimension, Oracle Business Intelligence requests a
dimension view object and a view link to the dimension view object.

– If the foreign key is a warehouse domain, Oracle BI Applications requests a
view object for ETL. No view link is requested. Oracle BI EE lookup
functionality is used to resolve foreign keys.

– If the foreign key is neither a dimension nor a warehouse domain, you should
should resolve the foreign key using entity object associations. For
MLS-enabled entities, ID and Code attributes should be resolved using _VL
views.

59.2.3.3 Outer Joins
An outer join is generally required when creating a view object based on multiple
entity objects, so as to handle situations when not all of the reference entities' values
are present. The specific outer join type (left, right, or full) used should be determined
based on the expected data relationships between the primary and reference entities.
Note, however, that in some cases, security considerations will require an inner join,
instead. (For an example, see Section 59.4.1, "Designing Fact View Objects.") If a join is
required to resolve an ID or Code attribute, use a _VL view instead.

59.2.4 View Links Guidelines
View links are required to flatten view objects using the Composite View Object API.

To define outer joins on view links, you must add the BI_JOINTYPE custom property on
the view link definition. Valid values for this custom property include:

LAST_UPDATE_LOGIN The session login associated to the user who last
updated the row.

Table 59–1 (Cont.) Standard Who Columns

Standard Who Columns Description

Understanding Oracle Business Intelligence Design Patterns

59-6 Developer's Guide

■ LEFTOUTER

■ RIGHTOUTER

■ FULLOUTER

■ INNER (default)

For more information, see "Working with Multiple Tables in a Master-Detail
Hierarchy" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

59.2.5 View Criteria Guidelines
A view criteria identifies filter information for the rows of a view object collection.

Required filters for view objects for Oracle BI Applications should be created using
named view criteria. This includes:

■ Security filters

For more information about security filters, see Section 59.3.4, "Understanding
Business Intelligence Filters."

■ Functional filters for Transactional Business Intelligence or Oracle BI Applications.

Only filters required by both Transactional Business Intelligence and Oracle BI
Applications should be created for view objects that are shared by both products.

■ Filters to distinguish different logical entities based on the same entity object. (For
single entity object view objects).

For more information, see "Working with Named View Criteria" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

59.3 Understanding Oracle Business Intelligence Design Patterns
This section discusses Oracle Business Intelligence design patterns including flattened
view objects, fact-dimension relationships, self referencing entities, filters, and
translations.

59.3.1 Understanding Flattened View Objects
The grain of a fact table represents the most atomic level by which the facts may be
defined. The fact or dimension grain required for Oracle Business Intelligence
modeling should determine the flattening required for view objects. You should only
create flattened view objects for fact or dimension levels required for either
Transactional Business Intelligence or Oracle BI Applications. For example, if neither
Transactional Business Intelligence nor Oracle BI Applications requires (purchase
order) PO Shipments, then do not create a flattened POShipmentsVO.

When flattening entity objects in a view object, include only entity objects that do not
change the grain of the fact or dimension. For example:

If attributes from a backing requisition line are needed on the POLinesVO, then the
Requisition Line entity object should only be included in the flattened POLinesVO if
the join does not change the grain of the POLinesVO to Requisition Line.

A 1:n relationship requires two view objects only if you want to aggregate attributes
from the child and store the result at the grain of the parent.

Understanding Oracle Business Intelligence Design Patterns

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-7

Flattened view objects should be modeled in the Oracle Business Intelligence layer as a
single logical table with multiple logical table sources.

59.3.2 Understanding Fact-Dimension Relationships
You should follow these rules when designing and creating fact and dimension view
objects:

■ Create separate view objects for fact entities and dimension entities.

■ Do not flatten relationships between facts and dimensions into a single view
object.

■ Create a view link between the FactVO and the DimensionVO.

■ Specify the FactVO as the source of the view link.

■ Specify the DimensionVO as the target of the view link.

59.3.3 Understanding Self Referencing Entities (Self-Joins)
In the case of a fact view object where the self-joins represent two different but
functionally important objects, you should create separate view object instances that
represent the two objects. You should then define a view link between them.

If the self-join does not need to be represented as separate objects, you should resolve
the Foreign Key ID column to a more meaningful column. For example:

The InvoiceheaderVO contains the following attributes:

■ InvoiceId

■ InvoiceNum

■ TaxRelatedInvoiceId

■ CreditedInvoiceId

If you decide that these should be modeled as three separate facts, then you create two
additional view instances, TaxRelatedInvoicesVO and CreditdInvoicesVO, with view
links to the InvoiceHeaderVO.

If you decide that they do not need to be modeled as separate objects, then you should
create the two additional joins inside the InvoiceHeaderVO to bring in
TaxRelatedInvoiceNum and CreditedInvoiceNum.

Row and Column flattening is required for view objects with self-joins that are
modeled as dimensions in Oracle Business Intelligence Applications. You should
determine the level of flattening required on a case-by-case basis.

59.3.4 Understanding Business Intelligence Filters
Only filters that are common to both Transactional Business Intelligence and Oracle BI
Applications should be defined on shared view objects. If Transactional Business
Intelligence requires additional filtering for an Transactional Business Intelligence
specific application then it should be defined on the Oracle BI EE layer. If Oracle BI
Applications needs to filter data from a shared view object for extraction, these filters
need to be defined in the ETL layer.

Also note that view criteria cannot be pruned from the SQL at runtime.

Understanding Oracle Business Intelligence Design Patterns

59-8 Developer's Guide

59.3.5 Understanding Translations
All Fusion translatable entities with a corresponding _TL table require entity objects
based on both _B and _TL entity objects. You should create a flattened view object to
join _B and _TL entity objects.

Oracle BI Applications performs ETL (extract, transform, and load) processes from the
flattened view object with no additional filters. However, Transactional Business
Intelligence requires an additional session language filter in Oracle Business
Intelligence layer.

59.3.6 Understanding Date Effectivity
All date effective entities for a logical fact or dimension should be flattened and adhere
to the following:

■ Date effective entity objects and view objects should be marked as such according
to Oracle ADF.

■ Flattening requirement excludes scenarios where other design considerations
require not flattening the entity objects in the view object. For example, 1:n
relationships.

■ Both entity objects are date effective.

■ The PersonsVO should be flattened to include both PersonEO and PersonDetailEO
and should also be marked as Date Effective.

In other words, there should be a single current person details record for each
person record.

For more information, see "How to Store Data Pertaining to a Specific Point in
Time" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

59.3.6.1 Date Effectivity Exceptions for Oracle BI Applications
Oracle BI Applications identifies any date effective entity objects from which historical
information is needed; single view object flattening does not meet their requirements.
To compensate, you need to:

■ Create a separate view object for these entity objects. The entity object is removed
from the flattened view object.

■ Create view links to join these view objects.

■ You must only include one historical entity object for any given view object in
Oracle BI Applications.

You should still mark view objects as date effective so that Transactional Business
Intelligence can share and date effective predicate can be applied in the Oracle
Business Intelligence layer.

Note: The entity object associations required for ID and Code
resolutions to Multi-Language Support-enabled entities should use a
_VL view.

Designing and Securing Fact View Objects

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-9

59.4 Designing and Securing Fact View Objects
Separate view objects should be created for fact entities and dimension entities.
Relationships between facts and dimensions should not be flattened into a single view
object. Instead, you should create a separate FactVO and DimensionVO and then create a
view link between them. Specify the FactVO as the source of the view link, and the
DimensionVO as the target of the view link.

59.4.1 Designing Fact View Objects
A flattened view object should be created for each logical fact grain in Transactional
Business Intelligence and Oracle BI Applications. For example:

A purchase order contains four fact levels: Header, Lines, Shipments, Distributions.
Flattened view objects should be created to represent each of the four fact grains, as
shown in Table 59–2.

Entity objects can be included in flattened view objects as required, as long as the view
object grain does not change.

Join Type for Multi-Level Facts
Join types on entity associations between multi-level facts should be inner joins. This is
because there are some security impacts if entity associations are modeled as outer
joins. For example:

To support the query "Show me all PO headers with no associated distributed rows". If an
outer join is used, you would need to implement security on both the header and the
distribution entities in the DistributionVO. This would prevent pruning of the header
entity from the DistributionVO; it is also a change from current guidelines to only
secure the primary entity.

59.4.2 Securing Fact View Objects
The following are general guidelines for securing fact view objects. The sub-sections
describe different design patterns that may arise for Oracle Business Intelligence use
cases. Also included are solutions for each design pattern.

Fusion Data Security view criteria should be applied to the fact view object.

For more information about Fusion Data Security view criteria, see Section 48.3.2,
"How to Secure Rows Queried By Entity-Based View Objects."

The data security view criteria should contain:

■ Privilege – Relevant object privilege.

Table 59–2 Flattened View Objects Based on Fact Grains Example

Flattened View Objects Fact Grains

POHeaderVO Header

POLinesVO Header + Lines

POShipmentsVO Header + Lines + Shipments

PODistributionsVO header + Lines + Shipments + Distributions

Note: View links are not required between these view objects.

Designing and Securing Fact View Objects

59-10 Developer's Guide

■ Object – Object being secured.

For Multi-Organization Access Control (MOAC) style grants, the object being
secured is Business Unit, based on the way MOAC grants are authored. For other
grants, it can be the transactional object.

■ Alias – Alias for object.

Alias is mandatory for view objects for Oracle Business Intelligence Applications
privileges.

For example, For Payment Invoices fact view object using Business Unit security
(MOAC style), the privilege is:

"FNDDS__AP_MANAGE_PAYABLES_INVOICE_DATA__FUN_ALL_BUSINESS_UNITS_V__BU"

The fact view object requires an entity object for securing the table. (BU in this
example). The join between the fact and the securing table should be properly
resolved. The alias used in the view criteria should be that of the entity object
corresponding to the Object in privilege (BU in this example).

If a non-MOAC grant is made for a transaction object, such as, for example, the
Payment fact of the Fusion Incentive Compensation Management (ICM) Application,
the object and alias refer to the ICM Payment entity. For example:

"FNDDS__VIEW_INCENTIVE_COMPENSATION_PAYSHEET_DATA__IC_INCENTIVE_COMPENSATION_
PAYSHEET__ICPAY"

59.4.2.1 Securing the Same Transaction by Multiple Entities for Different Roles
In Oracle Fusion Applications, transaction data can be secured by more than one
entity, based on the role used to access the transaction data. For example, consider the
case of the Fusion Incentive Compensation Management (ICM) Application, in which:

■ Role Incentive Compensation Paysheet Management Duty can see Incentive
Compensation paysheets for the participants for whom they are responsible.

■ Role Incentive Compensation Process Management Duty can see Incentive
Compensation paysheets for the business units for which they are authorized.

In the above case, because the view object for the transaction object implements single
data security privilege, the privilege should be able to provide access based on
business unit as well as participants. Building this privilege provides a logical filter
similar to:

"for the participants for who they are responsible" OR "for business units for which they are
authorized"

You can achieve this by creating a new privilege and having two policies created using
the same privilege. One policy should be created using instance set to provide "for
business units for which they are authorized", and the second policy should be created
using instance set to provide "for the participants for who they are responsible". The
policies should be granted to existing roles.

To secure transaction by more than one entity:
The following steps are based on the Fusion ICM Paysheet use case.

1. Create a new data privilege titled View Incentive Compensation Paysheet Data.

2. Author the following data security policies, using existing duties and the new data
privilege defined in Step 1:

Designing and Securing Fact View Objects

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-11

a. <Incentive Compensation Paysheet Management Duty> can <view>
<Incentive Compensation Paysheets> <for the participants for who
they are responsible>

b. <Incentive Compensation Process Management Duty> can <view>
<Incentive Compensation Paysheets> <for business units for which
they are authorized>

3. Define the following grants:

a. For the data security policy described in Step 2a:

For this data security policy, you should attach the View Incentive Compensation
Paysheet Data data privilege to the same FND_MENU that contains the grant for
the Manage data privilege. This grants VIEW privileges to the same roles that
have Manage privilege, reducing the number of grants to be managed.

b. For the data security policy described in Step 2b:

For this data security policy, you would create a non-MOAC grant against the
Incentive Compensation Paysheet object against the business unit (BU) data role.
This grant is parameterized instance set based, with the instance set returning
Paysheet data by BU, using BU on the data role as the parameter value. This
grant carries only the VIEW data privilege.

4. Use privilege View Incentive Compensation Paysheet Data in data security view
criteria in Incentive Compensation Paysheet. The view criteria should be like
Example 59–1 assuming IC_INCENTIVE_COMPENSATION_PAYSHEET is the object
registered in FND_OBJECT and ICPAY is the alias used for the entity object.

Example 59–1 Data Security View Criteria Example

"FNDDS__VIEW_INCENTIVE_COMPENSATION_PAYSHEET_DATA__IC_INCENTIVE_COMPENSATION_
PAYSHEET__ICPAY"

For Oracle BI Applications, the UNION effect for the above example, based on Oracle
Fusion Incentive Compensation Management reporting (Access by Participants and
access by business units), must be achieved in Oracle BI EE based on the OR join for
individual dimensions. This can potentially be achieved by using two separate groups
(one for business unit and another for participants) and having a user access to both
groups (since predicates are ORed across Oracle BI EE groups).

Note: This is a data role grant and the role and grant is generated
during the implementation phase using the data role template.

Caution: With regards to the above proposal, if a user happens to
have both Incentive Compensation Paysheet Management Duty and
Incentive Compensation Process Management Duty roles granted; the
Business Intelligence report will show the UNION of data, such as data
for authorized business units *** AND *** data for responsible
participants.

Whether such reporting behavior is acceptable should be decided on a
case by case basis.

Designing and Securing Fact View Objects

59-12 Developer's Guide

There are other use cases that fall into same design pattern of a transaction being
secured by multiple entities and Oracle Business Intelligence implementation needing
UNION access. For example, in Oracle Fusion Projects, the transaction table Expenditure
Item is secured by Business Unit as well as by Project. For Oracle Business Intelligence
reporting, the query on Expenditure Item should return rows for authorized business
units for a user as well as authorized project for user.

In general, while the Oracle Business Intelligence use cases for transaction being
secured by multiple entities will be similar; application teams can make their own
decisions about how they implement an Oracle Business Intelligence solution. For
example, in the case of the Oracle Fusion Incentive Compensation Management and
Oracle Fusion Projects applications, you can implement different solutions for
achieving the same end results by having different styles of grants and roles.
Therefore, application teams should choose their own implementation based on their
existing roles and privileges, and the approach they want to take for Oracle Business
Intelligence solution.

59.4.2.2 Securing Transactions Different from Securing Dimensions
When transactions are analyzed in context of dimensions, sometimes the dimensions
have their own security, which is not applicable for usage with the transaction.

For example, Grade data is secured using Fusion data security. When analyzing
Assignment data, relevant information from the Grade dimension is required; however,
the data security for the Grade dimension is not applicable when being used for
analyzing assignments. Instead, the Grade dimension behaves as an unsecured source
of data when used with assignment fact.

A solution for this use case is to create two view objects for the dimensions for which
security is not required when analyzing fact. The two view objects should form two
logical table sources (LTS) for the dimensions:

■ The first dimension view object implements data security. This is used in
dimension browsing and can include all columns required for dimension
browsing. To ensure BI EE uses the secured version for dimension browsing, make
sure it is higher up in the list of Logical Table Sources (LTS) than the unsecured
one.

■ The second dimension view object should be unsecured. To ensure that the
unsecured view object is used to combine with the fact, physical joins should be
defined between the physical fact table and the physical table for the unsecured
version of the dimension view object.

Dual (secured and unsecured) view objects are only required for entities that fall in
this design pattern. Entities not requiring both secured and unsecured access do not
require dual view objects.

59.4.2.3 Joining Facts to Facts
Analysis of a fact may need reference information from another fact. In Transactional
Business Intelligence, this is handled by creating a degenerate dimension for a fact
whose attribute information is used in other facts. The degenerate dimension is just a

Caution: Dimensions, for which unsecured view objects are created,
may contain sensitive attributes. If this is the case, then you must
make sure that the unsecured view object does not contain these
sensitive attributes.

Designing and Securing Dimension View Objects

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-13

logical layer entity in the RPD and it uses the same view object as the underlying fact.
As a result, the data security for degenerate fact is the same as that of underlying fact
table.

This may create a problem when the degenerate dimension is used in another fact that
has different security than the degenerate dimension (or more accurately, the fact
underlying the degenerate dimension). For example:

■ There is a degenerate dimension, Dimension A on top of Fact A.

■ Dimension A is used in Fact B as a reference.

■ Fact B is secured using a different dimension (or different privilege) than Fact A,
which was used to source for Dimension A.

In such cases, the security of both Fact B and Fact A should be applied; where as the
desired result was just to apply security of Fact B.

59.4.2.4 Securing MOAC-Based transactional Applications
Multi-Org Access Control (MOAC) ADF infrastructure enables Fusion transaction
applications to implement business unit based data security. Because the Oracle
Business Intelligence technical stack works on the view definitions, the ADF Business
Components MOAC infrastructure does not work for view objects for Oracle Business
Intelligence Applications. These view objects should instead use underlying Fusion
Data Security to support business unit based security.

59.5 Designing and Securing Dimension View Objects
This section discusses how to design and secure dimensions.

59.5.1 Designing Dimension View Objects
A flattened view object should be created for each logical dimension grain in
Transactional Business Intelligence and Oracle BI Applications. For example, for the
Geography dimension, the following view objects are required to represent each
dimension grain:

■ Zip Grain — Zip Code

■ City Grain — City + Zip Code

■ State Grain — State + City + Zip Code

These should be modeled as a single Geography logical dimension table with multiple
logical table sources, one for each of the dimension grains.

59.5.2 Designing Business Unit Dimensions
Create a view link between the Transactional Business Intelligence fact view objects
that have Business Unit dimensionality to the common business unit dimension view
object based on Business Unit ID.

59.5.3 Securing Dimension View Objects
If the dimension needs to be secured, then the FND view criteria should be applied on
the dimension view object.

Designing and Securing Dimension View Objects

59-14 Developer's Guide

59.5.3.1 Securing Dimensions Composed of Multiple Entities
The following use case, is an example of how you should secure dimensions that are
composed of multiple entities.

The Dimension Inventory Organization is composed of the following three entities:

■ InventoryOrgParameters

■ HrOrganizationUnits

■ HrLocations

Human Resources (HR) entities may have their own security. However, for the
InventoryOrgParameters entity, only the security defined by inventory product
Manage Inventory Org Parameters should be used. In other words, data security on HR
entities should be ignored when consumed in InvOrg.

This use case is similar to Section 59.4.2.2, "Securing Transactions Different from
Securing Dimensions," where unsecured view objects are used for dimensions.

59.5.3.2 Securing Transactions Using Dimension with Dimension Browsing
Unsecured
The Dimension Business Unit is used to secure transaction data. When used in
conjuction with transaction data, a secured version of the Business Unit, which can
return business units allowed for a user for a function, is required. For example, a
secured version of Business Unit is required to populate init block security variables
for Oracle BI Applications.

However, if a user needs to browse only the business unit data, the user is allowed to
see all dimensions. Therefore, it is deemed an unsecured dimension when dimension
browsing in Oracle BI Applications. To use an unsecured view object for dimension
browsing, make sure it is higher up in the list of LTSs than the unsecured one.

59.5.4 Using Multi-Valued Dimension Attributes
Separate view objects should be created for primary dimension entity and
multi-valued dimension attribute entities. For example:

Using the Person model, the following view objects should be created:

■ PersonVO — Person Only

■ PersonAddressesVO — Addresses Only

■ PersonPhonesVO — Phones Only.

The following view links establish relationships between view objects:

■ PersonToAddressesVL — PersonVO -> PersonAddressesVO

■ PersonToPhonesVL — PersonVO -> PersonPhonesVO

Note: The above example uses the Person model with a person
having address and phone. Keep in mind that Transactional Business
Intelligence models only the primary address and phone number
while Oracle BI Applications can model more than one address and
phone number per person.

Designing Date Dimensions

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-15

59.5.5 Using Junk Dimensions and Mini Dimensions
Junk dimensions should not be directly sourced from view objects. Oracle BI
Applications should build them from Fact Stage tables. Transactional Business
Intelligence should build them from the degenerate attributes in Fact tables.

Mini dimensions should not be sourced from view objects. Oracle BI Applications
should build them from Dimension tables.

59.5.6 Using Secured and Unsecured Dimension View Objects
There are a number of situations in which a secured dimension view object must be
deployed with an accompanying unsecured dimension view object. In this case, the
term unsecured does not simply mean that security is disabled, but also that a subset of
the column set of the secured dimension view object may also be excluded from the
unsecured version.

Generally, the strategy for developing and deploying a pair of corresponding
dimension view objects, where one is secured and the other unsecured, consists of the
following:

■ A base dimension view object satisfying the basic, functional requirements for
data retrieval is initially developed.

■ The base dimension view object is used to create a secured dimension view object
by using the methods and strategies described earlier in this section.

■ An unsecured dimension view object is developed by manually creating an exact
copy of the original base dimension view object.

The unsecured dimension view object is named <VO Name>ListPVO, where <VO
Name> is the name of the base dimension view object.

■ The unsecured dimension view object is modified so as to exclude sensitive
columns from its column sets.

The unsecured dimension view object is deployed in the same application module
as its associated secured dimension view object.

Consuming applications must build View Links to both the secured and unsecured
dimension view object definitions. Once the secured and unsecured dimension view
objects have been deployed, you can begin developing models based upon them in
Oracle Business Intelligence.

59.6 Designing Date Dimensions
This section discusses the gregorian calendar as well as the special handling that is
required for fiscal calendar, projects calendar, Timestamp columns, and role-playing
data dimensions.

59.6.1 Using the Gregorian Calendar
Date dimension view objects for the gregorian calendar are delivered through the ATG
libraries.

You should create a view link between the gregorian calendar day level view object
and all the facts that join with the date dimension. Create the view link with the Fact
view object as the source and the day level view object as the target.

For all other calendars needed for the fact in a particular functional area, a view link
should be created to the time dimension at the day level of the fact. For example, if the

Designing Lookups as Dimensions

59-16 Developer's Guide

fact is at day level in Financials and the reporting calendar is fiscal (in addition to
gregorian), view links should be created to the day level of the fiscal calendar.

59.6.2 Using the Fiscal Calendar
If the fact is at the day level, you should create view links to the day level of the fiscal
calendar only.

For all facts at the day level, the view link between the Fact view object to the Day
Level flattened view object should include the ADJUSTMENT_PERIOD_FLAG = N
condition to avoid double counting if the same day belongs to a normal period as well
as an adjusting period.

59.6.3 Using the Projects Calendar
Projects facts that need to be analyzed by the fiscal calendar requires a view link
between the fact and the day level of the fiscal calendar on the date. Also required is a
view link between the fact and the General Ledger on the Ledger ID column using the
Fun_all_business_units_V table that is present in the fact side.

Projects facts that need to be analyzed by the projects calendar requires a view link
between the fact and the day level of the projects calendar on the date. Also required is
a view link between the fact and the pjf_bu_impl_all_v table on the Business Unit Id.

59.6.4 Using Timestamp Columns
If the date column of a fact view object involves timestamp then teams will need to
create a new SQL derived attribute to populate the date without the timestamp. A
view link will also need to be created using the new date column of the fact view
object and day level time dimension view object.

If the fact view object date column does not have the timestamp then it can be used for
creating the view link.

59.6.5 Using Role-Playing Date Dimensions
If role-playing date dimensions are required, Transactional Business Intelligence is
required to create aliases of the date view object in the Oracle BI EE physical layer.
Duplicate view object instances should not be included in the model.

59.7 Designing Lookups as Dimensions
If a lookup type is used as a dimension in Transactional Business Intelligence, you
must deliver the dimension view object as follows:

■ Create a <Product short name>LookupsVO.

■ This new view object should be based on the product specific lookup view on FND_
LOOKUPS.

If a view to FND_LOOKUPS is not available or not required for online transaction
processing, the view object should be based on FND_LOOKUPS directly with an
additional filter on all included Application IDs for the product.

■ View criteria should be created for each Lookup Type.

■ Create a view instance using the above view criteria for each dimension.

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-17

Foreign keys to low cardinality lookups, such as FND_LOOKUPS, should not be resolved
in fact or dimension view objects. These should be resolved in the logical layer
through the lookup function.

Business Transactional Intelligence-only low cardinality lookups should be resolved
using entity object associations based on a _VL view.

59.7.1 Securing Data on Lookups
Lookup data can be striped by set ID. However, no use cases have been brought
forward to date where the lookup data has been secured by explicit data security
policies.

59.8 Designing and Securing Tree Data
Application trees managed by Fusion tree management infrastructure may be exposed
to Oracle Business Intelligence systems, such as Oracle BI EE, for analysis. This is done
by providing a view object that contains a column-flattened version of tree data joined
with tree data sources. Such a view object is called a column-flattened view object for
Business Intelligence (BICVO).

Designing and securing tree data for Oracle Business Intelligence involves the
following activities:

■ Designing a column-flattened view object

■ Customizing the FND table structure and indexes

■ Using declarative SQL mode to design view objects

■ Securing Oracle ADF view objects for trees

59.8.1 Designing a Column-Flattened View Object for Oracle Business Intelligence
Column-flattening is generally available for level-based trees. For those trees that may
be exposed to Oracle Business Intelligence systems, such as Oracle BI EE,
column-flattening for value-based trees also is available.

Figure 59–2 illustrates a generic example of a value-based tree.

Designing and Securing Tree Data

59-18 Developer's Guide

Figure 59–2 Value-Based Tree Example

Each node has a unique identity, in this case denoted by dot-separated numbers that
correspond to the node's relative ordering in the overall parent-child structure. Such
value hierarchies may be arbitrarily recursive (in terms of recurring node types), and
are usually ragged, or unbalanced. There is only a general concept of "level" in these
hierarchies, which refers to the path distance (or depth) from the root node to some
specified node.

Two nodes the same distance from the root are thought of as being at the same level.
However, unlike true level-based trees, there is no requirement for nodes at the same
level to possess a common set of properties. In fact, a node in a value-based tree may
have any arbitrary collection of properties. When these trees are used to represent
dimensional hierarchies, facts, metrics, or transactions, values may be joined to any
node. There is no constraint that facts or transactions only be joined to lowest-level
nodes, as is usually the case with level-based trees.

The example value-based tree shown in Figure 59–2, also has multiple top-level or
root-level nodes. Since it has five levels (or equivalently, a maximum depth of four), a
column-flattened representation of this tree requires a minimum of five columns. This
is illustrated in Table 59–3.

Note: In practice, you would never have single node trees. However,
root nodes 2.0 and 3.0 are in Figure 59–2 to simply illustrate multiple
top-nodes.

Table 59–3 Column-Flattened Representation of the Value-Based Tree Example

C0 C1 C2 C3 C4 Distance

1.0 1.0 1.0 1.0 1.0 0

1.1 1.1 1.1 1.1 1.0 1

1.2 1.2 1.2 1.2 1.0 1

1.2.1 1.2.1 1.2.1 1.2 1.0 2

1.2.1.1 1.2.1.1 1.2.1 1.2 1.0 3

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-19

The following conventions apply to the logical column-flattened representation shown
in Table 59–3.

■ The first column (C0) contains a complete enumeration of each node in the tree. In
this example, each node is represented by the value of its unique identity.

Having the unique identity of each node of the hierarchy represented exactly once
in the C0 column means that it is always possible to directly address each node,
such as for purposes of joining with a transaction or measure, or for performing a
calculation on that node.

■ The last column (C4 in the example) always represents the root node of some
rooted ancestral path of the tree.

■ The intermediate ancestral path nodes between a given node in the C0 column and
its ancestral root node in the C4 column, is represented by columns C1 through C3.
Each column stores a reference to some node of the ancestral path, descending
from C3 toward C0, filling each column (from right to left) with a reference to the
next child node of the path. When a reference to the C0-th column node occurs,
this reference is then repeated, if necessary, so as to pad the remaining columns
until the C0 column is reached.

Having the complete ancestral path, with unused columns padded toward the C0
node value, facilitates more efficient drill down operations.

■ There is no implied ordering of the rows in the column-flattened representation.
The complete hierarchy is represented by the table content, and a normalized
representation can always be inferred or reconstructed from the flattened data set.

As far as Fusion tree management is concerned, the column-flattened representation
always consists of a number of columns greater than, or equal to, the depth of the tree.
If this were not the case, you would need a strategy for pruning or condensing the tree
(for example, removal of intermediate nodes from the ancestral paths). On the other
hand, having the number of columns exceed the depth of the tree is never problematic,
because of the repeated padding of C0 node values.

ATG services allows you to specify some fixed maximum depth of up to 32 levels
when defining a tree. For example, if you specify a 20-level tree, your column-flattened
representation will contain 20 columns, C0 through C19, with padding of values
toward the leaf, as shown in Table 59–4.

1.2.1.1.1 1.2.1.1 1.2.1 1.2 1.0 4

1.2.2 1.2.2 1.2.2 1.2 1.0 2

1.2.2.1 1.2.2.1 1.2.2 1.2 1.0 3

1.2.2.2 1.2.2.2 1.2.2 1.2 1.0 3

2.0 2.0 2.0 2.0 2.0 0

3.0 3.0 3.0 3.0 3.0 0

Table 59–4 Column-Flattened Value-Based Tree Fixed at 20 Levels

C0 ... C15 C16 C17 C18 C19 Distance

1.0 ... 1.0 1.0 1.0 1.0 1.0 0

1.1 ... 1.1 1.1 1.1 1.1 1.0 1

Table 59–3 (Cont.) Column-Flattened Representation of the Value-Based Tree Example

C0 C1 C2 C3 C4 Distance

Designing and Securing Tree Data

59-20 Developer's Guide

Think of the tree in Figure 59–2 as a true level-based tree, with fixed levels, single
top-nodes, and all leaf nodes residing at the same lowest level of the tree (such as level
zero, represented by column C0). In this case, you would actually have three separate
trees, and the tree rooted at node 1.0 would have the logical column-flattened
representation shown in Table 59–5, assuming the same "pad toward leaf values"
scheme as with the value-based tree.

The notion of distance from the root is still relevant, even though all of the leaf nodes
are assumed to reside at the same level (level zero, or C0).

59.8.1.1 How to Generate a BICVO Automatically Using Tree Management
Attributes from the column-flattened version of the tree data use standard ADF
Business Components attribute naming conventions. Attributes from the tree data
sources also use the same naming convention, but are prefixed with DepN, where N is
the zero-based height of the node within the tree; for example, Dep7EmployeeName
or Dep13ProjectName. The Dep0 prefix is used for leaf nodes.

The following procedure is a summary of the overall process of defining and
generating declarative BICVOs for trees. For more detailed information about the
strategy for creating these BICVOs, see Section 59.8.4, "Guidelines for
ATG-Registration and BICVO Generation" and Section 59.8.6, "Securing ADF Business
Components View Objects for Trees."

To generate BICVO automatically using Tree Management:
1. Ensure that the namespace path /oracle/apps/fnd/applcore/trees/analytics is

configured in Oracle Metadata Service (MDS). Example 59–2 shows a sample MDS
configuration.

1.2 ... 1.2 1.2 1.2 1.2 1.0 1

1.2.1 ... 1.2.1 1.2.1 1.2.1 1.2 1.0 2

1.2.1.1 ... 1.2.1.1 1.2.1.1 1.2.1 1.2 1.0 3

1.2.1.1.1 ... 1.2.1.1.1 1.2.1.1 1.2.1 1.2 1.0 4

1.2.2 ... 1.2.2 1.2.2 1.2.2 1.2 1.0 2

1.2.2.1 ... 1.2.2.1 1.2.2.1 1.2.2 1.2 1.0 3

1.2.2.2 ... 1.2.2.2 1.2.2.2 1.2.2 1.2 1.0 3

2.0 ... 2.0 2.0 2.0 2.0 2.0 0

3.0 ... 3.0 3.0 3.0 3.0 3.0 0

Table 59–5 Column-Flattened Level-Based Tree Rooted at Node 1.0

C0 C1 C2 C3 C4 Distance

1.1 1.1 1.1 1.1 1.0 1

1.2.1.1.1 1.2.1.1 1.2.1 1.2 1.0 4

1.2.2.1 1.2.2.1 1.2.2 1.2 1.0 3

1.2.2.2 1.2.2.2 1.2.2 1.2 1.0 3

Table 59–4 (Cont.) Column-Flattened Value-Based Tree Fixed at 20 Levels

C0 ... C15 C16 C17 C18 C19 Distance

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-21

Example 59–2 MDS Configuration

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config"
 version="11.1.1.000">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/sessiondef" metadata-store-usage="mdsRepos"/>
 <namespace path="/persdef" metadata-store-usage="mdsRepos"/>
 <namespace path="/oracle/apps/fnd/applcore/trees/analytics"
 metadata-store-usage="mdsRepos"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mdsRepos">
 <metadata-store name="fs1" class-name="oracle.mds.persistence.

stores.file.FileMetadataStore">
 <property name="metadata-path" value="/tmp"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

2. Ensure that each view object attribute of the tree data source view objects is
marked as relevant to Oracle Business Intelligence (or not) via the BI Relevant
property that is exposed in the Property Inspector for the view object attribute.

3. Ensure that column flattening is enabled by specifying the column-flattened table
and, optionally, the entity object for the table while setting up the tree structure.
For more information, see Section 19.3.5, "How to Create a Tree Structure."

The tree management infrastructure then generates the BICVO for the tree
structure into MDS.

4. Secure the generated BICVO using the data security infrastructure. For more
information, see Section 59.8.6, "Securing ADF Business Components View Objects
for Trees."

The generated BICVO includes a special view criteria named FNDDS__BICVO. In
order to secure access to data through the BICVO, this view criteria must be
enabled for instances of the BICVO in any application module. At runtime, data
security rules affecting access to the tree data source view objects are automatically
carried over to the BICVO.

Note: By default, only primary key attributes are "BI Relevant". For
performance reasons, it is recommended that only those attributes that
are really relevant to Oracle Business Intelligence be marked as such
to avoid generating very large BICVOs.

Note: In Oracle Fusion Applications V1, only filter-based data
security rules are supported. In addition, only the "is descendant of"
operator is supported.

Designing and Securing Tree Data

59-22 Developer's Guide

59.8.2 Customizing the FND Table Structure and Indexes
When using Oracle Fusion tree management to create and manage your trees, you
should create and register its own, custom versions of the FND_TREE_NODE and FND_
TREE_NODE_CF tables. This prevents applications from competing for use of the FND
tables. Your custom tables must comply to the following rules:

■ They must have custom, (preferably application-specific) names; for example, PJF_
PROJ_ELEMENTS_CF is currently being used by the Projects team to implement a
column-flattened table for the Task Hierarchy.

■ The column names and column data types of each custom table must be exactly
the same as those of the corresponding FND table.

■ Custom versions of FND_TREE_NODE_CF can define an index on each of the
level-based foreign key references to support efficient drill-downs. However, it is
understood that certain application query patterns do not necessitate this degree
of indexing. Indexing is also not necessary if the column-flattened table is
guaranteed to be relatively small.

■ Custom versions of the FND_TREE_NODE_CF should not include the ENTERPRISE_ID
column as part of the primary key index defined on the custom table. This is
because this column is not currently used by Oracle Fusion tree management.

59.8.3 Using Declarative SQL Mode to Design View Objects for Oracle Business
Intelligence Applications

All view objects for Oracle Business Intelligence Applications should be constructed in
declarative SQL mode. This ensures that correct SQL pruning can be applied to any
composite view object incorporating the Oracle Business Intelligence view object. This
requirement also applies to the BICVO generated by Oracle Fusion tree management.
However, of all the possible configurations of ADF Business Components objects
defining a tree data source, only two configurations in particular actually lend
themselves to the generation of declarative-mode BICVOs by Oracle Fusion tree
management.

These configurations have been formalized as two distinct design patterns:

■ Design Pattern #1: Single data source view object, single data source entity object

■ Design Pattern #2: Multiple data source view objects, unique data source view
object per depth of tree, single data source entity object per data source view object

Although either pattern can be used in the realization of either tree type, the first
pattern is generally better suited to value-based trees, while the second pattern is more
natural for level-based trees. However, the patterns are aimed primarily at supporting
the automated generation of declarative-mode BICVOs, rather than supporting either
particular type of tree.

59.8.3.1 Using Single Data Source View Object Design Pattern
This pattern ensures that Oracle Fusion tree management is capable of generating a
declarative-mode BICVO from an Oracle Applications Technology (ATG)-registered
data source. Figure 59–3 illustrates the ADF Business Components object configuration
defining declarative BICVO pattern #1.

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-23

Figure 59–3 Declarative BICVO Based on Single Data Source View Object, Single Data
Source Entity Object

In this pattern, there is a single data source entity object and a single data source view
object based on that entity object. The data source view object is a declarative-mode
view object built by developers and registered with Oracle Fusion tree management.
The data source entity object in turn is based on a _VL database view that joins the data
source base table (_B) with a table of translated values (_TL).

A second entity object is defined for the column-flattened table. Currently, the
column-flattened table entity object must be created manually and made known to the
generated BICVO via a manual workaround. Additionally, a collection of entity object
associations, each joining the column-flattened entity object with the data source entity
object for a unique level or depth of the tree, must also be created manually. If the
application design requires that the base data source table expose multiple entity
objects for any reason, then a _VL database view must be defined to join the multiple
entity objects (possibly along with any translated attribute values), and that _VL
database view must support the single data source entity object.

Once the data source view object is registered with Oracle Fusion tree management as
part of the tree structure definition process, and the required manually-created objects
are all in place, a declarative BICVO may then be generated by Oracle Fusion tree
management.

This declarative-mode BICVO pattern is well-suited for value-based trees, since
value-based trees are most often represented at the data source level by a single table
with a recursive self-join. However, there is nothing about the pattern that strictly
requires its use in value-based hierarchies, nor prohibits its use from other types of
hierarchies (such as level-based or hybrid). The primary objective of this pattern is to
facilitate the automatic generation of a declarative-mode BICVO from an
ATG-registered tree.

59.8.3.2 Using Multiple Data Source View Objects Design Pattern
This pattern ensures that Oracle Fusion tree management is capable of generating a
declarative-mode BICVO from an ATG-registered tree. Figure 59–4 illustrates the ADF
Business Components object configuration defining declarative BICVO Pattern #2.

Designing and Securing Tree Data

59-24 Developer's Guide

Figure 59–4 Declarative BICVO Based on Multiple Data Source View Objects, Unique
Data Source View Object per Level, Single Data Source Entity Object per Data Source
View Object

In this pattern, there are multiple data source view objects, with a unique data source
view object representing each level or depth of the tree. Each data source view object is
based on a single, unique data source entity object. Each data source view object is a
declarative-mode view object built by developers and registered with Oracle Fusion
tree management. All of the data source view objects must be declarative-mode view
objects; otherwise, a declarative-mode BICVO can not be generated. As with the
previous pattern, each data source entity object in turn is based on a _VL database view
that joins some data source base table (_B) with a table of translated values (_TL).
While multiple _VL database views are represented in the diagram, there is no
hard-and-fast requirement that each data source entity object actually be built on top
of a unique _VL database view. The diagram simply admits the possibility of multiple
such views, presumably one per level or depth of the tree.

The same as with design pattern #1, an entity object is also defined for the
column-flattened table, and must also be created manually, and is made known to the
generated BICVO via a manual workaround. This column-flattened table entity object
is also joined to the data source entity objects via a collection of entity object
associations. However, each entity object association relates the column-flattened table
entity object to a unique data source entity object representing a particular level or
depth of the tree.

If the application design requires that the base data source table expose multiple entity
objects per tree level or depth, then a _VL database view must be defined to join the
multiple entity objects (possibly along with any translated attribute values) at that tree
level or depth, and that _VL database view must support the single data source entity
object for that tree level or depth.

Once the data source view objects have been registered with Oracle Fusion tree
management as part of the tree structure definition process, and the required
manually-created objects have all been put in place, a declarative BICVO may be
generated by Oracle Fusion tree management.

This declarative-mode BICVO pattern is well-suited for level-based trees, since
level-based trees are often built on top of multiple data sources, with a unique data
source per level. However, there is nothing about the pattern that strictly requires its
use in level-based hierarchies, nor prohibits its use from other types of hierarchies
(such as value-based or hybrid). The primary objective of this pattern is to facilitate the
automatic generation of a declarative-mode BICVO from an ATG-registered tree.

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-25

59.8.3.3 Setting the Declarative-Mode BICVO Properties
In order to ensure correct SQL pruning, you must set the property values of the
generated declarative-mode BICVO as follows:

■ Designate the column-flattened table entity object as the primary entity of the
BICVO.

■ Designate the data-source entity objects as secondary or reference entities of the
BICVO.

■ Do not mark primary key attributes of the data source entity objects as
primary-key attributes in the resulting column-set. (These are exposed by the
generated BICVO).

■ Set the selectedInQuery property of any non-primary key attribute of the
generated BICVO to false.

59.8.4 Guidelines for ATG-Registration and BICVO Generation
The Oracle Fusion Applications team that owns the tree is responsible for creating a
custom tree node (parent-child relationship) table that is structurally equivalent to
FND_TREE_NODE. Once the tree node table has been created, it is registered with ATG
via the Oracle Fusion tree management tree creation UI.

The Oracle Fusion Applications team is also responsible for creating a custom
column-flattened table that is structurally equivalent to FND_TREE_NODE_CF. This
custom table is depicted in Figure 59–3. Once created, it is also registered with Oracle
Fusion tree management as the column-flattened table associated with the tree in the
Oracle Fusion tree management creation UI.

The Oracle Fusion Applications team must then create both data source view objects
and associated data source entity objects, according to either of the structural patterns
illustrated in Figure 59–3 and Figure 59–4. As with the tree node and column-flattened
tables, the data source view object is also registered with Oracle Fusion tree
management, via the Oracle Fusion tree creation UI. During the registration process,
the developer may specify a custom property on any of the data source columns,
indicating to Oracle Fusion tree management that these columns are relevant to Oracle
Business Intelligence and need to be exposed at each level within the BICVO. This
collection of Oracle Business Intelligence attributes is represented by the set of view
attributes attached to the data source view object. As a result, the generated BICVO
will join these columns in from the data source entity object at each level of the tree,
immediately following the level-specific data source foreign key references; that is, the
sequence of DEP*_PK* columns are followed by a set of columns representing each of
the BI-relevant attributes.

In addition to view attributes representing the Oracle Business Intelligence-relevant
columns of the data source, the data source view object may also be configured with
one or more view criteria filters. In particular, a view criteria must be defined to
enforce data security if there's a requirement for data security at the source level. Any
other relevant filters required by reporting may also be specified and attached to the
data source view object. Each of these view criteria must specify a logical AND
condition as its connective to other defined view criteria.

Next, using the Oracle Fusion trees creation UI, the developer automatically generates
the BICVO; that is, the column-flattened BICVO based on the column-flattened table.
In Figure 59–3 and Figure 59–4, dashed lines represent joins on the underlying entities
that are automatically added by Oracle Fusion tree management to the BICVO
definition at runtime. These joins are inferred by ATG internal generation logic via

Designing and Securing Tree Data

59-26 Developer's Guide

inspection of the data source view object and its attendant view attributes and view
criteria, as well as inspection of the registered column-flattened table.

The BICVO, as generated by Oracle Fusion tree management, also includes a
placeholder view criteria that is otherwise empty and specifies a logical OR condition as
its connective to any other view criteria that might be defined as part of the BICVO.
This placeholder view criteria is defined for data security purposes, and at the current
time, simply directs ATG logic to invoke the data security view criteria defined on the
data source view object.

You must take this entire collection of ADF Business Components objects, both
hand-crafted and generated alike, and package them for deployment as part of an
appropriate application module. Note that any ATG-generated artifacts, such as the
BICVO, is generated to reside within the Oracle Fusion Middleware Extensions for
Applications package namespace, which is:

oracle.apps.fnd.bi.applcore.trees.bi.model.view

Most of the Oracle Business Intelligence view objects and other artifacts are packaged
under the Oracle Business Intelligence analytics namespace, which is:

oracle.apps.<LBATop>.<LBACore>.publicview.analytics

However, the Oracle Fusion Middleware Extensions for Applications package
namespace is acceptable for ATG-generated objects seeing as they are artifacts of the
ATG-Oracle Fusion Middleware Extensions for Applications services infrastructure.
As long as the interfaces of these objects are publicly visible, this should not present
any problems to clients of these objects.

59.8.5 Guidelines for Hierarchy Depth and Conformance
It is possible for an inconsistency to arise between the three realizations of a particular
application hierarchy across the application, and the Transactional Business
Intelligence and Oracle BI Applications technologies.

Hierarchies on the Oracle BI EE server are necessarily limited to a maximum of 15
levels. However, Oracle BI Applications uses data warehouse tables to represent these
hierarchies, and although the tables are not inherently bounded in size, restrictions on
the number of levels of a given hierarchy being imported into the data warehouse are
enforced by the ETL process. The majority of Oracle BI Applications hierarchies are
fixed at eight levels plus a top-level for a total of nine fixed levels. A very small
number of Oracle BI Applications hierarchies have greater than eight levels, plus a
top-level and a base-level, with the largest of these hierarchies consisting of 21 fixed
levels.

Trees, especially value-based trees, are generally unbounded in size. However, trees
that have been implemented using Oracle Fusion tree management services are limited
to 32 levels by the ATG infrastructure.

Problems can potentially arise when an application tree exceeds 15 levels. When this
occurs, the corresponding Oracle BI EE representation of the tree, such as a Oracle

Note: There may also be a requirement to supply Oracle Data
Integrator (ODI) with translations via a view object that is separate
from the base data source table or _VL database view. In this case, you
must develop a view object and entity object pair that directly goes
against the translations table (_TL).

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-27

Business Intelligence hierarchy stored within the repository (RPD), must be
compressed to 15 levels. This is accomplished by retaining the leaf-level of the source
tree (base-level), as well as the root-level (top-level), and pruning the tree starting with
the base-1 level and working up the tree until enough levels have been removed.

Table 59–6 illustrates the general mapping of levels on the Oracle Business Intelligence
hierarchy to levels or depths of application trees. The logical representation of the
application tree is expressed in terms of the columns of the column-flattened Oracle
Business Intelligence view object for that tree, which has a maximum of 32 levels. In
this case the 15-level (maximum) Oracle Business Intelligence RPD representation of
the hierarchy is mapped to the 32-level (maximum) application BICVO representation
of the tree by pruning the levels of the source tree designated by columns C1 through
c17 of the BICVO.

When mapping application trees to Oracle Business Intelligence hierarchies, there are
two types of problems that may arise:

■ The application tree exceeds 15 levels and the Transactional Business Intelligence
realization of the hierarchy (provided by the Oracle BI EE server) has been pruned
to 15 levels. However, the Oracle BI Applications realization of the hierarchy
(provided by the ETL process) is allowed to exceed 15 levels. In this case, the
Transactional Business Intelligence and Oracle BI Applications realizations of the
hierarchy have different resolutions at their lowest levels.

■ The application tree exceeds 15 levels and the Transactional Business Intelligence
and Oracle BI Applications realizations of the hierarchy are both pruned to 15
levels. In this case, Transactional Business Intelligence and Oracle BI Applications
are the same in terms of resolution, but the Oracle Business Intelligence side and
the application side are not the same. For example, the application tree has greater
resolution than its Oracle Business Intelligence counterpart.

The following are two possible consequences that may result from the problems
outlined:

■ Loss of information (loss of resolution) resulting from the pruning away of several
lower levels of the hierarchy, as well as potential differences in information
(resolution) between Transactional Business Intelligence and Oracle BI
Applications.

■ An effect on fact-based security at the pruned levels. For example, you have
established certain privileges on facts joined to nodes at tree levels that are
ultimately pruned away. The security privileges of facts that had been joined to the
pruned nodes may have been more restrictive than those at ancestral levels.

Table 59–6 Mapping Oracle Business Intelligence Hierarchy Levels to Application Tree
Levels

BI (RPD) Application (BICVO)

Top C31

Level Top +1 C30

.....

Level Base - 1 C18

Base C0

Designing and Securing Tree Data

59-28 Developer's Guide

59.8.5.1 Resolving Problems
There are basically two choices for either completely resolving, or at least mitigating,
the potential problems.

■ Complete Resolution:

Any application tree that has a realization on the Oracle Business Intelligence side
(Transactional Business Intelligence or Oracle BI Applications) must be restricted
to no more than 15 levels.

■ Mitigation:

Ensure that, if any application tree exceeds 15 levels, and that tree has realizations
on both Transactional Business Intelligence and Oracle BI Applications, that both
technologies maintain pruned realizations of this tree and have the same number
of levels (such as 15 or less).

For this resolution, it will be necessary that these situations be investigated and
documented on a case-by-case basis. You must decide how you want to adjust the
security privileges of metrics that had previously been joined to the pruned levels,
and then revise your Oracle Business Intelligence models accordingly.

59.8.6 Securing ADF Business Components View Objects for Trees
Data security privileges are effectively applied to the column-flattened representation
of the tree (as described in Table 59–3) in the form of a filter based on an OR condition
on the columns. For example, a reporting client has viewing privileges on nodes 1.1
and 1.2.2. This means that any row that contains either node in any of its columns (at
any level in the tree) is viewable to the client, but the other rows are not. The viewable
rows are shown in Table 59–7 in bold.

Note: Neither of the following resolutions require any actual
implementation work. However, they do require a combination of
policy and documentation.

Table 59–7 Column-Flattened Result Set with Data Security

C0 C1 C2 C3 C4 Distance

1.0 1.0 1.0 1.0 1.0 0

1.1 1.1 1.1 1.1 1.0 1

1.2 1.2 1.2 1.2 1.0 1

1.2.1 1.2.1 1.2.1 1.2 1.0 2

1.2.1.1 1.2.1.1 1.2.1 1.2 1.0 3

1.2.1.1.1 1.2.1.1 1.2.1 1.2 1.0 4

1.2.2 1.2.2 1.2.2 1.2 1.0 2

1.2.2.1 1.2.2.1 1.2.2 1.2 1.0 3

1.2.2.2 1.2.2.2 1.2.2 1.2 1.0 3

2.0 2.0 2.0 2.0 2.0 0

3.0 3.0 3.0 3.0 3.0 0

Designing and Securing Tree Data

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-29

If the use of the DescendantOf hierarchical referencing operator is also available,
enabling the display of rows that contain either 1.1, 1.2.2, or any descendant of either
of these two nodes, then the viewable rows include the rows that are displayed in bold
in Table 59–8.

59.8.6.1 Security Implementation
The base table view object and column-flattened view objects (BICVO) are separate
view objects. However, the data security definition must be consistently applied to
both the base table view object and BICVO. For example, BICVOs must not have
different data security behavior than the base entity on which security has been
defined by Oracle Fusion Applications. This is achieved by Fusion tree management
using the following process:

■ When Oracle Fusion tree management generates the BICVO, it automatically adds
an Oracle Fusion data security view criteria to the BICVO (FNDDS__BICVO). You
must not change this view criteria's name but must ensure that it is enabled for the
application module for the Transactional Business Intelligence.

■ The view criteria predicate for BICVO is generated from the base table view object
at runtime by Oracle Fusion tree management. This ensures that BICVO data
security is in sync with the base object.

■ The following restrictions are placed on the base object view criteria so that the
base view criteria is mapped to the BICVO view criteria, (which may have
different column names), at runtime:

– The base object view criteria must only use "Filter", which stores predicates
using metadata. It cannot use SQL.

– The base object view criteria must only use the DescendantOf hierarchy
operator. It must not use any other hierarchy operators.

Table 59–8 Column-Flattened Result Set with Data Security and DescendantOf Operator

C0 C1 C2 C3 C4 Distance

1.0 1.0 1.0 1.0 1.0 0

1.1 1.1 1.1 1.1 1.0 1

1.2 1.2 1.2 1.2 1.0 1

1.2.1 1.2.1 1.2.1 1.2 1.0 2

1.2.1.1 1.2.1.1 1.2.1 1.2 1.0 3

1.2.1.1.1 1.2.1.1 1.2.1 1.2 1.0 4

1.2.2 1.2.2 1.2.2 1.2 1.0 2

1.2.2.1 1.2.2.1 1.2.2 1.2 1.0 3

1.2.2.2 1.2.2.2 1.2.2 1.2 1.0 3

2.0 2.0 2.0 2.0 2.0 0

3.0 3.0 3.0 3.0 3.0 0

Note: The generalized OR filter can be restricted. For example, to
apply only to the C0 column. This ensures that only nodes and
optionally their descendants, for which a client has sufficient
privileges, are viewable from the column-flattened result set.

Supporting Flexfields for Oracle Business Intelligence

59-30 Developer's Guide

There may be situations in which a tree must support both secured and unsecured
access. In this case, the BICVO that exposes the tree structure is deployed as both
secured and unsecured versions.

The generated BICVO already has a security mechanism associated with it that is
based on its data source view object. An unsecured version of the BICVO can be
created by manually making a copy of the generated BICVO and editing it to exclude
sensitive columns. Then, secured access to this edited BICVO is turned-off by
de-activating the dummy FNDDS__BICVO view criteria associated with the BICVO. This
causes the data source security view criteria to not be enforced. Again, both the
secured and unsecured versions of the BICVO for the tree are to be deployed together
in the same application module.

