

[image: Oracle Corporation]

Oracle® Fusion Middleware

Developer's Guide for Oracle Event Processing

11g Release 1 (11.1.1.7) for Eclipse

E14301-09

February 2013

Documentation for developers that describes how to build Oracle Event Processing scalable applications to process streaming events.

Oracle Fusion Middleware Developer's Guide for Oracle Event Processing 11g Release 1 (11.1.1.7) for Eclipse

E14301-09

Copyright © 2007, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide

Part I Getting Started with Creating Oracle Event Processing Applications

1 Overview of Creating Oracle Event Processing Applications

	1.1 Oracle Event Processing Application Programming Model
	1.1.1 Key Concepts Underlying Oracle Event Processing Applications
	1.1.2 Component Roles in an Event Processing Network
	1.1.3 Tools and Supporting Technologies for Developing Applications

	1.2 How an Oracle Event Processing Application Works
	1.3 Overview of Events, Streams and Relations
	1.4 Overview of Application Configuration
	1.4.1 Overview of EPN Assembly Files
	1.4.1.1 Nesting Stages in an EPN Assembly File
	1.4.1.2 Referencing Foreign Stages in an EPN Assembly File

	1.4.2 Overview of Component Configuration Files
	1.4.2.1 Accessing Component and Server Configuration Using the ConfigurationPropertyPlaceholderConfigurer Class

	1.4.3 Configuring Oracle Event Processing Resource Access
	1.4.3.1 Static Resource Injection
	1.4.3.2 Dynamic Resource Injection
	1.4.3.3 Dynamic Resource Lookup Using JNDI
	1.4.3.4 Understanding Resource Name Resolution

	1.5 Oracle Event Processing APIs
	1.6 Packaging an Application
	1.7 Oracle Event Processing Application Lifecycle

2 Oracle Event Processing Samples

	2.1 Overview of the Samples Provided in the Distribution Kit
	2.1.1 Ready-to-Run Samples
	2.1.2 Sample Source

	2.2 Installing the Default ocep_domain and Samples
	2.3 Using Oracle Event Processing Visualizer With the Samples
	2.4 Increasing the Performance of the Samples
	2.5 HelloWorld Example
	2.5.1 Running the HelloWorld Example from the helloworld Domain
	2.5.2 Building and Deploying the HelloWorld Example from the Source Directory
	2.5.3 Description of the Ant Targets to Build Hello World
	2.5.4 Implementation of the HelloWorld Example

	2.6 Oracle Continuous Query Language (Oracle CQL) Example
	2.6.1 Running the CQL Example
	2.6.2 Building and Deploying the CQL Example
	2.6.3 Description of the Ant Targets to Build the CQL Example
	2.6.4 Implementation of the CQL Example
	2.6.4.1 Creating the Missing Event Query
	2.6.4.2 Creating the Moving Average Query

	2.7 Oracle Spatial Example
	2.7.1 Running the Oracle Spatial Example
	2.7.2 Building and Deploying the Oracle Spatial Example
	2.7.3 Description of the Ant Targets to Build the Oracle Spatial Example
	2.7.4 Implementation of the Oracle Spatial Example

	2.8 Foreign Exchange (FX) Example
	2.8.1 Running the Foreign Exchange Example
	2.8.2 Building and Deploying the Foreign Exchange Example from the Source Directory
	2.8.3 Description of the Ant Targets to Build FX
	2.8.4 Implementation of the FX Example

	2.9 Signal Generation Example
	2.9.1 Running the Signal Generation Example
	2.9.2 Building and Deploying the Signal Generation Example from the Source Directory
	2.9.3 Description of the Ant Targets to Build Signal Generation
	2.9.4 Implementation of the Signal Generation Example

	2.10 Event Record and Playback Example
	2.10.1 Running the Event Record/Playback Example
	2.10.2 Building and Deploying the Event Record/Playback Example from the Source Directory
	2.10.3 Description of the Ant Targets to Build the Record and Playback Example
	2.10.4 Implementation of the Record and Playback Example

3 Getting Started with Developing Oracle Event Processing Applications

	3.1 Creating an Oracle Event Processing Application
	3.2 Setting Your Development Environment
	3.2.1 How to Set Your Development Environment on Windows
	3.2.2 How to Set Your Development Environment on UNIX

	3.3 Using an IDE to Develop Applications
	3.4 Testing Applications

Part II Oracle Event Processing IDE for Eclipse

4 Overview of the Oracle Event Processing IDE for Eclipse

	4.1 Overview of Oracle Event Processing IDE for Eclipse
	4.1.1 Features
	4.1.2 JDK Requirements
	4.1.3 Default Oracle Event Processing Domain ocep_domain and Development

	4.2 Installing the Latest Oracle Event Processing IDE for Eclipse
	4.3 Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing
	4.4 Configuring Eclipse

5 Oracle Event Processing IDE for Eclipse Projects

	5.1 Oracle Event Processing Project Overview
	5.2 Creating Oracle Event Processing Projects
	5.2.1 How to Create an Oracle Event Processing Project

	5.3 Creating EPN Assembly Files
	5.3.1 How to Create a New EPN Assembly File Using Oracle Event Processing IDE for Eclipse

	5.4 Creating Component Configuration Files
	5.4.1 How to Create a New Component Configuration File Using Oracle Event Processing IDE for Eclipse

	5.5 Exporting Oracle Event Processing Projects
	5.5.1 How to Export an Oracle Event Processing Project

	5.6 Upgrading Projects
	5.6.1 How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3
	5.6.2 How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)

	5.7 Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects
	5.7.1 How to Add a Standard JAR File to an Oracle Event Processing Project
	5.7.2 How to Add an OSGi Bundle to an Oracle Event Processing Project
	5.7.3 How to Add a Property File to an Oracle Event Processing Project
	5.7.4 How to Export a Package
	5.7.5 How to Import a Package

	5.8 Configuring Oracle Event Processing IDE for Eclipse Preferences
	5.8.1 How to Configure Application Library Path Preferences
	5.8.2 How to Configure Problem Severity Preferences

6 Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers

	6.1 Oracle Event Processing Server Overview
	6.2 Creating Oracle Event Processing Servers
	6.2.1 How to Create a Local Oracle Event Processing Server and Server Runtime
	6.2.2 How to Create a Remote Oracle Event Processing Server and Server Runtime
	6.2.3 How to Create an Oracle Event Processing Server Runtime

	6.3 Managing Oracle Event Processing Servers
	6.3.1 How to Start a Local Oracle Event Processing Server
	6.3.2 How to Stop a Local Oracle Event Processing Server
	6.3.3 How to Attach to an Existing Local Oracle Event Processing Server Instance
	6.3.4 How to Attach to an Existing Remote Oracle Event Processing Server Instance
	6.3.5 How to Detach From an Existing Oracle Event Processing Server Instance
	6.3.6 How to Deploy an Application to an Oracle Event Processing Server
	6.3.7 How to Configure Connection and Control Settings for Oracle Event Processing Server
	6.3.8 How to Configure Domain (Runtime) Settings for Oracle Event Processing Server
	6.3.9 How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse

	6.4 Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server
	6.4.1 How to Debug an Oracle Event Processing Application Running on an Oracle Event Processing Server

7 Oracle Event Processing IDE for Eclipse and the Event Processing Network

	7.1 Opening the EPN Editor
	7.1.1 How to Open the EPN Editor from a Project Folder
	7.1.2 How to Open the EPN Editor from a Context or Configuration File

	7.2 EPN Editor Overview
	7.2.1 Flow Representation
	7.2.2 Filtering
	7.2.3 Zooming
	7.2.4 Layout
	7.2.5 Showing and Hiding Unconnected Beans
	7.2.6 Printing and Exporting to an Image
	7.2.7 Configuration Badging
	7.2.8 Link Specification Location Indicator
	7.2.9 Nested Stages
	7.2.10 Event Type Repository Editor

	7.3 Navigating the EPN Editor
	7.3.1 Moving the Canvas
	7.3.2 Shortcuts to Component Configuration and EPN Assembly Files
	7.3.3 Hyperlinking
	7.3.3.1 Hyperlinking in Component Configuration and EPN Assembly Files
	7.3.3.2 Hyperlinking in Oracle CQL Statements

	7.3.4 Context Menus
	7.3.5 Browsing Oracle Event Processing Types
	7.3.5.1 How to Browse Oracle Event Processing Types

	7.4 Using the EPN Editor
	7.4.1 Creating Nodes
	7.4.1.1 How to Create a Basic Node
	7.4.1.2 How to Create an Adapter Node
	7.4.1.3 How to Create a Processor Node

	7.4.2 Connecting Nodes
	7.4.2.1 How to Connect Nodes

	7.4.3 Laying Out Nodes
	7.4.4 Renaming Nodes
	7.4.5 Deleting Nodes

Part III Developing Oracle Event Processing Applications

8 Walkthrough: Assembling a Simple Application

	8.1 Introduction to the Simple Application Walkthrough
	8.1.1 Key Concepts in this Walkthrough
	8.1.2 Before You Get Started

	8.2 Create the Workspace and Project
	8.3 Create an Event Type to Carry Event Data
	8.4 Add an Input Adapter to Receive Event Data
	8.5 Add a Channel to Convey Events
	8.6 Create a Listener to Receive and Report Events
	8.7 Set Up the Load Generator and Test
	8.8 Add an Oracle CQL Processor to Filter Events
	8.9 Summary: Simple Application Walkthrough

9 Defining and Using Event Types

	9.1 Overview of Oracle Event Processing Event Types
	9.1.1 Where Event Type Instances are Used
	9.1.2 High-Level Process for Creating Event Types

	9.2 Designing Event Types
	9.2.1 Identifying the Structure of Event Data
	9.2.2 Choosing a Data Type for an Event Type
	9.2.3 Constraints on Design of Event Types
	9.2.3.1 Constraints on Event Types for Use With the csvgen Adapter
	9.2.3.2 Constraints on Event Types for Use With a Database Table Source

	9.2.4 Mixing Use of Event Type Data Types

	9.3 Creating Event Types
	9.3.1 Creating an Oracle Event Processing Event Type as a JavaBean
	9.3.1.1 How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor
	9.3.1.2 How to Create an Oracle Event Processing Event Type as a JavaBean Manually
	9.3.1.3 Using JavaBean Event Type Instances in Java Code
	9.3.1.4 Using JavaBean Event Type Instances in Oracle CQL Code
	9.3.1.5 Controlling Event Type Instantiation with an Event Type Builder Class

	9.3.2 Creating an Oracle Event Processing Event Type as a Tuple
	9.3.2.1 Types for Properties in Tuple-Based Event Types
	9.3.2.2 How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor
	9.3.2.3 How to Create an Oracle Event Processing Event Type as a Tuple Manually
	9.3.2.4 Using a Tuple Event Type Instance in Java Code
	9.3.2.5 Using a Tuple Event Type Instance in Oracle CQL Code

	9.3.3 Creating an Oracle Event Processing Event Type as a java.util.Map
	9.3.3.1 Types for Properties in java.util.Map-Based Event Types
	9.3.3.2 How to Create an Oracle Event Processing Event Type as a java.util.Map
	9.3.3.3 Using a Map Event Type Instance in Java Code
	9.3.3.4 Using a Map Event Type Instance in Oracle CQL Code

	9.4 Accessing the Event Type Repository
	9.4.1 Using the EPN Assembly File
	9.4.2 Using the Spring-DM @ServiceReference Annotation
	9.4.3 Using the Oracle Event Processing @Service Annotation

	9.5 Sharing Event Types Between Application Bundles

10 Connecting EPN Stages Using Channels

	10.1 Overview of Channel Configuration
	10.1.1 When to Use a Channel
	10.1.2 Channels Representing Streams and Relations
	10.1.2.1 Channels as Streams
	10.1.2.2 Channels as Relations

	10.1.3 System-Timestamped Channels
	10.1.4 Application-Timestamped Channels
	10.1.5 Controlling Which Queries Output to a Downstream Channel: selector
	10.1.6 Batch Processing Channels
	10.1.7 EventPartitioner Channels
	10.1.8 Handling Faults in Channels

	10.2 Configuring a Channel
	10.2.1 How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse
	10.2.2 How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse
	10.2.3 How to Create a Channel Component Configuration File Manually

	10.3 Example Channel Configuration Files
	10.3.1 Channel Component Configuration File
	10.3.2 Channel EPN Assembly File

11 Integrating the Java Message Service

	11.1 Overview of JMS Adapter Configuration
	11.1.1 JMS Service Providers
	11.1.2 Inbound JMS Adapter
	11.1.2.1 Conversion Between JMS Messages and Event Types
	11.1.2.2 Single and Multi-threaded Inbound JMS Adapters
	11.1.2.3 Configuring a JMS Adapter for Durable Subscriptions

	11.1.3 Outbound JMS Adapter

	11.2 Configuring a JMS Adapter for a JMS Service Provider
	11.2.1 How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse
	11.2.2 How to Configure a JMS Adapter Manually
	11.2.3 How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually
	11.2.4 How to Configure a JMS Adapter for Tibco EMS JMS Manually

	11.3 Creating a Custom Converter Between JMS Messages and Event Types
	11.3.1 How to Create a Custom Converter for the Inbound JMS Adapter
	11.3.2 How to Create a Custom Converter for the Outbound JMS Adapter

	11.4 Encrypting Passwords in the JMS Adapter Component Configuration File
	11.4.1 How to Encrypt Passwords in the JMS Adapter Component Configuration File

	11.5 Configuring the JMS Adapter EPN Assembly File
	11.5.1 JMS Inbound Adapter EPN Assembly File Configuration
	11.5.2 JMS Outbound Adapter EPN Assembly File Configuration

	11.6 Configuring the JMS Adapter Component Configuration File
	11.6.1 JMS Inbound Adapter Component Configuration
	11.6.2 JMS Outbound Adapter Component Configuration

12 Integrating an HTTP Publish-Subscribe Server

	12.1 Overview of HTTP Publish-Subscribe Server Adapter Configuration
	12.1.1 Overview of the Built-In Pub-Sub Adapter for Publishing
	12.1.1.1 Local Publishing
	12.1.1.2 Remote Publishing

	12.1.2 Overview of the Built-In Pub-Sub Adapter for Subscribing
	12.1.3 Converting Between JSON Messages and Event Types

	12.2 Configuring an HTTP Pub-Sub Adapter
	12.2.1 How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse
	12.2.2 How to Configure an HTTP Pub-Sub Adapter Manually

	12.3 Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types
	12.4 Configuring the HTTP Pub-Sub Adapter EPN Assembly File
	12.4.1 HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration
	12.4.2 HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration

	12.5 Configuring the HTTP Pub-Sub Adapter Component Configuration File
	12.5.1 HTTP Pub-Sub Adapter for Publishing Component Configuration
	12.5.2 HTTP Pub-Sub Adapter for Subscribing Component Configuration

13 Integrating a Cache

	13.1 Overview of Integrating a Cache
	13.1.1 Caching Implementations Supported by Oracle Event Processing
	13.1.2 Overview of Cache Configuration
	13.1.3 Caching Use Cases
	13.1.4 Caching APIs

	13.2 Configuring an Oracle Coherence Caching System and Cache
	13.2.1 Configuring the Oracle Coherence Caching System and Caches
	13.2.1.1 The coherence-cache-config.xml File
	13.2.1.2 The tangosol-coherence-override.xml File

	13.2.2 Configuring a Shared Oracle Coherence Cache

	13.3 Configuring an Oracle Event Processing Local Caching System and Cache
	13.3.1 Configuring an Oracle Event Processing Caching System

	13.4 Configuring a Third-Party Caching System and Cache
	13.5 Adding Caching to an Event Processing Network
	13.5.1 Adding the Caching System and Caches to an EPN
	13.5.2 Configuring a Cache for Reuse Among Applications
	13.5.3 Configuring a Cache as an Event Listener
	13.5.3.1 Specifying the Key Used to Index a Cache

	13.5.4 Configuring a Cache as an Event Source
	13.5.5 Exchanging Data Between a Cache and Another Data Source
	13.5.5.1 Loading Cache Data from a Read-Only Data Source
	13.5.5.2 Exchanging Data with a Read-Write Data Source

	13.6 Accessing a Cache from Application Code
	13.6.1 Accessing a Cache from an Oracle CQL Statement
	13.6.1.1 How to Access a Cache from an Oracle CQL Statement

	13.6.2 Accessing a Cache From an EPL Statement
	13.6.2.1 How To Access a Cache from an EPL Statement

	13.6.3 Accessing a Cache from an Adapter
	13.6.4 Accessing a Cache From a Business POJO
	13.6.5 Accessing a Cache From an Oracle CQL User-Defined Function
	13.6.6 Accessing a Cache From an EPL User-Defined Function
	13.6.7 Accessing a Cache Using JMX
	13.6.7.1 How to Access a Cache With JMX Using Oracle Event Processing Visualizer
	13.6.7.2 How to Access a Cache With JMX Using Java

14 Integrating Web Services

	14.1 Understanding Oracle Event Processing and Web Services
	14.2 How to Invoke a Web Service From an Oracle Event Processing Application
	14.3 How to Expose an Oracle Event Processing Application as a Web Service

15 Integrating an External Component Using a Custom Adapter

	15.1 Overview of Custom Adapters
	15.2 Implementing a Custom Adapter
	15.2.1 Example: Input Adapter Implementation

	15.3 Implementing Support for Thread and Work Management
	15.3.1 Improving Scalability with Multi-Threaded Adapters
	15.3.2 Suspending and Resuming Adapter Event Processing

	15.4 Passing Login Credentials from an Adapter to a Data Feed Provider
	15.4.1 How to Pass Static Login Credentials to the Data Feed Provider
	15.4.2 How to Pass Dynamic Login Credentials to the Data Feed Provider
	15.4.3 How to Access Login Credentials From an Adapter at Runtime

	15.5 Configuring a Custom Adapter
	15.5.1 Configuring a Custom Adapter in an EPN Assembly File
	15.5.2 Configuring a Custom Adapter in a Component Configuration File

	15.6 Creating a Custom Adapter Factory

16 Handling Events with Java

	16.1 Roles for Java Code in an Event Processing Network
	16.2 Handling Events with Sources and Sinks
	16.2.1 Implementing an Event Sink
	16.2.1.1 Implementing StreamSink or BatchStreamSink
	16.2.1.2 Implementing RelationSink or BatchRelationSink

	16.2.2 Implementing an Event Source
	16.2.2.1 Implementing StreamSource
	16.2.2.2 Implementing RelationSource

	16.3 Configuring Java Classes as Beans
	16.3.1 Configuring a Java Class as an Event Bean
	16.3.1.1 Configuring an Event Bean in an EPN Assembly File
	16.3.1.2 Configuring an Event Bean in a Component Configuration File
	16.3.1.3 Creating an Event Bean Factory

	16.3.2 Configuring a Java Class as a Spring Bean
	16.3.2.1 Supporting Spring Bean Characteristics

17 Querying an Event Stream with Oracle CQL

	17.1 Overview of Oracle CQL Processor Configuration
	17.1.1 Controlling Which Queries Output to a Downstream Channel

	17.2 Configuring an Oracle CQL Processor
	17.2.1 How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse
	17.2.2 How to Create an Oracle CQL Processor Component Configuration File Manually

	17.3 Configuring an Oracle CQL Processor Table Source
	17.3.1 How to Configure an Oracle CQL Processor Table Source Using Oracle Event Processing IDE for Eclipse

	17.4 Configuring an Oracle CQL Processor Cache Source
	17.5 Configuring an Oracle CQL Processor for Parallel Query Execution
	17.5.1 Setting Up Parallel Query Execution Support
	17.5.2 Using the ordering-constraint Attribute
	17.5.3 Using partition-order-capacity with Partitioning Queries
	17.5.4 Limitations

	17.6 Handling Faults
	17.6.1 Implementing a Fault Handler Class
	17.6.2 Registering a Fault Handler

	17.7 Example Oracle CQL Processor Configuration Files
	17.7.1 Oracle CQL Processor Component Configuration File
	17.7.2 Oracle CQL Processor EPN Assembly File

18 Configuring Applications With Data Cartridges

	18.1 Understanding Data Cartridge Application Context
	18.2 How to Configure Oracle Spatial Application Context
	18.3 How to Configure Oracle JDBC Data Cartridge Application Context

19 Querying an Event Stream with Oracle EPL

	19.1 Overview of EPL Processor Component Configuration
	19.2 Configuring an EPL Processor
	19.2.1 How to Configure an EPL Processor Manually

	19.3 Configuring an EPL Processor Cache Source
	19.4 Example EPL Processor Configuration Files
	19.4.1 EPL Processor Component Configuration File
	19.4.2 EPL Processor EPN Assembly File

20 Configuring Event Record and Playback

	20.1 Overview of Configuring Event Record and Playback
	20.1.1 Storing Events in the Persistent Event Store
	20.1.1.1 Default Persistent Event Store
	20.1.1.2 Custom Persistent Event Store
	20.1.1.3 Persistent Event Store Schema

	20.1.2 Recording Events
	20.1.3 Playing Back Events
	20.1.4 Querying Stored Events
	20.1.5 Record and Playback Example

	20.2 Configuring Event Record and Playback in Your Application
	20.2.1 Configuring an Event Store for Oracle Event Processing Server
	20.2.2 Configuring a Component to Record Events
	20.2.3 Configuring a Component to Playback Events
	20.2.4 Starting and Stopping the Record and Playback of Events
	20.2.5 Description of the Berkeley Database Schema

	20.3 Creating a Custom Event Store Provider

21 Testing Applications With the Load Generator and csvgen Adapter

	21.1 Overview of Testing Applications With the Load Generator and csvgen Adapter
	21.2 Configuring and Running the Load Generator Utility
	21.3 Creating a Load Generator Property File
	21.4 Creating a Data Feed File
	21.5 Configuring the csvgen Adapter in Your Application

22 Testing Applications With the Event Inspector

	22.1 Overview of Testing Applications With the Event Inspector
	22.1.1 Tracing Events
	22.1.2 Injecting Events
	22.1.3 Event Inspector Event Types
	22.1.4 Event Inspector HTTP Publish-Subscribe Channel and Server
	22.1.5 Event Inspector Clients
	22.1.5.1 Oracle Event Processing Visualizer

	22.2 Configuring the Event Inspector HTTP Pub-Sub Server
	22.2.1 How to Configure a Local Event Inspector HTTP Pub-Sub Server
	22.2.2 How to Configure a Remote Event Inspector HTTP Pub-Sub Server

	22.3 Injecting Events
	22.4 Tracing Events

Part IV Completing and Refining Oracle Event Processing Applications

23 Assembling and Deploying Oracle Event Processing Applications

	23.1 Overview of Application Assembly and Deployment
	23.1.1 Applications
	23.1.2 Application Dependencies
	23.1.2.1 Private Application Dependencies
	23.1.2.2 Shared Application Dependencies
	23.1.2.3 Native Code Dependencies

	23.1.3 Application Libraries
	23.1.3.1 Library Directory
	23.1.3.2 Library Extensions Directory
	23.1.3.3 Creating Application Libraries

	23.1.4 Deployment and Deployment Order
	23.1.5 Configuration History Management

	23.2 Assembling an Oracle Event Processing Application
	23.2.1 Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse
	23.2.2 Assembling an Oracle Event Processing Application Manually
	23.2.2.1 Creating the MANIFEST.MF File
	23.2.2.2 Accessing Third-Party JAR Files

	23.2.3 Assembling Applications With Foreign Stages
	23.2.4 Assembling a Custom Adapter or Event Bean in Its Own Bundle
	23.2.4.1 How to Assemble a Custom Adapter in its Own Bundle
	23.2.4.2 How to Assemble an Event Bean in its Own Bundle

	23.3 Managing Application Libraries
	23.3.1 How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse
	23.3.1.1 How to Configure an Absolute Path
	23.3.1.2 How to Extend a Path Variable

	23.3.2 How to Create an Application Library Using bundler.sh
	23.3.3 How to Create an Application Library Using Oracle Event Processing IDE for Eclipse
	23.3.4 How to Update an Application Library Using Oracle Event Processing IDE for Eclipse
	23.3.5 How to View an Application Library Using the Oracle Event Processing Visualizer

	23.4 Managing Log Message Catalogs
	23.4.1 Using Message Catalogs With Oracle Event Processing Server
	23.4.1.1 Message Catalog Hierarchy
	23.4.1.2 Guidelines for Naming Message Catalogs
	23.4.1.3 Using Message Arguments
	23.4.1.4 Message Catalog Formats
	23.4.1.5 Message Catalog Localization

	23.4.2 How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization

	23.5 Deploying Oracle Event Processing Applications
	23.5.1 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse
	23.5.2 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer
	23.5.3 How to Deploy an Oracle Event Processing Application Using the Deployer Utility

24 Developing Applications for High Availability

	24.1 Understanding High Availability
	24.1.1 High Availability Architecture
	24.1.1.1 High Availability Lifecycle and Failover
	24.1.1.2 Deployment Group and Notification Group
	24.1.1.3 High Availability Components
	24.1.1.4 High Availability and Scalability
	24.1.1.5 High Availability and Oracle Coherence

	24.1.2 Choosing a Quality of Service
	24.1.2.1 Simple Failover
	24.1.2.2 Simple Failover with Buffering
	24.1.2.3 Light-Weight Queue Trimming
	24.1.2.4 Precise Recovery with JMS

	24.1.3 Designing an Oracle Event Processing Application for High Availability
	24.1.3.1 Primary Oracle Event Processing High Availability Use Case
	24.1.3.2 High Availability Design Patterns
	24.1.3.3 Oracle CQL Query Restrictions

	24.2 Configuring High Availability
	24.2.1 Configuring High Availability Quality of Service
	24.2.1.1 How to Configure Simple Failover
	24.2.1.2 How to Configure Simple Failover With Buffering
	24.2.1.3 How to Configure Light-Weight Queue Trimming
	24.2.1.4 How to Configure Precise Recovery With JMS

	24.2.2 Configuring High Availability Adapters
	24.2.2.1 How to Configure the High Availability Input Adapter
	24.2.2.2 How to Configure the Buffering Output Adapter
	24.2.2.3 How to Configure the Broadcast Output Adapter
	24.2.2.4 How to Configure the Correlating Output Adapter

25 Developing Scalable Applications

	25.1 Understanding Scalability
	25.1.1 Scalability Options
	25.1.1.1 Scalability and High Availability

	25.1.2 Scalability Components
	25.1.2.1 EventPartitioner
	25.1.2.2 ActiveActiveGroupBean

	25.2 Configuring Scalability
	25.2.1 Configuring Scalability With a Channel EventPartitioner
	25.2.1.1 How to Configure Scalability With the Default Channel EventPartitioner
	25.2.1.2 How to Configure Scalability With a Custom Channel EventPartitioner

	25.2.2 Configuring Scalability With the ActiveActiveGroupBean
	25.2.2.1 How to Configure Scalability in a JMS Application Without Oracle Event Processing High Availability
	25.2.2.2 How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability
	25.2.2.3 How to Configure the ActiveActiveGroupBean Group Pattern Match

26 Extending Component Configuration

	26.1 Overview of Extending Component Configuration
	26.1.1 Extending Component Configuration Using Annotations
	26.1.2 Extending Component Configuration Using an XSD

	26.2 Extending Component Configuration
	26.2.1 How to Extend Component Configuration Using Annotations
	26.2.2 How to Extend Component Configuration Using an XSD
	26.2.2.1 Creating the XSD Schema File

	26.3 Programming Access to the Configuration of a Custom Adapter or Event Bean
	26.3.1 How to Access Component Configuration Using Resource Injection
	26.3.2 How to Access Component Configuration Using Lifecycle Callbacks
	26.3.2.1 Lifecycle Callback Annotations
	26.3.2.2 Lifecycle

27 Performance Tuning

	27.1 EPN Performance Tuning
	27.1.1 Event Partitioner Channel
	27.1.2 Batching Channel
	27.1.3 Scalability Using the ActiveActiveGroupBean

	27.2 High Availability Performance Tuning
	27.2.1 Host Configuration
	27.2.2 High Availability Input Adapter and Quality of Service
	27.2.3 High Availability Input Adapter Configuration
	27.2.4 Broadcast Output Adapter Configuration
	27.2.5 Oracle Coherence Performance Tuning Options
	27.2.5.1 Oracle Coherence Heartbeat Frequency
	27.2.5.2 Oracle Coherence Serialization

Part V Appendices

A Additional Information about Spring and OSGi

B Oracle Event Processing Schemas

	B.1 EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd
	B.1.1 Example EPN Assembly File

	B.2 Component Configuration Schema wlevs_application_config.xsd
	B.2.1 Example Component Configuration File

	B.3 Deployment Schema deployment.xsd
	B.3.1 Example Deployment XML File

	B.4 Server Configuration Schema wlevs_server_config.xsd
	B.4.1 Example Server Configuration XML File

C Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd

	C.1 Overview of the Oracle Event Processing Application Assembly Elements
	C.1.1 Element Hierarchy
	C.1.2 Example of an EPN Assembly File That Uses Oracle Event Processing Elements

	C.2 wlevs:adapter
	C.2.1 Child Elements
	C.2.2 Attributes
	C.2.3 Example

	C.3 wlevs:application-timestamped
	C.3.1 Child Elements
	C.3.2 Attributes
	C.3.3 Example

	C.4 wlevs:cache
	C.4.1 Child Elements
	C.4.2 Attributes
	C.4.3 Example

	C.5 wlevs:cache-listener
	C.5.1 Attributes
	C.5.2 Example

	C.6 wlevs:cache-loader
	C.6.1 Attributes
	C.6.2 Example

	C.7 wlevs:cache-source
	C.7.1 Attributes
	C.7.2 Example

	C.8 wlevs:cache-store
	C.8.1 Attributes
	C.8.2 Example

	C.9 wlevs:caching-system
	C.9.1 Child Elements
	C.9.2 Attributes
	C.9.3 Example

	C.10 wlevs:channel
	C.10.1 Child Elements
	C.10.2 Attributes
	C.10.3 Example

	C.11 wlevs:class
	C.11.1 Example

	C.12 wlevs:event-bean
	C.12.1 Child Elements
	C.12.2 Attributes
	C.12.3 Example

	C.13 wlevs:event-type
	C.13.1 Child Elements
	C.13.2 Attributes
	C.13.3 Example

	C.14 wlevs:event-type-repository
	C.14.1 Child Elements
	C.14.2 Example

	C.15 wlevs:expression
	C.15.1 Example

	C.16 wlevs:factory
	C.16.1 Attributes
	C.16.2 Example

	C.17 wlevs:function
	C.17.1 Attributes
	C.17.2 Example
	C.17.2.1 Single-Row User-Defined Function on an Oracle CQL Processor
	C.17.2.2 Single-Row User-Defined Function on an EPL Processor
	C.17.2.3 Aggregate User-Defined Function on an Oracle CQL Processor
	C.17.2.4 Aggregate User-Defined Function on an EPL Processor
	C.17.2.5 Specifying the Implementation Class: Nested Bean or Reference

	C.18 wlevs:instance-property
	C.18.1 Child Elements
	C.18.2 Attributes
	C.18.3 Example

	C.19 wlevs:listener
	C.19.1 Attributes
	C.19.2 Example

	C.20 wlevs:metadata
	C.20.1 Child Elements
	C.20.2 Attributes
	C.20.3 Example

	C.21 wlevs:processor
	C.21.1 Child Elements
	C.21.2 Attributes
	C.21.3 Example

	C.22 wlevs:properties
	C.22.1 Child Elements
	C.22.2 Attributes
	C.22.3 Example

	C.23 wlevs:property
	C.23.1 Attributes
	C.23.2 Example

	C.24 wlevs:property
	C.24.1 Child Elements
	C.24.2 Attributes
	C.24.3 Example

	C.25 wlevs:source
	C.25.1 Attributes
	C.25.2 Example

	C.26 wlevs:table
	C.26.1 Attributes
	C.26.2 Example

	C.27 wlevs:table-source
	C.27.1 Attributes
	C.27.2 Example

D Schema Reference: Component Configuration wlevs_application_config.xsd

	D.1 Overview of the Oracle Event Processing Component Configuration Elements
	D.1.1 Element Hierarchy
	D.1.2 Example of an Oracle Event Processing Component Configuration File

	D.2 accept-backlog
	D.2.1 Child Elements
	D.2.2 Attributes
	D.2.3 Example

	D.3 active
	D.3.1 Child Elements
	D.3.2 Attributes
	D.3.3 Example

	D.4 adapter
	D.4.1 Child Elements
	D.4.2 Attributes
	D.4.3 Example

	D.5 amount
	D.5.1 Child Elements
	D.5.2 Attributes
	D.5.3 Example

	D.6 application
	D.6.1 Child Elements
	D.6.2 Attributes
	D.6.3 Example

	D.7 average-interval
	D.7.1 Child Elements
	D.7.2 Attributes
	D.7.3 Example

	D.8 average-latency
	D.8.1 Child Elements
	D.8.2 Attributes
	D.8.3 Example

	D.9 batch-size
	D.9.1 Child Elements
	D.9.2 Attributes
	D.9.3 Example

	D.10 batch-time-out
	D.10.1 Child Elements
	D.10.2 Attributes
	D.10.3 Example

	D.11 binding
	D.11.1 Child Elements
	D.11.2 Attributes
	D.11.3 Example

	D.12 bindings (jms-adapter)
	D.12.1 Child Elements
	D.12.2 Attributes
	D.12.3 Example

	D.13 bindings (processor)
	D.13.1 Child Elements
	D.13.2 Attributes
	D.13.3 Example

	D.14 buffer-size
	D.14.1 Child Elements
	D.14.2 Attributes
	D.14.3 Example

	D.15 buffer-write-attempts
	D.15.1 Child Elements
	D.15.2 Attributes
	D.15.3 Example

	D.16 buffer-write-timeout
	D.16.1 Child Elements
	D.16.2 Attributes
	D.16.3 Example

	D.17 cache
	D.17.1 Child Elements
	D.17.2 Attributes
	D.17.3 Example

	D.18 caching-system
	D.18.1 Child Elements
	D.18.2 Attributes
	D.18.3 Example

	D.19 channel
	D.19.1 Child Elements
	D.19.2 Attributes
	D.19.3 Example

	D.20 channel (http-pub-sub-adapter Child Element)
	D.20.1 Child Elements
	D.20.2 Attributes
	D.20.3 Example

	D.21 channel-name
	D.21.1 Child Elements
	D.21.2 Attributes
	D.21.3 Example

	D.22 coherence-cache-config
	D.22.1 Child Elements
	D.22.2 Attributes
	D.22.3 Example

	D.23 coherence-caching-system
	D.23.1 Child Elements
	D.23.2 Attributes
	D.23.3 Example

	D.24 coherence-cluster-config
	D.24.1 Child Elements
	D.24.2 Attributes
	D.24.3 Example

	D.25 collect-interval
	D.25.1 Child Elements
	D.25.2 Attributes
	D.25.3 Example

	D.26 concurrent-consumers
	D.26.1 Child Elements
	D.26.2 Attributes
	D.26.3 Example

	D.27 connection-jndi-name
	D.27.1 Child Elements
	D.27.2 Attributes
	D.27.3 Example

	D.28 connection-encrypted-password
	D.28.1 Child Elements
	D.28.2 Attributes
	D.28.3 Example

	D.29 connection-password
	D.29.1 Child Elements
	D.29.2 Attributes
	D.29.3 Example

	D.30 connection-user
	D.30.1 Child Elements
	D.30.2 Attributes
	D.30.3 Example

	D.31 database
	D.31.1 Child Elements
	D.31.2 Attributes
	D.31.3 Example

	D.32 dataset-name
	D.32.1 Child Elements
	D.32.2 Attributes
	D.32.3 Example

	D.33 delivery-mode
	D.33.1 Child Elements
	D.33.2 Attributes
	D.33.3 Example

	D.34 destination-jndi-name
	D.34.1 Child Elements
	D.34.2 Attributes
	D.34.3 Example

	D.35 destination-name
	D.35.1 Child Elements
	D.35.2 Attributes
	D.35.3 Example

	D.36 destination-type
	D.36.1 Child Elements
	D.36.2 Attributes
	D.36.3 Example

	D.37 diagnostic-profiles
	D.37.1 Child Elements
	D.37.2 Attributes
	D.37.3 Example

	D.38 direction
	D.38.1 Child Elements
	D.38.2 Attributes
	D.38.3 Example

	D.39 durable-subscription
	D.39.1 Child Elements
	D.39.2 Attributes
	D.39.3 Example

	D.40 durable-subscription-name
	D.40.1 Child Elements
	D.40.2 Attributes
	D.40.3 Example

	D.41 duration
	D.41.1 Child Elements
	D.41.2 Attributes
	D.41.3 Example

	D.42 enabled
	D.42.1 Child Elements
	D.42.2 Attributes
	D.42.3 Example

	D.43 encrypted-password
	D.43.1 Child Elements
	D.43.2 Attributes
	D.43.3 Example

	D.44 end
	D.44.1 Child Elements
	D.44.2 Attributes
	D.44.3 Example

	D.45 end-location
	D.45.1 Child Elements
	D.45.2 Attributes
	D.45.3 Example

	D.46 event-bean
	D.46.1 Child Elements
	D.46.2 Attributes
	D.46.3 Example

	D.47 event-type
	D.47.1 Child Elements
	D.47.2 Attributes
	D.47.3 Example

	D.48 event-type-list
	D.48.1 Child Elements
	D.48.2 Attributes
	D.48.3 Example

	D.49 eviction-policy
	D.49.1 Child Elements
	D.49.2 Attributes
	D.49.3 Example

	D.50 fail-when-rejected
	D.50.1 Child Elements
	D.50.2 Attributes
	D.50.3 Example

	D.51 group-binding
	D.51.1 Child Elements
	D.51.2 Attributes
	D.51.3 Example

	D.52 heartbeat
	D.52.1 Child Elements
	D.52.2 Attributes
	D.52.3 Example

	D.53 http-pub-sub-adapter
	D.53.1 Child Elements
	D.53.2 Attributes
	D.53.3 Example

	D.54 idle-time
	D.54.1 Child Elements
	D.54.2 Attributes
	D.54.3 Example

	D.55 inject-parameters
	D.55.1 Child Elements
	D.55.2 Attributes
	D.55.3 Example

	D.56 jms-adapter
	D.56.1 Child Elements
	D.56.2 Attributes
	D.56.3 Example

	D.57 jndi-factory
	D.57.1 Child Elements
	D.57.2 Attributes
	D.57.3 Example

	D.58 jndi-provider-url
	D.58.1 Child Elements
	D.58.2 Attributes
	D.58.3 Example

	D.59 listeners
	D.59.1 Child Elements
	D.59.2 Attributes
	D.59.3 Example

	D.60 location
	D.60.1 Child Elements
	D.60.2 Attributes
	D.60.3 Example

	D.61 max-latency
	D.61.1 Child Elements
	D.61.2 Attributes
	D.61.3 Example

	D.62 max-size
	D.62.1 Child Elements
	D.62.2 Attributes
	D.62.3 Example

	D.63 max-threads
	D.63.1 Child Elements
	D.63.2 Attributes
	D.63.3 Example

	D.64 message-selector
	D.64.1 Child Elements
	D.64.2 Attributes
	D.64.3 Example

	D.65 name
	D.65.1 Child Elements
	D.65.2 Attributes
	D.65.3 Example

	D.66 netio
	D.66.1 Child Elements
	D.66.2 Attributes
	D.66.3 Example

	D.67 num-threads
	D.67.1 Child Elements
	D.67.2 Attributes
	D.67.3 Example

	D.68 offer-timeout
	D.68.1 Child Elements
	D.68.2 Attributes
	D.68.3 Example

	D.69 param
	D.69.1 Child Elements
	D.69.2 Attributes
	D.69.3 Example

	D.70 parameter
	D.70.1 Child Elements
	D.70.2 Attributes
	D.70.3 Example

	D.71 params
	D.71.1 Child Elements
	D.71.2 Attributes
	D.71.3 Example

	D.72 partition-order-capacity
	D.72.1 Child Elements
	D.72.2 Attributes
	D.72.3 Example

	D.73 password
	D.73.1 Child Elements
	D.73.2 Attributes
	D.73.3 Example

	D.74 playback-parameters
	D.74.1 Child Elements
	D.74.2 Attributes
	D.74.3 Example

	D.75 playback-speed
	D.75.1 Child Elements
	D.75.2 Attributes
	D.75.3 Example

	D.76 processor (EPL)
	D.76.1 Child Elements
	D.76.2 Attributes
	D.76.3 Example

	D.77 processor (Oracle CQL)
	D.77.1 Child Elements
	D.77.2 Attributes
	D.77.3 Example

	D.78 profile
	D.78.1 Child Elements
	D.78.2 Attributes
	D.78.3 Example

	D.79 provider-name
	D.79.1 Child Elements
	D.79.2 Attributes
	D.79.3 Example

	D.80 query
	D.80.1 Child Elements
	D.80.2 Attributes
	D.80.3 Example

	D.81 record-parameters
	D.81.1 Child Elements
	D.81.2 Attributes
	D.81.3 Example

	D.82 repeat
	D.82.1 Child Elements
	D.82.2 Attributes
	D.82.3 Example

	D.83 rule
	D.83.1 Child Elements
	D.83.2 Attributes
	D.83.3 Example

	D.84 rules
	D.84.1 Child Elements
	D.84.2 Attributes
	D.84.3 Example

	D.85 schedule-time-range
	D.85.1 Child Elements
	D.85.2 Attributes
	D.85.3 Example

	D.86 schedule-time-range-offset
	D.86.1 Child Elements
	D.86.2 Attributes
	D.86.3 Example

	D.87 selector
	D.87.1 Child Elements
	D.87.2 Attributes
	D.87.3 Example

	D.88 server-context-path
	D.88.1 Child Elements
	D.88.2 Attributes
	D.88.3 Example

	D.89 server-url
	D.89.1 Child Elements
	D.89.2 Attributes
	D.89.3 Example

	D.90 session-ack-mode-name
	D.90.1 Child Elements
	D.90.2 Attributes
	D.90.3 Example

	D.91 session-transacted
	D.91.1 Child Elements
	D.91.2 Attributes
	D.91.3 Example

	D.92 stage
	D.92.1 Child Elements
	D.92.2 Attributes
	D.92.3 Example

	D.93 start
	D.93.1 Child Elements
	D.93.2 Attributes
	D.93.3 Example

	D.94 start-location
	D.94.1 Child Elements
	D.94.2 Attributes
	D.94.3 Example

	D.95 start-stage
	D.95.1 Child Elements
	D.95.2 Attributes
	D.95.3 Example

	D.96 store-policy-parameters
	D.96.1 Child Elements
	D.96.2 Attributes
	D.96.3 Example

	D.97 stream
	D.97.1 Child Elements
	D.97.2 Attributes
	D.97.3 Example

	D.98 symbol
	D.98.1 Child Elements
	D.98.2 Attributes
	D.98.3 Example

	D.99 symbols
	D.99.1 Child Elements
	D.99.2 Attributes
	D.99.3 Example

	D.100 threshold
	D.100.1 Child Elements
	D.100.2 Attributes
	D.100.3 Example

	D.101 throughput
	D.101.1 Child Elements
	D.101.2 Attributes
	D.101.3 Example

	D.102 throughput-interval
	D.102.1 Child Elements
	D.102.2 Attributes
	D.102.3 Example

	D.103 time-range
	D.103.1 Child Elements
	D.103.2 Attributes
	D.103.3 Example

	D.104 time-range-offset
	D.104.1 Child Elements
	D.104.2 Attributes
	D.104.3 Example

	D.105 time-to-live
	D.105.1 Child Elements
	D.105.2 Attributes
	D.105.3 Example

	D.106 trace-parameters
	D.106.1 Child Elements
	D.106.2 Attributes
	D.106.3 Example

	D.107 unit
	D.107.1 Child Elements
	D.107.2 Attributes
	D.107.3 Example

	D.108 user
	D.108.1 Child Elements
	D.108.2 Attributes
	D.108.3 Example

	D.109 value
	D.109.1 Child Elements
	D.109.2 Attributes
	D.109.3 Example

	D.110 view
	D.110.1 Child Elements
	D.110.2 Attributes
	D.110.3 Example

	D.111 work-manager
	D.111.1 Child Elements
	D.111.2 Attributes
	D.111.3 Example

	D.112 work-manager-name
	D.112.1 Child Elements
	D.112.2 Attributes
	D.112.3 Example

	D.113 write-behind
	D.113.1 Child Elements
	D.113.2 Attributes
	D.113.3 Example

	D.114 write-none
	D.114.1 Child Elements
	D.114.2 Attributes
	D.114.3 Example

	D.115 write-through
	D.115.1 Child Elements
	D.115.2 Attributes
	D.115.3 Example

E Schema Reference: Deployment deployment.xsd

	E.1 Overview of the Oracle Event Processing Deployment Elements
	E.1.1 Element Hierarchy
	E.1.2 Example of an Oracle Event Processing Deployment Configuration File

	E.2 wlevs:deployment
	E.2.1 Child Elements
	E.2.2 Attributes
	E.2.3 Example

F Schema Reference: Server Configuration wlevs_server_config.xsd

	F.1 Overview of the Oracle Event Processing Server Configuration Elements
	F.1.1 Element Hierarchy
	F.1.2 Example of an Oracle Event Processing Server Configuration File

	F.2 auth-constraint
	F.2.1 Child Elements
	F.2.2 Attributes
	F.2.3 Example

	F.3 bdb-config
	F.3.1 Child Elements
	F.3.2 Attributes
	F.3.3 Example

	F.4 channels
	F.4.1 Child Elements
	F.4.2 Attributes
	F.4.3 Example

	F.5 channel-constraints
	F.5.1 Child Elements
	F.5.2 Attributes
	F.5.3 Example

	F.6 channel-resource-collection
	F.6.1 Child Elements
	F.6.2 Attributes
	F.6.3 Example

	F.7 cluster
	F.7.1 Child Elements
	F.7.2 Attributes
	F.7.3 Example

	F.8 connection-pool-params
	F.8.1 Child Elements
	F.8.2 Attributes
	F.8.3 Example

	F.9 cql
	F.9.1 Child Elements
	F.9.2 Attributes
	F.9.3 Example

	F.10 data-source
	F.10.1 Child Elements
	F.10.2 Attributes
	F.10.3 Example

	F.11 data-source-params
	F.11.1 Child Elements
	F.11.2 Attributes
	F.11.3 Example

	F.12 driver-params
	F.12.1 Child Elements
	F.12.2 Attributes
	F.12.3 Example

	F.13 domain
	F.13.1 Child Elements
	F.13.2 Attributes
	F.13.3 Example

	F.14 debug
	F.14.1 Child Elements
	F.14.2 Attributes
	F.14.3 Example

	F.15 event-store
	F.15.1 Child Elements
	F.15.2 Attributes
	F.15.3 Example

	F.16 exported-jndi-context
	F.16.1 Child Elements
	F.16.2 Attributes
	F.16.3 Example

	F.17 http-pubsub
	F.17.1 Child Elements
	F.17.2 Attributes
	F.17.3 Example

	F.18 jetty
	F.18.1 Child Elements
	F.18.2 Attributes
	F.18.3 Example

	F.19 jetty-web-app
	F.19.1 Child Elements
	F.19.2 Attributes
	F.19.3 Example

	F.20 jmx
	F.20.1 Child Elements
	F.20.2 Attributes
	F.20.3 Example

	F.21 jndi-context
	F.21.1 Child Elements
	F.21.2 Attributes
	F.21.3 Example

	F.22 log-file
	F.22.1 Child Elements
	F.22.2 Attributes
	F.22.3 Example

	F.23 log-stdout
	F.23.1 Child Elements
	F.23.2 Attributes
	F.23.3 Example

	F.24 logging-service
	F.24.1 Child Elements
	F.24.2 Attributes
	F.24.3 Example

	F.25 message-filters
	F.25.1 Child Elements
	F.25.2 Attributes
	F.25.3 Example

	F.26 name
	F.26.1 Child Elements
	F.26.2 Attributes
	F.26.3 Example

	F.27 netio
	F.27.1 Child Elements
	F.27.2 Attributes
	F.27.3 Example

	F.28 netio-client
	F.28.1 Child Elements
	F.28.2 Attributes
	F.28.3 Example

	F.29 partition-order-capacity
	F.29.1 Child Elements
	F.29.2 Attributes
	F.29.3 Example

	F.30 path
	F.30.1 Child Elements
	F.30.2 Attributes
	F.30.3 Example

	F.31 pubsub-bean
	F.31.1 Child Elements
	F.31.2 Attributes
	F.31.3 Example

	F.32 rdbms-event-store-provider
	F.32.1 Child Elements
	F.32.2 Attributes
	F.32.3 Example

	F.33 rmi
	F.33.1 Child Elements
	F.33.2 Attributes
	F.33.3 Example

	F.34 scheduler
	F.34.1 Child Elements
	F.34.2 Attributes
	F.34.3 Example

	F.35 server-config
	F.35.1 Child Elements
	F.35.2 Attributes
	F.35.3 Example

	F.36 services
	F.36.1 Child Elements
	F.36.2 Attributes
	F.36.3 Example

	F.37 show-detail-error-message
	F.37.1 Child Elements
	F.37.2 Attributes
	F.37.3 Example

	F.38 ssl
	F.38.1 Child Elements
	F.38.2 Attributes
	F.38.3 Example

	F.39 timeout-seconds
	F.39.1 Child Elements
	F.39.2 Attributes
	F.39.3 Example

	F.40 transaction-manager
	F.40.1 Child Elements
	F.40.2 Attributes
	F.40.3 Example

	F.41 use-secure-connections
	F.41.1 Child Elements
	F.41.2 Attributes
	F.41.3 Example

	F.42 weblogic-instances
	F.42.1 Child Elements
	F.42.2 Attributes
	F.42.3 Example

	F.43 weblogic-jta-gateway
	F.43.1 Child Elements
	F.43.2 Attributes
	F.43.3 Example

	F.44 weblogic-rmi-client
	F.44.1 Child Elements
	F.44.2 Attributes
	F.44.3 Example

	F.45 work-manager
	F.45.1 Child Elements
	F.45.2 Attributes
	F.45.3 Example

	F.46 xa-params
	F.46.1 Child Elements
	F.46.2 Attributes
	F.46.3 Example

G Schema Reference: Message Catalog msgcat.dtd

	G.1 Overview of the Message Catalog Elements
	G.1.1 Element Hierarchy
	G.1.2 Examples

	G.2 message_catalog
	G.2.1 Child Elements
	G.2.2 Attributes
	G.2.3 Example

	G.3 logmessage
	G.3.1 Child Elements
	G.3.2 Attributes
	G.3.3 Example

	G.4 message
	G.4.1 Child Elements
	G.4.2 Attributes
	G.4.3 Example

	G.5 messagebody
	G.5.1 Child Elements
	G.5.2 Attributes
	G.5.3 Example

	G.6 messagedetail
	G.6.1 Child Elements
	G.6.2 Attributes
	G.6.3 Example

	G.7 cause
	G.7.1 Child Elements
	G.7.2 Attributes
	G.7.3 Example

	G.8 action
	G.8.1 Child Elements
	G.8.2 Attributes
	G.8.3 Example

H Schema Reference: Locale Message Catalog l10n_msgcat.dtd

	H.1 Overview of the Locale Message Catalog Elements
	H.1.1 Element Hierarchy
	H.1.2 Examples

	H.2 locale_message_catalog
	H.2.1 Child Elements
	H.2.2 Attributes
	H.2.3 Example

	H.3 logmessage
	H.3.1 Child Elements
	H.3.2 Attributes
	H.3.3 Example

	H.4 message
	H.4.1 Child Elements
	H.4.2 Attributes
	H.4.3 Example

	H.5 messagebody
	H.5.1 Child Elements
	H.5.2 Attributes
	H.5.3 Example

	H.6 messagedetail
	H.6.1 Child Elements
	H.6.2 Attributes
	H.6.3 Example

	H.7 cause
	H.7.1 Child Elements
	H.7.2 Attributes
	H.7.3 Example

	H.8 action
	H.8.1 Child Elements
	H.8.2 Attributes
	H.8.3 Example

I Oracle Event Processing Metadata Annotation Reference

	I.1 Overview of Oracle Event Processing Metadata Annotations
	I.1.1 Adapter Lifecycle Annotations
	I.1.2 OSGi Service Reference Annotations
	I.1.3 Resource Access Annotations

	I.2 com.bea.wlevs.configuration.Activate
	I.2.1 Example

	I.3 com.bea.wlevs.configuration.Prepare
	I.3.1 Example

	I.4 com.bea.wlevs.configuration.Rollback
	I.4.1 Example

	I.5 com.bea.wlevs.util.Service
	I.5.1 Attributes
	I.5.2 Example

List of Examples

	1-1 EPN Assembly File With Nested Bean
	1-2 EPN Assembly File With all Nodes Nested
	1-3 Application 1 Referencing Foreign Stage in Application 2
	1-4 Foreign Stage in Application 2
	1-5 Adding a ConfigurationPropertyPlaceholderConfigurer
	1-6 Sample Resource: Data Source StockDS
	1-7 Static Resource Injection Using Static Resource Names: Annotations
	1-8 Static Resource Injection Using Static Resource Names: XML
	1-9 Static Resource Injection Using Static Resource Names: Annotations
	1-10 Static Resource Injection Using Static Resource Names: XML
	1-11 Custom Component Configuration
	1-12 Static Resource Injection Using Dynamic Resource Names: Annotations
	1-13 Static Resource Injection Using Dynamic Resource Names: XML
	1-14 Dynamic Resource Injection: Annotations
	1-15 Dynamic Resource Lookup Using JNDI
	2-1 recplay Application Configuration File config.xml: adapter Element
	4-1 Default eclipse.ini File
	4-2 Memory Resources
	4-3 Virtual Machine Path
	5-1 Accessing a Properties File
	7-1 Assembly Source for EPN With Nested Bean
	7-2 Assembly Source for EPN With all Nodes Nested
	8-1 GetHighVolume Query Element with CQL Code
	9-1 Event Type Repository
	9-2 MarketEvent Class
	9-3 MarketEvent Class
	9-4 EPN Assembly File event-type-repository
	9-5 Programmatically Registering an Event
	9-6 Specifying com.bea.welvs.ede.api.Type Data Types for Tuple Event Type Properties
	9-7 EPN Assembly File event-type-repository
	9-8 Specifying Java Data Types for java.util.Map Event Type Properties
	9-9 EPN Assembly File event-type-repository
	9-10 Programmatically Registering an Event
	9-11 EPN Assembly File With OSGi Reference to EventTypeRepository
	9-12 Accessing the EventTypeRepository in the MyBean Implementation
	9-13 Java Source File Using the @ServiceReference Annotation
	9-14 Java Source File Using the @Service Annotation
	10-1 EPN Assembly File Channel Id: priceStream
	10-2 Component Configuration File Channel Name: priceStream
	10-3 Channel as Relation: primary-key Attribute
	10-4 PriceEvent
	10-5 filterFanoutProcessor Oracle CQL Queries
	10-6 Using selector to Control Which Query Results are Output
	10-7 Batch Processing Channel
	10-8 Component Configuration File Header and config Element
	10-9 Component Configuration File Channel Element
	10-10 EPN Assembly File Channel Id: priceStream
	10-11 Component Configuration File Channel Name: priceStream
	10-12 Component Configuration File Header and config Element
	10-13 Component Configuration File Channel Element
	10-14 EPN Assembly File Channel Id: priceStream
	10-15 Component Configuration File Channel Name: priceStream
	10-16 Sample Channel Component Configuration File
	10-17 Channel EPN Assembly File
	11-1 wlevs:adapter Element for Inbound Adapter
	11-2 jms-adapter Element for Inbound Adapter
	11-3 jms-adapter Element With Tibco EMS JMS Configuration
	11-4 wlevs:adapter Element for Inbound Adapter
	11-5 jms-adapter Element for Inbound Adapter
	11-6 jms-adapter Elements for an Oracle WebLogic Server JMS Provider
	11-7 wlevs:adapter Element for Inbound Adapter
	11-8 jms-adapter Element for Inbound Adapter
	11-9 jms-adapter Element With Tibco EMS JMS Configuration
	11-10 Custom Converter for an Inbound JMS Adapter
	11-11 Specifying a Converter Class for an Inbound JMS Adapter in the EPN Assembly File
	11-12 Custom Converter for an Outbound JMS Adapter
	11-13 Specifying a Converter Class for an Outbound JMS Adapter in the EPN Assembly File
	13-1 Component Configuration File Name Values
	13-2 EPN Assembly File ID and Ref Values
	13-3 Component Configuration File: Coherence Cache
	13-4 Oracle Coherence Cache LocalListener Implementation
	13-5 Oracle Coherence Cache EPN Assembly File for a Cache Loader
	13-6 Oracle Coherence Cache LocalLoader Implementation
	13-7 Oracle Coherence Cache EPN Assembly File for a Cache Store
	13-8 Oracle Coherence Cache LocalStore Implementation
	13-9 Valid Oracle CQL Query Against a Cache
	14-1 bea-jaxws.xml File
	15-1 High-Level View of Input Adapter Class
	16-1 Implementing the StreamSink Interface
	16-2 Implementing the RelationSink Interface
	16-3 Implementing the RelationSource Interface
	17-1 EPN Assembly File Oracle CQL Processor Id: proc
	17-2 Component Configuration File Oracle CQL Processor Name: proc
	17-3 Default Processor Component Configuration
	17-4 Table Create SQL Statement
	17-5 Oracle CQL Query on Relational Database Table Stock
	17-6 Oracle Event Processing Server config.xml File With Data Source StockDS
	17-7 EPN Assembly File table Element
	17-8 EPN Assembly File table-source Element
	17-9 EPN Assembly File event-type element for a Table
	17-10 Oracle CQL Query Using Table Event Type StockEvent
	17-11 Query Configured to Allow Parallel Execution
	17-12 Query Configured to Allow Parallel Execution Across Partitions
	17-13 Fault Handler Class
	17-14 Code to Register a Fault Handler with an EPN Stage
	18-1 EPN Assembly File: Oracle Spatial Namespace and Schema Location
	18-2 spatial:context Element in EPN Assembly File
	18-3 spatial:context Element in EPN Assembly File
	18-4 Referencing spatial:context in an Oracle CQL Query
	18-5 EPN Assembly File: Oracle JDBC Data Cartridge Namespace and Schema Location
	18-6 jdbc:jdbc-context Element in EPN Assembly File: id
	18-7 Component Configuration File: Oracle JDBC Data Cartridge Namespace
	18-8 jc:jdbc-ctx Element in Component Configuration File
	18-9 jc:jdbc-ctx Element in Component Configuration File: name
	18-10 jc:jdbc-ctx Element in Component Configuration File: data-source
	18-11 jc:jdbc-ctx Element in Component Configuration File: function
	18-12 Referencing JDBC Application Context in an Oracle CQL Query
	19-1 EPN Assembly File EPL Processor Id: proc
	19-2 Component Configuration File EPL Processor Name: proc
	20-1 bdb-config Element
	20-2 Default bdb-config Element
	21-1 EmployeeEvent Event Type
	21-2 Data Feed File for EmployeeEvent Event Type
	22-1 Event Inspector JSON Event
	22-2 Event Inspector Service Local HTTP Pub-Sub Server
	22-3 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element
	22-4 Event Inspector Service Remote HTTP Pub-Sub Server
	22-5 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element
	22-6 Event Injection Component Configuration Settings
	22-7 Event Tracing Component Configuration Settings
	23-1 bundler.sh Command Line Options
	23-2 Using the Bundler Utility
	23-3 Bundle JAR Contents
	23-4 Service Registration Log Messages
	23-5 MyActivator Class Implementation
	23-6 Un-JAR the Database Driver
	23-7 Adding Export-Package to the Manifest Editor
	23-8 Adding a Bundle-Activator Element to the Manifest Editor
	23-9 Adding a DynamicImport-Package Element to the Manifest Editor
	23-10 Message Arguments
	23-11 Log Message Catalog
	23-12 Simple Text Catalog
	23-13 Locale-Specific Catalog
	24-1 Simple Failover EPN Assembly File
	24-2 Simple Failover Component Configuration Assembly File
	24-3 Simple Failover EPN Assembly File: Buffering Output Adapter
	24-4 Application Timestamp Configuration
	24-5 Configuring windowLength in the Buffering Output Adapter
	24-6 Simple Failover Component Configuration File With High Availability Adapters
	24-7 Simple Failover With Buffering EPN Assembly File
	24-8 Simple Failover With Buffering Component Configuration Assembly File
	24-9 Simple Failover EPN Assembly File: Buffering Output Adapter
	24-10 Application Timestamp Configuration
	24-11 Configuring windowLength in the Buffering Output Adapter
	24-12 Simple Failover With Buffering Component Configuration File
	24-13 Light-Weight Queue Trimming EPN Assembly File
	24-14 Light-Weight Queue Trimming Component Configuration Assembly File
	24-15 Light-Weight Queue Trimming EPN Assembly File: High Availability Input Adapter
	24-16 Light-Weight Queue Trimming EPN Assembly File: Broadcast Output Adapter
	24-17 High Availability Input Adapter: Default Configuration
	24-18 High Availability Input Adapter: Tuple Events
	24-19 High Availability Input Adapter: Key of One Event Property
	24-20 High Availability Input Adapter: Key of Multiple Event Properties
	24-21 MyCompoundKeyClass Implementation
	24-22 Application Timestamp Configuration
	24-23 Broadcast Output Adapter: Default Configuration
	24-24 Broadcast Output Adapter: Key of One Event Property
	24-25 Broadcast Output Adapter: Key of Multiple Event Properties
	24-26 MyCompoundKeyClass Implementation
	24-27 Light-Weight Queue Trimming Component Configuration File
	24-28 Precise Recovery With JMS EPN Assembly File
	24-29 Precise Recovery With JMS Component Configuration Assembly File
	24-30 Precise Recovery With JMS EPN Assembly File: High Availability Input Adapter
	24-31 Precise Recovery With JMS EPN Assembly File: Correlating Output Adapter
	24-32 High Availability Input Adapter: Default Configuration
	24-33 High Availability Input Adapter: Tuple Events
	24-34 High Availability Input Adapter: Key of One Event Property
	24-35 High Availability Input Adapter: Key of Multiple Event Properties
	24-36 MyCompoundKeyClass Implementation
	24-37 Application Timestamp Configuration
	24-38 Correlating Output Adapter Configuration: failOverDelay
	24-39 Inbound JMS Adapter Assembly File
	24-40 Inbound JMS Adapter Component Configuration File
	24-41 Creating the Correlated Source
	24-42 Correlating Output Adapter: correlatedSource
	24-43 Inbound and Outbound JMS Adapter Component Configuration File
	24-44 High Availability Input and Output Adapter Component Configuration File
	24-45 High Availability Input Adapter EPN Assembly File
	24-46 High Availability Input Adapter Component Configuration File
	24-47 Buffering Output Adapter EPN Assembly File
	24-48 Buffering Output Adapter Component Configuration File
	24-49 Broadcast Output Adapter EPN Assembly File
	24-50 Broadcast Output Adapter Component Configuration File
	24-51 Correlating Output Adapter EPN Assembly File
	24-52 Correlating Output Adapter Component Configuration File
	25-1 ActiveActiveGroupBean bean Element
	25-2 Common jms-adapter Selector Definitions
	25-3 Definition of Event Type PriceEvent
	25-4 EventPartitioner Class
	25-5 EventPartitioner Class Implementation
	25-6 ActiveActiveGroupBean bean Element
	25-7 jms-adapter Selector Definition for ocep-server-1
	25-8 Precise Recovery With JMS EPN Assembly File
	25-9 Precise Recovery With JMS Component Configuration Assembly File
	25-10 ActiveActiveGroupBean bean Element
	25-11 jms-adapter Element for Inbound JMS Adapters
	25-12 jms-adapter Selector Definition for ocep-server-1
	25-13 jms-adapter Element for Outbound JMS Adapters
	25-14 ActiveActiveGroupBean bean Element With groupPattern Attribute
	26-1 Annotated Custom Adapter Implementation
	26-2 Extended Component Configuration: Annotations
	26-3 Extended Component Configuration File: XSD
	26-4 Custom Adapter Implementation
	26-5 Extended Component Configuration
	C-1 Single-Row User Defined Function Implementation Class
	C-2 Single-Row User Defined Function for an Oracle CQL Processor
	C-3 Invoking the Single-Row User-Defined Function on an Oracle CQL Processor
	C-4 Single-Row User Defined Function Implementation Class
	C-5 Single-Row User Defined Function for an EPL Processor
	C-6 Invoking the Single-Row User-Defined Function on an EPL Processor
	C-7 Aggregate User Defined Function Implementation Class
	C-8 Aggregate User Defined Function for an Oracle CQL Processor
	C-9 Invoking the Aggregate User-Defined Function on an Oracle CQL Processor
	C-10 Aggregate User Defined Function Implementation Class
	C-11 Aggregate User Defined Function for an EPL Processor
	C-12 Invoking the Aggregate User-Defined Function on an EPL Processor
	C-13 User Defined Function Using Nested Bean Element
	C-14 User Defined Function Using Reference
	D-1 adapter Element Hierarchy
	D-2 http-pub-sub-adapter Element Hierarchy
	D-3 jms-adapter Element Hierarchy
	D-4 processor (EPL) Element Hierarchy
	D-5 processor (Oracle CQL) Element Hierarchy
	D-6 stream Element Hierarchy
	D-7 channel Element Hierarchy
	D-8 event-bean Element Hierarchy
	D-9 caching-system Element Hierarchy
	D-10 coherence-caching-system Element Hierarchy
	D-11 diagnostic-profiles Element Hierarchy
	D-12 filterFanoutProcessor Oracle CQL Queries
	D-13 Using selector to Control Which Query Results are Output
	G-1 Log Message Catalog Hierarchy
	G-2 Simple Text Catalog Hierarchy
	G-3 Log Message Catalog
	G-4 Simple Text Catalog
	H-1 Locale-Specific Log Message Catalog Hierarchy
	H-2 Locale-Specific Simple Text Catalog Hierarchy
	H-3 Locale-Specific Log Message Catalog
	H-4 Locale-Specific Simple Text Catalog
	I-1 @Activate Annotation
	I-2 HelloWorldAdapterConfig
	I-3 @Prepare Annotation
	I-4 @Rollback Annotation
	I-5 @Service Annotation