59.9 Supporting Flexfields for Oracle Business Intelligence
You must do the following to allow the Flexfields ADF Modeler to generate a flattened
view object containing only those attributes marked as BI Enabled:

■ Set the BIEnabledFlag for your key flexfield

■ Set the BIEnabledFlag for your descriptive flexfield

■ Create Flexfield business components

■ Define custom properties on the Oracle Business Intelligence application module

For information on how to perform these tasks, see the following sections in this book:

■ Section 22.12, "Preparing Descriptive Flexfield Business Components for Oracle
Business Intelligence"

■ Section 24.5.3, "How to Prepare Key Flexfield Business Components for Oracle
Business Intelligence"

59.10 Supporting SetID
To properly resolve meanings for set-enabled attributes, the setID attribute must be
exposed to the Oracle Business Intelligence layer. The setID attribute should be
exposed using the appropriate method for the following reference types:

■ Set-enabled lookups

■ Set-enabled reference tables

59.10.1 How to Expose the SetID Attribute for Set-Enabled Lookups
The setID is required to retrieve appropriate meaning if the lookup is set-enabled. The
Set Assignments Query is required to retrieve the setID.

To expose the setID attribute:
Set-enabled lookups (shared and Transactional Business Intelligence) are registered as
warehouse domains and the SetAssignment entity object is already provided by ATG.

1. Build an entity object association between the Fact entity object and the
SetAssignment entity object for each set-enabled lookup on the fact.

2. Expose setID as an attribute on the FactVO for each set-enabled lookup type on the
FactVO.

The Lookup function is used to retrieve the translated meaning from the warehouse
using setID parameter.

Supporting Multi-Currency

Designing and Securing View Objects for Oracle Business Intelligence Applications 59-31

59.10.2 How to Expose the SetID Attribute for Set-Enabled Reference Tables
The setID is stored on set-enabled reference tables. A Unique ID is used as the primary
key of the reference table; ID and language form the unique key of the translated
reference table. The determinant value is not stored on the reference table; the foreign
key used to reference the table is stored on transaction tables.

To expose the setID attribute:
Because the foreign key to the reference table already exists on the transaction,
meanings for set-enabled attributes should be resolved depending on usage.

■ Transactional Business Intelligence only:

Resolve meaning on the base view object using entity object association, bringing
in the setID attribute.

■ Warehouse domain:

A separate view object is required. Build a view link from the base view object to
the reference view object. The setID attribute exists on the reference table view
object.

59.11 Supporting Multi-Currency
Oracle Fusion Middleware Extensions for Applications provides special MLS
Currency view objects for Oracle Business Intelligence.

To support multi-currency, create view links from the primary entity currency code
fields on transaction view objects to the new currency view object.

Supporting Multi-Currency

59-32 Developer's Guide

60

Implementing ADF Desktop Integration 60-1

60Implementing ADF Desktop Integration

This chapter describes how to combine third party desktop applications with Oracle
Fusion web applications.

The chapter includes these sections:

■ Section 60.1, "Oracle Application Development Framework Desktop Integration
Standards and Guidelines"

■ Section 60.2, "Skinning Excel ADF Desktop Integration Workbooks"

■ Section 60.3, "Configuring the WebLogic Server Frontend"

60.1 Oracle Application Development Framework Desktop Integration
Standards and Guidelines

ADF Desktop Integration makes it possible to combine third party desktop productivity
applications with Oracle Fusion web applications, so you can use a program like
Microsoft Excel as an interface to access Oracle Fusion web application data. Currently,
ADF Desktop Integration supports using an Excel workbook to access descriptive and
key flexfield data in your application.

ADF Desktop Integration is intended to provide integrated access across a variety of
Oracle Fusion products from a variety of third-party interfaces. As a result, it is
important that you apply consistent standards for deployment and for look and feel to
your implementation of ADF Desktop Integration.

For more general information about integrating Oracle Fusion web applications with
desktop applications, see Oracle Fusion Middleware Desktop Integration Developer's Guide
for Oracle Application Development Framework.

For information about using ADF Desktop Integration technology with flexfields, see
Section 22.14, "Accessing Descriptive Flexfields from an ADF Desktop Integration
Excel Workbook" and Section 24.5.5, "How to Access Key Flexfields from an ADF
Desktop Integration Excel Workbook".

Important: The Desktop Integration Developer's Guide does not make
explicit reference to technologies documented in this book, and this
book does not repeat the content in the Desktop Integration Developer's
Guide, so you must read the Desktop Integration Developer's Guide for a
full understanding of how to use ADF Desktop Integration technology
in general.

Oracle Application Development Framework Desktop Integration Standards and Guidelines

60-2 Developer's Guide

Standards for Naming and Organization
ADF Desktop Integration projects have many of the same code artifacts as standard
ADF application UI projects. As such, the directory and naming standards for ADF
Desktop Integration projects already have a good example to follow.

ADF Desktop Integration artifacts shall follow the same set of directory and naming
standards as core ADF UI artifacts. However, you are also encouraged to distinguish
your business component names as appropriate. For example, for the General Ledger
Journal Entry functionality, the core ADF page has an application module called
"JournalEntryAM." For the ADF Desktop Integration Journal Entry, the application
module should be given a name similar to "DesktopJournalEntryAM" to prevent
duplicate names.

60.1.1 How to Structure the ADF Desktop Integration Directories
The way that you code backing beans, page definitions and JSPX pages for ADF
Desktop Integration will be different from the way you code core ADF UIs. For
example, JSPX dialogs for ADF Desktop Integration require JavaScript. It is desirable
to be able to distinguish between core UI artifacts and UI artifacts used by ADF
Desktop Integration workbooks. Therefore, instead of checking in ADF Desktop
Integration web picker artifacts into a "ui" package, it is recommended that you
instead use a "di" (Desktop Integration) folder. Note that "di" and "ui" are the same
length, so path string lengths will not change.

Following is an example of such a directory structure:

| | |-- adfmsrc
| | | |-- META-INF
| | | | |-- <various generated files>
| | | |-- oracle
| | | |-- apps
| | | |-- <LBA Top>
| | | |-- <LBA Core>
| | | |-- di

| | |-- public_html
| | | |-- oracle
| | | | |-- apps
| | | |-- <LBA Top>
| | | |-- <LBA Core>
| | | |-- di

A major benefit to putting ADF Desktop Integration web picker dialog artifacts into a
di folder is that automated standards checks can easily distinguish Desktop
Integration-related objects and adjust their logic as needed. The directory structure
under di will be organized the same way as the directory structure under the ui folder.
For example, the bean, controller, page and util folders under di will be found in
the same relative locations as the equivalent folders under ui.

The Excel Microsoft Office Open XML Format (XLSX) workbooks (and XLSM files, if
required) should be checked into an excel folder within the public_html directory
structure:

| | |-- public_html
| | | |-- oracle
| | | | |-- apps
| | | |-- <LBA Top>
| | | |-- <LBA Core>

Oracle Application Development Framework Desktop Integration Standards and Guidelines

Implementing ADF Desktop Integration 60-3

| | | |-- di
| | | |-- excel

Example 60–1 shows some full directory paths for the ADF Desktop Integration
artifacts on a Windows system, for a project in a leaf LBA called desktopJournalEntry.
The folders contain page definitions, Excel and JSPX files, and beans, respectively:

Example 60–1 Directory Structure in WIndows

D:\FinDashboardPrototype\gl\components\journals\desktopJournalEntry\di\adfmsrc\ora
cle\apps\financials\generalLedger\journals\desktopJournalEntry\di\pageDefs

D:\FinDashboardPrototype\gl\components\journals\desktopJournalEntry\di\public_
html\oracle\apps\financials\generalLedger\journals\desktopJournalEntry\di\[excel|p
age]

D:\FinDashboardPrototype\gl\components\journals\desktopJournalEntry\di\src\oracle\
apps\financials\generalLedger\journals\desktopJournalEntry\di\bean

Example 60–2 shows some directory paths for the ADF Desktop Integration artifacts in
source control, for a project in a leaf LBA called desktopJournalEntry. The folders
contain page definitions, [excel] and JSPX files, and beans, respectively:

Example 60–2 Directory Structure in Source Control

scs/gl/components/journals/desktopJournalEntry/di/adfmsrc/oracle/apps/financials/g
eneralLedger/journals/desktopJournalEntry/di/pageDefs

scs/gl/components/journals/desktopJournalEntry/di/public_
html/oracle/apps/financials/generalLedger/journals/desktopJournalEntry/di/[excel|p
age]

scs/gl/components/journals/desktopJournalEntry/di/public_
html/oracle/apps/financials/generalLedger/journals/desktopJournalEntry/di/bean

scs/gl/components/journals/desktopJournalEntry/di/src/oracle/apps/financials/gener
alLedger/journals/desktopJournalEntry/di/bean

60.1.2 How to Name Your ADF Desktop Integration Files
Because users can download workbooks to their desktops, providing each workbook
with a unique name across applications is advisable. Make an effort to incorporate
either the name of your product or the name of the primary Logical Business Object
(LBO) involved, to create a meaningful name for your workbook. For example, the
expenses workbook could be called ExpensesEntry.xlsx; the General Ledger journal
entry workbook could be called JournalEntry.xlsx. However, because there is no
current runtime or release requirement for unique names, the ADF Desktop
Integration team will not coordinate this.

There is an open question regarding which workbook to source control and release: the
design time version or the published version. For now, assume that both versions are
source controlled. To that end, the published version should have the final name and
the design time version should include the suffix "DT" in its filename. So in the
expenses example, two workbooks will be source controlled: ExpensesEntry.xlsx and
ExpensesEntryDT.xlsx, where the former is the published version and the latter is the
design time version.

Oracle Application Development Framework Desktop Integration Standards and Guidelines

60-4 Developer's Guide

60.1.3 How to Implement the Dialog Attributes Declarative Component
The main function of the Dialog Attributes declarative component is to render the
ADFDi reserved elements (ADFdi_CloseWindow, ADFdi_AbortUploadOnFailure and
ADFdi_DownLoadAfterUpload) in the ADF pages that are used as dialogs in the
spreadsheet.

This component replaces the ADFdi_CloseWindow, ADFdi_AbortUploadOnFailure and
ADFdi_DownLoadAfterUpload span tags/outputText/JavaScript elements used in JSPX
pages to render them as DI dialogs.

Since the component needs to render the value of the span tags (such as ADFdi_
CloseWindow) based on the user's use case, it takes as an input the values to be
rendered for these tags. To implement this, three properties are exposed on the
component, one for each tag (ADFdi_CloseWindow, ADFdi_AbortUploadOnFailure and
ADFdi_DownLoadAfterUpload). These properties need to be set based on how the page
is used as a dialog in the spreadsheet. An overview of the properties is described in
Table 60–1.

Table 60–1 Tag Properties Exposed on the Declarative Component

Component Property Data Type Description

closeWindowBinding String This property maps to the DI Dom element: ADFdi_CloseWindow

The value supplied for this property will be set as the value of the
ADFdi_CloseWindow tag.

You can bind the property to a backing bean.

Example:
closeWindowBinding="#{SubmissionOptionsBean.dialogResult}"

where dialogResult is a string that is defined in a backing bean and the
value is set when the OK or Cancel button is clicked.

downloadAfterUpload Boolean This property maps to the DI Dom element: ADFdi_
DownLoadAfterUpload

This value usually is a constant, such as true or false. It appears in the
component property inspector as a list from which you can choose a
true/false value.

This property needs to be specified only if you are using the dialog as a
custom upload dialog.

Example: downloadAfterUpload="false"

abortUploadOnFailure Boolean This property maps to: ADFdi_AbortUploadOnFailure

This value usually is a constant, such as true or false. It appears in the
component property inspector as a list from which you can choose a
true/false value.

This property needs to be specified only if you are using the dialog as a
custom upload dialog.

Example: abortUploadOnFailure="false"

Note: If you are using the page as a simple dialog (a basic web picker
that only needs ADFdi_CloseWindow), you only need to specify the
closeWindowBinding. Do not specify values for the
downloadAfterUpload and abortUploadOnFailure properties, which
only need to be specified for a custom upload dialog.

Oracle Application Development Framework Desktop Integration Standards and Guidelines

Implementing ADF Desktop Integration 60-5

60.1.3.1 Adding the Component to Your Page
Before you can add the component to a web page, you need to add its containing JAR
file as a library reference.

To add the JAR file as a library reference:
1. Create a file system connection.

■ In the Resource Palette (View > Resource Palette), right-click File System and
select New File System Connection.

■ Enter the connection name, such as DI Components, and the directory path as
/ade/<view name>/fusionapps/jlib.

■ Test the connection to make sure it is valid. If it is, click OK.

2. Select your user interface project in the application navigator pane.

3. Expand the connection you just created (FileSystem > <connection name>).

4. Right-click the library AdfFinFunPublicDeclarativeComponentsDi.jar and select
Add to Project.

5. To make sure the library was added, open Project Properties > Libraries and
Classpath > ADF Library. You should see an entry for
AdfFinFunPublicDeclarativeComponentsDi.jar.

Once you add the library as a library reference to your project, the component palette
will contain the Di Components option that lists all the DI components available for
use.

To add the component to the web page:
1. In the component palette (View > Component Palette), select the

DialogAttributes component and drag it onto the desired web page.

The DI component namespace is added to the jsp:root tag at the top of your
page:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:di="http://xmlns.oracle.com/apps/financials/common/publicDi/component/diC
omponents">

The component is rendered as:

<di:dialogAttributes id="da1" />

2. Set the component attributes.

You can view the available properties on this component by looking at the
property inspector. Set the properties as required. The component tag will look
like:

<di:dialogAttributes id="da1"
abortUploadOnFailure="false"
downloadAfterUpload="false"
closeWindowBinding="#{SubmissionOptionsBean.dialogResult}"/>

You are now ready to run your project.

Skinning Excel ADF Desktop Integration Workbooks

60-6 Developer's Guide

60.2 Skinning Excel ADF Desktop Integration Workbooks
Oracle Fusion ADF Desktop Integration workbooks share a common set of style
definitions. This enables them to easily apply required changes to the look and feel.
The various style definitions that are needed by applications developers are defined in
a common Excel styles template file, which is the accurate source for ADF Desktop
Integration styles in Oracle Fusion. Figure 60–1 shows an example of the ADF Desktop
Integration styles in use; keep in mind that the look and feel is subject to change at any
time.

Figure 60–1 Example of ADF Desktop Integration Look and Feel in Excel

60.3 Configuring the WebLogic Server Frontend
When ADF Desktop Integration sends a spreadsheet to the client, it embeds the server
public callback address. Then, when the spreadsheet is opened, it is able to
authenticate and perform operations on the address.

To set the Frontend URL for the Administration Console:
1. Log in to Oracle WebLogic Server Administration Console.

2. Click Lock & Edit.

3. Expand the Environment node in the Domain Structure window.

4. Click Servers. The Summary of Servers page displays.

5. Select Admin Server in the Names column of the table. The settings page for
AdminServer(admin) is displayed.

6. Click the Protocols tab.

7. Click the HTTP tab.

8. Set the Front End Host field to admin.mycompany.com (your LBR address).

9. Save and activate the changes.

To eliminate redirections, you should disable the Administration Console's "Follow
changes" feature. To do this, log on to the Administration Console and click
Preferences and then Shared Preferences. Clear the Follow Configuration Changes
check box and click Save.

To configure HTTP settings for a cluster:
1. If you have not already done so, in the Change Center of the Administration

Console, click Lock & Edit.

Configuring the WebLogic Server Frontend

Implementing ADF Desktop Integration 60-7

2. In the left pane of the Console, expand Environment and select Clusters.

3. Select the name of the cluster for which you want to configure HTTP.

4. Select HTTP and enter the following HTTP frontend information. These HTTP
settings should be set when host information coming from the URL may be
incorrect due to a firewall or proxy.

■ Frontend Host

■ Frontend HTTPPort

■ Frontend HTTPSPort

5. Click Save.

6. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes. Not all changes take effect immediately; some require a
restart.

Configuring the WebLogic Server Frontend

60-8 Developer's Guide

61

Creating Customizable Applications 61-1

61Creating Customizable Applications

Oracle Metadata Services (MDS) framework allows you to create customizable Oracle
Fusion applications. This chapter describes how to configure your application at
design time so that it can be customized by end users.

This chapter includes the following sections:

■ Section 61.1, "Introduction to Creating Customizable Applications"

■ Section 61.2, "Preparing an Application for Customizations"

■ Section 61.3, "Enabling Runtime Customization of Pages and Components"

61.1 Introduction to Creating Customizable Applications
With the customization features provided by Oracle Metadata Services (MDS), both
developers and customers can customize Oracle Fusion applications. Customizing an
application involves taking a generalized application and making modifications to suit
the needs of a particular group, such as a specific industry or site.

When an application is customizable, an end user can customize a user interface page
at runtime in one of four ways:

■ Implicitly: Implicit customizations occur when a customer changes certain
component attributes, such as the size of a panel or whether detail content is
displayed.

■ Using Page Composer: Page Composer enables end users who have the correct
permissions, such as administrators, to change a user interface page to suit their
company's needs, such as change the page layout, add task flows, documents, and
other objects to a page, or wire pages to each other, as described in the
"Customizing Existing Pages" chapter in the Oracle Fusion Applications Extensibility
Guide.

■ Using the Personalization menu: The Personalization menu in the global area of
Oracle Fusion Applications gives an end user access to Page Composer to
customize a page to suit their needs. Only the end user sees the changes. End users
can also use the Personalization menu to reset a page to display the default
content and layout.

■ Using the Customization Manager: Customization Manager enables end users
who have the correct permissions, such as administrators, to download, upload,
reset, and delete application customizations on objects such as pages and task
flows, as described in the "Viewing and Diagnosing Runtime Customizations"
section in the Oracle Fusion Applications Extensibility Guide.

Preparing an Application for Customizations

61-2 Developer's Guide

Some customizations, such as changes to the model or to task flow roles, must be done
from Oracle JDeveloper, as described in the "Using JDeveloper for Customizations"
chapter in the Oracle Fusion Applications Extensibility Guide. Customizations made
from JDeveloper are referred to as design-time customizations. Design-time
customizations that are created and shipped with Oracle Fusion Applications are
known as seeded customizations.

For more information about customization, see the "Customizing and Extending
Oracle Fusion Applications" chapter in the Oracle Fusion Applications Extensibility
Guide.

A customized application contains a base application and one or more layers of
customized metadata content. The customized metadata objects are stored in an MDS
repository and, when a customized application is launched, the customized content is
retrieved and applied over the base content. For more information, see the
"Customizing Applications with MDS" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition) and the "Managing the Metadata Repository" chapter in the Oracle
Fusion Applications Administrator's Guide.

To enable runtime customizations of an application, you first prepare the application
for customizations, then you enable the runtime customization of pages and
components.

61.2 Preparing an Application for Customizations
To enable an application for customization, you must complete the following steps in
your JDeveloper application workspace in the order shown.

1. Set project properties to enable user and seeded customizations.

2. Configure the persistence change manager parameter to use the composer change
manger.

3. Enable end-user translations of customized strings.

4. Add Oracle WebCenter Portal — Composer technology scope to your project. This
technology scope contains the components that are used for Page Composer
customization.

5. (Optional) Enable user customization of the user interface (UI) shell template.

Note: End users with the correct permissions can also customize
some menus, such as the Navigator menu. For more information, see
the "Customizing the Navigator Menu" chapter in the Oracle Fusion
Applications Extensibility Guide.

Note: When you run your page in JDeveloper, all customizations
created at runtime are, by default, written to a simulated MDS
repository directory, which is stored at a temporary location in your
system directory. The simulated MDS repository that is configured for
the application reflects the metadata information that is contained in
the Metadata Archive (MAR).

For more information, see Section 52.2.1, "How to Deploy an
Application with Metadata to Integrated WebLogic Server."

Preparing an Application for Customizations

Creating Customizable Applications 61-3

6. (Optional) Create an IDE connection to your database (in addition to the
application connection) to enable access to layer values that are populated from a
database call.

After you complete these steps, you can enable runtime customization for the
application's web pages and task flows as described in Section 61.3, "Enabling Runtime
Customization of Pages and Components."

61.2.1 How to Set Project Properties to Enable User and Seeded Customizations
To enable user customizations, you must configure the view project to persist the
customized metadata objects to a MDS repository so that the objects are available
across sessions. You must also enable seeded customizations so that the page
fragments and JSPX pages that you create will be configured to allow customizations.

To set project properties for your view project:
1. In the Application Navigator in JDeveloper, right-click your view project and

choose Project Properties.

2. In the Project Properties dialog, select ADF View to display the ADF View
settings.

3. Select Enable User Customizations and select Across Sessions Using MDS, as
shown in Figure 61–1.

4. Select Enable Seeded Customizations.

Note: ADF components (such as controller, model, and business
components objects) must have a unique identifier so that they can be
customized. ADF components that are generated by JDeveloper are
created with identifiers by default, with the exception of fragments
and pages in your user interface projects. To cause JDeveloper to
generate identifiers for components on pages that you create in your
user interface projects, you must explicitly specify this at the project
level by enabling seeded customizations.

Preparing an Application for Customizations

61-4 Developer's Guide

Figure 61–1 Project Properties — ADF View

5. Click OK.

61.2.2 How to Configure the Persistence Change Manager
You must configure the persistence change manager in order for the following runtime
behavior to occur:

■ The Persist and Don't Persist attributes that you set for components at design time
will govern which implicit changes that the end users make at runtime will be
persisted during the session as well as across sessions.

■ The changes that end users make in the design view of Page Composer will be
stored in the MDS repository.

When you enabled user customizations across sessions by completing the procedure in
Section 61.2.1, "How to Set Project Properties to Enable User and Seeded
Customizations," the IDE added the CHANGE_PERSISTENCE context parameter to the
view project's web.xml file, and set the parameter to use the filtered persistence change
manager. You must modify this parameter to use the composer change manager, and
you must add the composer filter and its mapping.

Before you begin:
Modify your view project's properties to enable user customizations across sessions as
described in Section 61.2.1, "How to Set Project Properties to Enable User and Seeded
Customizations."

To configure the persistence change manager:
1. In the Application Navigator, expand the WEB-INF node for your view project

and double-click web.xml.

2. In the source editor, change the org.apache.myfaces.trinidad.CHANGE_
PERSISTENCE context parameter value to

Preparing an Application for Customizations

Creating Customizable Applications 61-5

oracle.adf.view.page.editor.change.ComposerChangeManager, as shown in the
following code.

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>
 oracle.adf.view.page.editor.change.ComposerChangeManager
 </param-value>
</context-param>

3. Add the filter and filter-mapping elements for the WebCenterComposerFilter class
as shown in bold in Example 61–1.

Example 61–1 composerFilter and Mappings in web.xml

....
 <!-- composerFilter goes here -->
 <filter>
 <filter-name>composerFilter</filter-name>
 <filter-class>
 oracle.adf.view.page.editor.webapp.WebCenterComposerFilter
 </filter-class>
 </filter>
 <filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 </filter>
.....

 <!-- composerFilter mapping goes here -->
 <filter-mapping>
 <filter-name>composerFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
....

4. Enable sessions for the JSPX pages and task flows that you create in your view
project as described in Section 47.2.1, "How to Configure Your Project to Use
Application User Sessions."

This step, among other modifications, adds the Applications Core and Web Service
Data Control libraries to your project, which you need to complete the tasks to
prepare your application for customization.

Note: Filters must be configured in the following order.

1. JpsFilter

2. ApplSessionFilter

3. WebCenterComposerFilter

4. ADFBindingFilter

Preparing an Application for Customizations

61-6 Developer's Guide

61.2.3 How to Enable Translations of Customized Strings
You must configure your application to enable end users to provide translated values
for customized strings at runtime, as described in the "Translating Custom Text"
chapter in the Oracle Fusion Applications Extensibility Guide.

The resource string editor enables the runtime editing of strings. The changes made
using the resource string editor are saved into an application override bundle, which
can be translated and imported back into the application.

For more information about configuring the runtime resource string editor, see the
"Configuring Runtime Resource String Editing" section in the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

To set up runtime resource string editing for customizations:
1. In the Application Navigator in JDeveloper, right-click the application and select

Application Properties.

2. In the Application Properties dialog, select Resource Bundles.

3. Click Add.

4. Type the following string in the File Name field in the Select Resource Bundle
dialog.

oracle.adf.view.page.editor.resource.ComposerOverrideBundle.xlf

5. Click Open.

6. Select the Overridden check box.

7. Click OK to save your changes.

8. Open the adf-config.xml file, which is located in the Application Resources >
Descriptors > ADF META_INF folder.

9. Add the resource-string-editor element shown in Example 61–2 to the
page-editor-config section to enable resource string editing.

Example 61–2 Configuration to Turn On Resource Editor

<pe:page-editor-config>
 ...
 <resource-string-editor>
 <enabled>
 #{GlobalAreaBackingBean.tipLayerNonUser}
 </enabled>
 </resource-string-editor>
</pe:page-editor-config>

61.2.4 How to Add Composer Technology Scope to Your Project
You must add the Oracle WebCenter Portal — Composer technology scope in order to
access the technologies for consuming Page Composer components and enabling
runtime customization.

Note: This procedure only enables resource string editing if the
changes are customizations and not user personalizations, as user
personalizations do not need to be translated.

Preparing an Application for Customizations

Creating Customizable Applications 61-7

To add Composer technology scope:

1. Right-click your view project and select Project Properties.

2. Select Technology Scope.

3. Add the Oracle WebCenter Portal — Composer technology scope to your project
and click OK.

61.2.5 How to Enable the User Customization of the UI Shell Template
You can configure the UI Shell template so that it can be customizable out-of-the-box.
This functionality enables customers to use Page Composer to customize UI Shell
pages, as described in the "Customizing Existing Pages" chapter in the Oracle Fusion
Applications Extensibility Guide.

To enable users to customize the UI shell template, you add a link or button to the
page fragment from which you want end users to launch the UI Shell template for
editing. You then configure the link (or button) to enable end users to modify the
template.

To enable the user customization of the UI Shell Template:
1. From JDeveloper, open the JSF page fragment (.jsff) from where the UI Shell can

be edited.

2. In the Application Navigator, expand the Data Controls hierarchy to locate and
expand the FndUIShellController.

3. Drag and drop the customizeUIShellTemplate operation onto the page, and
choose Create > Method > ADF Button or choose Create > Method > ADF Link.

4. In the Edit Action Binding dialog, provide a comma delimited list of fully
packaged qualified customization classes for the custClass parameter, as shown in
Example 61–3.

Example 61–3 Sample custClass List

oracle.apps.fnd.applcore.customization.GlobalCC,oracle.apps.fnd.applcore.customiza
tion.SiteCC

Each of the customization classes supplied in the list must be valid and configured
in the adf-config.xml file, as shown in Figure 61–2.

Figure 61–2 adf-config.xml — Customization Classes

If any of the classes cannot be instantiated, or if they are not pre-configured in the
adf-config.xml file, an exception is thrown at runtime.

Preparing an Application for Customizations

61-8 Developer's Guide

The last customization class specified is the tip customization layer and the
modifications to the UI Shell is written to this layer. In Example 61–3, the
customization of the UI Shell takes place in SiteCC. The purpose of the earlier
customization in the list is to view the UI Shell with any other customizations
applied.

For information about customization layers, see the "Understanding
Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.

5. Click OK.

6. Open the page definition file for the page fragment.

7. In the editor window, click the Source tab.

8. Add the <methodAction> element shown in Example 61–4 to the <bindings>
element. The id attribute must be set to custNavigate, which is the key to the
customizeUIShellTemplate operation that you dropped on the page in Step 3.

Example 61–4 custNavigate methodAction Binding

 <bindings>
 <methodAction id="custNavigate" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="navigate"
 IsViewObjectMethod="false" DataControl="FndUIShellController"
 InstanceName="FndUIShellController.dataProvider"
 ReturnName=
"FndUIShellController.methodResults.navigate_FndUIShellController_dataProvider_
navigate_result">
 <NamedData NDName="viewId" NDValue="TemplateCustomizationUIShell"
 NDType="java.lang.String"/>
 <NamedData NDName="webApp" NDType="java.lang.String"/>
 <NamedData NDName="pageParametersList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskFlowId" NDType="java.lang.String"/>
 <NamedData NDName="navTaskKeyList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskParametersList" NDType="java.lang.String"/>
 <NamedData NDName="navTaskLabel" NDType="java.lang.String"/>
 <NamedData NDName="methodParameters"
 NDType="oracle.apps.fnd.applcore.patterns.uishell.ui.bean.FndMethodParameters"/>
 </methodAction>
 </bindings>

9. Add the view permission for oracle_apps_fnd_applcore_template_
customization_TemplateCustomizationUIShellPageDef (the customization
page) for each role for which you want to enable the view action as described in
Section 61.3.4, "How to Authorize the Runtime Customization of Pages and Task
Flows." To access oracle_apps_fnd_applcore_template_customization_
TemplateCustomizationUIShellPageDef in the Resource Grants navigation tab,
select Web Page from the Resource Type dropdown list and select Show web
pages imported from ADF libraries.

61.2.6 How to Create a Database Connection at the IDE Level
In addition to the application level connection to your application database, you might
also need to create an Integrated Development Environment (IDE) connection.

The IDE connection is required when implementing design-time customizations from
JDeveloper, as described in the "Using JDeveloper for Customizations" chapter in the
Oracle Fusion Applications Extensibility Guide.

Enabling Runtime Customization of Pages and Components

Creating Customizable Applications 61-9

To create a database connection at the IDE level
1. From the Database Navigator, right-click the ApplicationDB node under your

application's node and choose Properties.

2. Make a note of the settings and click Cancel.

3. Right-click IDE Connections and choose New Connection.

4. Enter the settings that you noted in Step 2.

5. Click Test Connection to ensure the settings are correct.

6. Click OK.

The database connection appears under the IDE Connections node.

61.3 Enabling Runtime Customization of Pages and Components
Once you have completed the non-optional procedures described in Section 61.2,
"Preparing an Application for Customizations," you can enable pages, task flows, and
components for runtime customization.

To enable an application's pages, task flows, and components for runtime
customization:

1. Enable runtime customization of web pages.

2. Enable end-user personalization for the desired pages.

3. (Optional) Restrict customizations of specific page fragments and components. (By
default, customization is allowed for pages, page fragments, and the components
on a page.)

4. Authorize runtime customization of pages and task flows.

5. (Optional) Enable and disable persistence of attributes for implicit runtime
customizations.

As shown in Figure 61–3, the settings that you make by following the procedures in
this section affect whether an end user can customize an object under the following
scenarios.

■ User performs an implicit customizations: If the component can be persisted and
customization is allowed, the implicit customization is persisted for the session as
well as across sessions.

■ User accesses Customization Manager: If the end user has an administrative role
or privilege, the user can access the Customization Manager. If the task flow has
edit permissions for a user's role or privilege, the user can import, export, or delete
customizations of objects for which customization is allowed.

■ User accesses Page Composer to customize a page: If the end user has an
administrative role or privilege and customization is allowed for the page (JSPX
root), the user can access Page Composer. If the task flow has edit permissions for
the user's role or privilege, the user can customize any object for which
customization is allowed.

■ User accesses Page Composer to personalize a page: If the page enabled for
end-user personalizations and customization is allowed for the page (JSPX root),
the user can access the page in Page Composer. If the task flow has edit
permissions for the user's role or privilege, the user can customize any object for
which customization is allowed.

Enabling Runtime Customization of Pages and Components

61-10 Developer's Guide

■ User accesses Page Composer to reset content and layout: If customization is
allowed for the page and the task flow has edit permissions for the user's role or
privilege, the user can reset the content and layout for which customization is
allowed.

To determine whether customization is allowed, the application looks at the component's
Customization Allowed property to see if it has an explicit value. If there is no explicit
value, the application looks at the parent object and continues up the tree, ending at
the JSF page fragment (.jsff root), until it finds an explicit value. For example, if
Customization Allowed is not set for a component, but is set to true for the page
fragment, then customization is allowed for the component. However, if
Customization Allowed is false for the component, the application disallows
customization of that object, even if the page fragment's Customization Allowed
property is set to true. Conversely, if the page fragment's Customization Allowed
property is set to false, but a component's property is set to true, the end user can
customize the component.

By default the Customization Allowed property for the page (.jspx) root is true.
Therefore, you must explicitly set Customization Allowed to false at some level,
such as for a component, region, fragment (.jsff), or page (.jspx), to disallow
customization for that object and its children objects.

Note: You can optionally use the Customization Allowed By
property to permit customizations only for certain roles.

Enabling Runtime Customization of Pages and Components

Creating Customizable Applications 61-11

Figure 61–3 Runtime Effects of Customization Settings

61.3.1 How to Enable Pages for Runtime Customization
Perform the following steps to enable runtime customization of a web page using Page
Composer:

1. Ensure that the customizable pages have page definition files.

2. Make pages runtime editable by adding Page Composer components to the pages.

YesYesYes

Is
customization

allowed for
the object?

Yes

Yes

Action appears in
menu. User chooses
action to open tool.

Action appears in
menu. User chooses
action to open tool.

Customization
occurs.

Can the
component’s
attribute be
persisted

?

Makes Implicit
Personalization

Does
the user have

administrative role
or privilege

?

Wants to Manage
Customizations

Does
the user have

administrative role
or privilege

?

Wants to
Customize Page

Is
customization

allowed for the page?
(JSPX)

(default =
true)

Wants to
Personalize Page

Is
the page

personalizable
in Page Composer?

(default = false)

Wants to
Reset Page

Yes

Is
the user

authorized to
edit the page or task

flow that holds
the object?

Yes

Enabling Runtime Customization of Pages and Components

61-12 Developer's Guide

3. If you are enabling the runtime addition of content, set up a resource catalog.

4. (Optional) Set up a default catalog definition file to facilitate testing.

61.3.1.1 Ensuring Customizable Pages Have Page Definitions
Page definition files define the binding objects that populate data the data in UI
components at runtime. A page definition is required for runtime customizations that
add additional components such as task flows and portlets. Page definition files can be
found under Projects > View Controller > Application Sources > oracle.apps.view. If
a required page definition file does not exist, complete the following steps to create
one.

To create a page definition file for a JSPX page:

1. In the Application Navigator, right-click the JSPX page and choose Go to Page
Definition.

2. If the page does not have a page definition, a Confirm Create New Page Definition
dialog appears. Click Yes to create the page.

61.3.1.2 Making a JSPX Document Editable at Runtime
To make a JSPX document editable at runtime, you add Composer components to the
page at design time. You use the Panel Customizable component to define an area of the
page onto which users can add components at runtime. You use the Layout
Customizable component to enable users to lay out its child components in several
predefined ways, such as two-column or three-column.

The Layout Customizable and Panel Customizable components are from the Oracle
WebCenter Portal — Composer technology scope, which you added when you
completed the steps in Section 61.2.4, "How to Add Composer Technology Scope to
Your Project," and which are available from the Composer page in the Component
Palette.

For more information about the Panel Customizable and Layout Customizable
components, see the "Composer Components" section in the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

61.3.1.3 Setting Up a Resource Catalog
If you have a Panel Customizable component on your page to enable the runtime
addition of content, you must set up a resource catalog to list the available content.

To learn how to create a custom resource catalog, see the "Creating and Managing
Resource Catalogs" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter Portal.

61.3.1.4 Using the Default Catalog Definition File for Testing
A considerable amount of work is involved in setting up a resource catalog. If you
want to test runtime customizations before you finish setting up your catalog, you can
use the default catalog definition file.

To use the default catalog for testing:

1. Create the application_root/ViewController/src/oracle/adf/rc/metadata
directory structure.

Enabling Runtime Customization of Pages and Components

Creating Customizable Applications 61-13

2. Copy the Oracle WebCenter Portal default catalog definition file
default-catalog.xml to the newly created application_
root/ViewController/src/oracle/adf/rc/metadata directory.

61.3.2 How to Enable End-User Personalizations for a Page
Control whether an end user can personalize a page by setting the page's
isPersonalizableInComposer property.

To enable end-user personalizations:

1. In the Application Navigator, select the .jspx page.

2. In the Structure window, select the af:pageTemplate component.

3. In the Property Inspector, select true from the isPersonalizableInComposer
dropdown list.

61.3.3 How to Restrict Customization of a Page, Page Fragment, or Component
Customization is enabled for pages, page fragments, and components by default.
However, there might be situations where you want to prevent customization for some
objects.

You can specify at the page, page fragment, or component level whether
customizations for a component are permitted at runtime and who is permitted to
customize that component.

Before you begin:
Review the introduction to Section 61.3, "Enabling Runtime Customization of Pages
and Components" to understand how the application uses the value of the
Customization Allowed property to determine whether an object can be customized.

To restrict customization of a page, page fragment, or component:
1. In the Application Navigator, select the page or fragment for which you want to

edit customization properties.

2. If you are restricting the customization of a component, select the component in
the Structure window.

3. If the Property Inspector is not open, choose Property Inspector from the View
menu.

4. In the Property Inspector, expand Customization.

5. Set the appropriate customization attribute.

■ To disable runtime customization, set Customization Allowed to false.

Caution: The Oracle WebCenter Portal default catalog should only
be used for testing purposes. You must create your own catalog for
production purposes.

Note: You must enable personalizations for all your dashboards.
However, workareas should have personalizations enabled only if
absolutely required.

Enabling Runtime Customization of Pages and Components

61-14 Developer's Guide

■ To restrict customization to specific sets of users and layers, set Customization
Allowed By to a space-separated list of the security roles for which you wish
to permit customization.

For more information about these attributes, see the "Extended Metadata Properties"
section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

For information about customization layers, see the "Understanding Customization
Layers" section in the Oracle Fusion Applications Extensibility Guide.

61.3.4 How to Authorize the Runtime Customization of Pages and Task Flows
As illustrated in Figure 61–3 a user can edit customizable components in a user
interface page at runtime only if they have permission to edit the page and permission
to edit the task flow that contains the component. For example, an end user can only
customize components in a task flow using Page Composer if that user has permission
to customize the task flow. You use the jazn-data.xml file to define which roles can
edit the page or task flow.

Before you begin:
Enable the desired pages for editing in Page Composer as described in Section 61.3,
"Enabling Runtime Customization of Pages and Components."

To authorize pages and task flows for runtime customizations:
1. In the Application Resources panel, expand Descriptors, expand META-INF

nodes, and then double-click jazn-data.xml.

2. In the overview editor, click the Resource Grants navigation tab, as shown in
Figure 61–4.

Tip: If the jazn-data.xml file does not exist, you can create it by
right-clicking the META-INF node, selecting New Oracle
Deployment Descriptor, selecting jazn-data.xml, and then clicking
Finish.

Enabling Runtime Customization of Pages and Components

Creating Customizable Applications 61-15

Figure 61–4 Resource Grants Tab in jazn-data.xml Overview

3. Select Web Page from the Resource Type dropdown list.

You use the Web Page resource type for both web pages and page fragments.

4. Set the Source Project to ViewController.

5. For each Page Composer enabled web page, select the Customize action for each
role for which you want to enable page customization.

You must also authorize customization for the task flows, as described in the
following two steps.

6. Select Task Flow from the Resource Type dropdown list.

7. For each task flow, select the Customize action for each role for which you want to
enable customization of the components in the task flow.

8. If you want the task lists that are exposed in your pages to be customizable for
your application, select the entry for TaskList in the Resources list, and, for each
role for which you want to enable task list customization, select the customize and
grant actions.

For more information, see the "Implementing Task Flow Security" section in the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter Portal.

61.3.5 How to Persist Implicit Runtime Customizations
Certain ADF Faces components have attributes that can be saved during a user
session. For example, if a user expands a panel box component, the box will be
expanded when the user returns to the page. This type of change is referred to as
implicit runtime customization. For information about which component properties
can be persisted, see the "Allowing User Customizations at Runtime" chapter in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

In Section 61.2.1, "How to Set Project Properties to Enable User and Seeded
Customizations," you configured the application to persist implicit runtime
customizations across sessions as well as within sessions.

Enabling Runtime Customization of Pages and Components

61-16 Developer's Guide

The attributes that can be persisted are set in the tag library, but you can override these
settings. For example, you might not want the end users to change column widths, but
you want all other default attribute changes for columns to be persisted. You set and
unset these values in the Overview Editor for the adf-config.xml file, as described in
the "Configuring User Customizations" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition). You can also override these settings for specific components, as
described in the "Controlling User Customizations in Individual JSF Pages" section in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

62

Working with Extensions to Oracle Enterprise Scheduler 62-1

62Working with Extensions to Oracle
Enterprise Scheduler

This chapter explains how to use extensions to Oracle Enterprise Scheduler to manage
job request submissions in the context of Oracle Fusion Applications. This chapter
includes the following sections:

■ Section 62.1, "Introduction to Oracle Enterprise Scheduler Extensions"

■ Section 62.2, "Standards and Guidelines"

■ Section 62.3, "Creating and Implementing a Scheduled Job in Oracle JDeveloper"

■ Section 62.4, "Creating a Job Definition"

■ Section 62.5, "Configuring a Spawned Job Environment"

■ Section 62.6, "Implementing a PL/SQL Scheduled Job"

■ Section 62.7, "Implementing a SQL*Plus Scheduled Job"

■ Section 62.8, "Implementing a SQL*Loader Scheduled Job"

■ Section 62.9, "Implementing a Perl Scheduled Job"

■ Section 62.10, "Implementing a C Scheduled Job"

■ Section 62.11, "Implementing a Host Script Scheduled Job"

■ Section 62.12, "Implementing a Java Scheduled Job"

■ Section 62.13, "Elevating Access Privileges for a Scheduled Job"

■ Section 62.14, "Creating an Oracle ADF User Interface for Submitting Job
Requests"

■ Section 62.15, "Submitting Job Requests Using the Request Submission API"

■ Section 62.16, "Defining Oracle Business Intelligence Publisher Postprocessing
Actions for a Scheduled Job"

■ Section 62.17, "Monitoring Scheduled Job Requests Using an Oracle ADF UI"

■ Section 62.18, "Using a Task Flow Template for Submitting Scheduled Requests
Through an Oracle ADF UI"

■ Section 62.19, "Securing Oracle ADF UIs"

■ Section 62.20, "Integrating Scheduled Job Logging with Oracle Fusion
Applications"

■ Section 62.21, "Logging Scheduled Jobs"

Introduction to Oracle Enterprise Scheduler Extensions

62-2 Developer's Guide

62.1 Introduction to Oracle Enterprise Scheduler Extensions
Oracle Enterprise Scheduler provides the ability to run different job types, including
Java, PL/SQL, and spawned jobs. Jobs can run on demand, or be scheduled to run in
the future.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:

■ Distributing job request processing across a grid of application servers.

■ Running Java, PL/SQL, and process or spawned jobs.

■ Processing multiple jobs concurrently.

■ Running the same job in different languages.

Using Oracle JDeveloper, application developers can create and implement jobs. While
implemented in JDeveloper, Oracle Enterprise Scheduler runs the jobs. A number of
APIs provide an interface between jobs executed within applications developed in
JDeveloper and Oracle Enterprise Scheduler.

The Oracle JDeveloper extensions to Oracle Enterprise Scheduler enable the following:

■ Running scheduled Oracle Business Intelligence Publisher (Oracle BI Publisher),
spawned, Java, PL/SQL, Perl, SQL*Plus, SQLoader, and C jobs.

■ Running the same job in multiple locales, time zones, currencies, and so on.

■ Creating log and output files for jobs, as well as acting upon those files, such as
enabling notifications.

■ Creating Oracle Application Development Framework (Oracle ADF) task flows to
schedule jobs and job sets, as well as monitor job requests.

Before you begin:
Install Oracle Enterprise Scheduler to Oracle WebLogic Server. For more information,
see Chapter 2, "Setting Up Your Development Environment."

62.2 Standards and Guidelines
The following standards and guidelines apply to working with extensions to Oracle
Enterprise Scheduler:

■ Always use the preconfigured job types provided when defining metadata for job
definitions.

62.3 Creating and Implementing a Scheduled Job in Oracle JDeveloper
Submitting job requests from an Oracle Fusion application requires developing the
following components:

■ A job definition, created in JDeveloper

■ The job itself, implemented in Java, PL/SQL, SQL*Loader, SQL*Plus, Perl, C, or
host scripts

■ A user interface enabling end users to submit job requests and/or additional
properties for the job

A wizard enables defining a new job within the context of an Oracle Fusion
application. The job can be any one of the following types: Java, PL/SQL, SQL*Loader,
SQL*Plus, Perl, C, or host scripts.

Creating a Job Definition

Working with Extensions to Oracle Enterprise Scheduler 62-3

62.3.1 How to Create and Implement a Scheduled Job in JDeveloper
Creating and implementing a scheduled job in JDeveloper involves creating a package
or class from which to call the job, as well as defining a job definition. The job must
then be deployed and tested, and a job request submission interface defined.

To create and implement a scheduled job in JDeveloper:
1. Create a package, class, or job, and include the minimum required methods or

functions.

■ Define the job request

■ Define any subrequests, if required.

2. If a job requires parameters to be filled in by end users using an Oracle ADF user
interface, define a standard ADF Business Components view object with
validation.

For example, if a job requires information regarding duration, date, and time,
create an ADF Business Components view object with the properties duration,
date, and time.

3. Create a job definition in JDeveloper using the wizard.

If using an ADF Business Components view object to collect additional values at
runtime from end users, specify the name of the view object as a property of the
job definition.

4. Deploy the job.

5. Test the job.

6. Create the end user job request submission interface.

For more information about creating the end user job request submission interface,
see Section 62.14, "Creating an Oracle ADF User Interface for Submitting Job
Requests."

62.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in
JDeveloper

An Oracle ADF interface is provided to enable application end users to submit job
requests from an Oracle Fusion application. The Oracle ADF interface is integrated
into an Oracle Fusion application. As soon as a job request is submitted through the
interface, Oracle Enterprise Scheduler runs the job as scheduled.

62.4 Creating a Job Definition
To submit a job request, you must first create a job definition.

62.4.1 How to Create a Job Definition
A job definition and job type are required to submit a job request.

■ Job Definition: This is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

■ Job Type: This specifies an execution type and defines a common set of properties
for a job request.

The extensions to Oracle Enterprise Scheduler provide the following execution types:

Creating a Job Definition

62-4 Developer's Guide

■ JavaType: for job definitions that are implemented in Java and run in the
container.

■ SQLType: for job definitions that run as PL/SQL stored procedures in a database
server.

■ CJobType: for job definitions that are implemented in C and run in the container.

■ PerlJobType: for job definitions that are implemented in Perl and run in the
container.

■ SqlLdrJobType: for job definitions that are implemented in SQL*Loader and run
in the container.

■ SqlPlusJobType: for job definitions that are implemented in SQL*Plus and run in
the container.

■ BIPJobType: for job definitions that are executed as Oracle BI Publisher reports.
Oracle BI Publisher jobs require configuring the parameter reportID.

For more information about defining an Oracle BI Publisher job, see the Oracle
Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher,
Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence
Publisher (Oracle Fusion Applications Edition), and the Oracle Fusion Middleware
Developer's Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications
Edition).

■ HostJobType: for job definitions that run as host scripts executed from the
command line.

Before you begin:
If your job definition requires additional properties to be filled in by end users at
submission time, you'll need to create a view object that defines these properties. The
view object must be associated with the job definition you create. The view object is
later associated with the user interface you create to allow end users to submit job
requests along with the properties at submission time.

For more information about defining properties to be filled in at runtime by end users,
see Section 62.14, "Creating an Oracle ADF User Interface for Submitting Job
Requests."

To create a new job definition in Oracle JDeveloper:
1. In Oracle JDeveloper, create an Oracle Fusion web application by clicking the

Application Menu icon on the Application Navigator, selecting New Project >
Projects > Generic Project and clicking OK.

2. Right-click the project and select Properties. In the Resources tab, add the directory
$MW_HOME/jdeveloper/integration/ess/extJobTypes.

3. If your job includes any properties to be filled in by end users using an Oracle
ADF user interface at runtime, create an ADF Business Components view object
with validation and the parameters to be filled in by end users.

a. Right-click the Model project and select Properties. In the Resource Bundle
section, configure one bundle per file and select resource bundle type Xliff
Resource Bundle.

b. Define attributes for the view objects sequentially, ATTRIBUTE1, ATTRIBUTE2,
and so on, with an attribute for each required parameter. Use ADF Business
Components attribute control hints to specify required prompt, validation,
and formatting for each parameter. For more information, see the chapter

Creating a Job Definition

Working with Extensions to Oracle Enterprise Scheduler 62-5

"Creating a Business Domain Layer Using Entity Objects" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition).

c. Add the property parametersVO to your job definition and specify the fully
qualified path of the view object as the value of parametersVO. For example,
set parametersVO to oracle.my.package.TestVO. A maximum of 100
attributes can be used for parametersVO. The attributes should be named
incrementally, for example ATTRIBUTE1, ATTRIBUTE2, and so on.

d. Define the following required properties:

■ jobDefinitionName: The short name of the job.

■ jobDefinitionApplication: The short name of the application running the
job.

■ jobPackageName: The name of the package running the job.

Additional properties can be defined as shown in Table 62–1.

Table 62–1 Additional Job Definition Properties

Property Description

completionText An optional string value that can be used to communicate details of the final
state of the job.

This property value is displayed in the UI used to monitor job request
submissions in the details section of the job request. It can be useful for
displaying a short explanation as to why a request ended in an error or warning
state.

CustomDatacontrol The name of the data control for the application to which the parameter task
flow is bound. Following is an example.

<parameter name="CustomDatacontrol"
data-type="string">ExtParameterAM</parameter>

Use this property when adding a custom task flow to an Oracle ADF user
interface used to submit job requests at run time. For more information, see
Section 62.14.2, "How to Add a Custom Task Flow to an Oracle ADF User
Interface for Submitting Job Requests."

defaultOutputExtension The suffix of the output file. Possible values are txt, xml, pdf, html.

enableTimeStatistics A Boolean parameter that enables or disables the accumulation of time statistics
(Y or N).

enableTrace A numerical value that indicates the level of tracing control for the job. Possible
values are as follows:

■ 1: Database trace

■ 5: Database trace with bind

■ 9: Database trace with wait

■ 13: Database trace with bind and wait

■ 16: PL/SQL profile

■ 17: Database trace and PL/SQL profile

■ 21: Database trace with bind and PL/SQL profile

■ 25: Database trace with wait and PL/SQL profile

■ 29: Database trace with bind, wait and PL/SQL profile

executionLanguage Stores the preferred language in which the job request should run.

Creating a Job Definition

62-6 Developer's Guide

executionNumchar The numeric characters used in the preferred language in which the job runs, as
defined by executionLanguage.

executionTerritory The territory of the preferred language in which the job runs, as defined by
executionLanguage.

EXT_
PortletContainerWebModule

Specifies the name of the web module for the Oracle Enterprise Scheduler UI
application to use as a portlet when submitting a job request. The Oracle
Enterprise Scheduler central UI looks up the producer from the topology based
on the registered producer application name derived from EXT_
PortletContainerWebModule.

incrementProc Enables a PL/SQL procedure evaluated at runtime which calculates the next set
of date parameter values for a recurring request. Enter the name of the PL/SQL
procedure. The procedure expects one argument—a number signifying the
change in milliseconds between the start dates of the first and current requests.

Table 62–1 (Cont.) Additional Job Definition Properties

Property Description

Creating a Job Definition

Working with Extensions to Oracle Enterprise Scheduler 62-7

incrementProcArgs A list of comma-separated date arguments to be incremented. The
incrementProc property is used to increment these values. Alternatively, a
default value is used if the property incrementProc is not defined. Enter a list of
argument numbers to identify which job arguments are to be incremented (for
example, "1, 2, 5").

In the example shown here, an incrementProc procedure calculates the next set
of date parameter values for a recurring request. The procedure expects one
argument: a number signifying the change in milliseconds between the start
dates of the first and current requests.

 -- incr_test - Sample PL/SQL incrementProc procedure
 -- This procedure gets the list of arguments to be incremented
 -- using the incrementProcArgs property and increments each
 -- argument by the delta provided. This behavior is identical
 -- to the default behavior if no incrementProc is set for the
 -- job.
procedure incr_test(delta IN number) is
 request_id number;
 incrProcArgs varchar2(200);
 curr_arg_n varchar2(100);
 curr_arg_v varchar2(2000);
 del_pos number := 0;
 prev_pos number := 1;
 old_date date;
 new_date date;
 delta_days number;
 begin
 request_id := FND_JOB.REQUEST_ID;
 delta_days := delta / (1000*60*60*24);

 -- incrProcArgs must be defined for this procedure to be
 -- called.
 incrProcArgs := ESS_RUNTIME.GET_REQPROP_VARCHAR(request_id,
 FND_JOB.INCR_PROC_ARGS_P) || ',';

 LOOP
 del_pos := INSTR(incrProcArgs, ',', prev_pos);
 EXIT WHEN del_pos = 0;

 curr_arg_n := FND_JOB.SUBMIT_ARG_PREF_P || SUBSTR(incrProcArgs,
 prev_pos, del_pos-prev_pos);

 curr_arg_v := ESS_RUNTIME.GET_REQPROP_VARCHAR(request_id,
 curr_arg_n);

 old_date := FND_DATE.CANONICAL_TO_DATE(curr_arg_v);
 new_date := old_date + delta_days;

 ESS_RUNTIME.UPDATE_REQPROP_VARCHAR(request_id, curr_arg_n,
 FND_DATE.DATE_TO_
 CANONICAL(new_date));

 prev_pos := del_pos+1;
 END LOOP;
 end incr_test;

Table 62–1 (Cont.) Additional Job Definition Properties

Property Description

Creating a Job Definition

62-8 Developer's Guide

4. Create a new job. From the New Gallery, select Business Tier > Enterprise
Scheduler Metadata and click Job Definition.

5. In the Job Definition Name & Location page in the Job Definition Creation wizard,
do the following:

■ Name: Enter a name for the job.

■ JobType: Select the job type from the drop-down list.

Click Finish. The new job definition displays.

6. Edit the following properties in the job definition as required for the selected job
type:

■ JavaJobType: Uncheck the read-only checkbox next to className and set its
value to the value of the business logic class.

■ PlsqlJobType: Uncheck the read-only checkbox next to procedureName and set
its value to the name of the procedure (such as myprocedure.proc). Create a
new parameter named numberOfArgs. Set numberOfArgs to the number of job
submission arguments, excluding errbuf and retcode.

■ CJobType: Add the parameter executableName and set its value to the name
of the C job to be executed. The executable file identified by the

logLevel The level at which events are logged (between 0 and 4). Each job type has a
logLevel of 1 by default. This optional value is used to override the job type
logLevel in the job definition. For more information about log levels, see the
Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduler.

optimizerMode This flag enables setting the database optimizer mode for the job. Optimizer
mode is useful for fine-tuning performance.

parametersVO The ADF Business Components view object you define for additional properties
to be entered at runtime by end users using an Oracle ADF user interface.

ParameterTaskflow Enter the name of the task flow as a parameter. The name of the taskflow.xml
file must be the same as the taskflowId. Following is an example.

<parameter name="ParameterTaskflow"
data-type="string">/WEB-INF/oracle/apps/prod/project/ParamTestTaskFlo
w.xml#ParamTestTaskFlow</parameter>

Use this property when adding a custom task flow to an Oracle ADF user
interface used to submit job requests at run time. For more information, see
Section 62.14.2, "How to Add a Custom Task Flow to an Oracle ADF User
Interface for Submitting Job Requests."

reportID The Oracle BI Publisher report value specified in the Oracle BI Publisher
repository. Required parameter for Oracle BI Publisher jobs only.

rollbackSegment Enables setting a database rollback segment for the job, which will be used until
the first commit. When implementing the rollback segment, use FND_JOB.AF_
COMMIT and FND_JOB.AF_ROLLBACK to commit and rollback.

srsFlag A Boolean parameter (Y or N) that controls whether the job displays in the job
request submission user interface (see Section 62.14, "Creating an Oracle ADF
User Interface for Submitting Job Requests").

SYS_runasApplicationID Enables elevating access privileges for completing a scheduled job. For more
information about elevating access privileges for the completion of a particular
job, see Section 62.13, "Elevating Access Privileges for a Scheduled Job."

Table 62–1 (Cont.) Additional Job Definition Properties

Property Description

Creating a Job Definition

Working with Extensions to Oracle Enterprise Scheduler 62-9

executableName parameter must exist in the directory $APPLICATIONS_
BASE/$APPLBIN.

■ PerlJobType: Add the parameter executableName and set its value to the
name of the Perl script.

■ SqlLdrJobType: Add the parameter executableName and set its value to the
name of the control file to be executed (located under PRODUCT_TOP/$APPLBIN).
Add SQL*Loader options such (such as direct=yes) as a sqlldr.directoption
parameter in the job definition.

■ SqlPlusJobType: Add the parameter executableName and set its value to the
name of the SQL*Plus job script to be executed (located under PRODUCT_
TOP/$APPLSQL).

■ HostJobType: Add the parameter executableName and set its value to the
name of the host script job to be executed. The executable file identified by the
executableName parameter must exist in the directory PRODUCT_TOP/$APPLBIN.

62.4.2 How to Define File Groups for a Job
A file group is a collection of output files such as text files, XML files, and so on. File
groups enable categorizing files together for a specific purpose, such as file groups for
human resources or financial reports.

File groups are used for postprocessing jobs such as Business Intelligence Publisher
jobs. Using postprocessing actions, the results of a job can be saved as an HTML file,
for example, or printed. File groups specify the type of postprocessing action to be
taken for a given job.

There are two types of file groups: output and layout. Postprocessing layout actions
create additional output files using the job request output files. For example, an XML
job output file can be processed as an HTML or PDF file.

Postprocessing output actions act upon job request output files by printing, faxing, or
emailing the files, for example. Output postprocessing actions can be taken on job
request output files, as well as files created by layout postprocessing actions. For
example, a job request output XML file can be converted to a PDF file using layout
postprocessing actions, and then emailed using output postprocessing actions.

For more information about defining an Oracle BI Publisher job, see the Oracle Fusion
Middleware Report Designer's Guide for Oracle Business Intelligence Publisher, Oracle
Fusion Middleware Administrator's Guide for Oracle Business Intelligence Publisher (Oracle
Fusion Applications Edition), and the Oracle Fusion Middleware Developer's Guide for
Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition).

To define file group properties:
1. In the job definition for which you want to define postprocessing, define a file

group.

a. Name the property Program.FMG.

Note: Configure the $APPLBIN and $APPLSQL variables in the
environment.properties file. The $APPLBIN and $APPLSQL variables
point to the location of executable files under PRODUCT_TOP. These
variables enable the extensions to Oracle Enterprise Scheduler to
locate the jobs to be run. Typically, these variables are set in a
preexisting environment properties file in the system.

Creating a Job Definition

62-10 Developer's Guide

b. For the value of the property, enter a list of comma-separated File
Management Groups, where each file group is prefixed by an L or O to
indicate a layout or output file group, respectively. A sample file group
property is shown in Example 62–1.

Example 62–1 File Group Property Sample Value

Program.FMG = L.MYXML, O.ALL, O.PDF

Three file groups are listed in this example.

2. In the job definition, create a property containing a regular expression used to
filter the files in the output work directory of the job request. Any output files that
match the filter will be part of the relevant file group.

Example regular expressions are shown in Example 62–2, Example 62–3, and
Example 62–4.

Example 62–2 File Group Regular Expression Filtering for All Files with the Suffix XML

MYXML = '.*.\xml$'

Example 62–3 File Group Regular Expression Filtering for All Files

ALL = '.*$'

Example 62–4 File Group Regular Expression Filtering for All Files with the Suffix PDF

PDF = '.*.\pdf$'

An example of file group properties in a job definition is shown in Example 62–5.

Example 62–5 File Group Properties with File Group Regular Expression Filtering

Program.FMG = L.MYXML, O.ALL, O.PDF
MYXML = '.*.\xml$' ALL = '.*$' PDF = '.*.\pdf$'

These properties specify the use of the Business Intelligence Publisher
postprocessing action on the MYXML file group, followed by the print
postprocessing action on either ALL or PDF file groups.

3. Optionally, rename the file group and store it in the Oracle Metadata Service
repository so that it displays in a more user-friendly way in the scheduled job
request submission UI.

62.4.3 What Happens When You Create a Job Definition
The job definition is written to an XML file called <job name>.xml.

62.4.4 What Happens at Runtime: How Job Definitions Are Created
The Oracle Fusion application passes the job definition file to Oracle Enterprise
Scheduler, which runs the job defined in the file.

Configuring a Spawned Job Environment

Working with Extensions to Oracle Enterprise Scheduler 62-11

62.5 Configuring a Spawned Job Environment
Configuring a spawned job involves creating an environment file and configuring an
Oracle wallet.

62.5.1 How to Create an Environment File for Spawned Jobs
Spawned jobs require an environment.properties file to provide the correct
environment for execution. The environment.properties file should be located in the
config/fmwconfig directory under the domain.

Additional environment variables may be added to the same directory in a similar file
called env.custom.properties. Variables defined in this file take precedence over
those in the environment.properties file.

Similarly, server-specific environment variables may be set in the server config
directory in files called environment.properties and env.custom.properties.

Before you begin:
The following variables are used to identify the correct interpreters for various
spawned job types:

■ AFSQLPLUS: The executable for SQL*Plus scripts.

■ AFSQLLDR: The executable for SQL*Loader uploads.

■ AFPERL: The Perl interpreter.

■ ATGPF_TOP: The TOP directory for ATGPF files, needed to locate key files for
SQL*Plus and Perl jobs.

The following environment properties are available to all spawned jobs:

■ REQUESTID: The request ID of the current job request.

■ WORK_DIR_ROOT: The directory on the local file system where the request can
perform file operations.

■ OUTPUT_WORK_DIR: The directory to which the job writes all output files.

■ LOG_WORK_DIR: The directory to which the job writes all log files.

■ INPUT_WORK_DIR: The directory to which input files are saved before the job is
spawned.

■ OUTFILE_NAME: The default name for the job output file.

■ LOGFILE_NAME: The name of the log file for the job.

■ USER_NAME: The name of the user submitting the job. The job runs in the context of
this user.

■ REQUEST_HANDLE: The Oracle Enterprise Scheduler request handle for the current
request.

The environment variables must point to the client ORACLE_HOME and environment so
that spawned jobs can connect to the database.

Configuring a Spawned Job Environment

62-12 Developer's Guide

To create an environment file for spawned jobs:
1. Use a text editor to create an environment.properties file for the spawned job.

2. Set the following environment variables in the environment.properties file:

■ LD_LIBRARY_PATH

■ ORACLE_HOME

■ PATH: The full path of the spawned job. In Windows environments, the PATH
must include all directories that are typically part of LD_LIBRARY_PATH.

■ TNS_ADMIN: The directory which stores files related to the database connection
(such as tnsnames.ora, sqlnet.ora).

■ TWO_TASK: The TNS name identifying the database to which spawned jobs
should connect. In Windows environments, the environment variable is LOCAL.

3. Configure the following variables, which are required to locate spawned jobs:

■ APPLBIN: C executables and SQL*Loader control files must reside in the
$APPLBIN directory under the product TOP.

■ APPL_TOP: Set this property to the top level directory where the bin directory
of C executables resides.

■ APPLSQL: SQL*Plus scripts must reside in the $APPLSQL directory under the
product TOP. This means that the product TOP should be accessible to the
environment.

■ ATGPF_TOP: This variable is required for SQL*Plus jobs. This should point to
where the wrapper script is available.

4. Save the environment.properties file and restart the server.

62.5.2 How to Configure an Oracle Wallet for Spawned Jobs
Use the TNS_ADMIN and ORACLE_HOME variables specified in the
environment.properties file created in Section 62.5.1.

A configured Oracle wallet enables spawned jobs to connect to the database at the
command line. A provisioned Oracle Fusion Applications environment will have this
wallet preconfigured.

To configure an Oracle wallet for the spawned job:
1. At the prompt, enter the following commands as shown in Example 62–6.

Example 62–6 Creating a Wallet

cd $TNS_ADMIN
mkdir wallet
mkstore -wrl ./wallet -create

2. When prompted, choose a password for the wallet.

Note: Ensure the variables you define in the
environment.properties file do not include any trailing spaces.
Follow the guidelines required by java.util.properties.

Restart the server after editing the environment.properties file.

Configuring a Spawned Job Environment

Working with Extensions to Oracle Enterprise Scheduler 62-13

3. At the prompt, enter the following command as shown in Example 62–7.

Example 62–7 Creating Wallet Credentials

mkstore -wrl ./wallet -createCredential <$TWO_TASK> fusion_runtime <fusion_
runtime_password password>

where TWO_TASK is the variable in the environment.properties file and <fusion
password> is the password for the fusion user name.

This command creates permissions for accessing the wallet.

4. When prompted, enter the wallet password created earlier.

5. In a text editor, create a file called sqlnet.ora that includes the lines shown in
Example 62–8.

Example 62–8 Create a File Called sqlnet.ora

 SQLNET.WALLET_OVERRIDE = TRUE
 WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = <$TNS_ADMIN>/wallet)
)
)

6. In a text editor, create a file called tnsnames.ora that includes the lines shown in
Example 62–9.

Example 62–9 Create a File Called tnsnames.ora

 dbname =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = host.example.com)
 (PORT = 1521)
)
 (CONNECT_DATA = (SID-sidname))
)

7. Execute the following commands as shown in Example 62–10.

Example 62–10 Set Directory and File Permissions

chmod 755 wallet
chmod 744 wallet/cwallet.sso

The first command enables anyone to read and execute files in the directory, while
reserving write access to the directory creator.

The second command enables only the file owner to read, write and execute the
file, while anyone can read the file.

8. Test the wallet by connecting to it. Execute the following command as shown in
Example 62–11.

Example 62–11 Connect to the Wallet

sqlplus /@<$TWO_TASK>

Implementing a PL/SQL Scheduled Job

62-14 Developer's Guide

62.5.3 What Happens When You Configure a Spawned Job Environment
A configured Oracle wallet enables spawned jobs to connect to the database at the
command line.

62.6 Implementing a PL/SQL Scheduled Job
Implementing a PL/SQL scheduled job requires creating a job definition and creating
a PL/SQL package.

62.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job
Run subrequests through Oracle Enterprise Scheduler using the Oracle Enterprise
Scheduler APIs to access Oracle Enterprise Scheduler.

A PL/SQL stored procedure scheduler job should have a signature with the first two
arguments being errbuf and retcode. The remaining arguments are used as required
for defining job parameters. All arguments have a data type of varchar2.

62.6.2 How to Define Metadata for a PL/SQL Scheduled Job
Create a job definition as described in Section 62.4, "Creating a Job Definition."

PL/SQL jobs require setting an additional property numberOfArgs in the job definition.
This property identifies the number of job submission arguments (not including the
required arguments errbuf and retcode.)

62.6.3 How to Implement a PL/SQL Scheduled Job
Oracle Enterprise Scheduler provides runtime PL/SQL APIs for implementing
PL/SQL jobs and running the jobs using Oracle Enterprise Scheduler. A view object is
defined and associated with the job definition for the job.

When creating a PL/SQL job, use the fusion database user. For information about
granting access privileges to database users in the context of Oracle Fusion
Applications, see Chapter 48, "Implementing Oracle Fusion Data Security."

Before you begin:
For more information about implementing a PL/SQL stored procedure scheduled job
see the chapter "Creating and Using PL/SQL Jobs" in the Oracle Fusion Middleware
Developer's Guide for Oracle Enterprise Scheduler.

To implement a PL/SQL scheduled job:
1. Create a PL/SQL package, including at minimum the required errbuf and

retcode arguments.

2. Deploy the package to a database.

3. Test the package.

62.6.4 What Happens When You Implement a PL/SQL Job
The sample PL/SQL job shown in Example 62–12 provides a signature of a PL/SQL
procedure run as a job. The first two arguments to the PL/SQL procedure, errbuf and

Implementing a PL/SQL Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-15

retcode, are required. The remaining arguments are properties filled in by end users
and passed to Oracle Enterprise Scheduler when the job is submitted.

The example shown in Example 62–12 illustrates a sample PL/SQL job that uses the
PL/SQL API.

Example 62–12 Running a Job Using the PL/SQL API

procedure fusion_plsql_sample(
-- The first two arguments are required: errbuf and retcode
--
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,

-- The errbuf is logged when a job request ends in a warning or error state to
-- provide a quick indication as to why the job request ended in an error or
-- warning state.
-- Job submission arguments, as collected from the view object associated with the
-- job as configured in the job definition. The view object is used to present a
-- user interface to end users, allowing them to enter the properties listed in
-- the following lines of code.
-- interface. These values are submitted by the end user.
--
 run_mode in varchar2 default 'BASIC',
 duration in varchar2 default '0',
 p_num in varchar2 default NULL,
 p_date in varchar2 default NULL,
 p_varchar in varchar2 default NULL) is

 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program");

 -- Implement the business logic of the job here.
 --
 FND_FILE.PUT_LINE(FND_FILE.OUT, " RUN MODE : " || run_mode);
 FND_FILE.PUT_LINE(FND_FILE.OUT, "DURATION: " || duration);
 FND_FILE.PUT_LINE(FND_FILE.OUT, "P_NUM: " || p_num);
 FND_FILE.PUT_LINE(FND_FILE.OUT, "P_DATE: " || p_date);
 FND_FILE.PUT_LINE(FND_FILE.OUT, "P_VARCHAR: " p_varchar);

 -- Retrieve the job completion status which is returned to Oracle
 -- Enterprise Scheduler.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end;

The sample shown in Example 62–13 illustrates a PL/SQL job with a subrequest
submission. The no_requests argument identifies the number of subrequests that
must be submitted.

Example 62–13 Submitting a Subrequest Using the PL/SQL Runtime API

procedure fusion_plsql_subreq_sample(
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 no_requests in varchar2 default '5',
) is
 req_cnt number := 0;
 sub_reqid number;

Implementing a PL/SQL Scheduled Job

62-16 Developer's Guide

 submitted_requests varchar2(100);
 request_prop_table_t jobProp;
 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program with
subrequest functionality");

 -- Requesting the PAUSED_STATE property set by job identifies request as
 -- having started for the first time or restarting after being paused.
 if (ess_runtime.get_reqprop_varchar(fnd_job.job_request_id, 'PAUSED_
STATE')) is null) -- first time start
 then
 -- Implement the business logic of the job here.
 FND_FILE.PUT_LINE(FND_FILE.OUT, " About to submit subrequests : " || no_
requests);

 -- Loop through all the subrequests.
 for req_cnt 1..no_requests loop
 -- Retrieve the request handle and submit the subrequest.
 sub_reqid := ess_runtime.submit_subrequest(request_handle => fnd_
job.request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => jobProp);
 submitted_requests := sub_reqid || ',';
 end loop;

 -- Pause the parent request.
 ess_runtime.update_reqprop_varchar(fnd_job.request_id, 'STATE', ess_
job.PAUSED_STATE);

 -- Update the parent request with the state of the subrequest, enabling
 -- the job to retrieve the status during restart.
 ess_runtime.update_reqprop_int(fnd_job.request_id, 'PAUSED_STATE',
submitted_requests);

 else
 -- Restart the request, retrieve job completion status and return the
 -- status to Oracle Enterprise Scheduler.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end if;
 end;

62.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented
Oracle Enterprise Scheduler calls routines to initialize the context of the PL/SQL job,
including PL/SQL global values, local values (such as language and territory), and
request-specific values such as request ID and request handle.

The view object associated with the job definition displays a user interface so that end
users may fill in values for each property. The Oracle Fusion web application calls
Oracle Enterprise Scheduler using the provided APIs and submits the job request.
Oracle Enterprise Scheduler runs the job, which calls the context routines and then
runs the job logic. The job ends with a retcode value of 0, 1, 2 or 3, representing
SUCCESS, WARNING, FAILURE or BUSINESS ERROR, respectively. The Oracle Fusion web
application can retrieve the result from Oracle Enterprise Scheduler and display it in
the user interface.

Implementing a SQL*Plus Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-17

62.7 Implementing a SQL*Plus Scheduled Job
Implementing a SQL*Plus scheduled job involves writing a SQL*Plus script and
configuring an environment file for the job.

62.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job
Run subrequests through Oracle Enterprise Scheduler using the Oracle Enterprise
Scheduler APIs to access Oracle Enterprise Scheduler.

62.7.2 How to Implement a SQL*Plus Job
Implementing a SQL*Plus stored procedures job involves writing the SQL*Plus script,
storing the script and configuring a spawned job environment.

To implement a SQL*Plus job:
1. Write the SQL*Plus job as a SQL*Plus script. Include the FND_JOB.set_sqlplus_

status call so as to report the final job status.

Include the following in the SQL*Plus scheduled job:

■ FND_JOB.set_sqlplus_status: Call to report the final job status. Statuses
include:

– FND_JOB.SUCCESS_V: Success.

– FND_JOB.WARNING_V: Warning.

– FND_JOB.FAILURE_V: Failure.

– FND_JOB.BIZERR_V: Business Error.

■ FND_FILE routines: Can be used for producing log data and output files.

■ FND_JOB API for request values: API calls are initialized for SQL*Plus jobs.

2. Store the script under PRODUCT_TOP/$APPLSQL.

3. Configure the spawned job environment as described in Section 62.5, "Configuring
a Spawned Job Environment." Configure the ATGPF_TOP value in the
environment.properties file for spawned jobs.

4. Run and test the job.

62.7.3 How to Use the SQL*Plus Runtime API
Oracle Enterprise Scheduler provides runtime SQL*Plus APIs for implementing
SQL*Plus jobs and running the jobs using Oracle Enterprise Scheduler.

This sample SQL*Plus job provides a signature of a SQL*Plus procedure run as a job.
Any necessary arguments are properties filled in by end users and passed to Oracle
Enterprise Scheduler when the job is submitted. A view object is defined and
associated with the job definition for the job. The view object is then used to display a
user interface so that end users may fill in values for each property. Finally, the sample
prints to an output file.

Note: SQL*Plus jobs must not exit.

Implementing a SQL*Plus Scheduled Job

62-18 Developer's Guide

62.7.4 What Happens When You Implement a SQL*Plus Job
Example 62–14 shows a sample SQL*Plus scheduled job, which is executed by a
wrapper script.

Example 62–14 Implementing a SQL*Plus Scheduled Job

SET VERIFY OFF
SET linesize 132

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;
REM dbdrv: none

/* --*/

DECLARE
errbuf varchar2(240) := NULL;
retval boolean;
run_mode varchar2(200) := '&1';

BEGIN
 DBMS_OUTPUT.PUT_LINE(run_mode);

 update dual set dummy = 'Q';

 FND_FILE.PUT_LINE(FND_FILE.LOG, 'Parameter 1 = ' || nvl(run_mode,'NULL'));

/* print out test message to log file and output file */
/* by making direct call to FND_FILE.PUT_LINE */
/* from sql script. */

 FND_FILE.PUT_LINE(FND_FILE.LOG, '
 ');
 FND_FILE.PUT_LINE(FND_FILE.LOG, '---
-----------------------');
 FND_FILE.PUT_LINE(FND_FILE.LOG, 'Printing a message to the LOG FILE
 ');
 FND_FILE.PUT_LINE(FND_FILE.LOG, '---
-----------------------');
 FND_FILE.PUT_LINE(FND_FILE.LOG, 'SUCCESS!
 ');
 FND_FILE.PUT_LINE(FND_FILE.LOG, '
 ');
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,'---
-----------------------');
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,'Printing a message to the OUTPUT FILE
 ');
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,'---
-----------------------');
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,'SUCCESS!
 ');
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,'
 ');

retval := FND_JOB.SET_SQLPLUS_STATUS(FND_JOB.SUCCESS_V);

END;
/
COMMIT;
-- EXIT; Oracle Fusion Applications SQL*Plus Jobs must not exit.

Implementing a SQL*Loader Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-19

62.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented
Oracle Enterprise Scheduler calls routines in a wrapper script to initialize the context
of the SQL*Plus job, including global values, local values (such as language and
territory), and request-specific values such as request ID and request handle. The
wrapper script introduces the prologue of commands shown in Example 62–15.

Example 62–15 SQL*Plus wrapper script

SET TERM OFF
SET PAUSE OFF
SET HEADING OFF
SET FEEDBACK OFF
SET VERIFY OFF
SET ECHO OFF
SET ESCAPE ON

WHENEVER SQLERROR EXIT FAILURE

The Oracle Fusion application calls Oracle Enterprise Scheduler using the provided
APIs. Oracle Enterprise Scheduler runs the job, and the final job status—SUCCESS,
WARNING, BUSINESS ERROR, or FAILURE—is communicated to Oracle Enterprise
Scheduler. The Oracle Fusion web application can retrieve the result from Oracle
Enterprise Scheduler and display it in the user interface.

62.8 Implementing a SQL*Loader Scheduled Job
Implementing a SQL*Loader scheduled job involves creating a SQL*Loader control file
and configuring a spawned job environment.

62.8.1 How to Implement a SQL*Loader Scheduled Job

Before you begin:
Keep in mind that the control file and data file must conform to the following
SQL*Loader standards:

■ Place control files in the $APPLBIN directory under the product TOP.

■ The control file's name must be the same as the executableName parameter in the
job definition.

■ Ensure that the data file's location is the first submit argument to the job.

■ Add SQL*Loader options such as direct=yes, if needed, as the
sqlldr.directoption parameter in the job definition.

To implement a SQL*Loader scheduled job:
1. Create a SQL*Loader control file (.ctl).

2. Enter the full path of the data file as the first submit argument to the job.

3. Store the control file under PRODUCT_TOP/$APPLBIN.

4. Configure the spawned job environment as described in Section 62.5, "Configuring
a Spawned Job Environment."

5. Test the file.

Implementing a Perl Scheduled Job

62-20 Developer's Guide

62.8.2 What Happens When You Implement a SQL*Loader Scheduled Job
A sample SQL*Loader scheduled job is shown in Example 62–16.

Example 62–16 Sample SQL*Loader scheduled job

This sample control file will upload data from the data file into the fnd_applcp_test
table, into the columns listed here (id1, id2, idn, mesg). See the SQL*Loader
documentation For more information about writing control files.

OPTIONS (silent=(header,feedback,discards))
LOAD DATA
INFILE *
INTO TABLE fnd_applcp_test
APPEND
FIELDS TERMINATED BY ','
(id1,
 id2,
 id3,
 func CHAR(30),
 time SYSDATE,
 action CHAR(30),
 mesg CHAR(240))

62.9 Implementing a Perl Scheduled Job
Implementing a Perl scheduled job involves creating a job definition, enabling the Perl
job to connect to a database and configuring a spawned job environment.

62.9.1 How to Implement a Perl Scheduled Job

Before you begin:
For more information about creating a Perl scheduled job see the chapter "Creating
and Using Process Jobs" in Oracle Fusion Middleware Developer's Guide for Oracle
Enterprise Scheduler.

To implement a Perl scheduled job:
1. Place the Perl job under the directory PRODUCT_TOP/$APPLBIN.

2. Create a job definition for the Perl job, setting the executableName parameter to
the name of the Perl script. The following functions can be used in the Perl script:

■ writeln(): Write a message to the log file.

■ timestamp(): Write a timestamped message.

3. To enable the Perl job to connect to a database, use /@$TWO_TASK as a connection
string without specifying a user name or password.

4. Configure the spawned job environment as described in Section 62.5, "Configuring
a Spawned Job Environment." The context provides values for the following:

■ reqid: The request ID.

■ outfile: The full path to the output file.

■ logfile: The full path to the log file.

■ username: The name of the user submitting the job request.

Implementing a Perl Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-21

■ log: The log object.

5. Implement an exit code for the job, with values of 0, 2 or 3 representing the
following states: success, warning, and business error. All other values represent
an errored state.

6. Test the job.

62.9.2 What Happens When You Implement a Perl Scheduled Job
Example 62–17 shows a sample scheduled Perl job which does the following:

1. Checks for basic or full mode.

2. Prints arguments.

3. Gets the context object of the scheduled job request.

4. Retrieves contextual information about the scheduled job request, which is stored
in the context object.

5. Writes the request to the log file.

6. Prints information as required.

Example 62–17 Perl Scheduled Job

dbdrv: none

use strict;

(my $VERSION) = q$Revision: 120.1 $ =~ /(\d+(\.\d+)*)/;

print_header("Begin Perl testing script (version $VERSION)");

check first argument for BASIC or FULL mode
if not FULL mode, exit successfully without doing anything
if (! $ARGV[0] || uc($ARGV[0]) ne "FULL") {
 exit(0);
}

-- If argument #1 was passed, use it as a sleep time
if ($ARGV[1]) {

 if ($ARGV[1] =~ /\D/) {
 print "** Argument #1 is not a valid number, unable to sleep!\n\n";
 } else {
 printf("Sleeping for %d seconds...\n", $ARGV[1]);
 sleep($ARGV[1]);
 }
}

-- Arguments
print_header("Arguments");
my $i = 1;
foreach (@ARGV) {
 print "Argument #", $i++, ": $_\n";
}

-- Get the request context object
my $context = get_context();

-- Use this object to retrieve context information about this request

Implementing a Perl Scheduled Job

62-22 Developer's Guide

print_header("Context Information");
printf "Request id \t= %d\n", $context->reqid();
printf "User name \t= %d\n", $context->username();
printf "Logfile \t= %s\n", $context->logfile();
printf "Outfile \t= %s\n", $context->outfile();

-- Writing to the request log file
print_header("Writing to log file");

-- retrieve a Logfile object from the context
my $log = $context->log();
$log->writeln("This message should appear in the request logfile");
$log->timestamp("This is a timestamped message to the request logfile");

print "Wrote two messages to the request logfile\n";

-- Print out some useful information

print_header("Environment");
foreach (sort keys %ENV) {
 print "$_=$ENV{$_}\n";
}

print_header("Perl Information");
print "PROCESS ID = $$\n";
print "REAL USER ID = $<\n";
print "EFF USER ID = $>\n";
print "SCRIPT NAME = $0\n";
print "PERL VERSION = $]\n";
print "OS NAME = $^O\n";
print "EXE NAME = $^X\n";
print "WARNINGS ON = $^W\n";

print "\n\@INC path:\n";
foreach (@INC) {
 print "$_\n";
}

print "\nAll loaded perl modules:\n";
foreach (sort keys %INC) {
 print "$_ => $INC{$_}\n";
}

-- Exiting the script
-- The exit status of the script will be used as the request exit status.
-- A zero exit status is reported as state of success.
-- An exit status of 2 is reported as a warning state.
-- An exit status of 3 is reported as a business error state.
-- Any other exit status is reported as an error state.

print_header("Exiting script with status 0. (Normal completion)");
exit(0);

sub print_header {

 my $msg = shift;
 print "\n\n", "-" x 40, "\n", $msg, "\n", "-" x 40, "\n";

}

Implementing a C Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-23

62.10 Implementing a C Scheduled Job
The main steps required to implement a C scheduled job are as follows:

■ Creating a job definition

■ Configuring a spawned job environment

■ Implementing and testing a C scheduled job

62.10.1 How to Define Metadata for a C Scheduled Job
Create a job definition as described in Section 62.4, "Creating a Job Definition."

62.10.2 How to Implement a C Scheduled Job

To implement a C scheduled job:
1. In a separate function or file rather than in main, implement your required

business logic.

Include the following header files:

■ afcp.h: This is the header file for Oracle Enterprise Scheduler.

■ afstd.h and afstr.h: These are Oracle Fusion application header files.

2. Call afpend in the business logic function.

3. In the main function, call afprcp, passing to it a pointer to the business logic
function.

The business logic function is called by afprcp, taking the arguments argc, argv,
and reqinfo.

4. Save the executable job file to the $APPLICATIONS_BASE/$APPLBIN directory.

5. Configure the spawned job environment, as described in Section 62.5,
"Configuring a Spawned Job Environment."

Set both the TOP and APPLBIN variables for your application in the
environment.properties file.

62.10.3 Scheduled C Job API
Several C functions are available for use in developing Oracle Fusion applications,
while several others are not. Table 62–2 and Table 62–3 list the available and
unavailable functions.

Implementing a C Scheduled Job

62-24 Developer's Guide

Table 62–2 C Functions Available for Developing Oracle Fusion Applications

Function Description

afprcp Run C program. The recommended API for writing a C program. The main OC
file should call this function to run the program logic. It initializes the context
and calls the program.

int afprcp (uword argc, text **argv, afsqlopt *options, afpfcn
*function);

afpend End C program. All programs must call this to signal the completion of the
program. The program should pass completion status and message if necessary.

Indicate completion status with the following constants:

■ FDP_SUCCESS: Success

■ FDP_WARNING: Warning

■ FDP_ERROR: System Error

■ FDP_BIZERR: Business Error

boolean afpend (text *outcome, dvoid *handle, text *compmesg);

fdpfrs Find request status. For a given request, retrieve the status. The following are
possible request states:

■ ESS_WAIT_STATE

■ ESS_READY_STATE

■ ESS_RUNNING_STATE

■ ESS_COMPLETED_STATE

■ ESS_BLOCKED_STATE

■ ESS_HOLD_STATE

■ ESS_CANCELLING_STATE

■ ESS_EXPIRED_STATE

■ ESS_CANCELLED_STATE

■ ESS_ERROR_STATE

■ ESS_WARNING_STATE

■ ESS_SUCCEEDED_STATE

■ ESS_PAUSED_STATE

■ ESS_PENDING_VALID_STATE

■ ESS_VALID_FAILED_STATE

■ ESS_SCHEDULE_ENDED_STATE

■ ESS_FINISHED_STATE

■ ESS_ERROR_AUTO_RETRY_STATE

■ ESS_MANUAL_RECOVERY_STATE

afreqstate fdpfrs (text *request_id, text *errbuf);

Implementing a C Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-25

62.10.4 How to Test a C Scheduled Job
When developing a C job, it is possible to test the job by running it from a command
line interface.

Running a C job from the command line involves the following main steps:

fdpgret Get the error type of a specific job request ID. The following are possible error
types:

■ ESS_UNDEFINED_ERROR_TYPE

■ ESS_SYSTEM_ERROR_TYPE

■ ESS_BUSINESS_ERROR_TYPE

■ ESS_TIMEOUT_ERROR_TYPE

■ ESS_MIXED_NON_BUSINESS_ERROR_TYPE

■ ESS_MIXED_BUSINESS_ERROR_TYPE

afreqstate fdpgret (text *request_id, text *status, text *errbuf);

fdpgrs Get request status. For a given request, retrieve the current status and
completion text.

afreqstate fdpgrs (text *request_id, text *status, text *errbuf);

fdplck Lock table. Locks the desired table with the specified lock mode and NOWAIT.

fdpscp Legacy API for concurrent programs. All new concurrent programs should use
afprcp.

boolean fdpscp (sword *argc, text **argv[], text args_type, text
*errbuf);

fdpwrt Routines for creating log/output files and writing to files. These are routines
concurrent programs should use for writing to all log and output files.

Table 62–3 C Functions Not Available for Developing Oracle Fusion Applications

Function Description

fdpgoi Get Oracle data group.

fdpgpn Get program name.

fdpgrc Get request count.

fdpimp Run the import utility.

fdpldr Run SQL*Loader.

fdpperl Run Perl concurrent program.

fdprep Run report.

fdprpt Run Sql*Rpt program.

fdprsg Submit concurrent program. Use the afpsub routines instead.

fdpscr Get resource security group.

fdpsql Run SQL*Plus concurrent program.

fdpstp Run stored procedure.

Table 62–2 (Cont.) C Functions Available for Developing Oracle Fusion Applications

Function Description

Implementing a C Scheduled Job

62-26 Developer's Guide

■ Invoking the job

■ Obtaining a database connection and setting the runtime context by passing
special arguments.

■ Passing any program-specific parameters at the command line.

To run a C job from the command line:
■ Use the syntax shown in Example 62–18 to run a C job from the command line for

testing purposes.

Example 62–18 Syntax for Running a C Job from the Command Line

%program <heavyweight user connection string> <lightweight username> <flag> <job
parameters> ...

where

<heavyweight user connection string> is the username/password@TWO_TASK
pair used to connect to the database

<lightweight user name> is the name of the lightweight user submitting the job.
This value is used to set the user context in the database connection.

<flag> must be set to 'L' for lightweight user.

An example illustrating running a C job from the command line is shown in
Example 62–19.

Example 62–19 Running a C Job from the Command Line for Testing Purposes

program username/password@my_db MYUSER L <parameter1> <parameter2>

62.10.5 What Happens When You Implement a C Scheduled Job
The sample C job shown in Example 62–20 uses afprcp to initialize and obtain a
database connection. It uses both Pro*C and afupi.

Example 62–20 Using the C Runtime API

#ifndef AFSTD
#include <afstd.h>
#endif

#ifndef AFSTR
#include <afstr.h>
#endif

#ifndef AFCP
#include <afcp.h>
#endif

#ifndef SQLCA
#include <sqlca.h>
#endif

#ifndef AFUPI
#include <afupi.h>
#endif

Implementing a C Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-27

#ifndef FDS
#include <fds.h>
#endif

boolean testupi()
{
 text *sqltext;
 text buffer[ERRLEN];
 text os_user[31];
 text session_user[31];
 text db_name[31];

 aucursor *use_curs;
 word errcode;

 os_user[0] = session_user[0] = db_name[0] = (text)'\0';

 sqltext = (text*) "SELECT sys_context('USERENV','DB_NAME',30), sys_context('US
ERENV','SESSION_USER',30), sys_context('USERENV','OS_USER',30) from dual";

 use_curs = NULLCURSOR;
 use_curs = afuopen (NULLHOST, NULLCURSOR, (dvoid *)
 sqltext,
 UPISTRING);
 if (use_curs == NULLCURSOR) {goto upierror;}

 afudefine(use_curs, 1, AFUSTRING, (dvoid *)db_name, 31);
 afudefine(use_curs, 2, AFUSTRING, (dvoid *)session_user, 31);
 afudefine(use_curs, 3, AFUSTRING, (dvoid *)os_user, 31);

 if (!afuexec (use_curs, (uword)1, (uword)1, CSTATHOLD|CSTATEXACT) ||
 (errcode = afuerror (NULLHOST, (text *) NULL, 0)) != ORA_NORMAL) {
 goto upierror;
 }

 DISCARD afurelease (use_curs);

 DISCARD sprintf((char *)buffer, "%s as %s@%s", os_user,
 session_user, db_name);

 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, buffer);

 return TRUE;

 upierror:
 if (use_curs != NULLCURSOR)
 DISCARD afurelease (use_curs);
 DISCARD fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, "Error in testupi");
 return FALSE;
}

void testrpc()
{
 text buffer[256];

 EXEC SQL BEGIN DECLARE SECTION;

 VARCHAR os_user[31];

Implementing a C Scheduled Job

62-28 Developer's Guide

 VARCHAR session_user[31];
 VARCHAR db_name[31];

 EXEC SQL END DECLARE SECTION;

 buffer[0] = os_user.arr[0] = session_user.arr[0] = db_name.arr[0] = '\0';

 EXEC SQL SELECT sys_context('USERENV','DB_NAME',30),
 sys_context('USERENV','SESSION_USER',30),
 sys_context('USERENV','OS_USER',30)
 INTO :db_name, :session_user, :os_user
 from dual;

 nullterm(os_user);
 nullterm(session_user);
 nullterm(db_name);

 DISCARD sprintf((char *)buffer, "%s as %s@%s", os_user.arr,
 session_user.arr, db_name.arr);

 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, buffer);
}

sword cptest(argc, argv, reqinfo)
/* ARGSUSED */
sword argc;
text *argv[];
dvoid *reqinfo;
{
 ub2 i;
 text errbuf[ERRLEN+1];

 /* Write to the log file */
 DISCARD fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, (text *)"Test Success");
 /* Write to the out file */
 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, (text *)"Test Args:");
 /* Loop through argv and write to the out file. */
 for (i=0; i<argc; i++)
 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, argv[i]);
 /* Call the Oracle Fusion Applications function afpoget to return the value */
 /* of a profile option called SITENAME and write the results to the error */
 /* buffer. */
 DISCARD afpoget((text *)"SITENAME", errbuf);
 /* Write the value to the output file. */
 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, errbuf);
 /* Connect to the database and run a SELECT against the database. Creates a */
 /* string and writes the returned data to the output file. Uses prc APIs. */
 testrpc();
 /* Open a cursor for the SELECT statement, defines variables to collect data */
 /* upon running statement, and executes SELECT. Creates a string which it */
 /* writes to the output file. Uses afupi APIs. */
 testupi();
 /* Writes the string "Test Completed." to the output file. */
 DISCARD fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, (text *)"Test Completed.");
 /* Call afpend to identify the exit status, which in this case is successful. */
 /* Other possible values are FDP_WARNING, FDP_ERROR and FDP_BIZERR. The
 /* reqinfo originally passed to cptest is passed here. Optionally, additional */
 /* text can be passed here, for example explaining the outcome of the exit */
 /* status. */
 return((sword)afpend(FDP_SUCCESS, reqinfo, (text *)NULL));

Implementing a Host Script Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-29

};

int main(/*_ int argc, text *argv[] _*/);
int main(argc, argv)
 int argc;
 text *argv[];
{

 /* Run cptest and return an exit value to Oracle ESS. */
 return(afprcp((uword)argc, (text **)argv,
 (afsqlopt *)NULL, (afpfcn *)cptest));
}

62.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented
When Oracle Enterprise Scheduler runs a C job, afprcp() runs first to initialize the
context and obtain the database connection. The function afprcp() then calls the
function containing the program logic. Oracle Enterprise Scheduler runs the job, and
the result of the job is returned to Oracle Enterprise Scheduler. The Oracle Fusion
application can retrieve the result from Oracle Enterprise Scheduler and display it in
the user interface.

62.11 Implementing a Host Script Scheduled Job
Arguments submitted for a host script job request are passed to the script at the
command line. Host scripts may access the standard environment variables to get
REQUESTID, LOG_WORK_DIRECTORY, OUTPUT_WORK_DIRECTORY, and so on. Script output is
redirected to the request log file by default.

Use the following steps when implementing a host script job:

■ Complete the steps for configuring a spawned job as described in Section 62.5,
"Configuring a Spawned Job Environment."

■ Create one script file each for Unix and Windows platforms. Name each script file
the same as executableName parameter in the job definition. For example, if your
executableName is "myscript", the script files would be called myscript.sh (on
Unix platforms) and myscript.cmd (on Windows).

■ Put host scripts in the $APPLBIN directory under the product TOP.

Note: Wallet configuration is required for the client ORACLE_HOME to
obtain the database connection. The operating system environment in
which the job runs (including the location of the client ORACLE_HOME,
which is also required) is set in the environment.properties file. The
environment.properties file must be configured and placed in the
config/fmwconfig directory under the domain.

You can add your own environment variables by creating an
env.custom.properties file in the same directory. Variables you
define in this file take precedence over those in the
environment.properties file.

Similarly, you can set server-specific environment variables with
environment.properties and env.custom.properties files in the
server config directory.

Implementing a Java Scheduled Job

62-30 Developer's Guide

■ The script should exit with one of the following exit codes (anything else is
considered a SYSTEM ERROR):

– 0 for SUCCESS

– 2 for WARNING

– 3 for BUSINESS ERROR

62.12 Implementing a Java Scheduled Job
For more information about implementing Java scheduled jobs, see the chapter "Using
Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application" in Oracle
Fusion Middleware Developer's Guide for Oracle Enterprise Scheduler.

62.12.1 How to Define Metadata for a Scheduled Java Job
Create a job definition as described in Section 62.4, "Creating a Job Definition."

62.12.2 How to Use the Java Runtime API
For information about the Java runtime API, see the Oracle Fusion Applications Java API
Reference for Oracle Enterprise Scheduler Service.

You can access the Oracle Fusion Middleware Extensions for Applications Message
and Profile objects directly, using those APIs which handle the service accessing
themselves.

62.12.3 How to Cancel a Scheduled Java Job
You can cancel a scheduled Java job by implementing the Cancellable interface.

The Cancellable implementation in Example 62–21 checks as logic progresses to see if
the job has been canceled. If it has, the code cleans up after itself before exiting.

Example 62–21 Handling a Job Cancellation Request

import oracle.as.scheduler.Cancellable;
import oracle.as.scheduler.Executable;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

public class MyExecutable
 implements Executable, Cancellable
{
 private volatile boolean m_cancel = false;

 public void execute(RequestExecutionContext reqCtx,
 RequestParameters reqParams)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionPausedException, ExecutionCancelledException
 {
 // Do some work and check if this request has been canceled.
 // ... work ...
 checkCancel(reqCtx);

Elevating Access Privileges for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-31

 // Do more work and check if this request has been canceled.
 // ... work ...
 checkCancel(reqCtx);
 // Finish work.
 // ... work ...
 }

 // Set flag that the app logic should check periodically to
 // determine if this request has been canceled.
 public void cancel()
 {
 m_cancel = true;
 }

 // Check if request has been canceled. If not, do nothing.
 // Otherwise, do any cleanup work that may be needed for
 // this request and end by throwing an ExecutionCancelledException.
 private void checkCancel(RequestExecutionContext reqCtx)
 throws ExecutionCancelledException
 {
 if (m_cancel)
 {
 // Do work any cleanup work that may be needed
 // prior to ending this executable.
 // ... cleanup work ...
 String msg = "Request " + reqCtx.getRequestId() +
 " was cancelled.";
 throw new ExecutionCancelledException(msg);
 }
 }
}

62.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented
Oracle Enterprise Scheduler initializes the context of the job. The Oracle Fusion
application calls Oracle Enterprise Scheduler using the provided APIs. Oracle
Enterprise Scheduler runs the job, and a result of success or failure is returned to
Oracle Enterprise Scheduler. The Oracle Fusion application can retrieve the result from
Oracle Enterprise Scheduler and display it in the user interface.

62.13 Elevating Access Privileges for a Scheduled Job
Oracle Enterprise Scheduler executes jobs in the user context of the job submitter at the
scheduled time. Some scheduled jobs require access privileges that are different from
those of the submitting user. However, information regarding the submitter of the
scheduled job must be retrievable for auditing purposes.

In Oracle Enterprise Scheduler, it is prohibited to run a job in the context of a user
other than the submitting user with the runAs property. Doing so would be considered
a security breach. Using an application identity enables running a job with different
access privileges from those allotted to the submitting user.

Application identity is a SOA and Java Platform Security (JPS) concept that addresses
the requirement for escalated privileges in completing an action. The application
installer creates an application identity in Oracle Identity Management Repository.

For more information, see the following chapters:

■ Chapter 47, "Implementing Application User Sessions"

Elevating Access Privileges for a Scheduled Job

62-32 Developer's Guide

■ Chapter 48, "Implementing Oracle Fusion Data Security"

■ Chapter 49, "Implementing Function Security"

62.13.1 How to Elevate Access Privileges for a Scheduled Job
The Oracle Enterprise Scheduler job system property SYS_runasApplicationID
enables elevating access privileges for completing a scheduled job.

To elevate access privileges for a scheduled job:
1. Create a job definition, as described in Section 62.4, "Creating a Job Definition."

2. Under the Parameters section, add a parameter called SYS_runasApplicationID.

3. In the text field for the SYS_runasApplicationID property, enter the application ID
under which you want to run the job, as shown in Figure 62–1.

The input string must be a valid ApplicationID value that exists when the job
executes.

Figure 62–1 Defining the runAs User for the Job

You can retrieve the executing user by running either of the methods shown in
Example 62–22 and Example 62–23.

Example 62–22 Retrieving the Executing User with getRunAsUser()

requestDetail.getRunAsUser()

Example 62–23 Retrieving the Executing User with getRequestParameter()

String sysPropUserName =
 (String) runtime.getRequestParameter(h, reqid, SystemProperty.USER_NAME);

Elevating Access Privileges for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-33

Given a request ID, you can retrieve the submitting and executing users of a job
request.

To retrieve the submitting and executing users of a job request in Oracle
Enterprise Scheduler RuntimeService Enterprise JavaBeans object:
■ Example 62–24 shows a code sample for retrieving the submitting and executing

users of a job request using the Oracle Enterprise Scheduler RuntimeService
Enterprise JavaBeans object.

Example 62–24 Retrieving the Submitting and Executing Users of a Job Request Using
the RuntimeService Enterprise JavaBeans Object

// Lookup runtimeService

RequestDetail requestDetail = runtimeService.getRequestDetail(h, reqid);
String runAsUser = requestDetail.getRunAsUser();
String submitter = requestDetail.getSubmitter();

To retrieve the submitting and executing users of a job request from within an
Oracle Fusion application:
■ Example 62–25 shows a code sample for retrieving the submitting and executing

users of a job request from within an Oracle Fusion application.

Example 62–25 Retrieving the Submitting and Executing Users of a Job Request from
an Oracle Fusion application

import oracle.apps.fnd.applcore.common.ApplSessionUtil;
// The elevated privilege user name.
ApplSessionUtil.getUserName()
// The submitting user.
ApplSessionUtil.getHistoryOverrideUserName()

62.13.2 How Access Privileges Are Elevated for a Scheduled Job
When a job request schedule executes, Oracle Enterprise Scheduler:

1. Validates the submitter's execution privileges on the job metadata.

2. Retrieves the application identity information from the job metadata. If the job
metadata does not specify an application identity for the job, Oracle Enterprise
Scheduler executes the job in the context of the job submitter.

■ Java job: An FND session is established as the user with elevated privileges.

The executing user is taken from the current subject as viewed from the job
logic.

Note: Oracle Enterprise Scheduler does not directly support
invoking a web service or composite. If your job logic invokes a web
service or composite, you must write the client code logic in your job,
establish a connection and propagate the job submitter information as
data for auditing purposes. For an asynchronous web service call, the
job must wait for a response.

Creating an Oracle ADF User Interface for Submitting Job Requests

62-34 Developer's Guide

■ Spawned C job: An application user session is established as the executing
user. The submitter information is an attribute of the application user session.

The spawned job executes as the operating system user who starts Oracle
WebLogic Server.

■ PL/SQL job: An FND session is established as the executing user. The
submitter information is attribute of the FND session.

The job runs in the context of the FND session in the RDBMS job scheduler.

3. Executes the job logic.

62.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job
Oracle Enterprise Scheduler validates the user's execution privileges on the job
metadata. If so, the user context is captured and stored in the Oracle Enterprise
Scheduler database as the submitting user, and the request is placed in the queue.

62.14 Creating an Oracle ADF User Interface for Submitting Job Requests
When implemented as part of an Oracle Fusion application, the Oracle ADF user
interface enables end users to submit job requests.

62.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests
The Oracle ADF UI enables end users to submit job requests. End users can enter
complex data types for the arguments of descriptive and key flexfields. The
Parameters tab in the Oracle ADF UI interface allows end users to enter parameters to
be used when submitting the job request.

Flexfields display in a separate task flow region. This region is a child task flow of the
parent task flow displayed in the Parameters tab.

To create a user interface for submitting job requests:
1. Create a new Oracle Fusion web application by clicking New Application in the

Application Navigator and selecting Fusion Web Application (ADF) from the
Application Templates drop-down list.

Model and ViewController projects are created within the application.

2. Right-click the Model project and select Project Properties > Libraries and
Classpath > Add Library.

3. From the list, select the following libraries, as shown in Figure 62–2.

■ Applications Core

■ Applications Concurrent Processing

■ Enterprise Scheduler Extensions

Note: Define customization layers and authorize runtime
customizations to the adf-config.xml file as described in Chapter 61,
"Creating Customizable Applications."

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-35

Figure 62–2 Adding the Libraries to the Model Project

Click OK to close the window and add the libraries.

4. Right-click the View Controller project and select Project Properties > Libraries
and Classpath > Add Library.

Add the library Applications Core (ViewController), as shown in Figure 62–3.

Figure 62–3 Adding the Library to the View Controller Project

5. In the Project Properties dialog, in the left-hand pane, click Business
Components.

Creating an Oracle ADF User Interface for Submitting Job Requests

62-36 Developer's Guide

6. The Initialize Business Components Project window displays. Click the Edit icon
to create a database connection for the project.

Fill in the database connection details as follows:

■ Connection Exists in: Application Resources

■ Connection Type: Oracle (JDBC)

■ User name/Password: Fill in the relevant user name and password for the
database.

■ Driver: thin

■ Host Name: Enter the host name of the database server.

■ JDBC port: Enter the port number of the database.

■ SID: The unique Oracle system ID for the database.

Click OK.

7. In the file weblogic.xml, import the oracle.applcp.view library.

8. In the file weblogic-application.xml, import the following libraries:

■ oracle.applcore.attachments (for ESS-UCM)

■ oracle.applcp.model

■ oracle.applcp.runtime

■ oracle.ess

■ oracle.sdp.client (for notification)

■ oracle.ucm.ridc.app-lib (for ESS-UCM)

■ oracle.webcenter.framework (for ESS-UCM)

■ oracle.xdo.runtime

■ oracle.xdo.service.client

■ oracle.xdo.webapp

The libraries oracle.applcp.model and oracle.applcp.view are deployed as part
of the installation while running the config.sh wizard.

9. Create a new Java Server Pages XML (JSPX) page for the ViewController project by
right-clicking ViewController and selecting New > Web Tier >JSF > JSF JSP Page.

10. Create a new File System connection. In the Resource Palette, right-click File
System, select New File System Connection, and do the following:

a. Provide a connection name and directory path for the Oracle ADF Library files
(<jdev_install>/jdev/oaext/adflib).

b. Click Test Connection and click OK after the connection succeeds.

11. Expand the contents of the SRS-View.jar file to display the list of available task
flows that can be used in the application, as shown in Figure 62–4.

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-37

Figure 62–4 Displaying the List of Available Task Flows

12. To include the job request submission page in the application, select the
ScheduleRequest-taskflow item from the Resource Palette and drop it onto the
Java Server Faces (JSF) page in the area where you want to create a call to the task
flow. Create the task flow call as a link or button.

For example, to invoke the job request submission page from within a dialog in the
application, do the following:

a. From the Component Palette, drag and drop a Link onto the form in the JSPX
page.

b. In the Property Inspector, configure the behavior of the link to the value
showpopup.

c. From the Component Palette, drag and drop a Popup component with a
dialog component onto the form.

d. To enable submitting a job request, drag and drop the
ScheduleRequest-taskflow item onto the dialog component as a dynamic
region.