List of Figures

	1-1 Oracle Event Processing Application Lifecycle State Diagram
	2-1 The HelloWorld Example Event Processing Network
	2-2 The CQL Example Event Processing Network
	2-3 Oracle Event Processing Visualizer Logon Screen
	2-4 Oracle Event Processing Visualizer Dashboard
	2-5 CQL Application Screen: General Tab
	2-6 CQL Application: Event Processing Network Tab
	2-7 Oracle CQL Processor: General Tab
	2-8 Oracle CQL Processor: Query Wizard Tab
	2-9 Template Tab
	2-10 SSource Configuration Dialog
	2-11 Pattern Configuration Dialog: Pattern Tab
	2-12 Pattern Configuration Dialog: Define Tab
	2-13 Expression Builder: CustOrder
	2-14 Pattern Configuration Dialog: Define Tab With CustOrder Condition
	2-15 Expression Builder: NoApproval
	2-16 Expression Builder: Shipment
	2-17 Pattern Configuration Dialog: Define Tab Complete
	2-18 Measure Tab
	2-19 Expression Builder: orderid
	2-20 Expression Builder: amount
	2-21 Measure Tab: Complete
	2-22 Select Configuration Dialog: Project Tab
	2-23 Select Configuration Dialog: Project Tab Complete
	2-24 Output Configuration Dialog
	2-25 Inject Rule Confirmation Dialog
	2-26 CQL Rules Tab With Tracking Query
	2-27 Stream Visualizer: Showing Missing Events
	2-28 Oracle Event Processing Visualizer Logon Screen
	2-29 Oracle Event Processing Visualizer Dashboard
	2-30 CQL Application Screen: General Tab
	2-31 CQL Application: Event Processing Network Tab
	2-32 Oracle CQL Processor: General Tab
	2-33 Oracle CQL Processor: Query Wizard Tab
	2-34 Query Wizard: SSource
	2-35 SSource Configuration Dialog
	2-36 Query Wizard: Filter
	2-37 Connecting the SSource and Filter Icons
	2-38 Filter Configuration Dialog
	2-39 Filter Expression Builder
	2-40 Filter Configuration Dialog: After Adding the Filter
	2-41 Query Wizard: Select
	2-42 Select Configuration Dialog: Properties Selected
	2-43 Query Wizard: Output
	2-44 Output Configuration Dialog
	2-45 Inject Rule Confirmation Dialog
	2-46 CQL Rules Tab With View StockVolGt1000
	2-47 Oracle Event Processing Visualizer Logon Screen
	2-48 Oracle Event Processing Visualizer Dashboard
	2-49 CQL Application Screen: General Tab
	2-50 CQL Application: Event Processing Network Tab
	2-51 Oracle CQL Processor: General Tab
	2-52 Oracle CQL Processor: Query Wizard Tab
	2-53 Query Wizard: SSource for Moving Average Query
	2-54 SSource Configuration Dialog: Moving Average Query
	2-55 Query Wizard: Window for Moving Average Query
	2-56 Window Configuration Dialog: After Adding Window
	2-57 Query Wizard: Select for Moving Average Query
	2-58 Select Configuration Dialog: Source Property symbol Selected
	2-59 Select Configuration Dialog: Source Property symbol Mapped to Output Event Property
	2-60 Select Configuration Dialog: Source Property price Selected
	2-61 Expression Builder: Applying the AVG Function
	2-62 Select Configuration Dialog: With Expression
	2-63 Select Configuration Dialog: Source Property price Mapped to Output Event Property
	2-64 Validation Error: GROUP BY
	2-65 Group Tab: With symbol Grouping Property
	2-66 Query Wizard: Output
	2-67 Output Configuration Dialog
	2-68 Inject Rule Confirmation Dialog
	2-69 CQL Rules Tab With View MovingAverage
	2-70 Stream Visualizer: Showing Moving Average Query Output
	2-71 Oracle Spatial Example Event Processing Network
	2-72 Oracle Spatial Web Page
	2-73 Oracle Spatial Web Page: Bus Stop Arrivals Tab
	2-74 Oracle Spatial Web Page: Bus Tracking
	2-75 FX Example Event Processing Network
	2-76 The Signal Generation Example Event Processing Network
	2-77 Signal Generation Dashboard
	2-78 The Event Record and Playback Example Event Processing Network
	2-79 Oracle Event Processing Visualizer Logon Screen
	2-80 Oracle Event Processing Visualizer Dashboard
	2-81 Event Record Tab
	2-82 Start Recording Alert Dialog
	2-83 Event Playback Tab
	2-84 Start Playback Alert Dialog
	2-85 Stream Visualizer
	4-1 Install Dialog
	4-2 Add Site Dialog
	4-3 Install Dialog - Site Selected
	4-4 Install Dialog - Install Details
	4-5 About Eclipse
	4-6 About Eclipse Features Dialog
	4-7 Feature Plug-ins Dialog
	4-8 Install Dialog
	4-9 Add Site Dialog
	4-10 Select Local Site Archive Dialog
	4-11 About Eclipse
	4-12 About Eclipse Features Dialog
	4-13 Feature Plug-ins Dialog
	4-14 Configuration Details for Java 6
	5-1 Oracle Event Processing Project Structure
	5-2 New Project - Select a Wizard Dialog
	5-3 New Oracle Event Processing Application Project Wizard: Create an Oracle Event Processing Application
	5-4 New Oracle Event Processing Application Project Wizard: Oracle Event Processing Application Content
	5-5 New Oracle Event Processing Application Project Wizard: Template Dialog
	5-6 New Dialog
	5-7 New OEP Assembly File Dialog
	5-8 New Dialog
	5-9 New OEP Application Configuration File Dialog
	5-10 Oracle Event Processing Project build.properties File
	5-11 Oracle Event Processing Applications Export: Select Project Dialog
	5-12 Project Properties Dialog: Project Facets
	5-13 Modify Faceted Project
	5-14 Preferences Dialog
	5-15 Project Properties Dialog: Targeted Runtimes
	5-16 Builder Error
	5-17 Import Projects Dialog
	5-18 Project Properties Dialog: Project Facets
	5-19 Modify Faceted Project
	5-20 Preferences Dialog
	5-21 Project Properties Dialog: Targeted Runtimes
	5-22 Builder Error
	5-23 Preferences Dialog
	5-24 Oracle Event Processing IDE for Eclipse lib Directory
	5-25 Manifest Editor: Build Tab
	5-26 Manifest Editor - Runtime Tab
	5-27 JAR Selection Dialog
	5-28 Manifest Editor Runtime tab After Adding a JAR to the Classpath
	5-29 Manifest Editor MANIFEST.MF Tab
	5-30 Package Explorer
	5-31 Manifest Editor: Dependencies Tab
	5-32 Plug-in Selection Dialog
	5-33 Manifest Editor: Build Tab
	5-34 Oracle Event Processing IDE for Eclipse lib Directory
	5-35 Manifest Editor: Runtime tab
	5-36 Package Selection Dialog
	5-37 Manifest Editor Runtime tab After Exporting a Package
	5-38 Oracle Event Processing IDE for Eclipse lib Directory
	5-39 Manifest Editor: Dependencies tab
	5-40 Package Selection Dialog
	5-41 Manifest Editor Dependencies tab After Importing a Package
	5-42 Oracle Event Processing Problem Severities Dialog: Workspace
	6-1 Oracle Event Processing IDE for Eclipse Server View
	6-2 New Server: Define New Server Dialog (No Installed Runtimes)
	6-3 New Server: New Oracle Event Processing v11.1 Runtime Dialog
	6-4 New Server: Define New Server (Installed Runtimes) Dialog
	6-5 New Server: New Oracle Event Processing v11.1 Server
	6-6 New Server: New Oracle Event Processing v11 Server Dialog for a Local Server
	6-7 Oracle Event Processing IDE for Eclipse Server View
	6-8 New Server: Define New Server Dialog (No Installed Runtimes)
	6-9 New Server: New Oracle Event Processing v11.1 Runtime Dialog
	6-10 New Server: Define New Server (Installed Runtimes) Dialog
	6-11 New Server: New Oracle Event Processing v11.1 Server
	6-12 New Server: New Oracle Event Processing v11 Server Dialog for a Remote Server
	6-13 Preferences - Server - Installed Runtimes
	6-14 New Server Runtime Environment Dialog
	6-15 New Server Runtime Environment: New Oracle Event Processing v11.1 Runtime Dialog
	6-16 Starting an Oracle Event Processing Server
	6-17 Stopping an Oracle Event Processing Server
	6-18 Attaching to an Existing Local Oracle Event Processing Server Instance
	6-19 Attaching to an Existing Remote Oracle Event Processing Server Instance
	6-20 Stopping an Oracle Event Processing Server
	6-21 Adding a Project to an Oracle Event Processing Server
	6-22 Add and Remove Dialog
	6-23 Server View After Adding a Project
	6-24 Select Cluster Deployment Group Name Dialog
	6-25 Server View After Deploying (Publishing) a Project
	6-26 Server Overview Editor
	6-27 Editing the Domain Configuration File
	6-28 Oracle Event Processing Domain Configuration File config.xml
	6-29 Opening the Oracle Event Processing Visualizer
	6-30 Oracle Event Processing Visualizer
	6-31 Setting a Breakpoint
	6-32 Starting the Oracle Event Processing Server in Debug Mode
	7-1 Opening the EPN Editor from a Project
	7-2 EPN Editor
	7-3 Opening the EPN Editor from a Context or Configuration File
	7-4 EPN Editor
	7-5 EPN Flow Representation
	7-6 Filtering the EPN by Assembly File
	7-7 Zoom Level
	7-8 Optimize Layout
	7-9 Show/Hide Unconnected Beans
	7-10 Exporting the EPN as an Image File
	7-11 Printing the EPN
	7-12 Configuration Badging
	7-13 Link Source
	7-14 Link Source Assembly File
	7-15 Link Listener
	7-16 Link Listener Assembly File
	7-17 EPN With Nested Bean
	7-18 EPN With all Nodes Nested
	7-19 Event Type Repository Editor
	7-20 Node with Configuration Badge
	7-21 Component Configuration File: Hyperlinking to EPN Assembly File
	7-22 EPN Assembly File: Hyperlinking to Component Configuration File
	7-23 Oracle CQL Statement: Event Schema
	7-24 Corresponding Event Definition in EPN Assembly File
	7-25 Example Oracle Event Processing EPN
	7-26 Oracle Event Processing Type Browser
	7-27 Opening the FilterAsia EPN Assembly File
	7-28 Opening the FilterAsia Component Configuration File
	7-29 Creating a Basic Node
	7-30 New Basic Node
	7-31 Creating an Adapter Node
	7-32 New Adapter Wizard
	7-33 New Adapter Wizard - jms-inbound
	7-34 New Adapter Wizard - jms-outbound
	7-35 New Adapter Wizard - httppub
	7-36 New Adapter Wizard - httpsub
	7-37 New Adapter Node
	7-38 Creating a Processor Node
	7-39 New Processor Dialog
	7-40 New Processor Node
	7-41 Connecting Nodes: Connection Allowed
	7-42 Connecting Nodes: Connection Forbidden
	7-43 Valid Connections
	7-44 EPN Assembly File: Before Connection
	7-45 EPN Assembly File: After Connection
	7-46 Laying Out Nodes
	7-47 Renaming Nodes
	7-48 Deleting Nodes
	7-49 EPN Before Deleting a Channel Node
	7-50 Assembly File Before Deleting a Channel Node
	7-51 EPN After Deleting a Channel Node
	7-52 Assembly File After Deleting a Channel Node
	9-1 Event Type Repository Editor - JavaBean Event
	9-2 Event Type Repository Editor - Tuple Event
	10-1 EPN With Oracle CQL Processor and Down-Stream Channel
	10-2 Channel With Configuration Badge
	10-3 Channel With Configuration Badge
	10-4 EPN with Two Channels
	12-1 Built-In Pub-Sub Adapter For Local Publishing
	12-2 Built-In Pub-Sub Adapter For Remote Publishing
	12-3 Built-In Pub-Sub Adapter For Subscribing
	13-1 Cache as Processor Source
	13-2 Cache as Processor Sink
	20-1 Configuring Record and Playback in an EPN
	23-1 Foreign Stage Dependency Graph
	23-2 Preferences Dialog: Application Library Path
	23-3 Select Path Variable Dialog
	23-4 New Variable Dialog
	23-5 Select Path Variable: With Variable
	23-6 Variable Extension Dialog
	23-7 Preferences Dialog: Application Library Path With Path Variable
	23-8 Oracle Event Processing IDE for Eclipse lib Directory
	23-9 New Java Class Dialog
	23-10 Manifest Editor: Overview Tab
	23-11 Manifest Editor: Runtime Tab
	23-12 JAR Selection Dialog
	23-13 Manifest Editor: Dependencies Tab
	23-14 Package Selection Dialog
	23-15 Manifest Editor
	24-1 Oracle Event Processing High Availability: Primary and Secondary Servers
	24-2 Oracle Event Processing High Availability Lifecycle State Diagram
	24-3 Secondary Failure
	24-4 Primary Failure and Failover
	24-5 High Availability Adapters in the EPN
	24-6 High Availability and Scalability
	24-7 Precise Recovery with JMS
	24-8 Event Order
	24-9 Simple Failover EPN
	24-10 Simple Failover With Buffering EPN
	24-11 Light-Weight Queue Trimming EPN
	24-12 Precise Recovery With JMS EPN
	25-1 Event Partitioner EPN
	25-2 Oracle Event Processing ActiveActiveGroupBean Without High Availability
	25-3 Oracle Event Processing ActiveActiveGroupBean With High Availability
	25-4 EventPartitioner EPN
	25-5 New Java Class Dialog
	25-6 Precise Recovery With JMS EPN
	25-7 Oracle Event Processing ActiveActiveGroupBean With High Availability
	D-1 EPN With Oracle CQL Processor and Down-Stream Channel

List of Tables

	1-1 Resource Name Resolution
	2-1 Valid Order Workflow
	2-2 Invalid Order Workflow
	2-3 MATCH_RECOGNIZE Pattern Quantifiers
	2-4 Condition Definitions
	4-1 New Update Site Dialog Attributes
	4-2 Oracle Event Processing IDE for Eclipse Plug-Ins
	4-3 Oracle Event Processing IDE for Eclipse Plug-Ins
	5-1 Oracle Event Processing Project Artifacts
	5-2 Create an Oracle Event Processing Application Dialog
	5-3 Oracle Event Processing Application Content Dialog
	5-4 New OEP Assembly File Dialog
	5-5 New OEP Configuration File Dialog
	5-6 Oracle Event Processing Application Content Dialog
	5-7 Oracle Event Processing Problem Severities
	6-1 Eclipse and Oracle Event Processing Server Concepts
	6-2 New Server: Define New Server Dialog (No Installed Runtimes) Attributes
	6-3 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes
	6-4 New Server: Define New Server (Installed Runtimes) Dialog Attributes
	6-5 New Server: New Oracle Event Processing v11 Server Dialog Attributes for a Local Server
	6-6 New Server: Define New Server Dialog (No Installed Runtimes) Attributes
	6-7 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes
	6-8 New Server: Define New Server (Installed Runtimes) Dialog Attributes
	6-9 New Server: Oracle Event Processing v11 Server Dialog Attributes for a Local Server
	6-10 New Server Runtime Dialog Attributes
	6-11 New Server Runtime Dialog Attributes
	6-12 Add and Remove Dialog Attributes
	6-13 Server Overview Editor Attributes
	7-1 Oracle Event Processing Type Dialog
	7-2 EPN Editor Icons
	7-3 New Adapter Wizard - Page 1
	7-4 New Processor Dialog
	9-1 Data Types for Event Types
	9-2 csvgen Adapter Types
	9-3 EPN Assembly File event-type Element Property Attributes
	9-4 SQL Column Types and Oracle Event Processing Type Equivalents
	11-1 jms-adapter Inbound Child Elements
	11-2 jms-adapter Outbound Component Configuration Child Elements
	12-1 http-pub-sub-adapter for Publishing Component Configuration Child Elements
	12-2 http-pub-sub-adapter for Subscribing Component Configuration Child Elements
	14-1 bea-jaxws.xml File Attributes
	15-1 Interfaces to Support Suspending and Resuming an Adapter
	16-1 Interfaces for Implementing an Event Source
	16-2 Interfaces Implemented by Sender Classes
	16-3 Comparison of Event Beans and Spring Beans
	17-1 EPN Assembly File table Element Attributes
	18-1 spatial:context Element Attributes
	20-1 Child Elements of bdb-config
	20-2 Child Elements of record-parameters
	20-3 Child Elements of playback-parameters
	21-1 Load Generator Properties
	22-1 Event Inspector JSON Event Required Attributes
	23-1 Oracle Event Processing Application LIbrary Path
	23-2 Oracle Event Processing Application LIbrary Path Variable
	23-3 bundler.sh Command Line Options
	23-4 Factory Class and Service Interfaces
	23-5 New Java Class Parameters
	23-6 weblogic.i18ngen Utility Options
	24-1 Oracle Event Processing High Availability Quality of Service
	24-2 Oracle Event Processing High Availability Application Types
	24-3 Child Elements of wlevs:adapter for the High Availability Input Adapter
	24-4 High Availability Input Adapter Instance Properties
	24-5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter
	24-6 Child Elements of wlevs:adapter for the Buffering Output Adapter
	24-7 Buffering Output Adapter Instance Properties
	24-8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter
	24-9 Child Elements of wlevs:adapter for the Broadcast Output Adapter
	24-10 Broadcast Output Adapter Instance Properties
	24-11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter
	24-12 Child Elements of wlevs:adapter for the Correlating Output Adapter
	24-13 Correlating Output Adapter Instance Properties
	24-14 Child Elements of ha-correlating-adapter for the Correlating Output Adapter
	25-1 Event Partitioner Channel Threading Options
	25-2 New Java Class Options for EventPartitioner
	25-3 Oracle Event Processing Server Configuration File groups Element Configuration
	25-4 Oracle Event Processing Server Configuration File groups Element Configuration
	C-1 Attributes of the wlevs:adapter Application Assembly Element
	C-2 Attributes of the wlevs:application-timestamped Application Assembly Element
	C-3 Attributes of the wlevs:cache Application Assembly Element
	C-4 Attributes of the wlevs:cache-listener Application Assembly Element
	C-5 Attributes of the wlevs:cache-loader Application Assembly Element
	C-6 Attributes of the wlevs:cache-source Application Assembly Element
	C-7 Attributes of the wlevs:cache-store Application Assembly Element
	C-8 Attributes of the wlevs:caching-system Application Assembly Element
	C-9 Attributes of the wlevs:channel Application Assembly Element
	C-10 Attributes of the wlevs:event-bean Application Assembly Element
	C-11 Attributes of the wlevs:event-type Application Assembly Element
	C-12 Attributes of the wlevs:factory Application Assembly Element
	C-13 Attributes of the wlevs:function Application Assembly Element
	C-14 Attributes of the wlevs:instance-property Application Assembly Element
	C-15 Attributes of the wlevs:listener Application Assembly Element
	C-16 Attributes of the wlevs:metadata Application Assembly Element
	C-17 Attributes of the wlevs:processor Application Assembly Element
	C-18 Attributes of the wlevs:properties Application Assembly Element
	C-19 Attributes of the wlevs:property Application Assembly Element
	C-20 Attributes of the wlevs:property Application Assembly Element
	C-21 Attributes of the wlevs:source Application Assembly Element
	C-22 Attributes of the wlevs:table Application Assembly Element
	C-23 Attributes of the wlevs:table-source Application Assembly Element
	D-1 Attributes of the binding Component Configuration Element
	D-2 Attributes of the database Component Configuration Element
	D-3 Attributes of the group-binding Component Configuration Element
	D-4 Attributes of the listeners Component Configuration Element
	D-5 Attributes of the param Component Configuration Element
	D-6 Attributes of the params Component Configuration Element
	D-7 Attributes of the query Component Configuration Element
	D-8 Attributes of the rule Component Configuration Element
	D-9 Attributes of the view Component Configuration Element
	E-1 Attributes of the wlevs:deployment Deployment Element
	F-1 Child Elements of: auth-constraint
	F-2 Child Elements of: bdb-config
	F-3 Child Elements of: channel-resource-collection
	F-4 Child Elements of: cluster
	F-5 Child Elements of: connection-pool-params
	F-6 Child Elements of: data-source-params
	F-7 Child Elements of: driver-params
	F-8 Child Elements of: debug
	F-9 Child Elements of: event-store
	F-10 Child Elements of: exported-jndi-context
	F-11 Child Elements of: jetty
	F-12 Child Elements of: jetty-web-app
	F-13 Child Elements of: jmx
	F-14 Child Elements of: jndi-context
	F-15 Child Elements of: log-file
	F-16 Child Elements of: log-stdout
	F-17 Child Elements of: logging-service
	F-18 Child Elements of: netio
	F-19 Child Elements of: netio-client
	F-20 Child Elements of: rdbms-event-store-provider
	F-21 Child Elements of: rmi
	F-22 Child Elements of: scheduler
	F-23 Child Elements of: server-config
	F-24 Child Elements of: services
	F-25 Child Elements of: show-detail-error-message
	F-26 Child Elements of: ssl
	F-27 Child Elements of: transaction-manager
	F-28 Child Elements of: use-secure-connections
	F-29 Child Elements of: weblogic-instances
	F-30 Child Elements of: weblogic-rmi-client
	F-31 Child Elements of: work-manager
	F-32 Child Elements of: xa-params
	G-1 Attributes of the message_catalog Element
	G-2 Attributes of the logmessage Element
	G-3 Attributes of the message Element
	H-1 Attributes of the locale_message_catalog Element
	H-2 Attributes of the logmessage Element
	H-3 Attributes of the message Element
	I-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Preface

This document describes how to create, deploy, and debug Oracle Event Processing applications.

Oracle Event Processing (formerly known as the WebLogic Event Server) is a Java server for the development of high-performance event driven applications. It is a lightweight Java application container based on Equinox OSGi, with shared services, including the Oracle Event Processing Service Engine, which provides a rich, declarative environment based on Oracle Continuous Query Language (Oracle CQL) - a query language based on SQL with added constructs that support streaming data - to improve the efficiency and effectiveness of managing business operations. Oracle Event Processing supports ultra-high throughput and microsecond latency using JRockit Real Time and provides Oracle Event Processing Visualizer and Oracle Event Processing IDE for Eclipse developer tooling for a complete real time end-to-end Java Event-Driven Architecture (EDA) development platform.

Audience

This document is intended for programmers creating Oracle Event Processing applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following:

	
Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

	
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
Oracle Fusion Middleware Java API Reference for Oracle Event Processing

	
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

	
Oracle Database SQL Language Reference at http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

	
SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC 9075-3:1999, and ISO/IEC 9075-4:1999)

	
Oracle Event Processing Forum: http://forums.oracle.com/forums/forum.jspa?forumID=820

	
Oracle Event Processing Samples: http://www.oracle.com/technologies/soa/complex-event-processing.html

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

For this release, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.7.x, the last columns denote which documentation release contains the update.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html.

	Sections	Changes Made	February 2013
	
Entire Guide

	
Product renamed to Oracle Event Processing

	
X

	
Chapter 1 Overview of Creating Oracle Event Processing Applications

	
	

	
Section 1.1.1, "Key Concepts Underlying Oracle Event Processing Applications"

	
Section added to describe key concepts in the Oracle Event Processing programming model.

	
X

	
Section 1.2, "How an Oracle Event Processing Application Works"

	
Section added to provide an overview of how the components and technologies of an application work together.

	
X

	
Section 1.3, "Overview of Events, Streams and Relations"

	
Section added to introduce events, streams and relations.

	
X

	
Chapter 2 Oracle Event Processing Samples

	
	

	
Chapter 2, "Oracle Event Processing Samples"

	
Chapter moved from Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

	
X

	
Section 2.9, "Signal Generation Example"

	
Corrected sample description.

	
X

	
Chapter 3 Getting Started with Developing Oracle Event Processing Applications

	
	

	
Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Chapter created from content formerly in an overview chapter.

	
X

	
Chapter 8 Walkthrough: Assembling a Simple Application

	
	

	
Chapter 8, "Walkthrough: Assembling a Simple Application"

	
Chapter added. This is a developer's step-by-step introduction to building an Oracle Event Processing application.

	
X

	
Chapter 9 Defining and Using Event Types

	
	

	
Chapter 9, "Defining and Using Event Types"

	
Chapter updated with introductory information. Content on creating event types from non-JavaBean classes removed.

	
X

	
Chapter 9 Defining and Using Event Types

	
	

	
Section 10.1.8, "Handling Faults in Channels"

	
Added a summary on how you can handle Oracle CQL faults in channels by writing a fault handling class.

	
X

	
Chapter 11 Integrating the Java Message Service

	
	

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Updated the session-ack-mode-name AUTO_ACKNOWLEDGE description.

	
X

	
Chapter 13 Integrating a Cache

	
	

	
Chapter 13, "Integrating a Cache"

	
Chapter updated with introductory information and restructured for clarity.

	
X

	
Chapter 16 Handling Events with Java

	
	

	
Chapter 16, "Handling Events with Java"

	
Chapter added. Chapter presents information about implementing event sources and sinks in event beans and Spring beans.

	
X

	
Chapter 17 Querying an Event Stream with Oracle CQL

	
	

	
Section 17.6, "Handling Faults"

	
Section added to describe how to handle faults that occur in CQL code.

	
X

	
Chapter 22 Testing Applications with Event Inspector

	
	

	
Chapter 22, "Injecting Events" and Chapter 22, "Tracing Events"

	
Sections updated with information describing how to configure event injection and tracing in component configuration files.

	
X

	
Appendix D Schema Reference: Component Configuration wlevs_application_config.xsd

	
	

	
Section D.52, "heartbeat"

	
Added content describing the heartbeat child element, which specifies a new heartbeat timeout for a system-timestamped channel.

	
X

Part I

Getting Started with Creating Oracle Event Processing Applications

Part I contains the following chapters:

	
Chapter 1, "Overview of Creating Oracle Event Processing Applications"

	
Chapter 2, "Oracle Event Processing Samples"

	
Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

1 Overview of Creating Oracle Event Processing Applications

This chapter introduces the tools, technologies, and processes through which you can build Oracle Event Processing applications, including the programming model, how applications work, and key concepts and technologies.

This chapter includes the following sections:

	
Section 1.1, "Oracle Event Processing Application Programming Model"

	
Section 1.2, "How an Oracle Event Processing Application Works"

	
Section 1.3, "Overview of Events, Streams and Relations"

	
Section 1.4, "Overview of Application Configuration"

	
Section 1.5, "Oracle Event Processing APIs"

	
Section 1.6, "Packaging an Application"

	
Section 1.7, "Oracle Event Processing Application Lifecycle"

1.1 Oracle Event Processing Application Programming Model

This section provides an overview of the concepts, technologies, and tools that are part of building Oracle Event Processing applications.

An Oracle Event Processing application receives and processes data streaming from an event source. That data might be coming from one of a wide variety of places, including a monitoring device, a financial services company, or a motor vehicle. Using the data, the application might identify and respond to patterns, look for extraordinary events and alert other applications, or do some other work that requires immediate action based on quickly changing data.

When developing an Oracle Event Processing application, you assemble a network of components that each have a role in processing the data. This event processing network is essentially linear, with events passing through it from one end to the other. Along the way, components execute queries in a language specifically designed for streaming data, execute logic in Java, and create connections with other external components.

Section 1.1.1, "Key Concepts Underlying Oracle Event Processing Applications"

Section 1.1.2, "Component Roles in an Event Processing Network"

Section 1.1.3, "Tools and Supporting Technologies for Developing Applications"

1.1.1 Key Concepts Underlying Oracle Event Processing Applications

Applications you build with Oracle Event Processing are based on concepts and technologies that are a mix of the familiar and (if you're new to event-based applications) unfamiliar. The following list briefly describes the key concepts and technologies that underlie how event processing networks work.

	
Applications leverage the database programming model. Some of the programming model in Oracle Event Processing applications is conceptually an extension of what you find in database programming. Events are similar to database rows in that they are tuples against which you can execute queries (with a language that is an extension of SQL). In other words, if you know relational databases, much of this will seem familiar.

For a closer look at the similarity between database programming and Oracle Event Processing applications, see Section 1.3, "Overview of Events, Streams and Relations".

	
Stages represent discrete functional roles. The staged structure of an event processing network (EPN) provides a means for you to execute different kinds of logic against events flowing through the network. This includes query logic with Oracle Continuous Query Language (Oracle CQL) as well as logic in Java. It also provides a way to capture multiple processing paths with a network that branches into multiple downstream directions based on discoveries your code makes.

For a list of roles stages play in an EPN, see Section 1.1.2, "Component Roles in an Event Processing Network". For a closer look at the pieces of an EPN, see Section 1.2, "How an Oracle Event Processing Application Works".

	
Stages transmit events through an EPN by acting as event sinks and event sources. The stages in an EPN are able to receive events (as event sinks) and/or send events (as event sources). This includes stage components that come with Oracle Event Processing as well as components you build, such as your own adapters and beans.

For more about implementing your own event sinks and sources, see Chapter 16, "Handling Events with Java"

	
Events are handled either as streams or relations. The concept of a stream, unique to streaming event-based applications, captures the fact that events arrive at your application sequentially by timestamp. Contrast this with rows in a database, where the table rows have no inherent relationship to one another aside from schema. However, many queries of events in stream result in a relation, in which events could be related in a way other than their relative sequence in time (similar to database query results).

For more on streams and relations, see Section 1.3, "Overview of Events, Streams and Relations".

1.1.2 Component Roles in an Event Processing Network

The core of Oracle Event Processing applications you build is an event processing network (EPN). You build an EPN by connecting components (also known as stages) that each have a role in processing events that pass through the network. When developing an Oracle Event Processing application, you identify which kinds of components will be needed. As you add components to the EPN, you configure each as well as their connections with one another. As you use the IDE to build the EPN, you arrange and connect components in a roughly linear shape in which events will enter from the left end, move through the EPN and exit or terminate at the right end.

For a high-level overview of an EPN using an application example, including fuller descriptions of the technologies involved, see Section 1.2, "How an Oracle Event Processing Application Works".

The EPN components you use provide ways to:

	
Exchange event data with external sources. Through adapters and other stages, you can connect external components to the EPN of your application to add ways for data, including event data, to pass into or out of the EPN.

These external components include those in the following list (you can also build your own).

	
Relational databases. You can access a database table from within Oracle CQL code, querying the database as you would with SQL.

	
Caches. By adding a cache stage to an EPN, you can exchange data with the cache.

	
Java Message Service (JMS). With the JMS adapter, you can exchange messages with a JMS destination without writing the Java code typically needed for it.

	
HTTP publish-subscribe server. The HTTP pub-sub adapter simplifies exchanging messages with an HTTP publish-subscribe server.

	
Model event data so that it can be handled by application code. You implement or define event types that model event data so that application code can work with it. For more information, see Chapter 9, "Defining and Using Event Types".

	
Query and filter events. The Oracle Continuous Query Language (Oracle CQL) is an extension of the SQL language through which you can query events as you would data in a database. Oracle CQL includes features specifically intended for querying streaming data. You add Oracle CQL code to an event processing network by adding a processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

	
Execute Java logic to handle events. To an EPN you can add Java classes that receive and send events just as other EPN stages do. Logic in these classes can retrieve values from events, create new events, and more. For more information, see Chapter 16, "Handling Events with Java".

For IDE reference information on creating event processing networks, see Section 7.4, "Using the EPN Editor".

1.1.3 Tools and Supporting Technologies for Developing Applications

Included with Oracle Event Processing is a set of tools and supporting technologies you can use to develop applications. These include tools for building and debugging applications, testing applications in a lightweight way, accessing underlying functionality with Java, and designing Oracle CQL queries.

The following lists some of these tools and technologies:

	
The Oracle Event Processing IDE for Eclipse provides features specifically designed to make developing Oracle Event Processing easier, including an EPN Editor for graphically designing an event processing network. For more information, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse".

For a step-by-step introduction to using the IDE to build a simple application, see Chapter 8, "Walkthrough: Assembling a Simple Application".

	
By using the load generator with the csvgen adapter, you can more easily debug an application in the early stages of development. The load generator is a tool that reads data from a comma-separated text file and feeds the data to your EPN as event data. For more information, see Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter".

	
The Oracle Event Processing Java API includes classes for work such as implementing stages in the event processing network, extending included functionality, managing the server, and so on. For more information, see Section 1.5, "Oracle Event Processing APIs".

	
Oracle Event Processing Visualizer is a web-based user interface through which you can design Oracle CQL queries and configure Oracle Event Processing applications on the server. For more information, see "Overview of Using Oracle Event Processing Visualizer" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
You connect and configure components through standard XML configuration files. Much of the work of writing these files is done for you when you use the IDE to assemble the event processing network. Yet there are many settings you might need to make by editing the files directly. For more on configuration files, see Section 1.4, "Overview of Application Configuration".

	
You can improve scalability and promote high availability by using certain application design patterns, server resources, and configuration conventions. For more information, see Chapter 25, "Developing Scalable Applications" and Chapter 24, "Developing Applications for High Availability".

1.2 How an Oracle Event Processing Application Works

As with many enterprise-scale applications, an Oracle Event Processing application is full of "connected-to" relationships. For example, an adapter might be connected to a processor, which might be connected to an event bean, which might be connected to a external data source, and so on. The connections aren't necessarily in that order, but you get the idea.

Events arrive from an outside source, then move through the application's event processing network (EPN). Along the way they might be filtered, queried, and otherwise processed as needed by EPN components that you put in place.

For example, take a look at a simple TradeReport application you can build using the topics described in Chapter 8, "Walkthrough: Assembling a Simple Application".

[image: Description of tradereport_finishedepn.png follows]

The following sections describe the role of each component in the application.

Event Information is Received in Its Raw Form

In the TradeReport example, the event data source is simply a text file with rows of comma-separated values. To try things out, you can use such a file in combination with the load generator included with Oracle Event Processing.

An event data source is outside the application, yet connected though an adapter that knows how to retrieve its data. The event source could be something physically near (such as another application in the organization) or it could be quite far away (perhaps a temperature sensor in a server room in another city).

For information on event data and creating event types, see Chapter 9, "Defining and Using Event Types".

For step-by-step content on capturing event data in the TradeReport application, see Section 8.3, "Create an Event Type to Carry Event Data".

Adapters Connect External Components to the EPN

In the TradeReport example, the event data source is connected to the event processing network through an adapter that knows how to receive event data sent from the CSV file. The adapter converts the incoming data into instances of an event type that the EPN can work with.

You can use an adapter to either receive incoming or send outgoing data. Adapters provided with Oracle Event Processing give you access to CSV files and also to systems such as the Java Message Service or an HTTP Publish-Subscribe server. You can also develop your own adapters for integrating systems that aren't supported by default.

When configuring an input adapter, you specify how the event data should be bound to an instance of an event type that you've defined in the EPN.

For more information, see the following:

Chapter 11, "Integrating the Java Message Service"

Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

Chapter 13, "Integrating a Cache"

Chapter 15, "Integrating an External Component Using a Custom Adapter"

Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

For step-by-step content on adding a csvgen adapter to receive CSV content in the TradeReport application, see Section 8.4, "Add an Input Adapter to Receive Event Data".

Event Types Provide Useful Structure for Event Data

In the TradeReport application, the input adapter converts the incoming event data from a set of comma-separated values into property values of an event type instance that's defined as a Java class.

An event type provides a predictable structure for event data that other code in your application can use. Examples of that code include an Oracle CQL query that filters the events to discover those to act on, Java code in a bean that creates new kinds of events based on what your application received, and code to retrieve values and merge them with values from another data source.

Event types define properties that provide access to event data. Adapters receive incoming events from different event sources, such as the Java Messaging System (JMS) or financial market data feeds. You must define an Oracle Event Processing event type for these events before code is able to work with them.

You specify event types when you're configuring the EPN. With the structure of the raw event data in hand, you can define an event type that best suits your application's needs. The general best practice for defining an event type is to write a JavaBean class whose properties map to the event data that your application will use. You can also define event types as simple tuples and Java Map instances.

For more information, see Chapter 9, "Defining and Using Event Types"

For step-by-step content on defining an event type for the TradeReport application, see Section 8.3, "Create an Event Type to Carry Event Data".

Channels Transfer Events from Stage to Stage

In the TradeReport application, the input adapter transmits events to an Oracle CQL processor by sending the events through a channel.

Channels connect stages in an event processing network. Between most components you will add a channel that listens for events coming from one stage and sends those events to another stage.

For more information on adding channels, see Chapter 10, "Connecting EPN Stages Using Channels".

For step-by-step content on adding a channel to the TradeReport application, see Section 8.5, "Add a Channel to Convey Events".

Processors Contain Query Code to Examine Events

The TradeReport application includes a processor that contains a simple Oracle Continuous Query Language (Oracle CQL) query to filter the stream of received events down to only those that meet certain criteria. As events flow through the processor, the Oracle CQL code executes, acting as a filter to determine which events get passed to the next stage.

The logic of the application relies on the specific qualities of events flowing through it. In this application, a processor stage is a place to discover those qualities by using Oracle CQL code to look for occurrences of particular data or trends.

Because it is a great deal like the SQL language used to query more static, relational data sources, the Oracle CQL language is a powerful tool to discover information about data represented by events. For example, Oracle CQL contains a wide assortment of functions ranging from simple count() and sum() functions to sophisticated statistics functions.

Oracle CQL is like SQL, but also includes functionality intended specifically for writing queries that account for a characteristic typically not as important when querying static databases: the passage of time. Through these time-related features, you can, for example, write code that defines specific windows, such as from the present to the preceding 5 milliseconds. Your queries can execute to isolate this window as events pass through.

You can also use the code in Oracle CQL processor to collect and combine data from a variety of sources, including a cache and a relational database. Using a cache, for example, gives you a place to put frequently-retrieved data where performance will be faster.

The Oracle CQL engine is also extensible with cartridges that make additional functionality available to your Oracle CQL code.

For more information on Oracle CQL, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For step-by-step information on defining an Oracle CQL query in the TradeReport application, see Section 8.8, "Add an Oracle CQL Processor to Filter Events".

Beans Provide a Place for Java Logic

Once the TradeReport application has processed events with Oracle CQL, it passes the resulting events to an event bean that receives the events and prints to the console data contained in each event type instance.

In an EPN, a bean provides a place for you to execute Java code over events that are passing through. A bean can receive and sent events. For example, a bean might receive events of one type, then retrieve their data to perform some calculation or lookup using the data. The bean could then create new events from the newly generated data before passing the new events along to another stage.

You can write and configure beans as either Spring beans or event beans. Spring beans are managed by the Spring framework, and are a good choice if you want to integrate your bean to an existing Spring deployment. Event beans, on the other hand, use Oracle Event Processing conventions for configuring beans so that they're managed by the Oracle Event Processing server. With an event bean, for example, you get the support of Oracle Event Processing server features such as monitoring and event recording and playback (useful for debugging an application).

For more information on writing and using Java classes that handle events, see Chapter 16, "Handling Events with Java".

For step-by-step content on adding an event bean to the TradeReport application, see Section 8.6, "Create a Listener to Receive and Report Events".

Configuration Files Define an EPN and Its Components

The EPN presence of and connections between TradeReport application stages is configured in an EPN assembly XML file. There is also a component configuration file which, though it isn't used in this case, could define runtime configuration for the components.

The EPN assembly file is what you are writing as you assemble an event processing network using the IDE (the EPN editor is essentially a user interface for designing EPN assembly files). What's in the EPN assembly file declares the stages and determines how they interact, including which direction events flow when moving from one stage to another. The EPN assembly file also sets default values for component settings, or values that you won't need to change at runtime.

With a component configuration file, on the other hand, you can specify configuration data that an administrator can later change while the application is running. The component configuration file is where Oracle CQL code is typically written (as configuration for a processor component).

For more information on configuration files, see Section 1.4, "Overview of Application Configuration".

Design and Configuration Conventions Scalability and High Availability

While the simple TradeReport application doesn't demonstrate them, there are design patterns that you can use to ensure that your application remains available and scales well.

When ensuring that your application remains highly available, you integrate application design patterns, server resources, and configuration conventions so that your deployed application continues to fulfill its role even in the event of software or hardware failures.

A scalable Oracle Event Processing application incorporates design patterns with implementation and configuration conventions to ensure that the application functions well as the event load increases.

For more information, see the following:

Chapter 24, "Developing Applications for High Availability"

Chapter 25, "Developing Scalable Applications"

1.3 Overview of Events, Streams and Relations

An Oracle Event Processing application handles events that arrive in a stream as raw event data, are converted to event type instances inside the application, and move from one application stage to another in an event processing network. Along the way, the events might be filtered with Oracle CQL queries, handled by Java code, stored in a cache, forwarded to other applications, and so on.

But what is an event? With the emphasis on the streaming aspect of event data, it can be easy to forget how much events are like rows in a database. In application terms, an event is a tuple, or set of values. Like a relational database row, an event has a schema in which each value has specific constraints, such as a particular data type. An event's schema defines its set of properties (where values will go) and their types.

Where events are unlike database rows is in the importance of time. In a stream of events, when an event arrives, including which event arrives before or after another event, can make all the difference. As a result, your application needs to be able to account for time and sequence.

For example, in an application that processes stock trades, event tuples made up of stock symbol, price, last price, percentage change, and volume would likely arrive one after the other in the order in which each trade was executed. Your application's logic might look for trades of one stock that occurred immediately after trades of another.

In other words, in an event processing application the sequence in which events occur in a stream is as important as the data types and values of each event property. As a result, conventions of the Oracle Event Processing programming model reflect the importance of time and sequence. Your code should be able to discover which events are related to one another based on certain criteria (such as a shared stock symbol). But it also needs to be able to discover sequence patterns (such as trades within fifteen seconds of one another). And it should be able to discover these things with very low latency as the events arrive at your application.

To account for both the sequential and relational aspects of event data, Oracle Event Processing uses the concepts of streams and relations.

	
A stream is a potentially infinite sequence of events. Like rows in a database, the events are tuples, yet each has its own timestamp. In a stream, the events must be ordered by time, one after the other, so that timestamps do not decrease from one event to the next (although there might be events in a stream that have the same timestamp).

	
In a relation, sequence might be unimportant (as with the results of a database query). Instead, events in a relation are typically related because they met certain criteria. For example, events in a relation might be the result of a query executed against a stream of stock trades, where the query was looking for trade volumes above a particular level.

Consider that stream of stock trade events. The events are arriving in sequence, each with its own timestamp (perhaps the time when the trade occurred). To isolate the share price for trades that occurred within 5 seconds of one another, you query the stream (received from StockTradeChannel) with the following Oracle CQL code:

select price from StockTradeChannel [range 5 seconds]

Because it uses a window -- [range 5 seconds] -- to isolate the events, this query's output is a relation. Though the events returned from the query have timestamps, they are unordered in the relation. Because the incoming events are in a stream, the query will execute continuously against every 5 seconds' worth of events as they pass into the query processor. As new events come along, those meeting the query terms are inserted into the relation, while those leaving (pushed out, actually) are deleted from the relation.

Why does this matter? A stream's integrity as a stream is important. Technically, a stream is a continuously moving -- well, streaming -- and ordered set of tuples. In a stream, every event can be said to be "inserted," having been put into the stream by its source, one after the other. When you get a subset of the stream with a query, you no longer have something that is ordered. And once you have the subset in hand, you might want to further isolate events by executing Oracle CQL code that queries the relations that result from queries of streams.

For this reason, examples in the Oracle CQL reference show the output of a query as events that are, as a result of the query and at that particular place in time, either inserted or deleted.

Before passing a relation along to the next stage in the EPN, you can convert it back into a stream by using an operator such as IStream.

For more information, see:

	
Section 10.1.2, "Channels Representing Streams and Relations"

	
"Streams and Relations" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

1.4 Overview of Application Configuration

You configure Oracle Event Processing applications through XML files that are based on standard schemas. When you install Oracle Event Processing, XSD files for these schemas are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd.

As you assemble an event processing network (EPN), even if you are using the IDE, you are creating an EPN assembly XML file. An entry for a stage in this file adds that stage to the EPN and defines its connections with other stages. For more on this file, see Section 1.4.1, "Overview of EPN Assembly Files".

Each component in your event processing network (adapter, processor, channel, or event bean) can have associated configuration XML. By providing this configuration, you provide a way for the component's configuration to be edited at runtime. (Only processors are required to have a configuration file.) Configuration XML for components can be grouped into a single component configuration file or divided among multiple files, depending on the needs of your development process. For more on component configuration files, see Section 1.4.2, "Overview of Component Configuration Files".

Other aspects of an Oracle Event Processing application might require their own configuration files. These include caching provided by Oracle Coherence. For information about other configuration, see documentation sections related to those technologies.

1.4.1 Overview of EPN Assembly Files

When you are assembling an event processing network (EPN) using the IDE, you are defining the EPN in an assembly file. The EPN assembly file is an XML file whose shape is based on the Spring framework XML configuration file. The EPN assembly file schema extends the Spring configuration schema.

The spring-wlevs-v11_1_1_6.xsd schema file describes the structure of EPN assembly files. When you install Oracle Event Processing, XSD files such as this one are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd..

The structure of EPN assembly files is as follows. There is a top-level root element named beans that contains a sequence of sub-elements. Each individual sub-element contains the configuration data for an Oracle Event Processing component. For example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

For some Oracle Event Processing features, you specify some configuration in the EPN assembly file and some in the component configuration file.

For more information, see:

	
Section 5.3, "Creating EPN Assembly Files"

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Appendix B, "EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd"

1.4.1.1 Nesting Stages in an EPN Assembly File

When you define a child stage within a parent stage in an EPN, the child stage is said to be nested. Only the parent stage can specify the child stage as a listener.

Example 1-1 shows the EPN assembly source in which HelloWorldBean is nested within the helloworldOutputChannel. Only the parent helloworldOutputChannel may specify the nested bean as a listener.

Example 1-1 EPN Assembly File With Nested Bean

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutput" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

Alternatively, you can define this EPN so that all nodes are nested as Example 1-2 shows. The helloworldAdapter, the outermost parent stage, is the only stage accessible to other stages in the EPN.

Example 1-2 EPN Assembly File With all Nodes Nested

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message"
 value="HelloWorld - the current time is:"/>
 <wlevs:listener>
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener>
 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener>
 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent">
 <wlevs:listener>
 <bean
 class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
 </wlevs:processor>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
</wlevs:adapter>

For more information, see Section 7.2.9, "Nested Stages".

1.4.1.2 Referencing Foreign Stages in an EPN Assembly File

You can refer to a stage that is in another Oracle Event Processing application. A stage from another application is considered a foreign stage. You do this by id attribute when you define both the source and target stage in the same application.

	
Note:

You can't connect a processor stage to a channel that is a foreign stage.

To refer to a stage you define in a different application, you use the following syntax:

FOREIGN-APPLICATION-NAME:FOREIGN-STAGE-ID

Where FOREIGN-APPLICATION-NAME is the name of the application in which you defined the foreign stage and FOREIGN-STAGE-ID is the id attribute of the foreign stage.

Example 1-3 shows how the reference in application1 to the foreign stage HelloWorldBeanSource that you define in application application2.

Example 1-3 Application 1 Referencing Foreign Stage in Application 2

<wlevs:stream id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="application2:HelloWorldBeanSource"/>
</wlevs:stream>

Example 1-4 Foreign Stage in Application 2

<wlevs:event-bean id="HelloWorldBeanSource"
 class="com.bea.wlevs.example.helloworld.HelloWorldBeanSource"
 advertise="true"/>

The following stages cannot be foreign stages:

	
Cache

When creating Oracle Event Processing applications with foreign stages, you must consider foreign stage dependencies when assembling, deploying, and redeploying your application. For more information, see Section 23.2.3, "Assembling Applications With Foreign Stages".

1.4.2 Overview of Component Configuration Files

Each component in your event processing network (adapter, processor, channel, or event bean) can have an associated configuration file, although only processors are required to have a configuration file. The caching system also uses a configuration file, regardless of whether it is a stage in the event processing network. Component configuration files in Oracle Event Processing are XML documents whose structure is defined using standard XML Schema. You create a single file that contains configuration for all components in your application, or you can create separate files for each component; the choice depends on which is easier for you to manage.

The wlevs_application_config.xsd schema file describes the structure of component configuration files. When you install Oracle Event Processing, XSD files such as this one are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd..

This XSD schema imports the following schemas:

	
wlevs_base_config.xsd: Defines common elements that are shared between application configuration files and the server configuration file

	
wlevs_eventstore_config.xsd: Defines event store-specific elements.

	
wlevs_diagnostic_config.xsd: Defines diagnostic elements.

The structure of application configuration files is as follows. There is a top-level root element named config that contains a sequence of sub-elements. Each individual sub-element contains the configuration data for an Oracle Event Processing component (processor, channel, or adapter). For example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
 <channel>
 <name>helloworldInputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
 <channel>
 <name>helloworldOutputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
</n1:config>

For more information, see:

	
Section 1.4.2.1, "Accessing Component and Server Configuration Using the ConfigurationPropertyPlaceholderConfigurer Class"

	
Section 5.4, "Creating Component Configuration Files"

	
Appendix B, "Component Configuration Schema wlevs_application_config.xsd"

1.4.2.1 Accessing Component and Server Configuration Using the ConfigurationPropertyPlaceholderConfigurer Class

Using the ConfigurationPropertyPlaceholderConfigurer class, you can reference existing configuration file properties, in both component configuration and server configuration files, using a symbolic placeholder. This allows you to define a value in one place and refer to that one definition rather than hard-coding the same value in many places.

To use this feature, insert a ConfigurationPropertyPlaceholderConfigurer bean in the application context configuration file of your application bundle as Example 1-5 shows.

Example 1-5 Adding a ConfigurationPropertyPlaceholderConfigurer

 <bean class="com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderConfigurer"/>

For complete details, see the com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderConfigurer class in the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

For more information on accessing property files, see Section 5.7.3, "How to Add a Property File to an Oracle Event Processing Project".

1.4.3 Configuring Oracle Event Processing Resource Access

Because Oracle Event Processing applications are low latency high-performance event-driven applications, they run on a lightweight container and are developed using a POJO-based programming model. In POJO (Plain Old Java Object) programming, business logic is implemented in the form of POJOs, and then injected with the services they need. This is popularly called dependency injection. The injected services can range from those provided by Oracle Event Processing services, such as configuration management, to those provided by another Oracle product such as Oracle Kodo, to those provided by a third party.

By using Oracle Event Processing and standard Java annotations and deployment XML, you can configure the Oracle Event Processing Spring container to inject resources (such as data sources or persistence managers, and so on) into your Oracle Event Processing application components.

The Spring container typically injects resources during component initialization. However, it can also inject and re-inject resources at runtime and supports the use of JNDI lookups at runtime.

Oracle Event Processing supports the following types of resource access:

	
Section 1.4.3.1, "Static Resource Injection"

	
Section 1.4.3.2, "Dynamic Resource Injection"

	
Section 1.4.3.3, "Dynamic Resource Lookup Using JNDI"

See Section 1.4.3.4, "Understanding Resource Name Resolution" for information on resource name resolution.

See Appendix I, "Oracle Event Processing Metadata Annotation Reference" for complete details of all Oracle Event Processing annotations.

In the following sections, consider the example resource that Example 1-6 shows. This is a data source resource named StockDS that you specify in the Oracle Event Processing server config.xml file.

Example 1-6 Sample Resource: Data Source StockDS

<config ...>
 <data-source>
 <name>StockDs</name>
 ...
 <driver-params>
 <url>jdbc:derby:</url>
 ...
 <driver-params>
 </data-source>
...
</config>

1.4.3.1 Static Resource Injection

Static resource injection refers to the injection of resources during the initialization phase of the component lifecycle. Once injected, resources are fixed, or static, while the component is active or running.

You can configure static resource injection using:

	
Section 1.4.3.1.1, "Static Resource Names"

	
Section 1.4.3.1.2, "Dynamic Resource Names"

1.4.3.1.1 Static Resource Names

When you configure static resource injection using static resource names, the resource name you use in the @Resource annotation or Oracle Event Processing assembly XML file must exactly match the name of the resource as you defined it. The resource name is static in the sense that you cannot change it without recompiling.

To configure static resource injection using static resource names at design time, you use the standard javax.annotation.Resource annotation as Example 1-7 shows.

To override design time configuration at deploy time, you use Oracle Event Processing assembly file XML as Example 1-8 shows.

In Example 1-7 and Example 1-8, the resource name StockDs exactly matches the name of the data source in the Oracle Event Processing server config.xml file as Example 1-6 shows.

Example 1-7 Static Resource Injection Using Static Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource (name="StockDs")
 public void setDataSource (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

Example 1-8 Static Resource Injection Using Static Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource" name="StockDs"/>
</wlevs:event-bean>

If the name of the EventBean set method matches the name of the resource, then the @Resource annotation name attribute is not needed as Example 1-9 shows. Similarly, in this case, the wlevs:resource element name attribute is not needed as Example 1-10.

Example 1-9 Static Resource Injection Using Static Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource ()
 public void setStockDs (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

Example 1-10 Static Resource Injection Using Static Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource"/>
</wlevs:event-bean>

1.4.3.1.2 Dynamic Resource Names

A dynamic resource name is one that is specified as part of the dynamic or external configuration of an application. Using a dynamic resource name, the deployer or administrator can change the resource name without requiring that the application developer modify the application code or the Spring application context.

To add a dynamic resource name to a component, such as an adapter or POJO, you must first specify custom configuration for your component that contains the resource name as Example 1-11 shows.

Example 1-11 Custom Component Configuration

<simple-bean>
 <name>SimpleBean</name>
 <trade-datasource>StockDs</trade-datasource>
</simple-bean>

To configure static resource injection using dynamic resource names at design time, you use the standard javax.annotation.Resource annotation as Example 1-12 shows.

To override design time configuration at deploy time, you use Oracle Event Processing assembly file XML as Example 1-13 shows.

Example 1-12 Static Resource Injection Using Dynamic Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource (name="trade-datasource")
 public void setDataSource (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

Example 1-13 Static Resource Injection Using Dynamic Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource" name="trade-datasource"/>
</wlevs:event-bean>

1.4.3.2 Dynamic Resource Injection

Dynamic resource injection refers to the injection of resources dynamically while the component is active in response to a dynamic configuration change using Spring container method injection.

To configure dynamic resource injection at design time, you use the standard javax.annotation.Resource annotation as Example 1-14 shows.

Example 1-14 Dynamic Resource Injection: Annotations

import javax.annotations.Resource;

public class SimpleBean implements EventBean {
...
 @Resource ("trade-datasource")
 public abstract DataSource getDataSource ();
 ...
}

The component calls the getDataSource method at runtime whenever it needs to retrieve a new instance of the resource that the resource name trade-datasource refers to.

Typically, the component calls the getDataSource method during the @Prepare or @Activate methods when dynamic configuration changes are handled. For more information see:

	
Section I.2, "com.bea.wlevs.configuration.Activate"

	
Section I.3, "com.bea.wlevs.configuration.Prepare"

Another strategy is to always call the getDataSource prior to using the data source. That is, the application code does not store a reference to the data source as a field in the component.

1.4.3.3 Dynamic Resource Lookup Using JNDI

Oracle Event Processing supports the use of JNDI to look up resources dynamically as Example 1-15.

Example 1-15 Dynamic Resource Lookup Using JNDI

import javax.naming.InitialContext;

public class SimpleBean implements EventBean {
...
 public abstract void getDataSource () throws Exception {
 InitialContext initialContext= new InitialContext ();
 return initialContext.lookup ("StockDs”);
 }
}

In Example 1-15, the JNDI name StockDs must exactly match the name of the data source in the Oracle Event Processing server config.xml file as Example 1-6 shows.

	
Note:

You must disable security when starting the Oracle Event Processing server in order to use JNDI. Oracle does not recommend the use of JNDI for this reason.

For more information, see "Configuring Security for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

1.4.3.4 Understanding Resource Name Resolution

Oracle Event Processing server resolves resource names by examining the naming scopes that Table 1-1 lists.

Table 1-1 Resource Name Resolution

	Naming Scope	Contents	Resolution Behavior
	
Component

	
The property names of the component's custom configuration

	
Mapping

	
Application

	
The names of the configuration elements in the application configuration files

	
Matching

	
Server

	
The names of the configuration elements in the server configuration file

	
Matching

	
JNDI

	
The names registered in the server's JNDI registry

	
Matching

Each naming scope contains a set of unique names. The name resolution behavior is specific to a naming scope. Some naming scopes resolve names by simple matching. Other scopes resolve names by mapping the name used to do the lookup into a new name. Once a name is mapped, lookup proceeds recursively beginning with the current scope.

1.5 Oracle Event Processing APIs

Oracle Event Processing provides a variety of Java APIs that you use in your adapter or event bean implementation.

This section describes the APIs in the com.bea.wlevs.ede.api package that you will most typically use in your adapters and event beans.

	
AdapterFactory—Adapter factories must implement this interface.

For more information, see Section 15.6, "Creating a Custom Adapter Factory"

	
Component life cycle interfaces—If you want some control over the life cycle of the component you are programming, then your component should implement one or more of the following interfaces.

For more information about the life cycle, see Section 1.7, "Oracle Event Processing Application Lifecycle".

	
InitializingBean—Use if you require custom initialization after Oracle Event Processing has set all the properties of the component. Implement the afterPropertiesSet method.

	
ActivatableBean—Use if you want to run some code after all dynamic configuration has been set and the event processing network has been activated. Implement the afterConfigurationActive method.

	
RunnableBean—Use if you want the component to be run in a thread.

The Spring framework implements similar bean life cycle interfaces; however, the equivalent Spring interfaces do not allow you to manipulate beans that were created by factories, while the Oracle Event Processing interfaces do.

	
SuspendableBean—Use if you want to suspend resources or stop processing events when the event processing network is suspended. Implement the suspend method.

	
ResumableBean—Use if you want to perform some task, such as acquire or configure resources, before the component resumes work.

	
DisposableBean—Use if you want to release resources when the application is undeployed. Implement the destroy method in your component code.

See also Appendix I, "Oracle Event Processing Metadata Annotation Reference" for additional lifecycle annotations.

	
Event type instantiation interfaces—Use these interfaces for greater control over how event types are instantiated for use in an EPN.

For more information about event types, see Chapter 1, "Overview of Creating Oracle Event Processing Applications".

	
EventBuilder—Use to control event type instantiation, such as to ensure that the properties of a configured event are correctly bound to the properties of an event type class, such as one you have implemented as a JavaBean.

For more information, see Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class".

	
EventBuilder.Factory—Factory for creating EventBuilders.

	
Event source and sink interfaces—Use these to enable a class to receive and send events as part of the event processing network.

For more information on event sources and sinks, see Section 16.2, "Handling Events with Sources and Sinks" and

	
StreamSinkand BatchStreamSink—Components that want to receive events as an Oracle Event Processing stream must implement this interface. An Oracle Event Processing stream has the following characteristics:

	
Append-only, that is, events are always appended to the end of the stream.

	
Unbounded and generally need a window to be defined before it can be processed.

	
Events have non-decreasing time-stamps.

For more implementation information, see Section 16.2.1, "Implementing an Event Sink".

	
StreamSource, StreamSender and BatchStreamSender—Components that send events modeling an Oracle Event Processing stream, such as adapters, must implement StreamSource. The interface has a setEventSender method for setting the StreamSender or BatchStreamSender, which actually send the event to the next component in the network.

For more implementation information, see Section 16.2.2, "Implementing an Event Source".

	
RelationSink and BatchRelationSink—Components that want to receive events modeling an Oracle Event Processing relation must implement one of these interfaces. An Oracle Event Processing relation has the following characteristics:

	
Supports events that insert, delete, and update its content.

	
Is always known at an instant time.

	
Events have non-decreasing time-stamps.

For more implementation information, see Section 16.2.1, "Implementing an Event Sink".

	
RelationSource, RelationSender, and BatchRelationSender—Components that send events modeling an Oracle Event Processing relation, such as adapters, must implement this interface. The interface has a setEventSender method for setting the RelationSender or BatchRelationSender, which actually send the event to the next component in the network.

For more implementation information, see Section 16.2.2, "Implementing an Event Source".

For more information, see:

	
For the full reference documentation for all classes and interfaces, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

	
For sample Java code that uses these APIs, see:

	
Chapter 9, "Defining and Using Event Types"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Chapter 2, "Oracle Event Processing Samples"

	
Section 1.4.3, "Configuring Oracle Event Processing Resource Access" for information on using Oracle Event Processing annotations and deployment XML to configure resource injection.

1.6 Packaging an Application

After an application is assembled, it must be packaged so that it can be deployed into Oracle Event Processing. This is a simple process. The deployment unit of an application is a plain JAR file, which must contain, at a minimum, the following artifacts:

	
The compiled application Java code of the business logic POJO.

	
Component configuration files. Each processor is required to have a configuration file, although adapters and streams do not need to have a configuration file if the default configuration is adequate and you do not plan to monitor these components.

	
The EPN assembly file.

	
A MANIFEST.MF file with some additional OSGi entries.

After you assemble the artifacts into a JAR file, you deploy this bundle to Oracle Event Processing so it can immediately start receiving incoming data.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

1.7 Oracle Event Processing Application Lifecycle

Figure 1-1 shows a state diagram for the Oracle Event Processing application lifecycle. In this diagram, the state names (STARTING, INITIALIZING, RUNNING, SUSPENDING, SUSPENDED, and FAILED) correspond to the ApplicationRuntimeMBean method getState return values. These states are specific to Oracle Event Processing; they are not OSGi bundle states.

Figure 1-1 Oracle Event Processing Application Lifecycle State Diagram

[image: Description of Figure 1-1 follows]

	
Note:

For information on Oracle Event Processing server lifecycle, see "Oracle Event Processing Server Lifecycle" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

This section describes the lifecycle of an application deployed to the Oracle Event Processing server and the sequence of com.bea.wlevs.ede.api API callbacks.

This information explains how Oracle Event Processing manages an application's lifecycle so that you can better use the lifecycle APIs in your application.

For a description of these lifecycle APIs (such as RunnableBean and SuspendableBean), see:

	
Section 1.5, "Oracle Event Processing APIs"

	
Appendix I, "Oracle Event Processing Metadata Annotation Reference"

	
Oracle Fusion Middleware Java API Reference for Oracle Event Processing

The lifecycle description is broken down into actions that a user performs, including those described in the following sections.

Installing an application or starting the server with application already deployed

Oracle Event Processing performs the following actions:

	
Oracle Event Processing installs the application as an OSGI bundle. OSGI resolves the imports and exports, and publishes the service.

	
Oracle Event Processing creates beans (for both standard Spring beans and those that correspond to the Oracle Event Processing tags in the EPN assembly file). For each bean, Oracle Event Processing:

	
Sets the properties on the Spring beans. The <wlevs:instance-property> values are set on adapters and event-beans.

	
Injects appropriate dependencies into services specified by @Service or @ServiceReference annotations.

	
Injects appropriate dependencies into static configuration properties.

	
Calls the InitializingBean.afterPropertiesSet method.

	
Calls configuration callbacks (@Prepare,@Activate) on Spring beans as well as factory-created stages.

For more information, see Section 1.4.3, "Configuring Oracle Event Processing Resource Access".

	
Application state is now INITIALIZING.

	
Oracle Event Processing registers the MBeans.

	
Oracle Event Processing calls the ActivatableBean.afterConfigurationActive method on all ActivatableBeans.

	
Oracle Event Processing calls the ResumableBean.beforeResume method on all ResumableBeans.

	
For each bean that implements RunnableBean, Oracle Event Processing starts it running in a thread.

	
Application state is now RUNNING.

Suspending the application

Oracle Event Processing performs the following actions:

	
Oracle Event Processing calls the SuspendableBean.suspend method on all SuspendableBeans.

	
Application state is now SUSPENDED.

Resuming the application

Oracle Event Processing performs the following actions:

	
Oracle Event Processing calls the ResumableBean.beforeResume method on all ResumableBeans

	
For each bean that implements RunnableBean, Oracle Event Processing starts it running in a thread.

	
Application state is now RUNNING.

Uninstalling application

Oracle Event Processing performs the following actions:

	
Oracle Event Processing calls the SuspendableBean.suspend method on all SuspendableBeans.

	
Oracle Event Processing unregisters MBeans.

	
Oracle Event Processing calls the DisposableBean.dispose method on all DisposableBeans.

	
Oracle Event Processing uninstalls application bundle from OSGI.

Updating the application

This is equivalent to first uninstalling an application and then installing it again.

See those user actions in this list.

Calling methods of stream and relation sources and sinks

You may not call a method on a stream or relation source or sink from a lifecycle callback because components may not be ready to receive events until after these phases of the application lifecycle complete.

For example, you may not call StreamSender method sendInsertEvent from a lifecycle callback such as such as afterConfigurationActive or beforeResume.

You can call a method on a stream or relation source or sink from the run method of beans that implement RunnableBean.

For more information, see the description of installing an application. Also see Section 16.2, "Handling Events with Sources and Sinks".

2 Oracle Event Processing Samples

This chapter introduces sample code provided with Oracle Event Processing, describing how to set up and use code ranging from simple "Hello World" to applications of Oracle Continuous Query Language (Oracle CQL), as well as for spatial and industry-focused scenarios.

This chapter includes the following sections:

	
Section 2.1, "Overview of the Samples Provided in the Distribution Kit"

	
Section 2.2, "Installing the Default ocep_domain and Samples"

	
Section 2.3, "Using Oracle Event Processing Visualizer With the Samples"

	
Section 2.4, "Increasing the Performance of the Samples"

	
Section 2.5, "HelloWorld Example"

	
Section 2.6, "Oracle Continuous Query Language (Oracle CQL) Example"

	
Section 2.7, "Oracle Spatial Example"

	
Section 2.8, "Foreign Exchange (FX) Example"

	
Section 2.9, "Signal Generation Example"

	
Section 2.10, "Event Record and Playback Example"

2.1 Overview of the Samples Provided in the Distribution Kit

Oracle Event Processing includes the following samples:

	
HelloWorld: a basic skeleton of a typical Oracle Event Processing application.

	
Oracle Continuous Query Language (CQL): an example that shows how to use the Oracle Event Processing Visualizer Query Wizard to construct various Oracle CQL queries to process event streams.

	
Oracle Spatial: an example that shows how to use Oracle Spatial with Oracle CQL queries to process a stream of Global Positioning System (GPS) events to track the GPS location of buses and generate alerts when a bus arrives at its pre-determined bus stop positions.

	
Foreign Exchange (FX): a complete example that includes multiple components.

	
Signal Generation: an example that simulates market trading and trend detection.

	
Event record and playback: an example that shows how to configure event record and playback using a persistent event store.

These samples are provided in two forms, as follows:

	
Section 2.1.1, "Ready-to-Run Samples"

	
Section 2.1.2, "Sample Source"

The samples use Ant as their development tool; for details about Ant and installing it on your computer, see http://ant.apache.org/.

2.1.1 Ready-to-Run Samples

Out-of-the-box sample domains pre-configured to deploy an assembled application; each sample has its own domain for simplicity. Each domain is a standalone server domain; the server files are located in the defaultserver subdirectory of the domain directory. To deploy the application you simply start the default server in the domain.

	
The sample HelloWorld domain is located in \MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

See Section 2.5.1, "Running the HelloWorld Example from the helloworld Domain" for details.

	
The sample CQL domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\cql_domain.

See Section 2.6.1, "Running the CQL Example" for details.

	
The sample Oracle Spatial domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain.

See Section 2.7.1, "Running the Oracle Spatial Example" for details.

	
The sample Foreign Exchange domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\fx_domain.

See Section 2.8.1, "Running the Foreign Exchange Example" for details.

	
The sample Signal Generation domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain.

See Section 2.9.1, "Running the Signal Generation Example" for details.

	
The sample Record and Playback domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain.

See Section 2.10.1, "Running the Event Record/Playback Example" for details.

2.1.2 Sample Source

The Java and configuration XML source for each sample is provided in a separate source directory that describes a sample development environment.

	
The HelloWorld source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

See Section 2.5.4, "Implementation of the HelloWorld Example" for details.

	
The CQL source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\cql.

See Section 2.6.4, "Implementation of the CQL Example" for details.

	
The Oracle Spatial source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\spatial.

See Section 2.7.4, "Implementation of the Oracle Spatial Example" for details.

	
The Foreign Exchange source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx.

See Section 2.8.4, "Implementation of the FX Example" for details.

	
The Signal Generation source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration.

See Section 2.9.4, "Implementation of the Signal Generation Example" for details.

	
The Record and Playback source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\recplay.

See Section 2.10.4, "Implementation of the Record and Playback Example" for details.

2.2 Installing the Default ocep_domain and Samples

To install all Oracle Event Processing components including the default ocep_domain domain (with default passwords) and the samples, you must chose the Custom option to also install the samples. The Typical option does not include the default ocep_domain and samples.

If you previously installed Oracle Event Processing using the Typical option, and you now want to also install the samples, re-run the Oracle Event Processing installation process and specify the same Oracle Event Processing home directory; a later step in the installation process allows you to then install just the samples.

2.3 Using Oracle Event Processing Visualizer With the Samples

The Oracle Event Processing Visualizer is a Web 2.0 application that consumes data from Oracle Event Processing, displays it in a useful and intuitive way to system administrators and operators, and, for specified tasks, accepts data that is then passed back to Oracle Event Processing so as to change it configuration.

Visualizer is itself an Oracle Event Processing application and is automatically deployed in each server instance. To use it with the samples, be sure you have started the server (instructions provided for each sample below) and then invoke the following URL in your browser:

 http://host:9002/wlevs

where host refers to the name of the computer hosting Oracle Event Processing; if it is the same as the computer on which the browser is running you can use localhost.

Security is disabled for the HelloWorld application, so you can click Logon at the login screen without entering a username and password. For the FX and signal generation samples, however, security is enabled, so use the following to logon:

 User Id: wlevs
 Password: wlevs

For more information about Oracle Event Processing Visualizer, see Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

2.4 Increasing the Performance of the Samples

To increase the throughput and latency when running the samples, and Oracle Event Processing applications in general, Oracle recommends the following:

	
Use the JRockit JDK included in Oracle JRockit Real Time and enable the deterministic garbage collector by passing the -dgc parameter to the command that starts the Oracle Event Processing instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the samples.

For more information on Oracle JRockit Real Time, see http://www.oracle.com/technology/products/jrockit/jrrt/index.html.

	
When running Oracle Event Processing on a computer with a larger amount of memory, you should set the load generator and server heap sizes appropriately for the size of the computer. On computers with sufficient memory, Oracle recommend a heap size of 1 GB for the server and between 512MB - 1GB for the load generator.

2.5 HelloWorld Example

The first example that shows how to create an Oracle Event Processing application is the ubiquitous HelloWorld.

Figure 2-1 shows the HelloWorld example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-1 The HelloWorld Example Event Processing Network

[image: Description of Figure 2-1 follows]

The example includes the following components:

	
helloworldAdapter—Component that generates Hello World messages every second. In a real-world scenario, this component would typically read a stream of data from a source, such as a data feed from a financial institution, and convert it into a stream of events that the event processor can understand. The HelloWorld application also includes a HelloWorldAdapterFactory that creates instances of HelloWorldAdapter.

	
helloworldInputChannel—Component that streams the events generated by the adapter (in this case Hello World messages) to the event processor.

	
helloworldProcessor—Component that simply forwards the messages from the helloworldAdapter component to the POJO that contains the business logic. In a real-world scenario, this component would typically execute additional and possibly much more processing of the events from the stream, such as selecting a subset of events based on a property value, grouping events, and so on using Oracle CQL.

	
helloworldOutputChannel—Component that streams the events processed by the event processor to the POJO that contains the user-defined business logic.

	
helloworldBean—POJO component that simply prints out a message every time it receives a batch of messages from the processor via the output channel. In a real-world scenario, this component would contain the business logic of the application, such as running reports on the set of events from the processor, sending appropriate emails or alerts, and so on.

2.5.1 Running the HelloWorld Example from the helloworld Domain

The HelloWorld application is pre-deployed to the helloworld domain. To run the application, you simply start an instance of Oracle Event Processing server.

To run the HelloWorld example from the helloworld domain:

	
Open a command window and change to the default server directory of the helloworld domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\helloworld_domain\defaultserver

	
Ensure the environment is set correctly in the server startup script.

For more information, see Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message printed to the output about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

2.5.2 Building and Deploying the HelloWorld Example from the Source Directory

The HelloWorld sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the HelloWorld application. The build.xml Ant file contains targets to build and deploy the application to the helloworld domain.

For more information, see Section 2.5.3, "Description of the Ant Targets to Build Hello World".

To build and deploy the HelloWorld example from the source directory:

	
If the helloworld Oracle Event Processing instance is not already running, follow the procedure in Section 2.5.1, "Running the HelloWorld Example from the helloworld Domain" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the HelloWorld source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld where MIDDLEWARE_HOME is the Middleware home directory you specified when you installed Oracle Event Processing.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\helloworld

	
Set your development environment as described in Section 3.2, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle Event Processing:

prompt> ant -Daction=update deploy

	
Caution:

This target overwrites the existing helloworld application JAR file in the domain directory.

You should see the following message printed to the output about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is running correctly.

2.5.3 Description of the Ant Targets to Build Hello World

The build.xml file, located in the top level of the HelloWorld source directory, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.5.4 Implementation of the HelloWorld Example

The implementation of the HelloWorld example generally follows Section 3.1, "Creating an Oracle Event Processing Application".

Refer to that section for a task-oriented procedure that describes the typical development process.

The HelloWorld example, because it is relatively simple, does not use all the components and configuration files described in the general procedure for creating an Oracle Event Processing application.

All the example files are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the HelloWorld example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. The EPN assembly file extends the standard Spring context file. The file also registers the event types used in the application. You are required to include this XML file in your Oracle Event Processing application.

In the example, the file is called com.bea.wlevs.example.helloworld-context.xml and is located in the META-INF/spring directory.

	
Java source file for the helloworldAdapter component.

In the example, the file is called HelloWorldAdapter.java and is located in the src/com/bea/wlevs/adapter/example/helloworld directory.

For a detailed description of this file and how to program the adapter Java files in general, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent.java and is located in the src/com/bea/wlevs/event/example/helloworld directory.

For a detailed description of this file, as well as general information about programming event types, see Chapter 9, "Defining and Using Event Types".

	
An XML file that configures the helloworldProcessor and helloworldOutputChannel components. An important part of this file is the set of EPL rules that select the set of events that the HelloWorld application processes. You are required to include a processor configuration file in your Oracle Event Processing application, although the adapter and channel configuration is optional.

In the example, the file is called config.xml and is located in the META-INF/wlevs directory.

	
A Java file that implements the helloworldBean component of the application, a POJO that contains the business logic.

In the example, the file is called HelloWorldBean.java and is located in the src/com/bea/wlevs/example/helloworld directory.

For a detailed description of this file, as well as general information about programming event sinks, see Chapter 16, "Handling Events with Java".

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle Event Processing, see Section 23.1, "Overview of Application Assembly and Deployment".

The HelloWorld example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.5.2, "Building and Deploying the HelloWorld Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.6 Oracle Continuous Query Language (Oracle CQL) Example

The Oracle CQL example shows how to use the Oracle Event Processing Visualizer Query Wizard to construct various types of Oracle CQL queries.

Figure 2-2 shows the CQL example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-2 The CQL Example Event Processing Network

[image: Description of Figure 2-2 follows]

The application contains three separate event paths in its EPN:

	
Missing events: this event path consists of an adapter orderCVSAdapter connected to a channel orderChannel. The orderChannel is connected to processor orderProcessor which is connected to channel alertChannel which is connected to adapter alertOutput.

This event path is used to detect missing events in a customer order workflow.

For more information on how to construct the query that the cqlProc processor executes, see Section 2.6.4.1, "Creating the Missing Event Query".

	
Moving average: this event path consists of channel stockChannel connected to processor stockProcessor which is connected to channel movingAvgChannel which is connected to adapter movingOutput.

This event path is used to compute a moving average on stock whose volume is greater than 1000.

For more information on how to construct the query that the cqlProc processor executes, see Section 2.6.4.2, "Creating the Moving Average Query".

	
Cache: this event path consists of adapter adapter connected to channel S1 connected to Oracle CQL processor cacheProcessor connected to channel S2 connected to bean Bean. There is a cache stockCache also connected to the Oracle CQL processor cacheProcessor. There is also a bean Loader.

This event path is used to access information from a cache in an Oracle CQL query.

	
Note:

For more information about the various components in the EPN, see the other samples in this book.

2.6.1 Running the CQL Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The CQL application is pre-deployed to the cql_domain domain. To run the application, you simply start an instance of Oracle Event Processing server.

To run the CQL example:

	
Open a command window and change to the default server directory of the CQL domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\cql_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\cql_domain\defaultserver

	
Set your development environment, as described in Chapter 3, "Setting Your Development Environment"

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The CQL application is now ready to receive data from the data feeds.

	
To simulate the data feed for the missing event query, open a new command window and set your environment as described in Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
Run the load generator using the orderData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd orderData.prop

	
On UNIX:

prompt> runloadgen.sh orderData.prop

	
To simulate the data feed for the moving average query, open a new command window and set your environment as described in Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
Run the load generator using the stockData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd stockData.prop

	
On UNIX:

prompt> runloadgen.sh stockData.prop

	
To simulate the data feed for the cache query, you only need to run the example.

The load data is generated by Adaptor.java and the cache data is generated by Loader.java. You can verify that data is flowing through by turning on statistics in the Oracle Event Processing Visualizer Query Plan.

2.6.2 Building and Deploying the CQL Example

The CQL sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the CQL application. The build.xml Ant file contains targets to build and deploy the application to the cql_domain domain, as described in Section 2.5.3, "Description of the Ant Targets to Build Hello World."

To build and deploy the CQL example from the source directory:

	
If the CQL Oracle Event Processing instance is not already running, follow the procedure in Section 2.6.1, "Running the CQL Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the CQL source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\cql, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\cql

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment"

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle Event Processing:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing CQL application JAR file in the domain directory.

	
If the load generators required by the CQL application are not running, start them as described in Section 2.6.1, "Running the CQL Example."

2.6.3 Description of the Ant Targets to Build the CQL Example

The build.xml file, located in the top-level directory of the CQL source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.cql_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.6.4 Implementation of the CQL Example

This section describes how to create the queries that the CQL example uses, including:

	
Section 2.6.4.1, "Creating the Missing Event Query"

	
Section 2.6.4.2, "Creating the Moving Average Query"

2.6.4.1 Creating the Missing Event Query

This section describes how to use the Oracle Event Processing Visualizer Query Wizard to create the Oracle CQL pattern matching query that the cqlProc processor executes to detect missing events.

Consider a customer order workflow in which you have customer order workflow events flowing into the Oracle Event Processing system.

In a valid scenario, you see events in the order that Table 2-1 lists:

Table 2-1 Valid Order Workflow

	Event Type	Description
	
C

	
Customer order

	
A

	
Approval

	
S

	
Shipment

However, it is an error if an order is shipped without an approval event as Table 2-2 lists:

Table 2-2 Invalid Order Workflow

	Event Type	Description
	
C

	
Customer order

	
S

	
Shipment

You will create and test a query that detects the missing approval event and generates an alert event:

	
"To create the missing event query:"

	
"To test the missing event query:"

To create the missing event query:

	
If the CQL Oracle Event Processing instance is not already running, follow the procedure in Section 2.6.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-3 shows.

Figure 2-3 Oracle Event Processing Visualizer Logon Screen

[image: Description of Figure 2-3 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2-4 shows.

Figure 2-4 Oracle Event Processing Visualizer Dashboard

[image: Description of Figure 2-4 follows]

For more information about the Oracle Event Processing Visualizer user interface, see "Understanding the Oracle Event Processing Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
In the right-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-5 shows.

Figure 2-5 CQL Application Screen: General Tab

[image: Description of Figure 2-5 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-6 shows.

Figure 2-6 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-6 follows]

	
Double-click the orderProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-7 shows.

Figure 2-7 Oracle CQL Processor: General Tab

[image: Description of Figure 2-7 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-8 shows.

Figure 2-8 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-8 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL query from a template.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
Click the Templates tab.

The Templates tab appears as Figure 2-9 shows.

Figure 2-9 Template Tab

[image: Description of Figure 2-9 follows]

	
Click and drag the Pattern Match Template from the Templates palette and drop it anywhere in the Query Wizard canvas as shown in Figure 2-9.

	
Double-click the SSource icon.

The SSource configuration screen appears as Figure 2-10 shows.

Figure 2-10 SSource Configuration Dialog

[image: Description of Figure 2-10 follows]

The source of your query will be the orderChannel stream.

	
Configure the SSource as follows:

	
Select Stream as the Type.

	
Select orderChannel from the Select a source pull-down menu.

	
Click Save.

	
Click Save Query.

	
Double-click the Pattern icon.

The Pattern configuration screen appears as Figure 2-11 shows.

Figure 2-11 Pattern Configuration Dialog: Pattern Tab

[image: Description of Figure 2-11 follows]

Using the Pattern tab, you will define the pattern expression that matches when missed events occur. The expression is made in terms of named conditions that you will specify on the Define tab in a later step.

	
Enter the following expression in the Pattern Expression field:

CustOrder NoApproval*? Shipment

This pattern uses the Oracle CQL pattern quantifiers that Table 2-3 lists. Use the pattern quantifiers to specify the allowed range of pattern matches. The one-character pattern quantifiers are maximal or "greedy"; they will attempt to match the biggest quantity first. The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to match the smallest quantity first.

Table 2-3 MATCH_RECOGNIZE Pattern Quantifiers

	Maximal	Minimal	Description
	
*

	
*?

	
0 or more times

	
+

	
+?

	
1 or more times.

	
?

	
??

	
0 or 1 time.

For more information, see:

	
"PATTERN Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
Select orderid from the Partition By pull-down menu and click the Plus Sign button to add this property to the PARTITION BY clause.

This ensures that Oracle Event Processing evaluates the missing event query on each order.

	
Enter Orders in the Alias field.

This assigns an alias (Orders) for the pattern to simplify its use later in the query.

	
Click the Define tab.

The Define tab appears as Figure 2-12 shows.

Figure 2-12 Pattern Configuration Dialog: Define Tab

[image: Description of Figure 2-12 follows]

You will now define each of the conditions named in the pattern clause as Table 2-4 lists:

Table 2-4 Condition Definitions

	Condition Name	Definition
	
CustOrder

	
orderChannel.eventType = 'C'

	
NoApproval

	
NOT(orderChannel.eventType = 'A')

	
Shipment

	
orderChannel.eventType = 'C'

	
Enter CustOrder in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-13):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'C'.

Figure 2-13 Expression Builder: CustOrder

[image: Description of Figure 2-13 follows]

	
Click Save.

	
Click the Plus Sign button.

The condition definition is added to the Object List as Figure 2-14 shows.

Figure 2-14 Pattern Configuration Dialog: Define Tab With CustOrder Condition

[image: Description of Figure 2-14 follows]

	
Enter NoApproval in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-15):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'A'.

	
Place parenthesis around the expression.

	
Place the insertion bar at the beginning of the expression, outside the open parenthesis.

	
In the Operands list, double-click NOT.

Figure 2-15 Expression Builder: NoApproval

[image: Description of Figure 2-15 follows]

	
Click Save.

	
Click the Plus Sign button.

The condition definition is added to the Object List.

	
Enter Shipment in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-16):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'S'.

Figure 2-16 Expression Builder: Shipment

[image: Description of Figure 2-16 follows]

	
Click Save.

	
Click the Plus Sign button.

The Define tab appears as Figure 2-17 shows.

Figure 2-17 Pattern Configuration Dialog: Define Tab Complete

[image: Description of Figure 2-17 follows]

	
Click the Measure tab.

The Measure tab appears as Figure 2-18 shows.

Figure 2-18 Measure Tab

[image: Description of Figure 2-18 follows]

Use the Measure tab to define expressions in a MATCH_RECOGNIZE condition and to bind stream elements that match conditions in the DEFINE clause to arguments that you can include in the select statement of a query.

Use the Measure tab to specify the following:

	
CustOrder.orderid AS orderid

	
CustOrder.amount AS amount

For more information, see:

	
"MEASURES Clause" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
Enter orderid in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-19):

	
In the Variables list, double-click CustOrder.orderid.

Figure 2-19 Expression Builder: orderid

[image: Description of Figure 2-19 follows]

	
Click Save.

	
Click the Plus Sign button.

	
Enter amount in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-20):

	
In the Variables list, double-click CustOrder.amount.

Figure 2-20 Expression Builder: amount

[image: Description of Figure 2-20 follows]

	
Click Save.

	
Click the Plus Sign button.

The Measure tab appears as Figure 2-21 shows.

Figure 2-21 Measure Tab: Complete

[image: Description of Figure 2-21 follows]

	
Click Save.

	
Double-click the Select icon.

The Select configuration screen appears as Figure 2-22 shows.

Figure 2-22 Select Configuration Dialog: Project Tab

[image: Description of Figure 2-22 follows]

	
Configure the Project tab as follows:

	
Select AlertEvent from the Select or Input Event Type pull-down menu.

	
Select Orders from the Select a source pull-down menu.

	
Double-click orderid in the Properties list and select orderid from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

	
Double-click amount in the Properties list and select amount from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

	
Click in the Project Expression field and enter the value "Error - Missing Approval" and select alertType from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

The Project tab appears as Figure 2-23 shows.

Figure 2-23 Select Configuration Dialog: Project Tab Complete

[image: Description of Figure 2-23 follows]

	
Click Save.

	
Click Save Query.

	
Double-click the Output icon.

The Output configuration screen appears as Figure 2-24 shows.

Figure 2-24 Output Configuration Dialog

[image: Description of Figure 2-24 follows]

	
Configure the Output as follows:

	
Select Query.

	
Enter Tracking as the Query Name.

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-25 shows.

Figure 2-25 Inject Rule Confirmation Dialog

[image: Description of Figure 2-25 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-26 shows.

	
Click on the Query radio button.

Confirm that your Tracking query is present.

Figure 2-26 CQL Rules Tab With Tracking Query

[image: Description of Figure 2-26 follows]

To test the missing event query:

	
To simulate the data feed for the missing event query, open a new command window and set your environment as described in Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory created when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
Run the load generator using the orderData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd orderData.prop

	
On UNIX:

prompt> runloadgen.sh orderData.prop

	
In the Oracle Event Processing Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-27 shows.

Figure 2-27 Stream Visualizer: Showing Missing Events

[image: Description of Figure 2-27 follows]

	
Click Initialize Client.

	
Click the Subscribe tab.

	
Select the orderalert radio button.

	
Click Subscribe.

As missing events are detected, the Oracle Event Processing updates the Received Messages area showing the AlertEvents generated.

2.6.4.2 Creating the Moving Average Query

This section describes how to use the Oracle Event Processing Visualizer Query Wizard to create the Oracle CQL moving average query that the stockProc processor executes.

You do this in two steps:

	
First, you create a view (the Oracle CQL equivalent of a subquery) that serves as the source of the moving average query.

See "To create a view source for the moving average query:".

	
Second, you create the moving average query using the source view.

See "To create the moving average query using the view source:".

	
Finally, you test the moving average query.

See "To test the moving average query:".

To create a view source for the moving average query:

	
If the CQL Oracle Event Processing instance is not already running, follow the procedure in Section 2.6.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-28 shows.

Figure 2-28 Oracle Event Processing Visualizer Logon Screen

[image: Description of Figure 2-28 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2-29 shows.

Figure 2-29 Oracle Event Processing Visualizer Dashboard

[image: Description of Figure 2-29 follows]

For more information about the Oracle Event Processing Visualizer user interface, see "Understanding the Oracle Event Processing Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
In the right-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-30 shows.

Figure 2-30 CQL Application Screen: General Tab

[image: Description of Figure 2-30 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-31 shows.

Figure 2-31 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-31 follows]

	
Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-32 shows.

Figure 2-32 Oracle CQL Processor: General Tab

[image: Description of Figure 2-32 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-33 shows.

Figure 2-33 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-33 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
Click and drag an SSource icon (Stream Source) from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-34 shows.

Figure 2-34 Query Wizard: SSource

[image: Description of Figure 2-34 follows]

	
Double-click the SSource icon.

The SSource configuration screen appears.

The source of your view will be the stockChannel stream. You want to select stock events from this stream where the volume is greater than 1000. This will be the source for your moving average query.

	
Configure the SSource as follows (as shown in Figure 2-35):

	
Select Stream as the Type.

The source of your view is the stockChannel stream.

	
Select stockChannel from the Select a source pull-down menu.

	
Enter the alias StockVolGt1000 in the AS field.

Figure 2-35 SSource Configuration Dialog

[image: Description of Figure 2-35 follows]

	
Click Save.

	
Click Save Query.

	
When prompted, enter StockVolGt1000 in the Query Id field.

	
Click Save.

Next, you will add an Oracle CQL filter.

	
Click and drag a Filter icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-36 shows.

Figure 2-36 Query Wizard: Filter

[image: Description of Figure 2-36 follows]

	
Click on the SSource icon and drag to the Window icon to connect the Oracle CQL constructs as Figure 2-37 shows.

Figure 2-37 Connecting the SSource and Filter Icons

[image: Description of Figure 2-37 follows]

	
Double-click the Filter icon.

The Filter configuration screen appears as Figure 2-38 shows.

Figure 2-38 Filter Configuration Dialog

[image: Description of Figure 2-38 follows]

	
Click the Expression Builder button.

The Expression Builder dialog appears.

	
Configure the Expression Builder as follows (as shown in Figure 2-39):

	
Select StockVolGt100 from the Select an Event Type pull-down menu to define the variables you can use in this expression.

	
Double-click the volume variable to add it to the Expression Builder field.

	
Double-click > in the Operands list to add it to the Expression Builder field.

	
Enter the value 1000 after the > operand.

Figure 2-39 Filter Expression Builder

[image: Description of Figure 2-39 follows]

	
Click Save.

	
Click Add Filter.

The Query Wizard adds the expression to the Generated CQL Statement as Figure 2-40 shows.

Figure 2-40 Filter Configuration Dialog: After Adding the Filter

[image: Description of Figure 2-40 follows]

	
Click Save.

	
Click Save Query.

Next you want to add a select statement.

	
Click and drag a Select icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-41 shows.

Figure 2-41 Query Wizard: Select

[image: Description of Figure 2-41 follows]

	
Click on the Filter icon and drag to the Select icon to connect the Oracle CQL constructs.

	
Double-click the Select icon.

The Select configuration screen appears.

You want to select price, symbol, and volume from your StockVolGt1000 stream.

	
Configure the Select as follows:

	
Select StockVolGt1000 from the Select a source pull-down menu.

	
Select the price property and click the Plus Sign button.

The Query Wizard adds the property to Generated CQL Statement

	
Repeat for the symbol and volume properties.

The Select configuration dialog appears as Figure 2-42 shows.

Figure 2-42 Select Configuration Dialog: Properties Selected

[image: Description of Figure 2-42 follows]

	
Click Save.

	
Click Save Query.

Finally, you will add an Output.

	
Click and drag an Output icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-43 shows.

Figure 2-43 Query Wizard: Output

[image: Description of Figure 2-43 follows]

	
Click on the Select icon and drag to the Output icon to connect the Oracle CQL constructs.

	
Double-click the Output icon.

The Output configuration screen appears.

	
Configure the Output as follows (as shown in Figure 2-44):

	
Select View.

	
Configure View Name as StockVolGt1000.

	
Delete the contents of the View Schema field.

You can let the Oracle Event Processing server define the view schema for you.

Figure 2-44 Output Configuration Dialog

[image: Description of Figure 2-44 follows]

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-45 shows.

Figure 2-45 Inject Rule Confirmation Dialog

[image: Description of Figure 2-45 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-46 shows.

	
Click on the View radio button.

Confirm that your StockVolGt1000 view is present.

Figure 2-46 CQL Rules Tab With View StockVolGt1000

[image: Description of Figure 2-46 follows]

To create the moving average query using the view source:

	
If the CQL Oracle Event Processing instance is not already running, follow the procedure in Section 2.6.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-47 shows.

Figure 2-47 Oracle Event Processing Visualizer Logon Screen

[image: Description of Figure 2-47 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2-48 shows.

Figure 2-48 Oracle Event Processing Visualizer Dashboard

[image: Description of Figure 2-48 follows]

For more information about the Oracle Event Processing Visualizer user interface, see "Understanding the Oracle Event Processing Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
In the left-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-49 shows.

Figure 2-49 CQL Application Screen: General Tab

[image: Description of Figure 2-49 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-50 shows.

Figure 2-50 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-50 follows]

	
Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-51 shows.

Figure 2-51 Oracle CQL Processor: General Tab

[image: Description of Figure 2-51 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-52 shows. If you have been recently creating or editing queries for this processor, you might see those queries on the Query Wizard canvas. Otherwise, the canvas will be blank.

Figure 2-52 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-52 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
Click and drag an SSource icon (Stream Source) from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-53 shows.

Figure 2-53 Query Wizard: SSource for Moving Average Query

[image: Description of Figure 2-53 follows]

	
Double-click the SSource icon.

The SSource configuration screen appears.

	
Configure the SSource dialog as follows (as shown in Figure 2-54):

	
Select View as the Type.

	
Select the StockVolGt1000 view from the Select a source pull-down menu.

Figure 2-54 SSource Configuration Dialog: Moving Average Query

[image: Description of Figure 2-54 follows]

	
Click Save.

	
Click Save Query.

	
Click and drag a Window icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-55 shows.

Figure 2-55 Query Wizard: Window for Moving Average Query

[image: Description of Figure 2-55 follows]

	
Click on the SSource icon and drag to the Window icon to connect the Oracle CQL constructs.

	
Double-click the Window icon.

The SSource configuration screen appears.

You want to create a sliding window over the last 2 events, partitioned by symbol.

	
Configure the Window dialog as follows (as shown in Figure 2-56):

	
Select symbol in the Source Property List to add it to the Partition List.

	
Select Partition as the Type.

	
Select Row Based and enter 2 in the Row Based field.

	
Click Add Window.

The Query Wizard adds the sliding window to the Generated CQL Statement as Figure 2-56 shows.

Figure 2-56 Window Configuration Dialog: After Adding Window

[image: Description of Figure 2-56 follows]

	
Click Save.

	
Click Save Query.

	
Click and drag a Select icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-57 shows.

Figure 2-57 Query Wizard: Select for Moving Average Query

[image: Description of Figure 2-57 follows]

	
Click on the Window icon and drag to the Select icon to connect the Oracle CQL constructs.

	
Double-click the Select icon.

The Select configuration screen appears.

	
Select StockVolGt1000 from the Select a source pull-down menu.

This is the source of moving average query: the view you created earlier (see "To create a view source for the moving average query:").

	
Select MovingAvgEvent from the Target Event Type pull-down menu.

This is the output event your moving average query will produced. You will map properties from the source events to this output event.

	
In the Source Properties list, select symbol.

The selected source property is added to the Project Expression as Figure 2-58 shows.

Figure 2-58 Select Configuration Dialog: Source Property symbol Selected

[image: Description of Figure 2-58 follows]

In this case, you just want to map the source property symbol to output event property symbol as is.

	
Click on the pull-down menu next to the AS field and select symbol.

	
Click the Plus Sign button.

The source property is added to the project expression of the Generated CQL Statement as Figure 2-59 shows.

Figure 2-59 Select Configuration Dialog: Source Property symbol Mapped to Output Event Property

[image: Description of Figure 2-59 follows]

	
In the Source Properties list, select price.

The selected source property is added to the Project Expression as Figure 2-60 shows.

Figure 2-60 Select Configuration Dialog: Source Property price Selected

[image: Description of Figure 2-60 follows]

In this case, you want to process the source property price before you map it to the output event.

	
Click the Expression Builder button.

The Expression Builder dialog appears.

	
Select Aggregate Function from the Select a function type pull-down menu.

A list of the aggregate functions that Oracle CQL provides is displayed. You are going to use the AVG function.

	
Select the StockVolGt1000.price in the Expression Builder field.

	
Double-click the AVG function.

The AVG() function is wrapped around your selection in the Expression Builder field as Figure 2-61 shows.

Figure 2-61 Expression Builder: Applying the AVG Function

[image: Description of Figure 2-61 follows]

	
Click Save.

The expression is added to the Project Expression field as Figure 2-62 shows.

Figure 2-62 Select Configuration Dialog: With Expression

[image: Description of Figure 2-62 follows]

	
Click on the pull-down menu next to the AS field and select movingAvgPrice.

	
Click the plus Sign button.

The source property is added to the project expression of the Generated CQL Statement as Figure 2-63 shows.

Figure 2-63 Select Configuration Dialog: Source Property price Mapped to Output Event Property

[image: Description of Figure 2-63 follows]

	
Click Validate.

A validation error dialog is shown as Figure 2-64 shows.

Figure 2-64 Validation Error: GROUP BY

[image: Description of Figure 2-64 follows]

Because you are partitioning, you must specify a GROUP BY clause.

	
Select the Group tab.

The Group tab appears.

	
Configure the Group tab as follows (as shown in Figure 2-65):

	
Select StockVolGt1000 from the Select a source pull-down menu.

	
Select symbol from the Properties list.

	
Click the Plus Sign button.

The symbol property is added to GROUP BY clause as Figure 2-65 shows.

Figure 2-65 Group Tab: With symbol Grouping Property

[image: Description of Figure 2-65 follows]

	
Click Save.

	
Click Save Query.

Next, you want to connect the query to an output.

	
Click and drag an Output icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-66 shows.

Figure 2-66 Query Wizard: Output

[image: Description of Figure 2-66 follows]

	
Click on the Select icon and drag to the Output icon to connect the Oracle CQL constructs.

	
Double-click the Output icon.

The Output configuration screen appears.

	
Configure the Output as follows (as shown in Figure 2-67):

	
Select Query.

	
Enter MovingAverage as the Query Name.

Figure 2-67 Output Configuration Dialog

[image: Description of Figure 2-67 follows]

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-68 shows.

Figure 2-68 Inject Rule Confirmation Dialog

[image: Description of Figure 2-68 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-69 shows.

	
Click on the Query radio button.

Confirm that your MovingAverage query is present.

Figure 2-69 CQL Rules Tab With View MovingAverage

[image: Description of Figure 2-69 follows]

To test the moving average query:

	
To simulate the data feed for the moving average query, open a new command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
Run the load generator using the stockData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd stockData.prop

	
On UNIX:

prompt> runloadgen.sh stockData.prop

	
In the Oracle Event Processing Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-70 shows.

Figure 2-70 Stream Visualizer: Showing Moving Average Query Output

[image: Description of Figure 2-70 follows]

	
Click Initialize Client.

	
Enter /stockmoving in the Initialize client field.

	
Click Subscribe.

As the moving average query outputs events, the Oracle Event Processing updates the Received Messages area showing the events generated.

2.7 Oracle Spatial Example

This example shows how to use Oracle Spatial with Oracle CQL queries to process a stream of Global Positioning System (GPS) events to track the GPS location of buses and generate alerts when a bus arrives at its pre-determined bus stop positions.

Figure 2-71 shows Oracle Spatial example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-71 Oracle Spatial Example Event Processing Network

[image: Description of Figure 2-71 follows]

The example includes the following components:

	
BusPositionGen—Component that simulates an input stream of bus position GPS events. It uses the Oracle Event Processing loadgen utility and csvgen adapter provider to read in comma separated values (CSV) and deliver them to the EPN as BusPos events.

	
BusStopAdapter—Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
BusPosStream—Component that transmits BusPos events to the Processor as a stream.

	
BusStopRelation—Component that transmits BusPos events to the Processor as a relation.

	
Processor—Component that executes Oracle CQL queries on the incoming BusPos events.

	
BusStopChannel, BusPosChannel, and BusStopArrivalChannel—Components that each specify a different selector to transmit the results of a different query from the Processor component to the appropriate outbound adapter or output bean.

	
BusStopPub, BusPosPub, and BusStopArrivalPub—Components that publish the results of the Processor component's queries.

	
BusStopArrivalOutputBean—POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel.

	
Note:

For more information about data cartridges, see:

	
"Introduction to Data Cartridges" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"Oracle Spatial" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

2.7.1 Running the Oracle Spatial Example

The Oracle Spatial application is pre-deployed to the spatial_domain domain. To run the application, you simply start an instance of Oracle Event Processing server.

To run the Oracle Spatial example from the spatial_domain domain:

	
Open a command window and change to the default server directory of the Oracle Spatial example domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\spatial_domain\defaultserver

	
Ensure the environment is set correctly in the server startup script.

For more information, see Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Wait for the console log to show:

<Mar 4, 2010 2:13:15 PM EST> <Notice> <Spring> <BEA-2047000> <The application context for "spatial_sample" was started successfully>
<Mar 4, 2010 2:13:15 PM EST> <Notice> <Server> <BEA-2046000> <Server STARTED>

This message indicates that the Oracle Spatial example is running correctly.

	
On the same host as the Oracle Spatial example is running, launch a browser and navigate to http://localhost:9002/bus/main.html.

	
Note:

You cannot run this example on one host and browse to it from another host. This is a limitation of the Google API Key that the example uses and is not a limitation of Oracle Event Processing.

The Oracle Spatial example Web page appears as Figure 2-72 shows.

Figure 2-72 Oracle Spatial Web Page

[image: Description of Figure 2-72 follows]

Click the Bus Top Arrivals tab to view bus stop arrivals as Figure 2-73 shows.

Figure 2-73 Oracle Spatial Web Page: Bus Stop Arrivals Tab

[image: Description of Figure 2-73 follows]

	
Execute the Oracle Event Processing load generator to generate sample data:

	
On Windows:

	
Open a command prompt and navigate to MIDDLEWARE_HOME/ocep_11.1/utils/load-generator

	
runloadgen.cmd bus_positions.prop

	
On UNIX:

	
Open a terminal window and navigate to MIDDLEWARE_HOME/ocep_11.1/utils/load-generator

	
runloadgen.sh bus_positions.prop

	
Observe the bus movements and alerts in the browser as Figure 2-74 shows.

Figure 2-74 Oracle Spatial Web Page: Bus Tracking

[image: Description of Figure 2-74 follows]

2.7.2 Building and Deploying the Oracle Spatial Example

The Oracle Spatial sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the Oracle Spatial application. The build.xml Ant file contains targets to build and deploy the application to the spatial_domain domain.

For more information, see Section 2.5.3, "Description of the Ant Targets to Build Hello World".

To build and deploy the Oracle Spatial example from the source directory:

	
If the spatial_domain Oracle Event Processing instance is not already running, follow the procedure in Section 2.7.1, "Running the Oracle Spatial Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the Oracle Spatial source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\spatial where MIDDLEWARE_HOME is the Middleware directory you specified when you installed Oracle Event Processing.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\spatial

	
Set your development environment as described in Section 3.2, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle Event Processing:

prompt> ant -Daction=update deploy

	
Caution:

This target overwrites the existing Oracle Spatial application JAR file in the domain directory.

2.7.3 Description of the Ant Targets to Build the Oracle Spatial Example

The build.xml file, located in the top level of the Oracle Spatial source directory, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.7.4 Implementation of the Oracle Spatial Example

The implementation of the Oracle Spatial example generally follows "Creating Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the Oracle Spatial example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\spatial directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the Oracle Spatial example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. You are required to include this XML file in your Oracle Event Processing application.

In the example, the file is called context.xml and is located in the META-INF/spring directory.

	
A component configuration file that configures the various components on the EPN including the processor component of the application:

In the example, this file is called config.xml and is located in the META-INF/wlevs directory.

	
Java files that implement:

	
BusStopAdapter: Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
OutputBean: POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel

	
OrdsHelper: Helper class that provides method getOrds to return the ordinates from a JGeometry as a List of Double values.

These Java files are located in the source\applications\spatial\src\com\oracle\cep\sample\spatial directory.

For additional information about the Oracle Event Processing APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle Event Processing, see Section 23.1, "Overview of Application Assembly and Deployment".

The Oracle Spatial example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.7.2, "Building and Deploying the Oracle Spatial Example" for a description of this build.xml file if you also use Ant in your development environment.

2.8 Foreign Exchange (FX) Example

The foreign exchange example, called FX for simplicity, is a more complex example than the HelloWorld example because it includes multiple processors that handle information from multiple data feeds. In the example, the data feeds are simulated using the Oracle Event Processing load generator utility.

Figure 2-75 shows the FX example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-75 FX Example Event Processing Network

[image: Description of Figure 2-75 follows]

In this scenario, three data feeds, simulated using the load generator, send a constant pair of values from different parts of the world; the value pairs consist of a currency pair, such as USDEUR for US dollar - European euro, and an exchange rate between the two currencies. The fxMarketAmer, fxMarketAsia, and fxMarketEuro adapters receive the data from the feeds, convert them into events, and pass them to the corresponding FilterAmer, FilterAsia, and FilterEuro processors. Each processor performs an initial stale check to ensure that no event is more than 1 second old and then a boundary check to ensure that the exchange rate between the two currencies is within a current boundary. The processor also only selects a specific currency pair from a particular channel; for example, the server selects USDEUR from the simulated American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a different processor, called FindCrossRate, joins all events across all providers, calculates the mid-point between the maximum and minimum rate, and then applies a trader-specified spread. Finally, the processor forwards the rate to the POJO that contains the business code; in this example, the POJO simply publishes the rate to clients.

The Oracle Event Processing monitor is configured to watch if the event latency in the last step exceeds some threshold, such as no updated rates in a 30 second time-span, and if there is too much variance between two consecutive rates for the same currency pair. Finally, the last rate of each currency pair is forwarded to the Oracle Event Processing http pub-sub server.

2.8.1 Running the Foreign Exchange Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The Foreign Exchange (FX) application is pre-deployed to the fx_domain domain. To run the application, you simply start an instance of Oracle Event Processing server.

To run the foreign exchange example:

	
Open a command window and change to the default server directory of the FX domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\fx_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\fx_domain\defaultserver

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The FX application is now ready to receive data from the data feeds.

	
To simulate an American data feed, open a new command window and set your environment as described in Section 3, "Getting Started with Developing Oracle Event Processing Applications."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
Run the load generator using the fxAmer.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxAmer.prop

	
On UNIX:

prompt> runloadgen.sh fxAmer.prop

	
Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxAsia.prop

	
On UNIX:

prompt> runloadgen.sh fxAsia.prop

	
Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxEuro.prop

	
On UNIX:

prompt> runloadgen.sh fxEuro.prop

After the server status messages scroll by in the command window from which you started the server, and the three load generators start, you should see messages similar to the following being printed to the server command window (the message will likely be on one line):

OutputBean:onEvent() +
 <TupleValue>
 <EventType>SpreaderOuputEvent</EventType>
 <ObjectName>FindCrossRatesRule</ObjectName>
 <Timestamp>1843704855846</Timestamp>
 <TupleKind>null</TupleKind>
 <DoubleAttribute>
 <Value>90.08350000074516</Value>
 </DoubleAttribute>
 <CharAttribute>
 <Value>USD</Value>
 <Length>3</Length>
 </CharAttribute>
 <CharAttribute>
 <Value>JPY</Value>
 <Length>3</Length>
 </CharAttribute>
 <IsTotalOrderGuarantee>false</IsTotalOrderGuarantee>
</TupleValue>

These messages indicate that the Foreign Exchange example is running correctly. The output shows the cross rates of US dollars to Japanese yen and US dollars to UK pounds sterling.

2.8.2 Building and Deploying the Foreign Exchange Example from the Source Directory

The Foreign Exchange (FX) sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the FX application. The build.xml Ant file contains targets to build and deploy the application to the fx_domain domain, as described in Section 2.5.3, "Description of the Ant Targets to Build Hello World."

To build and deploy the foreign exchange example from the source directory:

	
If the FX Oracle Event Processing instance is not already running, follow the procedure in Section 2.8.1, "Running the Foreign Exchange Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the FX source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing installation directory, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\fx

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle Event Processing:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing FX application JAR file in the domain directory.

	
If the load generators required by the FX application are not running, start them as described in Section 2.8.1, "Running the Foreign Exchange Example."

After server status messages scroll by, you should see the following message printed to the output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP, internalPrice=0.5031949999999915}, {crossRate=USDJPY, internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running correctly.

2.8.3 Description of the Ant Targets to Build FX

The build.xml file, located in the top-level directory of the FX source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.fx_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.8.4 Implementation of the FX Example

The implementation of the foreign exchange (FX) example generally follows "Creating Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the FX example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx directory, where MIDDLEWARE_HOME is the Middleware home directory you specified when you installed Oracle Event Processing c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the FX example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. You are required to include this XML file in your Oracle Event Processing application.

In the example, the file is called com.oracle.cep.sample.fx.context.xml and is located in the META-INF/spring directory.

	
Two XML files that configure the processor components of the application:

The first XML file configures the filterAmer, filterAsia, filterEuro, and FindCrossRates processors, all in a single file. This XML file includes the Oracle CQL rules that select particular currency pairs from particular simulated market feeds and joins together all the events that were selected by the pre-processors, calculates an internal price for the particular currency pair, and then calculates the cross rate. In the example, this file is called spreader.xml and is located in the META-INF/wlevs directory.

The second XML file configures the summarizeResults processor and includes the Oracle CQL rule that summarizes the results of the FindCrossRates processor. In the example, this file is called SummarizeResults.xml and is located in the META-INF/wlevs directory.

	
An XML file that configures the PublishSummaryResults http pub-sub adapter. In the example, this file is called PubSubAdapterConfiguration.xml and is located in the META-INF/wlevs directory.

	
A Java file that implements the OutputBean component of the application, a POJO that contains the business logic. This POJO prints out to the screen the events that it receives, programmed in the onEvent method. The POJO also registers into the event type repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean.java and is located in the src/com/oracle/cep/sample/fx directory.

For additional information about the Oracle Event Processing APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle Event Processing, see Section 23.1, "Overview of Application Assembly and Deployment".

The FX example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.8.2, "Building and Deploying the Foreign Exchange Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.9 Signal Generation Example

The signal generation sample application receives simulated market data and verifies if the price of a security has fluctuated more than two percent. The application also detects the pattern occurring by keeping track of successive stock prices for a particular symbol; if more than three successive prices are larger than the one before it, this is considered a pattern.

Figure 2-76 shows the signal generation example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-76 The Signal Generation Example Event Processing Network

[image: Description of Figure 2-76 follows]

The application simulates a market data feed using the Oracle Event Processing load generator utility; in this example, the load generator generates up to 10,000 messages per second. The example includes an HTML dashboard which displays the matched events along with the latencies; events consist of a stock symbol, a timestamp, and the price.

The example demonstrates very low latencies, with minimum latency jitter under high throughputs. Once the application starts running, the processor matches an average of 800 messages per second. If the application is run on the minimum configured system, the example shows very low average latencies (30-300 microsecond, on average) with minimal latency spikes (low milliseconds).

The example computes and displays latency values based on the difference between a timestamp generated on the load generator and timestamp on Oracle Event Processing. Computing valid latencies requires very tight clock synchronization, such as 1 millisecond, between the computer running the load generator and the computer running Oracle Event Processing. For this reason, Oracle recommends running both the load generator and Oracle Event Processing on a single multi-CPU computer where they will share a common clock.

The example also shows how to use the Oracle Event Processing event caching feature. In particular the single processor in the EPN sends events to both an event bean and a cache.

The example also demonstrates how to use Oracle CQL queries.

2.9.1 Running the Signal Generation Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The signalgeneration_domain domain contains a single application: the signal generation sample application. To run the signal generation application, you simply start an instance of Oracle Event Processing in that domain.

To run the signal generation example:

	
Open a command window and change to the default server directory of the signalgeneration_domain domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

	
Wait until you see console messages like this:

<Apr 24, 2009 11:40:37 AM EDT> <Notice> <Server> <BEA-2046000> <Server STARTED>
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
...

The signal generation application is now ready to receive data from the data feeds.

Next, to simulate a data feed, you use a load generator programmed specifically for the example.

	
0pen a new command window.

	
Change to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\utils directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:Oracle\Middleware.

	
Run the startDataFeed command:

	
On Windows:

prompt> startDataFeed.cmd

	
On UNIX:

prompt> startDataFeed.sh

	
Invoke the example dashboard by starting a browser and opening the following HTML page:

 http://host:9002/signalgeneration/dashboard.html

Replace host with the name of the computer on which Oracle Event Processing is running; if it is the same computer as your browser, you can use localhost.

	
In the browser, click Start on the HTML page.

You should start seeing the events that match the Oracle CQL rules configured for this example as Figure 2-77 shows.

Figure 2-77 Signal Generation Dashboard

[image: Description of Figure 2-77 follows]

2.9.2 Building and Deploying the Signal Generation Example from the Source Directory

The signal generation sample source directory contains the Java source, along with other required resources, such as configuration XML files, EPN assembly file, and DOJO client JavaScript libraries, that make up the signal generation application. The build.xml Ant file contains targets to build and deploy the application to the signalgeneration_domain domain, as described in Section 2.9.3, "Description of the Ant Targets to Build Signal Generation."

To build and deploy the signal generation example from the source directory:

	
If the signal generation Oracle Event Processing instance is not already running, follow the procedure in Section 2.9.1, "Running the Signal Generation Example" to start the server. You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the signal generation source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\signalgeneration

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\applications\signalgeneration directory:

prompt> ant deploy

	
Caution:

This target overwrites the existing signal generation application JAR file in the domain directory.

	
If the load generator required by the signal generation application is not running, start it as described in Section 2.9.1, "Running the Signal Generation Example."

	
Invoke the example dashboard as described in Section 2.9.1, "Running the Signal Generation Example."

2.9.3 Description of the Ant Targets to Build Signal Generation

The build.xml file, located in the top-level directory of the signal generation example source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.signalgen_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.9.4 Implementation of the Signal Generation Example

The implementation of the signal generation example generally follows "Creating Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the signal generation are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the signal generation example include:

	
A EPN assembly file that describes each component in the application and how all the components are connected together.

In the example, the file is called epn_assembly.xml and is located in the META-INF/spring directory.

	
An XML file that configures the processor component of the application; this file is called config.xml and is located in the META-INF/wlevs directory

The config.xml file configures the processor1 Oracle CQL processor, in particular the Oracle CQL rules that verify whether the price of a security has fluctuated more than two percent and whether a trend has occurred in its price.

	
A Java file that implements the SignalgenOutputBean component of the application, a POJO that contains the business logic. This POJO is an HttpServlet and an EventSink. Its onEvent method consumes PercentTick and TrendTick event instances, computes latency, and displays dashboard information.

In the example, the file is called SignalgenOutputBean.java and is located in the src/oracle/cep/example/signalgen directory.

For general information about programming event sinks, see Section 16.2, "Handling Events with Sources and Sinks".

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle Event Processing, see Section 23.1, "Overview of Application Assembly and Deployment".

	
A dashboard.html file in the main example directory; this HTML file is the example dashboard that displays events and latencies of the running signal generation application. The HTML file uses Dojo JavaScript libraries from http://dojotoolkit.org/, located in the dojo directory.

For additional information about the Oracle Event Processing APIs referenced in ForeignExchangeBuilderFactory, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

The signal generation example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.9.2, "Building and Deploying the Signal Generation Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.10 Event Record and Playback Example

The record and playback example shows how to configure a component to record events to an event store and then configure another component in the network to playback events from the store. The example uses the Oracle Event Processing-provided default Berkeley database to store the events. The example also shows how to configure a publishing HTTP pub-sub adapter as a node in the event processing network.

Figure 2-78 shows the event record and playback example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-78 The Event Record and Playback Example Event Processing Network

[image: Description of Figure 2-78 follows]

The application contains four components in its event processing network:

	
simpleEventSource: an adapter that generates simple events for purposes of the example. This component has been configured to record events, as shown in the graphic.

The configuration source for this adapter is:

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 ...
 </record-parameters>
</adapter>

	
eventStream: a channel that connects the simpleEventSource adapter and recplayEventSink event bean. This component has been configured to playback events.

The configuration source for this channel is:

<channel>
 <name>eventStream</name>
 <playback-parameters>
 ...
 </playback-parameters>
 ...
</channel>

	
recplayEventSink: an event bean that acts as a sink for the events generated by the adapter.

	
playbackHttpPublisher: a publishing HTTP pub-sub adapter that listens to the recplayEventSink event bean and publishes to a channel called /playbackchannel of the Oracle Event Processing HTTP Pub-Sub server.

2.10.1 Running the Event Record/Playback Example

The recplay_domain domain contains a single application: the record and playback sample application. To run this application, you first start an instance of Oracle Event Processing in the domain, as described in the following procedure.

The procedure then shows you how to use Oracle Event Processing Visualizer to start the recording and playback of events at the simpleEventSource and eventStream components, respectively. Finally, the procedure shows you how to use Oracle Event Processing Visualizer to view the stream of events being published to a channel by the playbackHttpPublisher adapter.

To run the event record/playback example:

	
Open a command window and change to the default server directory of the recplay_domain domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\recplay_domain\defaultserver

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Start Oracle Event Processing by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message printed to the output:

 SimpleEvent created at: 14:33:40.441

This message indicates that the Oracle Event Processing server started correctly and that the simpleEventSource component is creating events.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-79 shows.

Figure 2-79 Oracle Event Processing Visualizer Logon Screen

[image: Description of Figure 2-79 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2-80 shows.

Figure 2-80 Oracle Event Processing Visualizer Dashboard

[image: Description of Figure 2-80 follows]

For more information about the Oracle Event Processing Visualizer user interface, see "Understanding the Oracle Event Processing Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
In the left pane, select WLEventServerDomain > NonClusteredServer > Applications > recplay > Stages > simpleEventSource.

	
In the right pane, select the Record tab as shown in Figure 2-81.

Figure 2-81 Event Record Tab

[image: Description of Figure 2-81 follows]

The DataSet Name field contains the value of the record-parameters child element dataset-name element from the simpleEventSource adapter application configuration file MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay\config.xml as Example 2-1 shows.

Example 2-1 recplay Application Configuration File config.xml: adapter Element

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
</adapter>

	
At the bottom of the Record tab, click Start.

An Alert dialog appears as shown in Figure 2-82.

Figure 2-82 Start Recording Alert Dialog

[image: Description of Figure 2-82 follows]

	
Click OK.

The Current Status field reads Recording....

As soon as you click OK, events start to flow out of the simpleEventSource component and are stored in the configured database.

You can further configure when events are recorded using the Start Recording and Stop Recording fields.

	
In the left pane, select eventStream.

	
In the right pane, select the Playback tab as shown in Figure 2-83.

Figure 2-83 Event Playback Tab

[image: Description of Figure 2-83 follows]

	
At the bottom of the tab, click Start.

An Alert dialog appears as shown in Figure 2-84.

Figure 2-84 Start Playback Alert Dialog

[image: Description of Figure 2-84 follows]

	
Click OK.

The Current Status field reads Playing....

As soon as you click OK, events that had been recorded by the simpleEventSource component are now played back to the simpleStream component.

You should see the following messages being printed to the command window from which you started Oracle Event Processing server to indicate that both original events and playback events are streaming through the EPN:

SimpleEvent created at: 14:33:11.501
Played back: Original time=14:15:23.141 Playback time=14:33:11.657

You can further configure the playback parameters, such as the recorded time period for which you want playback events and the speed that they are played back, by updating the appropriate field and clicking Change Parameters. You must restart the playback after changing any playback parameters.

	
To view the events that the playbackHttpPublisher adapter is publishing to a channel, follow these steps:

	
In the top pane, select Viewstream.

The Viewstream window appears as shown in Figure 2-85.

Figure 2-85 Stream Visualizer

[image: Description of Figure 2-85 follows]

	
In the right pane, click Initialize Client.

	
In the Subscribe Channel text box, enter /playbackchannel.

	
Click Subscribe.

The Received Messages text box displays the played back event details. The played back events show the time at which the event was created and the time at which it was played back.

2.10.2 Building and Deploying the Event Record/Playback Example from the Source Directory

The record and playback sample source directory contains the Java source, along with other required resources, such as configuration XML file and EPN assembly file that make up the application. The build.xml Ant file contains targets to build and deploy the application to the signalgeneration_domain domain, as described in Section 2.10.3, "Description of the Ant Targets to Build the Record and Playback Example."

To build and deploy the event record/playback example from the source directory:

	
If the record/playback Oracle Event Processing instance is not already running, follow the procedure in Section 2.10.1, "Running the Event Record/Playback Example" to start the server. You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the record/playback source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\recplay, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\recplay

	
Set your development environment, as described in Section 3.2, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay directory:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing event record/playback application JAR file in the domain directory.

After an application redeploy message, you should see the following message printed to the output about every second:

 SimpleEvent created at: 14:33:40.441

This message indicates that the record and playback example has been redeployed and is running correctly.

	
Follow the instructions in Section 2.10.1, "Running the Event Record/Playback Example," starting at step 4, to invoke Oracle Event Processing Visualizer and start recording and playing back events.

2.10.3 Description of the Ant Targets to Build the Record and Playback Example

The build.xml file, located in the top-level directory of the record/playback source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.recplay_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle Event Processing using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2.10.4 Implementation of the Record and Playback Example

The implementation of the signal generation example generally follows "Creating Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\recplay directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the record and playback example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together as shown in Figure 2-78.

In the example, the file is called com.bea.wlevs.example.recplay-context.xml and is located in the META-INF/spring directory.

	
Java source file for the simpleEventSource adapter.

In the example, the file is called SimpleEventSource.java and is located in the src/com/bea/wlevs/adapter/example/recplay directory.

For a detailed description of how to program the adapter Java files in general, see Section 15.1, "Overview of Custom Adapters".

	
Java source file that describes the PlayedBackEvent and SimpleEvent event types. The SimpleEvent event type is the one originally generated by the adapter, but the PlayedBackEvent event type is used for the events that are played back after having been recorded. The PlayedBackEvents look almost exactly the same as SimpleEvent except they have an extra field, the time the event was recorded.

In the example, the two events are called SimpleEvent.java and PlayedBackEvent.java and are located in the src/com/bea/wlevs/event/example/recplay directory.

For a detailed description of this file, as well as general information about programming event types, see Section 9.1, "Overview of Oracle Event Processing Event Types".

	
A Java file that implements the recplayEventSink event bean of the application, which is an event sink that receives both realtime events from the simpleEventSource adapter as well as playback events.

In the example, the file is called RecplayEventSink.java and is located in the src/com/bea/wlevs/example/recplay directory.

For more information about event sources and sinks, see Section 16.2, "Handling Events with Sources and Sinks".

	
An XML file that configures the simpleEventSource adapter and eventStream channel components. The adapter includes a <record-parameters> element that specifies that the component will record events to the event store; similarly, the channel includes a <playback-parameters> element that specifies that it receives playback events.