To enable submitting a job set request, drag and drop the
ScheduleJobset-taskflow item onto the dialog component.

Figure 62–5 displays the task flows in the Resource Palette.

Creating an Oracle ADF User Interface for Submitting Job Requests

62-38 Developer's Guide

Figure 62–5 Including the Job Request Submission Page in the Application

e. From the context menu, select Create a Dynamic Region.

13. When prompted, add the required library to the ViewController project by clicking
Add Library. Save the JSF page.

14. Edit the task flow binding. Define the following parameters for the task flow, as
shown in Figure 62–6.

a. jobdefinitionname: Enter the name of the job definition to be submitted. This
is not the name that displays. This is the job definition defined in Section 62.4,
"Creating a Job Definition." Required.

b. jobdefinitionpackagename: Enter the package name under which the job
definition metadata is stored. This should be the namespace path appended to
the package name, for example /oracle/ess/Scheduler. The namespace path
typically begins with a forward slash ("/"), but should have no forward slash
at the end. Required.

c. centralui: When setting this parameter to true, then the task flow UI does
not display the header section containing the name, description and basic
Oracle BI Publisher actions (such as email, print and notify). This parameter
must be a Boolean value. Optional.

d. pageTitle: When passed, the task flow will render this passed String value as
the page title. The pageTitle value is currently configured to be truncated at
30 characters. Optional.

e. requireRootOutcome: If true is passed as the value, then the task flow will
generate a value of root-outcome when the user clicks the Submit or Cancel
buttons. By default, the task flow generates a value of parent-outcome.
Optional.

f. requestparametersmap: Enter the name of the map object variable that
contains the parameters required for the job request submission. If this
parameter is filled in, the Parameters tab in the request scheduling submission
page will not prompt end users to enter parameters for executing the request.
The map can be passed to the task flow as a parameter. Typically, this
parameter takes the data type java.util.Map in which keys are parameter

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-39

names and values are parameter values. For example, if you will be using a
paramsMap object in the pageFlowScope context, you might enter a
requestparametersmap value of #{pageFlowScope.paramsMap}. Optional.

In the page that holds the task flow region in the job request submission page,
set the following property for the popup window that opens the job request
submission page window: contentDelivery = immediate.

In the page definition file of the page that contains the task flow region, set the
following property for the task flow: Pagedef > executables > taskflow >
Refresh=IfNeeded.

Figure 62–6 Defining Parameters for the Task Flow

15. If you are using a map to pass parameters to the task flow (as shown in
Figure 62–6, the map is called requestparametersmap), create a new task flow
parameter, such as the paramsMap object in the pageFlowScope element of a page
flow.

These values can be accessed in the job executable, for example from the
RequestParameters object in the case of a Java job. Example 62–26 illustrates
passing the values stored in the RequestParameters object to a Java job. This code
is used in the class that implements the oracle.as.scheduler.Executable
interface.

Example 62–26 Passing Values in a Map Object to a Java Job

public void execute(RequestExecutionContext ctx,RequestParameters props)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException,ExecutionPausedException
{
 String pageTitle = (String) props.getValue("pageTitle");
 // Retrieve other parameters.
 // ...
}

Creating an Oracle ADF User Interface for Submitting Job Requests

62-40 Developer's Guide

16. If the job is defined with properties that must be filled in by end users, the user
interface allows end users to fill in these properties prior to submitting the job
request. For example, if the job requires a start and end time, end users can fill in
the desired start and end times in the space provided by the user interface.

The properties that are filled in by end users are associated with a view object,
which in turn is associated with the job definition itself. When the job runs, Oracle
Enterprise Scheduler accesses the view object to retrieve the values of the
properties.

If using a view object to pass parameters to the job definition, do the following:

a. Create a view object called TestVO using a query such as the one shown in
Example 62–27.

Example 62–27 Creating a View Object Using a Query

select null as Attribute1, null as Attribute2 from dual"

b. Specify control UI hints, for example set the display label for Attribute1 to
Run Mode and for Attribute2 to Duration.

As a result, the parameters tab in the job request submission UI renders with
the input fields Run Mode and Duration.

c. To render the Parameters tab in the job request submission UI, add the
DynamicComponents 1.0 library as follows. Right-click ViewController and
select Project Properties > JSP Tag Libraries > Add. In the Choose Tag
Libraries window, select the library DynamicComponents 1.0 and click OK.
Figure 62–7 displays the Choose Tag Libraries window.

Note: When using a requestparametersmap object, set the following
properties for the popup window within which the task flow is
started.

■ Set Content Delivery to Immediate.

■ In the page definition XML file for the page that contains the
region, select PageDef > Executables > taskflow > set Refresh =
ifNeeded.

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-41

Figure 62–7 Adding the Library DynamicComponents 1.0

17. In the JSF application you created, create another project called Scheduler. Select
File > New, and choose General > Empty Project. This project will be used to
create Oracle Enterprise Scheduler metadata and job implementations.

18. In the Scheduler project, add the Oracle Enterprise Scheduler Extensions library to
the class path. Right-click the Scheduler project and select Project Properties >
Libraries and Classpath > Add Library > Oracle Enterprise Scheduler Extensions.

19. Deploy the libraries oracle.xdo.runtime and oracle.xdo.webapp to the Oracle
Enterprise Scheduler UI managed server. These libraries are located in the
directory $MW_HOME/jdeveloper/xdo, where MW_HOME is the Oracle Fusion
Middleware home directory.

20. Deploy the application.

62.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting
Job Requests

You can add a custom task flow to an Oracle ADF user interface used to submit job
requests at run time.

To add a custom task flow to an Oracle ADF user interface for submitting job
requests:
1. Create a task flow and bind it to your Oracle ADF user interface for submitting a

job request created in Section 62.14.1, "How to Create an Oracle ADF User
Interface for Submitting Job Requests."

For more information about creating task flows and binding them to an Oracle
ADF user interface, see the following chapters in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition):

■ "Getting Started with Oracle ADF Task Flows"

Creating an Oracle ADF User Interface for Submitting Job Requests

62-42 Developer's Guide

■ "Working with Task Flow Activities"

■ "Using Oracle ADF Task Flows as Regions"

2. Create an ADF Business Components view object for each UI field. Name the view
objects that are bound to UI fields ParameterVO1, ParameterVO2, and so on.

Name the attributes of the view objects as follows: ATTRIBUTE1, ATTRIBUTE2, and
so on.

For more information about creating an ADF Business Components view object,
see the chapters "Defining SQL Queries Using View Objects" and "Advanced View
Object Techniques" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition).

3. Include the view objects in the relevant application module. Even if their names
are different, the view object instance names ought to be ParameterVO1,
ParameterVO2, ParameterVO3, and so on.

4. In the job definition, define the properties CustomDataControl and
ParameterTaskflow For more information, see Section 62.4.1, "How to Create a Job
Definition."

For more information about passing parameters to the Oracle ADF task flow, see
the chapter "Using Parameters in Task Flows" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition).

5. Optionally, include the method preSubmit() in the application module. Oracle
Enterprise Scheduler invokes this method before retrieving the parameter values
for the submission request.

Your implementation of the preSubmit() method (which returns a Boolean value)
could include validation code in the custom task flow. If the validation fails, your
code can throw an exception with the proper internationalized error message.

If this validation fails while submitting the request, the error message is displayed
to the user and the submission doesn't go through.

62.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User
Interface for Submitting Job Requests

After integrating your application with the Oracle ADF UI for submitting job requests,
enable context-sensitive parameter support in the UI.

The request submission UI will render the context-sensitive parameters first so that the
end user will specify the context-sensitive parameter values. Context is set in the
database based on these parameters. After setting the context, it renders the rest of the
parameters based on context set at database layer. When the job runs, the actual
business logic will run after setting the context based on the context-sensitive
parameter values inside the database.

Follow this procedure to enable context-sensitive parameter support in the UI.

To enable support for context sensitive parameters in an Oracle ADF user
interface for submitting job requests:
1. Follow the instructions described in Section 62.14.1.

2. Create a native ADF Business Components view object with attributes
CTXATTRIBUTE1, CTXATTRIBUTE2, and so on, with a maximum of 100 attributes.

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-43

For example, create a view object with the query Select null as CTXATTRIBUTE1,
CTXATTRIBUTE2, CTXATTRIBUTE3 from dual. Include required UI hints such as
display label, tool tip, and so on.

3. Create a PL/SQL procedure or function to set the context.

4. Specify the parameters shown in Example 62–28 and Example 62–29 in the job
definition metadata.

■ contextParametersVO: Enter the fully qualified name of the view object that
holds the context sensitive parameters.

Example 62–28 contextParametersVO

<parameter name="contextParametersVO" data-type="string">_
oracle.apps.mypkg.TestCtxVO</parameter>_

■ setContextAPI: PL/SQL API to set the context, along with the package name.
The _myPkg1.mySetCtx procedure receives arguments based on attributes in
the contextParametersVO.

Example 62–29 setContextAPI

<parameter name="setContextAPI" data-type="string">_myPkg1.mySetCtx</parameter>_

62.14.4 How to Save and Schedule a Job Request Using an Oracle ADF UI
Saving and scheduling a job request using an Oracle ADF UI involves using the Oracle
Enterprise Scheduler Extensions library in conjunction with a JSF application that
includes a task flow in which a job is scheduled and saved.

To schedule a job request using an Oracle ADF UI:
1. Follow the instructions in Section 62.14.1, "How to Create an Oracle ADF User

Interface for Submitting Job Requests" up to step 9.

2. Drag and drop the SaveSchedule-taskflow object onto the dialog. No input
parameters are required.

3. When prompted, add the required library to the ViewController project by clicking
Add Library. Save the JSF page.

4. In the JSF application you created, create another project called Scheduler. Select
File > New, and choose General > Empty Project. This project will be used to
create Oracle Enterprise Scheduler metadata and job implementations.

5. In the Scheduler project, add the Oracle Enterprise Scheduler Extensions library to
the class path. Right-click the Scheduler project and select Project Properties >
Libraries and Classpath > Add Library > Oracle Enterprise Scheduler Extensions.

6. Deploy the application as described in the Oracle Fusion Middleware Developer's
Guide for Oracle Enterprise Scheduler.

7. Start the application using the following URL:

Note: If the custom parameters task flow has no transactions of its
own, it must set the data-control-scope to isolated. This ensures
that multiple parametersVO properties using the same application
module get their independent application module instance.

Creating an Oracle ADF User Interface for Submitting Job Requests

62-44 Developer's Guide

http://<machine>:<http-port>/<context-root>/faces/<page>

8. Enter a schedule name, description and package name with the namespace
appended, as shown in Figure 62–8.

Figure 62–8 Saving a Job Submission Schedule

9. Save the schedule.

A message displays indicating the metadata object ID of the saved schedule. This
ID can be used for further job or job set request submissions

62.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF UI
Submitting a saved job request schedule using an Oracle ADF UI involves using the
Oracle Enterprise Scheduler Extensions library in conjunction with a JSF application
that includes a task flow in which a saved job schedule can be submitted.

To submit a job using a saved schedule in an Oracle ADF UI:
1. Follow the instructions in Section 62.14.1, "How to Create an Oracle ADF User

Interface for Submitting Job Requests".

2. Deploy the application. Open the page using the following URL:

http://<machine>:<http-port>/<context-root>/faces/<page>

3. Click the Schedule tab. In the Run option field, select the Use a Schedule radio
button.

4. From the Frequency drop-down list, select Use a Saved Schedule.

5. Enter the namespace and package names for the schedule along with the name of
the schedule.

6. To view the list of scheduled jobs, click Get Details. Click Submit to submit the
saved job request.

Creating an Oracle ADF User Interface for Submitting Job Requests

Working with Extensions to Oracle Enterprise Scheduler 62-45

62.14.6 How to Notify Users or Groups of the Status of Executed Jobs
The Oracle ADF user interface for submitting job requests provides the ability to notify
users of the status of submitted jobs (via the Notification tab of the user interface). For
example, users can request a notification to be sent to the originator of the job request.

A notification includes two components: the user or group to whom the notification is
to be delivered, and the completion status of the job that triggers the notification. For
example, notifications can be sent upon the successful completion of a job, or when a
job completes in an error or warning state.

To notify users or groups of the status of executed jobs:
1. Configure Oracle User Messaging Service. For more information, see the section

"Configuring Oracle User Messaging Service" in the chapter "Configuring Oracle
Business Activity Monitoring" in Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

2. Deploy the drivers required for Oracle User Messaging Service. You can do so
using Oracle WebLogic Server Scripting Tool. For more information, see the
chapter "Managing Oracle User Messaging Service" in Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management
Suite.

3. In the Oracle Enterprise Scheduler connections.xml file, specify the URL of the
notification service. An example is shown in Example 62–30. While you cannot
edit this file, you can browse Oracle ADF connection information using MBeans.
For more information about configuring application properties, see the chapter
"Monitoring and Configuring Oracle ADF Applications" in Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

Example 62–30 Specify the URL of the Notification Service

<References>
-
 <Reference name="EssConnection1"
 className="oracle.as.scheduler.config.ca.EssConnection">
 <Factory className="oracle.as.scheduler.config.ca.EssConnectionFactory"/>
-
 <RefAddresses>
-
 <StringRefAddr addrType="NotificationServiceURL">
 <Contents>http://localhost:8001</Contents>
 </StringRefAddr>
-
 <StringRefAddr addrType="RequestFileDirectory">
 <Contents>/ess/requestFileDirectory</Contents>
 </StringRefAddr>
-
 <StringRefAddr addrType="SAMLTokenPolicyURI">
 <Contents/>
 </StringRefAddr>
-
 <StringRefAddr addrType="FilePersistenceMode">
 <Contents>file</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>
</References>

Creating an Oracle ADF User Interface for Submitting Job Requests

62-46 Developer's Guide

4. Follow the instructions described in Section 62.14.1, "How to Create an Oracle
ADF User Interface for Submitting Job Requests."

5. Create a native ADF Business Components view object with attributes
representing the following properties:

■ Recipient Type: Specify whether the notification recipient is a user or a group
of users. This should be defined as a radio button. Values are User or Group.

■ Recipient ID: Specify the User- or GroupID, depending on the recipient type.
Create a list of values (LOV) that provides a list of users or groups for the
current submitting user. This LOV is dependent on the selected recipient type.

■ On Success: Notify the recipient upon successful completion of the job.

■ On Warning: Notify the recipient in the event of a job that ends with a
warning.

■ On Error: Notify the recipient in the event that a job completes in an error
state.

6. Start the application using the following URL:

http://<machine>:<http-port>/<context-root>/faces/<page>

62.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting
Job Requests

The Oracle ADF interface is integrated with the Oracle Fusion application, and the
application is tested and deployed. End users access the Oracle ADF user interface, fill
in optional job properties, and click a button to submit the job request.

62.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting
Job Requests Is Created

The application receives the submitted job request and calls Oracle Enterprise
Scheduler to run the job. The Oracle Fusion application accesses the values of the
properties entered by end users through the view object in which these properties
were defined at design time. The job returns a result of success or failure, and the
result passes from the Oracle Fusion application to Oracle Enterprise Scheduler.

Custom Task Flow
A job that includes properties to be filled in by end users through an Oracle ADF user
interface at runtime includes ADF Business Components view objects with validation
and the parameters to be filled in by end users. These parameters are submitted at
runtime in the order in which they have been defined, meaning the first custom
parameter to be defined is submitted first. The custom parameters must be named as
follows:

ParameterVO1.ATTRIBUTE1, ParameterVO1.ATTRIBUTE2, ParameterVO2.ATTRIBUTE1,
ParameterVO3.ATTRIBUTE1, and so on.

Note: If using the postprocessing action infrastructure to display the
notification view object, it is not necessary to define status options in
the view object (On Success, On Warning, On Error). Status data
collection is built into the postprocessing action infrastructure.

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-47

If the job definition includes the properties ContextParametersVO, ParameterTaskflow
and parametersVO, these properties render in that order at run time.

Context-Sensitive Parameters
When starting the job request submission page UI to submit a job or job set request
with context-sensitive parameters, the contextParametersVO parameter initially
renders in the Parameters tab of the Oracle ADF user interface.

The end-user can then enter values for the context-sensitive parameters. Clicking Next
invokes an API called setConextAPI by passing the context parameters. The context is
set at the database level and the remaining parametersVO job parameters are rendered.

When the context-sensitive parameters are modified, end users must click Next to set
the context with the new values.

Notifications
When the final status of the job is determined, Oracle Enterprise Scheduler delivers the
notifications to the relevant users or groups using the User Messaging Service. Groups
receive notifications via email, whereas users receive notifications based on their
messages preferences.

The notification view object defined at design time populates the input box in the
submission request user interface at run time.

62.15 Submitting Job Requests Using the Request Submission API
You can submit, cancel and otherwise manage job requests using the request
submission API.

For information about using the request submission API, see the chapter "Using the
Runtime Service" in Oracle Fusion Middleware Developer's Guide for Oracle Enterprise
Scheduler.

62.16 Defining Oracle Business Intelligence Publisher Postprocessing
Actions for a Scheduled Job

Oracle Business Intelligence Publisher enables generating reports from a variety of
data sources, such as Oracle Database, web services, RSS feeds, files, and so on. BI
Publisher provides a number of delivery options for generated reports, including
print, fax, and email.

To create an Oracle BI Publisher report, an Oracle BI Publisher report definition is
required. Oracle BI Publisher report definitions consist of a data model that specifies
the type of data source (database, web service, and so on) and a template for output
formatting.

With report definitions in place, options for reporting are available to end users in the
Output tab of the Oracle ADF user interface. The Output tab provides options through
which an end user can define templates for reports. They can specify layout templates,
document formats (such as PDF, RTF, and more), report destinations (email addresses,
fax numbers, or printer addresses), and so on. When the user submits a request, this
information is stored in the Oracle Enterprise Scheduler schema. The preprocessor
then invokes the Oracle BI Publisher service and passes the saved data to it.

Extensions to Oracle Enterprise Scheduler provide the ability to run Oracle BI
Publisher reports as batch jobs. The Oracle Enterprise Scheduler postprocessing

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

62-48 Developer's Guide

infrastructure enables applying Oracle BI Publisher formatting templates to XML data
and delivering the formatted reports by printing, faxing, and so on.

For more information about defining postprocessing actions for scheduled jobs, see
"Creating a Business Domain Layer Using Entity Objects" in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition).

62.16.1 How to Define Oracle BI Publisher Postprocessing for a Scheduled Job
Defining postprocessing for a scheduled job involves the following:

■ Define the postprocessing action.

■ Create a Java class for the postprocessing action. The Java class uses the
parameters collected by the Oracle Enterprise Scheduler UI and calls Oracle BI
Publisher APIs as required.

■ Create a native ADF Business Components view object to save parameters for
postprocessing, such as template name, output format, locale, and so on.

Before you begin:
1. Follow the instructions for setting up Oracle BI Publisher reporting as described in

the Oracle BI Publisher documentation.

Use the following file to set up reporting and seed your database with the relevant
Oracle BI Publisher data:

Example 62–31 Location of the File for Setting Up Oracle BI Publisher Reporting and
Seeding the Database

$BEAHOME/jdeveloper/jdev/oaext/adflib/PPActions.jar

2. Create an Oracle BI Publisher job definition, following the instructions in the
Oracle BI Publisher documentation.

3. Define File Management Group (FMG) properties for the Oracle BI Publisher job
definition as described in Section 62.4.2, "How to Define File Groups for a Job."

To create an Oracle BI Publisher postprocessing action:
1. In the table called APPLCP_PP_ACTIONS, define the postprocessing action to be

executed for the job.

The columns to be seeded in the APPLCP_PP_ACTIONS table are as follows:

■ Action_SN: Define a short name for the action, used when postprocessing
actions are submitted programatically. For example, OBFUSC8.

■ Action Name: Enter a name for the action to be displayed in the user interface.
This name is stored separately for translation purposes.

■ Class: Enter the name of the Java class that defines the logic for the
postprocessing action. For example,
oracle.apps.shh.obfuscate.PPobfuscate.

■ VO_Def_Name: Enter the name of the view object used to collect the arguments
for the postprocessing action. For example,
oracle.apps.shh.obfuscate.PPobfuscateVO.

■ Type: Enter the category of the postprocessing action to be taken. Enter one of
the following categories of postprocessing actions:

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-49

– L: Indicates a Layout postprocessing action. Layout actions change the
output of the job, and produce new output.

– O: Indicates an Output postprocessing action. Output actions act on the
output created by the job and its layout actions, performing delivery,
publishing, printing, and so on.

– F: Indicates a Final postprocessing action. Final Actions take no input.
Final postprocessing actions execute using the final status of the job after
all Layout and Output actions have executed.

■ On_Success: Indicate whether the postprocessing action runs following a
successful job. Enter Y or N.

■ On_Warning: Indicate whether the postprocessing action runs following a job
that ends in a warning. Enter Y or N.

■ On_Failure: Indicate whether the postprocessing action runs following a
failed job. Enter Y or N.

■ SEQ_NUM: Enter a number to sequentially order the postprocessing actions.
Only registered postprocessing actions of the same type can be sequentially
ordered. This value determines both the order in which the tabs corresponding
to the actions appear in the user interface, and the order in which the actions
run.

Each action can also specify request parameters used by the postprocessing action
view object. These parameters must be set in the job definition for any job using
this action. The parameter names are stored in the APPLCP_PP_ACTION_PARAMS
table. The values of these parameters are accessible from the parameter view object
at the time of job request submission. postprocessing actions can access all request
parameters at runtime using the request ID.

2. Define a Java class for the postprocessing action, implementing the interface
oracle.apps.fnd.applcp.request.postprocess.PostProcess. Use the methods
required by the interface as described in Table 62–4.

Additional methods used by the invokePostProcess method are shown in
Table 62–5.

Table 62–4 Methods Required When Implementing the Interface
oracle.apps.fnd.applcp.request.postprocess.PostProcess

Method Description

PostProcessState
invokePostProcess(long requestID,
String ppArguments[], ArrayList
files);

Receives the requestID parameter, the
ppArguments[] array of arguments collected from
the view object (or submitted programmatically),
and the files array list which identifies the files
on which the action is to be taken.

It is possible to specify the location of the output
file.

ArrayList getOutputFileList(); Returns an array of the output files created by the
postprocessing action.

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

62-50 Developer's Guide

Additional methods used by the ReportRequest object are shown in Table 62–6.

An example of a Java class that defines a postprocessing action is shown in
Example 62–32:

Example 62–32 A Java Class that Defines a Postprocessing Action

package oracle.apps.shh.Obfuscate;

import oracle.apps.fnd.applcp.request.postprocess.PostProcess;
import oracle.apps.fnd.applcp.util.ESSContext;
import oracle.apps.fnd.applcp.util.PostProcessState;
import oracle.as.scheduler.*;

public class PPobfuscate implements PostProcess {

 ArrayList myOutputFiles;

 ArrayList getOutputFileList()
 {
 return myOutputFiles;
 }

 PostProcessState invokePostProcess(long requestID, String ppArguments[],
 ArrayList files)
 {

 RuntimeService rService = null;
 RuntimeServiceHandle rHandle = null;
 try {
 // Accessing Runtime Details for a given requestID
 RequestDetail rDetail = null;
 RequestParameters rParam = null;
 String obfuscationSeed = ppArguments[0];
 String codedFileName = ppArguments[1];

Table 62–5 Oracle BI Publisher Client API oracle.xdo.service.client.ReportService Used
by the invokePostProcess method

Method Description

runReport() Enables the postprocessing action to pass to the
Business Intelligence Publisher the job's XML
output along with the template ID and format (all
collected during job request submission).

Table 62–6 Oracle BI Publisher Client API
oracle.xdo.service.client.types.ReportRequest Used by the ReportRequest Object

Method Description

setAttributeFormat() Set the format for the Oracle BI Publisher report
request.

setAttributeLocale() Set the locale data for the Oracle BI Publisher
report request.

setAttributeTemplate() Set the template for the Oracle BI Publisher
report request.

setXMLData() Set the XML data for the Oracle BI Publisher
report request.

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-51

 String myNewFile;
 String outDir = null;

 rService = ESSContext.getRuntimeService();
 if (rService != null) rHandle = rService.open();
 if (rHandle != null) rDetail = getRequestDetails(rHandle, requestID);
 if (rDetail != null) rParam = rDetail.getParameters();
 if (rParam != null) outDir = rParam.getValue("outputWorkDirectory");
 if (outDir == null)
 {
 // Details not received, usually an exception would have been thrown
 // by now. We handle this case to be robust.
 // Log the ERROR to Oracle Diagnostic Logging
 return PostProcessState.ERROR;
 }
 // Check files
 if (files[0] == null)
 {
 // no files - PostProcessing should never call us in this state
 // in case it does - log Error to Oracle Diagnostic Logging
 return PostProcessState.ERROR;
 }
 // This example expects a single file
 myNewFile = outputDir + System.getProperty("file.separator") +
 codedFileName;
 Obfuscate.performObfuscation(files[0], obfuscationSeed, myNewFile);
 myOutputFiles[0] = myNewFile;

 // In case multiple files are used.
 for (i = 1; files[i] != null; i++)
 {
 // Appending a counter to the filename to be unique.
 myNewFile = outputDir + System.getProperty("file.separator") +
 codedFileName + i ;
 Obfuscate.performObfuscation(files[i], obfuscationSeed, myNewFile);
 myOutputFiles[i] = myNewFile;
 }

 return PostProcessState.SUCCESS;

 } catch (RuntimeServiceException rse)
 {
 // Log RuntimeServiceException to Oracle Diagnostic Logging.
 return PostProcessState.ERROR;
 } catch (Exception e)
 {
 // Log Exception to Oracle Diagnostic Logging.
 return PostProcessState.ERROR;
 } finally {
 if (rHandle != null)
 rService.close(rHandle);
 }
 }
} // end class

3. Create a native ADF Business Components view object to collect the parameters to
be used in the postprocessing action. Follow the procedure described in
Section 62.4, "Creating a Job Definition." Define any view object attributes
sequentially.

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

62-52 Developer's Guide

If the view object requires access to action-specific values from the job definition,
specify the required job definition parameters in the action definition. The
submission UI automatically retrieves the values from the job definition metadata
and sets them as Oracle Fusion Middleware Extensions for Applications
(Applications Core) Session attributes that may be retrieved using the
ApplSession standard API.

62.16.2 How to Define Oracle BI Publisher Postprocessing Actions for a Scheduled
PL/SQL Job

Example 62–33 shows a PL/SQL job that includes Oracle BI Publisher postprocessing
actions. The PL/SQL job calls the method ess_runtime.add_pp_action so as to
generate a layout for the data from the postprocessing action. This example formats
the XML generated by the job as a PDF file.

Example 62–33 Defining a Scheduled PL/SQL Job with Oracle BI Publisher
Postprocessing Actions

declare
l_reqid number;
l_props ess_runtime.request_prop_table_t;
begin
.
 ess_runtime.add_pp_action (
 props => l_props, -- IN OUT
request_prop_table_t,
 action_order => 1, -- order in which this post
processing action will execute.
 action_name => 'BIPDocGen', -- Action for Document
Generation (layout)
 on_success => 'Y', -- Should this be called on
success,
 on_warning => 'N', -- Should this be called on
warning,
 on_error => 'N', -- Should this be called on
error,
 file_mgmt_group => 'XML', -- File types this action
will process. It has to be defined in Job Defintion,
 step_path => NULL, -- IN varchar2 default NULL,
 argument1 => 'XLABIPTEST_RTF', -- Template name needed for
Documnet Generation action,
 argument2 => 'pdf' -- What type of layout file
will be generated by Document Generation action,
);
.
 l_reqid :=
 ess_runtime.submit_request_adhoc_sched
 (application => 'SSEssWls', -- Application
Application
 definition_type => 'JOB',
 definition_name => 'BIPTestJob', -- Job definition
 definition_package => '/mypackage', -- Job definition package
 props => l_props);
commit;
dbms_output.put_line('request_id = :'||l_reqid);
end;

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-53

62.16.3 What Happens When You Define Oracle BI Publisher Postprocessing Actions
for a Scheduled Job

Depending on the FMG property set for the job definition, the relevant postprocessing
action is selected for the job.

The ppArguments array stores the values collected from the view object attributes. The
array is passed to the invokePostProcess method which executes in the Java class that
defines the postprocessing action.

62.16.4 What Happens at Runtime: How Oracle BI Publisher Postprocessing Actions
are Defined for a Scheduled Job

At runtime, the user interface uses the view object to collect the arguments for
executing the postprocessing action as defined in the table APPLCP_PP_ACTIONS. These
arguments also instruct the user interface as to how to invoke the action logic.

The postprocessing action accesses the XML output file from the job request, and
passes the XML output to Oracle BI Publisher. The postprocessing action creates a
report request containing the XML data.

The postprocessing action displays in the submission Oracle ADF UI. The UI enables
adding a postprocessing action for the scheduled job, selecting arguments for the
action using the view object and selecting output options for the action. The user
interface also displays the name of the File Management Group with which the output
files are associated.

62.16.5 Invoking Postprocessing Actions Programmatically
You can invoke postprocessing actions programmatically from a client using a Java or
web service API. Both APIs require the same set of parameter values described in table
Table 62–7.

For Java clients, call the addPPAction method of
oracle.as.scheduler.cp.SubmissionUtil. The method takes the values needed to
invoke the action and throws an exception called IllegalArgumentException if the
number of arguments exceeds 10. Example 62–34 shows the declaration of the method.

Example 62–34 Sample declaration of the addPPAction method

public static void addPPAction (RequestParameters params,
 int actionOrder,
 String actionName,
 String description,
 boolean onSuccess,
 boolean onWarning,
 boolean onError,
 String fileMgmtGroup,
 String[] arguments)
 throws IllegalArgumentException

For web service clients, you invoke the method using a proxy, as in Example 62–35.
For more on the web service, see the chapter "Using the Oracle Enterprise Scheduler
Web Service" in Oracle Fusion Middleware Developer's Guide for Oracle Enterprise
Scheduler.

Example 62–35 Adding Postprocessing Actions for a Request

ESSWebService proxy = createProxy("addPPActions");

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

62-54 Developer's Guide

PostProcessAction ppAction = new PostProcessAction();
ppAction.setActionOrder(1);
ppAction.setActionName("BIPDocGen");
ppAction.setOnSuccess(true);
ppAction.setOnWarning(false);
ppAction.setOnError(false);
ppAction.getArguments().add("argument1");
ppAction.getArguments().add("argument2");

List<PostProcessAction> ppActionList = new ArrayList<PostProcessAction>();
ppActionList.add(ppAction);

RequestParameters reqParams = new RequestParameters();
reqParams = proxy.addPPActions(reqParams, ppActionList);

Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job

Working with Extensions to Oracle Enterprise Scheduler 62-55

Table 62–7 Parameters for Adding a Postprocessing Action

Parameter Description

params A RequestParameters object into which this method adds parameters.

actionOrder The ordinal location of this action in the sequence of actions to be performed
within the action domain. Oracle BI Publisher process requests starting with
action order index 1.

actionName The name of the action to perform. The following lists acceptable values for this
parameter, along with the acceptable values you can use in the arguments
parameter of this method.

■ BIPDocGen: for applying Oracle BI Publisher templates. Acceptable
argument parameter values are:

■ argument1: maps to report parameter
TEMPLATE, the template name.

■ argument2: maps to report parameter OUTPUT_
FORMAT, the output format for Oracle BI
Publisher document generation, for example,
"pdf" or "html".

■ argument3: maps to report parameter LOCALE,
the locale to be used while generating output.

■ BIPPrintService: for specifying the print action. Acceptable argument
parameter values are:

■ argument1: maps to printerName

■ argument2: maps to numberOfCopies

■ argument3: maps to side

■ argument4: maps to tray

■ argument5: maps to pagesRange

■ argument6: maps to orientation

■ BIPDeliveryEmail: for specifying the email action. Acceptable argument
parameter values are:

■ argument1: maps to emailServerName

■ argument2: maps to from

■ argument3: maps to to

■ argument4: maps to cc

■ argument5: maps to bcc

■ argument6: maps to replyTo

■ argument7: maps to subject

■ argument8: maps to messageBody

■ BIPDeliveryFax: for specifying the fax action. Acceptable argument
parameter values are:

■ argument1: maps to faxServerName

■ argument2: maps to faxNumber

description Description of this post processor action.

Monitoring Scheduled Job Requests Using an Oracle ADF UI

62-56 Developer's Guide

62.17 Monitoring Scheduled Job Requests Using an Oracle ADF UI
It is possible to view previously submitted jobs by integrating the Monitoring
Processes task flow into an application.

For information about enabling tracing for jobs, see Chapter 58, "Debugging Oracle
ADF and Oracle SOA Suite." For more information about tracing Oracle Enterprise
Scheduler jobs, see the section "Tracing Oracle Enterprise Scheduler Jobs" in the
chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in the Oracle Fusion
Applications Administrator's Guide.

62.17.1 How to Monitor Scheduled Job Requests
The main steps involved in monitoring scheduled job requests using an Oracle ADF UI
are as follows:

■ Configure Oracle Enterprise Scheduler in JDeveloper

■ Create and initialize an Oracle Fusion web application

■ Create a UI Shell page and drop the Monitor Processes task flow onto it

To monitor scheduled job requests using an Oracle ADF UI:
1. Follow the instructions in Section 62.14.1, "How to Create an Oracle ADF User

Interface for Submitting Job Requests" up to and including step 5.

2. Under the ViewController project, right-click Web Content and create a new JSF
page called Consumer.jspx. Select the following options:

■ UIShell (template)

■ Create as XML Document

3. Create a new JSF page fragment. This page initializes the project.

4. Open adfc-config.xml and drag Consumer.jspx onto adfc-config.xml.

5. Right-click adfc-config.xml and select Create ADF Menu.

onSuccess Determines whether this action should be performed on successful completion
of the job.

onWarning Determines whether this action should be performed when the job or step has
completed with a warning.

onError Determines whether this action should be performed when the job or step has
completed with an error.

fileMgmtGroup The name of the File Management Group. When using a Oracle BI Publisher
template, the value of this parameter is XML, as defined in the job definition
Program.FMG property with the value L.XML.

arguments A list of arguments for the post processor action. See the actionName parameter
for values you can use for the arguments parameter.

Note: Fields such as submission date, ready time, scheduled date,
process start, name, type, definition, and so on, are not set unless the
job request or subrequest is successfully validated.

Table 62–7 (Cont.) Parameters for Adding a Postprocessing Action

Parameter Description

Monitoring Scheduled Job Requests Using an Oracle ADF UI

Working with Extensions to Oracle Enterprise Scheduler 62-57

The Create ADF Menu Model window displays.

6. Rename the default file root_menu.xml to something else.

7. Open the XML file created in the previous step. Look for an itemNode element as
follows:

<itemNode id="itemNode_JSF/JSPX page name">

For example, the Consumer.jspx page has the following itemNode value:

<itemNode id="itemNode_Consumer">

8. In the Structure window, right-click the root itemNode and select Insert inside
itemNode-itemNode_JSF/JSPX page name > itemNode.

9. In Common Properties, enter the following values:

■ id: MonitorNode

■ focusViewId: /Consumer

10. In Advanced Properties, enter Monitor Processes in the label field.

11. Right-click the itemNode you just added and select Go to Properties.

12. In the Property Inspector, select Advanced and do the following:

■ Select the dynamicMain task type.

■ In the taskFlowId field, enter the following:

/WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/MonitorProcessesMainAreaFlo
w.xml#MonitorProcessesMainAreaFlow

■ Enter a string for the pageTitle parameter, which will become the title for the
monitoring page. If this parameter is not specified, then the page title will be
shown as "Manage Scheduled Processes".

13. Repeat steps 8-12 to create a second itemNode element with the following
properties:

■ id: __Launcher_itemNode__FndTaskList

■ focusViewId: /Launcher

■ label: #{applcoreBundle.TASKS}

■ Task Type: defaultRegional

■ taskFlowId:
/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/Ta
sksList.xml#TasksList

14. Right-click adfc-config.xml and select Link ADF Menu to Navigator.

15. Configure Oracle JDeveloper Integrated Oracle WebLogic Server for development
with Oracle Enterprise Scheduler extensions.

16. Deploy and test the application.

62.17.2 How to Embed a Table of Search Results as a Region on a Page
You can embed a table of job request search results as a region on a page. A number of
task flow parameters can be used to further specify the job requests returned by the
search.

Monitoring Scheduled Job Requests Using an Oracle ADF UI

62-58 Developer's Guide

To embed a search results table as a region:
1. Add the Applications Concurrent Processing (View Controller) library to the

ViewController project.

For more information about adding this library to the project, see Section 62.3.1.

2. In the Resource Palette, select File System > Applications Core >
MonitorProcesses-View.jar > ADF Task Flows.

3. Drag and drop onto the page as a region the SearchResultsFlow task flow.

The task flow accepts the following parameters:

■ processId: The request ID number uniquely identifying the process.

■ processName: The name of the process, which corresponds to the name of the
job definition.

■ processNameList: Fetches the job requests of multiple process names using a
list which contains the relevant job names.

When specifying the task flow parameter processName, this parameter takes
precedence over the task flow parameter processNameList. The requests
returned are for the single process name specified by the processName
parameter only.

■ scheduledDays: Queries requests for the last n days. If this parameter is not
specified in a work area task flow, job requests from the last three days are
displayed. If the value of this parameter is greater than three days, then the
parameter value will be taken as three and only the last three days of job
requests display.

■ status: The status of the request. This filter narrows down the result set to
display only the requests with the selected status in the filter.

If the status input parameter is not specified, then the results table shows all
requests with all statuses (by default, the All value is selected in the status
filter list).

If the status input parameter is specified, then the results table show only the
requests of the given status. The selected status is chosen as the default in the
status filter list.

■ isEmbedResults: A Boolean value that indicates whether search results are
embedded in the task flow. True or false.

Set to true to embed table results.

■ Time Range Filter: This filter is used to narrow down the result set to show
only the requests for last n hours. This filter lists the following values in a
dropdown list: (1) Last 1 Hour, (2) Last 12 Hours, (3) Last 24 Hours, (4) Last 48
Hours and (5) Last 72 Hours.

The default selected item displays based on the value assigned or given to the
task flow parameter scheduledDays.

A scheduledDays value of 1 means the time range filter list displays only the
first three items.

A scheduledDays value of 2 means the time range filter list displays only the
first four items.

If the value of scheduledDays is 1, then by default, the time range dropdown
list displays Last 24 Hours.

Monitoring Scheduled Job Requests Using an Oracle ADF UI

Working with Extensions to Oracle Enterprise Scheduler 62-59

If the value of scheduledDays is 3 or more, then by default, the time range
dropdown list displays Last 72 Hours.

■ pageTitle: When passed, the task flow will render this passed String value as
the page title. Optional.

■ requireRootOutcome: If the value true is passed, then the task flow will
generate a value of root-outcome when the user clicks on the Submit or Cancel
buttons. By default the task flow generates a value of parent-outcome.

Specifying more than one of these parameters causes the search to run using the
AND conjunction.

62.17.3 How to Log Scheduled Job Requests in an Oracle ADF UI
You can enable Oracle Diagnostic Logging in an Oracle ADF UI used to monitor
scheduled job requests. When enabling logging, the UI displays a View Log button.

The View Log functionality in the monitoring UI applies only to scheduled requests
with a persistenceMode property set to a value of file. Hence, the View Log button in
the scheduled request submission monitoring UI displays only when viewing requests
with persistenceMode property set to a value of file.

The only other valid value for the persistenceMode property is the value content. The
View Log button is hidden for all requests with a persistenceMode property value of
content. If the persistenceMode property is not specified for a given request, then the
monitoring UI defaults to a persistenceMode value of file, and displays the View
Log button when viewing relevant requests.

To log scheduled job requests:
1. Open the server's logging.xml file.

2. In the logging.xml file, enter the required logging level for
oracle.apps.fnd.applcp.srs, for example: INFO, FINE, FINER or FINEST.

Example 62–36 shows a sample of a logging.xml file with Oracle Diagnostic
Logging configured.

Example 62–36 Enabling Logging in the logging.xml File

<logger name='oracle.apps.fnd.applcp.srs' level='FINEST'
 useParentHandlers='false'>
 <handler name='odl-handler'/>
</logger>

3. Save the logging.xml file and restart the server.

62.17.4 How to Troubleshoot an Oracle ADF UI Used to Monitor Scheduled Job
Requests

Some useful tips for troubleshooting the Oracle ADF UI used to monitor scheduled job
requests.

■ Displaying a readable name. When defining metadata, use the display-name
attribute to configure the name to be displayed in the Oracle ADF UI. The
monitoring UI will display the value defined for the display-name attribute. If this
attribute is not defined, the UI displays the value of the metadata-name attribute
assigned to the metadata.

Monitoring Scheduled Job Requests Using an Oracle ADF UI

62-60 Developer's Guide

■ Displaying multiple links in the task flow UI that each display a popup
window with a different job definition. The recommended approach is to create
a single page fragment that contains the scheduled request submission task flow
within an Oracle ADF region. This page is reused by each link to display a
different job definition in the scheduled request submission UI. For each link, pass
the relevant parameters such as the job definition name, package name, and so on.
This approach ensures that the UI session creates and uses a single instance of the
task flow.

■ Displaying the correct name given the metadata name and display name
attributes. By default, the display name takes precedence and displays in the UI. If
the display name is not defined, then the UI displays the job or job set name.

■ Resolving name conflicts between a job metadata parameter name and a request
parameter with the same name. Oracle Enterprise Scheduler uses the following
rules to resolve parameter name conflicts.

– The last definition takes precedence. When the same parameter is defined
repeatedly with the read-only flag set to false in all cases, the last parameter
definition takes precedence. For example, a property specified at the job
request level takes precedence over the same property specified at the job
definition level.

– The first read-only definition takes precedence. When the same parameter is
defined repeatedly and at least one definition is read-only (that is, the
ParameterInfo read-only flag is set to true), the first read-only definition takes
precedence. For example a read-only parameter specified at the job type
definition level takes precedence over a property with the same name
specified at the job definition level, regardless of whether or not it is read-only.

■ Resolving name conflicts between the job or job set metadata name and display
name attributes. By default, the display name takes precedence over the metadata
name. If the display name is not defined, then the UI defaults to displaying the job
or job set name.

■ Understanding the state of a job request. There are 20 possible states for a job
request, each with a corresponding number value. These are shown in Table 62–8.

Table 62–8 Job Request States

Job State Number Job Request State Description

-1 UNKNOWN The state of the job request is unknown.

1 WAIT The job request is awaiting dispatch.

2 READY The job request has been dispatched and is awaiting processing.

3 RUNNING The job request is being processed.

4 COMPLETED The job request has completed and postprocessing has
commenced.

5 BLOCKED The job request is blocked by one or more incompatible job
requests.

6 HOLD The job request has been explicitly held.

7 CANCELLING The job request has been canceled and is awaiting
acknowledgement.

8 EXPIRED The job request expired before it could be processed.

9 CANCELLED The job request was canceled.

10 ERROR The job request has run and resulted in an error.

Using a Task Flow Template for Submitting Scheduled Requests Through an Oracle ADF UI

Working with Extensions to Oracle Enterprise Scheduler 62-61

■ Fixing an Oracle BI Publisher report that does not generate, even though the
Oracle Enterprise Scheduler schema REQUEST_PROPERTY table contains all the
relevant postprocessing parameters. Verify that the postprocessing parameters
begin with index value of 1. If a set of parameters begins with an index value of 0
(such as the parameter pp.0.action), then the Oracle BI Publisher report will not
generate. Oracle BI Publisher expects parameters to begin with an index value of 1.
In the case of a job set with multiple Oracle BI Publisher jobs, verify that all the
individual step postprocessing actions begin with an index value of 1.

■ Fixing a scheduled request submission UI that does not display, and throws a
partial page rendering error in the browser indicating that the drTaskflowId
property is invalid. This error may occur as a result of any of the following.

– The object oracle.as.scheduler.JobDefinition may be unavailable to the
scheduled request submission UI, which attempts to query the object using the
MetadataService API.

– The job definition name or the job definition package name is incorrect when
passed as task flow parameters. Ensure that the package name does not end
with a trailing forward slash.

– The metadata permissions are not properly configured for the user who is
currently logged in. The JobDefinition object, being stored in Oracle
Metadata Repository, requires adequate metadata permissions to read and
modify the JobDefinition metadata. Ensure that the Oracle Metadata
Repository to which you are referring contains the job definition name in the
proper package hierarchy.

62.18 Using a Task Flow Template for Submitting Scheduled Requests
Through an Oracle ADF UI

The Oracle ADF UI used to submit scheduled requests supports basic and advanced
modes. Switching between modes requires page navigation between two view
activities.

In some cases, you may want to use a custom parameter task flow for the UI in the
context of an Oracle Fusion web application. One such use case is when you require a

11 WARNING The job request has run and resulted in a warning.

12 SUCCEEDED The job request has run and completed successfully.

13 PAUSED The job request paused for subrequest completion.

14 PENDING_VALIDATION The job request has been submitted but has not been validated.

15 VALIDATION_FAILED The job request has been submitted, but validation has failed.

16 SCHEDULE_ENDED The schedule for the job request has ended, or the job request
expiration time specified at submission has been reached.

17 FINISHED The job request, and all child job requests, have finished.

18 ERROR_AUTO_RETRY The job request has run, resulted in an error, and is eligible for
automatic retry.

19 ERROR_MANUAL_
RECOVERY

The job request requires manual intervention to be retried or
transition to a terminal state.

Table 62–8 (Cont.) Job Request States

Job State Number Job Request State Description

Using a Task Flow Template for Submitting Scheduled Requests Through an Oracle ADF UI

62-62 Developer's Guide

method call activity as the default activity of a custom bounded task flow so as to
initialize the parameters view object and Flexfield filters defined in that task flow.

When using page navigation between two view activities and custom bounded task
flows with a default method call activity, switching between basic and advanced
modes might reinitialize the related view objects and entity objects. If this happens,
any data entered in basic mode is lost when changing to advanced mode.

The task flow template enables switching between basic and advanced modes in the
scheduled request submission Oracle ADF UI without losing data.

62.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through
an Oracle ADF UI

A bundled task flow template is provided, containing the components required to
enable switching between basic and advanced modes in the Oracle ADF UI. The task
flow template adds a router activity and an input parameter to the custom bounded
task flow. Configure the router activity as the default activity.

You need only extend the task flow template as needed and implement the activity IDs
defined in the task flow template.

Example 62–37 shows a sample implementation of the task flow template.

Example 62–37 Task Flow Template

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-template id="srs-custom-task-flow-template">
 <default-activity id="defActivity">defaultRouter</default-activity>
 <input-parameter-definition id="param1">
 <description id="paramDescription">Parameter to decide on initialization.</description>
 <name id="paramName">shouldInitialize</name>
 <value id="paramID">#{pageFlowScope.shouldInitialize}</value>
 <class id="paramType">boolean</class>
 <required/>
 </input-parameter-definition>

 <router id="defaultRouter">
 <case id="routerCaseID">
 <expression id="routerExprID">#{pageFlowScope.shouldInitialize}</expression>
 <outcome id="outcomeID">initializeTaskflow</outcome>
 </case>
 <default-outcome id="defOutcomeID">skip</default-outcome>
 </router>

 <control-flow-rule id="ctrlFlwRulID">
 <from-activity-id id="FrmAc1">defaultRouter</from-activity-id>
 <control-flow-case id="CtrlCase1">
 <from-outcome id="FrmAct3">initializeTaskflow</from-outcome>
 <to-activity-id id="ToAct1">initActivity</to-activity-id>
 </control-flow-case>
 <control-flow-case id="CtrlCase2">
 <from-outcome id="FrmAct2">skip</from-outcome>
 <to-activity-id id="ToAct2">defaultView</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 <use-page-fragments/>
 </task-flow-template>
</adfc-config>

Using a Task Flow Template for Submitting Scheduled Requests Through an Oracle ADF UI

Working with Extensions to Oracle Enterprise Scheduler 62-63

The task flow template defines the following:

■ A default-activity,

■ An input parameter of Boolean type,

■ A router activity,

■ A control-flow-rule containing two cases.

62.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests
through an Oracle ADF UI

If you need to create your own custom bounded task flow UI for the parameters
section of the scheduled request submission UI, you will need to extend this template.

To extend the task flow template for the Oracle ADF UI used to submit scheduled
requests:
1. When creating a new task flow, extend the task flow by selecting Use a template.

For more information, see the part "Creating Oracle ADF Task Flows" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition)." Alternatively, add the lines of code
shown in Example 62–38 to the task flow XML file.

Example 62–38 Extending a Task Flow

<template-reference>
 <document id="doc1">/WEB-INF/srs-custom-task-flow-template.xml</document>
 <id id="temid">srs-custom-task-flow-template</id>
</template-reference>

2. Implement the activity IDs defined in the template, which are invoked by the
router activity in the template.

■ initActivity: The ID of the method call activity.

■ defaultView: The ID of the default view activity.

To do this, to the task flow drag and drop the createInsert method from the view
object used in the default view. This creates a pagedef file and adds the binding
details in DateBinding.cpx.

3. Define a control flow rule to navigate from the initActivity object to the
defaultView object. This navigation depends on the outcome of the initActivity
object, as well as individual use cases.

Example 62–39 shows a sample implementation of a control flow rule.

Example 62–39 Implementing a Control Flow Rule

<control-flow-rule>
 <from-activity-id>initActivity</from-activity-id>
 <control-flow-case>
 <from-outcome>outcome_of_init_activity</from-outcome>
 <to-activity-id>defaultView</to-activity-id>

Note: Ensure your bounded task flow does not define any default
activity.

Securing Oracle ADF UIs

62-64 Developer's Guide

 </control-flow-case>
</control-flow-rule>

62.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled
Requests through an Oracle ADF UI

 Based on the value of the input parameter, the router invokes the method call activity
or skips it, and invokes the view activity directly. The Oracle ADF UI must pass the
correct parameter values to the task flow while switching modes.

62.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit
Scheduled Requests through an Oracle ADF UI

When loading the initial page in basic mode, the method call activity is invoked. While
loading the page in the advanced mode, the custom bounded task flow directly
invokes the view activity. This ensures that the user entered data persists in the view
objects across modes.

If the custom task flow UI does not render correctly, check whether transactional
properties have been set in the custom task flow, such as the requires-transaction
property, and so on.

Remove transactional properties from the task flow definition and set the data control
scope to shared.

As the parent scheduled request submission UI task flow already has a transaction,
Oracle ADF will commit all called task flow transactions as long as the data controls
are shared.

62.19 Securing Oracle ADF UIs
When creating Oracle ADF UIs for scheduled jobs, you can secure the individual task
flows involved using a security policy.

The task flows you can secure are as follows.

Scheduling Job Requests UI
■ /WEB-INF/ScheduleRequest-taskflow.xml

– /WEB-INF/srs-test-task-flow.xml#srs-test-task-flow

– /WEB-INF/LayoutRN-taskflow.xml#LayoutRN-taskflow

– /WEB-INF/NotifyRN-taskflow.xml#NotifyRN-taskflow

– /WEB-INF/ScheduleRN_taskflow.xml#ScheduleRN_taskflow

Monitoring Job Requests UI
■ /WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/MonitorProcessesMainAreaF

low.xml#MonitorProcessesMainAreaFlow

– /WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/EmptyFlow.xml

Note: When using the UI to schedule a job to run for a year, for
example, a maximum of 300 occurrences display when clicking
Customize Times.

Logging Scheduled Jobs

Working with Extensions to Oracle Enterprise Scheduler 62-65

62.20 Integrating Scheduled Job Logging with Oracle Fusion
Applications

Oracle Enterprise Scheduler is fully integrated with Oracle Fusion Applications
logging. The logger captures Oracle Enterprise Scheduler-specific attributes when
invoking logging from within the context of a running job request. You can set the
values to these Oracle Enterprise Scheduler attributes within the context of defining a
job.

Jobs can generate a log file on the file system that can be viewed with the Monitoring
UI.

In a typically configured Oracle Enterprise Scheduler hosting application, log and
output files are stored in an Oracle WebCenter Content repository rather than on the
file system. These files are available to end users through a page you provide for
monitoring scheduled job requests. For more information about request monitoring,
see Section 62.17, "Monitoring Scheduled Job Requests Using an Oracle ADF UI."

62.21 Logging Scheduled Jobs
Log messages written using the request log file APIs are written to the request log file
and Oracle Fusion Applications logging at a severity level of FINE (only if logging is
enabled at a level of FINE or lower).

62.21.1 Using the Request Log

For Oracle Enterprise Scheduler jobs, the request log is equivalent to the end user
interface for web applications. When developing an Oracle Enterprise Scheduler job,
log to the request log only translatable end-user oriented messages.

For example, if an end user enters a bad parameter to the Oracle Enterprise Scheduler
job, a translated error message logged to the request log is displayed to the end user.
The end user can then take the relevant corrective action.

Example 62–40 shows how to set log messages using the request log.