In the example, the file is called config.xml and is located in the META-INF/wlevs directory.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle Event Processing, see Section 23.1, "Overview of Application Assembly and Deployment".

The record/playback example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.10.2, "Building and Deploying the Event Record/Playback Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

3 Getting Started with Developing Oracle Event Processing Applications

This chapter provides suggestions for getting started in building Oracle Event Processing applications, including suggested start-to-finish steps, setting up a development environment, and tools for development and testing.

This chapter includes the following sections:

	
Section 3.1, "Creating an Oracle Event Processing Application"

	
Section 3.2, "Setting Your Development Environment"

	
Section 3.3, "Using an IDE to Develop Applications"

	
Section 3.4, "Testing Applications"

3.1 Creating an Oracle Event Processing Application

The following procedure shows the suggested start-to-finish steps to create an Oracle Event Processing application. Although it is not required to program and configure the various components in the order shown, the procedure shows a typical and logical flow recommended by Oracle.

It is assumed in the procedure that you are using an IDE, although it is not required and the one you use is your choice. For one targeted to Oracle Event Processing developers, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse"

To create an Oracle Event Processing application:

	
Set up your environment as described in Section 3.2, "Setting Your Development Environment."

	
Create an Oracle Event Processing project using the Oracle Event Processing IDE for Eclipse.

For more information, see Chapter 5, "Oracle Event Processing IDE for Eclipse Projects".

	
Design your event processing network (EPN).

Using the Oracle Event Processing IDE for Eclipse and the EPN editor, add the full list of components that make up the application and how they are connected to each other, as well as registering the event types used in your application.

This step combines both designing of your application, in particular determining the components that you need to configure and code, as well as creating the actual XML file that specifies all the components (the EPN assembly file) and the XML file that specifies component configuration (the component configuration file). You will likely be constantly updating these XML files as you implement your application, but Oracle recommends you start with this step so you have a high-level view of your application.

For more information, see:

	
Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network"

	
Section 5.3, "Creating EPN Assembly Files."

	
Section 5.4, "Creating Component Configuration Files."

	
Determine the event types that your application is going to use, and, if creating your own JavaBean, program the Java file.

See Chapter 9, "Defining and Using Event Types"

	
Program, and optionally configure, the adapters or event beans that act as inbound, intermediate, or outbound components of your event processing network. You can create your own adapters or event beans, or use the adapters provided by Oracle Event Processing. For details, see:

	
Section 1.5, "Oracle Event Processing APIs"

	
Section 1.4.3, "Configuring Oracle Event Processing Resource Access"

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Configure the processors by creating their component configuration XML files; the most important part of this step is designing and declaring the initial rules that are associated with each processor.

See:

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
Design the rules that the processors are going to use to select events from their upstream channels and output events to their downstream channels.

See:

	
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

	
Note:

Oracle CQL replaces Event Processing Language (EPL) in Oracle Event Processing 11g Release 1 (11.1.1). Oracle Event Processing supports EPL for backwards compatibility.

	
Optionally configure the channels that stream data between adapters, processors, and the business logic POJO by creating their configuration XML files.

See Chapter 10, "Connecting EPN Stages Using Channels."

	
Optionally configure the caching system to publish or consume events to and from a cache to increase the availability of the events and increase the performance of your applications.

See Chapter 13, "Integrating a Cache."

	
Optionally, use the Oracle Event Processing server log subsystem to write log messages from your application to the Oracle Event Processing server log:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
...
Log LOG=LogFactory.getLog("LogName");
...
LOG.debug("Some debug information");
...

Using the Oracle Event Processing Visualizer, you can deploy your application, configure the log level for your application, and view the Oracle Event Processing server console.

For more information, see:

	
"Configuring Logging and Debugging for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Section 23.4, "Managing Log Message Catalogs"

	
"How to Configure Component Logging" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"How to View Console Output" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

3.2 Setting Your Development Environment

You must set your development environment before you can start Oracle Event Processing instances and run the samples. In particular, you must set the PATH and JAVA_HOME environment variables so that you are using the correct version of the JRockit JDK.

There are two ways in which JRockit might have been installed on your computer:

	
As part of the Oracle JRockit Real Time installation. This version of the JRockit JDK includes the deterministic garbage collector.

	
As part of the Oracle Event Processing 11g Release 1 (11.1.1) installation. This version of the JRockit JDK does not include the deterministic garbage collector, and is provided for testing purposes only.

Although not required, Oracle recommends that you run Oracle Event Processing using the JRockit JDK version included in Oracle JRockit Real Time for best results; however, the following procedures describe how to set your environment for either case.

For more information about JRockit, see Section 2.4, "Increasing the Performance of the Samples".

This section describes:

	
Section 3.2.1, "How to Set Your Development Environment on Windows"

	
Section 3.2.2, "How to Set Your Development Environment on UNIX"

3.2.1 How to Set Your Development Environment on Windows

This procedure describes how to set your development environment on Windows.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.cmd, that contains the set commands this section describes.

You can also set the required environment variables permanently on your Windows computer by invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the Environment Variables button. You can set the environment variables for the current user or for the entire system.

To set your development environment on Windows:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation:

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the d:\jrockit directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\jrockit\[JRRT_HOME]\bin;d:\ant\bin;%PATH%

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the d:\Oracle\Middleware directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\Oracle\Middleware\jrockit_160_20\bin;d:\ant\bin;%PATH%

	
Ensure that the JAVA_HOME variable in the setDomainEnv.cmd script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.cmd script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

	
Set the JAVA_HOME variable in your own development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

prompt> set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

prompt> set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

3.2.2 How to Set Your Development Environment on UNIX

This procedure describes how to set your development environment on UNIX.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.sh, that contains the set commands this section describes.

To set your development environment on UNIX:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the /jrockit directory and Ant is installed in the /ant directory, set your PATH environment variable as follows:

prompt> PATH=/jrockit/j[JRRT_HOME]/bin:/ant/bin:$PATH

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the /Oracle/Middleware directory and Ant is installed in the /ant directory, set your PATH environment variable as shown:

prompt> PATH=/Oracle/Middleware/jrockit_160_20/bin:/ant/bin:$PATH

	
Ensure that the JAVA_HOME variable in the setDomainEnv.sh script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.sh script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME/ocep_11.1/samples/domains/helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as /Oracle/Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/Oracle/Middleware/jrockit_160_20

	
Set the JAVA_HOME variable in your development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/Oracle/Middleware/jrockit_160_20

3.3 Using an IDE to Develop Applications

Oracle Event Processing includes a pluging that enhances the Eclipse IDE with features specifically designed to ease the work of building Oracle Event Processing applications. For more information about the IDE, see Section 4, "Overview of the Oracle Event Processing IDE for Eclipse".

3.4 Testing Applications

You can test Oracle Event Processing applications you build by using the included csvadapter and load generator.

The load generator is a command-line tool the reads a comma-separated values (CSV) file and feeds the results to the csvadapter. The csvadapter, in turn, is designed to receive values from the load generator, then bind those values to an event type that you specify.

Using these tools is a relatively simple way to try out code in development before you are ready for the application to receive data from the actual event data source.

For more information about testing with these tools, see Section 21, "Testing Applications With the Load Generator and csvgen Adapter".

Part II

Oracle Event Processing IDE for Eclipse

Part II contains the following chapters:

	
Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse"

	
Chapter 5, "Oracle Event Processing IDE for Eclipse Projects"

	
Chapter 6, "Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers"

	
Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network"

4 Overview of the Oracle Event Processing IDE for Eclipse

This chapter introduces the Oracle Event Processing IDE features available for Eclipse, providing information on how to install and configure the features.

This chapter includes the following sections:

	
Section 4.1, "Overview of Oracle Event Processing IDE for Eclipse"

	
Section 4.2, "Installing the Latest Oracle Event Processing IDE for Eclipse"

	
Section 4.3, "Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing"

	
Section 4.4, "Configuring Eclipse"

4.1 Overview of Oracle Event Processing IDE for Eclipse

Oracle Event Processing IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug applications for Oracle Event Processing.

This section describes:

	
Section 4.1.1, "Features"

	
Section 4.1.2, "JDK Requirements"

	
Section 4.1.3, "Default Oracle Event Processing Domain ocep_domain and Development"

For more information about Oracle Event Processing IDE for Eclipse, see http://www.oracle.com/technology/products/event-driven-architecture/cep-ide/11/.

4.1.1 Features

The key features of the Oracle Event Processing IDE for Eclipse are as follows:

	
Project creation wizards and templates to quickly get started building event driven applications.

	
Advanced editors for source files including Java and XML files common to Oracle Event Processing applications.

	
Integrated server management to seamlessly start, stop, and deploy to Oracle Event Processing server instances all from within the IDE.

	
Integrated debugging.

	
Event Processing Network (EPN) visual design views for orienting and navigating in event processing applications and visually creating and editing EPN components.

	
Oracle Event Processing application source file validation including Oracle Continuous Query Language (Oracle CQL) syntax highlighting and component configuration and assembly files.

	
Ability to build and export deployable Oracle Event Processing applications.

	
Integrated support for the Oracle Event Processing Visualizer so you can use the Oracle Event Processing Visualizer from within the IDE.

4.1.2 JDK Requirements

In 11g Release 1 (11.1.1), Oracle Event Processing IDE for Eclipse requires JDK 6.0. For more information, see:

	
Section 3.2, "Setting Your Development Environment."

	
Section 4.4, "Configuring Eclipse"

4.1.3 Default Oracle Event Processing Domain ocep_domain and Development

When you choose a Typical Oracle Event Processing server install, the installation does not include the default ocep_domain domain (with default passwords) and the product samples.

If you want to install the default ocep_domain and samples (recommended), choose the Custom Oracle Event Processing server install option.

The Typical install is appropriate for a production environment while the Custom install is appropriate for a development environment.

Oracle recommends that you install the default ocep_domain and samples for use with the Oracle Event Processing IDE for Eclipse during development.

If you choose a Typical Oracle Event Processing server install, you can use the Configuration Wizard to create an Oracle Event Processing server domain.

For more information, see:

	
"Installation Overview" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

	
"Creating an Oracle Event Processing Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Creating an Oracle Event Processing Multi-Server Domain Using Oracle Event Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

4.2 Installing the Latest Oracle Event Processing IDE for Eclipse

New versions of the IDE will be made available via the Oracle Technology Network Web site. Oracle recommends that you install the IDE from this Eclipse update site.

To install the latest Oracle Event Processing IDE for Eclipse:

	
Obtain the required versions of Eclipse (3.7.2) and WTP (2.0). Be sure to install the Eclipse IDE for Java EE developers. We recommend you take the entire Indigo installation available at the following Web sites:

Windows: http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/R/eclipse-jee-indigo-win32.zip

Linux: http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR2/eclipse-jee-indigo-SR2-linux-gtk.tar.gz

	
Open your Eclipse IDE and select the menu item Help > Install New Software.

The Install dialog appears as Figure 4-1 shows.

Figure 4-1 Install Dialog

[image: Description of Figure 4-1 follows]

	
Click Add.

The Add Site dialog appears as Figure 4-2 shows.

Figure 4-2 Add Site Dialog

[image: Description of Figure 4-2 follows]

	
Configure this dialog as Table 4-1 describes.

Table 4-1 New Update Site Dialog Attributes

	Attribute	Description
	
Name

	
The name for this remote update site. For example: Oracle Event Processing Tools Update.

	
URL

	
The URL to the remote update site. Valid value:

http://download.oracle.com/technology/software/cep-ide/11/

	
Click OK.

	
In the Install dialog, from the Work with pull down menu, select the Oracle Event Processing Tools Update site you just created.

It make take a few moments for Eclipse to contact the remote update site. During this time, the "There is no site selected" entry reads "Pending".

When Eclipse has made contact with the remote update site, the Oracle Event Processing Tools entry appears in the list of update sites as Figure 4-3 shows.

	
Check the check box next to the Oracle Event Processing Tools entry as Figure 4-3 shows.

Figure 4-3 Install Dialog - Site Selected

[image: Description of Figure 4-3 follows]

	
Click Next.

The Install Details dialog appears as Figure 4-4 shows.

Figure 4-4 Install Dialog - Install Details

[image: Description of Figure 4-4 follows]

	
Click Next.

The Review Licenses dialog appears.

	
Click Finish.

	
When prompted restart, Eclipse. If you skip this, unreliable behavior can occur.

	
To confirm the installation, select Help > About Eclipse.

The About Eclipse dialog appears as Figure 4-5 shows.

Figure 4-5 About Eclipse

[image: Description of Figure 4-5 follows]

	
Click Oracle.

The About Eclipse Features dialog appears as Figure 4-6 shows.

Figure 4-6 About Eclipse Features Dialog

[image: Description of Figure 4-6 follows]

	
Click Plug-In Details.

The Feature Plug-ins dialog appears as Figure 4-7 shows.

Figure 4-7 Feature Plug-ins Dialog

[image: Description of Figure 4-7 follows]

	
Confirm that the plug-ins that Table 4-2 lists are shown.

Table 4-2 Oracle Event Processing IDE for Eclipse Plug-Ins

	Provider	Plug-in Name	Plug-in Id
	
Oracle

	
Oracle Event Processing Tools Core

	
com.bea.wlevs.eclipse.tools.core

	
Oracle

	
Oracle Event Processing Tools Documentation

	
com.bea.wlevs.eclipse.tools.doc

	
Oracle

	
Oracle Event Processing Tools UI

	
com.bea.wlevs.eclipse.tools.ui

	
After installing Oracle Event Processing IDE for Eclipse, consider the following topics:

	
Section 4.1.3, "Default Oracle Event Processing Domain ocep_domain and Development"

	
Section 4.4, "Configuring Eclipse"

4.3 Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing

A version of the Oracle Event Processing IDE for Eclipse is shipped with the Oracle Event Processing product, although this version might be older than the one on the Oracle Technology Network site.

To install the Oracle Event Processing IDE for Eclipse distributed with Oracle Event Processing:

	
Obtain the required versions of Eclipse (3.7.2) and WTP (2.0). Be sure to install the Eclipse IDE for Java EE developers. We recommend you take the entire Indigo installation available at the following Web sites:

Windows: http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/R/eclipse-jee-indigo-win32.zip

Linux: http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR2/eclipse-jee-indigo-SR2-linux-gtk.tar.gz

	
Open your Eclipse IDE and select the menu item Help > Install New Software.

The Install dialog appears as Figure 4-1 shows.

Figure 4-8 Install Dialog

[image: Description of Figure 4-8 follows]

	
Click Add.

The Add Site dialog appears as Figure 4-2 shows.

Figure 4-9 Add Site Dialog

[image: Description of Figure 4-9 follows]

	
Click Archive.

The Select Local Site Archive dialog appears as Figure 4-10 shows.

Figure 4-10 Select Local Site Archive Dialog

[image: Description of Figure 4-10 follows]

	
Navigate to the MIDDLEWARE_HOME/ocep_11.1/eclipse-update-site directory and select the cep-tools-11.1.0.DATE-BUILD.zip file.

Where MIDDLEWARE_HOME refers to the directory into which you installed Oracle Event Processing, such as c:\Oracle\Middleware, and DATE is the build date and BUILD is the build number.

	
Click Open.

	
Complete the Update Manager, selecting to install the Oracle Event Processing tools.

	
When prompted restart, Eclipse. If you skip this, unreliable behavior can occur.

	
To confirm the installation, select Help > About Eclipse.

The About Eclipse dialog appears as Figure 4-5 shows.

Figure 4-11 About Eclipse

[image: Description of Figure 4-11 follows]

	
Click Oracle.

The About Eclipse Features dialog appears as Figure 4-6 shows.

Figure 4-12 About Eclipse Features Dialog

[image: Description of Figure 4-12 follows]

	
Click Plug-In Details.

The Feature Plug-ins dialog appears as Figure 4-7 shows.

Figure 4-13 Feature Plug-ins Dialog

[image: Description of Figure 4-13 follows]

	
Confirm that the plug-ins that Table 4-2 lists are shown.

Table 4-3 Oracle Event Processing IDE for Eclipse Plug-Ins

	Provider	Plug-in Name	Plug-in Id
	
Oracle

	
Oracle Event Processing Tools Core

	
com.bea.wlevs.eclipse.tools.core

	
Oracle

	
Oracle Event Processing Tools Documentation

	
com.bea.wlevs.eclipse.tools.doc

	
Oracle

	
Oracle Event Processing Tools UI

	
com.bea.wlevs.eclipse.tools.ui

	
After installing Oracle Event Processing IDE for Eclipse, consider the following topics:

	
Section 4.1.3, "Default Oracle Event Processing Domain ocep_domain and Development"

	
Section 4.4, "Configuring Eclipse"

4.4 Configuring Eclipse

This section describes how to configure Eclipse to work with Oracle Event Processing.

To configure Eclipse:

	
Exit out of Eclipse if it is running.

	
Install a Java 6 JRE on your computer.

For example, you might have installed the JRE included with a Java Development Kit to the following location:

C:\Java\jre6

	
Using the editor of your choice, open your eclipse.ini file located in your Eclipse install directory, for example, C:\eclipse\ as Example 4-1 shows.

Example 4-1 Default eclipse.ini File

-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256M

	
Note:

When making changes to the eclipse.ini file, add arguments one argument per line, as http://wiki.eclipse.org/Eclipse.ini describes.

For more information about configuring Eclipse, see http://wiki.eclipse.org/FAQ_How_do_I_run_Eclipse.

	
Add the following lines to the eclipse.ini file as Example 4-2 shows.

Example 4-2 Memory Resources

-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256M
-vmargs
-Xmx512m
-XX:MaxPermSize=256M

	
Add the following to the eclipse.ini file as Example 4-3 shows.

Example 4-3 Virtual Machine Path

-vm
PATH-TO-JRE-6.0-JAVAW

Where PATH-TO-JRE-6.0-JAVAW is the fully qualified path to your Java 6.0 JRE javaw executable. For example:

-vm
C:\Java\jre6\bin\javaw.exe

	
Note:

Do not put both the -vm and the path on the same line. Each must be on a separate line as Example 4-3 shows.

	
Save and close the eclipse.ini file.

	
Start Eclipse.

	
Select Help > About Eclipse and click Installation Details.

	
Click the Configuration tab.

The Configuration Details tab appears as shown in Figure 4-14.

Figure 4-14 Configuration Details for Java 6

[image: Description of Figure 4-14 follows]

	
Confirm that the eclipse.vm property points to the Java 6.0 JRE you configured in the eclipse.ini file.

5 Oracle Event Processing IDE for Eclipse Projects

This chapter describes how to use the Oracle Event Processing IDE for Eclipse to create projects with which to develop event processing networks (EPNs), including EPN assembly files and component configuration files.

This chapter includes the following sections:

	
Section 5.1, "Oracle Event Processing Project Overview"

	
Section 5.2, "Creating Oracle Event Processing Projects"

	
Section 5.3, "Creating EPN Assembly Files"

	
Section 5.4, "Creating Component Configuration Files"

	
Section 5.5, "Exporting Oracle Event Processing Projects"

	
Section 5.6, "Upgrading Projects"

	
Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects"

	
Section 5.8, "Configuring Oracle Event Processing IDE for Eclipse Preferences"

5.1 Oracle Event Processing Project Overview

An Oracle Event Processing application includes the following artifacts:

	
Java source files

	
XML configuration files

	
OSGi bundle Manifest file

Figure 5-1 shows the Explorer after creating a project.

Figure 5-1 Oracle Event Processing Project Structure

[image: Description of Figure 5-1 follows]

Table 5-1 summarizes the important files in an Oracle Event Processing project including their use and location.

Table 5-1 Oracle Event Processing Project Artifacts

	File Type	Location	Description
	
Java source files

	
Any Java source folder.

Default: src.

	
Events, adapters, and listeners are implemented in an Oracle Event Processing application with Java files. All Java files must be in a source folder in order to be compiled.

For more information, see Chapter 1, "Overview of Creating Oracle Event Processing Applications".

	
EPN assembly file

	
META-INF/spring

	
These are the main files used to wire-up an EPN and to define event types. This is a Spring context file, and is where adapters, channels, processors, and listeners are connected.

For more information, see Chapter 1, "Overview of EPN Assembly Files".

	
Processor configuration file

	
META-INF/wlevs

	
The processor configuration file is where the Oracle Event Processing processor is defined. In this file you'll find processor rules (defined in the Continuous Query Language - CQL or the Event Processing Language--EPL) and other component configuration settings.

For more information, see:

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
MANIFEST.MF file

	
META-INF

	
The manifest file contains metadata about your application including its name, version, and dependencies, among others.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

5.2 Creating Oracle Event Processing Projects

Development of an Oracle Event Processing application begins by creating a project to hold all source code and related files.

Projects correspond 1-to-1 with Oracle Event Processing applications and are the unit of work that is associated with and deployed to a server instance. In concrete terms, the output of a built project is a single OSGi bundle (JAR) containing the Oracle Event Processing application.

5.2.1 How to Create an Oracle Event Processing Project

By default new projects are set to use Java 6.0. This section describes how to create an Oracle Event Processing project using Java 6. For information on configuring an Oracle Event Processing project to use Java 6, see Section 4.4, "Configuring Eclipse".

	
Note:

By default, the Overview view of the Eclipse manifest editor provides a link to launch the OSGi framework for testing the plugin. When you've created an Oracle Event Processing project using an application template, launching the framework is not supported.

To create an Oracle Event Processing project:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor")

	
Select File > New Project.

The New Project - Select a Wizard dialog appears as shown in Figure 5-2.

Figure 5-2 New Project - Select a Wizard Dialog

[image: Description of Figure 5-2 follows]

	
Expand Oracle Event Processing and select Oracle Event Processing Application Project.

	
Click Next.

The New Oracle Event Processing Application Project wizard appears as shown in Figure 5-3.

Figure 5-3 New Oracle Event Processing Application Project Wizard: Create an Oracle Event Processing Application

[image: Description of Figure 5-3 follows]

	
Configure the Create an Oracle Event Processing Application dialog as shown in Table 5-2.

Table 5-2 Create an Oracle Event Processing Application Dialog

	Attribute	Description
	
Project name

	
The name of your Oracle Event Processing project. This name will be used as the default name of your application when it is deployed to the Oracle Event Processing server.

	
Location

	
The directory in which your project is stored.

By default your project is located inside the Eclipse workspace directory.

To keep your workspace and source code control directories separate, clear Use default location and click Browse to place the project in a directory outside of your workspace.

	
Target Runtime

	
The Oracle Event Processing server you will deploy your project to.

	
Click Next.

The Oracle Event Processing Application Content dialog appears as shown in Figure 5-4.

Figure 5-4 New Oracle Event Processing Application Project Wizard: Oracle Event Processing Application Content

[image: Description of Figure 5-4 follows]

	
Optionally, configure the Oracle Event Processing Application Content dialog as shown in Table 5-3.

Table 5-3 Oracle Event Processing Application Content Dialog

	Attribute	Description
	
Bundle ID

	
The unique ID that distinguishes this application's OSGi bundle from those deployed to the target runtime.

	
Bundle Version

	
The version of this instance of this OSGi bundle.

	
Bundle Name

	
The name of this application's OSGi bundle.

	
Bundle Provider

	
The name of the provider for this application's OSGi bundle (optional).

	
Click Next.

The Template dialog appears as shown in Figure 5-5.

Figure 5-5 New Oracle Event Processing Application Project Wizard: Template Dialog

[image: Description of Figure 5-5 follows]

	
Optionally, select an Oracle Event Processing application template to pre-populate your project with the content that the template specifies.

	
Click Finish.

The Oracle Event Processing IDE for Eclipse creates the Oracle Event Processing project.

	
Optionally, create additional EPN assembly files and component configuration files.

By default, Oracle Event Processing IDE for Eclipse creates one EPN assembly file and one component configuration file for your project. Optionally, you may choose to define and configure Oracle Event Processing objects in multiple EPN assembly and component configuration files to improve management, concurrent development, and re-use.

For more information, see:

	
Section 5.3, "Creating EPN Assembly Files"

	
Section 5.4, "Creating Component Configuration Files"

5.3 Creating EPN Assembly Files

You use the Event Processing Network (EPN) assembly file to declare the components that make up your Oracle Event Processing application and how they are connected to each other. You also use the file to register event types of your application, as well as the Java classes that implement the adapter and POJO components of your application.

For an example of an EPN assembly file, see the Section 2.8, "Foreign Exchange (FX) Example". For additional information about Spring and OSGi, see Appendix A, "Additional Information about Spring and OSGi."

5.3.1 How to Create a New EPN Assembly File Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to create and edit the EPN file is using the New File Wizard in the Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 7.2, "EPN Editor Overview"

	
Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects"

To create a new EPN assembly file using Oracle Event Processing IDE for Eclipse:

	
Create an Oracle Event Processing project.

See Section 5.2, "Creating Oracle Event Processing Projects".

By default, Oracle Event Processing IDE for Eclipse creates one EPN assembly file for your project. Optionally, you may choose to define Oracle Event Processing objects in multiple EPN assembly files to improve management, concurrent development, and re-use.

	
To optionally create additional EPN assembly files:

	
Select File > New > Other.

The New dialog appears as Figure 5-6 shows.

Figure 5-6 New Dialog

[image: Description of Figure 5-6 follows]

	
Expand Oracle Event Processing and select Oracle Event Processing Assembly File.

	
Click Next.

The New OEP Assembly File dialog appears as Figure 5-7 shows.

Figure 5-7 New OEP Assembly File Dialog

[image: Description of Figure 5-7 follows]

	
Configure the New OEP Assembly File dialog as shown in Table 5-4.

Table 5-4 New OEP Assembly File Dialog

	Attribute	Description
	
Enter or select the parent folder

	
Enter the fully qualified path to the folder in which Oracle Event Processing IDE for Eclipse will create the EPN assembly file or use the file system navigation controls to select the folder.

	
File name

	
Enter the name of the new EPN assembly file.

	
Click Finish.

	
Open the EPN editor.

See Section 7.1, "Opening the EPN Editor".

	
If you created multiple EPN assembly files, you can select the EPN assembly file you want to work on using the EPN Editor Filter pull-down menu.

This lets you focus on just the subset of the EPN that the selected EPN assembly file represents.

To see the union of all components in all EPN assembly files, select Full EPN from the EPN Editor Filter pull-down menu.

For more information, see Section 7.2.2, "Filtering".

	
Create and connect nodes on the EPN.

See Section 7.4, "Using the EPN Editor".

5.4 Creating Component Configuration Files

You use a component configuration file to configure the components that make up your Oracle Event Processing application.

For an example of a component configuration file, see the Section 2.8, "Foreign Exchange (FX) Example".

5.4.1 How to Create a New Component Configuration File Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to create and edit a component configuration file is using the New File Wizard in the Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 7.2, "EPN Editor Overview"

	
Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects"

To create a new component configuration file using Oracle Event Processing IDE for Eclipse:

	
Create an Oracle Event Processing project.

See Section 5.2, "Creating Oracle Event Processing Projects".

By default, Oracle Event Processing IDE for Eclipse creates one component configuration file for your project. Optionally, you may choose to configure Oracle Event Processing objects in multiple component configuration files to improve management, concurrent development, and re-use.

	
To optionally create component configuration files:

	
Select File > New > Other.

The New dialog appears as Figure 5-8 shows.

Figure 5-8 New Dialog

[image: Description of Figure 5-8 follows]

	
Expand Oracle Event Processing and select Oracle Event Processing Application Configuration File.

	
Click Next.

The New OEP Application Configuration File dialog appears as Figure 5-9 shows.

Figure 5-9 New OEP Application Configuration File Dialog

[image: Description of Figure 5-9 follows]

	
Configure the New OEP Assembly File dialog as shown in Table 5-4.

Table 5-5 New OEP Configuration File Dialog

	Attribute	Description
	
Enter or select the parent folder

	
Enter the fully qualified path to the folder in which Oracle Event Processing IDE for Eclipse will create the component configuration file or use the file system navigation controls to select the folder.

	
File name

	
Enter the name of the new component configuration file.

	
Click Finish.

	
Open the EPN editor.

See Section 7.1, "Opening the EPN Editor".

	
Create and connect nodes on the EPN.

See Section 7.4, "Using the EPN Editor".

5.5 Exporting Oracle Event Processing Projects

Exporting an Oracle Event Processing project builds the project into an OSGi bundle that can be deployed to a production Oracle Event Processing server.

5.5.1 How to Export an Oracle Event Processing Project

This section describes how to export an Oracle Event Processing project into an OSGi bundle.

To export an Oracle Event Processing project:

	
Start the Oracle Event Processing IDE for Eclipse and open your Oracle Event Processing project.

	
The Oracle Event Processing IDE for Eclipse compiles and adds Java resources to the exported JAR automatically. If your project contains other resources (such as a manifest file or images), configure your project to export them:

	
Locate the build.properties file in the Project Explorer and double-click this file to edit it.

The build.properties file opens as shown in Figure 5-10.

Figure 5-10 Oracle Event Processing Project build.properties File

[image: Description of Figure 5-10 follows]

	
In the Binary Build area, check the resources you want exported with your application.

	
Select File > Export.

The Export dialog appears.

	
Expand the Oracle Event Processing option and select Oracle Event Processing Applications.

	
Click Next.

The Oracle Event Processing Applications Export: Select Project dialog appears as shown in Figure 5-11.

Figure 5-11 Oracle Event Processing Applications Export: Select Project Dialog

[image: Description of Figure 5-11 follows]

	
Configure the Oracle Event Processing Applications Export: Select Project dialog as shown in Table 5-6.

Table 5-6 Oracle Event Processing Application Content Dialog

	Attribute	Description
	
Available Projects

	
The list of Oracle Event Processing projects available for export.

Check the project or projects you want to export.

Each project will be exported to a JAR file with the name given in the Output File column. The name of the bundle that will be exported conforms to the OSGi bundle naming conventions, using the bundle ID and the bundle version in the JAR name.

	
Directory

	
The directory in which Oracle Event Processing project JAR files are exported.

Click Browse to choose this directory.

	
Overwrite existing files without warning

	
Check this option to overwrite existing JAR files with the same name in the selected directory.

	
Click Finish.

Your project, its Java resources, and any binary resources you selected are exported to the project JAR file.

	
Deploy the JAR file to your Oracle Event Processing server.

	
If your JAR is an application, see Section 6.3.6, "How to Deploy an Application to an Oracle Event Processing Server".

	
If your JAR is an application library, see Section 23.1.3, "Application Libraries"

	
Deploy other dependent resources, if any, to your Oracle Event Processing server.

For example:

	
Other OSGi bundles your application depends on.

Deploy these bundles on the Oracle Event Processing server using the Oracle Event Processing Visualizer or command line deployment tools.

	
Any entries in config.xml for datasources that are referenced from within the application.

Add these entries to the target server's config.xml file.

5.6 Upgrading Projects

When upgrading Oracle Event Processing from one version to another, it may be necessary to make changes to your existing Oracle Event Processing projects.

This section describes:

	
Section 5.6.1, "How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3"

	
Section 5.6.2, "How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)"

For more information, see:

	
Section 4.4, "Configuring Eclipse"

	
Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

5.6.1 How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3

While project structure has stayed the same since 2.1, the data stored in Oracle Event Processing Projects has changed significantly. It is therefore necessary to take steps to upgrade 2.1 projects manually before continuing their development in 10.3.

The following outlines the steps necessary to upgrade 2.1 projects to 10.3

To upgrade projects from Oracle Event Processing 2.1 to 10.3:

	
Open your Oracle Event Processing 2.1 project in Oracle Event Processing IDE for Eclipse.

	
Select File > Switch Workspace > Other.

The Workspace Launcher dialog appears.

	
Note:

Do not choose to copy settings from the current workspace.

	
Click Browse and select a new workspace directory.

Eclipse exits and restarts using the new workspace.

	
Select File > Import.

The Import Dialog appears.

	
Expand the General option and select Existing Projects into Workspace.

	
Click Next.

The Import Projects dialog appears.

	
Use the Import Projects dialog to import your 2.1 projects into the new workspace. Optionally, choose to copy the project files into your new workspace.

	
For each project, change the project facet version as follows:

	
Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5-12.

Figure 5-12 Project Properties Dialog: Project Facets

[image: Description of Figure 5-12 follows]

	
Select the Project Facets option.

The Project Facet properties are displayed as Figure 5-12 shows.

	
Click Modify Project.

The Modify Faceted Project dialog appears shown in Figure 5-13.

Figure 5-13 Modify Faceted Project

[image: Description of Figure 5-13 follows]

	
For the Oracle Event Processing facet, select 10.3 from the Version pull-down menu.

	
Click Finish.

	
Click OK.

	
Repeat for the next project.

	
Create a new Oracle Event Processing server runtime:

	
Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5-14.

Figure 5-14 Preferences Dialog

[image: Description of Figure 5-14 follows]

	
Expand the Server option and select Installed Runtimes.

	
Add a new 10.3 Oracle Event Processing server runtime as Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime" describes.

	
Click OK.

	
For each project, specify the new 10.3 Oracle Event Processing server runtime you created:

	
Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5-15.

Figure 5-15 Project Properties Dialog: Targeted Runtimes

[image: Description of Figure 5-15 follows]

	
Select the Targeted Runtimes option.

The Targeted Runtimes properties are displayed as Figure 5-15 shows.

	
Check the new Oracle Event Processing 10.3 targeted runtime you created.

	
Click OK.

	
Repeat for the next project.

	
For each project update the project builders:

	
Right-click the project and select Open EPN Editor.

	
If the EPN diagram opens without error, proceed to step 12.

	
If the EPN diagram opens with the error shown in Figure 5-16, click the Configure Builder button.

Figure 5-16 Builder Error

[image: Description of Figure 5-16 follows]

The EPN diagram is displayed.

	
Repeat for the next project.

	
Validate build inclusions:

If your application bundle is using bundle localization and has substitution variables in its MANIFEST.MF file such as:

Bundle-Name: %project.name

Then your project root directory's build.properties file element bin.include must contain a reference to your bundle.properties file such as:

bin.includes = META-INF/,\
 bundle.properties,\
 .

	
Perform source changes, if necessary.

For more information, see:

	
"Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle Event Processing 10.3" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

	
Oracle Event Processing Release Notes for 10.3 (http://download.oracle.com/docs/cd/E13157_01/wlevs/docs30/notes/notes.html)

After performing these steps, you should do a clean build of your project.

5.6.2 How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)

While project structure has stayed the same since 10.3, the data stored in Oracle Event Processing Projects has changed significantly. It is therefore necessary to take steps to upgrade 10.3 projects manually before continuing their development in 11g Release 1 (11.1.1).

The following outlines the steps necessary to upgrade 10.3 projects to 11g Release 1 (11.1.1)

To upgrade projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)

	
Open your Oracle Event Processing 10.3 project in Oracle Event Processing IDE for Eclipse.

	
Select File > Switch Workspace > Other.

The Workspace Launcher dialog appears.

	
Click Browse and select a new workspace directory.

	
Note:

Do not choose to copy settings from the current workspace.

Eclipse exits and restarts using the new workspace.

	
Select File > Import.

The Import Dialog appears.

	
Expand the General option and select Existing Projects into Workspace.

	
Click Next.

The Import Projects dialog appears as shown in Figure 5-17.

Figure 5-17 Import Projects Dialog

[image: Description of Figure 5-17 follows]

	
Use the Import Projects dialog to import your 10.3 projects into the new workspace. Optionally, choose to copy the project files into your new workspace.

	
For each project, change the project facet version as follows:

	
Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5-12.

Figure 5-18 Project Properties Dialog: Project Facets

[image: Description of Figure 5-18 follows]

	
Select the Project Facets option.

The Project Facet properties are displayed as Figure 5-12 shows.

	
Click Modify Project.

The Modify Faceted Project dialog appears shown in Figure 5-13.

Figure 5-19 Modify Faceted Project

[image: Description of Figure 5-19 follows]

	
For the Java facet, select 6.0 from the Version pull-down menu.

	
For the Oracle Event Processing facet, select 11.1 from the Version pull-down menu.

	
Click Finish.

	
Click OK.

	
Repeat for the next project.

	
Create a new Oracle Event Processing server runtime:

	
Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5-14.

Figure 5-20 Preferences Dialog

[image: Description of Figure 5-20 follows]

	
Expand the Server option and select Installed Runtimes.

	
Add a new 11.0 Oracle Event Processing server runtime as Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime" describes.

	
Click OK.

	
For each project, specify the new 11.0 Oracle Event Processing server runtime you created:

	
Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5-15.

Figure 5-21 Project Properties Dialog: Targeted Runtimes

[image: Description of Figure 5-21 follows]

	
Select the Targeted Runtimes option.

The Targeted Runtimes properties are displayed as Figure 5-15 shows.

	
Check the new Oracle Event Processing 11.0 targeted runtime you created.

	
Click OK.

	
Repeat for the next project.

	
For each project update the project builders:

	
Right-click the project and select Open EPN Editor.

	
If the EPN diagram opens without error, proceed to step 12.

	
If the EPN diagram opens with the error shown in Figure 5-16, click the Configure Builder button.

Figure 5-22 Builder Error

[image: Description of Figure 5-22 follows]

The EPN diagram is displayed.

	
Repeat for the next project.

	
Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5-23.

Figure 5-23 Preferences Dialog

[image: Description of Figure 5-23 follows]

	
Select the Validation option.

	
Ensure that the following validation options are checked:

	
CQL Validator

	
EPN Validator

	
XML Validator

	
Clear all other options.

	
Click OK.

	
Validate build inclusions:

If your application bundle is using bundle localization and has substitution variables in its MANIFEST.MF file such as:

Bundle-Name: %project.name

Then your project root directory's build.properties file element bin.include must contain a reference to your bundle.properties file such as:

bin.includes = META-INF/,\
 bundle.properties,\
 .

	
Perform source changes, if necessary.

For more information, see:

	
"Upgrading an Oracle Event Processing 10.3 Application to Run on Oracle Event Processing Release 11gR1 (11.1.1)" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

5.7 Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Many projects require the use of non-class files such as libraries or property files that were obtained from a source other than the project itself, whether that be third party libraries, internal libraries created in other projects, or otherwise.

You can add the following non-class files to an Oracle Event Processing project, each with its own packaging and deployment characteristics:

	
Standard JAR Files: Adding a standard JAR file to a project makes for the easiest management of the library. The library is packaged directly with the project by the Oracle Event Processing IDE for Eclipse and you can check the library into a source code control system as part of the project.

For more information, see:

	
Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project"

	
Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project"

	
Section 5.7.3, "How to Add a Property File to an Oracle Event Processing Project"

	
Section 5.7.4, "How to Export a Package"

	
Section 5.7.5, "How to Import a Package"

	
Section 23.2.2.2.2, "Accessing Third-Party JAR Files Using -Xbootclasspath"

	
OSGi Bundles: If your library is already packaged as an OSGi bundle and you would like to deploy it to the server once (allowing multiple applications to reference it), you can use the OSGi bundle library option. Note that this leaves some parts of deployment to the user since the OSGi bundle is not automatically packaged with the application. It can also make working in team environments a little more difficult because each developer must have the bundle in the DOMAIN_DIR/servername/modules directory of their machine, rather than have it source controlled with the rest of the project.

The main advantage of the OSGi bundle library option is that you can use the Oracle Event Processing server application library to manage OSGi bundle libraries to ensure that they are deployed before any applications that depend on them.

For more information, see:

	
Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project"

	
Section 23.1.3, "Application Libraries"

	
Property Files: Adding a Java property file to a project allows you to manage properties efficiently. You can add a Java property file to an Oracle Event Processing project so that the property file is deployed with your application and is available at runtime.

For more information, see:

	
Section 5.7.3, "How to Add a Property File to an Oracle Event Processing Project"

	
Section 1.4.2.1, "Accessing Component and Server Configuration Using the ConfigurationPropertyPlaceholderConfigurer Class"

5.7.1 How to Add a Standard JAR File to an Oracle Event Processing Project

If the library you need to use is a standard JAR file, you can add it to your Oracle Event Processing project. Alternatively, you can add a library as an OSGi bundle (see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project").

When you add a standard JAR file to an Oracle Event Processing project, you can optionally expose some or all of its packages to other bundles that will depend on this bundle.

To add a standard JAR file to an Oracle Event Processing project:

	
Create a folder in your Oracle Event Processing IDE for Eclipse project to put the JAR file in.

Oracle recommends that you create a folder to put them in such as lib.

To create a new folder, right-click your project folder and select New > Folder.

	
Outside of the Oracle Event Processing IDE for Eclipse, copy your JAR file into the lib folder.

	
Inside the Oracle Event Processing IDE for Eclipse, right-click the lib folder and select Refresh.

The JAR file appears in the lib folder as Figure 5-24 shows.

Figure 5-24 Oracle Event Processing IDE for Eclipse lib Directory

[image: Description of Figure 5-24 follows]

	
Expand the META-INF directory and right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5-25 shows.

Figure 5-25 Manifest Editor: Build Tab

[image: Description of Figure 5-25 follows]

	
Click the Build tab.

	
Add your JAR file to the binary build under the project root as follows:

	
In the Binary Build area, expand the lib directory.

	
Check the box next to your library as Figure 5-25 shows.

	
Press hit CTRL-SHIFT-S to save all files.

This edits the build.properties file in your project, and tells the Oracle Event Processing IDE for Eclipse to add the JAR file to your bundle when you build the bundle JAR.

	
In the Manifest Editor, click the Runtime tab.

The Runtime tab appears as Figure 5-26 shows.

Figure 5-26 Manifest Editor - Runtime Tab

[image: Description of Figure 5-26 follows]

	
Add the JAR file to your project's classpath as follows:

	
In the Manifest Editor, click the Add button.

The JAR Selection dialog appears as shown in Figure 5-27.

Figure 5-27 JAR Selection Dialog

[image: Description of Figure 5-27 follows]

	
Select the JAR you want to add to the bundle.

In this example, expand the lib directory and select the javax.jws_2.0.jar file.

	
Click OK.

This adds the selected JAR to the Classpath list as Figure 5-28 shows.

Figure 5-28 Manifest Editor Runtime tab After Adding a JAR to the Classpath

[image: Description of Figure 5-28 follows]

	
Press hit CTRL-SHIFT-S to save all files.

This edits the MANIFEST.MF file, putting the JAR on your project classpath.

To confirm this, in the Manifest Editor, click the MANIFEST.MF tab and note that the JAR is now listed under the Bundle-Classpath property as Figure 5-29 shows.

Figure 5-29 Manifest Editor MANIFEST.MF Tab

[image: Description of Figure 5-29 follows]

Note also that the JAR now appears as a library at the root of the project as Figure 5-30 shows.

Figure 5-30 Package Explorer

[image: Description of Figure 5-30 follows]

	
Optionally, if your bundle needs to export packages from this JAR to other bundles that will depend on this bundle, then you can export these packages as Section 5.7.4, "How to Export a Package" describes.

5.7.2 How to Add an OSGi Bundle to an Oracle Event Processing Project

If the library you need to use is an OSGi bundle, you can add it to your Oracle Event Processing project. Alternatively, you can add a library as a standard JAR file (see Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project").

To add an OSGi bundle to an Oracle Event Processing project, you add the bundle to that bundle's dependencies definition.

	
Note:

This process only makes the referenced bundle available to your project at build time. It does not package the bundle directly with your application when it is deployed or exported. Instead, this bundle must be deployed to the Oracle Event Processing server manually. For more information, see Section 23.1.3, "Application Libraries".

To add an OSGi bundle to an Oracle Event Processing project:

	
Place the OSGi bundle in the DOMAIN_DIR/servername/modules directory, where DOMAIN_DIR refers to the domain directory such as /oracle_cep/user_projects/domains/mydomain and servername refers to the server instance, such as myserver. For example:

c:\oracle_cep\user_projects\domains\mydomain\myserver\modules

	
Start the Oracle Event Processing IDE for Eclipse.

	
Right-click the project and select Refresh Targeted Runtime.

	
Right-click the META-INF/MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5-31 shows.

Figure 5-31 Manifest Editor: Dependencies Tab

[image: Description of Figure 5-31 follows]

	
Click the Dependencies tab.

	
In the Required Plug-ins area, click Add.

The Plug-in Selection dialog appears as shown in Figure 5-32.

Figure 5-32 Plug-in Selection Dialog

[image: Description of Figure 5-32 follows]

	
Select the bundle you added to the DOMAIN_DIR/servername/modules directory of your Oracle Event Processing server installation directory in step 1 and click OK.

The selected bundle appears in the Require-Bundle section of the MANIFEST.MF file.

5.7.3 How to Add a Property File to an Oracle Event Processing Project

You can add a Java property file to an Oracle Event Processing project so that the property file is deployed with your application and is available at runtime.

To add a property file to an Oracle Event Processing project:

	
Create a folder in your Oracle Event Processing IDE for Eclipse project to put the property files in.

Oracle recommends that you create a folder to put them in such as properties.

To create a new folder, tight-click your project folder and select New > Folder.

	
Outside of the Oracle Event Processing IDE for Eclipse, copy your property file into the properties folder.

	
Inside the Oracle Event Processing IDE for Eclipse, right-click the properties folder and select Refresh.

The property file appears in the properties folder.

	
Expand the META-INF directory and right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5-33 shows.

Figure 5-33 Manifest Editor: Build Tab

[image: Description of Figure 5-33 follows]

	
Click the Build tab.

	
Add your property file to the binary build under the project root as follows:

	
In the Binary Build area, expand the properties directory.

	
Check the box next to your property file as Figure 5-33 shows.

	
Press hit CTRL-SHIFT-S to save all files.

This edits the build.properties file in your project, and tells the Oracle Event Processing IDE for Eclipse to add the property file to your bundle when you build the bundle JAR.

	
You can access the properties file in Java code as Example 5-1 shows:

Example 5-1 Accessing a Properties File

public void onInsertEvent(Object event) {
 if (event instanceof HelloWorldEvent) {
 HelloWorldEvent helloWorldEvent = (HelloWorldEvent) event;
 InputStream resourceAsStream = getClass().getClassLoader().getResourceAsStream(
 "properties/test.properties"
);
 Properties props = new Properties();
 try {
 props.load(resourceAsStream);
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println("Message: " + props.get("test-key"));
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have exceptions propagated
 // up to senders. Other errors will be logged and dropped.
 }

}

5.7.4 How to Export a Package

Optionally, if your bundle needs to export a package from a JAR to other bundles that will depend on this bundle, then you can export this package. By doing so, you update the Package-Export MANIFEST entry to create an OSGi exporter for the package.

To export a package:

	
Inside the Oracle Event Processing IDE for Eclipse, expand the META-INF directory as Figure 5-34 shows.

Figure 5-34 Oracle Event Processing IDE for Eclipse lib Directory

[image: Description of Figure 5-34 follows]

	
Right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5-35 shows.

Figure 5-35 Manifest Editor: Runtime tab

[image: Description of Figure 5-35 follows]

	
Click the Runtime tab.

The Runtime tab appears as Figure 5-35 shows.

	
In the Exported Packages area, click the Add button.

The Package Selection dialog appears as Figure 5-36 shows.

Figure 5-36 Package Selection Dialog

[image: Description of Figure 5-36 follows]

	
Select the package you want to export.

To find a package in the list by name, type the name into the text field.

In this example, select the javax.jws.soap package.

	
Click OK.

The selected package is added to the Exported Packages area as Figure 5-37 shows.

Figure 5-37 Manifest Editor Runtime tab After Exporting a Package

[image: Description of Figure 5-37 follows]

	
Press CTRL-SHIFT-S to save all files.

5.7.5 How to Import a Package

Optionally, if your bundle needs to import a package from a JAR, then you can import this package. By doing so, you update the Package-Import MANIFEST entry to create an OSGi importer for the package.

To import a package:

	
Inside the Oracle Event Processing IDE for Eclipse, expand the META-INF directory as Figure 5-38 shows.

Figure 5-38 Oracle Event Processing IDE for Eclipse lib Directory

[image: Description of Figure 5-38 follows]

	
Right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5-39 shows.

Figure 5-39 Manifest Editor: Dependencies tab

[image: Description of Figure 5-39 follows]

	
Click the Dependencies tab.

The Dependencies tab appears as Figure 5-39 shows.

	
In the Imported Packages area, click the Add button.

The Package Selection dialog appears as Figure 5-40 shows.

Figure 5-40 Package Selection Dialog

[image: Description of Figure 5-40 follows]

	
Select the package you want to import.

To find a package in the list by name, type the name into the text field.

In this example, select the javax.jws.soap package.

	
Click OK.

The selected package is added to the Import Packages area as Figure 5-41 shows.

Figure 5-41 Manifest Editor Dependencies tab After Importing a Package

[image: Description of Figure 5-41 follows]

	
Press CTRL-SHIFT-S to save all files.

5.8 Configuring Oracle Event Processing IDE for Eclipse Preferences

You can configure various preferences to customize Oracle Event Processing IDE for Eclipse to suit your needs, including:

	
Section 5.8.1, "How to Configure Application Library Path Preferences"

	
Section 5.8.2, "How to Configure Problem Severity Preferences"

5.8.1 How to Configure Application Library Path Preferences

You can define the path to an Oracle Event Processing server domain directory that contains application libraries that extend the Oracle Event Processing runtime.

For more information, see Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse".

5.8.2 How to Configure Problem Severity Preferences

You can assign a severity to the various problems that Oracle Event Processing IDE for Eclipse can detect in your Oracle Event Processing project and application.

You can configure these preferences for each project individually or you can configure these preferences the same for all the projects in a given workspace.

To configure problem severity preferences:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor")

	
Select Window > Preferences.

The Preferences dialog appears.

	
Select Oracle Event Processing Problem Severities.

The Oracle Event Processing Problem Severities dialog appears as Figure 5-42 shows.

Figure 5-42 Oracle Event Processing Problem Severities Dialog: Workspace

[image: Description of Figure 5-42 follows]

	
Select a severity for each type of problem. You can select one of:

	
Error: treat the problem as an error.

	
Warning: treat the problem as a warning.

	
Ignore: ignore the problem.

Table 5-7 describes each of the problem areas you can configure.

Table 5-7 Oracle Event Processing Problem Severities

	Category	Problem	Description
	
Cache Configuration

	
Unresolved cache loaders or resolved loaders with incorrect interface declarations.

	
Ensure that the assembly file contains a bean element that identifies the cache loader class for each wlevs:cache-loader element and ensure that the cache loader class implements the appropriate interfaces.

For more information, see:

	
Section 13.5.5.1, "Loading Cache Data from a Read-Only Data Source"

	
	
Unresolved cache stores or resolved stores with incorrect interface declarations.

	
Ensure that the assembly file contains a bean element that identifies the cache store class for each wlevs:cache-store element and ensure that the cache store class implements the appropriate interfaces.

For more information, see:

	
Section 13.5.5.2, "Exchanging Data with a Read-Write Data Source."

	
Event Processing Network

	
Configuration objects without a matching assembly definition

	
EPN configuration elements are linked to assembly definitions by name and ID, respectively. Validate that a configuration element has a name that exactly matches an assembly element by ID within the same application.

	
	
Configuration objects with duplicate name declarations.

	
Configuration elements in Oracle Event Processing configuration files are identified by a name. Validate that no two configuration elements in an application have the same name.

	
	
Unresolved event listeners or resolved listeners with incorrect interface declarations

	
An event processing network is built by defining how elements in the network pull or push to events to other elements in the application. Validate that the target of an event push, a listener declaration on an EPN assembly element, implements the interfaces required to receive pushed events.

	
	
Unresolved event sources or resolved sources with incorrect interface declarations

	
An event processing network is built by defining how elements in the network pull or push to events to other elements in the application. Validate that the source of an event pull, a source declaration on an EPN assembly element, implements the interfaces required to provide pulled events.

	
	
Unresolved query selectors configured for channels.

	
Given a channel with an upstream Oracle CQL processor that defines more than one rule, ensure that the channel component configuration file selector element contains only rule names of the rules defined in the upstream Oracle CQL processor.

For more information, see Section D.87, "selector".

	
	
References to foreign stages (stages defined in external applications).

	
Ensure that references to foreign stages can be resolved.

For more information, see Section 1.4.1.2, "Referencing Foreign Stages in an EPN Assembly File".

	
	
Channels not associated with Oracle CQL processors missing "event-type" declaration.

	
Given a channel that does not have an upstream Oracle CQL processor, ensure that the assembly file wlevs:channel element is configured with an event-type attribute.

For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

	
	
Deprecated EPN elements

	
Oracle Event Processing provides backwards compatibility with applications built for previous versions. Validate an application's use of deprecated XML elements.

	
Event Type Repository

	
Event property type values that are not predefined types or do not resolve to a known class.

	
Event types may be defined using dynamic Spring Beans through the properties element. The property values are limited to a fixed set of supported types. Validate that the property type is one of these allowed types.

For more information, see Chapter 9, "Defining and Using Event Types".

	
Query Validation

	
Problems found validating CQL Statements

	
Validate that the Oracle CQL statement in a processor configuration is correct given the current application. Verify property names, event types, syntax, and other assembly-to-Oracle CQL references.

	
	
Problems preventing the validation of CQL statements

	
Some fundamental application errors will keep a Oracle CQL statement from being validated. For example, a processor configuration must have a matching processor assembly definition before any Oracle CQL requirements can be met. Verify that the minimum requirements are met to validate a processor's Oracle CQL statements.

	
	
CQL statements affected directly or indirectly by missing binding parameters.

	
Parameterized queries.

	
	
CQL statements in disconnected processors (no upstream channels in the EPN).

	
Ensure that all Oracle CQL processors are connected to an upstream stage on the EPN. Without an upstream stage, the Oracle CQL processor's rules have no event stream to operate on.

	
Click Apply.

	
Click OK.

6 Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers

This chapter describes how to use the Oracle Event Processing IDE for Eclipse to create and manage Oracle Event Processing servers to develop and debug event-driven applications.

This chapter includes the following sections:

	
Section 6.1, "Oracle Event Processing Server Overview"

	
Section 6.2, "Creating Oracle Event Processing Servers"

	
Section 6.3, "Managing Oracle Event Processing Servers"

	
Section 6.4, "Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server"

6.1 Oracle Event Processing Server Overview

The Oracle Event Processing IDE for Eclipse provides features that allow you to set up and manage Oracle Event Processing servers that are used during development. These tools help you to:

	
Configure instances of Oracle Event Processing servers

	
Attach to external Oracle Event Processing server instances

	
Manage Oracle Event Processing server lifecycle with start, stop, and debug commands

	
Associate applications with and deploy applications to Oracle Event Processing servers during development

Table 6-1 maps Eclipse terminology used by the Oracle Event Processing IDE for Eclipse to Oracle Event Processing server terminology.

Table 6-1 Eclipse and Oracle Event Processing Server Concepts

	Eclipse IDE Concept	Oracle Event Processing Server Concept	Description
	
Runtime

	
Oracle Event Processing server installation

	
The Oracle Event Processing IDE for Eclipse has the concept of a runtime. The runtime defines the location where the Oracle Event Processing IDE for Eclipse can find the installation of a particular Oracle Event Processing server. This information is used to find JAR files and OSGi bundles to add to the project classpath and to further define Servers and Server Instances.

Note that a Runtime is not itself a runnable artifact.

	
Server and Server Instance

	
Domain

	
The Oracle Event Processing IDE for Eclipse uses the term Server to describe an actual runnable Oracle Event Processing server instance. You can think of it as something that has start scripts, for example. In Oracle Event Processing server terminology, this equates to a Domain. When you set up a server, you specify the domain that this instance will run.

For more information on domains, see:

	
For more information, see "Administering Oracle Event Processing Standalone-Server Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
For more information, see "Administering Oracle Event Processing Standalone-Server Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Publish

	
Deploy

	
The Oracle Event Processing IDE for Eclipse typically uses the term Publish to describe physically deploying an application to a server.

	
Project

	
Application or Deployment

	
A project in the Oracle Event Processing IDE for Eclipse becomes a single Oracle Event Processing application packaged as an OSGi bundle. It is deployed to a server and shows in the Oracle Event Processing server's deployments.xml file.

Server definitions are the central concept in controlling an Oracle Event Processing server from the Oracle Event Processing IDE for Eclipse. It is from the server definition that you start and stop the server. After associating a project with the server, you can publish (deploy) the application to and unpublish (undeploy) the application from the server, all without having to leave the Oracle Event Processing IDE for Eclipse. For more information, see Section 6.2, "Creating Oracle Event Processing Servers".

You can communicate with a running Oracle Event Processing server using Oracle Event Processing IDE for Eclipse in the following ways:

	
Start a server from within Oracle Event Processing IDE for Eclipse.

In this case, the Oracle Event Processing server console is sent directly to the console view in Oracle Event Processing IDE for Eclipse. All of the Oracle Event Processing server features (such as start, stop, publish, unpublish, debug, and launching the Oracle Event Processing Visualizer) are available. The Oracle Event Processing server process itself is managed from within Oracle Event Processing IDE for Eclipse. In other words, stopping the Oracle Event Processing server from the Oracle Event Processing IDE for Eclipse will terminate the actual Oracle Event Processing server process. Console messages from the Oracle Event Processing server are sent to the Oracle Event Processing IDE for Eclipse Console view.

For more information, see:

	
Section 6.3.1, "How to Start a Local Oracle Event Processing Server"

	
Section 6.3.2, "How to Stop a Local Oracle Event Processing Server"

	
Attach to a running Oracle Event Processing server.

In this case, the user starts the Oracle Event Processing server from the command line, then clicks the Start button for that server in Oracle Event Processing IDE for Eclipse. A dialog is shown asking whether or not to attach and, if the user clicks Yes, Oracle Event Processing IDE for Eclipse enters attached mode. All of the Oracle Event Processing server features except debug are available. However, the Oracle Event Processing server process is not managed by the Oracle Event Processing IDE for Eclipse. Clicking the Stop button simply disconnects from the attached Oracle Event Processing server; it does not terminate the actual Oracle Event Processing server process. Console messages from the Oracle Event Processing server are sent to the Oracle Event Processing server console (standard output to the terminal window in which it is running). Oracle Event Processing IDE for Eclipse only shows limited Oracle Event Processing IDE for Eclipse operation messages in the console view.

For more information, see:

	
Section 6.3.3, "How to Attach to an Existing Local Oracle Event Processing Server Instance"

	
Section 6.3.5, "How to Detach From an Existing Oracle Event Processing Server Instance"

6.2 Creating Oracle Event Processing Servers

Creating a server allows you to start and stop the server instance from within the Oracle Event Processing IDE for Eclipse, as well as automatically deploy your applications to that server.

You can create a local or remote Oracle Event Processing server:

	
Local server: a local Oracle Event Processing server is one in which both the server and server runtime are on the same host

	
Remote server: a remote Oracle Event Processing server is one in which the server and server runtime are on different hosts. The server is on a remote host and the server runtime is on the local host (the host on which you are executing the Oracle Event Processing IDE for Eclipse).

This section describes:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime"

	
Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime"

6.2.1 How to Create a Local Oracle Event Processing Server and Server Runtime

This section describes how to create both a local server and server runtime. After creating the initial server and server runtime, you can create additional server runtimes.

A local Oracle Event Processing server is one in which both the server and server runtime are on the same host. Alternatively, you can create a remote server and server runtime.

	
Note:

If the server you're creating in Eclipse is one you created from a domain with the Configuration Wizard, be sure to run the server from the command line before adding the server to your Eclipse project. Doing so will ensure that all server artifacts are created. Also, when specifying domain configuration information in the Eclipse New Server wizard, be sure to click the Advanced tab to specify the user name and password used when creating the domain.

For more information on running a server from the command line, see "Starting and Stopping an Oracle Event Processing Server in a Standalone-Server Domain" in Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

For more information, see:

	
Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime"

	
Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime"

To create a local Oracle Event Processing server and server runtime:

	
Select Window > Show View > Servers.

The Servers view appears as shown in Figure 6-1.

Figure 6-1 Oracle Event Processing IDE for Eclipse Server View

[image: Description of Figure 6-1 follows]

	
Right-click in the Servers view pane and select New > Server.

	
Consider whether or not server runtimes have been created:

	
If this is the first time you have created an Oracle Event Processing server, there will be no installed server runtimes. Proceed to step 4.

	
If this is not the first time you have created an Oracle Event Processing server, there will be one or more installed server runtimes. Proceed to step 5.

	
If this is the first time you have created an Oracle Event Processing server, there will be no installed server runtimes:

In this case, the New Server: Define New Server dialog appears as Figure 6-2 shows.

Figure 6-2 New Server: Define New Server Dialog (No Installed Runtimes)

[image: Description of Figure 6-2 follows]

Configure the new server as follows:

	
Configure the dialog as shown in Table 6-2.

Table 6-2 New Server: Define New Server Dialog (No Installed Runtimes) Attributes

	Attribute	Description
	
Server's host name

	
The host name of the computer on which you installed Oracle Event Processing server.

For development, this will typically be localhost.

	
Select the server type

	
The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11

	
Server name

	
The name of this Oracle Event Processing server.

Default: Oracle Event Processing v11.1 at HOSTNAME

Where HOSTNAME is the value you entered in the Server's host name field.

	
Click Next.

The New Server: New Oracle Event Processing v11 Runtime dialog appears as shown in Figure Figure 6-3.

Figure 6-3 New Server: New Oracle Event Processing v11.1 Runtime Dialog

[image: Description of Figure 6-3 follows]

	
Configure the dialog as shown in Table 6-3.

Table 6-3 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes

	Attribute	Description
	
Oracle Middleware Home Directory

	
The fully qualified path to the Oracle Event Processing server installation directory. This is the same as the "Middleware Home" that was selected when installing the server.

When selecting this directory, select the directory that contains the Oracle Event Processing installation rather than the Oracle Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory Structure and Concepts" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing.

	
JRE

	
The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click the Installed JRE preferences link to create a new JRE.

Be sure to choose a Java 6 JRE.

NOTE: The Oracle Event Processing server JRE is ultimately set by the JAVA_HOME setting in setDomainEnv.cmd or setDomainEnv.sh script in the server domain directory.

	
Proceed to step 6.

	
If this is not the first time you have created an Oracle Event Processing server, there will be one or more installed server runtimes.

In this case, the New Server: Define New Server dialog appears as Figure 6-4 shows.

Figure 6-4 New Server: Define New Server (Installed Runtimes) Dialog

[image: Description of Figure 6-4 follows]

Configure the dialog as shown in Table 6-4.

Table 6-4 New Server: Define New Server (Installed Runtimes) Dialog Attributes

	Attribute	Description
	
Server's host name

	
The host name of the computer on which you installed Oracle Event Processing server.

For development, this will typically be localhost.

	
Select the server type

	
The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.

	
Server runtime

	
Select the server runtime from the pull-down menu.

To create or edit server runtimes, click Installed Runtimes. For more information, see Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime".

	
Click Next.

The New Server: New Oracle Event Processing v11.1 Server dialog appears as Figure 6-5 shows.

Figure 6-5 New Server: New Oracle Event Processing v11.1 Server

[image: Description of Figure 6-5 follows]

	
Select Local Server.

	
Click Next.

The New Server: New Oracle Event Processing v11 Server dialog appears as Figure 6-6 shows.