Example 62–40 Setting Log Messages Using the Request Log

-- Seeded message to be displayed to the end user.
FND_MESSAGE.SET_NAME('FND', 'INVALID_PARAMETER');
-- Runtime parameter information
FND_MESSAGE.SET_TOKEN('PARAM_NAME', pName);
FND_MESSAGE.SET_TOKEN('PARAM_VALUE', pValue);

Note: Do not use the request log for debugging and internal error
reporting. For Oracle Enterprise Scheduler jobs, the request log is
equivalent to the end-user UI for online applications. When writing
Oracle Enterprise Scheduler job code, you should ideally log only
translatable end user-oriented messages to the request log. You should
not use the request log for debug messages or internal error messages
that are oriented to system administrators and/or Oracle Support. The
audience for debug messages and detailed internal error messages is
typically system administrators and Oracle Support, not end users.

Therefore, debug and detailed internal error messages should be
logged to the log called FND_LOG only.

Logging Scheduled Jobs

62-66 Developer's Guide

-- The following is useful for auto-logging errors.
FND_MESSAGE.SET_MODULE('fnd.plsql.mypackage.myfuntionA');
fnd_file.put_line(FND_FILE.LOG, FND_MESSAGE.GET);

If the Oracle Enterprise Scheduler job fails due to an internal software error, log the
detailed failure message to the log called FND_LOG for the system administrator or
support. You can also log a high-level generic message to the request log so as to
inform end users of the error. An example of a generic error message intended for end
users: "Your request could not be completed due to an internal error."

62.21.2 Using the Output File

The output file is a formally formatted file generated by an Oracle Enterprise
Scheduler job. An output file can be sent to a printer or viewed in a UI window.
Example 62–41 shows an invoice sent to an output file.

Example 62–41 Invoice Output File

fnd_file.put_line(FND_FILE.OUTPUT, '******** XYZ Invoice ********');

62.21.3 Debugging and Error Logging
Debug and error logging should be done using the Oracle Diagnostic Logging APIs
only. The Oracle Enterprise Scheduler request log should not be used for system
administrator or Oracle support-oriented debug and error logging purposes. The
request log is for the end users and it should only contain messages that are clear and
concise. When an error occurs in an Oracle Enterprise Scheduler job, an appropriate
high-level (and, ideally, translated) message should be used to report the error to the
end user through the request log. The details of the error and any debug messages
should be logged with Oracle Diagnostic Logging APIs.

Common PL/SQL, Java, or C code that could be invoked by both Oracle Enterprise
Scheduler jobs and interactive application code should only use Oracle Diagnostic
Logging APIs. If needed, the wrapper Oracle Enterprise Scheduler job should perform
appropriate batching and logging to the request log for progress reporting purposes.

 For more information, see the chapter "Managing Log Files and Diagnostic Data" in
Oracle Fusion Middleware Administrator's Guide.

Using Logging in a Java Application
In Java jobs, use the log called AppsLog for debugging and error logging. You can
retrieve an AppsLog instance from the CpContext object, by calling the method
getLog().

Example 62–42 shows the use of logging in a Java application.

Example 62–42 Logging in Java Using AppsLog

public boolean authenticate(AppsContext ctx, String user, String passwd)
 throws SQLException, NoSuchUserException {
 AppsLog alog = (AppsLog) ctx.getLog();
 if(alog.isEnabled(Log.PROCEDURE)) /* To avoid String Concat if not enabled */

Note: Do not use the output file for debugging and internal error
reporting.

Logging Scheduled Jobs

Working with Extensions to Oracle Enterprise Scheduler 62-67

 alog.write("fnd.security.LoginManager.authenticate.begin",
 "User=" + user, Log.PROCEDURE);
 /* Never log plain-text security sensitive parameters like passwd! */
 try {
 validUser = checkinDB(user, passwd);
 } catch(NoSuchUserException nsue) {
 if(alog.isEnabled(Log.EXCEPTION))
 alog.write("fnd.security.LoginManager.authenticate",nsue, Log.EXCEPTION);
 throw nsue; // Allow the caller to Handle it appropriately
 } catch(SQLException sqle) {
 if(alog.isEnabled(Log.UNEXPECTED)) {
 alog.write("fnd.security.LoginManager.authenticate", sqle,
 Log.UNEXPECTED);
 Message Msg = new Message("FND", "LOGIN_ERROR"); /* System Alert */
 Msg.setToken("ERRNO", sqle.getErrorCode(), false);
 Msg.setToken("REASON", sqle.getMessage(), false);
 /* Message Dictionary messages should be logged using write(..Message..),
 * and never using write(..String..) */
 alog.write("fnd.security.LoginManager.authenticate", Msg, Log.UNEXPECTED);
 }
 throw sqle; // Allow the caller to handle it appropriately
 } // End of catch(SQLException sqle)
 if(alog.isEnabled(Log.PROCEDURE)) /* To avoid String Concat if not enabled */
 alog.write("fnd.security.LoginManager.authenticate.end",
 "validUser=" + validUser, Log.PROCEDURE);
 return success;
 }

Using Logging in a PL/SQL Application
PL/SQL APIs are part of the FND_LOG package. These APIs require invoking relevant
application user session initialization APIs—such as the method FND_
GLOBAL.INITIALIZE()— to set up user session properties in the database session.

These application user session properties, including UserId, RespId, AppId, SessionId,
are needed for the log APIs. Typically, Applications Core invokes these session
initialization APIs.

Log plain text messages with the method FND_LOG.STRING(). Log translatable message
dictionary messages with the method FND_LOG.MESSAGE(). FND_LOG.MESSAGE() logs
messages in encoded, but not translated, format, and allows the Log Viewer UI to
handle translating messages based on the language preferences of the system
administrator viewing the messages.

For details regarding the FND_LOG API, run the script
$fnd/patch/115/sql/AFUTLOGB.pls at the prompt. Example 62–43 shows the PL/SQL
logging syntax.

Example 62–43 PL/SQL Logging Syntax

PACKAGE FND_LOG IS
 LEVEL_UNEXPECTED CONSTANT NUMBER := 6;
 LEVEL_ERROR CONSTANT NUMBER := 5;
 LEVEL_EXCEPTION CONSTANT NUMBER := 4;

Note: Example 62–42 uses an active WebAppsContext object. Do not
attempt to log messages using an inactive or freed WebAppsContext
object, as this can cause connection leaks.

Logging Scheduled Jobs

62-68 Developer's Guide

 LEVEL_EVENT CONSTANT NUMBER := 3;
 LEVEL_PROCEDURE CONSTANT NUMBER := 2;
 LEVEL_STATEMENT CONSTANT NUMBER := 1;

 /*
 ** Writes the message to the log file for the specified
 ** level and module
 ** if logging is enabled for this level and module
 */
 PROCEDURE STRING(LOG_LEVEL IN NUMBER,
 MODULE IN VARCHAR2,
 MESSAGE IN VARCHAR2);

 /*
 ** Writes a message to the log file if this level and module
 ** are enabled.
 ** The message gets set previously with FND_MESSAGE.SET_NAME,
 ** SET_TOKEN, etc.
 ** The message is displayed from the message dictionary stack,
 ** if POP_MESSAGE is TRUE.
 ** Pass FALSE for POP_MESSAGE if the message will also be
 ** displayed to the user later.
 ** Example usage:
 ** FND_MESSAGE.SET_NAME(...); -- Set message
 ** FND_MESSAGE.SET_TOKEN(...); -- Set token in message
 ** FND_LOG.MESSAGE(..., FALSE); -- Log message
 ** FND_MESSAGE.RAISE_ERROR; -- Display message
 */
 PROCEDURE MESSAGE(LOG_LEVEL IN NUMBER,
 MODULE IN VARCHAR2,
 POP_MESSAGE IN BOOLEAN DEFAULT NULL);

 /*
 ** Tests whether logging is enabled for this level and module,
 ** to avoid the performance penalty of building long debug
 ** message strings unnecessarily.
 */
 FUNCTION TEST(LOG_LEVEL IN NUMBER, MODULE IN VARCHAR2)
RETURN BOOLEAN;

Example 62–44 shows how to log a message in PL/SQL after the AOL session has been
initialized.

Example 62–44 Logging a Message in PL/SQL After the AOL Session Has Been
Initialized

begin

 /* Call a routine that logs messages. */
 /* For performance purposes, check whether logging is enabled. */
 if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 FND_LOG.STRING(FND_LOG.LEVEL_PROCEDURE,
 'fnd.plsql.MYSTUFF.FUNCTIONA.begin', 'Hello, world!');
 end if;
/

The global variable FND_LOG.G_CURRENT_RUNTIME_LEVEL allows callers to avoid a
function call for messages at a lower level than the current configured level. If logging
is disabled, the current runtime level is set to a large number such as 9999 so that it is
sufficient to simply log messages with levels greater than or equal to this number. This

Logging Scheduled Jobs

Working with Extensions to Oracle Enterprise Scheduler 62-69

global variable is automatically populated by the FND_LOG_REPOSITORY package during
session and context initialization.

Example 62–45 shows sample code that illustrates the use of the global variable FND_
LOG.G_CURRENT_RUNTIME_LEVEL.

Example 62–45 Logging a Message in PL/SQL Using FND_LOG.G_CURRENT_
RUNTIME_LEVEL

if(FND_LOG.LEVEL_STATEMENT >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 dbg_msg := create_lengthy_debug_message(...);
 FND_LOG.STRING(FND_LOG.LEVEL_STATEMENT
 'fnd.form.ABCDEFGH.PACKAGEA.FUNCTIONB.firstlabel', dbg_msg);
end if;

Example 62–46 shows logging message dictionary messages.

Example 62–46 Logging Message Dictionary Messages

if(FND_LOG.LEVEL_UNEXPECTED >=
 FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 FND_MESSAGE.SET_NAME('FND', 'LOGIN_ERROR'); -- Seeded Message
 -- Runtime Information
 FND_MESSAGE.SET_TOKEN('ERRNO', sqlcode);
 FND_MESSAGE.SET_TOKEN('REASON', sqlerrm);
 FND_LOG.MESSAGE(FND_LOG.LEVEL_UNEXPECTED,
 'fnd.plsql.Login.validate', TRUE);
end if;

Using Logging in C
Example 62–47 illustrates the use of logging in a C application.

Example 62–47 Logging in C

#define AFLOG_UNEXPECTED 6
#define AFLOG_ERROR 5
#define AFLOG_EXCEPTION 4
#define AFLOG_EVENT 3
#define AFLOG_PROCEDURE 2
#define AFLOG_STATEMENT 1

/*
** Writes a message to the log file if this level and module is
** enabled
*/
void aflogstr(/*_ sb4 level, text *module, text* message _*/);

/*
** Writes a message to the log file if this level and module is
** enabled.
** If pop_message=TRUE, the message is popped off the message
** Dictionary stack where it was set with afdstring() afdtoken(),
** etc. The stack is not cleared (so messages below will still be

Note: For PL/SQL in a forms client, use the same APIs. Use the
method FND_LOG.TEST() to check whether logging is enabled.

Logging Scheduled Jobs

62-70 Developer's Guide

** there in any case).
*/
void aflogmsg(/*_ sb4 level, text *module, boolean pop_message _*/);

/*
** Tests whether logging is enabled for this level and module, to
** avoid the performance penalty of building long debug message
** strings
*/
boolean aflogtest(/*_ sb4 level, text *module _*/);

/*
** Internal
** This routine initializes the logging system from the profiles.
** It will also set up the current session and user name in its state */
void afloginit();

63

Oracle Enterprise Scheduler Security 63-1

63Oracle Enterprise Scheduler Security

This chapter explains how Oracle Enterprise Scheduler security features provide
access control for Oracle Enterprise Scheduler resources and application identity
propagation for job execution.

■ Section 63.1, "Introduction to Oracle Enterprise Scheduler Security"

■ Section 63.2, "Configuring Metadata Security for Oracle Enterprise Scheduler"

■ Section 63.3, "Configuring PL/SQL Job Security for Oracle Enterprise Scheduler"

■ Section 63.4, "Elevating Privileges for Oracle Enterprise Scheduler Jobs"

■ Section 63.5, "Configuring a Single Policy Stripe in Oracle Enterprise Scheduler"

■ Section 63.6, "Configuring Oracle Fusion Data Security for Job Requests"

63.1 Introduction to Oracle Enterprise Scheduler Security
Oracle Enterprise Scheduler security includes the following:

■ Protected operations on MetadataService; protected by MetadataPermission,
which enforces access control on metadata objects. Only privileged users may
create, delete, and update jobs and schedule metadata. For more information, see
Section 63.1.1, "Oracle Enterprise Scheduler Metadata Access Control."

■ Access control for job requests, enforced by Oracle Fusion Data Security policies.
For more information about using Oracle Fusion Data Security policies, see
Section 63.6, "Configuring Oracle Fusion Data Security for Job Requests."

■ Support for the use of an application identity. Using an application identity
enables elevated privileges to complete a job that requires higher privileges than
those allotted to the user who submitted the job. For more information, see
Section 63.1.2, "Oracle Enterprise Scheduler Job Execution Security."

63.1.1 Oracle Enterprise Scheduler Metadata Access Control
At design time, the metadata creator must decide which job functions can access
which metadata objects. This is expressed by associating each metadata object with
one or more roles and specifying one or more actions for each role. Figure 63–1 shows
the metadata security summary.

Configuring Metadata Security for Oracle Enterprise Scheduler

63-2 Developer's Guide

Figure 63–1 Design Time Metadata Security for Oracle Enterprise Scheduler

63.1.2 Oracle Enterprise Scheduler Job Execution Security
When submitting a job request, the submitting user is the user under whose
permissions the job request is submitted. At job request execution time, all code,
including pre-processing, post-processing, Java jobs, and substitution, runs as the
submitting user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs under
the elevated privileges of an application ID. For more information, see Section 63.4,
"Elevating Privileges for Oracle Enterprise Scheduler Jobs."

63.2 Configuring Metadata Security for Oracle Enterprise Scheduler
When a user accesses Oracle Enterprise Scheduler services using the RuntimeService
or MetadataService, the identity of the user is acquired and Oracle Enterprise
Scheduler checks whether the user has the required permissions to access resources
such as metadata objects. For example, if a user named teller1 must call
getJobDefinition to access a metadata object named caclulateFees, Oracle
Enterprise Scheduler ensures that teller1 has READ permission for the metadata object
caclulateFees before returning the object.

At design time, you must determine the job functions for which you want to enable
access to particular metadata objects by associating each metadata object with one or
more roles and specifying one or more actions for each role.

There are two options for metadata role assignments:

■ Using Oracle JDeveloper Tools Oracle ADF Security Wizard

■ Using Oracle JDeveloper Oracle Enterprise Scheduler add-in metadata pages

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be
created before you can register roles with a metadata object.

Configuring Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 63-3

63.2.1 How to Enable Application Security with Oracle ADF Security Wizard
These steps describe a minimal, validated security setup for an application using
Oracle Enterprise Scheduler.

Follow these steps to create a working jps-config.xml and a partially-populated
jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the Oracle ADF Security wizard:
1. In Oracle JDeveloper, with an application open, from the Application menu select

Secure.

2. From the dropdown list, select Configure ADF Security. The Configure ADF
Security wizard displays.

3. In the Enable ADF Security page, select either ADF Authentication and
Authorization or ADF Authentication and click Next.

4. In the Select authentication type page, select either HTTP Basic Authentication or
Form-Based Authentication and click Next.

5. In the Enable automatic policy grants page, select the appropriate options from the
Enable Automatic Grant area, and click Next.

6. In the Specify authenticated welcome page, select options as needed and click
Next.

7. In the Summary page verify the options and click Finish.

8. In the Security Infrastructure Created dialog, click OK.

Next, to enable security and to ensure that the jazn-data.xml is included in the
application deployment, perform the following steps after assembling the EAR file for
the application. For more information, see the section "Assembling Oracle Enterprise
Scheduler Oracle Fusion Applications" in the chapter "Customizing and Extending
Oracle Enterprise Scheduler Jobs" in Oracle Fusion Applications Extensibility Guide.

Ensure the security related files are included with EAR file:
1. In Oracle JDeveloper, select Application > Application Properties.

2. In the Application Properties page, in the Navigator select Deployment.

3. In the Deployment Profiles area, select the EAR file Deployment descriptor.

4. Click Edit.

The Edit EAR Deployment Profile Properties page displays.

5. In the Edit EAR Deployment Profile Properties page, expand File Groups >
Application Descriptors > Filters.

6. In the Filters area, select the Files tab.

7. Ensure that the files jazn-data.xml, jps-config.xml, and
weblogic-application.xml are selected under the META-INF folder.

8. Click OK to save the descriptor.

63.2.2 How to Define Principals for Security
You need to define roles before the roles are used in Oracle Enterprise Scheduler
security. You can define two types of roles:

Configuring Metadata Security for Oracle Enterprise Scheduler

63-4 Developer's Guide

■ Enterprise roles: These are defined directly in Oracle WebLogic Server either using
the Oracle WebLogic Server console, using the WLST scripts, or using the Oracle
ADF Security Wizard in Oracle JDeveloper.

■ Application roles: These can be defined in the jazn-data.xml file or using the
Oracle ADF Security Wizard.

To define principals security:
1. In Oracle JDeveloper, open the application and expand Application Resources in

the Application Navigator.

2. In the Application Resources area, expand Descriptors and META-INF.

3. In META-INF, double-click to open jazn-data.xml.

4. In the page showing jazn-data.xml, select the Overview tab. If the Overview tab
is not shown, try closing jazn-data.xml and then opening it again.

5. Click Application Roles...(Manage Users and Roles).

6. On the Edit JPS Identity and Policy Store page, in the navigator expand Identity
Store and jazn.com.

7. In the navigator, select Roles and click Add....

The Add Role window displays.

8. In the Add Role window, enter a name in the Name field.

9. Click OK.

10. On the Edit JPS Identity and Policy Store page, in the navigator select Application
Policy Store. If there is a sub-element with the same name as the application, go to
the next step, Otherwise, do the following:

a. Select Application Policy Store.

b. Click New.

The Create Application Policy window displays.

c. In the Create Application Dialog the Display Name field should contain the
application name.

d. Click OK to accept the default Display Name.

11. On the Edit JPS Identity and Policy Store page, in the navigator expand
Application Policy Store and expand the application name.

12. In the navigator, select Application Roles.

The Application Roles page displays.

13. In the Application Roles page, click Add... to add roles. For correct functionality, at
least one enterprise role must be mapped to the application role by adding
enterprise roles in the Member Roles tab.

14. Click OK.

63.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
Access to all metadata is controlled by grants. In order to ensure access by the right
identities, you need to give the correct grants.

Configuring Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 63-5

First, create any required Oracle Enterprise Scheduler metadata in an application using
File > New > Business Tier > Enterprise Scheduler Metadata. For more information
about defining metadata, see Section 62.4, "Creating a Job Definition."

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduler
metadata objects.

To secure Oracle Enterprise Scheduler metadata objects:
1. Open the Editor page for any Oracle Enterprise Scheduler metadata object.

2. In the Access Control area, click Add to add a new access control item.

3. In the Add Access Control dialog, select a Role from the dropdown list. This
selects a role to grant access privileges.

4. Select one or more actions from the list, Read, Execute, Update, or Delete.

5. Click OK. This displays the updated role, as shown in Figure 63–2.

6. Repeat for as many roles as needed.

Figure 63–2 Security Roles for Oracle Enterprise Scheduler Metadata

63.2.4 How to Create Grants with Oracle ADF Security Wizard
There may be occasions when you want to create grants explicitly, for example when
using wildcards. These steps show how to set up grants using the Oracle ADF Security
wizard.

Note that these steps assume you have already created application roles.

To specify grants with the Oracle ADF Security wizard:
1. In the Application Navigator, expand the Application Resources panel.

2. Expand Descriptors and META-INF, as shown in Figure 63–3.

Configuring Metadata Security for Oracle Enterprise Scheduler

63-6 Developer's Guide

Figure 63–3 Security Configuration Files Including jazn-data.xml in META-INF

3. Double-click jazn-data.xml to open the file. In the editor panel for
jazn-data.xml, select the Overview tab, and click Application Roles... (Manage
Users and Roles). This displays the JPS Identity & Policy Store dialog. Note, if the
Overview tab is not shown, try closing jazn-data.xml and then opening it again.

4. In the JPS Identity & Policy Store dialog, in the navigator expand Application
Policy Store.

5. Expand application-name, and select Application Roles.

6. Click New.

7. Enter the display name you wish for this grant, and click OK.

8. Select the Principals tab, and click Add.

9. Enter the name of the application role which will receive the grant; this should be
one of the role names created. Leave the Class field as is.

10. Click OK.

11. With the new role selected in the Principals tab, make sure the Type is role.

12. Select the Permissions tab, and click Add....

13. For the Name field, enter a full permission string or a partial string with
wildcards; see Table 63–1 for examples. In the Class field, enter
oracle.as.scheduler.security.MetadataPermission. Click OK.

14. With the new permission selected in the Permissions tab, enter the desired actions
in the Actions Field.

15. Click OK to save the grant.

Configuring Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 63-7

63.2.5 MetadataPermission APIs
Grants for metadata are part of the class oracle.as.scheduler.
security.MetadataPermission. The name, or target of the permission is based on the
package, metadata object type and name of the metadata object being protected. This
identifier can be retrieved from MetdataObjectId#toPermissionString().

Table 63–2 lists the actions for the grants. The notation <Type> is a placeholder for all
of the metadata object types. For example, get<Type>() refers to the methods
getJobDefinition(), getJobType(), getJobSet().

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with
both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using
submitRequest() without certain MetadataObjectIds, you can grant permissions with
the full wildcard ("*") name using the EXECUTE and CREATE actions.

63.2.6 What Happens When You Configure Metadata Security
Each time a user application calls a MetadataService or RuntimeService method,
Oracle Enterprise Scheduler checks the current subject for privileges on the metadata
accessed by the methods. For example, submitting a request requires EXECUTE
permissions on the job definition or job set metadata object associated with the
submission. Methods that change metadata, for example calling
updateJobDefinition(), require UPDATE permissions.

Note: If necessary, use the following workaround:

1. Right-click the jazn-data.xml file and select Open.

2. Click the Source tab.

3. Under <jazn-policy><grant><grantee>, remove the elements
<display-name> and <type>.

Table 63–1 Sample Permission Grants for Security Using Oracle ADF

Name Actions Effect

package-part.JobDefinition
.MyJavaSucJobDef

EXECUTE Grants the ability to submit requests
for a single metadata item.

mypackage.subpackage.* CREATE,EXECUTE Grants to ability to create and execute
any new metadata items in
/mypackage/subpackage.

JobDefinition.SYS_
AdHocRequest

CREATE,EXECUTE Grants ad hoc submission permission

mypackage.* CREATE,EXECUTE,DELETE Grants wide-open permissions

Table 63–2 Grant Actions for Metadata Security

Action Implies Metadata Functions

READ None get<Type>(), query<Type>()

EXECUTE READ submitRequest()

CREATE READ add<Type>()

UPDATE READ update<Type>()

DELETE READ delete<Type>()

Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

63-8 Developer's Guide

For all MetadataService methods except queries, an exception is thrown when the
user tries to access a metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user performs a
query Oracle Enterprise Scheduler only returns metadata objects that have READ
permission. Thus a user who has no permissions on metadata objects receives an
empty list for all queries, but this user would not see an exception thrown due to lack
of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the user
cannot spoof an identity at submission time using SystemProperty.USER_NAME.

63.3 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
For standalone cases, implement the application user session using Java or the
PL/SQL API as described in Chapter 47, "Implementing Application User Sessions."

63.4 Elevating Privileges for Oracle Enterprise Scheduler Jobs
When a user accesses Oracle Enterprise Scheduler services using the RuntimeService
or MetadataService interfaces, the identity of the user calling the methods is acquired.
This identity is used to check whether the user has the required permissions to access
certain resources such as metadata objects. For example, if user teller1 calls the
method getJobDefinition for metadata object caculateFees, Oracle Enterprise
Scheduler ensures that teller1 has read permissions for metadata object
caculateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user
teller1 calls the method submitRequest() for a Java job, the requested jobs run under
teller1 and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduler supports the use of an application identity. Using an
application identity enables elevated privileges for completion of a job that requires
higher privileges than those allotted to the submitting user.

For more information about enabling elevating privileges, see Section 62.13, "Elevating
Access Privileges for a Scheduled Job."

63.5 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
Oracle Platform Security policy store serves as the repository for authorization
policies. Authorization policies load at run time into the Java Virtual Machine, and are
used to make decisions regarding authorization. Authorization policies comprise a
hierarchy of application roles, the mapping of enterprise roles to application roles and
permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores
administrative constructs that help in maintaining these authorization policies,
including resource catalogs (with associated resource types), permission sets and role
categories. The authorization polices and administrative components are scoped to an
application. This is known as an application stripe.

An application stripe is a collection of JAAS policies applicable to the application with
which it is associated. Out of the box, an application stripe maps to an Oracle Java EE
application. Oracle Platform Security also supports mapping multiple Java EE
applications to one application stripe. The application ID string identifies the name of
the application or applications.

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 63-9

63.5.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
Oracle Enterprise Scheduler allows specifying an applicationStripe name and
mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise
Scheduler hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduler hosting application to a specific
applicationStripe:
1. Open the ejb-jar.xml file.

2. Under the message-driven element, add an activation-config-properties
element with the value applicationStripe.

3. Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-driven>
element with the application.name value under the <interceptor> element.

Example 63–1 shows an applicationStripe configuration for the policy context
ESS_FUNCTIONAL_TEST_APP_STRIPE.

Example 63–1 Configuring the applicationStripe and the JpsInterceptor

<ejb-jar>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>

 <activation-config-property>
 <activation-config-property-name>applicationStripe</activation-config-property-name>
 <activation-config-property-value>ESS_FUNCTIONAL_TESTS_APP_
 STRIPE</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 </enterprise-beans>

 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

Configuring Oracle Fusion Data Security for Job Requests

63-10 Developer's Guide

4. If your application has a web module, configure the web module JpsFilter to use
the same applicationStripe in the file web.xml. Example 63–2 shows a code
sample.

Example 63–2 Configuring the Web Module in web.xml

<web-app>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 ...
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
 </init-param>
 </filter>

</web-app>

63.5.2 What Happens When You Configure a Single Policy Stripe
At design time, an application stripe manifests as:

■ An <application> element under the <policystore> element in the
jazn-data.xml file.

■ A node under the node
cn=<Weblogic.domain.name>,cn=JPSContext,cn=<root.node>, such as
cn=ATGDemo,cn=base_domain,cn=JPSContext,cn=MY_Node.

63.5.3 What Happens at Runtime
At run time, an application stripe manifests as an instance of the class
oracle.security.jps.service.policystore.ApplicationPolicy.

63.6 Configuring Oracle Fusion Data Security for Job Requests
Oracle Fusion Data Security for Oracle Fusion Applications enforces security
authorizations for access and modification of specific data records. Oracle Fusion Data
Security integrates with Oracle Platform Security Services (OPSS) by granting actions
to OPSS principals. The grant defines who (the principals) can do what (the actions) on
a given resource. A grant in Oracle Fusion Data Security can use any enterprise user or
enterprise group as principals. For more information about implementing Oracle
Fusion Data Security, see Chapter 48, "Implementing Oracle Fusion Data Security."

In the context of Oracle Enterprise Scheduler, a job request access control data security
policy comprises a grant, a grantee and a set of ESS_REQUEST privileges for a set of job
requests as follows:

■ A grantee, represented by grantee ID such as a user or application role, the ID
should match the user GUID or application role GUID retrieved from Oracle
Fusion Middleware.

■ A set of ESS_REQUEST privileges represented by a menu ID mapped to a set of form
functions.

■ A set of data represented by an INSTANCE_SET ID. An INSTANCE_SET is typically
represented by a predicate which can be appended to a query to the job request

Configuring Oracle Fusion Data Security for Job Requests

Oracle Enterprise Scheduler Security 63-11

data exposed to Oracle Fusion Applications (see Section 63.6.1, "Oracle Fusion
Data Security Artifacts").

The job request access control data security policy can be managed using Oracle
Authorization Policy Manager as are other Oracle Fusion Data Security policies. If
Oracle Authorization Policy Manager is not available, you can use SQL scripts to
manipulate the Oracle Fusion Data Security artifacts.

63.6.1 Oracle Fusion Data Security Artifacts
To use Oracle Enterprise Scheduler job request access control feature in the context of
Oracle Fusion Applications, the Oracle Fusion Applications schema and Oracle
Enterprise Scheduler schema must be located in a single database.

Oracle Enterprise Scheduler implements job request data security on top of the
request_history and request_property tables. It exposes Oracle Enterprise
Scheduler job request related data to the Oracle Fusion Applications schema through
the following views: request_history_view and request_property_view. Two
synonyms are created in the Oracle Fusion Applications schema which are linked to
the Oracle Enterprise Scheduler schema.

The request_history_view contains all columns that correspond to
RuntimeService.QueryField, which is used when constructing the filter for
queryRequest() operations, as well as two other columns: submitter and
submitterguid. Be sure to define your INSTANCE_SET based on these columns only.

Table 63–3 lists the Oracle Fusion Applications schema tables and their Oracle
Enterprise Scheduler synonyms, as well as the columns used to define data security
policies.

Table 63–4 shows the mapping of RuntimeService.QueryField columns to the Oracle
Enterprise Scheduler request_history_view columns.

Table 63–3 Mapping Oracle Fusion Applications Schema Synonyms to Oracle Enterprise Scheduler
Schema Views and Relevant Columns

Oracle Fusion
Applications Schema
Synonym

Link to Oracle Enterprise
Scheduler Schema View Columns

ess_request_history request_history_view See table for the QueryField and View Column
mapping.

ess_request_property request_property_view create or replace view request_property_view

as

 select

 requestid,

 name,

 scope,

 datatype,

 value,

 lobvalue,

 lobflag

 from request_property

 with read only;

Configuring Oracle Fusion Data Security for Job Requests

63-12 Developer's Guide

Table 63–5 maps FND_MENUS to FND_FORM_FUNCTIONS as reflected in FND_MENU_ENTRIES.

Table 63–4 Mapping RuntimeService.QueryField Columns to request_history_view Columns

RuntimeService.QueryField Columns Request_history_view Columns

QueryField.REQUESTID requestid

QueryField.APPLICATION application

QueryField.USERNAME userName

QueryField.PRODUCT product

QueryField.REQUEST_CATEGORY requestCategory

QueryField.PRIORITY priority

QueryField.NAME name

QueryField.ABSPARENTID absParentId

QueryField.TYPE type

QueryField.DEFINITION definition

QueryField.STATE state

QueryField.SCHEDULE schedule

QueryField.PROCESSSTART processStart

QueryField.PROCESSEND processEnd

QueryField.REQUESTEDSTART requestedStart

QueryField.REQUESTEDEND requestedEnd

QueryField.SUBMISSION submission

QueryField.PARENTREQUESTID parentRequestId

QueryField.WORKASSIGNMENT workAssignment

QueryField.SCHEDULE scheduled

QueryField.REQUESTTRIGGER requesttrigger

QueryField.PROCESSOR processor

QueryField.CLASSNAME classname

QueryField.ELAPSEDTIME elapsedtime

QueryField.WAITTIME waittime

QueryField.SUBMITTER submitter

QueryField.SUBMITTERGUID submitterguid

Configuring Oracle Fusion Data Security for Job Requests

Oracle Enterprise Scheduler Security 63-13

Table 63–6 lists the required data privilege (form_function) for a user to perform an
Oracle Enterprise Scheduler runtimeService operation.

Table 63–5 Mapping FND_MENUS to FND_FORM_FUNCTIONS

FND_MENUS in the Oracle Fusion Applications
Schema FND_FORM_FUNCTIONS

ESS_REQUEST_ADMIN ESS_REQUEST_READ

ESS_REQUEST_UPDATE

ESS_REQUEST_HOLD

ESS_REQUEST_CANCEL

ESS_REQUEST_LOCK

ESS_REQUEST_RELEASE

ESS_REQUEST_DELETE

ESS_REQUEST_PURGE

ESS_REQUEST_VIEW ESS_REQUEST_READ

ESS_REQUEST_OPERATE ESS_REQUEST_READ

ESS_REQUEST_HOLD

ESS_REQUEST_CANCEL

ESS_REQUEST_LOCK

ESS_REQUEST_RELEASE

ESS_REQUEST_OUTPUT_ADMIN ESS_REQUEST_OUTPUT_VIEW

ESS_REQUEST_OUTPUT_DELETE

Table 63–6 Data Privileges Needed to Execute runtimeService Operations

RuntimeService API Operation
Data Privilege (FND_FORM_
FUNCTIONS) Notes

open none

close none Two overloaded methods.

submitRequest none Five overloaded methods, which are
secured by metadata security, not data
security.

getRequestParameter ESS_REQUEST_READ

getRequestState ESS_REQUEST_READ

getRequests ESS_REQUEST_READ

getRequestDetail ESS_REQUEST_READ

getRequestDetailBasic ESS_REQUEST_READ

lockRequest ESS_REQUEST_LOCK

updateRequestParameter ESS_REQUEST_UPDATE

queryRequests ESS_REQUEST_READ

holdRequest ESS_REQUEST_HOLD

releaseRequest ESS_REQUEST_RELEASE

cancelRequest ESS_REQUEST_CANCEL

deleteRequest ESS_REQUEST_DELETE

Configuring Oracle Fusion Data Security for Job Requests

63-14 Developer's Guide

Table 63–7 displays the INSTANCE_SET conditions provided by Oracle Authorization
Policy Manager.

Table 63–8 lists the Oracle Fusion Data Security policies available for use with Oracle
Enterprise Scheduler out of the box.

For more information about the runAs user, or elevating access privileges, see
Section 62.13, "Elevating Access Privileges for a Scheduled Job."

purgeRequest ESS_REQUEST_PURGE

publishEvent none Not targeted to a request.

isHandleRollbackOnly none Not targeted to a request.

setHandleRollbackOnly none Not targeted to a request.

replaceSchedule none

Table 63–7 INSTANCE_SET Conditions Provided by Oracle Authorization Policy Manager

INSTANCE_SET Condition Description

REQS_SUBMITTEDBY_SESSIONUSER Oracle Enterprise Scheduler requests that the submitter is the
current session user.

REQS_RUNAS_SESSIONUSER Oracle Enterprise Scheduler requests that the RunAs user is the
current session user.

REQS_SUBREQS_BY_SUBMITTER Oracle Enterprise Scheduler requests and subrequests are all
submitted by the submitter.

REQS_ALL_OF_ONE_APP Indicates all Oracle Enterprise Scheduler requests related to a
product within a logical application. This condition takes two
parameters that match the job request parameter values of SYS_
application and SYS_product.

ESS_REQS_BY_NAME_VALUE_PARAM Oracle Enterprise Scheduler job request whose
RequestParameter name value pair is specified in data security
grants. This condition takes two parameters that match the one
job request parameter's name and value.

Table 63–8 Oracle Fusion Data Security Policies for Oracle Enterprise Scheduler

Oracle Fusion Data Security Policy Description

ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_
REQUESTS

The submitter of the job request is permitted to view and
administer the requests they submitted.

ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_
REQUESTS_SUBREQS

The submitter of the job requests and subrequests is permitted to
view and administer on the requests they submitted.

ESS_REQUEST_RUNASUSER_ADMIN_EXECUTED_
REQUESTS

The runAs user is permitted to view and administer the requests
they execute.

ESS_REQUEST_RUNASUSER_VIEWOUTPUT_
EXECUTED_REQUESTS

The runAs user is permitted to view the output of the job requests
they executed.

Table 63–6 (Cont.) Data Privileges Needed to Execute runtimeService Operations

RuntimeService API Operation
Data Privilege (FND_FORM_
FUNCTIONS) Notes

Configuring Oracle Fusion Data Security for Job Requests

Oracle Enterprise Scheduler Security 63-15

63.6.2 How to Apply Oracle Fusion Data Security Policies
The Oracle Fusion Data Security components described in Section 63.6.1, "Oracle
Fusion Data Security Artifacts" can be applied as follows.

To apply Oracle Fusion Data Security policies:
1. Examine the policies described in Table 63–8 and determine whether you can use

any of them in your application.

■ If you can use one of these policies, skip to the last step.

■ If the policies do not apply, continue on to the next step.

2. Determine whether any of the FND_MENUS listed in Table 63–5 suit the
out-of-the-box Oracle Fusion Data security policy you selected for your
application. If you cannot apply any of the FND_MENUS listed in Table 63–5, create
your own FND_MENUS and FND_MENUS_ENTRIES as described in Chapter 48,
"Implementing Oracle Fusion Data Security."

3. Determine whether you can use the INSTANCE_SET conditions in Table 63–7 and the
Oracle Fusion Data Security policies in your application. If you cannot use the
conditions, create your own FND_INSTANCE_SET. For more information about
creating an FND_INSTANCE_SET, see Chapter 48, "Implementing Oracle Fusion Data
Security."

4. Create an Oracle Fusion Data Security policy, as described in Section 63.6.3, "How
to Create Functional and Data Security Policies for Oracle Enterprise Scheduler
Components."

5. Test your application.

63.6.3 How to Create Functional and Data Security Policies for Oracle Enterprise
Scheduler Components

You can use Oracle Authorization Policy Manager to create functional and data
security policies for Oracle Enterprise Scheduler.

For more information about creating policies in Oracle Authorization Policy Manager,
see the chapter "Managing Policies and Policy Objects" in the Oracle Fusion Middleware
Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications
Edition).

To create functional and data security policies for Oracle Enterprise Scheduler:
1. Create a resource.

a. From the list of policies, expand the fcsm policy stripe and select fcsm >
Resource Catalog > Resources.

b. From the Actions menu, click New.

c. Define a resource with the resource type ESSMetadataResourceType, as well
as the name and display name of the Oracle Enterprise Scheduler component

Note: If developing an Oracle Fusion application, do not grant an
Oracle Enterprise Scheduler access policy to the grantee of an
authenticated-role or anonymous-role, as doing so may affect the
behavior of Oracle Enterprise Scheduler or other products.

Configuring Oracle Fusion Data Security for Job Requests

63-16 Developer's Guide

using the following syntax:
oracle.apps.ess.applicationName.JobDefintitionName.JobName.

d. Save the resource.

2. Define a resource policy.

a. Select the resource you just created and click Create Policy.

b. Add principals (grantees) by clicking the Add button.

c. In the Add Principal window, search for the relevant application role or roles.
Select the roles and click Add.

d. In the Actions field, select the relevant actions and click Apply.

3. Create an authorization condition.

a. In the Authorization Management tab, select Global and search for the
database resource you want to use. Table 63–8 lists the database resources
related to Oracle Enterprise Scheduler.

b. Select the resource and click Edit.

c. Click the Conditions tab and select Actions > New.

d. Enter a name, display name and SQL predicate for the condition.

4. Define a data policy.

a. From the Actions menu, select New Policy.

b. In the New Policy window, use the Role and Database Resource fields to add
the relevant roles and resources.

c. Select the role you defined. In Database Resource Details region, select the
condition name you just created and choose the actions you require.

Part IX
Part IX Appendices

The appendices provide information about how to work with the Oracle Fusion
application taxonomy, and a reference for the commands available for the Oracle
Enterprise Crawl and Search (ECSF) Command Line Administration Utility.

The Oracle Fusion Applications taxonomy organizes the components and functions of
Oracle Fusion Applications into a hierarchical structure. Every Oracle Fusion
development artifact or file is tagged with an owning functional component.
Components are grouped hierarchically into larger units, such as more general
components, products and product families.

ECSF Command Line Administration Utilities provides a reference for the commands
available for the Oracle Enterprise Crawl and Search (ECSF) Command Line
Administration Utility. You can use the ECSF Command Line Administration Utility to
quickly test and manage the searchable objects without having to use Oracle
Enterprise Manager Fusion Applications Control for ECSF.

This part contains the following appendices:

■ Appendix A, "Working with the Application Taxonomy"

■ Appendix B, "ECSF Command Line Administration Utility"

A

Working with the Application Taxonomy A-1

AWorking with the Application Taxonomy

This appendix describes the theory of the Oracle Fusion application taxonomy, how to
view the taxonomy, and how to extract taxonomy data from a table and how to insert
taxonomy data into a table.

This appendix describes:

■ The theory of the application taxonomy

■ How to view the taxonomy

■ How to extract taxonomy data from a table and how to insert taxonomy data into
a table

This appendix includes the following sections:

■ Section A.1, "Introduction to the Oracle Fusion Application Taxonomy"

■ Section A.2, "Working with Objects and Methods in the Application Taxonomy"

■ Section A.3, "Understanding Taxonomy MBeans"

It is important to note that there is no tool for working with the taxonomy; developers
use public business objects and do all work within JDeveloper. In general, only
developers who are referring to modules, such as Application, will need to work with
the taxonomy.

A.1 Introduction to the Oracle Fusion Application Taxonomy
The Oracle Fusion application taxonomy organizes the artifacts and functions of Oracle
Fusion Applications into a hierarchical structure. Every Oracle Fusion development
artifact or file is tagged. The structure starts with the Application Line and extends
through the Logical Business Area.

Application Line
 Application Family
 Application
 Logical Business Area
 Logical Business Area

In the taxonomy user interface, the hierarchy would appear similar to the example
shown in Figure A–1:

Introduction to the Oracle Fusion Application Taxonomy

A-2 Developer's Guide

Figure A–1 Taxonomy UI Hierarchy Example

A.1.1 Characteristics of the Level Categories
The taxonomy hierarchy provides a map of the dependencies that exist within an
application and across applications.

Seed Data
The Oracle Fusion Applications Design Repository (ADR) team has provided
Taxonomy seed data for the following levels in the hierarchy: Application Line,
Family, Application, and Logical Business Area (LBA).

You can create as fine-grained an application taxonomy as you wish. You can break up
an application into sub-applications or pseudo applications. For example, there are
many setup use cases where an overall process is made up of many smaller
subordinate processes.

A.1.2 How to Manage the Lifecycle
The applications taxonomy is especially useful in managing various phases of the
application lifecycle. These phases include:

■ Installation and Deployment

■ Patch Creation

■ System Administration

■ Diagnostics and Maintenance

A.1.2.1 Creating Patches and Patch Sets
Patches and patch sets can be constructed based on the data defined in the taxonomy.
You can choose any node of the taxonomy as the source for a patch file manifest. That
starting node can scale all the way up to the top of the application taxonomy tree for a
new release for the entire suite.

A.1.2.2 System Administration
System administrators monitoring performance, processes, system use, and so on, can
use the application taxonomy to organize information and navigate to the level of
detail they require. Administrator dashboards will start at higher levels of the
taxonomy to provide broad overview of system status. When trouble is detected, the
taxonomy can be used to drill down to where attention is required.

Introduction to the Oracle Fusion Application Taxonomy

Working with the Application Taxonomy A-3

Patches will be tagged with the versions they contain. When a patch is applied,
dependency information in the taxonomy can be used to determine which parts of the
system will be affected. This can be used to assess system testing requirements after
the patch is applied, or to schedule partial downtimes while patching is in progress.

A.1.2.3 Diagnostics and Maintenance
Diagnostic tests, logging, error messages, online help, support bulletins, and other
artifacts are tagged with the module and version in the taxonomy to which they
pertain. When trouble is detected, information from the customer's system can be
matched with these tags to direct them to appropriate assistance.

If the problem cannot be resolved through diagnostics and help, the taxonomy can be
used to search for patches available for a particular module and version. Patches could
be available at any level of the hierarchy, from one-offs, through larger roll-ups. The
taxonomy can be used to follow the troublesome module up through the hierarchy to
search for larger roll-ups that might be relevant.

If support is required, the taxonomy can be used to automatically construct Support
Information Bundles, containing version information, with the results of diagnostics
registered for these components.

A.1.3 Benefits of a Logical Hierarchy
The organization of the application taxonomy does not need to match the physical file
directory structure, which is unlikely to consistently correspond to the functionality
provided by those files. File directory structures often serve to group files according to
a high level file type (such as all seed data files in one directory, all Java files in another
directory, and so on), rather than by their functionality.

The applications' Java EE package structure is a simple physical hierarchy based on the
directory structure into which you organize your runtime files on disk. It is identical to
the package structure that you use when defining Java class file packages. The concept
has been expanded to also support metadata files, such as JSPX files. However, the
information maintained by the application taxonomy supports many functional
capabilities that cannot be supported by the standard Java EE package hierarchy.

Many of the artifacts that comprise a given application are shared among various
applications and modules. The relationships among applications and artifacts
constitute a network rather than a simple hierarchy, and are essential when
interrogating and modeling dependencies. There is no support for such an integrated
map of relationships in Java EE package structures.

There are other critical business requirements that cannot be satisfied by using a
physical directory structure to organize an application hierarchy. Customers will often
extend or subclass various runtime components to customize the application behavior
to meet their specific business needs. Over time, application teams will wish to refine
or refactor their application hierarchies as they add more features and functionality.
Teams will want to refine or reorganize modules that leverage various artifacts. The
application taxonomy's logical definition of applications and their related runtime
components saves customers from having to modify their references to these packages
if the logical hierarchy is changed.

A.1.4 Delivery Hierarchy
In the application taxonomy, the delivery hierarchy is the master source for all the
directories and files that comprise an application.

Working with Objects and Methods in the Application Taxonomy

A-4 Developer's Guide

The delivery hierarchy represents the relationships between files and the application
team that is responsible for the development, maintenance, and delivery of those files.
Nodes within the delivery hierarchy have unique parents, so there is one path through
the delivery hierarchy to any given file.

A.1.5 How to Integrate Taxonomy Task Flows into Oracle Fusion Functional Setup
Manager

Every application registers task flows with the Functional Setup Manager that
provides a single, unified user interface that allows customers and implementers to
configure all Oracle applications by defining custom configuration templates or tasks
based on their business needs.

The Functional Setup Manager UI enables customers and implementers to select the
business processes or applications that they want to implement. For example, a
Human Resources application can register setup activities like "Create Employees" and
"Manage Employee Tree Structure" with the Functional Setup Manager. Trees task
flows then provide the mechanism for an application team to register an activity such
as "Manage Employee Tree Structure," which in this case, is a tree structure task flow
with the tree structure code parameter set to some HR tree structure. Table A–1 lists
the task flow and its parameters.

A.2 Working with Objects and Methods in the Application Taxonomy
You can use the application taxonomy at a lower level by using the public entity
objects and view objects.

For example, you can create an association between the application team entity object,
which has a foreign key reference to alternative_id in ApplTaxonomyPEO, and
provided service methods to either join to the taxonomy table or to traverse through
the taxonomy hierarchy using an API (for instance, to which Family does a given
Application belong?) or for other lookup information about the nodes (for instance,
what is the short name for a given application?).

Table A–1 Taxonomy Task Flow and Parameters

Task Flow Name Task Flow XML Patterns Passed Behavior Comments

Manage
Taxonomy
Hierarchy

/WEB-INF/oracle
/apps/fnd/applc
ore/taxonomy/ui
/taskflow/ViewD
eliveryHierarch
y.xml#ViewDeliv
eryHierarchy

[pageTitle] The Manage
Taxonomy
Hierarchy
accepts the
optional
parameter
[pageTitle] and
navigates to the
Taxonomy
Delivery
Hierarchy page.

This page serves
as the starting
point from which
a user can select
a particular node
and perform the
available actions,
such as create,
update, and view
components for a
selected node.
From this page, a
user can navigate
to other task
flows, such as
Search Hierarchy,
View
Components and
Search
Components.

Working with Objects and Methods in the Application Taxonomy

Working with the Application Taxonomy A-5

A.2.1 Particular Table Columns and Data
These items are applicable to some Oracle Fusion Middleware Extensions for
Applications (Applications Core) tables.

Who Columns
All tables containing seeded or transaction data must include the Who columns shown
in Table A–2:

If the table has "extended Who" columns used to track updates by Oracle Enterprise
Scheduler Service programs, the columns must be changed to those shown in
Table A–3. You do not need to add extended Who columns if the table does not
already have them.

Replace RAW Columns with VARCHAR2
Raw columns may only be used in internal tables that are never directly exposed in
Oracle Application Development Framework (Oracle ADF).

■ Columns containing user GUIDs should be changed to varchar(64).

■ Columns containing all other GUIDs should be varchar2(32), and use rawtohex()
to convert the raw GUID to a hex value.

■ Raw columns containing anything else should be replaced with Binary Large
Object (BLOB).

A.2.2 Denormalized Taxonomy Table
The ApplicationLine column of the Taxonomy table has been denormalized to allow
data for multiple application lines to prevent hierarchical queries against the
taxonomy table.

By default, the ApplicationLineCriteria will be applied on the view objects exposed
on the view object by taxonomy (public and private) with the value of 1 for the Oracle
Fusion application line. If you need to get data for another application line, you can set
the appropriate value for the bind variable bProductLine.

Table A–2 Who Columns

Column Name Type Null?

CREATED_BY VARCHAR2(64) Not Null

CREATION_DATE TIMESTAMP Not Null

LAST_UPDATED_BY VARCHAR2(64) Not Null

LAST_UPDATE_DATE TIMESTAMP Not Null

LAST_UPDATE_LOGIN VARCHAR2(32)

Table A–3 Extended Who Columns

Column Name Type Null?

REQUEST_ID NUMBER(20) NULL

JOB_DEFINITION_
NAME

VARCHAR2(100) NULL

JOB_DEFINITION_
PACKAGE

VARCHAR2(900) NULL

Working with Objects and Methods in the Application Taxonomy

A-6 Developer's Guide

The service methods use the default Oracle Fusion application line value of 1. The
application module APIs that do not accept an application line id assume that the data
is being queried for the Oracle Fusion application line.

If you query directly against the taxonomy tables, you must take into account the
application line denormalization. You will have to add the filter product_line =
<appropriate application line id> to prevent returning multiple rows for a given
module key or id.

A.2.3 Available Public Business Objects
The following public entity objects are located in the
oracle.apps.fnd.applcore.model.publicEntity package and are exposed by
Applications Core:

■ ApplTaxonomyPEO

■ ApplTaxonomyTranslationPEO

■ ApplTaxonomyHierarchyPEO

The following public view objects are located in the
oracle.apps.fnd.applcore.model.publicView package and are exposed by
Applications Core:

■ ApplTaxonomyPVO: The view object on top of ApplTaxonomyPEO. It has these
view criteria exposed:

– ProductLineCriteria: Restricts the output to a given Application Line as
specified by the bind variable bProductLine. By default, the
ProductLineCriteria will be applied on the view objects exposed on the view
object by Taxonomy (public and private) with the value of 1 for the Oracle
Fusion application line. If you need to get data for another application line,
you can set the appropriate value for the bind variable bProductLine.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

– ApplicationCriteria: Restricts the output to Applications Module Type.

– FamilyCriteria: Restricts the output to Family Module Type.

– ModuleIdCriteria: Restricts the output to a given module ID as specified by
the bind variable bModuleId.

– ModuleTypeCriteria: Restricts the output to a given moduleType as specified
by the bind variable bModuleType.

■ ApplTaxonomyTranslationPVO: The view object on top of
ApplTaxonomyTranslationPEO. It has these view criteria exposed:

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplTaxonomyHierarchyPVO: The view object on top of
ApplTaxonomyHierarchyPEO. It has these view criteria exposed:

Working with Objects and Methods in the Application Taxonomy

Working with the Application Taxonomy A-7

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplTaxonomyHierarchyFullPVO: Has a join between the hierarchy table's
source_module_id and the taxonomy table's module_id, and between the
hierarchy table's target_module_id and the taxonomy table's module_id. This view
object is rarely needed. It has these view criteria exposed:

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplicationPVO: This view object is shaped to match the Application view object
that was on top of the FND_APPLICATIONS view. Note that FND_
APPLICATIONS, which was a table in R12, has now been changed to a view on
top of Taxonomy tables. It has these view criteria exposed:

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplTaxonomyFullDeliveryPVO: This View object is a join between the
Hierarchy table's source_module_id and the Taxonomy table's module_id. When a
self-referential view link is created on this view object between the source_
module_id and target_module_id (1..*), it can be used to traverse the taxonomy
delivery hierarchy. For more details, see the non-public view object
ApplTaxonomyFullDeliveryVO and its view link. It has these view criteria exposed:

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplTaxonomySeedDataPVO — Used for extracting taxonomy seed data. It has
these view criteria exposed:

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of N.

■ ApplTaxonomyApplicationPVO

Working with Objects and Methods in the Application Taxonomy

A-8 Developer's Guide

– ProductLineCriteria: where ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine is a named bind variable with a default value of 1 – the
Oracle Fusion Productline.

– IsSeedDataAllowedCriteria: where ApplTaxonomyEO.IS_SEED_DATA_
ALLOWED=:bIsSeedDataAllowed, where :bIsSeedDataAllowed is a named bind
variable with a default value of Y.