Figure 6-6 New Server: New Oracle Event Processing v11 Server Dialog for a Local Server

[image: Description of Figure 6-6 follows]

	
Click Advanced and configure the dialog as shown in Table 6-5.

Table 6-5 New Server: New Oracle Event Processing v11 Server Dialog Attributes for a Local Server

	Attribute	Description
	
Domain Directory

	
The fully qualified path to the directory that contains the domain for this server.

Click Browse to choose the directory.

Default: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver.

	
Start Script

	
The script that Oracle Event Processing IDE for Eclipse uses to start the Oracle Event Processing server.

Default on UNIX: MIDDLEWARE_HOME/user_projects/domains/ocep_domain/defaultserver/startwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\startwlevs.cmd

	
Stop Script

	
The script that Oracle Event Processing IDE for Eclipse uses to stop the Oracle Event Processing server.

Default on UNIX: MIDDLEWARE_HOME/user_projects/domains/ocep_domain/defaultserver/stopwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\stopwlevs.cmd

	
Debug Port

	
The Oracle Event Processing server port that Oracle Event Processing IDE for Eclipse connects to when debugging the Oracle Event Processing server.

Default: 8453.

	
User Name

	
The user name Oracle Event Processing IDE for Eclipse uses when logging into the Oracle Event Processing server.

Default: wlevs.

	
User Password

	
The user password Oracle Event Processing IDE for Eclipse uses when logging into the Oracle Event Processing server.

Default: wlevs.

	
Automatic Publishing

	
By default, when you change an application, you must manually publish the changes to the Oracle Event Processing server.

Select Use Workspace Default to configure Oracle Event Processing IDE for Eclipse to automatically publish changes to the Oracle Event Processing server.

Default: Disabled.

	
Click Finish.

	
If you configured Automatic Publishing to Use Workspace Default, select Windows > Preferences.

	
Select the Server option.

	
Configure your automatic publishing options:

	
Automatically publish to local servers: enable or disable this option, as required.

Default: enabled.

	
Publishing interval: configure the frequency at which the Oracle Event Processing IDE for Eclipse publishes changes to the server (in seconds).

Default: 60 seconds.

	
Automatically publish to remote servers: enable or disable this option, as required.

Default: enabled.

	
Publishing interval: configure the frequency at which the Oracle Event Processing IDE for Eclipse publishes changes to the server (in seconds).

Default: 60 seconds.

	
Click OK.

6.2.2 How to Create a Remote Oracle Event Processing Server and Server Runtime

This section describes how to create both a remote server and server runtime. After creating the initial server and server runtime, you can create additional server runtimes.

A remote Oracle Event Processing server is one in which the server and server runtime are on different hosts. The server is on a remote host and the server runtime is on the local host (the host on which you are executing the Oracle Event Processing IDE for Eclipse).

Alternatively, you can create a local server and server runtime.

For more information, see:

	
Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime"

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

To create a remote Oracle Event Processing server and server runtime:

	
Select Window > Show View > Servers.

The Servers view appears as shown in Figure 6-1.

Figure 6-7 Oracle Event Processing IDE for Eclipse Server View

[image: Description of Figure 6-7 follows]

	
Right-click in the Servers view pane and select New > Server.

	
Consider whether or not server runtimes have been created:

	
If this is the first time you have created an Oracle Event Processing server, there will be no installed server runtimes. Proceed to step 4.

	
If this is not the first time you have created an Oracle Event Processing server, there will be one or more installed server runtimes. Proceed to step 5.

	
If this is the first time you have created an Oracle Event Processing server, there will be no installed server runtimes:

In this case, the New Server: Define New Server dialog appears as Figure 6-2 shows.

Figure 6-8 New Server: Define New Server Dialog (No Installed Runtimes)

[image: Description of Figure 6-8 follows]

Configure the new server as follows:

	
Configure the dialog as shown in Table 6-2.

Table 6-6 New Server: Define New Server Dialog (No Installed Runtimes) Attributes

	Attribute	Description
	
Server's host name

	
The host name of the computer on which you installed Oracle Event Processing server.

For development, this will typically be localhost.

	
Select the server type

	
The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11

	
Server name

	
The name of this Oracle Event Processing server.

Default: Oracle Event Processing v11.1 at HOSTNAME

Where HOSTNAME is the value you entered in the Server's host name field.

	
Click Next.

The New Server: New Oracle Event Processing v11 Runtime dialog appears as shown in Figure Figure 6-3.

Figure 6-9 New Server: New Oracle Event Processing v11.1 Runtime Dialog

[image: Description of Figure 6-9 follows]

	
Configure the dialog as shown in Table 6-3.

Table 6-7 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes

	Attribute	Description
	
Oracle Middleware Home Directory

	
The fully qualified path to the Oracle Event Processing server installation directory. This is the same as the "Middleware Home" that was selected when installing the server.

When selecting this directory, select the directory that contains the Oracle Event Processing installation rather than the Oracle Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory Structure and Concepts" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing.

	
JRE

	
The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click the Installed JRE preferences link to create a new JRE.

Be sure to choose a Java 6 JRE.

NOTE: The Oracle Event Processing server JRE is ultimately set by the JAVA_HOME setting in setDomainEnv.cmd or setDomainEnv.sh script in the server domain directory.

	
Proceed to step 6.

	
If this is not the first time you have created an Oracle Event Processing server, there will be one or more installed server runtimes.

In this case, the New Server: Define New Server dialog appears as Figure 6-4 shows.

Figure 6-10 New Server: Define New Server (Installed Runtimes) Dialog

[image: Description of Figure 6-10 follows]

Configure the new server as follows:

Table 6-8 New Server: Define New Server (Installed Runtimes) Dialog Attributes

	Attribute	Description
	
Server's host name

	
The host name of the computer on which you installed Oracle Event Processing server.

For development, this will typically be localhost.

	
Select the server type

	
The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.

	
Server runtime

	
Select the server runtime from the pull-down menu.

To create or edit server runtimes, click Installed Runtimes. For more information, see Section 6.2.3, "How to Create an Oracle Event Processing Server Runtime".

	
Click Next.

The New Server: New Oracle Event Processing v11.1 Server dialog appears as Figure 6-5 shows.

Figure 6-11 New Server: New Oracle Event Processing v11.1 Server

[image: Description of Figure 6-11 follows]

	
Select Remote Server.

	
Click Next.

The New Server: New Oracle Event Processing v11 Server dialog appears dialog appears as Figure 6-12 shows.

Figure 6-12 New Server: New Oracle Event Processing v11 Server Dialog for a Remote Server

[image: Description of Figure 6-12 follows]

	
Configure the dialog as shown in Table 6-9.

Table 6-9 New Server: Oracle Event Processing v11 Server Dialog Attributes for a Local Server

	Attribute	Description
	
Remote Server IP Address

	
The IP address of the remote Oracle Event Processing server.

Default: IP address of localhost.

	
Remote Server Port

	
The port you specified in the remote Oracle Event Processing server DOMAIN_DIR/config/config.xml file that describes your Oracle Event Processing domain, where DOMAIN_DIR refers to your domain directory.

The port number is the value of the Port child element of the Netio element:

<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

Default: 9002

	
User Name

	
The user name that the Oracle Event Processing IDE for Eclipse uses to log into the remote server.

Default: wlevs

	
User Password

	
The password that the Oracle Event Processing IDE for Eclipse uses to log into the remote server.

Default: wlevs

	
Click Finish.

6.2.3 How to Create an Oracle Event Processing Server Runtime

Before you can create a server, you must configure the Oracle Event Processing IDE for Eclipse with the location of your Oracle Event Processing server installation by creating a server runtime using the runtime wizard. You can access the runtime wizard from several places including the new server wizard, the new project wizard, and the workspace preferences dialog.

You only need to create a runtime explicitly if you have not yet created an Oracle Event Processing server.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime"

To create an Oracle Event Processing server runtime:

	
Select Windows > Preferences.

The Preferences dialog appears as Figure 6-13 shows.

Figure 6-13 Preferences - Server - Installed Runtimes

[image: Description of Figure 6-13 follows]

	
Expand the Server option and select Runtime Environments.

	
Click Add.

The New Server Runtime Environment dialog appears as shown in Figure 6-14.

Figure 6-14 New Server Runtime Environment Dialog

[image: Description of Figure 6-14 follows]

	
Configure the dialog as shown in Table 6-10.

Table 6-10 New Server Runtime Dialog Attributes

	Attribute	Description
	
Select the type of runtime environment

	
The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.1.

	
Create a new local server

	
Optionally, check this to create a new local server if you have not yet created a server. For more information, see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime".

	
Click Next.

The New Server Runtime Environment dialog appears as shown in Figure 6-15.

Figure 6-15 New Server Runtime Environment: New Oracle Event Processing v11.1 Runtime Dialog

[image: Description of Figure 6-15 follows]

	
Configure the dialog as shown in Table 6-11.

Table 6-11 New Server Runtime Dialog Attributes

	Attribute	Description
	
Oracle Middleware Home Directory

	
The fully qualified path to the Oracle Event Processing server installation directory. This is the same as the "Middleware Home" that was selected when installing the server.

When selecting this directory, select the directory that contains the Oracle Event Processing installation rather than the Oracle Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory Structure and Concepts" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing.

	
JRE

	
The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click the Installed JRE preferences link to create a new JRE.

Be sure to choose either JRockit Real Time or the JRockit JDK installed with your Oracle Event Processing installation.

	
Click Finish.

6.3 Managing Oracle Event Processing Servers

Using the Oracle Event Processing IDE for Eclipse and the Oracle Event Processing Visualizer accessible from the Oracle Event Processing IDE for Eclipse, you can manage many aspects of your Oracle Event Processing server during development.

This section describes the following Oracle Event Processing server management tasks you can perform from the Oracle Event Processing IDE for Eclipse:

	
Section 6.3.1, "How to Start a Local Oracle Event Processing Server"

	
Section 6.3.2, "How to Stop a Local Oracle Event Processing Server"

	
Section 6.3.3, "How to Attach to an Existing Local Oracle Event Processing Server Instance"

	
Section 6.3.4, "How to Attach to an Existing Remote Oracle Event Processing Server Instance"

	
Section 6.3.5, "How to Detach From an Existing Oracle Event Processing Server Instance"

	
Section 6.3.6, "How to Deploy an Application to an Oracle Event Processing Server"

	
Section 6.3.7, "How to Configure Connection and Control Settings for Oracle Event Processing Server"

	
Section 6.3.8, "How to Configure Domain (Runtime) Settings for Oracle Event Processing Server"

	
Section 6.3.9, "How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse"

6.3.1 How to Start a Local Oracle Event Processing Server

After you create a local server, you can start the Oracle Event Processing server from the Oracle Event Processing IDE for Eclipse.

You can also start the local Oracle Event Processing server in debug mode.

Alternatively, you can start the local Oracle Event Processing server from the command line and attach to it using Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.4.1, "How to Debug an Oracle Event Processing Application Running on an Oracle Event Processing Server"

	
Section 6.3.3, "How to Attach to an Existing Local Oracle Event Processing Server Instance"

To start a local Oracle Event Processing server:

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-16.

Figure 6-16 Starting an Oracle Event Processing Server

[image: Description of Figure 6-16 follows]

	
Start the server by choosing one of the following:

	
Click the Start the Server icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Start.

After starting the server you will see log messages from the server in the Console view.

6.3.2 How to Stop a Local Oracle Event Processing Server

After you start a local Oracle Event Processing server from the Oracle Event Processing IDE for Eclipse, you can stop the Oracle Event Processing server from the Oracle Event Processing IDE for Eclipse.

Note that stopping the Oracle Event Processing while Oracle Event Processing Visualizer is running might produce console messages indicating that a service proxy has been destroyed. This is generally an informational message only.

For more information, see Section 6.3.1, "How to Start a Local Oracle Event Processing Server".

To stop a local Oracle Event Processing server:

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-17.

Figure 6-17 Stopping an Oracle Event Processing Server

[image: Description of Figure 6-17 follows]

	
Stop the server by choosing one of the following:

	
Click the Stop the Server icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Stop.

6.3.3 How to Attach to an Existing Local Oracle Event Processing Server Instance

After you create a local server, you can start the local Oracle Event Processing server from the command line and attach Oracle Event Processing IDE for Eclipse to this existing, already running local Oracle Event Processing server instance.

Alternatively, you can start the local Oracle Event Processing server directly from within Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.3.1, "How to Start a Local Oracle Event Processing Server"

To attach to an existing local Oracle Event Processing server instance:

	
Start the Oracle Event Processing server from the command line.

For more information, see "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-16.

Figure 6-18 Attaching to an Existing Local Oracle Event Processing Server Instance

[image: Description of Figure 6-18 follows]

	
Attach to the already running local server by choosing one of the following:

	
Click the Start the Server icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Start.

The Attach to Running OEP Server dialog appears.

	
Click Yes.

After attaching to the server you will not see log messages from the server in the Console view.

You can view the server console using the Oracle Event Processing Visualizer. For more information, see "How to View Console Output" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

6.3.4 How to Attach to an Existing Remote Oracle Event Processing Server Instance

After you create a remote server, you can start the remote Oracle Event Processing server from the command line and attach Oracle Event Processing IDE for Eclipse to this existing, already running remote Oracle Event Processing server instance.

For more information, see Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime".

To attach to an existing remote Oracle Event Processing server instance:

	
Start the remote Oracle Event Processing server from the command line.

For more information, see "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-16.

Figure 6-19 Attaching to an Existing Remote Oracle Event Processing Server Instance

[image: Description of Figure 6-19 follows]

	
Attach to the already running remote server by choosing one of the following:

	
Click the Start the Server icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Start.

After attaching to the remote server, Oracle Event Processing IDE for Eclipse writes one status message to the Console view, reading:

[3/23/10 12:32 PM] Attached to remote OEP server at address 10.11.12.13 and port 9002

You will not see log messages from the remote server in the Console view.

You can view the server console using the Oracle Event Processing Visualizer. For more information, see "How to View Console Output" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

6.3.5 How to Detach From an Existing Oracle Event Processing Server Instance

After you attach to an existing, running Oracle Event Processing server instance, you can detach from the Oracle Event Processing server and leave it running.

For more information, see:

	
Section 6.3.3, "How to Attach to an Existing Local Oracle Event Processing Server Instance"

	
Section 6.3.4, "How to Attach to an Existing Remote Oracle Event Processing Server Instance"

To detach from an existing Oracle Event Processing server instance:

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-17.

Figure 6-20 Stopping an Oracle Event Processing Server

[image: Description of Figure 6-20 follows]

	
Detach from the server by choosing one of the following:

	
Click the Stop the Server icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Stop.

Oracle Event Processing IDE for Eclipse detaches from the Oracle Event Processing server instance. The Oracle Event Processing server instance continues to run.

If you detach from a remote Oracle Event Processing server, Oracle Event Processing IDE for Eclipse writes a log message to the Console view reading:

[3/23/10 12:47 PM] Server communication stopped

6.3.6 How to Deploy an Application to an Oracle Event Processing Server

A project in the Oracle Event Processing IDE for Eclipse is built as an Oracle Event Processing application, then deployed to the server. To deploy an application, a server must first be defined. To then deploy an application, simply add it to the server. The application will be deployed immediately if the server is already started, or when the server is next started if the server is stopped.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime"

To deploy an application to an Oracle Event Processing server:

	
Create an Oracle Event Processing project (see Section 5.2, "Creating Oracle Event Processing Projects").

	
Create a server (see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime").

	
Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6-21.

Figure 6-21 Adding a Project to an Oracle Event Processing Server

[image: Description of Figure 6-21 follows]

	
Right-click the server and select Add and Remove.

The Add and Remove dialog appears as shown in Figure 6-22.

Figure 6-22 Add and Remove Dialog

[image: Description of Figure 6-22 follows]

	
Configure the dialog as Table 6-12 shows.

Table 6-12 Add and Remove Dialog Attributes

	Attribute	Description
	
Available

	
Select one or more projects from this list and click Add or Add All to move them into the Configured list.

	
Configured

	
Select one or more projects from this list and click Remove or Remove All to move them into the Available list.

	
If server is started, publish changes immediately.

	
Check this option to immediately publish projects that you modify. Applicable only if the server is already running.

	
Click Finish.

Once an application is added, it will show as a child of the server in the Servers view as shown in Figure 6-23.

Figure 6-23 Server View After Adding a Project

[image: Description of Figure 6-23 follows]

	
To deploy (publish) the application to the Oracle Event Processing server, right-click the added application and select Force Publish.

	
If the Oracle Event Processing server is part of a standalone-server, domain the application is deployed.

	
If the Oracle Event Processing server is part of a multi-server domain, the Select Cluster Deployment Group Name dialog appears as Figure 6-24 shows.

Figure 6-24 Select Cluster Deployment Group Name Dialog

[image: Description of Figure 6-24 follows]

Select the cluster deployment group you want to deploy the application to and click OK.

For more information on clustering, see "Introduction to Multi-Server Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Once an application is deployed (published), it will show as a child of the server in the Servers view as shown in Figure 6-25.

Figure 6-25 Server View After Deploying (Publishing) a Project

[image: Description of Figure 6-25 follows]

6.3.7 How to Configure Connection and Control Settings for Oracle Event Processing Server

After you create a server, you can use the Server Overview editor to configure all the important server connection and control settings that Oracle Event Processing IDE for Eclipse uses to communicate with the Oracle Event Processing server.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.3.8, "How to Configure Domain (Runtime) Settings for Oracle Event Processing Server"

To configure connection and control settings for Oracle Event Processing server:

	
Select Window > Show Views > Servers.

	
Double-click a server in the Servers view.

The Server Overview editor opens as shown in Figure 6-26.

Figure 6-26 Server Overview Editor

[image: Description of Figure 6-26 follows]

	
Configure the Server Overview editor as shown in Table 6-13.

Table 6-13 Server Overview Editor Attributes

	Attribute	Description
	
Server Name

	
The name of this server. Only used within the Oracle Event Processing IDE for Eclipse as a useful identifier.

For more information, see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime".

	
Host Name

	
The name of the host on which this server is installed.

For more information, see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime".

	
Runtime Environment

	
The current installed runtime selected for this server.

Select a new runtime from the pull down menu or click the Edit link to modify the configuration of the selected runtime.

For more information, see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime".

	
Domain DirectoryFoot 1

	
The fully qualified path to the directory that contains the domain for this server.

Click Browse to choose the directory.

Default: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver.

	
Start ScriptFootref 1

	
The script that Oracle Event Processing IDE for Eclipse uses to start the Oracle Event Processing server.

Click Browse to choose the start script.

Default on UNIX: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\stopwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\stopwlevs.cmd

	
Stop ScriptFootref 1

	
The script that Oracle Event Processing IDE for Eclipse uses to stop the Oracle Event Processing server.

Click Browse to choose the stop script.

Default on UNIX: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\startwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_projects\domains\ocep_domain\defaultserver\startwlevs.cmd

	
Debug PortFootref 1

	
The Oracle Event Processing server port that Oracle Event Processing IDE for Eclipse connects to when debugging the Oracle Event Processing server.

Default: 8453.

	
Remote Server IP AddressFoot 2

	
The IP address of the remote Oracle Event Processing server.

Default: IP address of localhost.

	
Remote Server PortFootref 2

	
The port you specified in the remote Oracle Event Processing server DOMAIN_DIR/config/config.xml file that describes your Oracle Event Processing domain, where DOMAIN_DIR refers to your domain directory.

The port number is the value of the Port child element of the Netio element:

<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

Default: 9002

	
User NameFootref 2

	
The user name that the Oracle Event Processing IDE for Eclipse uses to log into the remote server.

Default: wlevs

	
User PasswordFootref 2

	
The password that the Oracle Event Processing IDE for Eclipse uses to log into the remote server.

Default: wlevs

	
Publishing

	
By default, when you change an application, you must manually publish the changes to the Oracle Event Processing server.

Select Never publish automatically to disable automatic publishing.

Select Override default settings to override the default automatic publishing interval. Enter a new publishing interval (in seconds).

Default: Never publish automatically.

	
Timeouts

	
Enter a positive, integer number of seconds in the Start (in seconds) field to specify the time in which the Oracle Event Processing server must start.

Default: 150 seconds.

Enter a positive, integer number of seconds in the Stop (in seconds) field to specify the time in which the Oracle Event Processing server must start.

Default: 60 seconds.

Footnote 1 Click Local Server to modify. Applies to both a local server and the runtime of a remote server.

Footnote 2 Click Remote Server to modify. Applies only to a remote server.

	
Select File > Save.

	
Close the Server Overview editor.

6.3.8 How to Configure Domain (Runtime) Settings for Oracle Event Processing Server

After you create a server, you can use the Oracle Event Processing IDE for Eclipse to configure Oracle Event Processing server domain (runtime) settings in the Oracle Event Processing server config.xml file.

Recall that a local Oracle Event Processing server is one in which both the server and server runtime are on the same host and a remote Oracle Event Processing server is one in which the server and server runtime are on different hosts: the server is on a remote host and the server runtime is on the local host (the host on which you are executing the Oracle Event Processing IDE for Eclipse).

For both local and remote Oracle Event Processing servers, when you configure domain (runtime) settings, you are modifying only the Oracle Event Processing server config.xml on the local host.

You can also use the Oracle Event Processing IDE for Eclipse to configure all the important server connection and control settings that Oracle Event Processing IDE for Eclipse uses to communicate with the Oracle Event Processing server.

Any changes you make to the Oracle Event Processing server config.xml file for a running Oracle Event Processing server are not read by the Oracle Event Processing server until you restart it.

If you make changes to the Oracle Event Processing server config.xml file for a running Oracle Event Processing server using the Oracle Event Processing Visualizer, the changes apply to the running Oracle Event Processing server as soon as you save them. The Oracle Event Processing Visualizer updates the Oracle Event Processing server config.xml file and overwrites the current filesystem version of that file with the current, in-memory version.

If you make changes to the Oracle Event Processing server config.xml file by manually editing this file, and you then make further changes using the Oracle Event Processing Visualizer, your manual edits will be overwritten by the Oracle Event Processing Visualizer.

To avoid this, when you manually edit the Oracle Event Processing server config.xml file, always stop and start the Oracle Event Processing server to read those changes into the runtime configuration and then use the Oracle Event Processing Visualizer to make further changes.

For more information, see:

	
Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime"

	
Section 6.2.2, "How to Create a Remote Oracle Event Processing Server and Server Runtime"

	
Section 6.3.7, "How to Configure Connection and Control Settings for Oracle Event Processing Server"

	
Section 6.3.9, "How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse"

	
"Understanding Oracle Event Processing Server Configuration" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

To configure domain (runtime) settings for Oracle Event Processing server:

	
Select Window > Show Views > Servers.

	
Right-click a server in the Servers view and select Open Domain Configuration File as shown in Figure 6-27.

Figure 6-27 Editing the Domain Configuration File

[image: Description of Figure 6-27 follows]

The Oracle Event Processing server domain configuration file config.xml opens as shown in Figure 6-28.

Figure 6-28 Oracle Event Processing Domain Configuration File config.xml

[image: Description of Figure 6-28 follows]

	
Edit the domain configuration file as required.

	
Select File > Save.

	
Close the domain configuration file.

6.3.9 How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse

After you create a server, you can start the Oracle Event Processing Visualizer from the Oracle Event Processing IDE for Eclipse.

The Oracle Event Processing Visualizer is the administration console for a running Oracle Event Processing server. For more information, see the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

For more information, see Section 6.2.1, "How to Create a Local Oracle Event Processing Server and Server Runtime".

	
Note:

If you use the Oracle Event Processing Visualizer to make changes to the Oracle Event Processing server config.xml (for example, editing a data source), you may overwrite config.xml file changes made manually. For more information, see Section 6.3.8, "How to Configure Domain (Runtime) Settings for Oracle Event Processing Server".

To start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse:

	
Start the server (see Section 6.3.1, "How to Start a Local Oracle Event Processing Server").

Note that if you stop the server while Oracle Event Processing Visualizer is running, you might see informational messages about the service proxy. These are typically not errors.

	
Right-click the running server in the Servers view and select Open Oracle Event Processing Visualizer as shown in Figure 6-29.

Figure 6-29 Opening the Oracle Event Processing Visualizer

[image: Description of Figure 6-29 follows]

The Oracle Event Processing Visualizer opens as shown in Figure 6-30.

Figure 6-30 Oracle Event Processing Visualizer

[image: Description of Figure 6-30 follows]

	
Use the Oracle Event Processing Visualizer as the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing describes.

6.4 Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server

Because Oracle Event Processing applications are Java applications, standard Java debugging tools including those provided in Eclipse can be used with these applications.

This section describes:

	
Section 6.4.1, "How to Debug an Oracle Event Processing Application Running on an Oracle Event Processing Server"

You can also use the load generator and csvgen adapter to simulate data feeds for testing. For more information, see Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter".

6.4.1 How to Debug an Oracle Event Processing Application Running on an Oracle Event Processing Server

This section describes how to debug an Oracle Event Processing application running on an Oracle Event Processing server.

To debug an Oracle Event Processing application running on an Oracle Event Processing server:

	
Set a breakpoint in the Java code you wish to debug.

In this case, set the breakpoint by right-clicking in the gutter of the editor and selecting Toggle Breakpoint as Figure 6-31 shows.

Figure 6-31 Setting a Breakpoint

[image: Description of Figure 6-31 follows]

	
Select Window > Show Views > Servers.

	
Start the server in debug mode by choosing one of the following as shown in Figure 6-32:

	
Click the Start the Server in debug mode icon in the Servers view tool bar.

	
Right-click a server in the Servers view and select Debug.

Figure 6-32 Starting the Oracle Event Processing Server in Debug Mode

[image: Description of Figure 6-32 follows]

	
The server will start, and when it gets to your breakpoint the thread will stop.

If the Oracle Event Processing IDE for Eclipse does not automatically switch to the Debug perspective, switch to that perspective by selecting Window > Open Perspective > Other and selecting the Debug option from the list of perspective.

	
Debug your application using the Debug perspective.

	
Note:

In some cases you may get a dialog box warning that it could not install a breakpoint because of missing line number information. This dialog comes from the core Eclipse debugger and is normally a harmless issue with Oracle Event Processing Service Engine applications. Simply check the Don't Tell Me Again checkbox and continue debugging.

	
When you are finished you can stop the server as usual (see Section 6.3.2, "How to Stop a Local Oracle Event Processing Server").

7 Oracle Event Processing IDE for Eclipse and the Event Processing Network

This chapter describes how to use the Oracle Event Processing IDE for Eclipse to develop event processing networks (EPNs), where application components are wired together. The EPN Editor provides a graphical view of the EPN and offers visualization and navigation features to help you build Oracle Event Processing applications.

This chapter includes the following sections:

	
Section 7.1, "Opening the EPN Editor"

	
Section 7.2, "EPN Editor Overview"

	
Section 7.3, "Navigating the EPN Editor"

	
Section 7.4, "Using the EPN Editor"

7.1 Opening the EPN Editor

You can open the EPN Editor from either the project folder or a context or configuration file of an Oracle Event Processing application.

7.1.1 How to Open the EPN Editor from a Project Folder

You can open the EPN Editor from the Eclipse project folder of an Oracle Event Processing application. Alternatively, you can open the EPN Editor from a context or configuration file (see Section 7.1.2, "How to Open the EPN Editor from a Context or Configuration File").

To open the EPN Editor from a project:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Open your Oracle Event Processing project in the Project Explorer.

	
Right-click the project folder and select Open EPN Editor as Figure 7-1 shows.

Figure 7-1 Opening the EPN Editor from a Project

[image: Description of Figure 7-1 follows]

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is the name of your Oracle Event Processing project, as Figure 7-2 shows.

Figure 7-2 EPN Editor

[image: Description of Figure 7-2 follows]

7.1.2 How to Open the EPN Editor from a Context or Configuration File

You can open the EPN Editor from a Spring context file or an Oracle Event Processing server configuration file in an Oracle Event Processing application. Alternatively, you can open the EPN Editor from a context or configuration file (see Section 7.1.1, "How to Open the EPN Editor from a Project Folder")

To open the EPN Editor from a context or configuration file:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Open your Oracle Event Processing project in the Project Explorer.

	
Right-click a context or configuration file and select Open in EPN Editor as Figure 7-3 shows.

Figure 7-3 Opening the EPN Editor from a Context or Configuration File

[image: Description of Figure 7-3 follows]

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is the name of your Oracle Event Processing project, as Figure 7-4 shows.

Figure 7-4 EPN Editor

[image: Description of Figure 7-4 follows]

7.2 EPN Editor Overview

This section describes the main controls you use to manage the EPN view and how the EPN Editor displays Oracle Event Processing application information, including:

	
Section 7.2.1, "Flow Representation"

	
Section 7.2.2, "Filtering"

	
Section 7.2.3, "Zooming"

	
Section 7.2.4, "Layout"

	
Section 7.2.5, "Showing and Hiding Unconnected Beans"

	
Section 7.2.6, "Printing and Exporting to an Image"

	
Section 7.2.7, "Configuration Badging"

	
Section 7.2.8, "Link Specification Location Indicator"

	
Section 7.2.9, "Nested Stages"

	
Section 7.2.10, "Event Type Repository Editor"

7.2.1 Flow Representation

The primary display in the editor is of the flow inside the application as Figure 7-5 shows.

Figure 7-5 EPN Flow Representation

[image: Description of Figure 7-5 follows]

The EPN is composed of nodes connected by links and streams. Nodes are of various types including adapter, processor, database table, bean, and cache. For more information on the graphic notation the EPN Editor uses on nodes, links, and streams, see:

	
Section 7.2.7, "Configuration Badging"

	
Section 7.2.8, "Link Specification Location Indicator"

7.2.2 Filtering

Although you often specify your EPN in a single assembly file, you may specify an EPN across multiple assembly files.

By default the EPN Editor shows the EPN for a single Oracle Event Processing application bundle with the information combined from all files.

To see the network for a single assembly file simply select that file from the Filter pull-down menu as Figure 7-6 shows.

Figure 7-6 Filtering the EPN by Assembly File

[image: Description of Figure 7-6 follows]

When editing an EPN, the assembly file shown in the EPN Editor filter is the assembly file to which new nodes will be added. If the EPN Editor filter is set to Full EPN then the first assembly file in the filter list will be the file to which new nodes will be added. Existing nodes will be edited in or deleted from the assembly file in which they are defined.

If the assembly file the EPN Editor edits is open in an Eclipse source editor, then the edits will be made to the editor for that open file. In this case, you will need to save changes to the open editor before the changes appear in the file on disk.

If the assembly file the EPN Editor edits is not open in an Eclipse source editor, then the edits are immediately applied to the file on disk.

For more information, see Section 5.3, "Creating EPN Assembly Files".

7.2.3 Zooming

You can change the zoom level of the EPN Editor by entering a percent value into the zoom field or selecting a value from the zoom field pull-down menu as Figure 7-7 shows. To fit the EPN into the current EPN Editor window, select Fit to Window.

Figure 7-7 Zoom Level

[image: Description of Figure 7-7 follows]

7.2.4 Layout

You can optimize and simplify the EPN layout by clicking Layout EPN as Figure 7-8 shows.

Figure 7-8 Optimize Layout

[image: Description of Figure 7-8 follows]

7.2.5 Showing and Hiding Unconnected Beans

You can also filter out <bean> elements with no references in the EPN. Clicking Show/Hide Unconnected Beans will toggle the visibility of such beans as Figure 7-9 shows. For more information, see Section 7.4.3, "Laying Out Nodes".

Figure 7-9 Show/Hide Unconnected Beans

[image: Description of Figure 7-9 follows]

7.2.6 Printing and Exporting to an Image

You can export the EPN Editor view to an image file by clicking Export to Image as Figure 7-10 shows. You can export the image as a .bmp, .gif, .jpg, or .png file.

Figure 7-10 Exporting the EPN as an Image File

[image: Description of Figure 7-10 follows]

You can print the EPN Editor view by clicking Print as Figure 7-11 shows.

Figure 7-11 Printing the EPN

[image: Description of Figure 7-11 follows]

7.2.7 Configuration Badging

Nodes that have configuration information in one of the configuration files in the META-INF/wlevs directories are badged with an indicator on the bottom right as Figure 7-12 shows.

Figure 7-12 Configuration Badging

[image: Description of Figure 7-12 follows]

Nodes with this badge will also have the Go To Configuration Source context menu item.

7.2.8 Link Specification Location Indicator

When working with streams, you can specify a link in the assembly file as a:

	
source element in the downstream node.

	
listener element in the upstream node

A circle on the line indicates where a particular link is specified in the assembly file.

Figure 7-13 shows an example in which the link is specified as a source element on the downstream node outStream so the circle is next to the outStream node. Figure 7-14 shows the corresponding assembly file.

Figure 7-13 Link Source

[image: Description of Figure 7-13 follows]

Figure 7-14 Link Source Assembly File

[image: Description of Figure 7-14 follows]

Figure 7-15 shows an example in which the link is specified as a listener element in the upstream node algoTradingProcessor so the circle is next to the algoTradingProcessor node. Figure 7-16 shows the corresponding assembly file.

Figure 7-15 Link Listener

[image: Description of Figure 7-15 follows]

Figure 7-16 Link Listener Assembly File

[image: Description of Figure 7-16 follows]

7.2.9 Nested Stages

When you define a child node within a parent node, the child node is said to be nested. Only the parent node can specify the child node as a listener. You can drag references from a nested element, but not to them. For more information, see Section 7.4.2, "Connecting Nodes".

Consider the EPN that Figure 7-17 shows. Example 7-1 shows the EPN assembly source for this EPN. Note that the HelloWorldBean is nested within the helloworldOutputChannel. As a result, it appears within a box in the EPN diagram. Only the parent helloworldOutputChannel may specify the nested bean as a listener.

Figure 7-17 EPN With Nested Bean

[image: Description of Figure 7-17 follows]

Example 7-1 Assembly Source for EPN With Nested Bean

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

Alternatively, you can define this EPN so that all nodes are nested as Figure 7-18 shows. Example 7-2 shows the EPN assembly source for this EPN. Note that all the nodes are nested and as a result, all nodes appear within a box in the EPN diagram. The helloworldAdapter is the outermost parent node and does not appear within a box in the EPN diagram.

Figure 7-18 EPN With all Nodes Nested

[image: Description of Figure 7-18 follows]

Example 7-2 Assembly Source for EPN With all Nodes Nested

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener>
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener>
 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener>
 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
 </wlevs:processor>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
</wlevs:adapter>

7.2.10 Event Type Repository Editor

You can create and edit JavaBean and tuple event types using the event type repository editor.

To open the event type repository editor, click on the Event Types tab in the EPN editor as Figure 7-19 shows.

Figure 7-19 Event Type Repository Editor

[image: Description of Figure 7-19 follows]

For more information, see:

	
Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor"

	
Section 9.3.2.2, "How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor"

For information on the other types of events you can create, see Section 9.1, "Overview of Oracle Event Processing Event Types".

7.3 Navigating the EPN Editor

Because the EPN Editor has a view of the whole project it is a natural place from which to navigate to the various artifacts that make up an Oracle Event Processing application. Oracle Event Processing IDE for Eclipse offers the following features to help navigate the EPN Editor:

	
Section 7.3.1, "Moving the Canvas"

	
Section 7.3.2, "Shortcuts to Component Configuration and EPN Assembly Files"

	
Section 7.3.3, "Hyperlinking"

	
Section 7.3.4, "Context Menus"

	
Section 7.3.5, "Browsing Oracle Event Processing Types"

7.3.1 Moving the Canvas

To move the EPN canvas without using the horizontal and vertical scroll bars, you can use any of the following options:

	
Position the cursor on the canvas, hold down the middle mouse button, and drag.

	
Hold down the space bar and click and drag the canvas.

	
In the Overview view, click in the highlight box and drag.

7.3.2 Shortcuts to Component Configuration and EPN Assembly Files

If a node has a configuration object associated with it, then double-clicking that node will open the component configuration file where that node's behavior is defined.

Otherwise, double-clicking that node will open the EPN assembly file (the Spring context file) where that node is defined.

A configuration badge will be shown on nodes with associated configuration objects as shown in Figure 7-20.

Figure 7-20 Node with Configuration Badge

[image: Description of Figure 7-20 follows]

For more information, see:

	
Section 7.2.7, "Configuration Badging"

	
Section 7.3.3, "Hyperlinking"

7.3.3 Hyperlinking

When editing a component configuration file, EPN assembly file, or Oracle CQL statement, hold down the Ctrl key to turn on hyperlinking. Using hyperlinking, you can easily move between assembly and configuration files and follow reference IDs to jump to bean implementation classes.

This section describes:

	
Section 7.3.3.1, "Hyperlinking in Component Configuration and EPN Assembly Files"

	
Section 7.3.3.2, "Hyperlinking in Oracle CQL Statements"

7.3.3.1 Hyperlinking in Component Configuration and EPN Assembly Files

Figure 7-21 shows a component configuration file with the cursor over the value of a processor element name child element while holding down the Ctrl key. The name value has an underline to indicate it is a hyperlink. Click this link to jump to the corresponding element in the EPN assembly file as Figure 7-22 shows.

Figure 7-21 Component Configuration File: Hyperlinking to EPN Assembly File

[image: Description of Figure 7-21 follows]

Similarly, hovering over the wlevs:processor element id child element value filterFanoutProcessor while holding down the Ctrl key allows you to hyperlink back to the component configuration file.

Figure 7-22 EPN Assembly File: Hyperlinking to Component Configuration File

[image: Description of Figure 7-22 follows]

7.3.3.2 Hyperlinking in Oracle CQL Statements

Figure 7-23 shows a component configuration file with the cursor over an event attribute while holding down the Ctrl key. The fromRate attribute has an underline to indicate it is a hyperlink. Click this link to jump to the corresponding event definition in the EPN assembly file as Figure 7-24 shows.

	
Note:

Hyperlinking in Oracle SQL statements is designed for simple use cases and may not work as expected in more complex implementations.

Figure 7-23 Oracle CQL Statement: Event Schema

[image: Description of Figure 7-23 follows]

Figure 7-24 Corresponding Event Definition in EPN Assembly File

[image: Description of Figure 7-24 follows]

Similarly, you can Ctrl-click the FxQuoteStream channel in the Oracle CQL statement that Figure 7-23 shows to jump to the channel's definition. This is applicable wherever references to external objects are present in a Oracle CQL statement.

7.3.4 Context Menus

Each node on the EPN Editor has a group of context menu items that provide convenient access to various node-specific functions. Right-click the node to display its context menu.

Depending on the node type, you can use the EPN Editor context menu to select from the following options:

	
Go to Configuration Source: opens the corresponding component configuration file and positions the cursor in the appropriate element. You can use hyperlinking to quickly move from this file to the corresponding EPN assembly file. For more information, see Section 7.3.3, "Hyperlinking".

	
Go to Assembly Source: opens the corresponding EPN assembly file and positions the cursor in the appropriate element. You can use hyperlinking to quickly move from this file to the corresponding component configuration file. For more information, see Section 7.3.3, "Hyperlinking"

	
Go to Java Source: opens the corresponding Java source file for this component.

	
Delete: deletes the component from both the EPN assembly file and component configuration file (if applicable).

	
Rename: allows you to change the name of the component. The name is updated in both the EPN assembly file and component configuration file (if applicable).

	
Help: displays context sensitive help for the component.

Note that these navigation options will become disabled when a corresponding source artifact cannot be found. For example, if an adapter does not have a corresponding entry in a configuration XML file, its Go to Configuration Source menu item will be greyed out.

7.3.5 Browsing Oracle Event Processing Types

A typical Oracle Event Processing project contains many instances of Oracle Event Processing types such as adapters, channels, processors, event beans. In a large, complex Oracle Event Processing project, it can be a challenge to locate a particular instance. The Oracle Event Processing IDE for Eclipse provides an Oracle Event Processing type browser that you can use to quickly locate instances of any Oracle Event Processing type.

7.3.5.1 How to Browse Oracle Event Processing Types

You can open the Oracle Event Processing type browser using the keyboard short cut Ctrl-Alt-T.

To browse Oracle Event Processing types:

	
Open an Oracle Event Processing project.

In the following procedure, consider the Oracle Event Processing project that Figure 7-25 shows. This is based on the Oracle Event Processing foreign exchange example. For more information on this example, see Section 2.8, "Foreign Exchange (FX) Example".

Figure 7-25 Example Oracle Event Processing EPN

[image: Description of Figure 7-25 follows]

	
Type the keyboard short cut Ctrl-Alt-T.

The Oracle Event Processing type browser appears as Figure 7-26 shows.

Figure 7-26 Oracle Event Processing Type Browser

[image: Description of Figure 7-26 follows]

	
Configure the Oracle Event Processing Type dialog as shown in Table 7-1.

Table 7-1 Oracle Event Processing Type Dialog

	Attribute	Description
	
Select an item to open

	
Specify a filter to match the names of the items you wan to find.

Use the ? wildcard for any single character and the * wildcard for any string of two or more characters.

	
Matching items

	
The list of Oracle Event Processing type instances whose name matches the filter you specified.

By default, the status line below the Matching items list shows the fully qualified path to the selected item in the Select an item to open list. To toggle status line display, click on the pull-down menu in the right hand corner and select Show Status Line.

	
Select a type in the Matching Items list and click OK.

The type is opened in the source file in which it is defined. For example, selecting FilterAsia from the Matching Items list and clicking OK opens the com.oracle.cep.sample.fx.content.xml EPN assembly file in which this processor is defined as Figure 7-27 shows.

Figure 7-27 Opening the FilterAsia EPN Assembly File

[image: Description of Figure 7-27 follows]

To navigate to the corresponding component configuration file as Figure 7-28 shows, Ctrl-click the FilterAsia id attribute value.

Figure 7-28 Opening the FilterAsia Component Configuration File

[image: Description of Figure 7-28 follows]

For more information on hyperlinking, see Section 7.3.3, "Hyperlinking".

7.4 Using the EPN Editor

The EPN Editor allows you to create and edit an application's EPN using actions on the editor surface. Most actions in the EPN Editor result in edits to an assembly file in that application. You can use a single EPN assembly file or multiple EPN assembly files (for more information, see Section 7.2.2, "Filtering").

The following sections describe EPN Editor editing tasks, including:

	
Section 7.4.1, "Creating Nodes"

	
Section 7.4.2, "Connecting Nodes"

	
Section 7.4.3, "Laying Out Nodes"

	
Section 7.4.4, "Renaming Nodes"

	
Section 7.4.5, "Deleting Nodes"

For more information, see:

	
Section 5.1, "Oracle Event Processing Project Overview"

	
Section 7.2, "EPN Editor Overview"

	
Section 7.1, "Opening the EPN Editor"

	
Section 7.3, "Navigating the EPN Editor"

7.4.1 Creating Nodes

When adding new nodes to an EPN using the EPN editor, a new node will appear at the location of the mouse click that was used to show the EPN Editor context menu. You can create any of the nodes that Table 7-2 lists.

Table 7-2 EPN Editor Icons

	Node	Description
	[image: Adapter icon]
	
Adapter: a node that interfaces an event data source with the EPN or interfaces the EPN with an event data sink.

For more information, see:

	
Section 7.4.1.2, "How to Create an Adapter Node"

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

	
[image: Channel icon]

	
Channel: a node that conveys events between an event data source and an event data sink.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 10, "Connecting EPN Stages Using Channels"

	
[image: Processor icon]

	
Processor: a node that executes Oracle CQL or EPL rules on the event data offered to it by one or more channels.

For more information, see:

	
Section 7.4.1.3, "How to Create a Processor Node"

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
[image: Event Bean icon]

	
Event Bean: a node similar to a standard Spring bean except that it can be managed by the Oracle Event Processing management framework and can actively use the capabilities of the Oracle Event Processing server container.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 16, "Handling Events with Java"

	
[image: Bean icon]

	
Spring Bean: a Plain Old Java Object (POJO) node that consumes events. A Spring bean is managed by the Spring framework.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 16, "Handling Events with Java"

	
[image: Cache icon]

	
Cache: a node that provides a temporary storage area for events, created exclusively to improve the overall performance of your Oracle Event Processing application.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 13, "Integrating a Cache"

	
[image: Table icon]

	
Table: a node that connects a relational database table to the EPN as an event data source.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

The user may not reposition the nodes on the EPN Editor. To refresh the layout of the nodes on the EPN Editor, click the Layout EPN button on the EPN Editor toolbar. For more information, see Section 7.4.3, "Laying Out Nodes".

When a child node is nested within a parent node, its icon appears within a box. For more information, see Section 7.2.9, "Nested Stages".

7.4.1.1 How to Create a Basic Node

Basic nodes include beans, caches, channels, event beans, and tables.

For information on how to create other nodes, see Section 7.4.1, "Creating Nodes".

To create a basic node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-29 shows.

Figure 7-29 Creating a Basic Node

[image: Description of Figure 7-29 follows]

	
Select the type of node you want to create.

The EPN Editor edits the source file indicated in the EPN Editor filter and the EPN Editor displays the new EPN node. For most nodes, a default ID is chosen and the new node is immediately opened for rename as Figure 7-30 shows.

Figure 7-30 New Basic Node

[image: Description of Figure 7-30 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Optionally, configure additional node options.

See:

	
Chapter 10, "Connecting EPN Stages Using Channels"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Chapter 13, "Integrating a Cache"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

7.4.1.2 How to Create an Adapter Node

This section describes how to create an adapter using the EPN Editor, including:

	
JMS adapters (in-bound or out-bound)

	
HTTP publish-subscribe server adapters (publishing or subscribing)

For information on how to create other nodes, see Section 7.4.1, "Creating Nodes".

To create an adapter node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-31 shows.

Figure 7-31 Creating an Adapter Node

[image: Description of Figure 7-31 follows]

	
Select node type Adapter.

The New Adapter wizard appears as shown in Figure 7-32.

Figure 7-32 New Adapter Wizard

[image: Description of Figure 7-32 follows]

	
Configure the New Adapter Wizard - Page 1 as shown in Table 7-3.

Table 7-3 New Adapter Wizard - Page 1

	Attribute	Description
	
Adapter ID

	
Specifies the ID of the adapter EPN element and the name of the associated adapter configuration element.

	
Provider

	
Select the adapter provider type from the pull-down menu for an adapter already defined in the Oracle Event Processing component configuration schema.

Select one of:

	
jms-inbound: JMS in-bound adapter.

	
jms-outbound: JMS out-bound adapter.

	
httppub: HTTP publish-subscribe adapter for publishing.

	
httpsub: HTTP publish-subscribe adapter for subscribing.

	
Class

	
Specify the fully qualified Java class name of a custom adapter.

NOTE: If you are using a custom adapter factory, you must add the wlevs:factory element manually. For more information, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
Create a new file

	
Creates the adapter component configuration in a new file.

The new file is created in the application's META-INF/wlevs directory with the same name as the adapter ID.

	
Use an existing configuration file

	
Creates the adapter component configuration in an existing configuration file.

The new adapter configuration element is appended to the configurations in the selected file.

	
Proceed depending on how you configured the adapter implementation:

	
If you selected Class, Proceed to step 8.

	
If you selected Provider, proceed to step 6.

	
Click Next.

The provider-specific New Adapter Wizard page appears.

	
Configure the provider-specific New Adapter Wizard page as the following figures show:

	
Figure 7-33, "New Adapter Wizard - jms-inbound"

See Section 11.6.1, "JMS Inbound Adapter Component Configuration".

	
Figure 7-34, "New Adapter Wizard - jms-outbound"

See Section 11.6.2, "JMS Outbound Adapter Component Configuration".

	
Figure 7-35, "New Adapter Wizard - httppub"

See Section 12.5.1, "HTTP Pub-Sub Adapter for Publishing Component Configuration".

	
Figure 7-36, "New Adapter Wizard - httpsub"

See Section 12.5.2, "HTTP Pub-Sub Adapter for Subscribing Component Configuration".

Figure 7-33 New Adapter Wizard - jms-inbound

[image: Description of Figure 7-33 follows]

Figure 7-34 New Adapter Wizard - jms-outbound

[image: Description of Figure 7-34 follows]

Figure 7-35 New Adapter Wizard - httppub

[image: Description of Figure 7-35 follows]

Figure 7-36 New Adapter Wizard - httpsub

[image: Description of Figure 7-36 follows]

	
Click Finish.

	
Use the new adapter node on the EPN.

The EPN Editor creates the adapter configuration in the file you specified in the New Adapter wizard, edits the source file indicated in the EPN Editor filter, and displays the new EPN node as Figure 7-37 shows.

Figure 7-37 New Adapter Node

[image: Description of Figure 7-37 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Optionally, configure additional node options.

For more information, see:

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

7.4.1.3 How to Create a Processor Node

This section describes how to create a processor node using the EPN Editor. For information on creating other node types, see Section 7.4.1.1, "How to Create a Basic Node".

When deploying an Oracle Event Processing application with a wlevs:processor node, other nodes in an EPN may reference that processor only if a processor configuration exists for that processor. Processor configurations are defined in Oracle Event Processing application configuration files. See Section 1.4.2, "Overview of Component Configuration Files" for more information about Oracle Event Processing configuration files.

To create a processor node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-38 shows.

Figure 7-38 Creating a Processor Node

[image: Description of Figure 7-38 follows]

	
Select node type Processor.

The New Processor dialog appears as shown in Figure 7-39.

Figure 7-39 New Processor Dialog

[image: Description of Figure 7-39 follows]

	
Configure the New Processor dialog as shown in Table 7-4.

Table 7-4 New Processor Dialog

	Attribute	Description
	
Processor ID

	
Specifies the ID of the processor EPN element and the name of the associated processor configuration element

	
Create a new file

	
Creates the processor configuration in a new file.

The new file is created in the application's META-INF/wlevs directory with the same name as the processor ID.

	
Use an existing configuration file

	
Creates the processor configuration in an existing configuration file.

The new processor configuration element is appended to the configurations in the selected file.

	
Click OK.

The EPN Editor creates the processor configuration in the file you specified in the New Processor dialog, edits the source file indicated in the EPN Editor filter, and displays the new EPN node as Figure 7-40 shows.

Figure 7-40 New Processor Node

[image: Description of Figure 7-40 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Note:

In Oracle Event Processing, you must use a channel to connect a push event source to an Oracle CQL processor and to connect an Oracle CQL processor to an event sink. For more information, see Section 10.1.2, "Channels Representing Streams and Relations".

	
Optionally, configure additional processor options.

See:

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

7.4.2 Connecting Nodes

The nodes in the EPN represent the flow of events through an Event Processing Network of an Oracle Event Processing application. When a node may forward events to another node in the EPN, the EPN Editor allows you to connect that node visually by dragging a line from the source node to the destination node.

7.4.2.1 How to Connect Nodes

This section describes how to connect nodes in the EPN Editor.

To connect nodes:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Select the source of events and drag to the target of the event flow.

	
If a connection is allowed, a plug icon is shown at the target end as Figure 7-41 shows.

Figure 7-41 Connecting Nodes: Connection Allowed

[image: Description of Figure 7-41 follows]

	
If the connection is not allowed, a forbidden icon is shown at the target end as Figure 7-42 shows.

Figure 7-42 Connecting Nodes: Connection Forbidden

[image: Description of Figure 7-42 follows]

Not all nodes may be a target of event flow. For example, connection is forbidden if:

	
A node does not define a valid identifier.

	
A node is nested (for more information, see Section 7.2.9, "Nested Stages").

	
Release the mouse button to complete the connection.

When the connection is made, the EPN Editor updates the EPN assembly file. For example:

	
When you connect an adapter to a channel or a channel to a processor or event bean, the EPN Editor adds a wlevs:listener element to the source node with a reference to the target node by ID.

	
When you connect a table to a processor, the EPN Editor adds a wlevs:table-source element to the target processor node that references the source table.

For example, suppose you connect the adapter to the channel, and the channel to the processor shown in Figure 7-43.

Figure 7-43 Valid Connections

[image: Description of Figure 7-43 follows]

Figure 7-44 shows the EPN assembly file before connection.

Figure 7-44 EPN Assembly File: Before Connection

[image: Description of Figure 7-44 follows]

Figure 7-45 shows the EPN assembly file after connection.

Figure 7-45 EPN Assembly File: After Connection

[image: Description of Figure 7-45 follows]

7.4.3 Laying Out Nodes

Certain EPN Editor actions will use the location of the action as the location of the rendered result. For example, when adding new nodes to an EPN using the EPN editor, a new node will appear at the location of the mouse click that was used to show the EPN Editor context menu. The user may not reposition the nodes on the EPN Editor. To refresh the layout of the nodes on the EPN Editor, click the Layout EPN button on the EPN Editor toolbar as Figure 7-46 shows.

Figure 7-46 Laying Out Nodes

[image: Description of Figure 7-46 follows]

For more information, see Section 7.2.4, "Layout".

7.4.4 Renaming Nodes

Most node types support a rename operation that will change all references to the node across both assembly and configuration XML files. You can select Rename from the node's context menu as Figure 7-47 shows.

Figure 7-47 Renaming Nodes

[image: Description of Figure 7-47 follows]

7.4.5 Deleting Nodes

You may delete most nodes and connections visible on the EPN Editor using the node's context menu or the Delete key:

	
Using the keyboard, select the object you want to delete and then click the Delete key.

	
Using the context menu, right-click on the object to show the context menu, then select Delete as Figure 7-48 shows.

Figure 7-48 Deleting Nodes

[image: Description of Figure 7-48 follows]

When deleting a node, the incoming and outgoing connections are also deleted. For example, Figure 7-49 shows the EPN and Figure 7-51 shows the assembly file before deleting the channel node named stream.

Figure 7-49 EPN Before Deleting a Channel Node

[image: Description of Figure 7-49 follows]

Figure 7-50 Assembly File Before Deleting a Channel Node

[image: Description of Figure 7-50 follows]

Figure 7-51 shows the EPN and Figure 7-52 shows the assembly file after deleting this channel node.

Figure 7-51 EPN After Deleting a Channel Node

[image: Description of Figure 7-51 follows]

Figure 7-52 Assembly File After Deleting a Channel Node

[image: Description of Figure 7-52 follows]

	
Note:

If a bean or other anonymous element is deleted, then the object containing that object is deleted too. For example, given a bean within a wlevs:listener element, then deleting the bean will delete the listener element too.

Part III

Developing Oracle Event Processing Applications

Part III contains the following chapters:

	
Chapter 8, "Walkthrough: Assembling a Simple Application"

	
Chapter 9, "Defining and Using Event Types"

	
Chapter 10, "Connecting EPN Stages Using Channels"

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 13, "Integrating a Cache"

	
Chapter 14, "Integrating Web Services"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 18, "Configuring Applications With Data Cartridges"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
Chapter 20, "Configuring Event Record and Playback"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

	
Chapter 22, "Testing Applications With the Event Inspector"

8 Walkthrough: Assembling a Simple Application

This chapter introduces how to build Oracle Event Processing applications through a walkthrough in which you build a simple application. Along the way, it provides an overview of key concepts

This chapter includes the following sections:

	
Section 8.1, "Introduction to the Simple Application Walkthrough"

	
Section 8.2, "Create the Workspace and Project"

	
Section 8.3, "Create an Event Type to Carry Event Data"

	
Section 8.4, "Add an Input Adapter to Receive Event Data"

	
Section 8.5, "Add a Channel to Convey Events"

	
Section 8.6, "Create a Listener to Receive and Report Events"

	
Section 8.7, "Set Up the Load Generator and Test"

	
Section 8.8, "Add an Oracle CQL Processor to Filter Events"

	
Section 8.9, "Summary: Simple Application Walkthrough"

8.1 Introduction to the Simple Application Walkthrough

This walkthrough introduces the basics of building Oracle Event Processing applications using the Eclipse IDE. It is intended as a survey of key Oracle Event Processing concepts, a starting place from which you can investigate more about each.

The application you build in this walkthrough models a simple stock trade alert system. The application receives example data about stock trades, examines the data for certain characteristics, then prints some of the data to the console. The following illustration shows the application's finished EPN diagram:

[image: Description of tradereport_finishedepn.png follows]

This introduction includes the following sections:

	
Section 8.1.1, "Key Concepts in this Walkthrough"

	
Section 8.1.2, "Before You Get Started"

This walkthrough starts with Section 8.2, "Create the Workspace and Project".

8.1.1 Key Concepts in this Walkthrough

This walkthrough introduces the following concepts that are typically part of Oracle Event Processing applications you build:

	
IDE features designed to make building Oracle Event Processing applications easier, including a project type, a graphical editor for designing event processing networks, and validation support for project-specific configuration files

	
Building an application as an event processing network (EPN), the core design construct for modeling the behavior of an application that receives streaming data and operates on that data as it flows through the application.

	
Designing event types that model events, normalizing event data for use with code inside the application.

	
Using adapters to manage interactions with external components, including sources of streaming data.

	
Implementing a Java class that can receive or send events within an event processing network.

	
Using Oracle Continuous Query Language (Oracle CQL) to filter events based on specific properties within them.

8.1.2 Before You Get Started

You should have installed Oracle Event Processing and the Eclipse IDE. In addition, you should have updated the Eclipse IDE with the plugin included with Oracle Event Processing.

Although it introduces features specific to Oracle Event Processing, this walkthrough assumes that you are somewhat familiar with basic Java programming.

For more information, see the following topics:

	
"Installation Overview" in the Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

	
Section 4.1, "Overview of Oracle Event Processing IDE for Eclipse"

8.2 Create the Workspace and Project

In this first step, you'll use the IDE to create the workspace and project in which to develop your application. To make it easier to develop Oracle Event Processing applications, the IDE provides the Oracle Event Processing application project type. This project type includes the artifacts and dependencies that typical Oracle Event Processing applications need, making it easier to get into writing application-specific code.

You should already have configured your IDE preferences to know the location of the JRockit JRE, which is the best practice choice on which to run the Oracle Event Processing server.

Create the Walkthrough Workspace and TradeReport Project

	
Start the Eclipse IDE.

	
When prompted to select a workspace, create a workspace called walkthroughs.

	
From the File menu, choose New > Project to begin creating a new project.

	
In the New Project dialog, expand Oracle Event Processing, click Oracle Event Processing Application Project, then click Next.

[image: Description of newproject_oep.png follows]

	
In the New Oracle Event Processing Application Project dialog, in the Project name box, enter TradeReport.

Leave the Use default location check box selected to have the new project created in the location of the workspace you created.

	
Under Target Runtime, if no runtime is displayed in the dropdown, do the following:

	
Click the New button.

	
In the New Server Runtime Environment dialog, expand Oracle, then select Oracle Event Processing v11.1 and click Next.

	
Click Next.

	
Under New Oracle Event Processing v11.1 Runtime, next to the Oracle Middleware Home Directory box, click Browse.

	
In the Browse for Folder dialog, locate the Middleware home directory, then click OK.

By default, the Middleware home directory will be located at ORACLE_HOME/Middleware.

	
In the JRE dropdown, select a JRockit JRE.

The Oracle Event Processing server is optimized for use with the JRockit JRE. If a JRockit JRE isn't available among those listed, use the following steps to locate the JRE that is included with Oracle Event Processing.

	
Click the Installed JRE preferences link.

	
In the Preferences dialog, next to the Installed JREs list, click the Add button.

	
In the Add JRE dialog, under Installed JRE Types, select Standard VM, then click Next.

	
Next to the JRE home box, click the Directory button to browse for the location of the JRockit JRE.

	
In the Browse For Folder dialog, expand the Middleware home directory, then the jrockit_160_29 directory, then click the JRE directory and click OK.

	
After the Add JRE dialog displays the JRE home directory, name, and system libraries, click the dialog's Finish button.

[image: Description of tradereport_jredef.png follows]

	
In the Preference dialog, select the check box for the JRE you just added, then click OK.

	
In the New Server Runtime Environment dialog, from the JRE dropdown, select the JRE you just added.

	
Click Finish.

	
In the New Oracle Event Processing Application Project dialog, with the Oracle Event Processing v11.1 target runtime selected, click Next.

	
Under Oracle Event Processing Application Content, confirm the properties for the project you're created.

[image: Description of tradereport_bundleprop.png follows]

	
Click Finish.

After you've created your project, the IDE will display the Project Explorer, with a hierarchical list of the artifacts in your project, along with an empty editor for the event processing network you're about to build.

An event processing network (EPN) is a central design concept in an Oracle Event Processing application. An EPN represents the components, known as stages, that make up the application, as well as the path taken by events from stage to stage. As you develop your application, the EPN editor will display the stages you add and the connections between them. Conceptually, event data enters your application from the left, moving toward the right from stage to stage.

The design that the EPN editor shows is actually a graphical representation of the EPN's underlying configuration. When you add a stage or connection through the EPN editor, the IDE writes configuration XML to an underlying assembly file (just as editing the XML file directly will result in an updated graphical design in the EPN editor). An EPN assembly file includes the default configuration for each of an EPN's stages. This is a default configuration that cannot be changed on the server at runtime without redeploying the application. For configuration that can be edited at runtime, you can use another kind of configuration file, as described later.

	
Note:

The EPN assembly file's XML schema is an extension of the Spring framework configuration file. For more on Spring, see the Spring web site.

Take a look at the Project Explorer. You should have a project hierarchy that's something like what's shown in the following illustration.

[image: Description of tradereport_projexp.png follows]

If you're experienced with IDEs, much of this should be familiar. In addition to the usual places for Java source code, the JRE system library, and build output, you'll also find the following:

	
JAR files that make up the Oracle Event Processing classpath. These provide the functionality needed for the Oracle Event Processing server, including for stages of an event processing network, Spring-configured components, and logging.

	
A spring directory for configuration files that conform to the Spring framework (for more on Spring, see the Spring web site). The file you start off with is the EPN assembly XML file that describes the contents and structure of the event processing network you're building. As you build your EPN, adding and connecting stages, the IDE captures your work in this file. You can also edit the file manually. At this point, the file merely declares namespaces for the XML that will be added to it.

	
A wlevs directory for files that describe components whose configuration should be editable at runtime. Most components have a default configuration that you can override within a component configuration file in the wlevs directory. The only component whose configuration you must put in one of these files is a processor. A processor's Oracle CQL code is editable at runtime by using the Oracle Event Processing Visualizer.

If you're configuring multiple components, you can use one or multiple component configuration files. For example, in the case of a team of developers, where each is responsible for a different component, you might want to have a configuration file per component to avoid source control conflicts.

Now that you've got a project created, in Section 8.3, "Create an Event Type to Carry Event Data", you'll start assembling an event processing network. You'll begin by creating an event type that will represent incoming event data to the application's logic.

8.3 Create an Event Type to Carry Event Data

Oracle Event Processing applications are about receiving, processing, and sending events. Events start as event data that can be in almost any structured form. The event data arrives at the application in its raw form, then is bound to an event type that you define. Using your own event type makes handling the data predictable for the rest of your code in the application, including Oracle CQL queries, Java code, and so on. (The conversion is done by an adapter. More about those later.)

So an early task in defining any event processing network is clarifying the structure of the data coming from the source, then defining the form to which you'll convert that data for use inside the EPN. In this section, you'll work from the structure of example stock trade data to define an event type to which the data will be bound.