A.2.3.1 Accessing the Entity and View Objects
To access the Entity and View objects, and other taxonomy components, create a new
File System Connection to adflib:

1. In the Resource Palette, open the folder icon and select New Connection > File
System as shown in Figure A–2:

Figure A–2 Creating a New File System Connection

2. Configure the new connection so it resembles the example in Figure A–3:

Working with Objects and Methods in the Application Taxonomy

Working with the Application Taxonomy A-9

Figure A–3 Configuring a New File System Connection

3. The new connection will display in the Connections tree, shown in Figure A–4:

Figure A–4 New File System Connections Tree

4. The Entity and View objects are located in Taxonomy-Model.jar > Business
Components, shown in Figure A–5:

Figure A–5 Locating the Entity and View Objects in the Connections Tree

Working with Objects and Methods in the Application Taxonomy

A-10 Developer's Guide

A.2.4 How to Use Exposed Service Methods

Two methods are exposed in the ApplTaxonomyAMImpl class:

■ Given a moduleId, this returns the taxonomy node:

public ApplTaxonomyFullDeliveryVORowImpl getTaxonomyModule(Raw moduleId);

■ Given a moduleType, this returns an array of taxonomy nodes:

public ApplTaxonomyFullDeliveryVORowImpl[] getTaxonomyModules(String
moduleType);

To access a taxonomy application module:

ApplTaxonomyAMImpl am =
(ApplTaxonomyAMImpl)OAApplicationModuleImpl.getFNDNestedService(OAConstants.TAXONO
MY_SERVICE,myAM.getDBTransaction());

Where myAM is the application module that you are working with. You can also create
an instance of the ApplTaxonomyAMImpl class directly as needed.

To access a taxonomy node for a given application module, you can call the
getTaxonomyModule() API on the module ID:

ApplTaxonomyFullDeliveryVORowImpl row = am.getTaxonomyModule(new
oracle.jbo.domain.Raw("025000"));

To access the module name for that node, you can make a call to getModuleName():

String moduleName = row.getModuleName();

To access a set of taxonomy nodes for a given module type, you can call the
getTaxonomyModules() API:

ApplTaxonomyFullDeliveryVORowImpl[] rows = am.getTaxonomyModules("FAMILY");

Notes:

■ The service methods use the default Oracle Fusion Application
Line value of 1. The application module APIs that do not accept
an application line id assume that the data is being queried for the
Oracle Fusion application line unless the API accepts the
Taxonomy table primary key moduleId.

■ The package for the private view objects and the application
module conforms to Applications Packaging standards.

The application module is
oracle.apps.fnd.applcore.taxonomy.taxonomyService.applica
tionModule.

The view objects module is
oracle.apps.fnd.applcore.taxonomy.taxonomyService.view.

Note: The ApplTaxonomyAMImpl package is
oracle.apps.fnd.applcore.taxonomy.taxonomyService.applicatio
nModule.

Understanding Taxonomy MBeans

Working with the Application Taxonomy A-11

The following methods also are exposed:

■ Given an application short name, return the application ID:

getApplicationId(String shortName);

■ Given an application ID, return the application short name:

getApplicationShortName(int appId);

These APIs work if the existing data in FND_APPLICATIONS has been migrated to
the Oracle Application Taxonomy tables.

A.2.5 How to Traverse the Taxonomy Hierarchy
The taxonomy delivery hierarchy can be navigated using the accessors for the children
and parents.

To obtain the children of the current node, call
getChildApplTaxonomyFullDeliveryVO(), as shown in Example A–1:

Example A–1 Obtaining the Children of the Current Node

RowIterator children = row.getChildApplTaxonomyFullDeliveryVO();
while(children.hasNext())
{
 ApplTaxonomyFullDeliveryVORowImpl childRow =
 (ApplTaxonomyFullDeliveryVORowImpl)children.next();
 // Your code here.
}
ApplTaxonomyFullDeliveryVORowImpl parentRow = (ApplTaxonomyFullDeliveryVORowImpl)
row.getParentApplTaxonomyFullDeliveryVO();

To obtain the parent of the current node, call
getParentApplTaxonomyFullDeliveryVO(), as shown in Example A–2.

Example A–2 Obtaining the Parent of the Current Row

ApplTaxonomyFullDeliveryVORowImpl parentRow =
 (ApplTaxonomyFullDeliveryVORowImpl) row.getParentApplTaxonomyFullDeliveryVO();

A.3 Understanding Taxonomy MBeans
Taxonomy MBeans are useful for obtaining information about Oracle Fusion
taxonomy, such as domain, application family, application, modules (UI, SOA,
Webservices), and admin log configuration. These MBeans are available as Domain
Runtime MBeans in WebLogic Server and expose several APIs, each of which provides
specific information about the taxonomy of a deployed Oracle Fusion environment.
These MBeans are consumed by application teams as utility APIs to verify information
about their applications, and are also integrated with other applications. For instance
Enterprise Manager for Oracle Fusion uses these APIs for building the discovery user
interfaces. Taxonomy MBeans are registered into the application-defined MBeans after
the administration server startup.

Types of Taxonomy MBeans
Two types of Taxonomy MBeans are available:

■ Topology MBean: Provides information about the topology of the Oracle Fusion
environment. Topology MBean data is dependent on the domain against which it

Understanding Taxonomy MBeans

A-12 Developer's Guide

is tested. In a particular domain, such as Setup, you can have more than one
Product Family.

■ Log Configuration MBean: Provides utilities for configuring logs at both User-
and Site-level in an application.

MBeans as viewed from Enterprise Manager are shown in Figure A–6.

Figure A–6 MBeans Viewed from Enterprise Manager

Topology MBean
Topology MBean Details:

MBean Name oracle.topology:name=Topology,type=TopologyRuntimeMBean
Description Applications Core Topology MBean that provides the information about
overall Oracle Fusion Topology

Attributes exposed by Topology MBeans are shown in Table A–4.

Table A–4 Attributes Exposed by Topology MBeans

Name Description Access

AllProductFamilyAndDomains Gets all domains and product families of an Oracle Fusion instance. R

ConfigMBean If true, it indicates that this is a Config MBean. R

CurrentDomain Gets the current domain. R

CurrentPillarInfo Get the current pillar. R

CurrentPillarInstanceInfo Returns all information about current PillarInstanceName. R

CurrentProductFamily Gets the current product family module key list. R

CurrentProductFamilyInfo Gets the current product family list information. R

eventProvider If true, it indicates that this MBean is an event provider as defined by
JSR-77.

R

eventTypes All the event types emitted by this MBean. R

ListOfProducts Gets the list of products for the current product family. R

objectName The MBean's unique JMX name. R

PillarDBInfo Get the database information for a particular pillar. R

Pillars Get all the pillars. R

ProductFromEachProductFamily Gets list of products for each product family. R

Understanding Taxonomy MBeans

Working with the Application Taxonomy A-13

The operations exposed by Topology MBeans are shown in Table A–5.

ReadOnly If true, this MBean is read-only. R

RestartNeeded Indicates whether a restart is needed. R

stateManageable If true, it indicates that this MBean provides state management
capabilities as defined by JSR-77.

R

statisticsProvider If true, it indicates that this MBean in a statistic provider as defined
by JSR-77.

R

SystemMBean If true, it indicates that this MBean is a System MBean. R

Table A–5 Operations Exposed by Topology MBeans

Name Description Parameters Return Type

getAllDeployedApp
sInfo

Complete information on the deployed
application for a particular product.

1 Array of
javax.management.openmbean.T
abularData

getAllEnterpriseAp
psInfo

Gets the list of application information for a
given product.

2 Array of
javax.management.openmbean.T
abularData

getAppListFromDe
ployedDomain

Get the application information from the
deployed domain name.

1 Array of
javax.management.openmbean.T
abularData

getDependentApps Returns dependent applications
information on an application from its
AppShortName.

1 Array of
javax.management.openmbean.T
abularData

getDependentMWC
omponents

Gets Dependent MW Components for the
AppShortName.

1 Array of
javax.management.openmbean.T
abularData

getDeployedAppInf
o

Complete information on the deployed
application given for an Application Short
Name.

1 Array of
javax.management.openmbean.T
abularData

getDeployedDomai
nFromLogicalDoma
in

Gets DeployedDomain information from
the LogicalDomain name.

1 Array of
javax.management.openmbean.T
abularData

getDeployedDomai
nFromPillar

Get the deployed domain information of a
particular type for a pillar.

2 Array of
javax.management.openmbean.T
abularData

getDeployedDomai
nInfo

Returns a map of domain information for a
given domain name.

1 javax.management.openmbean.T
abularData

getDeployedDomai
nByCompositeNam
e

Get the deployed domain list for a given
composite name.

1 Array of
javax.management.openmbean.T
abularData

getDeployedDomai
nsByEnvironment

Returns the list of domains for a particular
environment. If the
EnvironmentShortName is null, it will
return all the deployed domains.

1 javax.management.openmbean.T
abularData

getDomainnames Gets the list of domain names for a given
application short name.

1 Array of java.lang.String

Table A–4 (Cont.) Attributes Exposed by Topology MBeans

Name Description Access

Understanding Taxonomy MBeans

A-14 Developer's Guide

Log Configuration MBeans
Log Configuration MBean Details:

MBean Name oracle.topology:name=LogConfiguration,type=LogConfigurationRuntimeMBean
Description Log Configuration MBean APIs

Attributes exposed by Log Configuration MBeans are shown in Table A–6.

Operations exposed by Log Configuration MBeans are shown in Table A–7.

getEndPointInfo Gets the external and internal end points
for a given application short name.

1 Array of
javax.management.openmbean.T
abularData

getEndPointInfoFro
mModule

Gets the domain external and internal
domain end points for a Logical Module
Name.

1 Array of
javax.management.openmbean.T
abularData

getEnterpriseAppIn
fo

Gets the list of application information for a
given application short name.

1 javax.management.openmbean.T
abularData

getEssApplicationIn
fo

Gets ESS application information for a
given product family module id.

1 javax.management.openmbean.T
abularData

getLbasInfo Gets the list of LBA information for the
given product family.

1 Array of
javax.management.openmbean.T
abularData

getListOfDeployed
Apps

Gets the list of deployed applications for a
particular product.

1 Array of java.lang.String

getListOfDomains Gets the list of domain names for a given
product family

1 Array of java.lang.String

getListOfEnterprise
Apps

Gets the list of applications for a given
product.

2 Array of java.lang.String

getListOfLbas Gets the list of LBA (module names) for the
given product family.

1 Array of java.lang.String

Table A–6 Attributes Exposed by Log Configuration MBeans

Name Description Access

ConfigMBean If true, it indicates that this is a Config MBean. R

eventProvider If true, it indicates that this MBean is an event provider as defined by JSR-77. R

eventTypes All the event types emitted by this MBean. R

LogConfigInformation Gets the log configuration information at Site level. R

objectname The MBean's unique JMX name. R

ReadOnly If true, this MBean is read-only. R

RestartNeeded Indicates whether a restart is needed. R

stateManageable If true, it indicates that this MBean provides State Management capabilities as
defined by JSR-77.

R

statisticsProvider If true, it indicates that this MBean in a statistic provider as defined by JSR-77. R

SystemMBean If true, it indicates that this MBean is a System MBean. R

Table A–5 (Cont.) Operations Exposed by Topology MBeans

Name Description Parameters Return Type

Understanding Taxonomy MBeans

Working with the Application Taxonomy A-15

Sample Code to Invoke MBean APIs
Sample code is shown in Example A–3.

Example A–3 Sample Code to Invoke MBean APIs

String appShortName = "<ESS/Service Name>";
MBeanServerConnection serverCon =
 ServiceLocator.getInstance().getServerConnection(jmxURL,jmxKey);
ObjectName serviceMBean = new
ObjectName("oracle.topology:Location=DefaultServer,name=Topology,
 type=TopologyRuntimeMBean,Application=Topology");
TabularData domainInfo = (TabularData) serverCon.invoke(serviceMBean,
 "getEndPointInfo",
 new Object[]{appShortName},
 new String[]{String.class.getName() });
Collection domainProps = domainInfo.values();
Iterator iterator = domainProps.iterator();
while (iterator.hasNext())
{
 CompositeData data = (CompositeData) iterator.next();
 String AppShortName = (String) data.get("AppShortName");
 String CloudName = (String) data.get("CloudName");
 String DeployedDomainName = (String) data.get("DeployedDomainName");
 String LogicalDomainName= (String) data.get("LogicalDomainName");
 String InternalEndPoint = (String) data.get("InternalEndPoint");
 String ExternalEndPoint = (String) data.get("ExternalEndPoint");
 String AdminEndPoint = (String) data.get("AdminEndPoint");
}

Table A–7 Operations Exposed by Log Configuration MBeans

Name Description Parameters Return Type

addUserLogConfig Adds the log configuration information
for a particular user.

8 boolean

deleteUserLogConfig Delete the log configuration information
for a particular user.

1 void

editUserLogConfig Edit the log configuration information for
a particular user.

8 boolean

getUserInfo Gets the user information (the GUID) for
users either having or not having the log
configuration information.

2 javax.management.open
mbean.TabularData

getUserLogConfigInformation Gets the log configuration information for
a particular user.

1 Array of
javax.management.open
mbean.TabularData

updateLogConfigInformation Update the log configuration information
at Site level.

8 void

Understanding Taxonomy MBeans

A-16 Developer's Guide

B

ECSF Command Line Administration Utility B-1

BECSF Command Line Administration Utility

This appendix provides a reference for the commands available for the Oracle
Enterprise Crawl and Search (ECSF) Command Line Administration Utility. You can
use the ECSF Command Line Administration Utility to quickly test and manage the
searchable objects without having to use Oracle Enterprise Manager Fusion
Applications Control for ECSF.

Table B–1 shows the commands you can use to administer search. The commands
appear in alphabetical order.

Note: Administrators should use Fusion Applications Control for
ECSF to manage the life cycle of searchable objects in the production
environment.

Table B–1 ECSF Command Line Administration Utility Commands

Command Description

activate object ID Activates a searchable object so that a query of it returns results. Specify the ID
number corresponding to the searchable object you want to activate.

Only a searchable object that has been deployed can be activated.

Customized searchable objects cannot be activated using the ECSF Command
Line Administration Utility. You must activate customized searchable objects by
using the Fusion Applications Control for ECSF.

add object ID to category
ID

Associates the searchable object you specify with the search category you
specify. Specify the ID number corresponding to the searchable object you want
to add to the search category, and specify the ID number corresponding to the
search category to which you want to add the searchable object.

Searchable objects must be deployed before you can associate them with search
categories. Search categories must be undeployed before you can associate
searchable objects with them. You can associate the same searchable object with
multiple search categories. You must issue the command while managing the
search engine instance with which the search category is associated.

add object to category ID Associates a searchable object with the search category you specify. Specify the
ID number corresponding to the search category to which you want to add the
searchable object. The ECSF Command Line Administration Utility displays a
list of available searchable objects and prompts you to enter the ID
corresponding to the searchable object you want to associate with the search
category.

Searchable objects must be deployed before you can associate them with search
categories. Search categories must be undeployed before you can associate
searchable objects with them. You can associate the same searchable object with
multiple search categories. You must issue the command while managing the
search engine instance with which the search category is associated.

B-2 Developer's Guide

add object ID to schedule
ID

Associates the searchable object you specify with the index schedule you
specify. Specify the ID number corresponding to the searchable object you want
to add to the index schedule, and specify the ID number corresponding to the
index schedule to which you want to add the searchable object.

Searchable objects must be deployed before you can associate them with index
schedules. You can only associate each searchable object with one index
schedule. Only a searchable object that is not already associated with an index
schedule can be added to an index schedule. Index schedules must be
undeployed before you can associate searchable objects with them. You must
issue the command while managing the search engine instance with which the
index schedule is associated.

add object to schedule ID Associates the searchable object you specify with the index schedule you
specify. Specify the ID number corresponding to the index schedule to which
you want to add the searchable object. The ECSF Command Line
Administration Utility displays a list of available searchable objects and
prompts you to enter the ID corresponding to the searchable object you want to
associate with the index schedule.

Searchable objects must be deployed before you can associate them with index
schedules. You can only associate each searchable object with one index
schedule. Only a searchable object that is not already associated with an index
schedule can be added to an index schedule. Index schedules must be
undeployed before you can associate searchable objects with them. You must
issue the command while managing the search engine instance with which the
index schedule is associated.

add unassigned object to
instance

Associates a searchable object with the specified search engine instance. The
ECSF Command Line Administration Utility displays a list of available
searchable objects and prompts you to enter the ID corresponding to the
searchable object you want to add to the search engine instance.

You must issue the command while managing the search engine instance to
which you want to add the searchable object. A searchable object can only be
associated with one search engine instance at a time.

add unassigned object ID to
instance

Associates a searchable object with the specified search engine instance. Specify
the ID corresponding to the searchable object you want to add to the search
engine instance.

You must issue the command while managing the search engine instance to
which you want to add the searchable object. A searchable object can only be
associated with one search engine instance at a time.

connect to database Creates the connection to a database using a system identifier (SID). Follow the
prompts to enter a username and password, as well as field values.

connect to database
hostname port SID

Creates the connection to a database using a system identifier (SID). Specify the
host name, port number, and SID. Follow the prompts to enter a username and
password.

connect to database
descriptor

Creates the connection to a database using a database descriptor. Follow the
prompts to enter a username and password, as well as field values.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

ECSF Command Line Administration Utility B-3

connect to database
descriptor 'descriptor'

Creates the connection to a database using a database descriptor. Specify the
descriptor, enclosing it in quotes, with either the system identifier (SID) or
service name, for example:

Using SID:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))
(CONNECT_DATA=(SID=dbmsdb2)))'

Using service name:

'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))
(CONNECT_DATA=(SERVICE_NAME=myservice)))'

Follow the prompts to enter a username and password.

connect to database service Creates the connection to a database using a service name. Follow the prompts
to enter a username and password, as well as field values.

connect to database service
hostname port servicename

Creates the connection to a database using a service name. Specify the host
name, port number, and service name. Follow the prompts to enter a username
and password.

connect to mbeanserver Creates the connection to an MBean server. Follow the prompts to enter a
username and password, as well as field values.

connect to mbeanserver
hostname port

Creates the connection to an MBean server. Specify the host name and port
number. Follow the prompts to enter a username and password.

create category Adds a new search category to the ECSF_SEARCH_INDEX_GROUP table in the
Oracle Fusion Applications database. Follow the prompts to enter field values.

If you issue the command while managing a search engine instance, the search
category is automatically associated with the search engine instance you are
managing. If you issue the command outside a search engine instance context,
the ECSF Command Line Administration Utility displays a list of the available
search engine instances and prompts you to choose a search engine instance for
the search category you want to create.

create category set
"fieldname"="value","fieldn
ame"="value"...

Adds a new search category to the ECSF_SEARCH_INDEX_GROUP table in the
Oracle Fusion Applications database. Directly pass in field name-value pairs
with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

If you issue the command while managing a search engine instance, the search
category is automatically associated with the search engine instance you are
managing. If you issue the command outside of a search engine instance
context, the ECSF Command Line Administration Utility displays a list of the
available search engine instances and prompts you to choose a search engine
instance for the search category you want to create.

create instance Adds a new search engine instance to the specified search engine type. Follow
the prompts to enter field values. You must issue the command while not
managing a search engine instance.

create instance set
"fieldname"="value","fieldn
ame"="value"...

Adds a new search engine instance to the specified search engine type. Directly
pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

You must issue the command while not managing a search engine instance.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

B-4 Developer's Guide

create object Adds a new searchable object to the specified search engine type. Follow the
prompts to enter field values.

If you issue the command while managing a search engine instance, the
searchable object is automatically associated with the search engine instance you
are managing. If you issue the command outside a search engine instance
context, the ECSF Command Line Administration Utility displays a list of the
available search engine instances and prompts you to choose a search engine
instance for the searchable object you want to create.

create schedule Adds a new index schedule to the ECSF_INDEX_SCHEDULE table in the Oracle
Fusion Applications database. Follow the prompts to enter field values.

If you issue the command while managing a search engine instance, the index
schedule is automatically associated with the search engine instance you are
managing. If you issue the command outside a search engine instance context,
the ECSF Command Line Administration Utility displays a list of the available
search engine instances and prompts you to choose a search engine instance for
the index schedule you want to create.

create schedule set
"fieldname"="value","fieldn
ame"="value"...

Adds a new index schedule to the ECSF_INDEX_SCHEDULE table in the Oracle
Fusion Applications database. Directly pass in field name-value pairs with the
command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

If you issue the command while managing a search engine instance, the index
schedule is automatically associated with the search engine instance you are
managing. If you issue the command outside a search engine instance context,
the ECSF Command Line Administration Utility displays a list of the available
search engine instances and prompts you to choose a search engine instance for
the index schedule you want to create.

create unassigned object Adds a new searchable object to the specified search engine type. Follow the
prompts to enter field values. The searchable object is not associated with a
search engine instance.

deactivate object ID Deactivates a searchable object so that a query of it does not return results.
Specify the ID number corresponding to the searchable object you want to
deactivate.

Only an activated searchable object can be deactivated. Deactivated searchable
objects are still available for the search engine instance to crawl.

delete category ID Disassociates the specified search category from the search engine instance and
removes it from the ECSF_SEARCH_INDEX_GROUP table in the Oracle Fusion
Applications database. Specify the ID number corresponding to the search
category you want to delete.

You must issue the command while managing the search engine instance with
which the search category is associated.

delete external category ID Removes the specified external search category from the ECSF_SEARCH_INDEX_
GROUP table in the Oracle Fusion Applications database and makes it unavailable
for querying. Specify the ID number of the external searchable category you
want to delete.

delete instance ID Removes the specified search engine instance. You cannot delete search engine
instances while you are managing an engine instance. You cannot delete a
search engine instance if there are any deployed objects, categories, or schedules
associated with it.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

ECSF Command Line Administration Utility B-5

delete object ID Removes the specified assigned searchable object (associated with a search
engine instance) from the ECSF schema in the Oracle Fusion Applications
database. You must issue the command while managing the search engine
instance with which the searchable object is associated. If the searchable object
has been deployed, you must undeploy it before you can delete its record from
the database.

delete schedule ID Disassociates the specified index schedule from the search engine instance and
removes it from the ECSF_INDEX_SCHEDULE table in the Oracle Fusion
Applications database. Specify the ID corresponding to the index schedule you
want to delete.

You must issue the command while managing the search engine instance with
which the index schedule is associated.

delete unassigned object ID Removes the specified unassigned searchable object (not associated with a
search engine instance) from the ECSF schema in the Oracle Fusion Applications
database.

deploy category ID Deploys the specified search category to the search engine instance. Specify the
ID number corresponding to the search category you want to deploy.

Searchable objects must be associated with the search category before you can
deploy it. You must issue the command while managing the search engine
instance with which the search category is associated.

deploy object ID Deploy the searchable object you specify to the search engine instance to make
the objects available for the search engine instance to crawl. Specify the ID
number corresponding to the searchable object you want to deploy.

The searchable objects deployed to the search engine instance must have a
unique and fully qualified name, for example, oracle.apps.crm.Opportunity
or oracle.apps.hcm.Opportunity. Only a searchable object that is associated
with a search engine instance can be deployed.

deploy params for objects Collectively updates all deployed searchable objects with the latest search
engine instance parameters.

deploy params for object ID Updates the specified searchable object with the latest search engine instance
parameters.

deploy schedule ID Deploys the specified index schedule to the search engine instance. Specify the
ID number corresponding to the index schedule you want to deploy.

Searchable objects must be associated with the index schedule before you can
deploy it. You must issue the command while managing the search engine
instance with which the index schedule is associated.

disconnect Disconnects you from the current database or MBean server connection.

exit Closes the ECSF Command Line Administration Utility.

help Lists all the available help commands.

help activate Lists the valid syntax for the activate command.

help add Lists the valid syntax for the add commands.

help category Lists the commands that can be used for search categories.

help connect Lists the valid syntax for the connect commands

help create category Lists the fields available for the create category commands.

help create instance Lists the fields available for the create instance commands.

help create object Lists the fields available for the create object command.

help create schedule Lists the fields available for the create schedule command.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

B-6 Developer's Guide

help create unassigned
object

Lists the fields available for the create unassigned object command.

help create schedule Lists the fields available for the create schedule commands.

help deactivate Lists the valid syntax for the deactivate object command.

help delete Lists the valid syntax for the delete commands.

help deploy Lists the valid syntax for the deploy commands.

help disconnect Lists the valid syntax for the disconnect command.

help instance Lists the commands that can be used for search engine instances.

help list Lists the valid syntax for the list commands.

help manage Lists the valid syntax for the manage commands.

help object Lists the commands that can be used for searchable objects.

help param Lists the commands that can be used for search engine instance parameters.

help remove Lists the valid syntax for the remove commands.

help schedule Lists the commands that can be used for index schedules.

help set Lists the valid syntax for the set commands.

help showdetails Lists the valid syntax for the showdetails commands.

help start Lists the valid syntax for the start command.

help stop Lists the valid syntax for the stop command.

help unassigned object Lists the commands that can be used for unassigned searchable objects.

help undeploy Lists the valid syntax for the undeploy commands.

help unmanage Lists the valid syntax for the unmanage commands.

help update category Lists the fields available for the update category commands.

help update instance Lists the fields available for the update instance commands.

help update schedule Lists the fields available for the update schedule commands.

help register object Lists the fields available for the register object commands.

import external categories Lists one by one all the external categories of the search engine instance you are
managing and prompts you to confirm whether or not you want to import each
external category. Enter Y to import the external category, which adds it to the
ECSF_SEARCH_INDEX_GROUP table in the Oracle Fusion Applications database.
Enter N to cancel the importing of the external category. The default value is N.

All external search categories that have been previously imported will be
replaced by the latest import from Oracle Secure Enterprise Search (Oracle SES).
If you had previously deleted any of the records corresponding to the external
search categories, you must delete them again to make them unavailable for
querying.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

ECSF Command Line Administration Utility B-7

import external categories
for instance ID

Lists one by one all the external categories of the search engine instance you
specify and prompts you to confirm whether or not you want to import each
external category. Enter Y to import the external category, which adds it to the
ECSF_SEARCH_INDEX_GROUP table in the Oracle Fusion Applications database.
Enter N to cancel the importing of the external category. The default value is N.

All external search categories that have been previously imported will be
replaced by the latest import from Oracle Secure Enterprise Search (Oracle SES).
If you had previously deleted any of the records corresponding to the external
search categories, you must delete them again to make them unavailable for
querying.

list categories Lists the search categories and their corresponding ID numbers for the search
engine instance you are managing.

list categories for
instance ID

Lists the search categories and their corresponding ID numbers for the search
engine instance you specify. Specify the ID number corresponding to the desired
search engine instance.

list external search
categories

Lists the external search categories and their corresponding ID numbers for the
search engine instance you are managing.

list external search
categories for instance ID

Lists the external search categories and their corresponding ID numbers for the
search engine instance you specify. Specify the ID number corresponding to the
desired search engine instance.

list instances Lists the search engine instances and their corresponding ID numbers

list objects Lists a summary of the searchable objects associated with the search engine
instance you are managing.

list objects for category
ID

Lists a summary of the searchable objects associated with the search category
you specify. Specify the ID number corresponding to the desired search
category.

list objects for instance
ID

Lists a summary of the searchable objects associated with the search engine
instance you specify. Specify the ID number corresponding to the desired search
engine instance.

list objects for schedule
ID

Lists a summary of the searchable objects associated with the index schedule
you specify. Specify the ID number corresponding to the desired index schedule.

list params for instance Lists the parameters that are available for the set param command for the
engine instance you are managing.

list params for instance ID Lists the parameters that are available for the set param command for the
search engine instance you specify. Specify the ID number corresponding to the
desired search engine instance.

list schedules Lists the index schedules associated with the search engine instance you are
managing.

list schedules for instance
ID

Lists the index schedules associated with the search engine instance you specify.
Specify the ID number corresponding to the desired search engine instance.

list unassigned objects Lists the unassigned searchable objects (not associated with a search engine
instance) and their corresponding ID numbers.

manage instance Sets the context to the specified search engine instance. The ECSF Command
Line Administration Utility lists all the search engine instances and their
corresponding ID numbers and prompt you for the ID number of the search
engine instance you want to manage.

manage instance ID Sets the context to the search engine instance you specify. Specify the ID number
corresponding to the search engine instance you want to manage.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

B-8 Developer's Guide

register idplugin Registers an identity plug-in for the instance you are managing. The
deployment of the Federated Trust Entity occurs when the identity plug-in is
registered.

register idplugin for
instance ID

Registers an identity plug-in for the search engine instance you specify. Specify
the ID number corresponding to the desired search engine instance. The
deployment of the Federated Trust Entity occurs when the identity plug-in is
registered.

register object Associates the specified searchable object with the search engine instance you
are managing and creates a new record for the searchable object in the ECSF
schema of the Oracle Fusion Applications database. Follow the prompts to enter
field values. For BO Name, you must enter a fully qualified view object name
defined in your application.

register object set
"fieldname"="value","fieldn
ame"="value"...

Associates the specified searchable object with the search engine instance you
are managing and creates a new record for the searchable object in the Oracle
Fusion Applications database. Directly pass in field name-value pairs with the
command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

register unassigned object Creates a new record of an unassigned searchable object (not associated with a
search engine instance) in the Oracle Fusion Applications database. Follow the
prompts to enter field values. For BO Name, you must enter a fully qualified
view object name defined in your application.

register unassigned object
set
"fieldname"="value","fieldn
ame"="value"...

Creates a new record of an unassigned searchable object (not associated with a
search engine instance) in the Oracle Fusion Applications database. Directly
pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

remove object from category
ID

Disassociates a searchable object from the search category you specify. Specify
the ID number corresponding to the search category from which you want to
disassociate the searchable object. The ECSF Command Line Administration
Utility displays a list of searchable objects and prompts you to enter the ID
corresponding to the searchable object you want to remove from the search
category.

You must issue the command while managing the search engine instance with
which the search category is associated. The searchable object is still available
for association to other search categories.

remove object ID from
category ID

Disassociates the specified searchable object from the search category you
specify. Specify the ID number corresponding to the searchable object you want
to remove from the search category. Specify the ID number corresponding to the
search category from which you want to disassociate the searchable object.

You must issue the command while managing the search engine instance with
which the search category is associated. The searchable object is still available
for association to other search categories.

remove object from instance Disassociates a searchable object from the specified search engine instance and
makes it available for association to another search engine instance. The ECSF
Command Line Administration Utility displays a list of searchable objects and
prompts you to enter the ID corresponding to the searchable object you want to
remove from the search engine instance.

In order to disassociate a searchable object from a search engine instance, both
the object and the instance must be undeployed.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

ECSF Command Line Administration Utility B-9

remove object from instance
ID

Disassociates a searchable object from the specified search engine instance and
makes it available for association to another search engine instance. Specify the
ID number corresponding to the search engine instance from which you want to
remove the searchable object. The ECSF Command Line Administration Utility
displays a list of searchable objects and prompts you to enter the ID
corresponding to the searchable object you want to remove from the search
engine instance.

In order to disassociate a searchable object from a search engine instance, both
the object and the instance must be undeployed.

remove object ID from
instance

Disassociates the specified searchable object from the search engine instance and
makes it available for association to another search engine instance. Specify the
ID number corresponding to the searchable object you want to remove.

In order to disassociate a searchable object from a search engine instance, both
the object and the instance must be undeployed.

remove object ID from
instance ID

Disassociates the searchable object from the search engine instance and makes it
available for association to another search engine instance. Specify the ID
number corresponding to the searchable object you want to remove and the ID
number corresponding to the search engine instance from which you want to
remove the searchable object.

In order to disassociate a searchable object from a search engine instance, both
the object and the instance must be undeployed.

remove object from schedule
ID

Disassociates a searchable object from the specified index schedule and makes it
available to be added to another index schedule. Specify the ID number
corresponding to the index schedule from which you want to disassociate the
searchable object. The ECSF Command Line Administration Utility displays a
list of searchable objects and prompts you to enter the ID corresponding to the
searchable object you want to remove from the index schedule.

In order to disassociate a searchable object from an index schedule, the index
schedule must not be deployed. You must issue the command while managing
the search engine instance with which the index schedule is associated.

remove object ID from
schedule ID

Disassociates the searchable object you specify from the specified index
schedule and makes it available to be added to another index schedule. Specify
the ID number corresponding to the searchable object you want to disassociate
and the ID number corresponding to the index schedule from which you want
to disassociate the searchable object.

In order to disassociate a searchable object from an index schedule, the index
schedule must not be deployed. You must issue the command while managing
the search engine instance with which the index schedule is associated.

set param
"paramname"="value"

Sets parameter values for the search engine instance. Use the following
command syntax to directly pass in one parameter name-value pair at a time:

See the "Managing Search with Oracle Enterprise Crawl and Search Framework"
chapter in the Oracle Fusion Applications Administrator's Guide for a list of known
engine instance parameters.

The parameter name and value must be enclosed in quotes. If the parameter
name or value contains a quote, escape it with a backslash, for example, "value
with \"escaped\" quotes".

You must issue the command while managing the search engine instance whose
password parameters you want to set.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

B-10 Developer's Guide

set password param Sets password parameter values for the search engine instance. Pass in one
password parameter and its password.

See the "Managing Search with Oracle Enterprise Crawl and Search Framework"
chapter in the Oracle Fusion Applications Administrator's Guide for a list of known
engine instance parameters.

The password parameter name must be enclosed in quotes. If the parameter
parameter name contains a quote, escape it with a backslash, for example,
"value with \"escaped\" quotes".

You must issue the command while managing the search engine instance whose
password parameters you want to set.

showdetails for category ID Lists detailed information about the specified search category and the
searchable objects associated with it.

showdetails for unassigned
object ID

Lists the detailed information about the specified unassigned searchable object.

showdetails Lists the detailed information for the search engine instance being managed.
You must issue the command while managing a search engine instance.

showdetails for instance ID Lists the detailed information about the specified search engine instance.

showdetails for object ID Lists the detailed information about the specified searchable object.

showdetails for param ID Lists the detailed information about the specified search engine instance
parameter.

showdetails for schedule ID Lists detailed information about the specified index schedule and the searchable
objects associated with it.

start schedule ID Launches the index schedule you specify and causes Oracle SES to create the
full-text search indexes. Specify the ID corresponding to the index schedule you
want to start.

Index schedules must be deployed to the search engine instance before you can
start it. You must issue the command while managing the search engine instance
with which the index schedule is associated.

stop schedule ID Stops the specified index schedule that has been started and aborts the index
process. Specify the ID number of the index schedule you want to stop. You
must issue the command while managing the search engine instance with which
the index schedule is associated.

undeploy category ID Removes a search category from the search engine instance. Specify the ID
number corresponding to the search category you want to undeploy.

You must issue the command while managing the search engine instance with
which the search category is associated.

undeploy object ID Removes a searchable object from the search engine instance to make the object
unavailable for the search engine instance to crawl. Specify the ID number
corresponding to the searchable object you want to undeploy.

Only deployed and deactivated searchable objects can be undeployed.

undeploy schedule ID Removes the specified index schedule from the search engine instance. Specify
the ID number corresponding to the index schedule you want to undeploy. You
must issue the command while managing the search engine instance with which
the index schedule is associated.

unmanage Resets or exits the search engine instance context.

unmanage instance Resets or exits the search engine instance context.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

ECSF Command Line Administration Utility B-11

update category ID Modifies the properties of the specified search category. Specify the ID number
corresponding to the search category you want to modify. Follow the prompts to
enter field values.

Set the scope of the search category to GLOBAL to allow the search categories to
be queried.

You must issue the command while managing the search engine instance with
which the search category is associated.

update category ID set
"fieldname"="value","fieldn
ame"="value"...

Modifies the properties of the specified search category. Use the following
command syntax to directly pass in field name-value pairs with the command:

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

Set the scope of the search category to GLOBAL to allow the search categories to
be queried.

You must issue the command while managing the search engine instance with
which the search category is associated.

update external category ID Modifies the application identity of the specified external search category.
Specify the ID number corresponding to the external search category you want
to modify. Follow the prompts to enter field values.

Set the scope of the search category to GLOBAL to allow the search categories to
be queried.

You must issue the command while managing the search engine instance with
which the external search category is associated.

update external category ID
set "fieldname"="value"

Modifies the application identity of the specified external search category. Use
the following command syntax to directly pass in a field name-value pair with
the command:

The field name and value must be enclosed in quotes. If the field name or value
contains a quote, escape it with a backslash, for example, "field name with
\"escaped\" quotes".

Set the scope of the search category to GLOBAL to allow the search categories to
be queried.

You must issue the command while managing the search engine instance with
which the external search category is associated.

update instance Modifies the properties of the search engine instance you are currently
managing. If you are not currently managing a search engine instance, the ECSF
Command Line Administration Utility lists all the search engine instances and
their corresponding ID numbers and prompt you for the ID number of the
search engine instance you want to modify. Follow the prompts to enter field
values.

update instance ID Modifies the properties of the search engine instance you specify. Specify the ID
number corresponding to the search engine instance you want to modify. Follow
the prompts to enter field values.

update instance set
"fieldname"="value","fieldn
ame"="value"...

Modifies the properties of the search engine instance you are currently
managing. Directly pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

B-12 Developer's Guide

update instance ID set
"fieldname"="value","fieldn
ame"="value"...

Modifies the properties of the search engine instance you specify. Specify the ID
number corresponding to the search engine instance you want to modify and
directly pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

update object ID Modifies the display name and application ID of a deployed searchable object
without first having to deactivate and undeploy the searchable object. Specify
the ID number of the searchable object you want to modify. Follow the prompts
to enter field values for the display name and application ID.

You must issue the command while managing the search engine instance with
which the searchable object is associated.

update object ID set
"fieldname"="value","fieldn
ame"="value"...

Modifies the display name and application ID of a deployed searchable object
without first having to deactivate and undeploy the searchable object. Specify
the ID number corresponding to the searchable object you want to modify and
directly pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

You must issue the command while managing the search engine instance with
which the searchable object is associated.

update schedule ID Modifies the properties of the index schedule you specify. Specify the ID
number corresponding to the index schedule you want to modify. Follow the
prompts to enter new field values.

update schedule ID set
"fieldname"="value","fieldn
ame"="value"...

Modifies the properties of the index schedule you specify. Specify the ID
number corresponding to the index schedule you want to modify and directly
pass in field name-value pairs with the command.

The field names and values must be enclosed in quotes. If the field name or
value contains a quote, escape it with a backslash, for example, "field name
with \"escaped\" quotes".

You must issue the command while managing the search engine instance with
which the index schedule is associated.

Table B–1 (Cont.) ECSF Command Line Administration Utility Commands

Command Description

Glossary-1

Glossary

all-segment secondary usage

A type of secondary usage in which the secondary table has all of the key flexfield
segment columns that are present in the combinations table.

application role

A role specific to applications and stored in the policy store.

business component

One of a set of cooperating components that are used by ADF Business Components to
implement a business service.

business object

A resource in an enterprise database, such as an invoice or purchase order.

CCID

 Code combination ID, the common attribute for key flexfields. Every key flexfield
combinations table must have a CCID column, the values of which identify each data
row.

child view object

A view object that is nested within a master view object.

code combination ID (CCID)

See CCID.

code-combination reference page

Pages whose underlying entity objects contain a foreign key reference to the
combinations table.

combination maintenance page

A page whose underlying entity objects use the combinations table itself.

consumer (of a flexfield)

The person who incorporates a flexfield into their application, which is typically
different from the producer's application. The consumer typically stores the CCID on a
transaction table, and works with the structural and seed data and the business
components that have been configured by the key flexfield producer.

context

Glossary-2

context

A group of attributes. Each context is part of a flexfield, and is comprised of a set of
context-sensitive segments that store a particular type of related information.

context attribute

The flexfield base view object attribute that contains the context discriminator value.

context-sensitive segment

A flexfield segment that is a member of a context.

custom validation callout

Callout procedure that is used to enforce custom validation logic for new code
combinations beyond what has been defined for cross-validation rules.

customer flexfield

A flexfield created for use by the customer.

cross-validation rule

A rule that is composed of a condition filter and a validation filter and that specifies
when and how to validate a key flexfield code combination.

data security

The control of access to data. Data security controls what action a user can take against
which data.

database schema

A named collection of objects, such as tables, views, clusters, procedures, packages,
attributes, object classes, and their corresponding matching rules, which are associated
with a particular user.

derived segment

A segment whose values automatically change to reflect new reference values.

descriptive flexfield

A type of flexfield used to give additional attributes to a data model. Allows
customers to add custom attributes to entities, to define how the attributes are
validated, and display properties for the attributes. These attributes do not necessarily
have anything to do with each other and are not treated together as a combination. A
descriptive flexfield can only support a set amount of segments.

developer (of a flexfield)

The role to be used if you are incorporating the flexfield into an application.

developer flexfield

A flexfield created to support functionality that has been built into the application.

discriminator

A common attribute amongst multiple view rows. The discriminator determines
which view row type should be used.

function security

Glossary-3

dynamic column

A method of accessing a descriptive flexfield in Excel. Using a dynamic column will
enable you to pick flexfield segment values. You can also enter values directly into the
segment fields.

dynamic combination insertion

The act of end users entering values on an application page that constitute new code
combinations (even if the end users are not authorized to perform maintenance tasks
directly).

EAR

An Enterprise Archive file. A Java EE archive file that is used in deploying
applications on a Java EE application server. Framework applications are deployed
using both a generic EAR file, which contains the application and the respective
runtime customization, and a targeted EAR file, which contains only the application
for deployment to the application server.

Enterprise Archive (EAR)

See EAR.

entitlement

Grants of access to functions and data. Oracle Fusion Middleware term for privilege.

entity object

An object that represents a row in a database table and that simplifies modifying its
data by handling all data manipulation language operations for you. Entity objects are
ADF Business Components that provide the mapping to underlying data structures.

extensible flexfield

A type of flexfield that is similar to a descriptive flexfield, but does not have a fixed
number of segments, allows attributes to be grouped, allows entities to inherit
segments from their parents, and supports one-to-many relationships between entity
and extended attribute rows.

flexfield

An "expandable" data field that is divided into segments. Flexfields enable you to
configure your applications to meet your business needs without having to perform
custom development.

flexfield parameter

A declared public variable which can be used to designate which attributes of eligible
entity objects that are related to the flexfield can be used to pass external reference
data to flexfield segments. These entity objects could, in turn, take their values from
column values, constant values, session attributes, and so forth.

form layout

A typical label/prompt and either view-only data or widget (text field, choice list, and
so on) that allows a user to enter values.

function security

The control of access to a page or a specific widget or functionality within a page.
Function security controls what a user can do.

global

Glossary-4

global

The type of segment label that is used if you want the implementer to tie it to all
segments.

global segment

A segment of custom attributes that apply to all entity rows.

hierarchical categories

A feature of extensible flexfields. Extensible flexfields can be configured to enable
categories, which can be used to dynamically display different sets of logical pages
and contexts based upon a runtime differentiator. The categories can be structured in a
hierarchical manner and the children categories inherit all the contexts and logical
pages that are configured for the parent categories.

implementor (of a flexfield)

An individual who sets up all or part of a flexfield-enabled application for
deployment. Implementors typically work for or on behalf of customers to install,
configure, or administer their applications. In the case of developer flexfields that have
been created to support functionality that has been built into the application, the
developer also plays the role of implementor.

intelligent key

A key composed of business-related values as opposed to an arbitrarily generated
sequence.

key flexfield

A type of flexfield in which the segments define a key, or code, that uniquely
identifies an object such as an account, an asset, a part, or a job.

maintenance mode

A mode of the key flexfield user interface which allows you to use a code
combination maintenance page to manage key flexfield code combinations, including
the ability to enter new code combinations and update existing code combinations for
a flexfield.

MAR

A Metadata Archive file. A compressed archive of selected metadata used to deploy
metadata content to the MDS Repository.

master view object

A view object that has other view objects nested within it.

Metadata Archive (MAR)

See MAR.

owner (of a flexfield)

The developer (or development team) who determines that a particular flexfield is
needed or would be useful within a particular Oracle Fusion application, and makes a
flexfield of the appropriate design available.

primary key attribute

The attribute of a base view object which links the flexfield view object to the
application view object.

security reference implementation

Glossary-5

primary table

The application table that was used to first register the flexfield. It is the owner of the
flexfield.

privilege

A grant or entitlement of access to functions and data.

producer (of a flexfield)

The developer who determines that a particular flexfield is needed or would be useful
within a particular application, and makes available a flexfield of the appropriate
design. With key flexfields, the producer's product owns the combinations table for
that flexfield.

readonly

A boolean property of a flexfield which indicates whether users can modify the
flexfield.

rendered

A boolean property of a flexfield which indicates whether the flexfield is visible on the
application page.

required (flexfield property)

A boolean property of a flexfield which indicates whether the flexfield must have a
value.

required (segment label)

The type of segment label that is used if you want the implementors to tie it at least to
one segment.

role

Controls access to application functions and data.

secondary table

For descriptive flexfields, a table, other than the primary table, that contains the same
set of extension columns as the primary table and that enables the primary table's
descriptive flexfield to be reused for that table. For key flexfields, a product table
other than the combinations table that contains one or all of the key flexfield
segments.

secondary usage

For descriptive flexfields, the reuse of a flexfield on a table other than the primary
table.

For key flexfields, a type of usage in which there is no direct relationship between the
product table and the combinations table.

See also single-segment secondary usage and all-segment secondary usage.

security reference implementation

Predefined function and data security in Oracle Fusion Applications, including role
based access control, and policies that protect functions, data, and segregation of
duties. The reference implementation supports identity management, access
provisioning, and security enforcement across the tools, data transformations, access
methods, and the information life cycle of an enterprise.

segment label

Glossary-6

segment label

A label which identifies the purpose of a particular segment in a key flexfield.

SIN

Structure instance number. A segment that acts as the discriminator attribute for key
flexfields.

single-segment secondary usage

A type of secondary usage in which the secondary table has only one key flexfield
segment column.

static column

A method of accessing a descriptive flexfield in Excel. Used when the descriptive
flexfield is exposed in an ADF Table component, is context sensitive, and the context
changes from row to row. A static column should also be used if you do not want
descriptive flexfield segments to occupy too much space in the worksheet.

structure code

A string you provide that individually identifies a structure.

Structure instance number (SIN)

See SIN.

tester (of a flexfield)

The role to be used if you are planning to test or share your flexfield.

transient attribute

An attribute whose value is not stored in a database, and therefore holds a value only
for the life of the object. Transient attributes are typically used to display values that
are calculated (for example, using Java or Groovy).

unique

The type of segment label that is used if you want the implementer to tie it to at most
one segment of the flexfield.

value set

A list of valid values used to specify the validation rules for a flexfield segment.

view accessor

An ADF Business Components object that points from an entity object attribute (or
view object) to a destination view object or shared view instance in the same
application workspace. The view accessor returns a row set that by default contains all
the rows from the destination view object.

WAR

A Web Application Archive file. This file is used in deploying applications on a Java
EE application server. WAR files encapsulate in a single module all of the components
necessary to run an application. WAR files typically contain an application's servlet,
JSP, and JSF JSP components.