In the case of the application you're building here, the sample incoming event data is arriving as rows of comma-separated values. Each row contains data about a particular thing that happened -- here, a stock trade. The structure of the values is consistent from row to row. Here are a few example rows:

IBM,15.5,3.333333333,3000,15
SUN,10.8,-1.818181818,5000,11
ORCL,14.1,0.714285714,6000,14
GOOG,30,-6.25,4000,32
YHOO,7.8,-2.5,1000,8

Though they aren't labeled in the CSV file, the values could be labeled as follows:

stock symbol, price, percentage change, volume of shares purchased, last price

That's the structure of the incoming trade event data. In order to handle that data in your application -- query it, filter it, perform calculations, and so on -- you will need to assign that data to a new structure that supports doing those things. In particular, the new structure should have the ability to specify properties of particular types. Having types matched to the anticipated values makes it easier to handle the values in code.

Looking at the example data and labels, you can imagine each of the values for each row bound to properties of the following Java types:

String, Double, Double, Integer, Double

Oracle Event Processing supports several forms on which you can base your new event type. These include JavaBean classes, tuples, and java.util.Map instances. A JavaBean class is the best practice type for new event types, so that's what you will use here for trade events.

If you haven't worked with them before, you should know that JavaBeans are Java classes that follow specific standard rules designed to make them predictable. In general, the idea is for the class to provide variables to hold data inside it (such as the trade event stock symbol) and methods through which the data can be retrieved or set by code outside the class. Naming the methods with predictable names, such as "setSymbol" and "getSymbol", gives code outside the class a predictable way to use the data inside the class. For example, when Oracle Event Processing needs to bind incoming event data to your event type, it will create a new instance of the event type JavaBean and use the bean's "set" methods to set the data in the proper places inside the class. Code later in the application, such as Java code or Oracle CQL code you will write, will be able to call the bean's "get" methods to get the data out again.

In the following sections, you will create the JavaBean as code behind your event type, then configure the event type to use the JavaBean.

Create the TradeEvent JavaBean

In this section, you will create a TradeEvent JavaBean class that will be used as an event type for incoming trade event data.

	
In the IDE, right-click the src directory, then click New > Class.

	
In the New Java Class dialog, in the package box, enter com.oracle.oep.example.tradereport

	
In the Name box, enter TradeEvent.

[image: Description of tradereport_tradeevt.png follows]

	
Click Finish.

The TradeEvent.java source code window will display with the declaration for the TradeEvent class.

	
In the TradeEvent class, just beneath the TradeEvent class declaration, add private variables for each of the properties you'll need as shown in the following example.

public class TradeEvent {
 // One variable for each field in the event data.
 private String symbol;
 private Double price;
 private Double lastPrice;
 private Double percChange;
 private Integer volume;
}

	
Select the code for all of the variables, click the Source menu, then click Generate Getters and Setters.

[image: Description of tradereport_genaccess.png follows]

	
In the Generate Getters and Setters dialog, select the check box for each variable you selected (in other words, all of them).

	
In the Insertion Point dropdown, select Last member.

[image: Description of tradereport_gendialog.png follows]

	
Click OK.

In the TradeEvent source code window, notice that you have created pairs of methods that simply get or set the values of the variables you added.

	
Save the TradeEvent.java file and close the code window.

And that's all there is to creating a JavaBean (at least, in this case). The next step is to tell your application that the JavaBean should be used as an event type.

Configure the TradeEvent Event Type

In this section, you'll tell the TradeReport application that the TradeEvent JavaBean should be used as an event type.

	
In the IDE, confirm that the empty TradeReport EPN editor is open. Its tab at the top of the window should read EPN: TradeReport.

	
At the bottom of the designer window, click the Event Types tab.

	
Under Event Type Definitions, select TradeReport.context.xml. This is the EPN assembly file underlying your EPN design.

This is also the file you noticed in the META-INF/spring directory of the project explorer. You are selecting it here to ensure that the event type you are about to configure gets defined in that file.

	
Under Event Type Definitions, click the plus sign to add a new event definition.

	
Click the newEvent entry that was created.

	
Under Event Type Details, in the Type name box, change the event type's name to TradeEvent. (It doesn't have to be the same as the JavaBean class, but it makes things simpler to use the same name.)

	
Select the Properties defined in Java bean option. The other option is for defining events as tuples.

	
In the Class box, enter the name of the JavaBean class you created: com.oracle.oep.example.tradereport.TradeEvent.

[image: Description of tradereport_eventdef.png follows]

	
Save the file to have the event type name updated in the event type definitions.

If you're curious about what was added to your EPN assembly file, open the file. It's in the Project Explorer under TradeReport > META-INF > spring > TradeReport.context.xml. The part you added looks something like the following (you might need to click the Source tab at the bottom of the editor window):

<wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>com.oracle.oep.example.tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

As the code suggests, Oracle Event Processing manages event types in an event type repository. The TradeEvent event type you defined is mapped to the TradeEvent JavaBean class you created.

Now that you have an event type defined and configured, you need to tell the application how to watch for incoming event data. You also need to specify that the data should be assigned to the TradeEvent type you created. You do those things with an adapter, which you will add in Section 8.4, "Add an Input Adapter to Receive Event Data".

8.4 Add an Input Adapter to Receive Event Data

Before you can try out the event processing network you're building, you will need to create a way for event data to flow into it. In Oracle Event Processing applications, adapters manage traffic between external components and the internals of the event processing network. Event data arriving from external sources enter the application through an adapter, while event data leaving the application on its way to external components or applications exits through an adapter. By default, Oracle Event Processing includes adapters for three different kinds of external components: Java Message Service (JMS) destinations, HTTP publish-subscribe servers, and CSV files.

The adapter for CSV files, called csvgen, is great for trying things out with code in development. It's a lightweight alternative to the task of defining an adapter for a more substantial, "real" event data source. In your own apps, you might find it easier to use the csvgen adapter until you have your EPN started and some of its logic defined.

The csvgen adapter's logic knows how to translate event data read from a CSV file into the event type you defined. You use the csvgen adapter in conjunction with the load generator utility included with Oracle Event Processing (more about the load generator later in this walkthrough). The csvgen adapter's implementation code is included by default in Oracle Event Processing, so all you need to do is add configuration code to declare the adapter as a stage in your EPN, as well as set a few of its properties.

Add Code to Configure a CSV Adapter

In this section, you will add configuration code that creates a place for your CSV adapter in the event processing network. The code will also set a few adapter properties needed to configure the adapter's runtime behavior. You add the code to the EPN assembly file so that the adapter will be included in the EPN and appear in the EPN designer as a stage.

	
In the IDE, locate and open the EPN assembly file. In the Project Explorer, it should be located at TradeReport > META-INF > spring > TradeReport.context.xml.

	
Below the event-type-repository XML stanza, add the following XML to declare the adapter:

<wlevs:adapter id="StockTradeCSVAdapter" provider="csvgen">
 <wlevs:instance-property name="port" value="9200" />
 <wlevs:instance-property name="eventTypeName"
 value="TradeEvent" />
 <wlevs:instance-property name="eventPropertyNames"
 value="symbol,price,percChange,volume,lastPrice" />
</wlevs:adapter>

This XML stanza declares an instance of the csvgen adapter and assigns to it three properties that configure it for use in your EPN. The adapter uses the properties to map from incoming raw event data to the properties of the event type you defined in Section 8.3, "Create an Event Type to Carry Event Data". The following describes the values you're adding:

	
Adapter declaration. The id attribute value is a unique identifier for the adapter. The provider attribute value must be "csvgen" in order to refer to the csvgen implementation included with Oracle Event Processing.

	
The port instance property tells the adapter instance what port to listen on for incoming event data. The value here, 9200, corresponds to the port number to which the load generator will send event data (more on that later).

	
The eventTypeName instance property tells the instance the name of the event type to which incoming event data should be assigned. Here, you give the name of the TradeEvent type you defined earlier.

	
The eventPropertyNames instance property tells the instance the names of the event type properties to which data should be assigned. Notice in this case that the eventPropertyNames attribute value is a comma-separated list of the same properties you defined in the JavaBean for the event type. In order for the csvgen adapter to map from incoming values to event type properties, the names here must be the same as your event type and must be in the same order as corresponding values for each row of the CSV file.

	
Save and close the EPN assembly file with the adapter XML in it.

	
If it isn't open already, open the EPN editor to its Overview tab.

	
In the EPN editor, notice that it now displays an icon representing the csvgen adapter instance you just added. The icon will be labeled with the adapter id value you specified in configuration code.

[image: Description of tradereport_csvadapter.png follows]

In the next step, Section 8.5, "Add a Channel to Convey Events", you will add a way to carry events from the adapter to logic you will add in a moment.

8.5 Add a Channel to Convey Events

In this step, you will add a way to connect the adapter you added in Section 8.4, "Add an Input Adapter to Receive Event Data" to a bit of logic you will add in the next step. Afterward, you will test the application.

In Oracle Event Processing applications, you connect EPN stages together by using a channel. A channel is a conduit that transfers events from one part of the EPN to another. Though conveying events is a channel's primary purpose, channel configuration options give you opportunities to specify other properties through which you can tune the application. These include:

	
Whether the channel can process events asynchronously, and how big the buffer for this can get.

	
How many threads may be used to process events in the channel (a larger number can increase performance).

	
Whether to partition events, based on their properties, in order to have the events dispatched to separate downstream parts of the EPN.

Those kinds of channel configuration properties have default values, so you needn't set them for the application you're building. In this application, you'll keep channel configuration simple.

The purpose of the channel you are about to add is to carry newly generated events from the adapter that's receiving event data to code you will add in the next step.

Add the AdapterOutputChannel

	
In the IDE, ensure that the EPN editor is open and that the EPN you're building is visible.

	
Right-click the EPN editor, then click New > Channel.

A channel icon should appear in the EPN editor.

	
Double-click the channel icon that appears in the editor to display the channel's configuration XML in the EPN assembly file.

	
In the assembly XML file, locate the channel XML stanza for the channel you added. It should look something like the following:

<wlevs:channel id="channel">
</wlevs:channel>

You might notice a warning that "channels should declare an 'event-type' value". You are about to fix that.

	
Edit the default XML to match the following (or simply paste the following code over the code you have).

<wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
</wlevs:channel>

The following describes the values you're adding to configure the channel:

	
The channel element represents configuration for the channel, placing the channel in the EPN.

	
The id attribute's value is a unique identifier for the channel in this EPN. (You will be adding another channel.)

	
The event-type attribute's value is the name of the event type that the channel is configured to convey. In this case, you're setting it to TradeEvent, the name of the event type you added earlier, whose implementation is the TradeEvent JavaBean you created. Note that the value you are adding here is the same as the type-name attribute value of the event-type element elsewhere in the assembly file.

After you have finished editing the channel configuration XML, save the assembly file.

	
Return to the EPN editor. You might need to click the EPN: TradeReport tab to display the EPN editor.

	
In the EPN editor, create a connection from the input adapter to the channel you added. To do this, click the StockTradeCSVAdapter icon and drag to the AdapterOutputChannel icon. This will create a connecting line between the two icons.

[image: Description of tradereport_csv_chan.png follows]

	
To make the EPN diagram tidy by having icons display sequentially from left to right, click the Layout EPN icon at the top right corner of the EPN editor.

	
Double-click the StockTradeCSVAdapter icon to display the adapter's configuration XML in the assembly file.

	
In the assembly file, notice that creating a connection between the adapter and the channel has added a listener element to the adapter XML stanza. That element's ref attribute value is set to the id attribute of channel element. This XML defines the connection that is graphically displayed in the EPN editor.

The resulting EPN assembly XML should look something like the following (aspects that connect components are shown in bold text):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
 xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
 xsi:schemaLocation="...">
<!-- Schema locations omitted for brevity. -->

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>com.oracle.cep.example.tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="StockTradeCSVAdapter" provider="csvgen">
 <wlevs:listener ref="AdapterOutputChannel" />
 <wlevs:instance-property name="port" value="9200" />
 <wlevs:instance-property name="eventTypeName"
 value="TradeEvent" />
 <wlevs:instance-property name="eventPropertyNames"
 value="symbol,price,percChange,volume,lastPrice" />
 </wlevs:adapter>

 <wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
 </wlevs:channel>

</beans>

	
Save TradeReport.context.xml and close the file.

In this step, you added a channel to convey events out of the input adapter. In the next step, Section 8.6, "Create a Listener to Receive and Report Events", you will add a stage for the events to go.

8.6 Create a Listener to Receive and Report Events

In this step, you will add a stage that will complete a simple event processing network so that you can test the application with event data. The stage will be a "listener" Java class that's designed to receive trade events passing through the EPN and report information about the trades.

The listener you're adding is a particular kind of Java class known in Oracle Event Processing as an event sink. An event sink is code that is able to receive events as they pass through an EPN. By intercepting events with an event sink, you can use the class's logic to find out what's inside the events and use that data while executing other logic in the class. In addition to writing event sinks, you can also write event sources, which are able to send events to stages downstream in the EPN.

So you can imagine, for example, a single Java class that intercepts events, executes code that changes the events' contents (or creates new events from them), then sends the resulting events along to the next stage. Such code could also initiate other processes (potentially in other applications) based on what the events look like.

Both event sinks and event sources implement particular Oracle Event Processing Java interfaces. For example, an event sink implements one of two interfaces, depending on whether the events it's receiving are part of a stream or a relation: com.bea.wlevs.ede.api.StreamSink or com.bea.wlevs.ede.api.RelationSink.

The difference between streams and relations isn't especially important in the application you are building here (your code won't rely on the difference). Still, it's worth a brief explanation because it's an important part of understanding how event processing with Oracle Event Processing works.

A stream is a sequence of events that's sequential with respect to time, with events with an earlier timestamp arriving before those with a later timestamp. In contrast, a relation is a set of events in which events in the set were chosen because they met certain criteria. Code executing on a relation can result in delete, insert, and update events.

As an illustration, consider a metaphor for a stock trade application that's more involved than the one you're building here. Imagine that the trade events your application receives are flowing through a pipe that you can't see into. The events emerge from the pipe in the order they were received -- an order that you care about because it matters which events occurred before which other events. To catch them, you put a bucket under the end of the pipe that's designed to catch fifteen seconds' worth of the trades at a time so that your code can see if a trade of one specific stock occurred within 15 seconds before a trade of another specific stock.

The pipe is a stream, where the sequence and adjacent quality are key characteristics. The bucket is a relation, where certain shared characteristics define what's in the bucket.

In the following sections, you'll create a Java class that implements the interface through which it listens for events, then configure that class as an event bean, making it part of the EPN.

Create the Listener Event Sink Class

In this section, you'll create a Java class capable of receiving events from a stream.

	
In the IDE, in the Project Explorer, right-click the src directory, then click New > Class.

	
In the New Java Class dialog, in the Package box, enter com.oracle.oep.example.tradereport.

	
In the Name box, enter TradeListener.

	
Next to the Interfaces box, click the Add button to select the interface your listener will need to implement to be an event sink.

	
In the Implemented Interfaces Selection dialog, in the Choose interfaces box, enter com.bea.wlevs.ede.api.StreamSink.

	
With StreamSink selected in the Matching items box, click OK.

	
In the New Java Class dialog, under Which method stubs would you like to create, ensure that the Inherited abstract methods check box is selected (the others should be cleared).

[image: Description of tradereport_newlistener.png follows]

	
Click Finish.

The TradeListener.java source code window will open to display the declaration for the TradeListener class. A declaration for the onInsertEvent method should also be present in the .java file. This method is required when implementing the StreamSink interface.

	
In the TradeListener class, edit the onInsertEvent method to match the following code:

@Override
public void onInsertEvent(Object event) throws EventRejectedException {

 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 System.out.println(symbolProp + ":" + volumeProp);
 }
}

This is the method that Oracle Event Processing will use to pass an event into your listener, where your code can do something with it. The changes you're making implement the method to do the following:

	
Ensure that the incoming event is an instance of your TradeEvent JavaBean. (Any others would be ignored.)

	
If the event is a TradeEvent, the code will simply print out the stock symbol and trade volume it contains.

	
Save and close the TradeListener.java file.

Configure the Listener Class as an Event Bean

In the preceding section, you implemented an event sink to create a class to listen for events of a particular type. In this section, you will add that listener to your EPN as an event bean that you can connect to other parts of the EPN.

An event bean is a way to add Java code to an EPN. Another way is a Spring bean. Though they offer differing management features, both bean models provide a means to configure an EPN stage whose implementation is Java code that you write. An event bean, which you're creating here, integrates more fully with Oracle Event Processing server features. A Spring bean is a good choice when you need to integrate with an existing Spring framework.

	
In the EPN editor, right-click an empty area, then click New > Event Bean.

	
Double-click the new eventBean icon to display its configuration code in the assemble XML file.

	
In the TradeReport.context.xml source code, locate the event-bean element and edit it so that it appears as follows:

 <wlevs:event-bean id="ListenerBean"
 class="com.oracle.oep.example.tradereport.TradeListener" />

With this code, you're configuring the event bean with the unique identifier, "ListenerBean", and an implementation class that's the class you created earlier.

	
Save the assembly XML file.

	
Return to the EPN editor to see that the design reflects your changes to the underlying XML, such as the new event bean name.

	
In the EPN editor, click the AdapterOutputChannel to select it.

	
Again click the AdapterOutputChannel and drag to the ListenerBean event bean icon. This creates a connection so that events can pass from the channel to the event bean.

	
Tidy the diagram by clicking the Layout EPN icon.

[image: Description of tradereport_eventbeanadded.png follows]

	
Double-click the AdapterOutputChannel to display its underlying XML.

Note that the channel XML stanza now includes a listener element whose ref attribute value is the same as the ID value for the event bean you added. (The word "listener" in both places here is for convenience only.)

 <wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
 <wlevs:listener ref="ListenerBean" />
 </wlevs:channel>

 <wlevs:event-bean id="ListenerBean"
 class="com.oracle.oep.example.tradereport.TradeListener" />

	
Save TradeReport.context.xml.

In this step, you added an event bean to listen for events traveling through the event processing network. In the next step, Section 8.7, "Set Up the Load Generator and Test", you will test the application you are building.

8.7 Set Up the Load Generator and Test

In this step, you will deploy your project on an instance of the Oracle Event Processing server, then use the load generator utility included with Oracle Event Processing to feed sample data to the application you are building.

The load generator utility installed with Oracle Event Processing provides a way for you to easily begin testing your project. It's specifically designed to read a CSV file and send rows in the file as event data to a port you specify in its configuration. In your project, a CSV adapter listening on that port receives the rows and converts their data into instances of the event type you defined for it. Through a properties file, you can configure certain aspects of the load generator, including the CSV file and target port to use, how long the load generator should run, how fast it sends event data, and so on.

In the following sections, you'll create an instance of the Oracle Event Processing server, configure it for deploying your project, then set up the load generator and test the project.

Create a Server on Which to Run the Project

In this section, you'll add an Oracle Event Processing server instance to the TradeReport project. Adding the server instance gives you a convenient way to use the IDE to start and stop the server, as well as redeploy the project whenever you make changes and want to test again.

The IDE is aware of the Oracle Event Processing server through the server runtime environment included when you created the project. (You might have needed to add the server runtime envirronment as a separate step.)

	
In the IDE, ensure that the Servers view is displayed. If it isn't visible, click Window > Show View > Servers to display it.

	
In the Servers view, right-click to display the context menu, click New, then click Server.

	
In the New Server dialog, under Select the server type, expand Oracle, then click Oracle Event Processing v11.1.

	
Leave the host name, server name, and runtime environment as is, then click Next.

	
Under New Oracle Event Processing v11.1 Server, ensure that the Local Server option is selected, then click Next.

	
In the next window, under New Oracle Event Processing v11.1 Server, leave the Domain Directory as is, then click Next.

	
Under Add and Remove, in the Available box, select TradeReport, then click the Add button between the Available and Configured boxes.

Moving the TradeReport project name into the Configured list specifies that the TradeReport project you're building should be configured to run on the server you're adding. This simple step makes it easy to deploy (and redeploy) the project to the server as you're debugging.

[image: Description of tradereport_newserv_conf.png follows]

	
Click Finish.

After you've added the server, it should be listed in the Servers view as Oracle Event Processing v11.1 at locahost (Stopped). Expand its entry to confirm that the TradeReport project is one of its configured projects.

Set Up the Test Data and Load Generator

You don't actually need to set up the test data and load generator -- they're set up when you install Oracle Event Processing. But since you'll be using them to debug your project, use the following steps to take a look at them.

	
In the text editor of your choice, open the StockData.csv file included with Oracle Event Processing. By default, you'll find this file at the following path:

ORACLE_HOME/Middleware/ocep_11.1/utils/load-generator/StockData.csv

Notice that the contents of the file are essentially more of what you saw in the example when you defined an event type for the data. Notice that, as with any CSV file, the rows are uniform in terms of the order of values they contain.

	
In the text editor, open the StockData.prop file.

This is the properties file that configures the work of the load generator. Two of its properties -- test.csvDataFile and test.port -- are required in order for the load generator to work. The other properties are technically optional, but you'll need to set one more in order to ensure that the load generator knows that your input is in CSV form. To debug the TradeReport project, you should have the following properties set:

	
test.csvDataFile -- The name of the CSV file that the load generator will read. The value here should be StockData.csv.

	
test.port -- The port number to which the load generator will send event data. This should be the port value you specified when you configured the CSV adapter instance, or 9200.

	
test.packetType -- The form that the load generator will be handling. This value should be CSV.

Debug the Project

Of course, you probably won't need to actually debug this project (you've been doing everything exactly as described here, right?). But setting a breakpoint and running the Oracle Event Processing server in debug mode will give you a chance to see how things are working.

	
In the IDE, open the TradeListener.java file you created in an earlier step. In the Project Explorer, the file should be visible by expanding TradeReport > src > com.oracle.cep.example.tradereport.

	
In TradeListener.java, set a breakpoint at the line with the following code:

System.out.println(symbolProp + ":" + volumeProp);

	
In the Servers view, select the server you added: Oracle Event Processing v11.1 at localhost

	
With the server selected, click the Start the server in debug mode button in the upper right corner of the Servers view.

You will likely need to wait for a few moments while the server starts, the IDE compiles your project, and then deploys the TradeReport project as an application to the running server. During this time, the Console view will display status messages related to the server's startup progress. The server is running in debug mode when the Console view's output ends with <Server STARTED> or <The application context for "TradeReport" was started successfully>.

	
In the Servers view, confirm that the project does not need to be republished to the server. If the TradeReport entry shows (Republish), then right-click the TradeReport entry and click Force Publish. After it has been successfully deployed, the entry will show (Synchronized).

If you see errors when you attempt to republish, you might need to clean and rebuild the project before continuing.

	
Open a command prompt and change directory to the load-generator directory installed with Oracle Event Processing. By default, this is at the following path:

ORACLE_HOME/Middleware/ocep_11.1/utils/load-generator

	
In the command prompt, type the following, then press Enter to start sending event data to your deployed project:

	
On Windows: runloadgen.cmd StockData.prop

	
On Linux: runloadgen.sh StockData.prop

	
Once the load generator begins sending event data, the IDE should switch to its debugging perspective (if you have the IDE set that way) and pause execution at the breakpoint you set in the Listener class.

	
When execution has paused at the breakpoint, look at the Variables view to examine the contents of the event that was received by the listener. By clicking each of the event's properties, you can view the values assigned to each from the CSV file.

	
Click the Resume button repeatedly to advance execution from event to event, noticing the values in each.

	
In the Console window, notice that the listener code is printing stock symbols and volumes from the events it receives.

[image: Description of tradereport_breakpoint.png follows]

	
In the Servers view, select the Oracle Event Processing server, then click the Stop the server button.

	
In the load generator command prompt window, press CTRL+C to stop the load generator.

That's it! You've created and tested a simple Oracle Event Processing application. In the last step, Section 8.8, "Add an Oracle CQL Processor to Filter Events", you'll make the application a little more interesting by adding some Oracle CQL code.

8.8 Add an Oracle CQL Processor to Filter Events

In this step, you'll add a processor to filter events based on certain criteria. A processor is a stage to which you add Oracle Continuous Query Language (Oracle CQL) code for querying incoming events. Processors and Oracle CQL queries represent much of the real power of event-oriented applications you build with Oracle Event Processing. With Oracle CQL, you can focus the application's logic on just those events you care about, executing sometimes complex logic as events arrive.

If you have used Structured Query Language (SQL), Oracle CQL will appear very familiar. In fact, Oracle CQL is essentially like SQL -- with the same keywords and syntax rules -- but with features added to support the unique aspects of streaming data. (If you aren't familiar with SQL, getting acquainted with it will go a long way toward helping you get the most out of Oracle CQL.)

Remember that event data (and the Oracle Event Processing events that result from it) is a stream of data that the EPN receives sequentially. To continue the comparison of SQL and Oracle CQL, an event may be said in one sense to correspond to a row in a database. However, an important difference is that with events, one event is always before or after another, time-wise, and the stream is potentially infinite and ever-changing. In a relational database, rows may be said to be a finite set where data is relatively static. With a relational database, data is waiting for your query to go and get it; with a stream of event data, data is always flowing into the EPN, where your query examines it as it arrives.

To make the most of the sequential, time-oriented quality of streaming data, CQL includes the ability to:

	
Specify a window of a particular time period, or range, from which events should be queried. This could be each five seconds worth of events, for example.

	
Specify a window of a particular number of events, called "rows," against which to query. This might be each sequence of 10 events.

	
Specify how often the query should execute against the stream by using the slide keyword. The query could "slide" every five seconds to a later five-second window of events.

	
Separate, or partition, an incoming stream into multiple streams based on particular characteristics of the events. You could have the query create new streams for each of specified stock symbols found in incoming trade events.

In addition, CQL supports common aspects of SQL you might be familiar with, including views and joins. For example, you can write CQL code that performs a join involving streaming event data and data in a relational database table or cache. CQL is extensible through cartridges, with included cartridges providing support for queries that incorporate functionality within Java classes, for calculations specific to spatial data, and to query JDBC data sources.

To get acquainted with processors and CQL, you'll keep the code you're adding here simple. You'll add a query that retrieves certain events fed from the AdapterOutputChannel. The query will be designed to retrieve only those trades whose volume is greater than 4000. Events in the query's results will be passed along to the listener.

The following is what the CQL code will look like:

Example 8-1 GetHighVolume Query Element with CQL Code

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

This query can be paraphrased as "for every event coming from the AdapterOutputChannel whose trade volume is more than 4000 shares, get the symbol and volume values." The select, from, and where statements should look familiar if you've used SQL. The now operator represents a window of time, where the window is essentially instantaneous -- it includes every event. Another window might have been [range 5], meaning "select from all the events that arrive within each five second period." (That might be useful if you care that certain trades have occurred within five seconds of one another.)

The output of this query will be a relation -- or set, rather than sequence -- that includes all of the events whose trade volume is greater than 4000. Because the window is [now], the set will always have no more than one member. A relation from a larger range might have multiple members in its set.

Add a GetHighVolume Processor and Query

	
In the IDE, in the EPN editor, right-click an empty area of the diagram, then click New > Processor.

	
In the New Processor dialog, in the Processor ID box, enter GetHighVolumeProcessor.

	
Select the Use an existing configuration file option.

Remember that you can create a different configuration file for each processor. That might be useful if you have a different person working on each one.

	
In the dropdown, leave config.xml selected, then click OK.

	
In the EPN editor, notice that a GetHighVolumeProcessor icon has been created.

	
Right-click the connector from the AdapterOutputChannel icon to the ListenerBean icon, then click Delete.

	
Click then AdapterOutputChannel icon, then drag from it to the GetHighVolumeProcessor icon.

Creating this connection makes the processor aware of the channel, After connecting the channel to the processor, you can refer to the channel by its ID value in CQL code.

	
Double-click the GetHighVolumeProcessor icon to open its configuration code in the config.xml file.

	
In the config.xml file, replace the query element with the following query XML:

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

The code window should look something like the following:

[image: Description of tradereport_cqlcode.png follows]

	
In the EPN editor, right-click an empty area of the diagram, then click New > Channel.

	
Right-click the icon for the new channel, then click Rename.

	
Type ProcessorOutputChannel and press Enter to rename the channel.

	
Click the GetHighVolumeProcessor icon, then drag to the new channel icon to connect the processor and channel.

	
Click the ProcessorOutputChannel icon, then drag to the ListenerBean icon to connect the channel to the listener.

	
Click the Layout EPN button to tidy the diagram so that the icons are in a row from left to right in order of sequence.

	
Double-click the ProcessorOutputChannel icon to open the channel's configuration in the assembly XML file.

	
In TradeReport.context.xml, replace the default channel configuration with the following XML. In particular, note that you're specifying that TradeEvent is the event type that passes through this channel.

<wlevs:channel id="ProcessorOutputChannel" event-type="TradeEvent">
 <wlevs:listener ref="ListenerBean" /></wlevs:channel>

	
Save all of the files in the project.

At this point, you should be ready to debug the application again.

Debug the Project

In this section, you'll debug once more to confirm that your CQL code is producing the results you intend.

	
In the IDE, open the TradeListener.java file you created in an earlier step. In the Project Explorer, the file should be visible by expanding TradeReport > src > com.oracle.cep.example.tradereport.

	
In TradeListener.java, confirm that you have a breakpoint at the line with the following code: System.out.println(symbolProp + ":" + volumeProp);

You might need to rebuild the project before you can successfully debug.

	
In the Servers view, select the server you added: Oracle Event Processing v11.1 at localhost

	
With the server selected, click the Start the server in debug mode button in the upper right corner of the Servers view.

You will likely need to wait for a few moments while the server starts, the IDE compiles your project, and then deploys the TradeReport project as an application to the running server. During this time, the Console view will display status messages related to the server's startup progress. When the Console view's output ends with <Server STARTED>, the server is running in debug mode.

	
In the Servers view, confirm that the project does not need to be republished to the server. If the TradeReport entry shows (Republish), then right-click the TradeReport entry and click Force Publish. After it has been successfully deployed, the entry will show (Synchronized).

	
If you don't have one already, open a command prompt and change directory to the load-generator directory installed with Oracle Event Processing. By default, this is at the following path:

ORACLE_HOME/Middleware/ocep_v11.1/utils/load-generator

	
In the command prompt, type the following, then press Enter to start sending event data to your deployed project:

	
On Windows: runloadgen.cmd StockData.prop

	
On Linux: runloadgen.sh StockData.prop

Once the load generator begins sending event data, the IDE should switch to its debugging perspective (if you have the IDE set that way) and pause execution at the breakpoint you set in the listener class.

	
When execution has paused at the breakpoint, look at the Variables view to examine the contents of the event that was received by the listener.

By clicking each of the event's properties, you can view the values assigned to each from the CSV file. Notice that the event contains only two values -- symbol and volume. That's because your query selects only those two values from events that pass through the processor.

	
Click the Resume button repeatedly to advance execution from event to event, noticing the values in each.

	
In the Console window, notice that the listener code is printing stock symbols and volumes from the events it receives.

If you have coded your query correctly, all of the volume values should be higher than 4000.

	
In the Servers view, select the Oracle Event Processing server, then click the Stop the server button.

	
In the load generator command prompt window, press CTRL+C to stop the load generator.

That's it -- you've finish this application. For a list of the things covered in this walkthrough, along with links to more information, see Section 8.9, "Summary: Simple Application Walkthrough".

8.9 Summary: Simple Application Walkthrough

This section summarizes the simple application walkthrough, which begins with Section 8.1, "Introduction to the Simple Application Walkthrough". In this walkthrough, you built a simple Oracle Event Processing application. You assembled an event processing network to receive events and report on those that met certain criteria.

For other introductory content, see Chapter 1, "Overview of Creating Oracle Event Processing Applications".

This walkthrough introduced the most basic aspects of developing Oracle Event Processing applications. Those concepts include:

	
IDE features designed to make building Oracle Event Processing applications easier.

To start learning more about the IDE, see Section 4.1, "Overview of Oracle Event Processing IDE for Eclipse".

	
Building an application as an event processing network (EPN).

For another introduction to EPNs, see Section 1.2, "How an Oracle Event Processing Application Works".

	
Designing event types that model events.

For more information, see Section 9.1, "Overview of Oracle Event Processing Event Types".

	
Using adapters to manage interactions with external components.

Oracle Event Processing includes adapters. You can also build your own. See the following sections for more:

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

	
Implementing a Java class that can receive or send events.

For more on writing event sinks and event sources, see Chapter 16, "Handling Events with Sources and Sinks"

	
Event streams and relations as models for handling events as they pass through an event processing network.

For an introduction to streams and relations, see Section 1.3, "Overview of Events, Streams and Relations".

	
Using Oracle Continuous Query Language (Oracle CQL) to find and filter events.

For more on Oracle CQL, see Chapter 17, "Querying an Event Stream with Oracle CQL"

9 Defining and Using Event Types

This chapter describes how to define the Oracle Event Processing event types you will need to carry event data through an event processing network, including how to implement and configure event types and how to access the event type repository.

Through the event types you define, your code has access to event data. As described in this chapter, you define event types that are based on one of several data types such as JavaBean classes you write. You add your event types to your application by configuring them as part of the event type repository. Although event types are typically added to the repository through configuration XML, you can also write code to access the repository programmatically.

This chapter includes the following sections:

	
Section 9.1, "Overview of Oracle Event Processing Event Types"

	
Section 9.2, "Designing Event Types"

	
Section 9.3, "Creating Event Types"

	
Section 9.4, "Accessing the Event Type Repository"

	
Section 9.5, "Sharing Event Types Between Application Bundles"

9.1 Overview of Oracle Event Processing Event Types

An event type is how you represent event data in an Oracle Event Processing application. An event is structured data related to something that occurred at a particular time. For example, if your application is designed to react to changes in a server room's environment, event data could include snapshot information collected by a device that monitors the environment. Or if your application pays attention to trends and patterns related to stock market trades, event data could be values corresponding to a trade, including what stock was traded, what the trade volume was, what the share price was, and so on.

Event data entering your application can arrive in any of a wide variety of forms. By creating an event type to represent the data inside the application, you create a predictable way for your application's logic to work with the data. Because event types are the transport vehicles for event data, defining them is an essential part of building an Oracle Event Processing application.

For a hands-on look at creating and using event types, take a look at Section 8.3, "Create an Event Type to Carry Event Data".

9.1.1 Where Event Type Instances are Used

Instances of event types you create carry event data through the event processing network (EPN) of your application. Keep in mind how you're going to be using the events in code to make better decisions about designing and implementing event types.

Event type instances are used by either the Oracle Event Processing server or your own application logic. Typically, the Oracle Event Processing server creates an instance of the type and binds the data to it. However, for more control over how the event type instance is created, you can create an event type builder. For more information, see Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class".

The following lists the primary places where an event type instance is used:

	
When incoming event data arrives from an external source, it is bound to an event type instance.

	
When an Oracle CQL processor executes a query and outputs a result, an instance of the event type is created for carrying result event data to a stage that is downstream in the EPN.

	
In your application's Java logic, such as Java code for handling events, you can create new event type instances and send them to a stage that is downstream in the EPN. Java code that creates events is known as an event source. For more information about implementing event sources, see Section 16.2.2, "Implementing an Event Source".

9.1.2 High-Level Process for Creating Event Types

At a high level, the process for creating an event type is a matter of identifying the event data that the event type will need to carry, then implement the type as one of the data types supported by Oracle Event Processing.

Here are high-level steps:

	
Design the event type. Essentially, this is a matter of identifying the set of event data that's relevant for your application, then choosing how that data should be represented by an event type. For more information, see Section 9.2, "Designing Event Types".

	
Create the event type. Once you know how data should be represented by the type, you can create the type in one of three ways: by implementing it as a JavaBean class, by configuring it as a tuple, or by configuring it as a java.util.Map. You might also want to implement an event type builder for more control over how the type is instantiated. For more information, see Section 9.3, "Creating Event Types".

9.2 Designing Event Types

When you design an event type, you map raw event data to the implementation options that Oracle Event Processing supports.

Designing an event includes the following tasks:

	
Identify the structure of event data that the event type will represent. This could be the structure of raw event data coming from an external source such as a monitor in a server room. It could also be a data structure required by a downstream stage or component to which your code will send instances of the type. For more information, see Section 9.2.1, "Identifying the Structure of Event Data".

	
Choose the data type that will be the basis of the event type you're creating. Your event type will be based on one of three data types supported by Oracle Event Processing: a JavaBean class, a tuple, or a java.util.Map instance. For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

	
Keeping in mind the planned uses for the event type, and being aware of potential constraints imposed by those uses. For more information, see Section 9.2.3, "Constraints on Design of Event Types".

Finally, note that when configuring event types in the application's EPN XML file, you can mix type usage. For more information, see Section 9.2.4, "Mixing Use of Event Type Data Types".

9.2.1 Identifying the Structure of Event Data

An early task (though typically a simple one) in defining an event processing network is clarifying the structure of event data, then defining the form in which that data will be handled inside the EPN. The event type you create will include a property for each piece of event data your application cares about. Each of those properties will have its own data type.

Before you can create an event type, use a sample of the event data to define the type's properties and their data types. For an example, consider a very simple set of event data coming from a stock trade. Represented as a row of comma-separated values, the trade event data might look as follows:

ORCL,14.1,6000

The following table illustrates how you could separate the event data into its distinct values, defining an event type property for each.

	Sample Data Value	Role	Type of Data	Event Type

Property Name
	
ORCL

	
stock symbol

	
character

	
symbol

	
14.1

	
share price

	
number

	
price

	
6000

	
volume of shares traded

	
number

	
volume

Regardless of how you create your event type, you'll need to have a sense of its properties and their data types. However, how you specify those property data types will vary depending on the data type on which you base your event type. For example, if you implement a JavaBean class as your event type, data types for the three values specified in the table would likely be as follows:

	Event Type

Property Name	Java Data Type
	
symbol

	
String

	
price

	
Double

	
volume

	
Integer

The data types would be different if you were creating your event type as a tuple or java.util.Map. For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

9.2.2 Choosing a Data Type for an Event Type

Event types you create are based on one of three data types supported by Oracle Event Processing: a JavaBean class, a tuple, or a java.util.Map.

Each data type has its own benefits and limitations, but the best practice is to create your event type as a JavaBean class, implementing event type properties as accessor methods. With a JavaBean, you will have greater flexibility to deal with event types as part of your application logic, as well as simplified integration with existing systems. With an event type implemented as a JavaBean class, you can also (if you like) closely control event type instantiation by implementing an event type builder class.

When you create your event type as a tuple or java.util.Map, you do so by defining the event type in the EPN assembly file, specifying its properties declaratively. Unless you explicitly declare that a java.util.Map should be used, Oracle Event Processing will use the tuple type as the default.

For the benefits and limitations of each supported data type, see Table 9-1, "Data Types for Event Types":

Table 9-1 Data Types for Event Types

	Data Type	Description	Benefits and Limitations
	
JavaBean

	
A Java class written to JavaBean conventions. In addition to being used by logic you write, the type's accessor ("get" and "set") methods will be used by the Oracle Event Processing server and CQL processor to retrieve and set event property values.

For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

	
Benefits: This type is the best practice because it provides the greatest flexibility and ease of use for application logic that handles events. You access property values directly through accessor methods. A JavaBean class is more likely to be useful when integrating your Oracle Event Processing application with other systems. For control over how the type is instantiated, you can implement an event type builder class.

Limitations: Requires writing a JavaBean class, rather than simply declaring the event type in a configuration file. Oracle CQL does not support JavaBean properties in GROUP BY, PARTITION BY, and ORDER BY, although you can work around this by using an Oracle CQL view.

	
Tuple

	
A structure that you create and register declaratively in the EPN assembly file.

For more information, see Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple".

	
Benefits: Requires no Java programming to create the event type. An event type is created by declaring it in the EPN assembly file. Useful for quick prototyping.

Limitations: Using instances of this type in Java application logic requires programmatically accessing the event type repository to get the instance's property values. A tuple is also unlikely to be useful when integrating the Oracle Event Processing with other systems.

	
java.util.Map

	
Based on an instance of java.util.Map. You don't implement or extend the Map interface. Rather, you specify that the interface should be used when configuring the event type in the EPN assembly file. If you write Java code to access the type instance, you treat it as a Map instance.

For more information, see Section 9.3.3, "Creating an Oracle Event Processing Event Type as a java.util.Map".

	
Benefits: Requires no Java programming to create the type. An event type is created by declaring it in the EPN assembly file. Useful for quick prototyping.

Limitations: Does not perform as well as other types.

For more detailed information on how Oracle CQL handles and supports various data types, see:

	
"Datatypes" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

9.2.3 Constraints on Design of Event Types

Depending on how you plan to use an event type, you might need to keep in mind certain constraints. For example, you might need to limit the data types of its properties or how you set values of certain attributes when configuring the event type.

The following sections describe areas of constraints on event type design:

	
Section 9.2.3.1, "Constraints on Event Types for Use With the csvgen Adapter"

	
Section 9.2.3.2, "Constraints on Event Types for Use With a Database Table Source"

9.2.3.1 Constraints on Event Types for Use With the csvgen Adapter

When you declaratively specify the properties of an event type for use with the csvgen adapter, you may only use the data types that Table 9-2 describes.

Table 9-2 csvgen Adapter Types

	Type	Usage
	
char

	
Single or multiple character values. Use for both char and java.lang.String values.

Optionally, you may use the length attribute to specify the maximum length of the char value as Example 9-6 shows for the property with name id. The default length is 256 characters. If you need more than 256 characters you should specify an adequate length.

	
int

	
Numeric values in the range that java.lang.Integer specifies.

	
float

	
Numeric values in the range that java.lang.Float specifies.

	
long

	
Numeric values in the range that java.lang.Long specifies.

	
double

	
Numeric values in the range that java.lang.Double specifies.

For more information, see:

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

9.2.3.2 Constraints on Event Types for Use With a Database Table Source

You can use a relational database table as a source of event data, binding data from the table to your event type instance at runtime. When your event data source is a database table, you must follow the guidelines represented by the following tables.

When an event type will receive data from a database table, a property configured for the type will each receive data from a particular column in the database. When configuring the event type, note that its property child elements have attributes that have particular meanings and value constraints, as described in Table 9-3, "EPN Assembly File event-type Element Property Attributes".

Table 9-3 EPN Assembly File event-type Element Property Attributes

	Attribute	Description
	
name

	
The name of the table column you want to access as specified in the SQL create table statement. You do not need to specify all columns.

	
type

	
The Oracle Event Processing Java type from Table 9-4 that corresponds to the column's SQL data type.

	
length

	
The column size as specified in the SQL create table statement.

When you specify the properties of an event type for use with a relational database table, you must observe the additional JDBC type restrictions listed in Table 9-4, "SQL Column Types and Oracle Event Processing Type Equivalents".

Table 9-4 SQL Column Types and Oracle Event Processing Type Equivalents

	SQL Type	Oracle Event Processing Java Type	com.bea.wlevs.ede.api.Type	Description
	
ARRAY

	
[Ljava.lang.Object

	
	
Array, of depth 1, of java.lang.Object.

	
BIGINT

	
java.math.BigInteger

	
bigint

	
An instance of java.math.BigInteger.

	
BINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
BIT

	
java.lang.Boolean

	
boolean

	
An instance of java.lang.Boolean.

	
BLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
BOOLEAN

	
java.lang.Boolean

	
boolean

	
An instance of java.lang.Boolean.

	
CHAR

	
java.lang.Character

	
char

	
An instance of java.lang.Character.

	
CLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
DATE

	
java.sql.Date

	
timestamp

	
An instance of java.sql.Date.

	
DECIMAL

	
java.math.BigDecimal

	
	
An instance of java.math.BigDecimal.

	
BINARY_DOUBLEFoot 1 or DOUBLEFoot 2

	
java.lang.Double

	
double

	
An instance of java.lang.Double

	
BINARY_FLOATFootref 1 or FLOATFootref 2

	
java.lang.Double

	
float

	
An instance of java.lang.Double

	
INTEGER

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
JAVA_OBJECT

	
java.lang.Object

	
object

	
An instance of java.lang.Object.

	
LONGNVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
LONGVARBINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
LONGVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
NCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
NCLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
NUMERIC

	
java.math.BigDecimal

	
	
An instance of java.math.BigDecimal.

	
NVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
OTHER

	
java.lang.Object

	
object

	
An instance of java.lang.Object.

	
REAL

	
java.lang.Float

	
float

	
An instance of java.lang.Float

	
SMALLINT

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
SQLXML

	
xmltype

	
xmltype

	
For more information on processing XMLTYPE data in Oracle CQL, see "SQL/XML (SQLX)" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
TIME

	
java.sql.Time

	
	
An instance of java.sql.Time.

	
TIMESTAMP

	
java.sql.Timestamp

	
timestamp

	
An instance of java.sql.Timestamp.

	
TINYINT

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
VARBINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
VARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

Footnote 1 Oracle SQL.

Footnote 2 Non-Oracle SQL.

For more information, see:

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

9.2.4 Mixing Use of Event Type Data Types

When defining an event type in the EPN assembly file, you can use a JavaBean-based event type as another event type's property data type.

Example 9-1 shows a tuple event type Student that defines its address property as JavaBean event type Address.

Example 9-1 Event Type Repository

<event-type-repository>
 <event-type name="Student">
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </event-type>

 <event-type name="Address">
 <class-name>test.Address</class-name>
 </event-type>
<event-type-repository>

9.3 Creating Event Types

Event types define the event properties that provide access to event data within Oracle Event Processing applications. You then use these event types in the adapter and Java code, as well as in the Oracle CQL rules.

When you create an event type, you choose one of the three supported data types as a base for the type you're creating. The best practice is that you can create the type as a JavaBean class, writing a little Java code to handle event data in properties. You can also create the type declaratively as a tuple or java.util.Map.

Before you create types, you might want to see Section 9.2, "Designing Event Types" for design considerations.

This section describes:

	
Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean"

	
Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple"

	
Section 9.3.3, "Creating an Oracle Event Processing Event Type as a java.util.Map"

9.3.1 Creating an Oracle Event Processing Event Type as a JavaBean

Creating an event type as a JavaBean gives you the greatest level of flexibility when using instances of the type in your application logic. As a result, using a JavaBean class is the best practice for creating an event type.

	
Note:

Oracle CQL does not support expressions in GROUP BY, PARTITION BY, and ORDER BY. As a result, these do not support Java properties and will fail. When those features are needed, use Oracle CQL views as a workaround.

Part of the flexibility in using a JavaBean event type comes from the two different ways to have the type instantiated: by the server or by an event type builder class that you provide. By providing an event type builder class as an instance factory, you can create the instance yourself, controlling how they are created, including how event data values are bound to JavaBean properties. For more information, see Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class".

When creating an event type as a JavaBean class, use the following guidelines to ensure the best integration with the Oracle Event Processing system:

	
Create an empty-argument public constructor with which the Oracle Event Processing server can instantiate the class.

	
For each event property, implement public accessors (get and set methods) following JavaBean conventions. These will be used by the server to access event property values. When you define an event type as a JavaBean, you may use any Java type for its properties.

If you're unfamiliar with JavaBean conventions, see the JavaBeans Tutorial at http://docs.oracle.com/javase/tutorial/javabeans/ for additional details.

	
Implement the hashCode and equals methods. This optimizes the class for use by the Oracle Event Processing server, which sometimes uses a hash index whose composite key is created from the event type instance hash codes.

If you're using the Eclipse IDE, you can easily implement hashCode and equals methods through the Source context menu for a class after you have added its accessors.

	
Make the class serializable if you intend to cache events in Oracle Coherence.

This topic describes:

	
Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor"

	
Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually"

9.3.1.1 How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor

This procedure describes how to create and register an Oracle Event Processing event type as a JavaBean using the Oracle Event Processing IDE for Eclipse event type repository editor. For more information about the Oracle Event Processing IDE for Eclipse, see Example 4-0, "Overview of the Oracle Event Processing IDE for Eclipse".

Alternatively, you can create and register your event type as a JavaBean manually (see Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually").

To create an Oracle Event Processing event type as a Java Bean using the event type repository editor:

	
Create a JavaBean class to represent your event type.

Be sure to follow the guidelines described in Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

Example 9-2 shows the MarketEvent which is implemented by the com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9-2 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {
 private final Long timestamp;
 private final String symbol;
 private final Double price;
 private final Long volume;
 private final Long latencyTimestamp;

 public MarketEvent() {}

 public Double getPrice() {
 return this.price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public String getSymbol() {
 return this.symbol;
 }
 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public Long getTimestamp() {
 return this.timestamp;
 }
 public void setTimestamp(Long timestamp) {
 this.timestamp = timestamp;
 }

 public Long getLatencyTimestamp() {
 return this.latencyTimestamp;
 }
 public void setLatencyTimestamp(Long latencyTimestamp) {
 this.latencyTimestamp = latencyTimestamp;
 }

 public Long getVolume() {
 return this.volume;
 }
 public void setVolume(Long volume) {
 this.volume = volume;
 }

 // Implementation for hashCode and equals methods.
}

	
Compile the JavaBean that represents your event type.

	
In the IDE, open the EPN in the EPN editor.

For more information, see Section 7.1, "Opening the EPN Editor".

	
Click the Event Types tab.

	
Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name newEvent as Figure 9-1 shows.

Figure 9-1 Event Type Repository Editor - JavaBean Event

[image: Description of Figure 9-1 follows]

	
In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9-1 shows.

	
Enter a name for this event in the Type name field.

	
Click Properties defined in Java bean.

	
Enter the fully qualified class name of your JavaBean class in the Class field.

For example com.bea.wlevs.example.algotrading.event.MarketEvent.

	
Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

	
To view the corresponding event type definition in the EPN assembly file, double-click the event type in the Event Type Definitions area.

	
To delete this event, select the event type in the Event Type Definitions area and click Delete Event Type (red x).

9.3.1.2 How to Create an Oracle Event Processing Event Type as a JavaBean Manually

This procedure describes how to create and register an Oracle Event Processing event type as a JavaBean manually.

Alternatively, you can create and register your event type as a JavaBean using the Oracle Event Processing IDE for Eclipse event type repository editor (see Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor").

To create an Oracle Event Processing event type as a Java bean manually:

	
Create a JavaBean class to represent your event type.

Follow standard JavaBean programming guidelines. See the JavaBeans Tutorial at http://java.sun.com/docs/books/tutorial/javabeans/ for additional details.

When you design your event, you must restrict your design to the even data types that Section 9.2.4, "Mixing Use of Event Type Data Types" describes.

Example 9-3 shows the MarketEvent which is implemented by the com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9-3 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {
 private final Long timestamp;
 private final String symbol;
 private final Double price;
 private final Long volume;
 private final Long latencyTimestamp;

 public MarketEvent() {}

 public Double getPrice() {
 return this.price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public String getSymbol() {
 return this.symbol;
 }
 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public Long getTimestamp() {
 return this.timestamp;
 }
 public void setTimestamp(Long timestamp) {
 this.timestamp = timestamp;
 }

 public Long getLatencyTimestamp() {
 return this.latencyTimestamp;
 }
 public void setLatencyTimestamp(Long latencyTimestamp) {
 this.latencyTimestamp = latencyTimestamp;
 }

 public Long getVolume() {
 return this.volume;
 }
 public void setVolume(Long volume) {
 this.volume = volume;
 }

 // Implementation for hashCode and equals methods.
}

	
Compile the JavaBean that represents your event type.

	
Register your JavaBean event type in the Oracle Event Processing event type repository:

	
To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-4 shows.

Example 9-4 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="MarketEvent">
 <wlevs:class>
 com.bea.wlevs.example.algotrading.event.MarketEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

	
To register programmatically, use the EventTypeRepository class as Example 9-5 shows.

Example 9-5 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
rep.registerEventType(
 "MarketEvent",
 com.bea.wlevs.example.algotrading.event.MarketEvent.getClass()
);

For more information, see Section 9.4, "Accessing the Event Type Repository".

9.3.1.3 Using JavaBean Event Type Instances in Java Code

Reference the event types as standard JavaBeans in the Java code of the adapters and business logic in your application.

The following code implements the onEvent method from an event sink class. For more information on event sinks, see Section 16.2.1, "Implementing an Event Sink".

public void onInsertEvent(Object event)
 throws EventRejectedException {
 if (event instanceof MarketEvent){
 MarketEvent marketEvent = (MarketEvent) event;
 System.out.println("Price: " + marketEvent.getPrice());
 }
}

9.3.1.4 Using JavaBean Event Type Instances in Oracle CQL Code

The following Oracle CQL rule shows how you can reference the MarketEvent in a SELECT statement. It assumes an upstream channel called marketEventChannel whose event type is MarketEvent.

<query id="helloworldRule">
 <![CDATA[SELECT MarketEvent.price FROM marketEventChannel [NOW]]]>
</query>

Also, with property data types implemented as JavaBeans, Oracle CQL code can get values within those properties by using standard JavaBean-style property access.

For example, the following configuration snippet declares a StudentType event type that is implemented as a JavaBean class. The school.Student class is a JavaBean with an address property that is itself an Address JavaBean class. The following query suggests how you might access values of the Address object underlying the address property. This query selects student addresses whose postal code begins with "97".

<query id="studentAddresses">
 SELECT
 student.address
 FROM
 StudentType as student
 WHERE
 student.address.postalCode LIKE '^97'
</query>

9.3.1.5 Controlling Event Type Instantiation with an Event Type Builder Class

You can create an event type builder to have more control over how event type instances are created. For example, using an event type builder you can ensure that the properties of a configured event are correctly bound to the properties of an event type class, such as one you have implemented as a JavaBean. You would need an event type builder in a case, for example, where event property names assumed in CQL code are different from the names of properties declared in the class.

For example, assume the event type has a firstname property, but the CQL rule that executes on the event type assumes the property is called fname. Assume also that you cannot change either the event type class (because you are using a shared event class from another bundle, for example) or the CQL rule to make them compatible with each other. In this case you can use an event type builder factory to change the way the event type instance is created so that the property is named fname rather than firstname.

At runtime, an event type builder class receives property values from the Oracle Event Processing server and uses those values to create an instance of the event type class you created. Your event type builder then returns the instance to the server. In this way, your builder class is in effect an intermediary, instantiating event types in cases where the server is unable to determine how to map configured properties to event type properties.

Creating and using an event type builder involves implementing the builder class and configuring a JavaBean event type to use the builder, as described in the following sections:

	
Section 9.3.1.5.1, "Implementing an Event Type Builder Class"

	
Section 9.3.1.5.2, "Configuring an Event Type that Uses an Event Type Builder"

9.3.1.5.1 Implementing an Event Type Builder Class

When you program the event type builder factory, you must implement the EventBuilder.Factory inner interface of the com.bea.wlevs.ede.api.EventBuilder interface; see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for details about the methods you must implement, such as createBuilder and createEvent.

The following example of an event type builder factory class is taken from the FX sample:

package com.bea.wlevs.example.fx;

import java.util.HashMap;
import java.util.Map;
import com.bea.wlevs.ede.api.EventBuilder;
import com.bea.wlevs.example.fx.OutputBean.ForeignExchangeEvent;

public class ForeignExchangeBuilderFactory implements EventBuilder.Factory {

 // Called by the server to get an instance of this builder.
 public EventBuilder createBuilder() {
 return new ForeignExchangeBuilder();
 }

 // Inner interface implementation that is the builder.
 static class ForeignExchangeBuilder implements EventBuilder {

 // A Map instance to hold properties until the event type is instantiated.
 private Map<String,Object> values = new HashMap<String,Object>(10);

 // Called by the server to put an event type property. Values from the map
 // will be used to instantiate the event type.
 public void put(String property, Object value) throws IllegalStateException {
 values.put(property, value);
 }

 // Called by the server to create the event type instance once property
 // values have been received.
 public Object createEvent() {
 return new ForeignExchangeEvent(
 (String) values.get("symbol"),
 (Double) values.get("price"),
 (String) values.get("fromRate"),
 (String) values.get("toRate"));
 }
 }
}

9.3.1.5.2 Configuring an Event Type that Uses an Event Type Builder

When you register the event type in the EPN assembly file, use the <wlevs:property name="builderFactory"> child element of the wlevs:event-type element to specify the name of the event type builder class. The hard-coded builderFactory value of the name attribute alerts Oracle Event Processing that it should use the specified factory class, rather than its own default factory, when creating instances of this event. For example, in the FX example, the builder factory is registered as shown in bold:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:class>com.bea.wlevs.example.fx.OutputBean$ForeignExchangeEvent</wlevs:class>
 <wlevs:property name="builderFactory">
 <bean id="builderFactory"
 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
 </wlevs:property>
 </wlevs:event-type>
</wlevs:event-type-repository>

9.3.2 Creating an Oracle Event Processing Event Type as a Tuple

You can create an Oracle Event Processing event type as a tuple simply by adding the type's configuration XML to the EPN XML file. As a result, a tuple is the easiest way to create an event type, and so can be useful for quick prototyping. However, both the tuple and java.util.Map data types provide less flexibility than creating an event type as a JavaBean class.

With a tuple-based event type, your Java code using instances of the type must always set and get its property values using EventTypeRepository APIs.

When you design your event, you must restrict design of the type's properties to the data types described in Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

Before you get started, consider reading the event type design recommendations in Section 9.2, "Designing Event Types".

This topic describes:

	
Section 9.3.2.2, "How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor"

	
Section 9.3.2.3, "How to Create an Oracle Event Processing Event Type as a Tuple Manually"

9.3.2.1 Types for Properties in Tuple-Based Event Types

When you specify the properties of the event type declaratively in the EPN assembly file as a tuple, you may use any of the types specified in com.bea.wlevs.ede.api.Type.

For more information on supported property types, see Section C.23, "wlevs:property".

Example 9-6 shows the use of different types:

Example 9-6 Specifying com.bea.welvs.ede.api.Type Data Types for Tuple Event Type Properties

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="id" type="char" length="1000" />
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="double" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

For more information, see Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple".

9.3.2.2 How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor

This procedure describes how to create and register an Oracle Event Processing event type as a tuple using the Oracle Event Processing IDE for Eclipse event type repository editor. For more information about the Oracle Event Processing IDE for Eclipse, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse".

You can instead create and register your event type as a tuple manually (see Section 9.3.2.3, "How to Create an Oracle Event Processing Event Type as a Tuple Manually").

To create an Oracle Event Processing event type as a tuple using the event type repository editor:

	
Decide on the properties your event type requires.

When you design your event, you must restrict your design to the even data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
In the IDE, open the EPN in the EPN editor.

For more information, see Section 7.1, "Opening the EPN Editor".

	
Click the Event Type tab.

	
Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name newEvent as Figure 9-2 shows.

Figure 9-2 Event Type Repository Editor - Tuple Event

[image: Description of Figure 9-2 follows]

	
In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9-2 shows.

	
Enter a name for this event in the Type name field.

	
Click Properties defined declaratively.

	
Add one or more event properties:

	
Click Add Event Property (green plus sign).

A new row is added to the Event Type Details table.

	
Click in the Name column of this row and enter a property name.

	
Click in the Type column of this row and select a data type from the pull down menu.

When you design your event, you must restrict your design to the even data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
For char data type properties only, click in the 'char' Length column of this row and enter a value for the maximum length of this char property.

Optionally, you may used the length attribute to specify the maximum length of the char value. The default length is 256 characters. The maximum length is java.lang.Integer.MAX_VALUE. If you need more than 256 characters you should specify an adequate length.

	
Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

	
To view the corresponding event type definition in the EPN assembly file, double-click the event type in the Event Type Definitions area.

	
To delete this event, select the event type in the Event Type Definitions area and click Delete Event Type (red x).

9.3.2.3 How to Create an Oracle Event Processing Event Type as a Tuple Manually

This procedure describes how to create and register an Oracle Event Processing event type declaratively in the EPN assembly file as a tuple.

Note, however, that the best practice for creating event types is to create them as JavaBean classes. For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

For more information on valid data types, see Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

To create an Oracle Event Processing event type as a tuple:

	
Decide on the properties your event type requires.

When you design your event, you must restrict your design to the data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
Register your event type declaratively in the Oracle Event Processing event type repository:

To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-7 shows.

Example 9-7 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="CrossRateEvent">
 <wlevs:properties>
 <wlevs:property name="price" type="double"/>
 <wlevs:property name="fromRate" type="char"/>
 <wlevs:property name="toRate" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of CrossRateEvent for you. The CrossRateEvent has three properties: price, fromRate, and toRate.

For more information on the valid values of the type attribute, see Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

For reference information on the configuration XML, see Section C.13, "wlevs:event-type", Section C.22, "wlevs:properties", and Section C.23, "wlevs:property"

9.3.2.4 Using a Tuple Event Type Instance in Java Code

When using a tuple-based event type in Java code, you must use a com.bea.wlevs.ede.api.EventTypeRepository instance to get the names of the type's properties before getting their values. (For information on getting an EventTypeRepository instance, see Section 9.4, "Accessing the Event Type Repository".)

The following example uses the repository in a class acting as an event sink.

@Service
public void setEventTypeRepository(EventTypeRepository etr) {
 etr_ = etr;
}
...
// Called by the server to pass in the event type instance.
public void onInsertEvent(Object event) throws EventRejectedException {

 // Get the event type for the current event instance
 EventType eventType = etr_.getEventType(event);

 // Get the event type name
 String eventTypeName = eventType.getTypeName();

 // Get the event property names
 String[] propNames = eventType.getPropertyNames();

 // See if property you're looking for is present
 if(eventType.isProperty("fromRate")) {
 // Get property value
 Object propValue =
 eventType.getProperty("fromRate").getValue(event);
 }
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.
}

9.3.2.5 Using a Tuple Event Type Instance in Oracle CQL Code

The following Oracle CQL rule shows how you can reference the CrossRateEvent in a SELECT statement:

<query id="FindCrossRatesRule"><![CDATA[
 select ((a.price * b.price) + 0.05) as internalPrice,
 a.fromRate as crossRate1,
 b.toRate as crossRate2
 from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
 where
 NOT (a.price IS NULL)
 and
 NOT (b.price IS NULL)
 and
 a.toRate = b.fromRate
]]></query>

9.3.3 Creating an Oracle Event Processing Event Type as a java.util.Map

You can create and register an Oracle Event Processing event type as a java.util.Map.

You can create an Oracle Event Processing event type as a java.util.Map simply by adding the type's configuration XML to the EPN XML file. As a result, this is an easy way to create an event type. However, both the tuple and java.util.Map data types provide less flexibility than creating an event type as a JavaBean class.

Creating and using an event type as a Map is something of a hybrid of the processes for the tuple type and a JavaBean class. As with a tuple-based event type, you create the Map-based type declaratively, by configuring it in the EPN XML file. And as with a JavaBean-based event type, you needn't use com.bea.wlevs.ede.api.EventTypeRepository APIs to access instance property values.

This topic describes:

	
Section 9.3.3.2, "How to Create an Oracle Event Processing Event Type as a java.util.Map"

9.3.3.1 Types for Properties in java.util.Map-Based Event Types

When you specify the event type properties declaratively in the EPN assembly file as a java.util.Map, you may use any Java type for its properties. However, you specify the "type" of the event properties as either:

	
The fully qualified name of a Java class that must conform to the same rules as Class.forName() and must be available in the application's class loader.