Web Application Archive (WAR)

See WAR.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 11g Release 5 (11.1.5)

	Part I Getting Started Building Your Oracle Fusion Applications
	1 Getting Started with Oracle Fusion Applications
	1.1 Overview of Fusion Technologies
	1.2 Using Oracle ADF Functional Patterns and Best Practices

	2 Setting Up Your Development Environment
	2.1 Introduction to the Development Environment
	2.1.1 Shared Environment
	2.1.1.1 Creating the OWSM_MDS Schema

	2.1.2 Personal Environment

	2.2 Setting Up the JDeveloper-based Personal Environment
	2.2.1 Before You Begin
	2.2.1.1 Removing the SCIM Process
	2.2.1.2 Increasing Open File Limit on Local Linux Servers
	2.2.1.3 Installing JDeveloper
	2.2.1.4 Adding Customization Extension Bundles to the jdev.conf File
	2.2.1.5 Setting Up the JDeveloper-based Development Environment
	2.2.1.6 Using the OWSM_MDS Schema
	2.2.1.7 Distributing the fusion_apps_wls.properties and cwallet.sso Files

	2.2.2 How to Use the Oracle Fusion Domain Wizard
	2.2.2.1 Creating the Properties File for Default Integrated Server
	2.2.2.2 Completing the Oracle Fusion Domain Wizard for Standalone Server

	2.2.3 How to Start Integrated WebLogic Server
	2.2.3.1 Managing Integrated WebLogic Server

	2.3 Setting Up the Personal Environment for Standalone WebLogic Server
	2.3.1 How to Create a Domain for Standalone WebLogic Server
	2.3.1.1 Creating a Special SOAINFRA Schema
	2.3.1.2 Setting Up the Environment for Standalone WebLogic Server
	2.3.1.3 Managing the Standalone WebLogic Server Lifecycle

	2.4 Configuring Oracle SOA Suite and Oracle Enterprise Manager Fusion Middleware Control
	2.4.1 How to Use the Application Logging Service
	2.4.2 How to Use Alternate Database Schemas

	2.5 Using Deployment Profiles Settings
	2.5.1 How to Use Service Deployments
	2.5.2 How to Update the Standard

	2.6 Configuring the Oracle Enterprise Scheduler (ESS)
	2.6.1 How to Provision the Runtime Environment
	2.6.2 How to Create Supporting Database Schema
	2.6.3 Post-Installation Checks
	2.6.3.1 Verifying the Temp Directory Location and Write Permissions
	2.6.3.2 Verifying ESS Artifacts Deployment Targets
	2.6.3.3 Checking ESS Health

	2.7 Testing Your Installation
	2.8 Using Best Practices for Setting Up the Development Environment
	2.8.1 How to Implement Best Practices for JDeveloper
	2.8.2 How to Refresh the Oracle ADF Library Dependencies Library
	2.8.3 How to Manage OutOfMemory Exceptions (PermGen)
	2.8.4 How to Work with Oracle ADF Libraries at Design Time

	2.9 Configuring Hierarchy Providers for Approval Management (AMX)

	3 Setting Up Your JDeveloper Application Workspace and Projects
	3.1 Using Technology Scopes
	3.2 Provisioning the Application Workspace
	3.3 Adding Necessary Libraries to Your Data Model Project
	3.4 Adding the Applications Core Tag Library to Your User Interface Project
	3.5 Integrating Oracle Fusion Middleware Extensions for Applications (Applications Core) Setup UIs
	3.5.1 What You May Need to Know About Setup UIs in Oracle Fusion Functional Setup Manager
	3.5.2 How to Integrate Setup UIs into Functional Setup Manager

	3.6 Creating a Database Connection
	3.7 Adding the Search Navigation Tab to the Overview Editor for Oracle Enterprise Crawl and Search Framework (ECSF)
	3.7.1 How to Add the Search Navigation Tab to the Overview Editor
	3.7.2 What Happens When You Add the Search Navigation Tab to the Overview Editor

	3.8 Overriding the Default Resource Bundle
	3.9 Deploying Oracle SOA Suite
	3.10 Implementing Oracle Enterprise Scheduler Service Workspace and Deployment
	3.10.1 How to Create the SuperEss Project
	3.10.2 How to Build the EAR/MAR Profiles
	3.10.2.1 Deploying a Project-level Metadata Archive (MAR)
	3.10.2.2 Building the EAR Profile
	3.10.2.3 Deploying an Oracle Enterprise Scheduler Service Hosting Application

	3.11 Implementing Oracle Application Development Framework UI Workspace and Projects
	3.11.1 How to Set Up Your Web Project
	3.11.1.1 Configuring Your User Interface Project

	3.11.2 How to Create the SuperEss Project in the ADF UI Workspace
	3.11.3 How to Deploy Your Web Project

	Part II Defining Business Services
	4 Getting Started with Business Services
	4.1 Introduction to Implementing Business Logic
	4.1.1 About Entity Objects
	4.1.1.1 Standard Business and Validation Logic
	4.1.1.2 Specialized Business Functions

	4.1.2 About View Objects
	4.1.3 About Application Modules

	4.2 Understanding Validators
	4.3 Understanding List of Values (LOV)
	4.4 Understanding Batch Processing
	4.5 Understanding Extensibility and Reusability
	4.6 Understanding Services
	4.7 Using the Declarative Approach
	4.7.1 How to Define View Objects Using the Declarative Approach
	4.7.1.1 Using Entity Object Based View Objects
	4.7.1.2 Utilizing View Criteria

	5 Developing Services
	5.1 Introduction to Services
	5.2 Designing the Service Interface
	5.2.1 Identifying Business Objects
	5.2.1.1 Business Object Attributes

	5.2.2 Identifying Service Operations on the Business Objects
	5.2.2.1 Types of Operations
	5.2.2.2 Identifying Operations
	5.2.2.3 Defining Service Operations - General Guidelines

	5.2.3 How to Identify Services
	5.2.4 How to Define Service Exceptions and Information
	5.2.4.1 Defining Service Exceptions
	5.2.4.2 Defining Partial Failure and Bulk Processing
	5.2.4.3 Defining Informational Messages

	5.3 Developing Services
	5.3.1 How to Create Service Data Objects
	5.3.1.1 SDO Attributes
	5.3.1.2 Parent-Child Relationships
	5.3.1.3 Enabling Partial Failure
	5.3.1.4 Enabling Support Warnings
	5.3.1.5 Defining a List of Values (LOV) to Resolve Foreign Key ID

	5.3.2 How to Create Services
	5.3.2.1 What You May Need to Know About Design Time

	5.3.3 How to Generate Synchronous and Asynchronous Service Methods
	5.3.4 How to Expose Flexfields
	5.3.5 How to Enable Security
	5.3.5.1 Authentication
	5.3.5.2 Authorization

	5.3.6 Using the Java Transaction API
	5.3.6.1 Data Source
	5.3.6.2 Transaction Attributes

	5.3.7 Deploying Services
	5.3.7.1 Service Context Root

	5.3.8 Testing Services
	5.3.8.1 What to Test
	5.3.8.2 How to Test

	5.4 Invoking Services
	5.4.1 How to Invoke a Synchronous Service
	5.4.1.1 Using Service Factory
	5.4.1.2 Using Service-Based Entity Object and View Object
	5.4.1.3 Using the JAX-WS Client
	5.4.1.4 Using SOA

	5.4.2 How to Invoke an Asynchronous Service

	6 Defining Defaulting and Derivation Logic
	6.1 Understanding Entity Object Defaulting and Derivation Logic
	6.2 Using Groovy Scripting Language
	6.2.1 Keywords and Available Names
	6.2.2 Scripting Logic
	6.2.3 Groovy Expression Examples
	6.2.3.1 Querying Based on the Current Locale
	6.2.3.2 Error Message Tokens
	6.2.3.3 Expression Validators
	6.2.3.4 Attribute Defaulting and Calculation

	6.2.4 Defining Expressions at Design Time

	6.3 Using Oracle ADF Validators and Convertor Hints

	7 Defining and Using Message Dictionary Messages
	7.1 Introduction to Message Dictionary Messages
	7.2 Understanding Message Types
	7.3 Understanding Message Content
	7.3.1 About Message Names
	7.3.2 About Message Numbers
	7.3.3 About Translation Notes
	7.3.4 About Message Components
	7.3.5 About Tokens

	7.4 About Grouping Messages by Category and Severity
	7.5 Understanding Incidents and Diagnostic Logs with Message Dictionary
	7.6 Using Message Dictionary Messages in Oracle ADF Java Code
	7.6.1 How to Raise Exceptions Using Oracle Fusion Middleware Extensions for Applications Exception Classes
	7.6.2 How to Retrieve Message Text Programmatically

	7.7 Associating Message Dictionary Messages with Oracle ADF Validation Rules
	7.7.1 How to Associate Error Messages with Oracle ADF Entity Object Validation Rules

	7.8 Raising Error Messages Programmatically in PL/SQL
	7.8.1 How to Raise Exceptions Programmatically in PL/SQL
	7.8.2 How to Raise Errors in PL/SQL
	7.8.3 How to Retrieve Errors when PL/SQL is Called from Java

	7.9 Diagnosing Generic System Error Messages
	7.10 Formatting Message Dictionary Messages for Display in Oracle ADF Applications
	7.10.1 How to Programmatically Convert XML Messages
	7.10.2 How to Convert XML Messages by Configuring the Error Format Handler

	7.11 Integrating Messages Task Flows into Oracle Fusion Functional Setup Manager

	8 Managing Reference Data with SetIDs
	8.1 Introduction to SetIDs
	8.1.1 Partitioning by SetID
	8.1.2 SetID Determinant Types
	8.1.3 Understanding SetID Machinery
	8.1.3.1 Partitioning Patterns
	8.1.3.2 Reference Groups
	8.1.3.3 Set Configuration Tables
	8.1.3.4 SetID PL/SQL Utilities

	8.2 Implementing SetID on Entity Objects
	8.2.1 How to Annotate Reference Entity Objects for Sharing
	8.2.2 How to Build Entity Associations for All Foreign References
	8.2.3 How to Annotate Transactional Entity Objects for SetID
	8.2.4 How to Define View Accessors for Shared Reference Entities
	8.2.5 How to Define a Key Exists Validator for Shared Reference Entities
	8.2.6 How to Create LOVs for Shared Reference Entities

	8.3 Integrating SetID Task Flows into Oracle Fusion Functional Setup Manager

	9 Using Fusion Middleware Extensions for Oracle Applications Base Classes
	9.1 Introduction to Fusion Middleware Extensions for Oracle Applications Base Classes
	9.2 Using Multi-Language Support Features
	9.2.1 Using Utility APIs
	9.2.2 How to Create a Multi-Language ADF Business Components Entity Object
	9.2.2.1 What You Need to Know About Overrides

	9.3 Using WHO Column Features
	9.3.1 How to Use the Extension
	9.3.2 What Happens with WHO Column at Design Time and Runtime

	9.4 Using PL/SQL-Based Entities
	9.4.1 How to Use APIs to Facilitate DML Operations
	9.4.2 How to Use the Extensions
	9.4.3 What Happens with PL/SQL Entities at Design Time and Runtime

	9.5 Accessing FND Services
	9.5.1 How to Use the Extension

	9.6 Using Unique ID
	9.6.1 How to Use the Extension
	9.6.2 What Happens with Unique ID at Design Time
	9.6.3 What Happens with Unique ID at Runtime

	9.7 Using Data Security
	9.7.1 How to Use the Extension

	9.8 Using Document Sequencing

	10 Implementing Lookups
	10.1 Introduction to Lookups
	10.1.1 Overview of Lookups
	10.1.2 Standard, Set-Enabled, and Common Lookup Views
	10.1.3 Lookup Customization Levels
	10.1.3.1 What Happens to Customization Levels at Runtime

	10.2 Preparing Entities and Views for Lookups
	10.2.1 How to Prepare Custom Lookup Views

	10.3 Referencing Lookups
	10.3.1 How to Reference Lookups

	10.4 Defining Validators for Lookups
	10.4.1 How to Define a List Validator
	10.4.2 How to Define a Key Exists Validator

	10.5 Annotating Lookup Code Reference Attributes for Set-Enabled Lookups
	10.6 Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager

	11 Setting Up Document Sequences
	11.1 Introduction to Document Sequences
	11.2 Defining Document Sequence Categories
	11.3 Assigning a Document Sequence
	11.4 Striping Document Sequence Assignments
	11.5 Defining a Document Sequence Audit Table
	11.6 Enabling Document Sequences in ADF Business Components
	11.6.1 Using the Document-Sequence Extension
	11.6.1.1 What Happens with Document Sequences at Design Time
	11.6.1.2 What Happens with Document Sequences at Runtime

	11.7 Managing PL/SQL APIs
	11.8 Integrating Document Sequence Task Flows into Oracle Fusion Functional Setup Manager

	Part III Defining User Interfaces
	12 Getting Started with Your Web Interface
	12.1 Introduction to Developing a Web Application
	12.2 Oracle Fusion Guidelines, Patterns, and Standards
	12.3 Basic Building Blocks
	12.4 Introduction to the UI Shell
	12.5 Applications UI Patterns and Features

	13 Implementing the UI Shell
	13.1 Introduction to Implementing the UI Shell
	13.1.1 Standard Related to the UI Shell
	13.1.2 UI Shell Description
	13.1.2.1 Global Area Standard Links

	13.2 Populating a UI Shell
	13.2.1 How to Create a JSF Page
	13.2.1.1 Working with the Applications Menu Model

	13.2.2 How to Add Default Main Area Task Flows to a Page
	13.2.3 How to Add Dynamic Main Area and Regional Area Task Flows to a Page
	13.2.3.1 Adding the Tasks List Menu to the Page
	13.2.3.2 Grouping Tasks in the Tasks Pane into a Category
	13.2.3.3 Linking to a Task Flow in a Different Page
	13.2.3.4 Supporting No-Tab Work Areas
	13.2.3.5 Implementing the Task Popup

	13.2.4 How to Pass Parameters into Task Flows from Tasks List
	13.2.5 How to Open Data Files from a Tasks List Link

	13.3 Implementing Application Menu Security
	13.4 Controlling the State of Main and Regional Area Task Flows
	13.4.1 How to Control Main Area Task Flows
	13.4.1.1 closeMainTask History

	13.4.2 How to Control Regional Area Task Flows
	13.4.3 How to Control the State of the Contextual Area Splitter
	13.4.4 Sizing Regional Area Panels

	13.5 Working with the Global Menu Model
	13.5.1 How to Implement a Global Menu
	13.5.1.1 Menu Attributes Added by Oracle Fusion Middleware Extensions for Applications (Applications Core)
	13.5.1.2 Displaying the Navigator Menu
	13.5.1.3 Implementing a Global Menu

	13.5.2 How to Set Up Global Menu Security
	13.5.2.1 Enforcing User Privileges and Restrictions

	13.5.3 How to Create the Navigator Menu
	13.5.3.1 Rendering the Navigator Menu as Dropdown Buttons

	13.6 Using the Personalization Menu
	13.7 Implementing End User Preferences
	13.7.1 How to Use Preferences Link Navigation
	13.7.2 How to Use the Preferences Work Area Page
	13.7.3 How to Deploy Preferences Pages and Design General Preferences Content
	13.7.4 How to Configure and Implement End-User Preferences
	13.7.4.1 Using the Preferences Menu Model
	13.7.4.2 Configuring User Session and ADF Security
	13.7.4.3 Retrieving Preference Values and Checking Accessibility Mode by Using an Expression Language Expression
	13.7.4.4 Implementing the Password Management Page

	13.7.5 How to Use the Most Common Preferences
	13.7.5.1 Configuring the Language Preference
	13.7.5.2 Configuring the Accessibility Preference
	13.7.5.3 Configuring the Regional Preferences

	13.8 Using the Administration Menu
	13.8.1 How to Secure the Administration Menu

	13.9 Using the Help Menu

	14 Implementing Search Functions in the UI Shell
	14.1 Implementing Tagging Integration
	14.1.1 How to Use the Delivered Oracle WebCenter Portal Tagging Components
	14.1.1.1 Tagging a Resource (Business Object)
	14.1.1.2 Enabling Multiple Navigation Targets
	14.1.1.3 Tagging a Resource at the Row Level of a Table
	14.1.1.4 Searching for a Tag
	14.1.1.5 Resource Viewer for Tagged Items

	14.1.2 Implementing Tagging Security
	14.1.3 How to Use Tagging in a UI Shell Application

	14.2 Implementing Recent Items
	14.2.1 How to Choose Labels for Task Flows
	14.2.2 How to Call Sub Flows
	14.2.2.1 Sub Flow Registration APIs
	14.2.2.2 openSubTask API Labels
	14.2.2.3 Starting from Recent Items

	14.2.3 How to Enable a Sub Flow to Be Bookmarked in Recent Items
	14.2.3.1 Implementing the Sub Flow Design Pattern

	14.2.4 How to Use Additional Capabilities of the Recent Items openSubTask API
	14.2.5 How to Implement Data Security for Recent Items and Favorites
	14.2.6 Known Issues

	14.3 Implementing the Watchlist
	14.3.1 Watchlist Data Model Effects
	14.3.2 Watchlist Physical Data Model Entities
	14.3.3 Supported Watchlist Items
	14.3.3.1 Asynchronous Items Overview: Expense Reports Saved Search
	14.3.3.2 Summary of Implementation Tasks

	14.3.4 How to Use the Watchlist
	14.3.4.1 Making the Watchlist Link in the UI Shell Global Area Work
	14.3.4.2 Seed Reference Data (All items)
	14.3.4.3 Create a Summary View Object (SEEDED_QUERY)
	14.3.4.4 Create Seeded Saved Searches in MDS (SEEDED_SAVED_SEARCH)
	14.3.4.5 Creating Application Module and View Objects (All except HUMAN_TASK)
	14.3.4.6 Setting Up Service (All except HUMAN_TASK)
	14.3.4.7 Importing All Watchlist-Related Application Modules
	14.3.4.8 Nesting Watchlist Application Modules
	14.3.4.9 Using the refreshWatchlistCategory Method
	14.3.4.10 Importing Watchlist JAR Files into the Saved Search Project (USER_ SAVED_SEARCH)
	14.3.4.11 Promoting Saved Search to the ATK Watchlist (USER_SAVED_SEARCH)
	14.3.4.12 Code Task Flows to Accept Parameters (All except HUMAN_TASK)
	14.3.4.13 Import Watchlist UI JAR File in User Interface Project
	14.3.4.14 Additional Entries for Standalone Deployment

	14.4 Implementing Group Spaces
	14.4.1 Assumptions
	14.4.2 How to Implement Group Spaces
	14.4.3 Overview of Group Spaces Functionality
	14.4.4 How to Pass a Chromeless Template

	14.5 Implementing Activity Streams and Business Events
	14.5.1 Introduction to WebCenter Portal Activities
	14.5.2 How to Publish Business Events to Activities
	14.5.3 How to Publish Activities Using a Programmatic API
	14.5.4 How to Implement Activity Streams
	14.5.4.1 Defining and Publishing Business Events in JDeveloper
	14.5.4.2 Overriding isActivityPublishingEnabled() to Enable Activity Publishing
	14.5.4.3 Defining Activity Attributes Declaratively

	14.5.5 How to Define Activities
	14.5.5.1 Adding the ActivityStream UI Task Flow
	14.5.5.2 Defining Activities in the service-definition.xml File

	14.5.6 How to Implement Comments and Likes
	14.5.7 How to Implement Follow for an Object
	14.5.7.1 Defining the Service Category
	14.5.7.2 Adding ActivityTypes for Follow and Unfollow

	14.5.8 How to Render Contextual Actions in Activity Streams

	14.6 Implementing the Oracle Fusion Applications Search Results UI
	14.6.1 How to Disable Oracle Fusion Applications Search
	14.6.2 How to Use Basic Search
	14.6.2.1 Search Results

	14.6.3 How to Implement the GlobalSearchUtil API
	14.6.3.1 Using the Search API
	14.6.3.2 Running the Oracle Fusion Applications Search UI Under Oracle WebLogic Server

	14.6.4 Introduction to the Crawled Objects Project
	14.6.5 How to Implement Tags in Oracle Fusion Applications Search
	14.6.6 How to Use the Actionable Results API with Oracle Fusion Applications Search
	14.6.6.1 Implementing the URL Action Type
	14.6.6.2 Implementing the Task Action Type
	14.6.6.3 Passing Parameters in Oracle Fusion Applications Search
	14.6.6.4 Ordering the Other Actions
	14.6.6.5 Using Click Path and the Saved Search

	14.6.7 How to Integrate Non-Applications Data into Oracle Fusion Applications Search
	14.6.7.1 Oracle Business Intelligence Integration
	14.6.7.2 Integrating Oracle WebCenter Portal
	14.6.7.3 Ensuring Parity of Users

	15 Implementing Additional Functions in the UI Shell
	15.1 Introducing the Navigate API
	15.1.1 How to Use the Navigate API Data Control Method
	15.1.2 How to Implement Navigation Across Web Applications

	15.2 Warning of Pending Changes in the UI Shell
	15.2.1 How to Implement Warning of Pending Changes
	15.2.2 How to Suppress Warning of Pending Changes

	15.3 Implementing the Oracle Fusion Home Page UI
	15.3.1 Supported Behavior
	15.3.2 How to Create a Home Page
	15.3.3 Getting the URL

	15.4 Using the Single Object Context Workarea
	15.4.1 Implementation Notes
	15.4.1.1 Developer Implementation

	15.5 Implementing the Third-Party Component Area
	15.5.1 How to Implement the ThirdPartyComponentArea Facet Developer

	15.6 Developing an Activity Guide Client Application with the UI Shell
	15.7 Troubleshooting UI Shell Issues
	15.7.1 ApplSession Is Not Created
	15.7.2 Navigator Shows a Little White Box
	15.7.3 Navigator Shows Unfiltered Entries
	15.7.4 Other Navigation Issues

	16 Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables
	16.1 Implementing Applications Tables
	16.1.1 Understanding Applications Tables Facets and Properties
	16.1.2 How to Create an Applications Table
	16.1.2.1 Adding Applications Tables to JSF Pages or Page Fragments
	16.1.2.2 Adding Applications Table Components Using the Applications Table Wizard

	16.1.3 Introduction to Selected Elements in the Table Property Inspector
	16.1.3.1 Common Properties Section
	16.1.3.2 Patterns Properties
	16.1.3.3 Other Properties

	16.1.4 How to Modify Applications Table Components and Properties
	16.1.4.1 Adding Data Controls to Tables
	16.1.4.2 Working with Table Menus and Icons
	16.1.4.3 Increasing Table Width to Fill 100% of Its Container
	16.1.4.4 Using an Applications Table with a Query Component

	16.1.5 What Happens When You Add an Applications Table

	16.2 Implementing the Applications Tree
	16.2.1 How to Add an Applications Tree to Your Page
	16.2.1.1 Adding the Applications Tree
	16.2.1.2 Applications Tree Create Wizard
	16.2.1.3 Working with the Applications Tree

	16.3 Implementing Applications Tree Tables
	16.3.1 How to Add an Applications Tree Table
	16.3.1.1 Applications Tree Table Create Wizard
	16.3.1.2 Working with the Applications Tree Table

	16.4 Using the Custom Wizard with Applications Popups
	16.4.1 Creating a Popup
	16.4.1.1 How to Add Applications Popups to JSF Pages or Page Fragments
	16.4.1.2 How to Add Applications Popup Components Using the Wizard

	16.4.2 How to Modify Popup Components and Properties
	16.4.2.1 Accessing the Popup on a JSF Page
	16.4.2.2 Adding a Data Source to an Existing Popup
	16.4.2.3 Adding User-Interface Content to an Existing Popup
	16.4.2.4 Adding action and actionListener Methods to the Popup Buttons

	17 Implementing Applications Panels, Master-Detail, Hover, and Dialog Details
	17.1 Implementing Applications Panels
	17.1.1 Overview of Applications Panel Components
	17.1.2 How to Create an Applications Panel
	17.1.2.1 Adding Applications Panels Using the Applications Panel Wizard

	17.1.3 How to Modify Applications Panels Components and Properties
	17.1.3.1 Stretching the Applications Panel
	17.1.3.2 Accessing the Applications Panel on a JSF Page
	17.1.3.3 Editing Applications Panel Properties and Components
	17.1.3.4 Adding a Data Source to an Existing Panel
	17.1.3.5 Adding User-Interface Content to Applications Panels

	17.2 Implementing Applications Master-Detail
	17.2.1 Component Structure and Functions
	17.2.2 Introduction to Master-Detail Components
	17.2.3 How to Create a Master-Detail
	17.2.3.1 Adding a Master-Detail to JSF Pages or Page Fragments
	17.2.3.2 Adding Master-Details Components Using the Applications Master-Details Wizard

	17.2.4 Master-Detail Guidelines for Creating New Records
	17.2.4.1 Master-Detail without a Default Primary Key Generator
	17.2.4.2 Master-Detail with a Default Primary Key Generator
	17.2.4.3 Master-Detail with a Composite Primary Key
	17.2.4.4 Any Other Case

	17.2.5 How to Modify Master-Detail Components and Properties

	17.3 Implementing Hover
	17.4 Implementing Applications Dialog Details
	17.4.1 How to Add Applications Dialog Details to Your Page
	17.4.1.1 Adding Applications Dialog Details
	17.4.1.2 Working with the Applications Dialog Details
	17.4.1.3 Implementing OK and Cancel Buttons in a Popup

	18 Implementing Attachments
	18.1 Introduction to Attachments
	18.2 Creating Attachments
	18.2.1 How to Set Up Your Model Project for Attachments
	18.2.2 How to Create Attachment View Links
	18.2.3 What Happens When You Create an Attachment View Link
	18.2.4 How to Delete the Business Object
	18.2.5 How to Assign Categories to the Attachment Entity
	18.2.6 How to Create an Attachments Field or an Attachments Table
	18.2.7 What Happens When You Implement Attachments
	18.2.8 How to Create an Attachments Column in an Applications Table
	18.2.9 How to Set Up Required Properties
	18.2.10 What Happens at Runtime

	18.3 Displaying Attachments for Multiple Entities in the Same Table
	18.3.1 How to Configure the Attachments Component to Display Attachments for Multiple Entities

	18.4 Configuring the Attachments Component UI
	18.5 Working with Attachments Programmatically
	18.5.1 Creating New Attachment Types
	18.5.2 Retrieving Attachments
	18.5.3 Using Attachment Utilities

	18.6 Setting Up Miscellaneous Attachments Features
	18.6.1 Custom Actions
	18.6.2 Approvals

	18.7 Integrating Attachments Task Flows into Oracle Fusion Functional Setup Manager
	18.8 Securing Attachments
	18.8.1 Attachment Category Data Security
	18.8.1.1 How to Set Up Category Data Security

	18.8.2 File Sharing
	18.8.3 Attachments SaaS

	18.9 Using Attachments (Runtime)
	18.9.1 How to Use Attachments File-Level Security
	18.9.2 How to Update Attachments
	18.9.2.1 Attachments Update Functions
	18.9.2.2 Determining the Checked Out Status of File and Text-Type Attachments
	18.9.2.3 Enabling or Disabling Attachments Update Functions

	18.9.3 How to Check Out and Check In File Attachments

	19 Organizing Hierarchical Data with Tree Structures
	19.1 Introduction to Trees
	19.1.1 Understanding Tree Structures, Trees, and Tree Versions

	19.2 Configuring the Trees Application Launch Page
	19.3 Working with Tree Structures
	19.3.1 How to Manage Tree Structure Data Sources
	19.3.2 How to Specify Data Source Parameters
	19.3.2.1 Implementing Use Cases

	19.3.3 How to Search for a Tree Structure
	19.3.4 How to Use the Search Field
	19.3.5 How to Create a Tree Structure
	19.3.6 How to Duplicate a Tree Structure
	19.3.7 How to Edit a Tree Structure
	19.3.8 How to Delete a Tree Structure
	19.3.9 How to Set Tree Structure Status
	19.3.10 How to Audit a Tree Structure

	19.4 Working with Trees
	19.4.1 How to Search for a Tree
	19.4.2 How to Create a Tree
	19.4.3 How to Duplicate a Tree
	19.4.4 How to Edit a Tree
	19.4.5 How to Delete a Tree

	19.5 Working with Tree Versions
	19.5.1 How to Create a Tree Version
	19.5.2 How to Add Tree Nodes to a Tree Version
	19.5.2.1 How to Configure the Add Tree Node: Specific Values
	19.5.2.2 How to Configure the Add Tree Node: Values Within a Range
	19.5.2.3 How to Configure the Add Tree Node: Referenced Hierarchy
	19.5.2.4 How to Use Drag-and-Drop to Move Nodes
	19.5.2.5 How to Add a Node Using a Custom Search UI
	19.5.2.6 How to Edit a Tree Node

	19.5.3 How to Create a Record for a Data Source
	19.5.4 How to Duplicate a Tree Version
	19.5.5 How to Edit a Tree Version
	19.5.6 How to Perform CRUD Operations on Tree Nodes Using APIs
	19.5.7 How to Perform Sub-tree Node Operations Using PL/SQL APIs
	19.5.8 How to Set Tree Version Status
	19.5.9 How to Audit Trees and Tree Versions
	19.5.10 How to Flatten Rows and Columns

	19.6 Managing Labels in the Generic Label Data Source
	19.6.1 How to Search for a Label
	19.6.2 How to Create a Label
	19.6.3 How to Edit a Label
	19.6.4 How to Delete a Label

	19.7 Using the Applications Hierarchy Component to Develop Applications
	19.7.1 How to Create a Tree Application
	19.7.2 How to Create a Tree Table Application

	19.8 Integrating Custom Task Flows into the Applications Hierarchy Component
	19.8.1 Registering Custom Task Flows
	19.8.2 Creating Custom Task Flows
	19.8.2.1 How to Create a Search Task Flow for the Add Node Operation
	19.8.2.2 How to Create a Create Task Flow
	19.8.2.3 How to Create a Duplicate Task Flow
	19.8.2.4 How to Create an Edit Task Flow
	19.8.2.5 How to Create a Delete Task Flow

	19.9 Using the fnd:hierarchy Property Inspector to Specify Tree Versions
	19.10 Using the Expression Builder to Bind TreeCode, TreeStructureCode, and TreeVersionId Properties
	19.11 Embedding the Tree Picker Component in a User Interface
	19.12 Setting Bind Variables and View Criteria
	19.12.1 How to Set Bind Variables and View Criteria

	19.13 Using Service APIs to Manage Trees
	19.13.1 How to Use TreeStructureService
	19.13.2 How to Use TreeService
	19.13.3 How to Use TreeNodeService

	19.14 Advanced Topics
	19.14.1 Using the Tree Data Model
	19.14.2 Using PL/SQL APIs
	19.14.3 Using Incremental Flattening
	19.14.3.1 How to Use FND_TREE_FLATTENING_HISTORY
	19.14.3.2 How to Use FND_TREE_LOG
	19.14.3.3 How to Use FND_TREE_LOG_PARAMS
	19.14.3.4 Flattening Rows
	19.14.3.5 Flattening Columns

	19.14.4 Using Trees Business Events
	19.14.5 Using WLST Commands for Flattening
	19.14.5.1 How to Invoke Flattening APIs
	19.14.5.2 How to Use flattenAll API
	19.14.5.3 How to Use flattenTreeStructure API
	19.14.5.4 How to Use flattenTree API
	19.14.5.5 How to Use flattenTreeVersion API
	19.14.5.6 How to Use forceFlattenTreeVersion API

	19.14.6 Understanding XML Report Formats for WLST Commands

	20 Working with Localization Formatting
	20.1 Introduction to Localization Formatting
	20.2 Formatting Currency
	20.2.1 How to Format Currency
	20.2.1.1 Formatting Currency Values
	20.2.1.2 What Happens When You Format Currency
	20.2.1.3 What Happens at Runtime: How Currency Is Formatted

	20.3 Formatting Numbers
	20.3.1 How to Format Numbers
	20.3.1.1 Formatting Decimal Numbers
	20.3.1.2 Formatting Integer Numbers
	20.3.1.3 Formatting ID Numbers
	20.3.1.4 How to Format Numbers in Hyperlinks
	20.3.1.5 How to Format Percentage Values

	20.3.2 What Happens When You Format Numbers
	20.3.3 What Happens at Runtime: How Numbers Are Formatted

	20.4 Formatting Date and Timestamp Values
	20.4.1 How to Format Dates and Timestamp Values
	20.4.1.1 Formatting Dates
	20.4.1.2 Formatting Current Dates
	20.4.1.3 Formatting Timestamp Values

	20.4.2 What Happens When You Format Dates and Timestamps
	20.4.3 What Happens at Runtime: How Dates and Timestamps Are Formatted
	20.4.4 Standards and Guidelines for Formatting Dates and Timestamps

	20.5 Formatting Time Zones
	20.5.1 How to Format Time Zones
	20.5.2 How to Format Invariant Time Zone Values
	20.5.3 What Happens When You Format Time Zones
	20.5.4 What Happens at Runtime: How Time Zones Are Formatted
	20.5.5 Standards and Guidelines

	20.6 Formatting Numbers, Currency and Dates Using Localization Expression Language Functions
	20.6.1 How to Format Numbers, Currency and Dates Using Expression Language Functions
	20.6.1.1 Formatting Numbers Using Expression Language Functions
	20.6.1.2 Formatting Currency Using Expression Language Functions
	20.6.1.3 Formatting Dates Using Expression Language Functions

	20.6.2 What Happens When You Format Numbers, Currency and Dates Using Expression Language Functions
	20.6.3 What Happens at Runtime: How Currency, Dates and Numbers and Time Zones are Formatted Using Expression Language Functions

	20.7 Implementing Bi-directional Support
	20.7.1 How to Implement Bi-directional Support
	20.7.1.1 Making Panels and Columns Provide Bi-directional Support
	20.7.1.2 Making Images Provide Bi-directional Support

	20.8 Supporting Mnemonic Keys
	20.8.1 How to Implement Mnemonic Key Support

	20.9 Implementing Localization Formatting in ADF Desktop Integration
	20.9.1 How to Format Numbers
	20.9.1.1 Formatting Numbers
	20.9.1.2 What Happens When You Format Numbers
	20.9.1.3 What Happens at Runtime: How Numbers Are Formatted

	20.9.2 How to Format Currency Values
	20.9.2.1 Formatting Currency Values
	20.9.2.2 What Happens When You Format Currencies
	20.9.2.3 What Happens at Runtime: How Currency Values Are Formatted

	20.9.3 How to Format Dates and Timestamp Values
	20.9.3.1 Formatting Date and Timestamp Values
	20.9.3.2 What Happens When You Format the Date and Timestamp
	20.9.3.3 What Happens at Runtime: How Date and Timestamp Are Formatted
	20.9.3.4 Honoring Time Zones

	20.10 Implementing Localization Formatting in Oracle BI Publisher Reports
	20.10.1 How to Format Numbers in a Oracle BI Publisher Report
	20.10.2 How to Format Currency Values in Oracle BI Publisher
	20.10.3 How to Format Dates and Timestamps in Oracle BI Publisher
	20.10.4 How to Honor Time Zones in Oracle BI Publisher

	20.11 Implementing Localization Formatting in ADF Data Visualization Components
	20.11.1 How to Format Numbers on a Graph
	20.11.2 Standards and Guidelines for Formatting Numbers in Graphs
	20.11.3 How to Format Currency Values in ADF Data Visualization
	20.11.3.1 Formatting Currency Values on a Graph
	20.11.3.2 Standards and Guidelines for Formatting Currency Values in Graphs

	20.11.4 How to Format Dates and Timestamp Values in ADF Data Visualization
	20.11.4.1 Formatting Dates and Timestamp Values on a Graph

	20.12 Configuring National Language Support Attributes
	20.12.1 Session National Language Support Attributes
	20.12.2 Database Session Attributes

	20.13 Standards and Guidelines for Localization Formatting

	Part IV Developing Applications with Flexfields
	21 Getting Started with Flexfields
	21.1 Introduction to Flexfields
	21.1.1 Descriptive Flexfields
	21.1.2 Extensible Flexfields
	21.1.3 Key Flexfields
	21.1.4 Value Sets
	21.1.5 Flexfield Integration with Oracle Business Intelligence

	21.2 Participant Roles
	21.3 The Flexfield Development Lifecycle
	21.4 Flexfields in the Application User Interface

	22 Using Descriptive Flexfields
	22.1 Introduction to Descriptive Flexfields
	22.1.1 Benefits of Descriptive Flexfields
	22.1.2 How Descriptive Flexfields Are Modeled in Oracle Application Development Framework

	22.2 Developing Descriptive Flexfields
	22.2.1 How to Create Descriptive Flexfield Columns
	22.2.2 How to Register and Define Descriptive Flexfields
	22.2.2.1 Registering and Defining Descriptive Flexfields Using a Registration Task
	22.2.2.2 Registering and Defining Descriptive Flexfields Using the Setup APIs

	22.2.3 How to Reuse a Descriptive Flexfield on Another Table
	22.2.4 How to Register the Reuse of a Descriptive Flexfield
	22.2.4.1 Registering the Secondary Usage of a Descriptive Flexfield Using a Registration Task
	22.2.4.2 Registering the Secondary Usage of a Descriptive Flexfield Using the Setup APIs

	22.2.5 How to Register Entity Details
	22.2.5.1 Registering Entity Details Using a Registration Task
	22.2.5.2 Registering Entity Details Using the Setup APIs

	22.2.6 How to Register Descriptive Flexfield Parameters
	22.2.6.1 Registering a Flexfield Parameter Using a Registration Task
	22.2.6.2 Registering a Flexfield Parameter Using the Setup APIs

	22.3 Creating Descriptive Flexfield Business Components
	22.3.1 How to Create Descriptive Flexfield Business Components

	22.4 Creating Descriptive Flexfield View Links
	22.4.1 How to Create Descriptive Flexfield View Links

	22.5 Nesting the Descriptive Flexfield Application Module Instance in the Application Module
	22.5.1 How to Nest the Descriptive Flexfield Application Module Instance in the Application Module

	22.6 Adding a Descriptive Flexfield View Object to the Application Module
	22.6.1 How to Add a Descriptive Flexfield View Object Instance to the Application Module

	22.7 Adding Descriptive Flexfield UI Components to a Page
	22.7.1 How to Add a Descriptive Flexfield UI Component to a Form
	22.7.2 How to Add an Unrestricted Descriptive Flexfield UI Component to a Table
	22.7.3 How to Add Descriptive Flexfield Context-Sensitive Segments to a Table as Columns
	22.7.4 How to Add Create Row and Delete Row Functionality to the Page
	22.7.5 How to Add a Row to an Empty Table in a Custom createInsert Method
	22.7.6 How to Dynamically Refresh a Descriptive Flexfield
	22.7.7 What Happens When You Add a Descriptive Flexfield to a Page

	22.8 Configuring Descriptive Flexfield UI Components
	22.8.1 How to Configure Flexfield-Level UI Properties
	22.8.2 How to Configure Segment-Level UI Properties
	22.8.2.1 Configuring a Context Segment
	22.8.2.2 Configuring All Global Segments
	22.8.2.3 Configuring Individual Global Segments
	22.8.2.4 Configuring All Context-Sensitive Segments
	22.8.2.5 Configuring Individual Context-Sensitive Segments

	22.8.3 How to Configure Descriptive Flexfield Parameters

	22.9 Loading Seed Data
	22.10 Working with Descriptive Flexfield UI Programmatically
	22.10.1 How to Update a Descriptive Flexfield Programmatically
	22.10.2 How to Determine Whether Descriptive Flexfield Segments Have Been Defined
	22.10.3 How to Configure a Descriptive Flexfield to Handle Value Change Events

	22.11 Incorporating Descriptive Flexfield into a Search Form
	22.11.1 How to Incorporate Descriptive Flexfields Into a Search Form

	22.12 Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence
	22.12.1 How to Enable a Descriptive Flexfield for Oracle Business Intelligence
	22.12.2 How to Flatten the Descriptive Flexfield Model for a Business Intelligence-Enabled Descriptive Flexfield

	22.13 Publishing Descriptive Flexfields as Web Services
	22.13.1 How to Expose a Descriptive Flexfield as a Web Service
	22.13.2 How to Test the Web Service

	22.14 Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook
	22.14.1 How to Configure ADF Desktop Integration with a Dynamic Column Descriptive Flexfield
	22.14.2 How to Handle User-Initiated Context Value Changes in a Dynamic Column Descriptive Flexfield
	22.14.3 How to Configure ADF Desktop Integration with a Static Column Descriptive Flexfield
	22.14.4 How to Handle Updating or Inserting of a Descriptive Flexfield Data Row

	23 Using Extensible Flexfields
	23.1 Introduction to Extensible Flexfields
	23.1.1 Understanding Extensible Flexfields
	23.1.1.1 About Contexts (Attribute Groups)
	23.1.1.2 Context-Sensitive Segments
	23.1.1.3 About Logical Pages
	23.1.1.4 About Categories
	23.1.1.5 About Category Hierarchies
	23.1.1.6 About Usages (Data Levels)

	23.1.2 The Benefits of Extensible Flexfields
	23.1.3 Extensible Flexfield Structure and Content

	23.2 Overview of Integrating Extensible Flexfields in an Application
	23.3 Creating Extensible Flexfield Data Tables
	23.3.1 How to Create a Base Extension Table
	23.3.2 How to Create a Translation Extension Table
	23.3.3 How to Create a Translation Extension View

	23.4 Registering Extension Tables as Secured Objects
	23.4.1 How to Register a Table as a Secured Object

	23.5 Defining and Registering Extensible Flexfields
	23.5.1 How to Register Extensible Flexfields

	23.6 Defining and Registering Extensible Flexfield Business Components
	23.6.1 How to Create and Configure Extensible Flexfield Entity Objects
	23.6.1.1 Creating and Configuring an Entity Object from the Base Extension Table
	23.6.1.2 Creating and Configuring an Entity Object from the Translation Extension Table
	23.6.1.3 Creating and Configuring an Entity Object from the Translation Extension View

	23.6.2 How to Configure the EFF_LINE_ID Attribute as a Unique ID
	23.6.3 How to Create and Configure Extensible Flexfield View Objects
	23.6.3.1 Creating and Configuring Context View Objects
	23.6.3.2 Creating and Configuring the Category View Object
	23.6.3.3 Creating a Declarative SQL-Based View Object to Enable Searching

	23.6.4 How to Configure an Extensible Flexfield Application Module
	23.6.5 How to Register Extensible Flexfield Business Components

	23.7 Employing an Extensible Flexfield on a User Interface Page
	23.7.1 How to Expose the Logical Pages and Contexts Associated with One Extensible Flexfield Usage
	23.7.1.1 Creating a Task Flow for a Single Extensible Flexfield Usage
	23.7.1.2 Adding the Task Flow to the UI Page
	23.7.1.3 Rendering the Page

	23.7.2 How to Expose the Complete Set of an Extensible Flexfield's Usages, Logical Pages, and Associated Contexts
	23.7.2.1 Creating the Task Flows
	23.7.2.2 Creating the Fragments
	23.7.2.3 Using the Task Flows in the Page

	23.7.3 How to Expose One Logical Page and Its Contexts
	23.7.4 How to Expose One Extensible Flexfield Context

	23.8 Loading Seed Data
	23.9 Customizing the Extensible Flexfield Modelers
	23.9.1 How to Customize the Runtime Business Component Modeler for Extensible Flexfields
	23.9.2 How to Customize the Runtime User Interface Modeler for Extensible Flexfields
	23.9.2.1 Creating the Customizer Wrapper Class

	23.10 Testing the Flexfield
	23.11 Accessing Information About Extensible Flexfield Business Components
	23.11.1 How to Access Information About Extensible Flexfield Business Components

	24 Using Key Flexfields
	24.1 Introduction to Key Flexfields
	24.1.1 Benefits of Key Flexfields
	24.1.2 How Key Flexfields Are Modeled in Oracle Application Development Framework
	24.1.3 Secondary Usage Feature
	24.1.4 Participant Roles
	24.1.5 Completing the Key Flexfield Development Process
	24.1.5.1 Maintenance Mode and Dynamic Combination Insertion
	24.1.5.2 Cross-Validation Rules and Custom Validation
	24.1.5.3 Understanding the Key Flexfield Producer Development Tasks
	24.1.5.4 Understanding the Key Flexfield Consumer Development Tasks

	24.2 Completing the Producer Tasks for Key Flexfields
	24.2.1 How to Develop Key Flexfields
	24.2.1.1 Creating the Combinations Table
	24.2.1.2 Creating Foreign Key Columns to Enable the Use of Flexfield Combinations on Application Pages
	24.2.1.3 Including Segment Columns in Secondary Tables
	24.2.1.4 Creating Filter Columns
	24.2.1.5 Registering and Defining Key Flexfields Using the Setup APIs
	24.2.1.6 What You May Need to Know About the Key Flexfield Setup API
	24.2.1.7 Enabling Multiple Structure, Multiple Structure Instance, and Data Set Features
	24.2.1.8 Reusing Key Flexfield Segments in Another Table
	24.2.1.9 Registering Entity Details Using the Setup APIs

	24.2.2 How to Implement Key Flexfield Segment Labels
	24.2.2.1 Defining Key Flexfield Segment Labels
	24.2.2.2 Using Value Attributes

	24.2.3 How to Implement Cross-Validation Rules and Custom Validation
	24.2.3.1 Implementing Cross-Validation Rules
	24.2.3.2 Implementing Custom Validation

	24.2.4 How to Create Key Flexfield Business Components
	24.2.4.1 Building a Writable Maintenance Model
	24.2.4.2 Enabling Dynamic Combination Insertion
	24.2.4.3 Building a Read-Only Reference Model

	24.2.5 How to Share Key Flexfield Business Components
	24.2.5.1 Creating an ADF Library JAR File
	24.2.5.2 Importing Business Components from an ADF Library

	24.2.6 How to Build a Key Flexfield Maintenance User Interface
	24.2.6.1 Building a Key Flexfield Code-Combination Maintenance Page
	24.2.6.2 Ensuring Proper Handling of New Rows

	24.2.7 What Happens at Runtime: Creating New Combinations

	24.3 Completing the Consumer Tasks for Key Flexfields in Reference Mode
	24.3.1 How to Create Key Flexfield View Links
	24.3.2 How to Nest an Instance of the Key Flexfield Application Module in the Product Application Module
	24.3.3 How to Add an Instance of a Key Flexfield View Object to the Product Application Module

	24.4 Employing Key Flexfield UI Components on a Page
	24.4.1 How to Employ a Key Flexfield Component on a Page
	24.4.1.1 Adding Key Flexfield UI Components to a Form or a Table
	24.4.1.2 Ensuring Proper Handling of New Rows
	24.4.1.3 Ensuring Proper Updating of Reference Mode SIN values in an ADF Form or ADF Applications Table
	24.4.1.4 Ensuring Proper Updating of Secondary Mode SIN Values in an ADF Form
	24.4.1.5 Dynamically Refreshing Segments on a Code-Combination Maintenance Page or Secondary Usage Segments
	24.4.1.6 What Happens When You Add a Key Flexfield to a Page

	24.4.2 How to Incorporate Key Flexfields into a Query Search Form
	24.4.2.1 Setting Up the Business Component Model Layer
	24.4.2.2 Creating the Query Search Form

	24.4.3 How to Configure Key Flexfield UI Components
	24.4.3.1 Configuring Flexfield-Level User Interface Properties
	24.4.3.2 Configuring Label-Based Segment UI Properties
	24.4.3.3 Configuring Secondary Usage UI Properties

	24.5 Using Key Flexfield Advanced Features in Reference Mode
	24.5.1 How to Define Code Combination Constraints
	24.5.1.1 Creating a View Accessor to Define a Code Combination Constraint
	24.5.1.2 Constraining Code Combinations by an Extra WHERE Clause
	24.5.1.3 Constraining Code Combinations by Validation Date
	24.5.1.4 Constraining Code Combinations by Validation Rules
	24.5.1.5 Enabling or Disabling Dynamic Combination Creation for a Specific Usage

	24.5.2 How to Access Segment Labels Using the Java API
	24.5.3 How to Prepare Key Flexfield Business Components for Oracle Business Intelligence
	24.5.3.1 Enabling a Key Flexfield for Oracle Business Intelligence
	24.5.3.2 Producing a Flattened Model for a Business Intelligence-Enabled Key Flexfield

	24.5.4 How to Publish Key Flexfield Application Modules as Web Services
	24.5.4.1 Exposing a Key Flexfield Application Module as a Web Service
	24.5.4.2 Testing the Web Service

	24.5.5 How to Access Key Flexfields from an ADF Desktop Integration Excel Workbook
	24.5.5.1 Configuring ADF Desktop Integration with a Dynamic Column Key Flexfield
	24.5.5.2 Handling User-Initiated Structure Code Value Changes in a Dynamic Column Key Flexfield
	24.5.5.3 Configuring ADF Desktop Integration with a Static Column Key Flexfield
	24.5.5.4 Handling Update or Insert of a Key Flexfield Data Row

	24.6 Completing the Development Tasks for Key Flexfields in Secondary Mode
	24.6.1 How to Register a Key Flexfield All-Segment Secondary Usage
	24.6.2 How to Register a Key Flexfield Single-Segment Secondary Usage
	24.6.3 How to Create Key Flexfield Business Components for Secondary Usage
	24.6.4 How to Create Key Flexfield View Links for a Secondary Usage

	24.7 Working with Code-Combination Filters for Key Flexfields
	24.7.1 How to Use Standard Combination Filters
	24.7.2 How to Use Code-Combination Filters for Oracle BI Publisher Reports
	24.7.3 How to Use Cross-Validation Filters
	24.7.4 How to Prepare the Database for Standard Code-Combination Filters
	24.7.5 How to Add Code-Combination Filters to Your Application
	24.7.5.1 Creating a Filter Entity Object for a Standard Filter
	24.7.5.2 Creating a Filter View Object
	24.7.5.3 Associating Code-Combination Filters with Key Flexfields
	24.7.5.4 Configuring, Deploying, and Testing Code-Combination Filters

	24.7.6 How to Employ Code-Combination Filters on an Application Page
	24.7.6.1 Adding Your Key Flexfield Filter to an Application Page
	24.7.6.2 What Happens When You Add a Filter-Repository Filter to an Application Page

	24.7.7 How to Create Code-Combination Filter Definitions for Testing
	24.7.8 How to Apply Code-Combination Filters Using the PL/SQL Filter APIs
	24.7.8.1 Applying Standard Filters Using the WHERE Clause API
	24.7.8.2 Applying Repository Filters for Oracle Enterprise Scheduler Service

	24.7.9 How to Remove Code-Combination Filters from Your Application
	24.7.10 How to Remove Filters from the Filter Repository

	25 Testing and Deploying Flexfields
	25.1 Testing Flexfields
	25.1.1 How to Make Flexfields Available for Testing
	25.1.2 How to Test Flexfields

	25.2 Deploying Flexfields in a Standalone WebLogic Server Environment
	25.2.1 How to Package a Flexfield Application for Deployment
	25.2.1.1 Enabling the Flexfield Packaging Plugin
	25.2.1.2 Generating an EAR File for the Application

	25.2.2 How to Deploy a Flexfield Application
	25.2.2.1 Creating an MDS Partition
	25.2.2.2 Mapping the EAR File to the MDS Partition
	25.2.2.3 Mapping the ApplCore Setup Application to the MDS Partition
	25.2.2.4 Including Product Application Model Libraries in the ApplCore Setup EAR File
	25.2.2.5 Deploying the Product and Setup Applications to the Server Domains
	25.2.2.6 Priming the MDS Partition with Configured Flexfield Artifacts

	25.2.3 How to Configure Flexfields

	25.3 Using the WLST Flexfield Commands
	25.3.1 How to Prepare Your Environment to Use the WLST Flexfield Commands
	25.3.2 How to Prepare Your Environment to Use the deployFlexForApp Command

	25.4 Regenerating Flexfield Business Components Programmatically
	25.5 Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager

	Part V Using Oracle Enterprise Crawl and Search Framework
	26 Getting Started with Oracle Enterprise Crawl and Search Framework
	26.1 Introduction to Using Oracle Enterprise Crawl and Search Framework
	26.1.1 ECSF Architecture
	26.1.1.1 Searchable Object Manager
	26.1.1.2 Search Designer
	26.1.1.3 Semantic Engine
	26.1.1.4 Fusion Applications Control
	26.1.1.5 ECSF Command Line Administration Utility
	26.1.1.6 Security Service
	26.1.1.7 Data Service
	26.1.1.8 Query Service
	26.1.1.9 Oracle SES Search Engine
	26.1.1.10 Security Plug-in
	26.1.1.11 Crawler Plug-in

	26.2 Setting Up and Running ECSF Command Line Administration Utility
	26.2.1 How to Make Searchable Objects Accessible to the ECSF Command Line Administration Utility
	26.2.2 How to Set the Class Path
	26.2.2.1 Setting the Class Path in Windows
	26.2.2.2 Setting the Class Path in Linux

	26.2.3 How to Set the Connection Information
	26.2.3.1 Setting the Connection Information in Windows
	26.2.3.2 Setting the Connection Information in Linux

	26.2.4 How to Manually Connect to the Oracle Fusion Applications Database
	26.2.5 How to Provide the Path of the JPS Config File
	26.2.6 How to Configure the Log Settings
	26.2.7 How to Automate the ECSF Command Line Administration Utility

	26.3 Setting Up Oracle Enterprise Manager and Discovering ECSF
	26.3.1 How to Register the ECSF Runtime MBean to the Integrated WebLogic Server
	26.3.1.1 Adding the MBean listener to web.xml
	26.3.1.2 Creating the Application EAR File for Deployment
	26.3.1.3 Configuring Data Sources in Oracle WebLogic Server
	26.3.1.4 Deploying the ECSF Application Using the EAR File
	26.3.1.5 Starting the Oracle WebLogic Server Instance

	26.3.2 How to Install Oracle Enterprise Manager
	26.3.3 How to Discover ECSF in Oracle Enterprise Manager
	26.3.4 How to Add Users to the Administrators Group

	27 Creating Searchable Objects
	27.1 Introduction to Creating Searchable Objects
	27.2 Defining Searchable Objects
	27.2.1 How to Use Groovy Expressions in ECSF
	27.2.1.1 Referencing View Object Attributes as Variables
	27.2.1.2 Referencing Child View Object Attributes
	27.2.1.3 Referencing View Object Attributes in Multilevel Searchable Objects
	27.2.1.4 Formatting View Object Attribute Values

	27.2.2 What Happens When You Use Groovy Expressions in ECSF
	27.2.3 How to Make View Objects Searchable
	27.2.3.1 Setting Search Property Values for View Objects
	27.2.3.2 Using the Select Primary Table Dialog
	27.2.3.3 Using the Search PlugIn Dialog

	27.2.4 What Happens When You Make View Objects Searchable
	27.2.5 What You May Need to Know About Making View Objects Searchable
	27.2.6 How to Make View Object Attributes Searchable
	27.2.6.1 Making View Object Attributes Searchable
	27.2.6.2 Modifying Searchable Attributes
	27.2.6.3 Deleting Searchable Attributes

	27.2.7 What Happens When You Define Searchable Attributes
	27.2.8 What You May Need to Know About Defining Searchable Attributes
	27.2.9 What You May Need to Know about Preventing Conflicts with Oracle SES Default Search Attributes
	27.2.10 What You May Need to Know About Preventing Search Attribute Naming Conflicts
	27.2.10.1 Checking for Stored Attribute Conflicts

	27.3 Securing Searchable Objects
	27.3.1 How to Set Permissions for Searchable Objects
	27.3.2 How to Create the Security Realm
	27.3.3 How to Create the Application Policy Store

	27.4 Configuring Search Features
	27.4.1 How to Define Search Result Actions
	27.4.1.1 Access URL
	27.4.1.2 Redirect Service
	27.4.1.3 Adding Search Result Actions
	27.4.1.4 Defining Properties for Bounded Task Flows
	27.4.1.5 Modifying Search Result Actions
	27.4.1.6 Deleting Search Result Actions

	27.4.2 What Happens When You Define Search Result Actions
	27.4.3 What You May Need to Know About Defining Search Result Actions
	27.4.4 How to Implement Faceted Navigation
	27.4.4.1 Defining Lists of Values
	27.4.4.2 Constraining View Objects by Stored Attributes
	27.4.4.3 Creating Search Facets
	27.4.4.4 Defining a Facet to Use a Child View Object Attribute
	27.4.4.5 Using the Select Text Resource Dialog to Select a Matching Text Resource
	27.4.4.6 Using the Select Text Resource Dialog to Create and Select a New Text Resource
	27.4.4.7 Modifying Search Facets
	27.4.4.8 Deleting Root Search Facets
	27.4.4.9 Deleting Child Search Facets
	27.4.4.10 Defining Facets That Support Ranges
	27.4.4.11 Defining Derived Facets

	27.4.5 What Happens When You Implement Faceted Navigation
	27.4.6 What You May Need to Know About Implementing Faceted Navigation

	27.5 Configuring Custom Properties for Searchable Objects
	27.5.1 How to Modify Default Runtime Behavior of Searchable Objects
	27.5.2 How to Make Searchable Objects Public

	28 Configuring ECSF Security
	28.1 Introduction to Configuring ECSF Security
	28.2 Securing ECSF Credentials
	28.2.1 How to Add the Permission Policy
	28.2.2 How to Configure Application Identities for Search
	28.2.2.1 Setting the SearchContext to FusionSearchContextImpl
	28.2.2.2 Creating the Application Identities
	28.2.2.3 Adding the Permission Policy for the Application Identities

	28.3 Authorizing Users for Search Feeds
	28.4 Securing the Searchable Application Data
	28.4.1 How to Secure the Searchable Application Data

	29 Validating and Testing Search Metadata
	29.1 Introduction to Validating and Testing Search Metadata
	29.2 Validating the Search Metadata
	29.2.1 How to Validate Search Metadata

	29.3 Testing Searchable Objects Through a Web Browser
	29.3.1 How to Run the ECSF Feed Servlet
	29.3.2 How to Test the Config Feed
	29.3.3 How to Test the Control Feed
	29.3.4 How to Test the Data Feed
	29.3.5 How to Reset the State of the Feeds

	30 Deploying and Crawling Searchable Objects
	30.1 Introduction to Deploying and Crawling Searchable Objects
	30.2 Deploying Searchable Objects and Dependencies
	30.2.1 How to Deploy the ECSF Shared Library to Oracle WebLogic Server
	30.2.1.1 Updating the SearchDB Data Source
	30.2.1.2 Deploying the ECSF Shared Library to the Standalone WebLogic Server Instance

	30.2.2 How to Create an Application
	30.2.3 How to Change the Application Name and Context Root of the View-Controller Project
	30.2.4 How to Modify the Run Configuration of the View-Controller Project
	30.2.5 How to Add the ECSF Runtime Server Library and Required Java Archive Files to the Model and View-Controller Projects
	30.2.6 How to Deploy the ECSF Application

	30.3 Crawling Searchable Objects
	30.3.1 How to Verify the Crawl

	31 Advanced Topics for ECSF
	31.1 Introduction to Advanced Topics for ECSF
	31.2 Enabling Search on Fusion File Attachments
	31.2.1 How to Make File Attachments Crawlable

	31.3 Enabling Search on WebCenter Tags
	31.3.1 How to Add Tags to Indexable Documents
	31.3.2 How to Add Tags for Querying
	31.3.3 How to Modify Tags in Indexable Documents
	31.3.4 How to Register Change Listeners

	31.4 Enabling Search on Tree Structure-based Source Systems
	31.4.1 How to Crawl Tree Structures
	31.4.1.1 Creating a Searchable Object
	31.4.1.2 Implementing a Crawlable Tree Node
	31.4.1.3 Extending AbstractTreeWalker
	31.4.1.4 Implementing Security
	31.4.1.5 Implementing the Attachments Interface
	31.4.1.6 Deploying and Starting the ECSF Servlet
	31.4.1.7 Configuring Oracle SES to Crawl ECSF