	
A Java primitive (for example, int or float).

You may specify an array by appending the characters [] to the event type name.

Example 9-8 shows how to use these types:

Example 9-8 Specifying Java Data Types for java.util.Map Event Type Properties

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property>
 <entry key="name" value="java.lang.String"/>
 <entry key="employeeId" value="java.lang.Integer[]"/>
 <entry key="salary" value="float"/>
 <entry key="projectIds" value="short[]"/>
 </wlevs:property>
 <wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

For more information, see Section 9.3.3.2, "How to Create an Oracle Event Processing Event Type as a java.util.Map".

9.3.3.2 How to Create an Oracle Event Processing Event Type as a java.util.Map

This procedure describes how to create and register an Oracle Event Processing event type as a java.util.Map. Oracle recommends that you create an Oracle Event Processing event type as a JavaBean (see Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually").

For more information on valid event type data types, see Section 9.3.3.1, "Types for Properties in java.util.Map-Based Event Types".

To create an Oracle Event Processing event type as a java.util.Map:

	
Decide on the properties your event type requires.

	
Register your event type in the Oracle Event Processing event type repository:

	
To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-9 shows.

Example 9-9 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property name="name" value="java.lang.String"/>
 <wlevs:property name="age" value="java.lang.Integer"/>
 <wlevs:property name="address" value="java.lang.String"/>
 </wlevs:properties >
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of AnotherEvent for you. The AnotherEvent has three properties: name, age, and address.

	
To register programmatically, use the EventTypeRepository class as Example 9-10 shows.

Example 9-10 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
java.util.Map map = new Map({name, java.lang.String},
 {age, java.lang.Integer}, {address, java.lang.String});
rep.registerEventType("AnotherEvent", map);

For more information, see Section 9.4, "Accessing the Event Type Repository".

9.3.3.3 Using a Map Event Type Instance in Java Code

When using a Map-based event type instance in Java code, you access its properties as you would with any java.util.Map instance.

public void onInsertEvent(Object event)
 throws EventRejectedException {

 java.util.Map anEvent = (java.util.Map) event;
 System.out.println("Age: " + anEvent.get("age"));
}

9.3.3.4 Using a Map Event Type Instance in Oracle CQL Code

Access the event types from Oracle CQL and EPL rules:

The following Oracle CQL rule shows how you can reference the MarketEvent in a SELECT statement:

<query id="helloworldRule">
 <![CDATA[select age from eventChannel [now]]]>
</query>

9.4 Accessing the Event Type Repository

The Oracle Event Processing event type repository keeps track of the event types defined for your application. When you create an event type, you make it available for use in the application by configuring it in the event type repository. In some cases, you might need to write code that explicitly accesses the repository.

For example, when your event type is created as a tuple, Java logic that accesses instance of the type will need to first retrieve the type definition using the repository API, then use the API to access the instance property values.

The EventTypeRepository is a singleton OSGi service. Because it is a singleton, you only need to specify its interface name to identify it. You can get a service from OSGi in any of the following ways:

	
Section 9.4.1, "Using the EPN Assembly File"

	
Section 9.4.2, "Using the Spring-DM @ServiceReference Annotation"

	
Section 9.4.3, "Using the Oracle Event Processing @Service Annotation"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

9.4.1 Using the EPN Assembly File

You can access the EventTypeRepository by specifying an osgi:reference in the EPN assembly file as Example 9-11 shows.

Example 9-11 EPN Assembly File With OSGi Reference to EventTypeRepository

<osgi:reference id="etr" interface="com.bea.wlevs.ede.api.EventTypeRepository" />
<bean id="outputBean" class="com.acme.MyBean" >
 <property name="eventTypeRepository" ref="etr" />
</bean>

Then, in the MyBean class, you can access the EventTypeRepository using the eventTypeRepository property initialized by Spring as Example 9-12 shows.

Example 9-12 Accessing the EventTypeRepository in the MyBean Implementation

package com.acme;

import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.EventType;

public class MyBean {
 private EventTypeRepository eventTypeRepository;

 public void setEventTypeRepository(EventTypeRepository eventTypeRepository) {
 this.eventTypeRepository = eventTypeRepository;
 }

 public void onInsertEvent(Object event) throws EventRejectedException {
 // get the event type for the current event instance
 EventType eventType = eventTypeRepository.getEventType(event);
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.
 }
}

9.4.2 Using the Spring-DM @ServiceReference Annotation

You can access the EventTypeRepository by using the Spring-DM @ServiceReference annotation to initialize a property in your Java source as Example 9-13 shows.

Example 9-13 Java Source File Using the @ServiceReference Annotation

import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@ServiceReference
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

9.4.3 Using the Oracle Event Processing @Service Annotation

You can access the EventTypeRepository by using the Oracle Event Processing @Service annotation to initialize a property in your Java source as Example 9-14 shows.

Example 9-14 Java Source File Using the @Service Annotation

import com.bea.wlevs.util.Service;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@Service
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

For more information, see Section I.5, "com.bea.wlevs.util.Service".

9.5 Sharing Event Types Between Application Bundles

Each Oracle Event Processing application gets its own Java classloader and loads application classes using that classloader. This means that, by default, one application cannot access the classes in another application. However, because the event type repository is a singleton service, you can configure the repository in one bundle and then explicitly export the event type classes so that applications in separate bundles (deployed to the same Oracle Event Processing server) can use these shared event types.

The event type names in this case are scoped to the entire Oracle Event Processing server instance. This means that you will get an exception if you try to create an event type that has the same name as an event type that has been shared from another bundle, but the event type classes are different.

To share event type classes, add their package name to the Export-Package header of the MANIFEST.MF file of the bundle that contains the event type repository you want to share.

Be sure you deploy the bundle that contains the event type repository before all bundles that contain applications that use the shared event types, or you will get a deployment exception.

For more information, see:

	
Section 9.2.4, "Mixing Use of Event Type Data Types"

	
Section 23.2.3, "Assembling Applications With Foreign Stages"

	
"Oracle Java Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

10 Connecting EPN Stages Using Channels

This chapter describes how to configure Oracle Event Processing channels, event conduits through an event processing network.

This chapter includes the following sections:

	
Section 10.1, "Overview of Channel Configuration"

	
Section 10.2, "Configuring a Channel"

	
Section 10.3, "Example Channel Configuration Files"

10.1 Overview of Channel Configuration

An Oracle Event Processing application contains one or more channel components. A channel represents the physical conduit through which events flow between other types of components, such as between adapters and processors, and between processors and event beans (business logic POJOs).

You may use a channel with both streams and relations. For more information, see Section 10.1.2, "Channels Representing Streams and Relations".

When you create a channel in your Event Processing Network (EPN), it has a default configuration. For complete details, see Section C.10, "wlevs:channel".

The default channel configuration is typically adequate for most applications.

However, if you want to change this configuration, you must create a channel element in a component configuration file. In this channel element, you can specify channel configuration that overrides the defaults.

The component configuration file channel element's name element must match the EPN assembly file channel element's id attribute. For example, given the EPN assembly file channel element shown in Example 10-1, the corresponding component configuration file channel element is shown in Example 10-2.

Example 10-1 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>

Example 10-2 Component Configuration File Channel Name: priceStream

<channel>
 <name>priceStream</name>
 <max-size>10000</max-size>
 <max-threads>4</max-threads>
</channel>

You can create a channel element in any of the following component configuration files:

	
The default Oracle Event Processing application configuration file (by default, META-INF/wlevs/config.xml).

	
A separate configuration file.

If your application has more than one channel, you can create a channel element for each of them in the default config.xml file, you can create separate XML files in META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains the configuration for all channels, or even all components of your application (adapters, processors, and channels). Choose the method that best suits your development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component configuration file and one EPN assembly file.

Component configuration files are deployed as part of the Oracle Event Processing application bundle. You can later update this configuration at runtime using Oracle Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate JMX Mbeans directly.

This section describes:

	
Section 10.1.1, "When to Use a Channel"

	
Section 10.1.2, "Channels Representing Streams and Relations"

	
Section 10.1.3, "System-Timestamped Channels"

	
Section 10.1.4, "Application-Timestamped Channels"

	
Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector"

	
Section 10.1.6, "Batch Processing Channels"

	
Section 10.1.7, "EventPartitioner Channels"

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Section 5.3, "Creating EPN Assembly Files"

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

10.1.1 When to Use a Channel

When constructing your EPN, consider the following rules:

	
A channel is mandatory when connecting an Oracle CQL processor to a down-stream stage.

	
A channel is mandatory when connecting a push source stream or relation to a processor.

A channel is mandatory for a push source because in that case, the Oracle CQL processor does need to be aware of its shape (that is, DDL is required) and so does need the channel to act as intermediary.

	
A channel is optional when connecting an external relation, or pull source, such as a cache or table source, to a processor.

A channel is not needed between a pull source, such as a cache or table, and a processor because the pull source represent an external relation. For an external relation, the only valid operation is a join between a stream and a NOW window operator and hence it is considered a pull source. In other words, the join actually happens outside of the Oracle CQL processor. Because it is a pull, the Oracle CQL processor does not need to be aware of its shape (that is, no DDL is required) and so does not need the channel to act as intermediary.

In general, use a channel between components when:

	
Buffering is needed between the emitting component and the receiver.

	
Queuing or concurrency is needed for the receiving component.

	
If a custom adapter is used and thread control is necessary.

It is a good design practice to include channels in your EPN to provide the flexibility of performance tuning (using buffering, queuing, and concurrency options) later in the design lifecycle. Setting the channel attribute max-threads to 0 puts a channel in pass-through mode and incurs no performance penalty.

For more information, see:

	
Section 10.1.7, "EventPartitioner Channels"

	
Table C-9, "Attributes of the wlevs:channel Application Assembly Element"

10.1.2 Channels Representing Streams and Relations

A channel can represent either a stream or a relation.

For more information, see:

	
Section 16.2.2.2, "Implementing RelationSource"

	
Section 10.1, "Overview of Channel Configuration"

	
Section 1.3, "Overview of Events, Streams and Relations"

10.1.2.1 Channels as Streams

A stream supports appends only. You specify a channel as a stream by setting EPN assembly element wlevs:channel attribute is-relation to false (the default).

10.1.2.2 Channels as Relations

A relation supports inserts, deletes, and updates. You specify a channel as a relation by setting EPN assembly element wlevs:channel attribute is-relation to true.

When a channel is a relation, you must specify one or more event properties that define event identity using the wlevs:channel attribute primary-key as Example 10-3 shows.

Example 10-3 Channel as Relation: primary-key Attribute

...
<wlevs:channel id="priceStream" event-type="PriceEvent" primary-key="stock,broker">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>
...

Example 10-4 PriceEvent

<wlevs:event-type-repository>
 <wlevs:event-type type-name="PriceEvent">
 <wlevs:property>
 <entry key="stock" value="java.lang.String"/>
 <entry key="broker" value="java.lang.String"/>
 <entry key="high" value="float"/>
 <entry key="low" value="float"/>
 </wlevs:property>
 </wlevs:event-type>
</wlevs:event-type-repository>

For more information, see primary-key in Table C-9, "Attributes of the wlevs:channel Application Assembly Element".

10.1.3 System-Timestamped Channels

By default, channels are system-timestamped. In this case, Oracle Event Processing will assign a new time from the CPU clock under two conditions: when a new event arrives, and when the configurable heartbeat timeout expires.

For more information, see:

	
Section 10.2.1, "How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section D.52, "heartbeat"

10.1.4 Application-Timestamped Channels

Optionally, you can configure a channel to be application-timestamped. In this case, the time-stamp of an event is determined by the configurable wlevs:expression element. A common example of an expression is a reference to a property on the event. If no expression is specified, then the time-stamp may be propagated from a prior event. For example, this is the case when you have a system-timestamped channel from one Oracle CQL processor feeding events into an application-timestamped channel of another downstream Oracle CQL processor.

In addition, an application can use the StreamSender.sendHeartbeat method to send an event of type heart-beat downstream to StreamSink listeners in the EPN.

For more information, see:

	
Section 10.2.2, "How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section C.3, "wlevs:application-timestamped"

	
Section C.15, "wlevs:expression"

10.1.5 Controlling Which Queries Output to a Downstream Channel: selector

If you configure an Oracle CQL processor with more than one query, by default, all queries output their results to the downstream channel.

You can control which queries may output their results to a downstream channel using the channel selector child element. Note that you must use a selector when you have multiple channels connected on the downstream side of a processor. This is because the output of a query in the processor has a particular type; selecting for a specific query ensures that the query output is accepted by the channel.

Figure 10-1 shows an EPN with channel filteredStream connected to up-stream Oracle CQL processor filteredFanoutProcessor.

Figure 10-1 EPN With Oracle CQL Processor and Down-Stream Channel

[image: Description of Figure 10-1 follows]

Example 10-5 shows the queries configured for the Oracle CQL processor.

Example 10-5 filterFanoutProcessor Oracle CQL Queries

<processor>
 <name>filterFanoutProcessor</name>
 <rules>
 <query id="Yr3Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="3_YEAR"
]]></query>
 <query id="Yr2Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="2_YEAR"
]]></query>
 <query id="Yr1Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="1_YEAR"
]]></query>
 </rules>
</processor>

If you specify more than one query for an Oracle CQL processor as Example 10-5 shows, then, by default, all query results are output to the processor's out-bound channel (filteredStream in Figure 10-1). Optionally, in the component configuration source, you can use the channel element selector child element to specify a space-delimited list of one or more Oracle CQL query names that may output their results to the channel as Example 10-6 shows. In this example, query results for query Yr3Sector and Yr2Sector are output to filteredStream but not query results for query Yr1Sector.

Example 10-6 Using selector to Control Which Query Results are Output

<channel>
 <name>filteredStream</name>
 <selector>Yr3Sector Yr2Sector</selector>
</channel>

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

	
Note:

The selector child element is only applicable if the up-stream node is an Oracle CQL processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For more information, see Appendix D, "selector".

10.1.6 Batch Processing Channels

By default, a channel processes events as they arrive. Alternatively, you can configure a channel to batch events together that have the same timestamp and were output from the same query by setting the wlevs:channel attribute batching to true as Example 10-7 shows.

Example 10-7 Batch Processing Channel

...
<wlevs:channel id="priceStream" event-type="PriceEvent" batching="true">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>
...

For more information, see:

	
Section 16.2.2.2, "Implementing RelationSource"

	
batching in Table C-9, "Attributes of the wlevs:channel Application Assembly Element"

10.1.7 EventPartitioner Channels

By default, a channel broadcasts each event to every listener.

When you configure a channel to use an EventPartitioner, each time an incoming event arrives, the channel selects a listener and dispatches the event to that listener instead of broadcasting each event to every listener.

You can use an EventPartitioner on a channel to improve scalability.

For more information, see Section 25.1.2.1, "EventPartitioner".

10.1.8 Handling Faults in Channels

You can write code to handle exceptions that occur in stages that are downstream of a channel, then thrown to the channel. By default, the fault-handling behavior for a channel is as follows:

	
If the channel's max-threads setting is 0 (also known as a pass-through channel), then the exception is re-thrown to the next upstream stage in the EPN.

	
If the channel's max-threads setting is greater than 0, then the exception is logged and dropped, along with any events associated with the fault.

You can write a fault handling class and associate the handler with channels whose max-threads values are greater than 0. With a fault handler associated with the channel, exceptions thrown to the channel are received by the handler, where your code can handle the fault or re-throw it. Keep in mind that if your fault handling code re-throws the exception, the exception is logged but events related to the exception are lost. If you want to keep track of events involved in these exceptions, you must persist them with your code, such as by writing the event data to a data source connected to your EPN.

For information on writing fault handlers, see Section 17.6, "Handling Faults".

10.2 Configuring a Channel

You can configure a channel manually or by using the Oracle Event Processing IDE for Eclipse.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the channel component configuration file.

See Section 10.3, "Example Channel Configuration Files" for a complete example of a channel configuration file.

This section describes the following topics:

	
Section 10.2.1, "How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section 10.2.2, "How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section 10.2.3, "How to Create a Channel Component Configuration File Manually"

10.2.1 How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse

This section describes how to create a system-timestamped channel.

The most efficient and least error-prone way to create and edit a channel configuration in the default component configuration file is to use the Oracle Event Processing IDE for Eclipse. Optionally, you can create a channel configuration file manually (see Section 10.2.3, "How to Create a Channel Component Configuration File Manually").

For more information, see:

	
Section 10.1.3, "System-Timestamped Channels"

	
Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network"

To configure a channel using Oracle Event Processing IDE for Eclipse:

	
Use Oracle Event Processing IDE for Eclipse to create a channel.

See Section 7.4.1.1, "How to Create a Basic Node".

	
Optionally, override the default channel assembly file configuration by adding additional wlevs:channel attributes and child elements:

	
Right-click the channel node and select Go To Assembly Source.

	
Add the appropriate wlevs:channel attributes.

Required attributes include:

	
id

	
event-type

In particular, specify whether this channel is a stream or relation by configuring attribute is-relation:

	
To specify this channel as stream, set is-relation to false (default).

	
To specify this channel as a relation, set is-relation to true.

If you specify this channel as a relation, you must also configure the channel attribute primary-key.

See Table C-9, "Attributes of the wlevs:channel Application Assembly Element".

	
Add the appropriate wlevs:channel child elements.

	
Appendix C, "wlevs:instance-property"

	
Appendix C, "wlevs:listener"

	
Appendix C, "wlevs:property"

	
Appendix C, "wlevs:source"

	
In the Project Explorer, expand your META-INF/wlevs directory.

	
Choose the component configuration file you want to use:

	
To use the default component configuration file, right-click the META-INF/wlevs/config.xml file and select Open With > XML Editor.

The file opens in an XML Editor.

	
To create a new component configuration file:

	
Right-click the wlevs directory and select New > File.

The New File dialog appears.

	
Enter a file name.

You can name the file anything you want but the name of the file must end in .xml.

	
Click Finish.

Oracle Event Processing IDE for Eclipse adds the component configuration file to the wlevs directory.

	
Right-click the component configuration file you chose to use and select Open With > XML Editor.

The file opens in an XML Editor.

	
If you created a new component configuration file, add the header and config element shown in Example 10-8. Otherwise, proceed to step 7.

Example 10-8 Component Configuration File Header and config Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</config>

	
Add a channel element for the channel as Example 10-9 shows.

Example 10-9 Component Configuration File Channel Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 ...
 </processor>
 ...
 <channel>
 </channel>
</config>

	
Add a name child element to the channel element.

The name element value must match the corresponding EPN assembly file channel element's id attribute.

For example, given the EPN assembly file channel element shown in Example 10-10, the corresponding configuration file channel element is shown in Example 10-11.

Example 10-10 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>

Example 10-11 Component Configuration File Channel Name: priceStream

<channel>
 <name>priceStream</name>
</channel>

	
Caution:

Identifiers and names in XML files are case sensitive. Be sure to specify the same case when referencing the component's identifier in the EPN assembly file.

	
Optionally, override the default channel configuration by adding additional channel child elements:

	
Add a max-threads child element to specify the maximum number of threads that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-threads>2</size>
</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue.

With multiple threads enabled, com.bea.wlevs.ede.api.EventRejectedException instances thrown from downstream components in the EPN won't be propagated up to an adapter from which the channel is receiving events unless the channel has an associated fault handler. For more information, see Section 10.1.8, "Handling Faults in Channels".

	
Add a max-size child element to specify the maximum size of the channel.

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the requested size. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-size>10000</size>
</channel>

Note that when a queued channel becomes full, the default behavior is to discard events that could not be inserted into the queue because the queue is full. You can configure the channel so that it will instead raise an EventProcessingException to its upstream stage. The exception contains the events that could not be inserted into the queue. To support this behavior, set the fail-when-rejected setting to true. You can also specify a timeout value after which events are dropped or an exception is raised. For configuration reference information, see 0, "fail-when-rejected" and 0, "offer-timeout".

	
Add a heartbeat child element to specify the number of nanoseconds a channel can be idle before Oracle Event Processing generates a heartbeat event to advance time. The default is 100,000,000 nanoseconds.

The heartbeat child element applies to system-timestamped relations or streams only when no events arrive in the event channels that are feeding the processors and the processor has been configured with a statement that includes some temporal operator, such as a time-based window or a pattern matching with duration.

<channel>
 <name>MatchOutputChannel</name>
 <heartbeat>10000</heartbeat>
</channel>

	
Add a selector child element to specify which up-stream Oracle CQL processor queries are permitted to output their results to the channel.

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

For more information, Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector".

	
Note:

The selector attribute is only applicable if the up-stream node is an Oracle CQL processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

	
Select File > Save.

The EPN Editor adds a configuration badge to the channel as Figure 10-2 shows. For more information, see Section 7.2.7, "Configuration Badging".

Figure 10-2 Channel With Configuration Badge

[image: Description of Figure 10-2 follows]

10.2.2 How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse

This section describes how to create an application-timestamped channel.

The most efficient and least error-prone way to create and edit a channel configuration in the default component configuration file is to use the Oracle Event Processing IDE for Eclipse. Optionally, you can create a channel configuration file manually (see Section 10.2.3, "How to Create a Channel Component Configuration File Manually").

For more information, see:

	
Section 10.1.4, "Application-Timestamped Channels"

	
Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network"

To configure a channel using Oracle Event Processing IDE for Eclipse:

	
Use Oracle Event Processing IDE for Eclipse to create a channel.

See Section 7.4.1.1, "How to Create a Basic Node".

	
Optionally, override the default channel assembly file configuration by adding additional wlevs:channel attributes and child elements:

	
Right-click the channel node and select Go To Assembly Source.

	
Add the appropriate wlevs:channel attributes.

In particular, specify whether this channel is a stream or relation by configuring attribute is-relation:

	
To specify this channel as stream, set is-relation to false (default).

	
To specify this channel as a relation, set is-relation to true.

See Table C-9, "Attributes of the wlevs:channel Application Assembly Element".

	
Add a wlevs:application-timestamped child element.

Use this element to specify a wlevs:expression child element that Oracle Event Processing uses to generate timestamp values.

Optionally, configure the wlevs:application-timestamped attributes:

	
is-total-order: specifies if the application time published is always strictly greater than the last value used.

Valid values are true or false. Default: false.

For more information, see Appendix C, "wlevs:application-timestamped".

	
Add other appropriate wlevs:channel child elements.

	
Appendix C, "wlevs:instance-property"

	
Appendix C, "wlevs:listener"

	
Appendix C, "wlevs:property"

	
Appendix C, "wlevs:source"

	
In the Project Explorer, expand your META-INF/wlevs directory.

	
Choose the component configuration file you want to use:

	
To use the default component configuration file, right-click the META-INF/wlevs/config.xml file and select Open With > XML Editor.

The file opens in an XML Editor.

	
To create a new component configuration file:

	
Right-click the wlevs directory and select New > File.

The New File dialog appears.

	
Enter a file name.

You can name the file anything you want but the name of the file must end in .xml.

	
Click Finish.

Oracle Event Processing IDE for Eclipse adds the component configuration file to the wlevs directory.

	
Right-click the component configuration file you chose to use and select Open With > XML Editor.

The file opens in an XML Editor.

	
If you created a new component configuration file, add the header and config element shown in Example 10-8. Otherwise, proceed to step 7.

Example 10-12 Component Configuration File Header and config Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</config>

	
Add a channel element for the channel as Example 10-9 shows.

Example 10-13 Component Configuration File Channel Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 ...
 </processor>
 ...
 <channel>
 </channel>
</config>

	
Add a name child element to the channel element.

The name element value must match the corresponding EPN assembly file channel element's id attribute.

For example, given the EPN assembly file channel element shown in Example 10-10, the corresponding configuration file channel element is shown in Example 10-11.

Example 10-14 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>

Example 10-15 Component Configuration File Channel Name: priceStream

<channel>
 <name>priceStream</name>
</channel>

	
Caution:

Identifiers and names in XML files are case sensitive. Be sure to specify the same case when referencing the component's identifier in the EPN assembly file.

	
Optionally, override the default channel configuration by adding additional channel child elements:

	
Add a max-threads child element to specify the maximum number of threads that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-threads>2</size>
</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue.

Note that with multiple threads enabled, com.bea.wlevs.ede.api.EventRejectedException instances thrown from downstream components in the EPN won't be propagated up to an adapter from which the channel is receiving events.

	
Add a max-size child element to specify the maximum size of the channel.

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the requested size. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-size>10000</size>
</channel>

Note that when a queued channel becomes full, the default behavior is to discard events that could not be inserted into the queue because the queue is full. You can configure the channel so that it will instead raise an EventProcessingException to its upstream stage. The exception contains the events that could not be inserted into the queue. To support this behavior, set the fail-when-rejected setting to true. You can also specify a timeout value after which events are dropped or an exception is raised. For configuration reference information, see 0, "fail-when-rejected" and 0, "offer-timeout".

	
Add a selector child element to specify which up-stream Oracle CQL processor queries are permitted to output their results to the channel.

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

For more information, Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector".

	
Note:

The selector attribute is only applicable if the up-stream node is an Oracle CQL processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For more information, Section D.87, "selector".

	
Select File > Save.

The EPN Editor adds a configuration badge to the channel as Figure 10-3 shows. For more information, see Section 7.2.7, "Configuration Badging".

Figure 10-3 Channel With Configuration Badge

[image: Description of Figure 10-3 follows]

10.2.3 How to Create a Channel Component Configuration File Manually

Although the Oracle Event Processing IDE for Eclipse is the most efficient and least error-prone way to create and a channel configuration file (see Section 10.2.1, "How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"), alternatively, you can also create and maintain a channel configuration file manually.

For simplicity, the following procedure assumes that you are going to configure all components of an application in a single XML file.

To create a channel component configuration file manually:

	
Create an EPN assembly file and add a wlevs:channel element for each channel in your application.

Uniquely identify each wlevs:channel with the id attribute.

See Section 5.3, "Creating EPN Assembly Files" for details.

	
Optionally, override the default channel assembly file configuration by adding additional wlevs:channel attributes and child elements:

	
Add the appropriate wlevs:channel attributes.

See Table C-9, "Attributes of the wlevs:channel Application Assembly Element".

	
Add the appropriate wlevs:channel child elements.

	
Appendix C, "wlevs:application-timestamped"

	
Appendix C, "wlevs:instance-property"

	
Appendix C, "wlevs:listener"

	
Appendix C, "wlevs:property"

	
Appendix C, "wlevs:source"

	
Create an XML file using your favorite XML editor.

You can name this XML file anything you want, provided it ends with the .xml extension.

The root element of the configuration file is config, with namespace definitions shown in the next step.

	
For each channel in your application, add a channel child element of config.

Uniquely identify each channel with the name child element. This name must be the same as the value of the id attribute in the channel element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular channel component in the EPN assembly file this channel configuration applies. See Section 5.3, "Creating EPN Assembly Files" for details.

For example, if your application has two streams, the configuration file might initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<helloworld:config
 xmlns:helloworld="http://www.bea.com/xml/ns/wlevs/example/helloworld">
 <processor>
 ...
 </processor>
 <channel>
 <name>firstStream</name>
 ...
 </channel>
 <channel>
 <name>secondStream</name>
 ...
 </channel>
</helloworld:config>

In the example, the configuration file includes two channels called firstStream and secondStream. This means that the EPN assembly file must include at least two channel registrations with the same identifiers:

<wlevs:channel id="firstStream" ...>
 ...
</wlevs:channel>
<wlevs:channel id="secondStream" ...>
 ...
</wlevs:channel>

	
Caution:

Identifiers and names in XML files are case sensitive, so be sure you specify the same case when referencing the component's identifier in the EPN assembly file.

	
Optionally, override the default channel configuration by adding additional channel child elements:

	
Add a max-threads child element to specify the maximum number of threads that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-threads>2</size>
</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue.

Note that with multiple threads enabled, com.bea.wlevs.ede.api.EventRejectedException instances thrown from downstream components in the EPN won't be propagated up to an adapter from which the channel is receiving events.

	
Add a max-size child element to specify the maximum size of the channel.

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the requested size. The default value is 0.

<channel>
 <name>priceStream</name>
 <max-size>10000</size>
</channel>

Note that when a queued channel becomes full, the default behavior is to discard events that could not be inserted into the queue because the queue is full. You can configure the channel so that it will instead raise an EventProcessingException to its upstream stage. The exception contains the events that could not be inserted into the queue. To support this behavior, set the fail-when-rejected setting to true. You can also specify a timeout value after which events are dropped or an exception is raised. For configuration reference information, see 0, "fail-when-rejected" and 0, "offer-timeout".

	
Add a heartbeat child element to specify a new number of nanoseconds a channel can be idle before Oracle Event Processing generates a heartbeat event to advance time. The default is 100,000,000 nanoseconds.

The heartbeat child element applies to system-timestamped relations or streams only when no events arrive in the event channels that are feeding the processors and the processor has been configured with a statement that includes some temporal operator, such as a time-based window or a pattern matching with duration.

<channel>
 <name>MatchOutputChannel</name>
 <heartbeat>10000</heartbeat>
</channel>

	
Add a selector child element to specify which up-stream Oracle CQL processor queries are permitted to output their results to the channel.

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

For more information, Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector".

	
Note:

The selector attribute is only applicable if the up-stream node is an Oracle CQL processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For more information, Section D.87, "selector".

	
Save and close the configuration file.

10.3 Example Channel Configuration Files

Figure 10-4 shows part of an EPN that contains two channels: priceStream and filteredStream. The priceStream channel is an in-bound channel that connects the PriceAdapter event source and its PriceEvent events to an Oracle CQL processor filterFanoutProcessor. The filteredStream channel is an out-bound channel that connects the Oracle CQL processor's query results (FilteredPriceEvent events) to down-stream components (not shown in Figure 10-4).

Figure 10-4 EPN with Two Channels

[image: Description of Figure 10-4 follows]

This section provides example channel configuration files, including:

	
Section 10.3.1, "Channel Component Configuration File"

	
Section 10.3.2, "Channel EPN Assembly File"

10.3.1 Channel Component Configuration File

Example 10-16 shows a sample component configuration file that configures the two channels shown in Figure 10-4.

Example 10-16 Sample Channel Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>filterFanoutProcessor</name>
 <rules>
 <query id="Yr3Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="3_YEAR"
]]></query>
 </rules>
 </processor>
 <channel>
 <name>priceStream</name>
 <max-size>10000</max-size>
 <max-threads>4</max-threads>
 </channel>
 <channel>
 <name>filteredStream</name>
 <max-size>5000</max-size>
 <max-threads>2</max-threads>
 </channel>
</n1:config>

10.3.2 Channel EPN Assembly File

Example 10-17 shows a EPN assembly file that configures the two channels shown in Figure 10-4.

Example 10-17 Channel EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:cqlx="http://www.oracle.com/schema/cqlx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="PriceEvent">
 <wlevs:properties>
 <wlevs:property name="cusip" type="java.lang.String" />
 <wlevs:property name="bid" type="java.lang.Double" />
 <wlevs:property name="srcId" type="java.lang.String" />
 <wlevs:property name="bidQty" type="java.lang.Integer" />
 <wlevs:property name="ask" type="java.lang.Double" />
 <wlevs:property name="askQty" type="java.lang.Integer" />
 <wlevs:property name="seq" type="java.lang.Long" />
 <wlevs:property name="sector" type="java.lang.String" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="FilteredPriceEvent">
 <wlevs:properties>
 <wlevs:property name="cusip" type="java.lang.String" />
 <wlevs:property name="bid" type="java.lang.Double" />
 <wlevs:property name="srcId" type="java.lang.String" />
 <wlevs:property name="bidQty" type="java.lang.Integer" />
 <wlevs:property name="ask" type="java.lang.Double" />
 <wlevs:property name="askQty" type="java.lang.Integer" />
 <wlevs:property name="seq" type="java.lang.Long" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="BidAskEvent">
 <wlevs:properties>
 <wlevs:property name="cusip" type="java.lang.String" />
 <wlevs:property name="bidseq" type="java.lang.Long" />
 <wlevs:property name="bidSrcId" type="java.lang.String" />
 <wlevs:property name="bid" type="java.lang.Double" />
 <wlevs:property name="askseq" type="java.lang.Long" />
 <wlevs:property name="askSrcId" type="java.lang.String" />
 <wlevs:property name="ask" type="java.lang.Double" />
 <wlevs:property name="bidQty" type="java.lang.Integer" />
 <wlevs:property name="askQty" type="java.lang.Integer" />
 <wlevs:property name="intermediateStrategy" type="java.lang.String" />
 <wlevs:property name="correlationId" type="java.lang.Long" />
 <wlevs:property name="priority" type="java.lang.Integer" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="FinalOrderEvent">
 <wlevs:properties>
 <wlevs:property name="cusip" type="java.lang.String" />
 <wlevs:property name="bidseq" type="java.lang.Long" />
 <wlevs:property name="bidSrcId" type="java.lang.String" />
 <wlevs:property name="bid" type="java.lang.Double" />
 <wlevs:property name="bidQty" type="java.lang.Integer" />
 <wlevs:property name="bidSourceStrategy" type="java.lang.String" />
 <wlevs:property name="askseq" type="java.lang.Long" />
 <wlevs:property name="askSrcId" type="java.lang.String" />
 <wlevs:property name="ask" type="java.lang.Double" />
 <wlevs:property name="askQty" type="java.lang.Integer" />
 <wlevs:property name="askSourceStrategy" type="java.lang.String" />
 <wlevs:property name="correlationId" type="java.lang.Long" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->
 <wlevs:adapter advertise="true" id="PriceAdapter"
 provider="csvgen">
 <wlevs:instance-property name="port" value="9008" />
 <wlevs:instance-property name="eventTypeName"
 value="PriceEvent" />
 <wlevs:instance-property name="eventPropertyNames"
 value="srcId,sector,cusip,bid,ask,bidQty,askQty,seq" />
 </wlevs:adapter>

 <wlevs:channel id="priceStream" event-type="PriceEvent">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
 </wlevs:channel>

 <!-- By default, CQL is used for OCEP 11.0 -->
 <wlevs:processor id="filterFanoutProcessor" >
 </wlevs:processor>

 <wlevs:channel id="filteredStream"
 event-type="FilteredPriceEvent">
 <wlevs:listener ref="bbaProcessor" />
 <wlevs:listener ref="analyticsProcessor" />
 <wlevs:source ref="filterFanoutProcessor" />
 </wlevs:channel>

 <!-- Explicitly specify provider CQL -->
 <wlevs:processor id="bbaProcessor" provider="cql">
 <wlevs:listener ref="bidAskBBAStream" />
 </wlevs:processor>

 <wlevs:processor id="analyticsProcessor">
 <wlevs:listener ref="bidAskAnalyticsStream" />
 </wlevs:processor>

 <wlevs:channel id="bidAskBBAStream" event-type="BidAskEvent">
 <wlevs:listener ref="selectorProcessor" />
 </wlevs:channel>

 <wlevs:channel id="bidAskAnalyticsStream" event-type="BidAskEvent">
 <wlevs:listener ref="selectorProcessor" />
 </wlevs:channel>

 <wlevs:processor id="selectorProcessor">
 <wlevs:listener ref="citipocOut" />
 </wlevs:processor>

 <wlevs:channel id="citipocOut" event-type="FinalOrderEvent" advertise="true">
 <wlevs:listener>
 <!-- Create business object -->
 <bean id="outputBean"
 class="com.bea.wlevs.POC.citi.OutputBean"
 autowire="byName" />
 </wlevs:listener>
 </wlevs:channel>
</beans>

11 Integrating the Java Message Service

This chapter describes how to use JMS adapters to connect the Java Message Service with an Oracle Event Processing event processing network to receive and send JMS messages.

This chapter includes the following sections:

	
Section 11.1, "Overview of JMS Adapter Configuration"

	
Section 11.2, "Configuring a JMS Adapter for a JMS Service Provider"

	
Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types"

	
Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File"

	
Section 11.5, "Configuring the JMS Adapter EPN Assembly File"

	
Section 11.6, "Configuring the JMS Adapter Component Configuration File"

11.1 Overview of JMS Adapter Configuration

The Oracle Event Processing JMS adapters support any Java EE compliant JMS service provider that provides a Java client. For more information, see Section 11.1.1, "JMS Service Providers".

Oracle Event Processing provides the following Java Message Service (JMS) adapters that you can use in your event applications to send and receive messages to and from a JMS destination, respectively, without writing any Java code:

	
Section 11.1.2, "Inbound JMS Adapter"

	
Section 11.1.3, "Outbound JMS Adapter"

For general information about JMS, see Java Message Service on the Sun Developer Network at http://java.sun.com/products/jms/.

11.1.1 JMS Service Providers

The Oracle Event Processing JMS adapters support any Java EE compliant JMS service provider that provides a Java client.

This chapter describes how to configure the Oracle Event Processing JMS inbound and outbound adapters for use with the following JMS service providers:

	
Section 11.2.3, "How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually"

	
Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

If your JMS service provider is not in this list, you can still configure Oracle Event Processing JMS adapters for use with your JMS service provider. Review the procedure in Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually" as a configuration model, consult your JMS service provider documentation, and adapt this procedure to suit your JMS service provider.

For more information, see Section 11.2, "Configuring a JMS Adapter for a JMS Service Provider".

11.1.2 Inbound JMS Adapter

The inbound JMS adapter receives messages from a JMS destination and converts them into events.

You specify an inbound JMS adapter in the EPN assembly file as follows:

...
 <wlevs:adapter id="myJmsInbound" provider="jms-inbound">
 ...
 </wlevs:adapter>
...

You configure an inbound JMS adapter in its component configuration file as follows:

...
 <jms-adapter>
 <name>myJmsInbound</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
 </jms-adapter>
...

This section describes:

	
Section 11.1.2.1, "Conversion Between JMS Messages and Event Types"

	
Section 11.1.2.2, "Single and Multi-threaded Inbound JMS Adapters"

	
Section 11.1.2.3, "Configuring a JMS Adapter for Durable Subscriptions"

For more information, see:

	
Section 11.5.1, "JMS Inbound Adapter EPN Assembly File Configuration"

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

11.1.2.1 Conversion Between JMS Messages and Event Types

By default, the inbound JMS adapter automatically converts JMS messages into events by matching property names with a specified event type if the following is true:

	
You must specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

The JMS adapter converts incoming JMS messages into the Oracle Event Processing event type this element specifies.

	
JMS messages must be of type MapMessage.

For each incoming message, an event of the specified event type is created. For each map element in the incoming message, the adapter looks for a property on the event type and if found, sets the corresponding value.

Optionally, you may customize JMS message to event type conversion by writing your own Java class to specify exactly how you want the incoming JMS messages to be converted into one or more event types. In this case, you do not specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

For more information, see Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

11.1.2.2 Single and Multi-threaded Inbound JMS Adapters

By default, an inbound JMS adapter is single-threaded. That is, the inbound JMS adapter uses a single thread to read messages from the JMS destination.

When the inbound JMS adapter is single-threaded, event order is guaranteed.

To improve scalability, you can configure an inbound JMS adapter to use multiple threads to read messages from the JMS destination. The simplest way to do this is to configure the adapter with a work manager. You can specify a dedicated work manager used only by the adapter or you can share a work manager amongst several components such as other adapters and Jetty.

When the inbound JMS adapter is multi-threaded, event order is not guaranteed.

For more information, see:

	
work-manager and concurrent-consumers in Table 11-1, "jms-adapter Inbound Child Elements"

	
Section 25.1.2.1, "EventPartitioner"

11.1.2.3 Configuring a JMS Adapter for Durable Subscriptions

You can configure an inbound JMS adapter to be a client in a durable subscription to a JMS topic. A durable subscription ensures that the adapter receives published messages even if the adapter becomes inactive. When the inbound adapter connects to the JMS server it will register the durable subscription, and subsequent messages sent to the topic will be retained during periods when the subscriber is disconnected (unless they expire) and delivered when it reconnects.

A durable subscription assumes that the publisher that is publishing JMS messages to the topic is using the persistent delivery mode. Note that publisher might be the Oracle Event Processing outbound JMS adapter (in other words, its delivery-mode value must be persistent, the default value).

To create a durable subscription in the adapter you do the following:

	
Ensure that the JMS message publisher is delivering messages in persistent mode.

	
Specify a client ID for the connection factory. On Oracle WebLogic Server, the client ID can be set on the connection factory administratively using the console. Note that this implies that you should have a dedicated connection factory configured for each adapter instance that is using durable subscribers.

	
Set three jms-adapter properties:

	
destination-type must be set to TOPIC.

	
durable-subscription must be set to true.

	
durable-subscription-name is set to a unique identifier for the subscription.

For more information about these properties, see Section 11.6.1, "JMS Inbound Adapter Component Configuration".

11.1.3 Outbound JMS Adapter

The outbound JMS adapter sends events to a JMS destination, automatically converting the event into a JMS map message by matching property names with the event type.

Typically, you also customize this conversion by writing your own Java class to specify exactly how you want the event types to be converted into outgoing JMS messages.

If you do not provide your own converter class, and instead let Oracle Event Processing take care of the conversion between messages and event types, the following is true:

	
You must specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

The JMS adapter converts incoming JMS messages into the Oracle Event Processing event type this element specifies.

	
By default, the outbound JMS adapter default converter creates JMS messages of type MapMessage. For each property of the event, a corresponding element is created in the output MapMessage.

You specify an outbound JMS adapter in the EPN assembly file as follows:

...
 <wlevs:adapter id="myJmsOutbound" provider="jms-outbound">
 ...
 </wlevs:adapter>
...

You configure an outbound JMS adapter in its component configuration file as follows:

...
 <jms-adapter>
 <name>myJmsOutbound</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>
...

For more information, see:

	
Section 11.5.2, "JMS Outbound Adapter EPN Assembly File Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types."

11.2 Configuring a JMS Adapter for a JMS Service Provider

This section describes how to configure the Oracle Event Processing JMS inbound and outbound adapters:

	
Section 11.2.1, "How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse"

	
Section 11.2.2, "How to Configure a JMS Adapter Manually"

This section provides examples specific to the following JMS service providers:

	
Section 11.2.3, "How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually"

	
Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

If your JMS service provider is not in this list, and your JMS service provider offers a Java client, then you can still configure Oracle Event Processing JMS adapters for use with your JMS service provider. Review the procedure in Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually" as a configuration model, consult your JMS service provider documentation, and adapt this procedure to suit your JMS service provider.

For more information, see Section 11.1.1, "JMS Service Providers".

11.2.1 How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse

The simplest way to create and configure a JMS adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard.

For more information, see Section 7.4.1.2, "How to Create an Adapter Node".

After using the adapter wizard to create and specify the basic JMS adapter configuration, review Section 11.2.2, "How to Configure a JMS Adapter Manually" to complete the configuration.

11.2.2 How to Configure a JMS Adapter Manually

This section describes how to create and configure a JMS adapter manually. It describes the detailed steps that you may require depending on your JMS adapter application and service provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard as Section 11.2.1, "How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the adapter wizard to create and specify the basic JMS adapter configuration, review this procedure to complete the configuration.

To configure a JMS adapter manually:

	
In the EPN assembly file of the application, add a wlevs:adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-1 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11-1 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

	
Section 11.5.1, "JMS Inbound Adapter EPN Assembly File Configuration"

	
Section 11.5.2, "JMS Outbound Adapter EPN Assembly File Configuration"

	
In the component configuration file of the application, add a jms-adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-2 shows the jms-adapter element for the JMS inbound adapter in Example 11-1.

Example 11-2 jms-adapter Element for Inbound Adapter

<jms-adapter>
 <name>inboundJmsAdapter1</name>
...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the corresponding wlevs:adapter element id child element.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
Decide how you want to convert between JMS messages and Oracle Event Processing event types:

	
If you want the JMS adapters to perform automatic conversion, specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
If you want the JMS adapters to perform custom conversion, create a custom converter Java class and register it in the EPN assembly file.

See Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
Configure the jms-adapter elements for your JMS provider as Example 11-3 shows:

Example 11-3 jms-adapter Element With Tibco EMS JMS Configuration

<jms-adapter>
 <name>inboundJmsAdapter1</name>
 ...
 <jndi-provider-url> ... </jndi-provider-url>
 <jndi-factory> ... </jndi-factory>
 <connection-jndi-name> ... </connection-jndi-name>
 <destination-jndi-name> ... </destination-jndi-name>
 ...
</jms-adapter>

For all options that the Oracle Event Processing JMS adapters support, see:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

For specific JMS provider examples, see:

	
Section 11.2.3, "How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually"

	
Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

For more information, see your JMS service provider documentation.

	
If you specify JMS provider client passwords in the component configuration file, consider encrypting them.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File".

	
Create a JMS client application library that contains the following:

	
The JMS client JAR files your JMS service provider documentation specifies.

	
If you are using Java Object messages, the Java classes used for messaging need to be packaged in a library bundle.

You may include these Java classes in this JMS client JAR application library.

	
Note:

This JMS client JAR application library must:

	
Export all provider-specific packages.

	
Export the Java classes used for messaging, if applicable.

	
Import javax.jms and javax.naming.

The application bundle does not need to export the provider-specific packages.

The application bundle must import Java classes used for messaging, if applicable.

For more information, see Section 23.1.3.3, "Creating Application Libraries".

For a specific JMS provider example, see Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually".

	
Copy the JMS client JAR application library to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.3.4, "How to Update an Application Library Using Oracle Event Processing IDE for Eclipse".

	
If you created a custom converter class in step 3, update the MANIFEST.MF file of your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
 ...

See Section 5.7.5, "How to Import a Package".

11.2.3 How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually

Oracle Event Processing includes a WebLogic JMS client.

When connecting to Oracle WebLogic server, Oracle Event Processing uses the T3 client by default.

You can use the IIOP WebLogic client by starting Oracle WebLogic Server with the -useIIOP command-line argument. This is a server-wide setting that is independent of the JMS code being used (whether it is one of the provided adapters or custom JMS code).

It is not possible to mix T3 and IIOP usage within a running Oracle Event Processing server.

For more information, see Section 11.2, "Configuring a JMS Adapter for a JMS Service Provider".

You can manually configure the built-in JMS inbound and outbound adapter to use the Oracle WebLogic Server JMS provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard as Section 11.2.1, "How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the adapter wizard to create and specify the basic JMS adapter configuration, review this procedure to complete the configuration.

To configure JMS adapters for Oracle WebLogic Server JMS manually:

	
Update the EPN assembly file of the application by adding a wlevs:adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-4 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11-4 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

	
Section 11.5.1, "JMS Inbound Adapter EPN Assembly File Configuration"

	
Section 11.5.2, "JMS Outbound Adapter EPN Assembly File Configuration"

	
Update the component configuration file of the application by adding a jms-adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-5 shows the jms-adapter element for the JMS inbound adapter in Example 11-4.

Example 11-5 jms-adapter Element for Inbound Adapter

<jms-adapter>
 <name>inboundJmsAdapter1</name>
...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the corresponding wlevs:adapter element id child element.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
Decide how you want to convert between JMS messages and Oracle Event Processing event types:

	
If you want the JMS adapters to perform automatic conversion, specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
If you want the JMS adapters to perform custom conversion, create a custom converter Java class and register it in the EPN assembly file.

See Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
Configure the jms-adapter elements for your Oracle WebLogic Server JMS provider.

Example 11-6 shows the jms-adapter elements for a JMS inbound and JMS outbound adapter.

Example 11-6 jms-adapter Elements for an Oracle WebLogic Server JMS Provider

...
 <jms-adapter>
 <name>JmsInbound</name>
 <event-type>SimpleMapEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>QueueIn</destination-jndi-name>
 <user>weblogic</user>
 <password>welcome1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>

 <jms-adapter>
 <name>JmsOutbound</name>
 <event-type>SimpleMapEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>QueueIn</destination-jndi-name>
 <user>weblogic</user>
 <password>welcome1</password>
 <message-selector></message-selector>
 <session-transacted>false</session-transacted>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>
...

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
If you specify JMS provider client passwords in the component configuration file, consider encrypting them.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File".

	
If you are using Java Object messages, you must create a JMS client application library that contains the Java classes used for messaging need to be packaged in a library bundle.

For more information, see Section 23.1.3.3, "Creating Application Libraries".

	
Note:

This JMS client JAR application library must:

	
Export the Java classes used for messaging.

	
Import javax.jms and javax.naming.

The application bundle does not need to export provider-specific packages.

The application bundle must import Java classes used for messaging, if applicable.

	
If you are using Java Object messages, copy the Java classes for messaging application library to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.3.4, "How to Update an Application Library Using Oracle Event Processing IDE for Eclipse".

	
If you created a custom converter class in step 3, update the MANIFEST.MF file of your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
 ...

See Section 5.7.5, "How to Import a Package".

11.2.4 How to Configure a JMS Adapter for Tibco EMS JMS Manually

Oracle Event Processing supports TIBCO Enterprise Message Service (EMS) version 4.2.0 or higher.

To use the Tibco EMS JMS provider, you must add the following Tibco EMS client JAR files to the Oracle Event Processing server library directory:

	
tibjms.jar

For more information, see:

	
Section 11.2, "Configuring a JMS Adapter for a JMS Service Provider"

	
Section 23.1.3.1, "Library Directory"

You can manually configure the built-in JMS inbound and outbound adapter to use the Tibco EMS JMS provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard as Section 11.2.1, "How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the adapter wizard to create and specify the basic JMS adapter configuration, review this procedure to complete the configuration.

To configure a JMS adapter for Tibco EMS JMS manually:

	
In the EPN assembly file of the application, add a wlevs:adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-7 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11-7 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

	
Section 11.5.1, "JMS Inbound Adapter EPN Assembly File Configuration"

	
Section 11.5.2, "JMS Outbound Adapter EPN Assembly File Configuration"

	
In the component configuration file of the application, add a jms-adapter element for each inbound and outbound JMS adapter you want to use in your application.

Example 11-8 shows the jms-adapter element for the JMS inbound adapter in Example 11-7.

Example 11-8 jms-adapter Element for Inbound Adapter

<jms-adapter>
 <name>inboundJmsAdapter1</name>
...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the corresponding wlevs:adapter element id child element.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
Decide how you want to convert between JMS messages and Oracle Event Processing event types:

	
If you want the JMS adapters to perform automatic conversion, specify an event type using the jms-adapter element event-type child element in the JMS adapter component configuration file.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
If you want the JMS adapters to perform custom conversion, create a custom converter Java class and register it in the EPN assembly file.

See Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
Configure the jms-adapter elements for your Tibco EMS JMS provider as Example 11-9 shows:

Example 11-9 jms-adapter Element With Tibco EMS JMS Configuration

<jms-adapter>
 <name>inboundJmsAdapter1</name>
 ...
 <jndi-provider-url>tcp://TIBCOHOST:PORT</jndi-provider-url>
 <jndi-factory>com.tibco.tibjms.naming.TibjmsInitialContextFactory</jndi-factory>
 <connection-jndi-name>CONNECTION_NAME</connection-jndi-name>
 <destination-jndi-name>DESTINATION_NAME</destination-jndi-name>
 ...
</jms-adapter>

Where:

	
TIBCOHOST: the hostname of the Tibco EMS JMS provider host.

	
PORT: the Tibco EMS JMS provider port.

	
DESTINATION_NAME: the destination JNDI name of the Tibco EMS JMS destination, such as TibcoRequestQueue1.

	
CONNECTION_NAME: the connection JNDI name of the Tibco EMS JMS connection factory you defined in the Tibco EMS JMS server, such as TibcoQueueConnectionFactory.

See:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

	
If you specify JMS provider client passwords in the component configuration file, consider encrypting them.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File".

	
Create a JMS client application library that contains the following:

	
tibjms.jar

	
If you are using Java Object messages, the Java classes used for messaging need to be packaged in a library bundle.

You may include these Java classes in this JMS client application library.

	
Note:

The JMS client application library must:

	
Export all provider-specific packages.

	
Export the Java classes used for messaging, if applicable.

	
Import javax.jms and javax.naming.

The application bundle does not need to export the provider-specific packages.

The application bundle must import Java classes used for messaging, if applicable.

For more information, see Section 23.1.3.3, "Creating Application Libraries".

For a specific JMS provider example, see Section 11.2.4, "How to Configure a JMS Adapter for Tibco EMS JMS Manually".

	
Copy the application library to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.3.4, "How to Update an Application Library Using Oracle Event Processing IDE for Eclipse".

	
If you created a custom converter class in step 3, update the MANIFEST.MF file of your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
 ...

See Section 5.7.5, "How to Import a Package".

11.3 Creating a Custom Converter Between JMS Messages and Event Types

If you want to customize the conversion between JMS messages and event types you must create your own converter bean.

This section describes:

	
Section 11.3.1, "How to Create a Custom Converter for the Inbound JMS Adapter"

	
Section 11.3.2, "How to Create a Custom Converter for the Outbound JMS Adapter"

11.3.1 How to Create a Custom Converter for the Inbound JMS Adapter

The custom converter bean for an inbound JMS must implement the com.bea.wlevs.adapters.jms.api.InboundMessageConverter interface. This interface has a single method:

public List convert(Message message) throws MessageConverterException, JMSException;

The message parameter corresponds to the incoming JMS message and the return value is a List of events that will be passed on to the next stage of the event processing network.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full description of these APIs.

To create a custom converter for the inbound JMS adapter:

	
Using the Oracle Event Processing IDE for Eclipse (or your preferred IDE), add a Java class to your application project.

	
Implement the com.bea.wlevs.adapters.jms.api.InboundMessageConverter interface.

Example 11-10 shows a possible implementation.

Example 11-10 Custom Converter for an Inbound JMS Adapter

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,
 OutboundMessageConverter {
 public List convert(Message message) throws MessageConverterException, JMSException {
 TestEvent event = new TestEvent();
 TextMessage textMessage = (TextMessage) message;
 event.setString_1(textMessage.getText());
 List events = new ArrayList(1);
 events.add(event);
 return events;
 }
 public List<Message> convert(Session session, Object inputEvent)
 throws MessageConverterException, JMSException {
 TestEvent event = (TestEvent) inputEvent;
 TextMessage message = session.createTextMessage(
 "Text message: " + event.getString_1()
);
 List<Message> messages = new ArrayList<Message>();
 messages.add(message);
 return messages;
 }
}

	
Specify the converter in your application EPN assembly file as Example 11-11 shows:

	
Register the converter class using a bean element.

	
Associate the converter class with the JMS adapter by adding a wlevs:instance-property with name set to converterBean and ref set to the id of bean.

Example 11-11 Specifying a Converter Class for an Inbound JMS Adapter in the EPN Assembly File

...
 <bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsInbound" provider="jms-inbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 <wlevs:listener ref="mySink"/>
 </wlevs:adapter>
...

	
Package the Java class with your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

11.3.2 How to Create a Custom Converter for the Outbound JMS Adapter

The custom converter bean for an outbound JMS must implement the com.bea.wlevs.adapters.jms.api.OutboundMessageConverter interface. This interface has a single method:

public List<Message> convert(Session session, Object event)
 throws MessageConverterException, JMSException;

The parameters correspond to an event received by the outbound JMS adapter from the source node in the EPN and the return value is a List of JMS messages.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full description of these APIs.

To create a custom converter for the outbound JMS adapter:

	
Using the Oracle Event Processing IDE for Eclipse (or your preferred IDE), add a Java class to your application project.

	
Implement the com.bea.wlevs.adapters.jms.api.OutboundMessageConverter interface.

Example 11-10 shows a possible implementation.

Example 11-12 Custom Converter for an Outbound JMS Adapter

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,
 OutboundMessageConverter {
 public List convert(Message message) throws MessageConverterException, JMSException {
 TestEvent event = new TestEvent();
 TextMessage textMessage = (TextMessage) message;
 event.setString_1(textMessage.getText());
 List events = new ArrayList(1);
 events.add(event);
 return events;
 }
 public List<Message> convert(Session session, Object inputEvent)
 throws MessageConverterException, JMSException {
 TestEvent event = (TestEvent) inputEvent;
 TextMessage message = session.createTextMessage(
 "Text message: " + event.getString_1()
);
 List<Message> messages = new ArrayList<Message>();
 messages.add(message);
 return messages;
 }
}

	
Specify the converter in your application EPN assembly file as Example 11-11 shows:

	
Register the convert class using a bean element.

	
Associate the converter class with the JMS adapter by adding a wlevs:instance-property with name set to converterBean and ref set to the id of bean.

Example 11-13 Specifying a Converter Class for an Outbound JMS Adapter in the EPN Assembly File

...
 <bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsOutbound" provider="jms-outbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 </wlevs:adapter>
...

	
Package the Java class with your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

11.4 Encrypting Passwords in the JMS Adapter Component Configuration File

You can encrypt the password in the JMS adapter configuration file.

	
Note:

The procedure assumes that you are currently using the password element in the configuration file, along with a cleartext password value, but want to start using the encrypted-password element to encrypt the password.

11.4.1 How to Encrypt Passwords in the JMS Adapter Component Configuration File

You can encrypt the password in the JMS adapter configuration file.

To encrypt passwords in the JMS adapter component configuration file:

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Change to the directory that contains the configuration file for your JMS adapter.

	
Execute the following encryptMSAConfig command to encrypt the value of the <password> element in the configuration file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . config_file aesinternal.dat_file

where ORACLE_CEP_HOME refers to the main BEA directory into which you installed Oracle Event Processing, such as d:\oracle_cep. The second argument refers to the directory that contains the JMS adapter configuration file; because this procedure directs you to actually change to the directory, the example shows ".". The config_file parameter refers to the name of your JMS adapter configuration file. Finally, the aesinternal.dat_file parameter refers to the location of the .aesinternal.dat file associated with your domain; by default this file is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the domain directory such as /oracle_cep/user_projects/domains/mydomain and servername refers to the server instance.

The encryptMSAConfig command comes in two flavors: encryptMSAConfig.cmd (Windows) and encryptMSAConfig.sh (UNIX).

After you run the command, the value of the <password> element will be encrypted, as shown in bold in the following example:

<jms-adapter>
 <name>jmsInbound</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <user>weblogic</user>
 <password>{Salted-3DES}B7L6nehu7dgPtJJTnTJWRA==</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

	
Using your favorite XML editor, edit the JMS adapter configuration file. Change the <password> element (whose value is now encrypted) to <encrypted-password>, as shown in bold in the following example:

<jms-adapter>
 <name>jmsInbound</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <user>weblogic</user>
 <encrypted-password>{Salted-3DES}B7L6nehu7dgPtJJTnTJWRA==</encrypted-password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

11.5 Configuring the JMS Adapter EPN Assembly File

For each JMS adapter in your event processing network, you must add a corresponding wlevs:adapter element to the EPN assembly file of your application; use the provider attribute to specify whether the JMS adapter is inbound or outbound.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to integrate the JMS adapter into the event processing network. Typically, an inbound JMS adapter is the first stage in an EPN (because it receives messages) and an outbound JMS adapter would be in a later stage (because it sends messages). However, the requirements of your own Oracle Event Processing application define where in the network the JMS adapters fit in.

For both JMS inbound and outbound adapters, if you have created a custom converter bean to customize the conversion between the JMS messages and event types, first use the standard bean Spring element to declare it in the EPN assembly file. Then pass a reference of the bean to the JMS adapter by specifying its id using the wlevs:instance-property element, with the name attribute set to converterBean, as shown:

<bean id="myConverter"
 class="com.customer.MessageConverter"/>

<wlevs:adapter id="jmsOutbound" provider="jms-outbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
</wlevs:adapter>

In this case, be sure you do not specify an event type in the component configuration file because it is assumed that the custom converter bean takes care of specifying the event type.

This section describes:

	
Section 11.5.1, "JMS Inbound Adapter EPN Assembly File Configuration"

	
Section 11.5.2, "JMS Outbound Adapter EPN Assembly File Configuration"

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files."

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

11.5.1 JMS Inbound Adapter EPN Assembly File Configuration

If you are specifying an inbound JMS adapter, set the provider attribute to jms-inbound, as shown:

<wlevs:adapter id="jmsInbound" provider="jms-inbound"/>

The value of the id attribute, in this case jmsInbound, must match the name specified for this JMS adapter in its configuration file. The configuration file configures the JMS destination from which this inbound JMS adapter gets its messages.

Because no converter bean is specified, Oracle Event Processing automatically converts the inbound message to the event type specified in the component configuration file by mapping property names.

The following sample EPN assembly file shows how to configure an inbound JMS adapter. The network is simple: the inbound JMS adapter called jmsInbound receives messages from the JMS destination configured in its component configuration file. The Spring bean myConverter converts the incoming JMS messages into event types, and then these events flow to the mySink event bean.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="JMSEvent">
 <wlevs:class>com.customer.JMSEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <!-- Event bean that is an event sink -->
 <wlevs:event-bean id="mySink"
 class="com.customer.MySink"/>
 <!-- Inbound JMS adapter with custom converter class; adapter sends events to mySink event bean-->
 <bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsInbound" provider="jms-inbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 <wlevs:listener ref="mySink"/>
 </wlevs:adapter>
</beans>

11.5.2 JMS Outbound Adapter EPN Assembly File Configuration

If you are specifying an outbound JMS adapter, set the provider attribute to jms-outbound, as shown:

<wlevs:adapter id="jmsOutbound" provider="jms-outbound"/>

The value of the id attribute, in this case jmsOutbound, must match the name specified for this JMS adapter in its configuration file. The configuration file configures the JMS destination to which this outbound JMS adapter sends messages.

Because no converter bean is specified, Oracle Event Processing automatically converts the incoming event types to outgoing JMS messages by mapping the property names.

The following sample EPN assembly file shows how to configure an outbound JMS adapter. The network is simple: a custom adapter called getData receives data from some feed, converts it into an event type and passes it to myProcessor, which in turn sends the events to the jmsOutbound JMS adapter via the streamOne channel. Oracle Event Processing automatically converts these events to JMS messages and sends the messages to the JMS destination configured in the component configuration file associated with the jmsOutbound adapter.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="JMSEvent">
 <wlevs:class>com.customer.JMSEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <!-- Custom adapter that gets data from somewhere and sends it to myProcessor -->
 <wlevs:adapter id="getData"
 class="com.customer.GetData">
 <wlevs:listener ref="myProcessor"/>
 </wlevs:adapter>
 <wlevs:processor id="myProcessor" />
 <wlevs:adapter id="jmsOutbound" provider="jms-outbound"/>
 <!-- Channel for events flowing from myProcessor to outbound JMS adapter -->
 <wlevs:channel id="streamOne">
 <wlevs:listener ref="jmsOutbound"/>
 <wlevs:source ref="myProcessor"/>
 </wlevs:channel>
</beans>

11.6 Configuring the JMS Adapter Component Configuration File

You configure the JMS adapters in their respective configuration files, similar to how you configure other components in the event processing network, such as processors or streams.

The root element for configuring a JMS adapter is jms-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter.

This section describes:

	
Section 11.6.1, "JMS Inbound Adapter Component Configuration"

	
Section 11.6.2, "JMS Outbound Adapter Component Configuration"

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files."

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

11.6.1 JMS Inbound Adapter Component Configuration

Table 11-1 lists the jms-adapter element child elements applicable to the JMS inbound adapter.