	31.4.2 How to Integrate Search Functionality for Tree Structures
	31.4.2.1 Setting the Configuration
	31.4.2.2 Using the Configuration Interface
	31.4.2.3 Using the AbstractConfiguration Class
	31.4.2.4 Implementing Searchable Object Classes
	31.4.2.5 Extending AbstractConfiguration

	31.5 Managing Recent Searches
	31.5.1 How to Use the RecentSearchManager API
	31.5.2 How Recent Searches Are Processed

	31.6 Setting Up Federated Search
	31.6.1 How to Create the SearchDB Connection on Oracle WebLogic Server Instance
	31.6.2 How to Update the Application Deployment Profile with the Target Directory for Searchable Objects
	31.6.3 How to Update the Application to Reference the ECSF Service Shared Library
	31.6.4 How to Add the ECSF Runtime Library
	31.6.5 How to Set the System Parameter for Web Service
	31.6.5.1 Setting the System Parameter in Java System Properties
	31.6.5.2 Setting the System Parameter in the ecsf.properties File

	31.6.6 How to Package and Deploy the Search Application
	31.6.6.1 Running the ant Targets from the Command Line
	31.6.6.2 Running the ant Targets from Oracle JDeveloper

	31.6.7 How to Update the Search Application with New Searchable Objects or Dependencies
	31.6.8 How to Set Up the ECSF Client Application for Federation
	31.6.8.1 Adding Encryption Keys to cwallet.sso and default-keystore.jks
	31.6.8.2 Adding the Keystore to jps-config.xml
	31.6.8.3 Creating the Proxy User
	31.6.8.4 Updating connections.xml

	31.6.9 How to Set the SearchContext Scope to GLOBAL
	31.6.10 How to Integrate Federation Across Oracle Fusion Applications Product Families

	31.7 Federating Oracle SES Instances
	31.8 Raising Change Events Synchronously
	31.9 Using the External ECSF Web Service for Integration
	31.9.1 Web Service Methods
	31.9.2 ECSF Web Service WSDL and XSD
	31.9.3 Web Service Request XSDs and XMLs
	31.9.3.1 SavedSearch Request XSD
	31.9.3.2 QueryMetaData Request XSD
	31.9.3.3 engineInstanceRequest Request XSD

	31.9.4 Web Service Response XSDs
	31.9.4.1 getSavedSearch()
	31.9.4.2 getSavedSearches()
	31.9.4.3 saveSearch()
	31.9.4.4 deleteSearch()
	31.9.4.5 getSavedSearchDetails
	31.9.4.6 search()
	31.9.4.7 getEngineInstances()

	31.9.5 How to Invoke the ECSF Web Service
	31.9.5.1 Creating a JAX-WS Web Service Proxy
	31.9.5.2 Modifying the AppModuleSearchServiceSoapHttpPortClient Class

	31.10 Localizing ECSF Artifacts
	31.10.1 How to Translate Strings in Groovy Expressions
	31.10.1.1 Associating Resource Bundles to View Objects
	31.10.1.2 Using the format() Function in Groovy Expressions
	31.10.1.3 Associating Translated Labels to Attributes
	31.10.1.4 Using the getLabel() function in Groovy Expressions

	31.10.2 How to Localize Facet Display Names
	31.10.2.1 Configuring LOVs for Localization Using the VL Table
	31.10.2.2 Configuring LOVs for Localization Using the Resource Bundles

	31.10.3 How to Localize Crawl Management Display Names
	31.10.4 How to Localize Crawlable Dynamic Content
	31.10.5 How to Localize Crawlable Template Content
	31.10.6 How to Determine Locale
	31.10.6.1 Search Page
	31.10.6.2 ECSF Command Line Administration Utility
	31.10.6.3 Crawl
	31.10.6.4 Query

	31.11 Using ECSF Diagnostics
	31.11.1 Query Tests
	31.11.1.1 Simple Query
	31.11.1.2 Searchable Object Metadata
	31.11.1.3 Searchable Groups
	31.11.1.4 Advanced Query (Protected)

	31.11.2 Crawl Tests
	31.11.2.1 Crawl Searchable Object
	31.11.2.2 SES Instance
	31.11.2.3 Control Feed
	31.11.2.4 Data Feed (Protected)

	31.11.3 Environment and Configuration Information
	31.11.3.1 Configuration Parameters
	31.11.3.2 Environment Information
	31.11.3.3 Data Source
	31.11.3.4 Application Extension/ApplCore Session Locale (Protected)

	31.11.4 Security
	31.11.4.1 Security (Protected)
	31.11.4.2 Credential Store
	31.11.4.3 Security Plugin (Protected)

	31.12 Troubleshooting ECSF
	31.12.1 Problems and Solutions
	31.12.1.1 Cannot Remove the ECSF Runtime Server Library
	31.12.1.2 Cannot See Data in Data Feeds
	31.12.1.3 Configuration or Data Feed Execution Thread Is Busy for Longer than the Configured Warning Timeout
	31.12.1.4 Class Not Found Errors When Running the ECSF Servlet
	31.12.1.5 Out of Memory Error when Deploying the ECSF Application to Oracle WebLogic Server or Running the Application
	31.12.1.6 Blank Oracle ADF/UI Shell Pages
	31.12.1.7 Memory Leak on ThreadLocal Variable (SearchContext)
	31.12.1.8 How to Check the Space Availability for SES Crawls in the Database
	31.12.1.9 How to Crawl with a Different User
	31.12.1.10 "FND-6601 Search categories are not available"
	31.12.1.11 "FND-6603 Search is not currently available"
	31.12.1.12 "FND-6606 An application error occurred with this search"
	31.12.1.13 Query Does Not Return Search Results but No Errors Are Displayed on the UI
	31.12.1.14 FUSION_RUNTIME.FND_TABLE_OF_VARCHAR2_4000 Exception on Schedules
	31.12.1.15 Where Can I Find the SES-ESS Crawler Logs?
	31.12.1.16 My Crawls Are Failing
	31.12.1.17 How to Get the Password for the SES Administration Page

	31.12.2 Diagnosing ECSF Problems
	31.12.3 Need More Help?

	Part VI Common Service Use Cases and Design Patterns
	32 Initiating a SOA Composite from an Oracle ADF Web Application
	32.1 Introduction to the Recommended Design Pattern
	32.2 Other Approaches
	32.3 Example
	32.4 How to Initiate a BPEL Process Service Component from an Oracle ADF Web Application
	32.5 Alternative Approaches
	32.5.1 Using the Java Event API to Publish Events
	32.5.2 Using a JAX-WS Proxy to Invoke a Synchronous BPEL Process

	32.6 Securing the Design Pattern
	32.6.1 Running the Mediator as an Event Publisher
	32.6.2 Securing Event-Driven Applications

	32.7 Verifying the Deployment
	32.7.1 How to Verify the Deployment
	32.7.2 How to Test EDN Functionality from the Command Line
	32.7.2.1 SendEvent
	32.7.2.2 BusinessEventConnectionFactorySupport

	32.8 Troubleshooting the Use Case
	32.8.1 Deployment
	32.8.2 Runtime Errors

	32.9 What You May Need to Know About Initiating a SOA Composite from an Oracle ADF Web Application
	32.10 Known Issues and Workarounds

	33 Initiating a SOA Composite from a PL/SQL Stored Procedure
	33.1 Introduction to the Recommended Design Pattern
	33.2 Other Approaches
	33.3 Example
	33.4 How to Invoke a SOA Composite Application Component Using PL/SQL
	33.5 Securing the Design Pattern
	33.6 Verifying the Deployment
	33.6.1 Testing and Deploying the Use Case
	33.6.2 Verifying the SOA Composite Deployment Using Oracle Enterprise Manager Fusion Middleware Control Console

	33.7 Troubleshooting the Use Case
	33.8 What You May Need to Know About Initiating a SOA Composite from a PL/SQL Stored Procedure
	33.9 Known Issues and Workarounds

	34 Orchestrating ADF Business Components Services
	34.1 Introduction to the Recommended Design Pattern
	34.2 Other Approaches
	34.3 Example
	34.4 How to Invoke an ADF Business Components Service from a BPEL Process Service Component
	34.5 Securing the Design Pattern
	34.6 Verifying the Deployment
	34.7 Troubleshooting the Use Case
	34.8 What You May Need to Know About Orchestrating ADF Business Components Services

	35 Manipulating Back-End Data from a SOA Composite
	35.1 Introduction to the Recommended Design Pattern
	35.2 Example
	35.3 How to Manipulate Data from a BPEL Process Service Component
	35.4 Securing the Design Pattern
	35.5 Verifying the Deployment
	35.6 Troubleshooting the Use Case
	35.7 What You May Need to Know About Manipulating Back-end Data from a SOA Composite
	35.7.1 When Entity Variables Flush Changes Back to ADF Business Components
	35.7.2 Support for XPath Operations
	35.7.3 Invoking an ADF Business Components Service and Entity Variables in the Same BPEL Process Service Component

	36 Accessing a PL/SQL Service from a SOA Composite
	36.1 Introduction to the Recommended Design Pattern
	36.2 Other Approaches
	36.3 Example
	36.4 How to Invoke a PL/SQL Stored Procedure from a SOA Composite Application
	36.5 Securing the Design Pattern
	36.6 Verifying the Deployment

	37 Invoking Custom Java Code from a SOA Composite
	37.1 Introduction to the Recommended Design Pattern
	37.2 Other Approaches
	37.3 Example
	37.4 How to Invoke a Java Class from a SOA Composite Application
	37.5 Securing the Design Pattern
	37.6 Verifying the Deployment
	37.7 Troubleshooting the Use Case
	37.8 What You May Need to Know About Invoking Custom Java Code from a SOA Composite

	38 Managing Tasks from an Oracle ADF Application
	38.1 Introduction to the Recommended Pattern
	38.2 Other Approaches
	38.3 Example
	38.4 How to Manage a Human Task Flow from an ADF Application
	38.5 Other Approaches
	38.6 Securing the Design Pattern
	38.7 Verifying the Deployment
	38.8 Troubleshooting the Use Case
	38.8.1 Worklist Notification Locale Does Not Honor the Regional Applications Session Setting
	38.8.2 Task Does Not Display in Worklist Application
	38.8.3 Task Details Do Not Display in the ADF Task Flow
	38.8.4 Logging
	38.8.4.1 Workflow Logging
	38.8.4.2 ADF Task Flow Logging

	38.9 What You May Need to Know About Managing Tasks from an ADF Application

	39 Working with Data from a Remote ADF Business Components Service
	39.1 Introduction to the Recommended Design Pattern
	39.2 Potential Approaches
	39.3 Example
	39.4 How to Create Service-Based Entity Objects and View Objects
	39.5 Securing the Design Pattern
	39.6 Verifying the Deployment
	39.7 Troubleshooting the Use Case
	39.8 Understanding the Transactional Behavior of Service-Based Entity Objects and View Objects
	39.9 Known Issues and Workarounds

	40 Invoking an Asynchronous Service from a SOA Composite
	40.1 Introduction to the Recommended Design Pattern
	40.2 Other Approaches
	40.3 Example
	40.4 How to Invoke a SOA Composite Application from Within a SOA Composite Application
	40.4.1 Defining a New Web Service Reference
	40.4.2 Wiring the BPEL Process to the New Web Service Reference
	40.4.3 Invoking the Asynchronous Web Service from the BPEL Flow
	40.4.4 What Happens When You Invoke an Asynchronous Service from within a SOA Composite Application
	40.4.5 What Happens at Runtime: How an Asynchronous Service is Invoked from within a SOA Composite Application

	40.5 Securing the Design Pattern
	40.6 Verifying the Deployment
	40.7 Troubleshooting the Use Case
	40.7.1 Deployment
	40.7.2 Runtime

	40.8 What You May Need to Know About Invoking an Asynchronous Service from Another SOA Composite

	41 Synchronously Invoking an ADF Business Components Service from an Oracle ADF Application
	41.1 Introduction to the Recommended Design Pattern
	41.2 Potential Approaches
	41.3 Example
	41.4 How to Invoke an ADF Business Components Service from an Oracle ADF Application
	41.5 Securing the Design Pattern
	41.6 Verifying the Deployment

	42 Implementing an Asynchronous Service Initiation with Dynamic UI Update
	42.1 Introduction to the Recommended Design Pattern
	42.2 Potential Approaches
	42.3 Example
	42.4 How to Implement an Asynchronous Service Initiation with Dynamic UI Update
	42.4.1 Writing the Active Data Handler
	42.4.2 Building the Supporting Active Data Entry Classes
	42.4.3 Registering the Active Data Collection Model with the Oracle ADF UI Page
	42.4.4 Registering the Component Managed JavaBean for Supporting Method Actions
	42.4.5 Referencing the Managed JavaBean in the Page UI
	42.4.6 Creating the Data Model and Adding Application Module Methods
	42.4.7 Creating a SOA Composite that Subscribes to the Published Event
	42.4.8 Constructing a BPEL Process to Perform Asynchronous Work
	42.4.9 Invoking the ADF Business Components Service

	42.5 Securing the Design Pattern
	42.6 Verifying the Deployment
	42.7 Troubleshooting the Use Case
	42.8 What You May Need to Know About Initiating an Asynchronous Service with Dynamic UI Update
	42.9 Known Issues and Workarounds

	43 Managing Tasks Programmatically
	43.1 Introduction to the Recommended Design Pattern
	43.2 Potential Approaches
	43.3 Example
	43.4 Managing Human Workflow Tasks from a Java Application
	43.4.1 How to Connect to the Task Service/Task Query Service
	43.4.2 How to Use the Single Server Task Service API
	43.4.2.1 Import Libraries into the Java Project
	43.4.2.2 Import Code Packages into the Java Project
	43.4.2.3 Declare and Obtain Task Service Object References
	43.4.2.4 Obtain the Workflow Service Context Object
	43.4.2.5 Obtain the Single Task Object and Set Task Outcome

	43.4.3 How to Use the Single Server Task Query Service API
	43.4.3.1 Import Libraries into the Java Project
	43.4.3.2 Import Code Packages into the Java Project
	43.4.3.3 Declare and Obtain Task Query Service Object References
	43.4.3.4 Manage Query and Task Outcome States

	43.4.4 How to Use the Federated Server Task Query Service API
	43.4.4.1 Import Libraries into the Java Project
	43.4.4.2 Import Code Packages into the Java Project
	43.4.4.3 Create a List of Servers for a Parallel Federated Query
	43.4.4.4 Declare Task and Query Service References and Create the Workflow Client Service Object
	43.4.4.5 Obtain the Workflow Service Context
	43.4.4.6 Implement Exception Handling for Federated Queries
	43.4.4.7 Manage Query and Task Outcome States

	43.4.5 How to Query and Traverse Federated and Non-federated Query Result Sets
	43.4.5.1 Determine Query Service Search Criteria
	43.4.5.2 Construct the Predicate for queryTasks()
	43.4.5.3 Arrange the Order of Results Returned by the queryTasks() Method
	43.4.5.4 Construct the List of Display Columns for the queryTasks() Method
	43.4.5.5 Construct a List of OptionalInfo Items to be Returned from queryTasks()
	43.4.5.6 Invoke queryTasks() with the Attribute Lists
	43.4.5.7 Iterate through the Result Set
	43.4.5.8 Programmatically Set the Task Outcome

	43.5 Other Approaches
	43.6 Securing the Design Pattern
	43.7 Verifying the Deployment
	43.7.1 Deploying the Human Task
	43.7.2 Deploying Programmatic Task Functionality
	43.7.3 Invoking Programmatic Task Functionality

	43.8 Troubleshooting the Use Case
	43.8.1 Troubleshooting Task Data
	43.8.2 Troubleshooting Java Code

	43.9 What You May Need to Know About Implementing Email Notification for an Oracle ADF Task Flow for a Human Task

	44 Implementing an Oracle ADF Task Flow for a Human Task
	44.1 Introduction to the Recommended Design Pattern
	44.2 Other Approaches
	44.3 Example
	44.4 How to Implement an Oracle ADF Task Flow for a Human Task
	44.4.1 Creating an Oracle ADF Task Flow
	44.4.2 Creating a User Interface for the Human Task
	44.4.3 Implementing Product-Specific Sections
	44.4.3.1 How to Add Instructions
	44.4.3.2 How to Modify Details
	44.4.3.3 How to Modify Recommended Actions
	44.4.3.4 How to Modify <PLACE APPLICATION SPECIFIC CONTENT HERE>
	44.4.3.5 How to Implement Links
	44.4.3.6 How to Modify Comments and Attachments
	44.4.3.7 How to Modify Related Links
	44.4.3.8 How to Modify History

	44.4.4 Implementing a Task Detail with Contextual Area
	44.4.5 Implementing Email Notification
	44.4.5.1 Before You Begin
	44.4.5.2 Determining the Implementation Approach
	44.4.5.3 Using a Switcher Component
	44.4.5.4 Using a Separate View for Online and Email Versions
	44.4.5.5 Fine-Tuning the Emailable Page

	44.4.6 Displaying Localized Translated Data
	44.4.7 Displaying Rows in the Approval Task
	44.4.8 Configuring a Deployment Profile

	44.5 Securing the Design Pattern
	44.6 Verifying the Deployment
	44.7 Troubleshooting the Use Case
	44.7.1 Specify oracle.soa.workflow.wc in weblogic-application.xml
	44.7.2 Set the FRAME_BUSTING Attribute in web.xml
	44.7.3 Migrate from an Earlier Version of the Drop Handler Template
	44.7.4 Override the EL for the Create Button

	45 Cross Family Business Event Subscription Pattern
	45.1 Introduction to the Recommended Design Pattern
	45.2 Potential Approaches
	45.3 Example
	45.4 How to Subscribe to a Cross-Family Business Event
	45.4.1 Before You Begin
	45.4.2 Determining the Composites to Be Defined
	45.4.3 Determining the Aqueue Message Recipient
	45.4.4 Defining an XFamilyPub Composite
	45.4.5 Defining an XFamilySub Composite

	45.5 Verifying the Deployment
	45.5.1 How to Verify the Deployment of the XFamilyPub Composite
	45.5.2 How to Verify the Deployment of the XFamilySub Composite

	45.6 Troubleshooting the Use Case
	45.6.1 Privileges to FUSION_RUNTIME
	45.6.2 Aqueue enabled for Enqueuing and Dequeuing
	45.6.3 AQ_INVALID_QUEUE_TYPE

	Part VII Implementing Security
	46 Getting Started with Security
	46.1 Introduction to Securing Oracle Fusion Applications
	46.1.1 Architecture
	46.1.1.1 Oracle Platform Security Services (OPSS) Security Framework
	46.1.1.2 Oracle Web Services Manager
	46.1.1.3 Oracle ADF Security
	46.1.1.4 Application User Sessions
	46.1.1.5 Oracle Fusion Data Security
	46.1.1.6 Oracle Virtual Private Database
	46.1.1.7 Oracle Data Integrator

	46.1.2 Authentication
	46.1.2.1 Oracle Identity Management Repository
	46.1.2.2 Identity Propagation
	46.1.2.3 Application User Session Propagation

	46.1.3 Authorization
	46.1.3.1 OPSS Application Security Repository
	46.1.3.2 Oracle Fusion Data Security Repository

	46.2 Authentication Techniques and Best Practices
	46.2.1 APIs
	46.2.2 Expression Language
	46.2.3 Non-browser Based Login

	46.3 Authorization Techniques and Best Practices
	46.3.1 Function Security
	46.3.1.1 Resource Entitlements and Permissions
	46.3.1.2 Expression Language

	46.3.2 Data Security
	46.3.2.1 APIs and Expression Language
	46.3.2.2 Oracle Virtual Private Database
	46.3.2.3 Personally Identifiable Information
	46.3.2.4 Data Role Templates

	47 Implementing Application User Sessions
	47.1 Introduction to Application User Sessions
	47.2 Configuring Your Project to Use Application User Sessions
	47.2.1 How to Configure Your Project to Use Application User Sessions
	47.2.2 How to Configure the ADF Business Component Browser
	47.2.3 How to Use the ApplSession Logger for Troubleshooting
	47.2.4 What Happens at Runtime: How the Application User Session is Used

	47.3 Accessing Properties of the Applications Context
	47.3.1 How to Access Sessions Using Java APIs
	47.3.1.1 Initializing Sessions
	47.3.1.2 Getting Context Attributes
	47.3.1.3 Setting Context Attributes
	47.3.1.4 Accessing the Connection
	47.3.1.5 Accessing Session Context Using the Java API

	47.3.2 How to Access Sessions Using PL/SQL APIs
	47.3.2.1 Initializing Sessions
	47.3.2.2 Getting Context Attributes
	47.3.2.3 Setting Context Attributes

	48 Implementing Oracle Fusion Data Security
	48.1 Introduction to Oracle Fusion Data Security
	48.1.1 Terminology
	48.1.2 Integrating Oracle Fusion Data Security with Oracle Platform Security Services (OPSS)
	48.1.3 Integrating Data Security Task Flows into Oracle Fusion Functional Setup Manager
	48.1.4 Integrating Oracle Fusion Data Security with User Sessions
	48.1.5 Integrating Oracle Fusion Data Security with Virtual Private Database (VPD)

	48.2 Managing Data Security Artifacts in the Oracle Fusion Data Security Policy Tables
	48.2.1 How to Get Started Managing Data Security
	48.2.2 What You May Need to Know About Administering Oracle Fusion Data Security Policy Tables

	48.3 Integrating with ADF Business Components
	48.3.1 How to Configure the ADF Data Model Project
	48.3.2 How to Secure Rows Queried By Entity-Based View Objects
	48.3.3 What Happens at Runtime: How Oracle Fusion Data Security Filters View Instance Rows
	48.3.4 How to Perform Authorization Checks for Custom Operations
	48.3.5 How to Test Privileges Using Expression Language Expressions in the User Interface

	48.4 Using Oracle Fusion Data Security to Secure New Business Resources
	48.4.1 How to Use Oracle Fusion Data Security to Secure a Business Object
	48.4.2 How to Use Parameterized Conditions When Securing a Business Object
	48.4.2.1 Converting Non-String Parameter Values Into Character Values
	48.4.2.2 Writing Performance Type Conversions in Predicates

	48.4.3 How to Create Test Users in JDeveloper
	48.4.4 What You May Need to Know About Creating Application Roles

	48.5 Getting Security Information from the Application User Session Context
	48.5.1 How to Use the DataSecurityAM API to Get Session Context Information
	48.5.2 How to Use the PL/SQL Data Security API to Check User Privileges

	48.6 Understanding Data Security Performance Best Practices
	48.7 Validating Data Security with Diagnostic Scripts
	48.7.1 How to Validate Data Security Configuration with Diagnostic Scripts
	48.7.2 How to Validate Applications Context

	48.8 Integrating with Data Security Task Flows
	48.8.1 About Integrating the Data Security Task Flows into Your Application
	48.8.2 How to Configure Data Security Task Flows to Display in the Primary Window
	48.8.2.1 Creating a Task Flow Call Activity in Your Application's Task Flow
	48.8.2.2 Initializing the Data Security Task Flow Using a Managed Bean
	48.8.2.3 Registering the Managed Bean with Your Application's Task Flow

	48.8.3 How to Configure the Object Instance Task Flow to Display in a Dialog
	48.8.3.1 Creating the Task Flow Executable in the Region Page Definition FIle
	48.8.3.2 Initializing the Object-Instance Task Flow Using a Managed Bean
	48.8.3.3 Registering the Managed Bean with Your Application's Task Flow

	48.8.4 How to Grant the End User Access to the Data Security Task Flows
	48.8.5 How to Grant the Application Access to the Application Policy Store
	48.8.6 How to Map the Application to an Existing Application Stripe

	49 Implementing Function Security
	49.1 Introduction to Function Security
	49.1.1 Function Security Development Environment
	49.1.2 Function Security Implementation Scenarios
	49.1.3 Function Security-Related Application Files

	49.2 Function Security Implementation Process Overview
	49.3 Adding Function Security to the Application
	49.3.1 How to Create Entitlement Grants for Custom Application Roles
	49.3.2 What Happens After You Create an Entitlement Grant
	49.3.3 How to Define Resource Grants for OPSS Built-In Roles
	49.3.4 What Happens When You Make an ADF Resource Public
	49.3.5 How to Enforce Authorization for Securable ADF Artifacts
	49.3.6 How to Enable Authentication and Test the Application in JDeveloper
	49.3.7 What You May Need to Know About Actions That Developers Must Not Perform
	49.3.8 What You May Need to Know About Testing
	49.3.9 What You May Need to Know About Security Best Practices

	50 Securing Web Services Use Cases
	50.1 Introduction to Securing Web Services Use Cases
	50.2 Understanding Oracle Web Services Manager Best Practices
	50.3 Attaching Policies Globally
	50.4 Attaching Policies Locally
	50.4.1 How to Make a Web Service Publicly Accessible
	50.4.2 How to Support Elevated Privileges for Web Service Clients
	50.4.3 How to Provide Additional Security Hardening for Web Service Clients
	50.4.4 How to Connect to Third Party Web Services

	50.5 Authorizing the Web Service with Entitlement Grants
	50.5.1 How to Grant Access for the Service
	50.5.2 How to Enforce Authorization for the Service

	50.6 What Happens At Runtime: How Policies Are Enforced
	50.7 Maintaining Application Session Context Across Web Service Requests

	51 Securing End-to-End Portlet Applications
	51.1 Introduction to Securing End-to-End Portlet Applications
	51.2 Securing the Portlet Service
	51.2.1 How to Authenticate the Service
	51.2.2 How to Configure the Key Store and Credential Store
	51.2.3 How to Authorize the Service

	51.3 Securing the Portlet Client
	51.4 Registering the Key Store and Writing to the Credential Store
	51.4.1 How to Register the Key Store and Write to the Credential Store
	51.4.2 What Happens When You Register the Key Store and Write to the Credential Store

	51.5 Maintaining Application Session Context Across Web Service Requests

	Part VIII Advanced Topics
	52 Running and Deploying Applications on Oracle WebLogic Server
	52.1 Introduction to Deploying Applications to Oracle WebLogic Server
	52.1.1 Prerequisites for Deployment
	52.1.2 Introduction to the Standalone Administration Server WebLogic Server Instance

	52.2 Running Applications on Integrated WebLogic Server
	52.2.1 How to Deploy an Application with Metadata to Integrated WebLogic Server

	52.3 Preparing to Deploy Oracle ADF Applications to an Administration Server Instance of WebLogic Server
	52.3.1 How to Reference the Shared Libraries
	52.3.2 How to Create Deployment Profiles for Standalone WebLogic Server Deployment

	52.4 Deploying Your Oracle ADF Applications to an Administration Server Instance of WebLogic Server
	52.4.1 How to Create an Application Server Connection Using JDeveloper
	52.4.2 How to Deploy the Application Using JDeveloper
	52.4.3 How to Create an EAR File for Deployment

	52.5 Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server
	52.5.1 How to Deploy Your SOA Projects Using JDeveloper
	52.5.1.1 Check the Deployed SOA Project

	53 Creating Repository Connections
	53.1 Creating a Content Repository Connection
	53.1.1 How to Create a Content Repository Connection
	53.1.1.1 Creating a Connection for Oracle Fusion Applications Development
	53.1.1.2 Creating a Connection for Ad Hoc Development

	53.1.2 Troubleshooting Content Server Connections
	53.1.2.1 User Does Not have Sufficient Privileges
	53.1.2.2 Invalid Security: Error in Processing the WS-Security Header
	53.1.2.3 Access Denied: Credential AccessPermission

	53.2 Creating an Oracle Data Integrator Repository Connection
	53.3 Creating Oracle Business Activity Monitoring Server Repository Connection
	53.3.1 How to Create an Oracle BAM Connection
	53.3.2 How to Use Oracle BAM Adapter in a SOA Composite Application
	53.3.3 How to Integrate Sensors With Oracle BAM

	54 Defining Profiles
	54.1 Introduction to Profiles
	54.2 Integrating Profiles Task Flows into Oracle Fusion Functional Setup Manager
	54.3 Setting and Accessing Profile Values
	54.3.1 How to View and Set Profile Values Using the Setup UI
	54.3.2 How to Access Profile Values Programmatically
	54.3.3 How to Access Profile Values Using Expression Language

	54.4 Managing Profile Definitions
	54.4.1 How to Edit Profile Definitions
	54.4.2 Registering a New Profile Option

	54.5 Managing Profile Categories
	54.5.1 How to Manage Profile Categories

	55 Initializing Oracle Fusion Application Data Using the Seed Data Loader
	55.1 Introduction to the Seed Data Loader
	55.2 Using the Seed Data Loader in JDeveloper
	55.2.1 Introduction to the Seed Data Framework
	55.2.2 How to Set Up the Seed Data Environment
	55.2.3 How to Use the Seed Data Extract Manager
	55.2.4 How to Use Seed Data Extract Processing
	55.2.4.1 Understanding Extract Taxonomy Partition Selection Dialogs
	55.2.4.2 Using the Extract Seed Data Command Line Interface

	55.2.5 How to Use the Seed Data Upload Manager
	55.2.5.1 Uploading Seed Data

	55.2.6 How to Share Application Modules
	55.2.7 How to Update Seed Data
	55.2.7.1 Using Incremental Updates
	55.2.7.2 Implementing Java Database Connectivity-based National Language Support Updates

	55.3 Translating Seed Data
	55.3.1 How to Extract Translation Data
	55.3.1.1 Treating Seed Data Base XML and Language XLIFF as a Single Entity

	55.3.2 How to Process Seed Data Translations
	55.3.3 How to Load Translation Seed Data
	55.3.4 Oracle Fusion Middleware Extensions for Applications Translation Support

	56 Using the Database Schema Deployment Framework
	56.1 Introduction to Using the Database Schema Deployment Framework
	56.2 Implementing Applications Data Modeling and Deployment JDeveloper Extensions (Data Modeling Extensions)
	56.2.1 How to Use the Offline Database
	56.2.2 How to Create an Offline Database
	56.2.3 How to Deploy an Offline Database in XML Persistence Format
	56.2.4 How to Validate Application Data Model Standards
	56.2.5 Application User Defined Properties
	56.2.5.1 User Defined Properties for Tables
	56.2.5.2 User Defined Properties for Columns
	56.2.5.3 User Defined Properties for Indexes
	56.2.5.4 User Defined Properties for Constraints
	56.2.5.5 User Defined Properties for Views
	56.2.5.6 User Defined Properties for Sequence
	56.2.5.7 User Defined Properties for Materialized View
	56.2.5.8 User Defined Properties for Materialized View Log
	56.2.5.9 User Defined Properties for Trigger

	56.2.6 How to Create an Offline Database Object
	56.2.7 How to Edit an Offline Database Object
	56.2.8 How to Import an Offline Database Object
	56.2.9 How to Deploy the Offline Database Objects
	56.2.9.1 Deploying in SXML Persistence Format
	56.2.9.2 Setting the CLASSPATH Variable
	56.2.9.3 Using Bootstrap Mode
	56.2.9.4 Deployment FAQ
	56.2.9.5 Cleaning Database Objects

	56.3 Using Schema Separation to Provide Grants

	57 Improving Performance
	57.1 Introduction to Improving the Performance of Applications
	57.2 ADF Business Components Guidelines
	57.2.1 Working with Entity Objects
	57.2.1.1 Enable Batch Updates for your Entity Objects
	57.2.1.2 Children Entity Objects in Composite Entity Associations Should not set the Foreign Key Attribute Values of the Parent
	57.2.1.3 Avoid Using List Validator Against Large Lists
	57.2.1.4 Avoid Repeated Calls to the same Association Accessor
	57.2.1.5 Close Unused RowSets
	57.2.1.6 Use "Retain Association Accessor RowSet" when Appropriate
	57.2.1.7 Mark the Change Indicator Column

	57.2.2 Working with View Objects
	57.2.2.1 Tune the View Object SQL Statement
	57.2.2.2 Select the Correct Usage for View Objects
	57.2.2.3 Set Appropriate Fetch Size and Max Fetch Size
	57.2.2.4 Use Bind Variables
	57.2.2.5 Include at Least One Required or Selectively Required View Criteria Item
	57.2.2.6 Use Forward-Only Mode when Possible
	57.2.2.7 Avoid Calling getRowCount
	57.2.2.8 Avoid Entity Object Fault-in by Selecting Necessary Attributes Up-Front
	57.2.2.9 Reduce the Number of View Object Key Attributes to a Minimum
	57.2.2.10 Use Range Paging when Jumping to Different Row Ranges
	57.2.2.11 Use setListenToEntityEvents(false) for Non-UI Scenarios
	57.2.2.12 Use Appropriate Getter or Setter on View Row
	57.2.2.13 Use Appropriate Indexes with Case-Insensitive View Criteria Items
	57.2.2.14 Avoid View Object Leaks
	57.2.2.15 Provide a "Smart" Filter when Using LOV Combobox
	57.2.2.16 Use Small ListRangeSize for LOVs
	57.2.2.17 Avoid Reference Entity Objects when not Needed
	57.2.2.18 Do Not Use the "All at Once" Fetch Mode in View Objects
	57.2.2.19 Do Not Use the "Query List Automatically" List of Value Setting
	57.2.2.20 Avoid the "CONTAINS" or "ENDSWITH" Operator for Required or Selectively Required View Criteria Items

	57.2.3 Working with Application Modules
	57.2.3.1 Enable Lazy Delivery
	57.2.3.2 Make Application Code Passivation-Safe
	57.2.3.3 Avoid Passivating Read-Only View Objects
	57.2.3.4 Avoid Passivating Certain Transient Attributes of a View Object
	57.2.3.5 Maintain Application Session User Tables
	57.2.3.6 Tune the Application Module Release Level
	57.2.3.7 Do Not Leave Uncommitted Database Updates Across Requests
	57.2.3.8 Release Dynamically Created Root Application Modules
	57.2.3.9 Do Not Destroy the Application Module when Calling Configuration.releaseRoot ApplicationModule.

	57.2.4 Working with Services
	57.2.4.1 Set the Find Criteria to Fetch Only Attributes that are Needed
	57.2.4.2 Expose Service for Frequently Used Logical Entities
	57.2.4.3 Use Correct ChangeOperation when Calling a Service
	57.2.4.4 Set Only Changed Columns on Service Data Objects for Update

	57.3 ADF ViewController Layer Guidelines
	57.3.1 Working with Various ADF ViewController Components
	57.3.1.1 Minimize the Number of Application Module Data Controls
	57.3.1.2 Use the Visible and Rendered Attributes
	57.3.1.3 Remove Unused Items from Page Bindings
	57.3.1.4 Disable Column Stretching
	57.3.1.5 Use Appropriate Values for Refresh and RefreshCondition
	57.3.1.6 Disable Estimated Row Count if Necessary
	57.3.1.7 Use HTTPSession Hash Table in Moderation
	57.3.1.8 Use Short Component IDs
	57.3.1.9 Follow UI Standards when Using Search
	57.3.1.10 Avoid Executing Component Subtree by Adding a Condition Check
	57.3.1.11 Do not set Client Component Property to True
	57.3.1.12 Set Immediate Property to True when Appropriate
	57.3.1.13 Use Appropriate ContentDelivery Mode for a Table or a Tree Table
	57.3.1.14 Set the Appropriate Fetch Size for a Table
	57.3.1.15 Avoid Frozen Columns and Header Columns if Possible
	57.3.1.16 Avoid Unnecessary Regions
	57.3.1.17 Set the Data Control Scope to "Shared"
	57.3.1.18 Select the No Save Point Option on a Task Flow when Appropriate
	57.3.1.19 Use Click-To-Edit Tables when Appropriate
	57.3.1.20 Avoid Unnecessary Task Flow Activation for Regions Under Popups
	57.3.1.21 Delay Creation of Popup Child Components
	57.3.1.22 Avoid Unnecessary Task Flow Activation for Regions Under Switchers
	57.3.1.23 Avoid Unnecessary Root Application Module Creation from UI-layer Code
	57.3.1.24 Avoid Unnecessary Savepoints on Task Flow Entry
	57.3.1.25 Cache Return Values in Backing Bean Getters
	57.3.1.26 Do Not Maintain References to UI Components in Managed Beans

	57.3.2 Enable ADF Rich Client Geometry Management
	57.3.3 Use Page Templates
	57.3.4 Use ADF Rich Client Partial Page Rendering (PPR)

	57.4 SOA Guidelines for Human Workflow and Approval Management Extensions
	57.5 Oracle Fusion Middleware Extensions for Applications Guidelines
	57.5.1 Use Profile.get to Get Profile Option Values
	57.5.2 Release any Application Modules Returned from getInstance Calls
	57.5.3 Avoid Unnecessary Activation of Attachments Taskflow
	57.5.4 Use Static APIs on Message Get Message Text
	57.5.5 Set the Data Control Scope to Isolated for Page Level Item Nodes

	57.6 General Java Guidelines
	57.6.1 Working with Strings and StringBuilder
	57.6.1.1 Use StringBuilder Rather than the String Concatenation Operator (+)
	57.6.1.2 Check the Log Level Before Making a Logging Call
	57.6.1.3 Use Proper Logging APIs for Debug Logging
	57.6.1.4 Lazy Instantiation

	57.6.2 Configure Collections
	57.6.3 Manage Synchronization
	57.6.4 Work with Other Java Features
	57.6.4.1 Avoid Autoboxing
	57.6.4.2 Do not use Exceptions for Code Path Execution
	57.6.4.3 Reuse Pattern Object for Regular Expression Matches
	57.6.4.4 Avoid Repeated Calls to the same APIs that have Non-Trivial Costs
	57.6.4.5 Close Unused JDBC Statements to Avoid Memory Leaks
	57.6.4.6 Use registerOutParameter to Specify Bind Types and Precisions
	57.6.4.7 Avoid JDBC Connection Leaks

	57.7 Caching Data
	57.7.1 Identifying Data to Cache
	57.7.2 How to Add Data to Cache
	57.7.3 How to Cache Multi-Language Support Data
	57.7.3.1 Creating ADF Business Components objects for shared MLS data
	57.7.3.2 Creating ADF Business Components Objects that Join to MLS tables

	57.7.4 How to Consume Cached Data
	57.7.4.1 Consuming Shared Data Using a View Accessor
	57.7.4.2 Creating a shared application module programmatically

	57.7.5 What Happens at Runtime: When Another Service Accesses the Shared Application Module Cache

	57.8 Profiling and Tracing Oracle Fusion Applications
	57.8.1 How to Profile Oracle Fusion Applications with JDeveloper Profiler

	57.9 Set up a Debug Breakpoint

	58 Debugging Oracle ADF and Oracle SOA Suite
	58.1 Introduction to Debugging Oracle ADF Debugging and Oracle SOA Suite
	58.2 Collecting Diagnostics
	58.2.1 How to Collect Diagnostics in the Integrated WebLogic Server Environment
	58.2.1.1 Enabling Diagnostic Logging in the Development Environment
	58.2.1.2 Enabling Database Tracing in Integrated WebLogic Server Instances

	58.2.2 How to Collect Diagnostics in the Standalone WebLogic Server Environment
	58.2.2.1 Enabling Diagnostic Logging in the Provisioned Environment
	58.2.2.2 Adding Debug Messages to Your Code
	58.2.2.3 Enabling Database Tracing in Standalone WebLogic Server Instances

	58.3 Diagnosing Problems
	58.3.1 How to Diagnose Problems in the Integrated WebLogic Server Environment
	58.3.1.1 Testing the JDBC Data Source Connections
	58.3.1.2 Viewing the Application Module Pooling Statistics
	58.3.1.3 Sanity Checking Your EAR File in the Integrated WebLogic Server Environment

	58.3.2 How to Diagnose Problems in the Standalone WebLogic Server Environment
	58.3.2.1 Sanity Checking Your EAR File in the Standalone WebLogic Server Environment
	58.3.2.2 Examining the Oracle WebLogic Server Classloaders

	58.4 Debugging in JDeveloper
	58.4.1 How to Debug an Application Remotely

	58.5 Troubleshooting Oracle ADF
	58.5.1 Problems and Solutions
	58.5.1.1 "Too many files" Error Occurs on Local Linux Servers
	58.5.1.2 Compilation Error Occurs
	58.5.1.3 "No def found" or "No class def found" Exception Occurs
	58.5.1.4 Breakpoints Are Not Functioning Correctly
	58.5.1.5 Empty List in the Data Controls Panel
	58.5.1.6 Runtime Error Related to DataBindings.cpx File
	58.5.1.7 "Application module not found" Errors Related to DataBindings.cpx File
	58.5.1.8 Oracle WebLogic Server Hot Reloading Does Not Work
	58.5.1.9 Missing ADF Component at Runtime in Oracle WebLogic Server
	58.5.1.10 Odd ADF Component Errors
	58.5.1.11 Oracle WebLogic Server is Not Responding
	58.5.1.12 Missing Base Class
	58.5.1.13 Unavailable FND Components
	58.5.1.14 JavaServer Pages Compilation Errors
	58.5.1.15 ApplicationDB Errors While Running the Integrated WebLogic Server
	58.5.1.16 Metadata Services Runtime Exception
	58.5.1.17 Application Cannot Fetch Data from Oracle Fusion Applications Database
	58.5.1.18 "The task cannot be processed further" Message Appears
	58.5.1.19 TimedOut Exception Occurs

	58.6 Testing and Troubleshooting Oracle SOA Suite

	59 Designing and Securing View Objects for Oracle Business Intelligence Applications
	59.1 Introduction to View Objects for Oracle Business Intelligence Applications
	59.2 General Design Guidelines
	59.2.1 Entity Object Guidelines
	59.2.2 Association Guidelines
	59.2.3 View Object Guidelines
	59.2.3.1 Technical Requirements
	59.2.3.2 View Object Attributes Guidelines
	59.2.3.3 Outer Joins

	59.2.4 View Links Guidelines
	59.2.5 View Criteria Guidelines

	59.3 Understanding Oracle Business Intelligence Design Patterns
	59.3.1 Understanding Flattened View Objects
	59.3.2 Understanding Fact-Dimension Relationships
	59.3.3 Understanding Self Referencing Entities (Self-Joins)
	59.3.4 Understanding Business Intelligence Filters
	59.3.5 Understanding Translations
	59.3.6 Understanding Date Effectivity
	59.3.6.1 Date Effectivity Exceptions for Oracle BI Applications

	59.4 Designing and Securing Fact View Objects
	59.4.1 Designing Fact View Objects
	59.4.2 Securing Fact View Objects
	59.4.2.1 Securing the Same Transaction by Multiple Entities for Different Roles
	59.4.2.2 Securing Transactions Different from Securing Dimensions
	59.4.2.3 Joining Facts to Facts
	59.4.2.4 Securing MOAC-Based transactional Applications

	59.5 Designing and Securing Dimension View Objects
	59.5.1 Designing Dimension View Objects
	59.5.2 Designing Business Unit Dimensions
	59.5.3 Securing Dimension View Objects
	59.5.3.1 Securing Dimensions Composed of Multiple Entities
	59.5.3.2 Securing Transactions Using Dimension with Dimension Browsing Unsecured

	59.5.4 Using Multi-Valued Dimension Attributes
	59.5.5 Using Junk Dimensions and Mini Dimensions
	59.5.6 Using Secured and Unsecured Dimension View Objects

	59.6 Designing Date Dimensions
	59.6.1 Using the Gregorian Calendar
	59.6.2 Using the Fiscal Calendar
	59.6.3 Using the Projects Calendar
	59.6.4 Using Timestamp Columns
	59.6.5 Using Role-Playing Date Dimensions

	59.7 Designing Lookups as Dimensions
	59.7.1 Securing Data on Lookups

	59.8 Designing and Securing Tree Data
	59.8.1 Designing a Column-Flattened View Object for Oracle Business Intelligence
	59.8.1.1 How to Generate a BICVO Automatically Using Tree Management

	59.8.2 Customizing the FND Table Structure and Indexes
	59.8.3 Using Declarative SQL Mode to Design View Objects for Oracle Business Intelligence Applications
	59.8.3.1 Using Single Data Source View Object Design Pattern
	59.8.3.2 Using Multiple Data Source View Objects Design Pattern
	59.8.3.3 Setting the Declarative-Mode BICVO Properties

	59.8.4 Guidelines for ATG-Registration and BICVO Generation
	59.8.5 Guidelines for Hierarchy Depth and Conformance
	59.8.5.1 Resolving Problems

	59.8.6 Securing ADF Business Components View Objects for Trees
	59.8.6.1 Security Implementation

	59.9 Supporting Flexfields for Oracle Business Intelligence
	59.10 Supporting SetID
	59.10.1 How to Expose the SetID Attribute for Set-Enabled Lookups
	59.10.2 How to Expose the SetID Attribute for Set-Enabled Reference Tables

	59.11 Supporting Multi-Currency

	60 Implementing ADF Desktop Integration
	60.1 Oracle Application Development Framework Desktop Integration Standards and Guidelines
	60.1.1 How to Structure the ADF Desktop Integration Directories
	60.1.2 How to Name Your ADF Desktop Integration Files
	60.1.3 How to Implement the Dialog Attributes Declarative Component
	60.1.3.1 Adding the Component to Your Page

	60.2 Skinning Excel ADF Desktop Integration Workbooks
	60.3 Configuring the WebLogic Server Frontend

	61 Creating Customizable Applications
	61.1 Introduction to Creating Customizable Applications
	61.2 Preparing an Application for Customizations
	61.2.1 How to Set Project Properties to Enable User and Seeded Customizations
	61.2.2 How to Configure the Persistence Change Manager
	61.2.3 How to Enable Translations of Customized Strings
	61.2.4 How to Add Composer Technology Scope to Your Project
	61.2.5 How to Enable the User Customization of the UI Shell Template
	61.2.6 How to Create a Database Connection at the IDE Level

	61.3 Enabling Runtime Customization of Pages and Components
	61.3.1 How to Enable Pages for Runtime Customization
	61.3.1.1 Ensuring Customizable Pages Have Page Definitions
	61.3.1.2 Making a JSPX Document Editable at Runtime
	61.3.1.3 Setting Up a Resource Catalog
	61.3.1.4 Using the Default Catalog Definition File for Testing

	61.3.2 How to Enable End-User Personalizations for a Page
	61.3.3 How to Restrict Customization of a Page, Page Fragment, or Component
	61.3.4 How to Authorize the Runtime Customization of Pages and Task Flows
	61.3.5 How to Persist Implicit Runtime Customizations

	62 Working with Extensions to Oracle Enterprise Scheduler
	62.1 Introduction to Oracle Enterprise Scheduler Extensions
	62.2 Standards and Guidelines
	62.3 Creating and Implementing a Scheduled Job in Oracle JDeveloper
	62.3.1 How to Create and Implement a Scheduled Job in JDeveloper
	62.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in JDeveloper

	62.4 Creating a Job Definition
	62.4.1 How to Create a Job Definition
	62.4.2 How to Define File Groups for a Job
	62.4.3 What Happens When You Create a Job Definition
	62.4.4 What Happens at Runtime: How Job Definitions Are Created

	62.5 Configuring a Spawned Job Environment
	62.5.1 How to Create an Environment File for Spawned Jobs
	62.5.2 How to Configure an Oracle Wallet for Spawned Jobs
	62.5.3 What Happens When You Configure a Spawned Job Environment

	62.6 Implementing a PL/SQL Scheduled Job
	62.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job
	62.6.2 How to Define Metadata for a PL/SQL Scheduled Job
	62.6.3 How to Implement a PL/SQL Scheduled Job
	62.6.4 What Happens When You Implement a PL/SQL Job
	62.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented

	62.7 Implementing a SQL*Plus Scheduled Job
	62.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job
	62.7.2 How to Implement a SQL*Plus Job
	62.7.3 How to Use the SQL*Plus Runtime API
	62.7.4 What Happens When You Implement a SQL*Plus Job
	62.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented

	62.8 Implementing a SQL*Loader Scheduled Job
	62.8.1 How to Implement a SQL*Loader Scheduled Job
	62.8.2 What Happens When You Implement a SQL*Loader Scheduled Job

	62.9 Implementing a Perl Scheduled Job
	62.9.1 How to Implement a Perl Scheduled Job
	62.9.2 What Happens When You Implement a Perl Scheduled Job

	62.10 Implementing a C Scheduled Job
	62.10.1 How to Define Metadata for a C Scheduled Job
	62.10.2 How to Implement a C Scheduled Job
	62.10.3 Scheduled C Job API
	62.10.4 How to Test a C Scheduled Job
	62.10.5 What Happens When You Implement a C Scheduled Job
	62.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented

	62.11 Implementing a Host Script Scheduled Job
	62.12 Implementing a Java Scheduled Job
	62.12.1 How to Define Metadata for a Scheduled Java Job
	62.12.2 How to Use the Java Runtime API
	62.12.3 How to Cancel a Scheduled Java Job
	62.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented

	62.13 Elevating Access Privileges for a Scheduled Job
	62.13.1 How to Elevate Access Privileges for a Scheduled Job
	62.13.2 How Access Privileges Are Elevated for a Scheduled Job
	62.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job

	62.14 Creating an Oracle ADF User Interface for Submitting Job Requests
	62.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests
	62.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting Job Requests
	62.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User Interface for Submitting Job Requests
	62.14.4 How to Save and Schedule a Job Request Using an Oracle ADF UI
	62.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF UI
	62.14.6 How to Notify Users or Groups of the Status of Executed Jobs
	62.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting Job Requests
	62.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job Requests Is Created

	62.15 Submitting Job Requests Using the Request Submission API
	62.16 Defining Oracle Business Intelligence Publisher Postprocessing Actions for a Scheduled Job
	62.16.1 How to Define Oracle BI Publisher Postprocessing for a Scheduled Job
	62.16.2 How to Define Oracle BI Publisher Postprocessing Actions for a Scheduled PL/SQL Job
	62.16.3 What Happens When You Define Oracle BI Publisher Postprocessing Actions for a Scheduled Job
	62.16.4 What Happens at Runtime: How Oracle BI Publisher Postprocessing Actions are Defined for a Scheduled Job
	62.16.5 Invoking Postprocessing Actions Programmatically

	62.17 Monitoring Scheduled Job Requests Using an Oracle ADF UI
	62.17.1 How to Monitor Scheduled Job Requests
	62.17.2 How to Embed a Table of Search Results as a Region on a Page
	62.17.3 How to Log Scheduled Job Requests in an Oracle ADF UI
	62.17.4 How to Troubleshoot an Oracle ADF UI Used to Monitor Scheduled Job Requests

	62.18 Using a Task Flow Template for Submitting Scheduled Requests Through an Oracle ADF UI
	62.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	62.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	62.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	62.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit Scheduled Requests through an Oracle ADF UI

	62.19 Securing Oracle ADF UIs
	62.20 Integrating Scheduled Job Logging with Oracle Fusion Applications
	62.21 Logging Scheduled Jobs
	62.21.1 Using the Request Log
	62.21.2 Using the Output File
	62.21.3 Debugging and Error Logging

	63 Oracle Enterprise Scheduler Security
	63.1 Introduction to Oracle Enterprise Scheduler Security
	63.1.1 Oracle Enterprise Scheduler Metadata Access Control
	63.1.2 Oracle Enterprise Scheduler Job Execution Security

	63.2 Configuring Metadata Security for Oracle Enterprise Scheduler
	63.2.1 How to Enable Application Security with Oracle ADF Security Wizard
	63.2.2 How to Define Principals for Security
	63.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
	63.2.4 How to Create Grants with Oracle ADF Security Wizard
	63.2.5 MetadataPermission APIs
	63.2.6 What Happens When You Configure Metadata Security

	63.3 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
	63.4 Elevating Privileges for Oracle Enterprise Scheduler Jobs
	63.5 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
	63.5.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
	63.5.2 What Happens When You Configure a Single Policy Stripe
	63.5.3 What Happens at Runtime

	63.6 Configuring Oracle Fusion Data Security for Job Requests
	63.6.1 Oracle Fusion Data Security Artifacts
	63.6.2 How to Apply Oracle Fusion Data Security Policies
	63.6.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler Components

	Part IX Appendices
	A Working with the Application Taxonomy
	A.1 Introduction to the Oracle Fusion Application Taxonomy
	A.1.1 Characteristics of the Level Categories
	A.1.2 How to Manage the Lifecycle
	A.1.2.1 Creating Patches and Patch Sets
	A.1.2.2 System Administration
	A.1.2.3 Diagnostics and Maintenance

	A.1.3 Benefits of a Logical Hierarchy
	A.1.4 Delivery Hierarchy
	A.1.5 How to Integrate Taxonomy Task Flows into Oracle Fusion Functional Setup Manager

	A.2 Working with Objects and Methods in the Application Taxonomy
	A.2.1 Particular Table Columns and Data
	A.2.2 Denormalized Taxonomy Table
	A.2.3 Available Public Business Objects
	A.2.3.1 Accessing the Entity and View Objects

	A.2.4 How to Use Exposed Service Methods
	A.2.5 How to Traverse the Taxonomy Hierarchy

	A.3 Understanding Taxonomy MBeans

	B ECSF Command Line Administration Utility

	Glossary