Table 11-1 jms-adapter Inbound Child Elements

	Child Element	Description
	
bindings

	
Bindings are used to configure horizontal scale-out and are an advanced feature. Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can partition an incoming JMS stream in Oracle Event Processing applications by utilizing the notification groups that the ActiveActiveGroupBean creates. Use this element to associate a notification group with a particular message-selector value.

For more information, see Section 25.1.2.2, "ActiveActiveGroupBean"

	
concurrent-consumers

	
Number of consumers to create. Default value is 1.

If you set this value to a number greater than 1:

	
Consider the work-manager configuration.

	
Be sure that your converter bean is thread-safe because the converter bean will be shared among the consumers. For more information, see Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
connection-jndi-name

	
Optional. The JNDI name of the JMS connection factory. Default value is weblogic.jms.ConnectionFactory, for Oracle Event Processing server JMS.

	
connection-password

connection-encrypted-password

	
Optional. Either the password, or encrypted password, for connection-user.

Note: Specify either connection-password or connection-encrypted-password, but not both.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File" for details on encrypting the password.

	
connection-user

	
Optional. When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password (or connection-encrypted-password) settings, if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) settings.

You can use the connection-user and connection-password (or connection-encrypted-password) settings in applications where one security provider is used for JNDI access and a separate security provider is used for JMS access.

	
destination-jndi-name

	
Required. The JNDI name of the JMS destination.

Note: Specify either destination-jndi-name or destination-name, but not both.

	
destination-name

	
Required. The actual name of the JMS destination.

Note: Specify either destination-jndi-name or destination-name, but not both.

	
destination-type

	
Define the JMS destination type for a JMS adapter. Valid values are TOPIC or QUEUE. This property must be set to TOPIC whenever the durable-subscription property is set to true.

Note: To support a durable subscription, set this to TOPIC and use it with durable-subscription set to true; give the subscription a unique identifier with durable-subscription-name.

	
durable-subscription

	
Specifies whether the JMS topic subscription of a JMS adapter is durable, meaning that it can persist even if subscribers become inactive. Valid values are true or false. This property is only valid if destination-type is set to TOPIC.

Note: To support a durable subscription, use this with destination-type set to TOPIC and durable-subscription-name set to a unique identifier.

	
durable-subscription-name

	
The name to uniquely identify a durable subscription of a JMS adapter. A durable subscription can persist even if subscribers become inactive.

Note: To support a durable subscription, use this with durable-subscription set to true and destination-type set to TOPIC.

	
event-type

	
Event type whose property names match inbound JMS Map Message property names. Specify this property only if you want Oracle Event Processing to automatically perform the conversion between JMS messages and events. If you have created your own custom converter bean, then do not specify this property

For more information, see Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
jndi-factory

	
Optional. The JNDI factory name. Default value is weblogic.jndi.WLInitialContextFactory, for Oracle Event Processing server JMS.

	
jndi-provider-url

	
Required. The URL of the JNDI provider.

	
message-selector

	
JMS message selector to use to filter messages. Only messages that match the selector will produce events.

Default: there is no selector; all messages will produce events.

	
password

encrypted-password

	
Required. Either the password, or encrypted password, for user.

Note: Specify either password or encrypted-password, but not both.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File" for details on encrypting the password.

	
session-ack-mode-name

	
Determines how messages are acknowledged. Once a message is successfully acknowledged it will never be resent following a failure.

Valid values from javax.jms.Session are:

	
AUTO_ACKNOWLEDGE: With this acknowledgment mode, the session automatically acknowledges a client's receipt of a message when the message has been successfully received. Applications that require message redelivery in response to failures during downstream message processing should use the session-transacted property to achieve this.

	
CLIENT_ACKNOWLEDG: With this acknowledgment mode, the client acknowledges a consumed message by calling the message's acknowledge method.

	
DUPS_OK_ACKNOWLEDGE: This acknowledgment mode instructs the session to lazily acknowledge the delivery of messages.

Default: AUTO_ACKNOWLEDGE.

	
session-transacted

	
Boolean value that specifies whether or not the session is transactional.

If the session is transacted then do not specify session-ack-mode-name.

Default: False.

	
user

	
Required. When Oracle Event Processing acquires the JNDI InitialContext, it uses the user and password (or encrypted-password) settings.

	
work-manager

	
Name of a work manager, configured in the Oracle Event Processing server config.xml file. This name corresponds to the value of the name child element of the work-manager element in config.xml.

If concurrent-consumers is greater than 1 and you want all the consumers to be run concurrently, then consider the configuration of the work-manager you associate with this JMS inbound adapter:

	
If the work-manager is shared with other components (such as other adapters and Jetty) then set the work-manager attribute max-threads-constraint greater than or equal to the concurrent-consumers setting.

	
If the work-manager is not shared (that is, it is dedicated to this inbound JMS adapter only) then set the work-manager attribute max-threads-constraint equal to the concurrent-consumers setting.

The default value is the work manager configured for the application itself.

For more information, see Section F.45, "work-manager".

The following configuration file shows a complete example of configuring an inbound JMS adapter.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <jms-adapter>
 <name>jmsInbound</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>MyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
 </jms-adapter>
 <jms-adapter>
 <name>jmsOutbound</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>
</n1:config>

11.6.2 JMS Outbound Adapter Component Configuration

Table 11-2 lists the jms-adapter element child elements applicable to the JMS outbound adapter.

Table 11-2 jms-adapter Outbound Component Configuration Child Elements

	Child Element	Description
	
connection-jndi-name

	
Optional. The JNDI name of the JMS connection factory. Default value is weblogic.jms.ConnectionFactory, for Oracle Event Processing server JMS.

	
connection-password

connection-encrypted-password

	
Optional. Either the password, or encrypted password, for connection-user.

Note: Specify either connection-password or connection-encrypted-password, but not both.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File" for details on encrypting the password.

	
connection-user

	
Optional. When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password (or connection-encrypted-password) settings, if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) settings.

You can use the connection-user and connection-password (or connection-encrypted-password) settings in applications where one security provider is used for JNDI access and a separate security provider is used for JMS access.

	
delivery-mode

	
Specifies the delivery mode: persistent (default value) or nonpersistent.

	
destination-jndi-name

	
Required. The JNDI name of the JMS destination.

Note: Specify either destination-jndi-name or destination-name, but not both.

	
destination-name

	
Required. The actual name of the JMS destination.

Note: Specify either destination-jndi-name or destination-name, but not both.

	
event-type

	
Event type whose property names match inbound JMS Map Message property names. Specify this property only if you want Oracle Event Processing to automatically perform the conversion between JMS messages and events. If you have created your own custom converter bean, then do not specify this property

For more information, see Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types".

	
jndi-factory

	
Optional. The JNDI factory name. Default value is weblogic.jndi.WLInitialContextFactory, for Oracle Event Processing server JMS.

	
jndi-provider-url

	
Required. The URL of the JNDI provider.

	
password

encrypted-password

	
Required. Either the password, or encrypted password, for user.

Note: Specify either password or encrypted-password, but not both.

See Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File" for details on encrypting the password.

	
session-transacted

	
Boolean value that specifies whether or not the session is transactional.

If the session is transacted then do not specify session-ack-mode-name.

Default: False.

	
user

	
Required. When Oracle Event Processing acquires the JNDI InitialContext, it uses the user and password (or encrypted-password) settings.

The following configuration file shows a complete example of configuring an outbound JMS adapter.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <jms-adapter>
 <name>jmsInbound</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
 </jms-adapter>
 <jms-adapter>
 <name>jmsOutbound</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>
</n1:config>

12 Integrating an HTTP Publish-Subscribe Server

This chapter describes how to use the HTTP publish-subscribe server adapter to connect an Oracle Event Processing event processing network with an HTTP pub-sub server.

This chapter includes the following sections:

	
Section 12.1, "Overview of HTTP Publish-Subscribe Server Adapter Configuration"

	
Section 12.2, "Configuring an HTTP Pub-Sub Adapter"

	
Section 12.3, "Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types"

	
Section 12.4, "Configuring the HTTP Pub-Sub Adapter EPN Assembly File"

	
Section 12.5, "Configuring the HTTP Pub-Sub Adapter Component Configuration File"

12.1 Overview of HTTP Publish-Subscribe Server Adapter Configuration

An HTTP Publish-Subscribe server (pub-sub server) is a mechanism whereby Web clients, such as browser-based clients, subscribe to channels, receive messages as they become available, and publish messages to these channels, all using asynchronous messages over HTTP. A channel is similar to a JMS topic.

Every instance of Oracle Event Processing includes a pub-sub server that programmers can use to implement HTTP publish-subscribe functionality in their applications. The pub-sub server is configured in the config.xml file along with other server services such as Jetty and JDBC datasources. The pub-sub server is based on the Bayeux protocol (see http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html) proposed by the cometd project (see http://cometd.com/). The Bayeux protocol defines a contract between the client and the server for communicating with asynchronous messages over HTTP.

In Oracle Event Processing, programmers access HTTP publish-subscribe functionality by using the following built-in HTTP publish-subscribe adapters (pub-sub adapters):

	
Publishing to a channel: see Section 12.1.1, "Overview of the Built-In Pub-Sub Adapter for Publishing"

	
Local publishing to a channel: see Section 12.1.1.1, "Local Publishing".

	
Remote publishing to a channel: see Section 12.1.1.2, "Remote Publishing".

	
Subscribing to a channel: see Section 12.1.2, "Overview of the Built-In Pub-Sub Adapter for Subscribing".

Oracle Event Processing also provides a pub-sub API for programmers to create their own custom pub-sub adapters for publishing and subscribing to a channel, if the built-in pub-sub adapters are not adequate. For example, programmers might want to filter incoming messages from a subscribed channel, dynamically create or destroy local channels, and so on. The built-in pub-sub adapters do not provide this functionality, which is why programmers must implement their own custom pub-sub adapters in this case. For details, see Chapter 15, "Integrating an External Component Using a Custom Adapter."

By default, Oracle Event Processing performs automatic conversion to and from Oracle Event Processing event types. Alternatively, you can create a custom converter. See Section 12.3, "Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types".

Oracle Event Processing can also automatically convert between JSON messages and Oracle Event Processing event types. See Section 12.1.3, "Converting Between JSON Messages and Event Types".

	
Note:

Byte arrays are not supported as property types in event types used with the pub-sub server.

The built-in pub-sub adapters work like any other adapter: they are stages in the event processing network, they are defined in the EPN assembly file, and they are configured with the standard component configuration files. Typical configuration options include specifying channels, specifying the local or remote pub-sub server, and user authentication.

The pub-sub server can communicate with any client that can understand the Bayeux protocol. Programmers developer their Web clients using one of the following frameworks:

	
Dojo JavaScript library (see http://dojotoolkit.org/) that supports the Bayeux protocol. Oracle Event Processing does not provide this library.

	
WebLogic Workshop Flex plug-in that enables development of a Flex client that uses the Bayeux protocol to communicate with a pub-sub server.

For information on securing an HTTP pub-sub server channel, see "Configuring HTTP Publish-Subscribe Server Channel Security" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

12.1.1 Overview of the Built-In Pub-Sub Adapter for Publishing

You can use the built-in pub-sub adapter for publishing events to a channel. The built-in pub-sub adapter supports the following publishing modes:

	
Section 12.1.1.1, "Local Publishing"

	
Section 12.1.1.2, "Remote Publishing"

For more information, see Section 12.1, "Overview of HTTP Publish-Subscribe Server Adapter Configuration".

12.1.1.1 Local Publishing

Figure 12-1 shows how the built-in pub-sub adapter for local publishing fits into a simple event processing network. The arbitrary adapter and processor are not required, they are just an example of possible components in your application in addition to the pub-sub adapter.

Figure 12-1 Built-In Pub-Sub Adapter For Local Publishing

[image: Description of Figure 12-1 follows]

Note the following in Figure 12-1:

	
Events flow from some source into an adapter of an application running in Oracle Event Processing. This adapter is not required, it is shown only as an example.

	
The events flow from the adapter to an arbitrary processor; again, this processor is not required.

	
The processor sends the events to the built-in pub-sub adapter for local publishing. The adapter in turn sends the events to the local HTTP pub-sub server configured for the Oracle Event Processing instance on which the application is deployed. The pub-sub adapter sends the messages to the channel for which it has been configured.

	
The local HTTP pub-sub server configured for Oracle Event Processing then sends the event as a message to all subscribers of the local channel.

12.1.1.2 Remote Publishing

Figure 12-2 shows how the built-in pub-sub adapter for remote publishing fits into a simple event processing network.

Figure 12-2 Built-In Pub-Sub Adapter For Remote Publishing

[image: Description of Figure 12-2 follows]

Note the following in Figure 12-2:

	
Events flow from some source into an adapter of an application running in Oracle Event Processing. The arbitrary adapter is not required, it is shown only as an example.

	
The events flow from the adapter to an arbitrary processor; again, this processor is not required.

	
The processor sends the events to the built-in pub-sub adapter for remote publishing. The adapter in turn sends the events as messages to the remote HTTP pub-sub server for which the adapter is configured; this HTTP pub-sub server could be on another Oracle Event Processing instance, a WebLogic Server instance, or any other third-party implementation. The pub-sub adapter sends the messages to the channel for which it has been configured.

	
The remote HTTP pub-sub server then sends the message to all subscribers of the channel.

12.1.2 Overview of the Built-In Pub-Sub Adapter for Subscribing

Figure 12-3 shows how the built-in pub-sub adapter for subscribing fits into a simple event processing network. The arbitrary processor and business POJO are not required, they are just an example of possible components in your application in addition to the pub-sub adapter.

Figure 12-3 Built-In Pub-Sub Adapter For Subscribing

[image: Description of Figure 12-3 follows]

Note the following in Figure 12-3:

	
Messages are published to a remote HTTP pub-sub server, which could be another instance of Oracle Event Processing, WebLogic Server, or a third-party implementation. The messages are typically published by Web based clients (shown in graphic), by the HTTP pub-sub server itself, or another server application.

	
The built-in pub-sub adapter running in an Oracle Event Processing application subscribes to the HTTP pub-sub server and receives messages from the specified channel. The adapter converts the messages into the event type configured for the adapter.

	
The pub-sub adapter sends the events to a processor. This processor is not required, it is shown only as an example of a typical Oracle Event Processing application.

	
The processor sends the events to a business POJO. Again, this business POJO is not required.

For more information, see Section 12.1, "Overview of HTTP Publish-Subscribe Server Adapter Configuration".

12.1.3 Converting Between JSON Messages and Event Types

Oracle Event Processing can automatically convert incoming JavaScript Object Notation (JSON) messages to event types, and vice versa in the outbound case. However, if you want to customize the way a JSON message (either inbound via a HTTP pub-sub adapter for subscribing or outbound via an HTTP pub-sub adapter for publishing) is converted to an event type, or vice versa, you must create your own converter bean. See Section 12.3, "Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types" for details.

If you do not provide your own converter class, and instead let Oracle Event Processing take care of the conversion between messages and event types, the following is true:

	
You must specify an event type that Oracle Event Processing uses in its conversion. See Section 12.2.2, "How to Configure an HTTP Pub-Sub Adapter Manually" for details.

	
The default converter used in the HTTP adapter for subscribing creates a new event of the specified type for each incoming message. For each property of the specified event type, it looks for a corresponding property name in the JSON object that constitutes the message, and if found, sets the corresponding value.

	
The default converter used in the HTTP adapter for publishing creates a JSON message for each event. For each property of the specified event type, a corresponding element is created in the output JSON message.

For more information, see http://www.json.org/.

12.2 Configuring an HTTP Pub-Sub Adapter

This section describes how to configure Oracle Event Processing HTTP pub-sub adapter for both publishing and subscribing:

	
Section 12.2.1, "How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse"

	
Section 12.2.2, "How to Configure an HTTP Pub-Sub Adapter Manually"

12.2.1 How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse

The simplest way to create and configure an HTTP pub-sub adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard.

For more information, see Section 7.4.1.2, "How to Create an Adapter Node".

After using the adapter wizard to create and specify the basic HTTP pub-sub adapter configuration, review Section 12.2.2, "How to Configure an HTTP Pub-Sub Adapter Manually" to complete the configuration.

12.2.2 How to Configure an HTTP Pub-Sub Adapter Manually

This section describes how to create and configure an HTTP pub-sub adapter manually. It describes the detailed steps that you may require depending on your application.

The simplest way to create and configure an HTTP pub-sub adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard as Section 12.2.1, "How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the adapter wizard to create and specify the basic HTTP pub-sub adapter configuration, review this procedure to complete the configuration.

You configure the built-in pub-sub adapters in their respective configuration files, similar to how you configure other components in the event processing network, such as processors or streams. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

The following procedure describes the main steps to configure the built-in pub-sub adapters for your application. For simplicity, it is assumed in the procedure that you are going to configure all components of an application in a single configuration XML file and that you have already created this file for your application.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the configuration of the built-in pub-sub adapters.

To configure an HTTP pub-sub adapter manually:

	
Open the configuration XML file using your favorite XML editor.

	
For each built-in pub-sub adapter you want to configure, add a http-pub-sub-adapter child element of the config root element; use the <name> child element to uniquely identify it. This name value will be used later as the id attribute of the wlevs:adapter element in the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular adapter in the EPN assembly file this adapter configuration applies.

For example, assume your configuration file already contains a processor (contents removed for simplicity) and you want to configure instances of each of the three built-in pub-sub adapters; then the updated file might look like the following; details of the adapter configuration will be added in later steps:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 ...
 </processor>
 <http-pub-sub-adapter>
 <name>remotePublisher</name>
 ...
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>remoteSubscriber</name>
 ...
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>localPublisher</name>
 ...
 </http-pub-sub-adapter>
</n1:config>

	
For each remote pub-sub adapter (for both publishing and subscribing), add a server-url child element of http-pub-sub-adapter to specify the URL of the remote HTTP pub-sub server to which the Oracle Event Processing application will publish or subscribe, respectively. The remote pub-sub server could be another instance of Oracle Event Processing, or a WebLogic Server instance, or it could be any third-party HTTP pub-sub server. For example:

<http-pub-sub-adapter>
 <name>remotePublisher</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 ...
</http-pub-sub-adapter>

In the example, the URL of the remote HTTP pub-sub server to which the remotePublisher adapter will publish events is http://myhost.com:9102/pubsub.

	
For each local pub-sub adapter for publishing, add a server-context-path element to specify the path of the local HTTP pub-sub server associated with the Oracle Event Processing instance hosting the current Oracle Event Processing application.

By default, each Oracle Event Processing server is configured with an HTTP pub-sub server with path /pubsub; if, however, you have created a new local HTTP pub-sub server, or changed the default configuration, then specify the value of the path child element of the http-pubsub element in the server's config.xml file. For example:

 <http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 ...
 </http-pub-sub-adapter>

	
For all the pub-sub adapters, whether they are local or remote or for publishing or subscribing, add a channel child element to specify the channel that the pub-sub adapter publishes or subscribes to, whichever is appropriate. For example:

<http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 <channel>/channel2</channel>
</http-pub-sub-adapter>

In the example, the localPublisher pub-sub adapter publishes to a local channel with pattern /channel2.

	
For all pub-sub adapters for subscribing, add an event-type element that specifies the JavaBean to which incoming messages are mapped. You are required to specify this for all subscribing adapters. At runtime, Oracle Event Processing uses the incoming key-value pairs in the message to map the message data to the specified event type.

You can also optionally use the event-type element in a pub-sub adapter for publishing if you want to limit the types of events that are published to just those specified by the event-type elements. Otherwise, all events sent to the pub-sub adapter are published. For example:

<http-pub-sub-adapter>
 <name>remoteSubscriber</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel3</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
</http-pub-sub-adapter>

Be sure this event type has been registered in the EPN assembly file by specifying it as a child element of the wlevs:event-type-repository element.

	
Finally, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication, add user and password (or encrypted-password) elements to specify the username and password or encrypted password. For example:

<http-pub-sub-adapter>
 <name>remotePublisher</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel1</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

	
Optionally create a converter Java class if you want to customize the way the inbound or outbound messages are converted into event types. This step is optional because you can let Oracle Event Processing make the conversion based on mapping property names between the messages and a specified event type.

See Section 12.3, "Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types."

	
If you are going to use the local HTTP pub-sub server associated with the Oracle Event Processing instance for local publishing, use Visualizer, the Oracle Event Processing Administration Tool, to add new channels with the channel pattern required by your application.

For details, see "How to Configure Security for an HTTP Publish-Subscribe Channel" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

	
Update the EPN assembly file, adding declarations for each built-in pub-sub adapter you are adding to your application.

See Section 12.4, "Configuring the HTTP Pub-Sub Adapter EPN Assembly File."

	
Update the MANIFEST.MF file of your application, adding the package com.bea.core.encryption to the Import-Package header. For example:

Import-Package:
 com.bea.core.encryption
 com.bea.wlevs.adapter.defaultprovider;version="11.1.1.4_0",
 ...

See Section 23.2.2.1, "Creating the MANIFEST.MF File" for additional information on the manifest file.

12.3 Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types

If you want to customize the way a message (either inbound via a HTTP pub-sub adapter for subscribing or outbound via an HTTP pub-sub adapter for publishing) is converted to an event type, or vice versa, you must create your own converter bean.

The custom converter bean for an inbound HTTP pub-sub message must implement the com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter interface. This interface has a single method:

public List convert(JSONObject message) throws Exception;

The message parameter corresponds to the incoming HTTP pub-sub message and the return value is a List of events that will be passed on to the next stage of the event processing network. The incoming message is assumed to be the JSON format.

The custom converter bean for an outbound HTTP pub-sub message must implement the com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter interface. This interface has a single method:

public List<JSONObject> convert(Object event) throws Exception;

The parameters correspond to an event received by the outbound HTTP pub-sub adapter from the source node in the EPN and the return value is a List of JSON messages.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full description of these APIs.

The following example shows the Java source of a custom converter bean that implements both InboundMessageConverter and OutboundMessageConvert; this bean can be used for both inbound and outbound HTTP pub-sub adapters:

package com.sample.httppubsub;
import com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter;
import com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter;
import com.bea.httppubsub.json.JSONObject;
import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
public class TestConverter implements InboundMessageConverter, OutboundMessageConverter {
 public List convert(JSONObject message) throws Exception {
 List eventCollection = new ArrayList();
 PubsubTestEvent event = new PubsubTestEvent();
 event.setMessage("From TestConverter: " + message);
 eventCollection.add(event);
 return eventCollection;
 }
 public List<JSONObject> convert(Object event) throws Exception {
 List<JSONObject> list = new ArrayList<JSONObject>(1);
 Map map = new HashMap();
 map.put("message", ((PubsubTestEvent) event).getMessage());
 list.add(new JSONObject(map));
 return list;
 }
}

You can use the GSON Java library to help you convert Java objects to JSON format.

For more information, see:

	
http://www.json.org/

	
http://code.google.com/p/google-gson

12.4 Configuring the HTTP Pub-Sub Adapter EPN Assembly File

For each HTTP pub-sub adapter in your event processing network, you must add a corresponding wlevs:adapter element to the EPN assembly file of your application; use the provider attribute to specify whether the HTTP pub-sub adapter is publishing or subscribing.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to integrate the HTTP pub-sub adapter into the event processing network. The requirements of your own Oracle Event Processing application define where in the EPN the HTTP pub-sub adapters fit in.

This section describes:

	
Section 12.4.1, "HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration"

	
Section 12.4.2, "HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration"

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files."

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

12.4.1 HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration

If you are using a built-in pub-sub adapter for publishing (either locally or remotely), set the provider attribute to httppub, as shown:

<wlevs:adapter id="remotePublisher" provider="httppub"/>

The value of the id attribute, in this case remotePublisher, must match the name specified for this built-in pub-sub adapter in its configuration file. Note that the declaration of the built-in adapter for publishing in the EPN assembly file does not specify whether this adapter is local or remote; you specify this in the adapter configuration file.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to integrate the pub-sub adapter into the event processing network. Typically, a pub-sub adapter for subscribing is the first stage in an EPN (because it receives messages) and a pub-sub adapter for publishing would be in a later stage (because it sends messages). However, the requirements of your own Oracle Event Processing application define where in the network the pub-sub adapters fit in.

Also be sure that the event types used by the pub-sub adapters have been registered in the event type repository using the wlevs:event-type-repository element.

The following sample EPN file shows an event processing network with two built-in pub-sub adapters for publishing both local and remote publishing); see the text after the example for an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
 <wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="receiveFromFeed"
 class="com.mycompany.httppubsub.ReceiveFromFeed">
 </wlevs:adapter>
 <wlevs:processor id="pubsubProcessor" />
 <wlevs:adapter id="remotePublisher" provider="httppub"/>
 <wlevs:adapter id="localPublisher" provider="httppub"/>
 <wlevs:channel id="feed2processor">
 <wlevs:source ref="receiveFromFeed"/>
 <wlevs:listener ref="pubsubProcessor"/>
 </wlevs:channel>
 <wlevs:channel id="pubsubStream">
 <wlevs:listener ref="remotePublisher"/>
 <wlevs:listener ref="localPublisher"/>
 <wlevs:source ref="pubsubProcessor"/>
 </wlevs:channel>
</beans>

In the preceding example:

	
The receiveFromFeed adapter is a custom adapter that receives data from some data feed; the details of this adapter are not pertinent to this topic. The receiveFromFeed adapter then sends its events to the pubsubProcessor via the feed2processor channel.

	
The pubsubProcessor processes the events from the receiveFromFeed adapter and then sends them to the pubsubStream channel, which in turn sends them to the two built-in pub-sub adapters: remotePublisher and localPublisher.

	
Based on the configuration of these two pub-sub adapters (see examples in Section 12.2.2, "How to Configure an HTTP Pub-Sub Adapter Manually"), remotePublisher publishes events only of type com.mycompany.httppubsub.PubsubEvent and publishes them to the a channel called /channel1 on the HTTP pub-sub server hosted remotely at http://myhost.com:9102/pubsub.

The localPublisher pub-sub adapter publishes all events it receives to the local HTTP pub-sub server, in other words, the one associated with the Oracle Event Processing server on which the application is running. The local pub-sub server's path is /pubsub and the channel to which the adapter publishes is called /channel2.

The following sample EPN file shows an event processing network with one built-in pub-sub adapter for subscribing; see the text after the example for an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
 <wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="remoteSubscriber" provider="httpsub">
 <wlevs:listener ref="myEventBean"/>
 </wlevs:adapter>
 <bean id="myEventBean"
 class="com.mycompany.httppubsub.MyEventBean">
 </bean>
 <wlevs:channel id="pubsubStream" advertise="true">
 <wlevs:listener>
 <bean id="mySink"
 class="com.mycompany.httppubsub.MySink"/>
 </wlevs:listener>
 <wlevs:source ref="myEventBean"/>
 </wlevs:channel>
</beans>

In the preceding example:

	
The remoteSubscriber adapter is a built-in pub-sub adapter for subscribing.

Based on the configuration of this adapter (see examples in Section 12.2.2, "How to Configure an HTTP Pub-Sub Adapter Manually"), remoteSubscriber subscribes to a channel called /channel3 configured for the remote HTTP pub-sub server hosted at http://myhost.com:9102/pubsub. Oracle Event Processing converts each messages it receives from this channel to an instance of com.mycompany.httppubsub.PubsubEvent and then sends it a Spring bean called myEventBean.

	
The myEventBean processes the event as described by the com.mycompany.httppubsub.MyEventBean class, and then passes it the mySink event source via the pubsubStream channel. This section does not discuss the details of these components because they are not pertinent to the HTTP pub-sub adapter topic.

12.4.2 HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration

If you are using a built-in pub-sub adapter for subscribing, set the provider attribute to httpsub, as shown:

<wlevs:adapter id="remoteSubscriber" provider="httpsub"/>

The value of the id attribute, in this case remoteSubscriber, must match the name specified for this built-in pub-sub adapter in its configuration file.

The value of the id attribute, in this case remoteSubscriber, must match the name specified for this HTTP pub-sub adapter in its configuration file. The configuration file configures the HTTP pub-sub server destination to which this adapter subscribes.

The following sample EPN file shows an event processing network with one built-in pub-sub adapter for subscribing:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
 <wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="remoteSubscriber" provider="httpsub">
 <wlevs:listener ref="myEventBean"/>
 </wlevs:adapter>
 <bean id="myEventBean"
 class="com.mycompany.httppubsub.MyEventBean">
 </bean>
 <wlevs:channel id="pubsubStream" advertise="true">
 <wlevs:listener>
 <bean id="mySink"
 class="com.mycompany.httppubsub.MySink"/>
 </wlevs:listener>
 <wlevs:source ref="myEventBean"/>
 </wlevs:channel>
</beans>

12.5 Configuring the HTTP Pub-Sub Adapter Component Configuration File

You configure the HTTP pub-sub adapters in their respective configuration files, similar to how you configure other components in the event processing network, such as processors or streams.

The root element for configuring an HTTP pub-sub adapter is http-pub-sub-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter.

This section describes:

	
Section 12.5.1, "HTTP Pub-Sub Adapter for Publishing Component Configuration"

	
Section 12.5.2, "HTTP Pub-Sub Adapter for Subscribing Component Configuration"

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files."

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

12.5.1 HTTP Pub-Sub Adapter for Publishing Component Configuration

Table 12-1 lists the http-pub-sub-adapter element child elements applicable to an HTTP pub-sub adapter for publishing.

Table 12-1 http-pub-sub-adapter for Publishing Component Configuration Child Elements

	Child Element	Description
	
server-context-path

	
Required. For each local HTTP pub-sub adapter for publishing, specify the value of the Oracle Event Processing server config.xml file element http-pubsub child element path of the local HTTP pub-sub server associated with the Oracle Event Processing instance hosting the current Oracle Event Processing application.

Default: /pubsub.

If you have created a new local HTTP pub-sub server, or changed the default configuration, then specify the appropriate path child element value.

NOTE: Do not specify this option for a remote HTTP pub-sub adapter.

	
server-url

	
Required. For each remote HTTP pub-sub adapter for publishing, specify the URL of the remote HTTP pub-sub server to which the Oracle Event Processing application will publish. The remote HTTP pub-sub server could be another instance of Oracle Event Processing, or a WebLogic Server instance, or it could be any third-party HTTP pub-sub server. For example:

http://myhost.com:9102/pubsub

NOTE: Do not specify this option for a local HTTP pub-sub adapter.

	
channel

	
Required. For both local and remote HTTP pub-sub adapters for publishing, specify the channel that the HTPP pub-sub adapter publishes to.

	
event-type

	
Optional. For both local and remote HTTP pub-sub adapters for publishing, specify the fully qualified class name of the JavaBean event to limit the types of events that are published. Otherwise, all events sent to the HTTP pub-sub adapter are published.

You must register this class in the EPN assembly file as a wlevs:event-type-repository element wlevs:class child element. For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

	
user

	
Optional. For both local and remote HTTP pub-sub adapters for publishing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication, specify a user name.

	
password

	
Optional. For both local and remote HTTP pub-sub adapters for publishing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication, specify a password.

Choose either password or encrypted-password but not both.

	
encrypted-password

	
Optional. For both local and remote HTTP pub-sub adapters for publishing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication and requires password encryption, specify an encrypted password.

Choose either password or encrypted-password but not both.

The following configuration file shows a complete example of configuring an HTTP pub-sub adapter for publishing: both a remote and local publisher is shown.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <http-pub-sub-adapter>
 <name>remotePublisher</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel1</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 <channel>/channel2</channel>
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>remoteSubscriber</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel3</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 </http-pub-sub-adapter>
</n1:config>

12.5.2 HTTP Pub-Sub Adapter for Subscribing Component Configuration

Table 12-2 lists the http-pub-sub-adapter element child elements applicable to an HTTP pub-sub adapter for subscribing.

Table 12-2 http-pub-sub-adapter for Subscribing Component Configuration Child Elements

	Child Element	Description
	
server-url

	
Required. For each remote HTTP pub-sub adapter for subscribing, specify the URL of the remote HTTP pub-sub server to which the Oracle Event Processing application will publish. The remote HTTP pub-sub server could be another instance of Oracle Event Processing, or a WebLogic Server instance, or it could be any third-party HTTP pub-sub server

NOTE: do not specify this option for a local HTTP pub-sub adapter.

	
channel

	
Required. For both local and remote HTTP pub-sub adapters for subscribing, specify the channel that the HTPP pub-sub adapter subscribes to.

	
event-type

	
Required. For both local and remote HTTP pub-sub adapters for subscribing, specify the fully qualified class name of the JavaBean to which incoming messages are mapped. At runtime, Oracle Event Processing uses the incoming key-value pairs in the message to map the message data to the specified event type.

You must register this class in the EPN assembly file as a wlevs:event-type-repository element wlevs:class child element. For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

	
user

	
Optional. For both local and remote HTTP pub-sub adapters for subscribing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication, specify a user name.

	
password

	
Optional. For both local and remote HTTP pub-sub adapters for subscribing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication, specify a password.

Choose either password or encrypted-password but not both.

	
encrypted-password

	
Optional. For both local and remote HTTP pub-sub adapters for subscribing, if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication and requires password encryption, specify an encrypted password.

Choose either password or encrypted-password but not both.

The following configuration file shows a complete example of configuring an HTTP pub-sub adapter for subscribing.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <http-pub-sub-adapter>
 <name>remotePublisher</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel1</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 <channel>/channel2</channel>
 </http-pub-sub-adapter>
 <http-pub-sub-adapter>
 <name>remoteSubscriber</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel3</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 </http-pub-sub-adapter>
</n1:config>

13 Integrating a Cache

This chapter describes how to configure a caching system for use with Oracle Event Processing event processing networks. It includes information on how to configure caches that are based on Oracle Coherence, Oracle Event Processing, and third-party caching providers and to access them from Oracle Continuous Query Language, Java classes, and other code.

This chapter includes the following sections:

	
Section 13.1, "Overview of Integrating a Cache"

	
Section 13.2, "Configuring an Oracle Coherence Caching System and Cache"

	
Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache"

	
Section 13.4, "Configuring a Third-Party Caching System and Cache"

	
Section 13.5, "Adding Caching to an Event Processing Network"

	
Section 13.6, "Accessing a Cache from Application Code"

13.1 Overview of Integrating a Cache

You can integrate a cache system with your Oracle Event Processing application so that the cache is available as source or destination for data your application uses, including event data. Integrating a cache can provide access to relatively static data at a speed that is well suited to an application that handles streaming data.

A cache is a temporary storage area for events, created to improve the overall performance of your Oracle Event Processing application (a cache is not necessary for the application to function correctly). To increase the availability of the events and increase the performance of their applications, Oracle Event Processing applications can publish to or consume events from a cache.

A caching system refers to a configured instance of a caching implementation. A caching system defines a named set of configured caches as well as the configuration for remote communication if any of the caches are distributed across multiple machines.

By integrating a cache, you can:

	
Load into the cache frequently-used data for access from application code, improving application performance.

	
Write to the cache processed event data for use by another application.

For more complete cache integration uses case descriptions, see Section 13.1.3, "Caching Use Cases".

Note that a cache does not have to be an actual stage in the network; another component or Spring bean can access a cache programmatically using the caching APIs.

Oracle Event Processing caching includes the following features:

	
Pre-load a cache with data before an application is deployed.

	
Periodically refresh, invalidate, and flush the data in a cache. All these tasks happen incrementally and without halting the application or causing latency spikes.

	
Dynamically update a cache's configuration.

Although configuration steps vary for each of the caching implementations, the high-level steps are as follows:

To integrate caching:

	
Configure the caching system and caches. How you do this will vary depending on the caching implementation you're using.

For more information, see Section 13.1.2, "Overview of Cache Configuration".

	
Declare the caching system and its caches by updating a component configuration file.

For more information, see Section 13.1.2, "Overview of Cache Configuration".

	
Add the caching system and caches to the event provcessing network by editing the EPN assembly file. Note that you can use the IDE's EPN editor to add a cache.

For more information, see Section 13.5, "Adding Caching to an Event Processing Network".

	
Write code to access the cache in your Oracle Event Processing application.

For more information, see Section 13.6, "Accessing a Cache from Application Code".

13.1.1 Caching Implementations Supported by Oracle Event Processing

Oracle Event Processing supports the following caching implementations:

	
Oracle Event Processing local cache: a local, in-memory single-JVM cache. This implementation is best for local use (it cannot be used in a cluster). It might also be useful for development in the early stages because it is relatively simple to set up.

	
Oracle Coherence: a JCache-compliant in-memory distributed data grid solution for clustered applications and application servers. It coordinates updates to the data using cluster-wide concurrency control, replicates data modifications across the cluster using the highest performing clustered protocol available, and delivers notifications of data modifications to any servers that request them. You take advantage of Oracle Coherence features using the standard Java collections API to access and modify data, and use the standard JavaBean event model to receive data change notifications.

	
Note:

Before you can use Oracle Event Processing with Oracle Coherence, you must obtain a valid Oracle Coherence license such as a license for Coherence Enterprise Edition, Coherence Grid Edition, or Oracle WebLogic Application Grid. For more information on Oracle Coherence, see http://www.oracle.com/technology/products/coherence/index.html.

	
Third-party caches: you can create a plug-in to allow Oracle Event Processing to work with other, third-party cache implementations.

13.1.2 Overview of Cache Configuration

You configure caching systems and caches before adding them to the event processing network (EPN). How you add configuration depends on which caching implementation you will be using.

You integrate caching systems and caches by updating the following configuration files:

	
If you are using Oracle Coherence for caching, use a coherence-cache-config.xml file to configure it. This is the same kind of file you use to configure Coherence in other contexts.

For more information, see Section 13.2.1, "Configuring the Oracle Coherence Caching System and Caches".

	
If you are using Oracle Coherence, you can optionally use a tangosol-coherence-override.xml file to make global, server-wide configuration changes if you are caching with Oracle Coherence.

For more information, see Section 13.2.1, "Configuring the Oracle Coherence Caching System and Caches".

	
Use a component configuration file for basic configuration of caching systems and caches. In this file, you essentially declare the existence of the cache and provide configuration for it. If the cache is an Oracle Coherence cache, you can use this file to reference Coherence-specific configuration in a coherence-cache-config.xml file.

For each caching system your application uses, you add a separate caching-system element in a component configuration file. You also add a cache element for each cache.

For more information, see Section 13.2.1, "Configuring the Oracle Coherence Caching System and Caches" or Section 13.3.1, "Configuring an Oracle Event Processing Caching System".

	
Use the application's EPN assembly file to add configured caching systems and caches to the event processing network, connecting the caches to other components in the EPN.

For more information, see Section 13.5, "Adding Caching to an Event Processing Network".

Basically, though, you create, configure, and wire caching systems and caches using component configuration and EPN assembly files. By default, when you create a project, the IDE creates one component configuration file and one EPN assembly file. When you add a cache to the EPN using the IDE, it adds a cache element to the EPN assembly file. You must manually add caching-system elements to the EPN assembly and component configuration files.

When adding configured caching systems and caches to an application's event processing network, you specify entries in the EPN assembly file with entries in the component configuration file by referencing configured names.

In Example 13-1 (a component configuration file excerpt) and Example 13-2 (an EPN assembly file excerpt), EPN id attribute values must have the same values as configuration name attribute values:

Example 13-1 Component Configuration File Name Values

<caching-system>
 <name>cacheSystem</name>
 <cache>
 <name>cache1</name>
 ...
 </cache>
</caching-system>

Example 13-2 EPN Assembly File ID and Ref Values

<wlevs:caching-system id="cacheSystem">
 ...
</wlevs:caching-system>

<wlevs:cache id="cache1">
 <wlevs:caching-system ref="cacheSystem"/>
</wlevs:cache>

If your application has more than one caching system, you can create a caching-system element for each of them in a config.xml file. You can use one XML file or several, putting all in the META-INF/wlevs directory. Choose the method that best suits your development environment.

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 5.3, "Creating EPN Assembly Files"

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

For more information on configuring caching, see:

	
Section 13.1.3, "Caching Use Cases"

	
Section 13.1.4, "Caching APIs"

13.1.3 Caching Use Cases

Caching technology is a great fit for streaming data use cases, where high throughput can be particularly important. Getting data from a cache will usually be much faster than getting the same data from a relational database.

The following describes common use cases for caching in Oracle Event Processing applications.

	
Publishing events to a cache

An example of this use case is a financial application that publishes events to a cache while the financial market is open and then processes data in the cache after the market closes.

Publishing events to a cache makes them highly available or available to other Oracle Event Processing applications running in the server. Publishing events to a cache also allows for asynchronous writes to a secondary storage by the cache implementation. You can configure any stage in an Oracle Event Processing application that generates events (input adapter, channel, business POJO, or processor) to publish its events to the cache.

	
Consuming data from a cache

Oracle Event Processing applications may sometimes need to access non-streaming data in order to do its work; caching this data can increase the performance of the application.

The standard components of an Oracle Event Processing application that are allowed direct programming access to a cache are input- and output-adapters and business POJOs.

Additionally, applications can access a cache from Oracle CQL or EPL, either by a user-defined function or directly from an Oracle CQL or EPL statement.

In the case of a user-defined function, programmers use Spring to inject the cache resource into the implementation of the function. For more information, see Section 1.4.3, "Configuring Oracle Event Processing Resource Access".

Applications can also query a cache directly from anOracle CQL or EPL statement that runs in a processor. In this case, the cache essentially functions as another type of data source to a processor so that querying a cache is very similar to querying a channel except that data is pulled from a cache.

An example of using Oracle CQL to query a cache is from a financial application that publishes orders and the trades used to execute the orders to a cache. At the end of the day when the markets are closed, the application queries the cache in order to find all the trades related to a particular order.

	
Updating and deleting data in a cache

An Oracle Event Processing application can both update and delete data in a cache when required.

For example, a financial application may need to update an order in the cache each time individual trades that fulfill the order are executed, or an order may need to be deleted if it has been cancelled. The components of an application that are allowed to consume data from a cache are also allowed to update it.

	
Using a cache in a multi-server domain

If you build an Oracle Event Processing application that uses a cache, and you plan to deploy that application in a multi-server domain, then you must use a caching-system that supports a distributed cache.

In this case, you must use either Oracle Coherence or a third-party caching system that supports a distributed cache.

For more information, see:

	
"Administering Multi-Server Domains With Oracle Event Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Section 13.2, "Configuring an Oracle Coherence Caching System and Cache"

	
Section 13.4, "Configuring a Third-Party Caching System and Cache"

13.1.4 Caching APIs

Oracle Event Processing provides caching APIs that you can use in your application to perform certain tasks. The APIs are in the com.bea.cache.jcache package, which includes the APIs used to access a cache and create cache loader, listeners, and stores. Also, if you intend to use that functionality, you will need to import the com.tangosol.net and com.tangosol.net.cache packages.

You create, configure, and wire caching systems and caches using the EPN assembly file and component configuration files. This means that you typically never explicitly use the Cache and CachingSystem interfaces in your application; the only reason to use them is if you have additional requirements than the standard configuration. For example, if you want to provide integration with a third-party cache provider, then you must use the CachingSystem interface; if you want to perform operations on a cache that are not part of the java.util.Map interface, then you can use the Cache interface.

If you create cache listeners, loaders, or stores for an Oracle Event Processing local cache, then the beans you write must implement the CacheListener, CacheLoader, or CacheStore interfaces.

If you create cache listeners, loaders, or stores for an Oracle Coherence cache, then the beans you write must implement the appropriate Oracle Coherence interfaces.

If you create cache listeners, loaders, or stores for a third-party cache, then the beans you write must implement the appropriate third-party cache interfaces.

For more information, see:

	
Section 13.2, "Configuring an Oracle Coherence Caching System and Cache"

	
Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache"

	
Section 13.4, "Configuring a Third-Party Caching System and Cache"

	
Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

13.2 Configuring an Oracle Coherence Caching System and Cache

You can configure your application to use the Oracle Coherence caching system and cache. Use this caching system if you plan to deploy your application to a multi-server domain.

Using Oracle Coherence, only the first caching-system can be configured in a server. Oracle Event Processing will ignore any other caching systems you might configure.

	
Note:

Before you can legally use Oracle Event Processing with Oracle Coherence, you must obtain a valid Coherence license such as a license for Coherence Enterprise Edition, Coherence Grid Edition, or Oracle WebLogic Application Grid. For more information on Oracle Coherence, see http://www.oracle.com/technology/products/coherence/index.html.

To configure an Oracle Coherence caching system and cache:

	
Decide whether or not your Oracle Coherence cache will be used exclusively by this application or shared amongst two or more applications.

For more information, see Section 13.2.2, "Configuring a Shared Oracle Coherence Cache".

	
Configure the cache and caching system using a coherence-cache-config.xml file (and possibly a tangosol-coherence-override.xml file) and place the file in your application's META-INF/wlevs/coherence directory.

	
Configure the caching system and its caches by updating the caching configuration file for the application.

See Section 13.2.1, "Configuring the Oracle Coherence Caching System and Caches."

	
Configure the caching system and its caches by updating the EPN assembly file with one or more cache element child elements.

	
Before assembling and deploying the application, edit your META-INF/MANIFEST.MF to import packages that might be required in your implementation. If your applications implements cache listeners, loaders or stores, your manifest should import com.tangosol.net.cache packages.

For more information, see Section 5.7.5, "How to Import a Package".

13.2.1 Configuring the Oracle Coherence Caching System and Caches

When configuring an Oracle Coherence cache for integration with an Oracle Event Processing application, you use Coherence configuration files, then reference those files in Oracle Event Processing component configuration.

Oracle Event Processing leverages the native configuration provided by Oracle Coherence. You do this by packaging the following two Oracle Coherence configuration files, using the file names indicated in the following list, in the application bundle that uses the Oracle Coherence cache:

	
coherence-cache-config.xml—Oracle Coherence cache configuration information. Individual caches are identified with the cache-name element; the value of this element maps to the id attribute of the wlevs:cache element in the EPN assembly file. See Section 13.2.1.1, "The coherence-cache-config.xml File" for information about this file as well as an example of the mapping.

This is a per-application configuration file; put this file in the META-INF/wlevs/coherence directory of the bundle JAR. Note that this directory is different from the directory that stores the component configuration file for the local in-memory Oracle Event Processing caching provider (META-INF/wlevs).

	
tangosol-coherence-override.xml—Oracle Coherence cluster configuration. See Section 13.2.1.2, "The tangosol-coherence-override.xml File" for information about this file as well as an example.

This is a global per-server file (referred to as "operational configuration" in the Oracle Coherence documentation); put this file in the Oracle Event Processing server config directory.

Once you have configured Oracle Coherence using the files in the preceding list, update your component configuration file as shown in Example 13-3. Here, you declare a Coherence caching system for use in the application by referencing the coherence-cache-config.xml file where you configured the cache.

Example 13-3 Component Configuration File: Coherence Cache

<coherence-caching-system>
 <name>caching-system-id</name>
 <coherence-cache-config>
 ../wlevs/coherence/coherence-cache-config.xml
 </coherence-cache-config>
</coherence-caching-system>

When you declare that a caching system uses the Oracle Coherence provider, be sure that all of the caches of this caching system also map to an Oracle Coherence configuration and not an Oracle Event Processing local configuration. Otherwise, Oracle Event Processing will throw an exception. For reference information on this file, see Section D.23, "coherence-caching-system" and Section D.22, "coherence-cache-config".

13.2.1.1 The coherence-cache-config.xml File

The coherence-cache-config.xml file is the basic Oracle Coherence configuration file and must conform to the Oracle Coherence DTDs, as is true for any Oracle Coherence application.

The following sample shows a simple configuration. See the explanation after the sample for information about the sections in bold.

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>myCoherenceCache</cache-name>
 <scheme-name>new-replicated</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myLoaderCache</cache-name>
 <scheme-name>test-loader-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myStoreCache</cache-name>
 <scheme-name>test-store-scheme</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <replicated-scheme>
 <scheme-name>new-replicated</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>my-local-scheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 </replicated-scheme>
 <local-scheme>
 <scheme-name>my-local-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 </local-scheme>
 <local-scheme>
 <scheme-name>test-loader-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>
 com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getLoader</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </local-scheme>
 <local-scheme>
 <scheme-name>test-store-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>
 com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getStore</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </local-scheme>
 </caching-schemes>
</cache-config>

In the Oracle Coherence configuration file, the cache-name element that is a child element of cache-mapping identifies the name of the Oracle Coherence cache. The value of this element must exactly match the value of the id attribute of the wlevs:cache element in the EPN assembly file. For example, the following EPN assembly file snippet refers to the myCoherenceCache cache in the Oracle Coherence configuration file:

<wlevs:cache id="myCoherenceCache" advertise="false">
 <wlevs:caching-system ref="coherence-cache"/>
 <wlevs:cache-loader ref="localLoader"/>
 <wlevs:cache-listener ref="localListener"/>
</wlevs:cache>

The Oracle Coherence configuration file illustrates another requirement when using Oracle Coherence with Oracle Event Processing: an Oracle Coherence factory must be declared when using Spring to configure a loader or store for a cache. You do this using the cachestore-scheme element in the Oracle Coherence configuration file to specify a factory class that allows Oracle Coherence to call into Oracle Event Processing and retrieve a reference to the loader or store that is configured for the cache. The only difference between configuring a loader or store is that the method-name element has a value of getLoader when a loader is used and getStore when a store is being used. You pass the cache name to the factory as an input parameter.

Refer to your Oracle Coherence documentation (see http://www.oracle.com/technology/products/coherence/index.html) for detailed information about the coherence-cache-config.xml file.

13.2.1.2 The tangosol-coherence-override.xml File

The tangosol-coherence-override.xml file configures Oracle Coherence caching. Include this file if you are using Oracle Coherence for caching only. Do not include this file if you are using Oracle Coherence for clustering.

The following sample shows a simple configuration. See the explanation after the sample for information about the sections in bold.

<?xml version='1.0'?>
<coherence xml-override="/tangosol-coherence-override.xml">
 <cluster-config>
 <member-identity>
 <cluster-name>com.bea.wlevs.example.provider</cluster-name>
 </member-identity>
...
</coherence>

This configuration file is fairly standard. The main thing to note is that you should specify a cluster-name element to prevent Oracle Coherence from attempting to join existing Oracle Coherence clusters when Oracle Event Processing starts up; this can cause problems and sometimes even prevent Oracle Event Processing from starting.

Refer to your Oracle Coherence documentation (see http://www.oracle.com/technology/products/coherence/index.html) for detailed information about the tangosol-coherence-override.xml file.

For more information on Oracle Event Processing clusters, see "Administrating Multi-Server Domains With Oracle Event Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

13.2.2 Configuring a Shared Oracle Coherence Cache

When declaring Oracle Coherence caches in the EPN assembly files of one or more applications deployed to the same Oracle Event Processing server, you should never configure multiple instances of the same cache with a loader or store. You might inadvertently do this by employing multiple applications that each configure the same Oracle Coherence cache with a loader or store in their respective EPN assembly file. If you do this, Oracle Event Processing throws an exception.

If multiple application bundles need to share Oracle Coherence caches, then you should put the EPN assembly file that contains the appropriate wlevs:cache and wlevs:caching-system in a separate bundle and set their advertise attributes to true.

To export both the caching system and the cache as an OSGi service, set the advertise attribute to true.

<wlevs:caching-system id="caching-system-id" provider="coherence" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

If the cache is advertised, then a component in the EPN of an application in a separate bundle can then reference it. The following example shows how a processor in one bundle can use as a cache source the cache with ID cache-id located in a separate bundle called cacheprovider:

<wlevs:processor id="myProcessor2">
 <wlevs:cache-source ref="cacheprovider:cache-id"/>
</wlevs:processor>

13.3 Configuring an Oracle Event Processing Local Caching System and Cache

You can configure your application to use the Oracle Event Processing local caching system and cache. The Oracle Event Processing local caching system is appropriate if you do not plan to deploy your application to a multi-server domain. If you plan to deploy your application to a multi-server domain, consider using an Oracle Coherence cache (see Section 13.2, "Configuring an Oracle Coherence Caching System and Cache").

To configure an Oracle Event Processing local caching system and cache:

	
Declare the caching system and caches by updating a component configuration file by adding caching-system and cache elements.

For more information, see Section 13.3.1, "Configuring an Oracle Event Processing Caching System"

	
Optionally, override the default cache configuration by updating the EPN assembly file with one or more additional cache element child elements.

For more information, see Section 13.5, "Adding Caching to an Event Processing Network".

	
Before assembling and deploying the application, verify that the META-INF/MANIFEST.MF file includes the following import:

com.bea.wlevs.cache.spi; version ="11.1.0.0"

For more information, see Section 5.7.5, "How to Import a Package".

13.3.1 Configuring an Oracle Event Processing Caching System

In order to use an Oracle Event Processing caching system cache in an application, you need to first configure the cache. Afterward, you can reference the cache in other places, such as an event processing network. This section describes the settings you can make in a component configuration file. For reference information on the file, see Section D.18, "caching-system" and Section D.17, "cache".

In a component configuration file (such as a config.xml file), to the config root element, add a caching-system child element; use its name child element to uniquely identify the caching system. This name will match the EPN assembly file's wlevs:caching-system element id attribute. This is how Oracle Event Processing knows to which particular caching system in the EPN assembly file this caching configuration applies.

For example, assume your configuration file already contains a processor and an adapter (contents removed from this example for simplicity); then the updated file might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 ...
 </processor>
 <adapter>
 ...
 </adapter
 <caching-system>
 <name>caching-system-id</name>
 </caching-system>
</n1:config>

For each cache you want to create, update the caching-system element to add a cache child element; use the name child element to uniquely identify each.

This name must match the wlevs:cache element id attribute you specify in the EPN assembly file. This is how Oracle Event Processing knows to which particular cache in the EPN assembly file this configuration applies.

For each cache, optionally add the following elements that take simple data types to configure the cache:

	
max-size: The number of cache elements in memory after which eviction/paging occurs. The maximum cache size is 231-1 entries; default is 64.

	
eviction-policy: The eviction policy to use when max-size is reached. Supported values are: FIFO, LRU, LFU, and NRU; default value is LFU.

	
time-to-live: The maximum amount of time, in milliseconds, that an entry is cached. Default value is infinite.

	
idle-time: Amount of time, in milliseconds, after which cached entries are actively removed from the cache. Default value is infinite.

	
work-manager-name: The work manager to be used for all asynchronous operations. The value of this element corresponds to the name child element of the work-manager element in the server's config.xml configuration file.

For more information, see Section F.45, "work-manager".

For example:

<caching-system>
 <name>caching-system-id</name>
 <cache>
 <name>cache-id</name>
 <max-size>100000</max-size>
 <eviction-policy>LRU</eviction-policy
 <time-to-live>3600</time-to-live>
 </cache>
</caching-system>

Optionally add either write-through or write-behind as a child element of cache to specify synchronous or asynchronous writes to the cache store, respectively. By default, writes to the store are synchronous (<write-through) which means that as soon as an entry is created or updated the write occurs.

If you specify the write-behind element, then the cache store is invoked from a separate thread after a create or update of a cache entry. Use the following optional child elements to further configure the asynchronous writes to the store:

	
work-manager-name: The work manager that handles asynchronous writes to the cache store. If a work manager is specified for the cache itself, this value overrides it for store operations only. The value of this element corresponds to the name child element of the work-manager element in the server's config.xml configuration file.

For more information, see Section F.45, "work-manager".

	
batch-size: The number of updates that are picked up from the store buffer to write back to the backing store. Default value is 1.

	
buffer-size: The size of the internal store buffer that temporarily holds the asynchronous updates that need to be written to the store. Default value is 100.

	
buffer-write-attempts: The number of attempts that the user thread makes to write to the store buffer. The user thread is the thread that creates or updates a cache entry. If all attempts by the user thread to write to the store buffer fail, it will invoke the store synchronously. Default value is 1.

	
buffer-write-timeout: The time in milliseconds that the user thread waits before aborting an attempt to write to the store buffer. The attempt to write to the store buffer fails only in case the buffer is full. After the timeout, further attempts may be made to write to the buffer based on the value of buffer-write-attempts. Default value is 100.

For example:

<caching-system>
 <name>caching-system-id</name>
 <cache>
 <name>cache-id</name>
 <max-size>100000</max-size>
 <eviction-policy>LRU</eviction-policy
 <time-to-live>3600</time-to-live>
 <write-behind>
 <buffer-size>200</buffer-size>
 <buffer-write-attempts>2</buffer-write-attempts>
 <buffer-write-timeout>200</buffer-write-timeout>
 </write-behind>
 </cache>
</caching-system>

Optionally add a cache element listeners child element to configure the behavior of components that listen to the cache.

Use the asynchronous Boolean attribute to specify whether listeners should be invoked:

	
asynchronously: true.

	
synchronously: false, which means listeners are invoked synchronously (Default).

The listeners element has a single child element, work-manager-name, that specifies the work manager to be used for asynchronously invoking listeners. This value is ignored if synchronous invocations are enabled. If a work manager is specified for the cache itself, this value overrides it for invoking listeners only. The value of this element corresponds to the work-manager element name child element in the Oracle Event Processing server config.xml configuration file.

For example:

<caching-system>
 <name>caching-system-id</name>
 <cache>
 <name>cache-id</name>
 <max-size>100000</max-size>
 <eviction-policy>LRU</eviction-policy
 <time-to-live>3600</time-to-live>
 <write-behind>
 <buffer-size>200</buffer-size>
 <buffer-write-attempts>2</buffer-write-attempts>
 <buffer-write-timeout>200</buffer-write-timeout>
 </write-behind>
 <listeners asynchronous="true">
 <work-manager-name>cachingWM</work-manager-name>
 </listeners>
 </cache>
</caching-system>

For more information, see Section F.45, "work-manager"

13.4 Configuring a Third-Party Caching System and Cache

You can configure your application to use a third-party caching system and cache.

To configure a third-party caching system and cache:

	
Create a plug-in to define the third-party caching system as an Oracle Event Processing caching system provider.

This involves:

	
Implementing the com.bea.wlevs.cache.spi.CachingSystem interface

	
Creating a factory that creates caching systems of this type.

	
Registering the factory with an attribute that identifies its provider type.

	
Declare the caching system in the EPN assembly file.

Use the wlevs:caching-system element to declare a third-party implementation; use the class or provider attribute to specify additional information.

For simplicity, you can include the third-party implementation code inside the Oracle Event Processing application bundle itself to avoid having to import or export packages and managing the lifecycle of a separate bundle that contains the third-party implementation. In this case the wlevs:caching-system element appears in the EPN assembly file as shown in the following example:

<wlevs:caching-system id="caching-system-id"
 class="third-party-implementation-class"/>

The class attribute specifies a Java class that must implement the com.bea.wlevs.cache.spi.CachingSystem interface. For details about this interface, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

Sometimes, however, you might not be able, or want, to include the third-party caching implementation in the same bundle as the Oracle Event Processing application that is using it. In this case, you must create a separate bundle whose Spring application context includes the wlevs:caching-system element, with the advertise attribute mandatory:

<wlevs:caching-system id ="caching-system-id"
 class="third-party-implementation-class"
 advertise="true"/>

Alternatively, if you want to decouple the implementation bundle from the bundle that references it, or you are plugging in a caching implementation that supports multiple caching systems per Java process, you can specify a factory as a provider:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
<factory id="factory-id" provider-name="caching-provider">
 <class>the.factory.class.name</class>
</factory>

The factory class (the.factory.class.name in the example) must implement the com.bea.wlevs.cache.spi.CachingSystemFactory interface. This interface has a single method, create, that returns a com.bea.wlevs.cache.spi.CachingSystem instance.

You must deploy this bundle alongside the application bundle so that the latter can start using it.

	
Declare one or more caches for this caching system in the EPN assembly file.

After you have declared a caching system for an application, you configure one or more caches using the wlevs:cache element:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The name attribute is optional; specify it only if the name of the cache in the caching system is different from its ID. The wlevs:caching-system child element references the already-declared caching system that contains the cache. You must specify this child element only if the caching system is ambiguous: there is more than one caching system declared (either implicitly or explicitly) or if the caching system is in a different application or bundle.

You can export both the caching system and the cache as an OSGI service using the advertise attribute.

<wlevs:caching-system id="caching-system-id" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

If the cache is advertised, then a component in the EPN of an application in a separate bundle can then reference it. The following example shows how a processor in one bundle can use as a cache source the cache with ID cache-id located in a separate bundle (called cacheprovider):

<wlevs:processor id="myProcessor2">
 <wlevs:cache-source ref="cacheprovider:cache-id"/>
</wlevs:processor>

The caching system is responsible for creating the cache associated with a particular name and returning a reference to the cache. The resulting cache bean implements the java.util.Map interface.

	
Configure the third-party caching system and its caches by updating the third-party caching configuration file or files for the application.

Refer to your third-party cache documentation.

	
Optionally, override the default third-party cache configuration by updating the appropriate configuration file with one or more additional cache element child elements.

	
Specify that a cache is an event sink by configuring it as a listener to another component in the event processing network.

Refer to your third-party cache documentation.

	
Specify that a cache is an event source to which another component in the event processing network listens.

Refer to your third-party cache documentation.

	
Configure a cache loader or store.

Refer to your third-party cache documentation.

	
When you assemble your application, verify that the META-INF/MANIFEST.MF file includes the following import:

com.bea.wlevs.cache.spi; version ="11.1.0.0"

If the MANIFEST.MF files does not include this import, update the MANIFEST.MF file to add this import before deploying your application.

13.5 Adding Caching to an Event Processing Network

Once you have configured the caching provider your application will be using, you can add it to the applications event processing network (EPN).

For information about adding caching to the EPN and configuring it to be reused, see the following sections:

	
Section 13.5.1, "Adding the Caching System and Caches to an EPN"

	
Section 13.5.2, "Configuring a Cache for Reuse Among Applications"

When you add a cache to the EPN, you can specify other functionality, as described in the following sections:

	
Section 13.5.3, "Configuring a Cache as an Event Listener"

	
Section 13.5.4, "Configuring a Cache as an Event Source"

	
Section 13.5.5, "Exchanging Data Between a Cache and Another Data Source"

13.5.1 Adding the Caching System and Caches to an EPN

To declare a caching system that uses the Oracle Coherence implementation declaratively in the EPN assembly file, use the wlevs:caching-system element, whose id attribute must match the name you specified for the caching system in the application's component configuration file.

After you have declared a caching system for an application, you configure one or more caches using the wlevs:cache element. The element's mandatory id attribute maps to the name of a cache in the configuration file.

The following example illustrates a caching system and cache declared in an EPN assembly file:

<wlevs:caching-system id="caching-system-id" provider="coherence" advertise="false"/>
...
<wlevs:cache id="myCache" advertise="false">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The name attribute is optional; specify it only if the name of the cache in the caching system is different from its ID. The wlevs:caching-system child element references the already-declared caching system that contains the cache. You must specify this child element only if the caching system is ambiguous: there is more than one caching system declared (either implicitly or explicitly) or if the caching system is in a different application or bundle.

13.5.2 Configuring a Cache for Reuse Among Applications

You can export both the caching system and the cache as OSGI services using the advertise attribute. If the cache is advertised, then a component in the EPN of an application in a separate bundle can then reference it.

The following example illustrates the advertise attribute.

<wlevs:caching-system id="caching-system-id" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The following example shows how a processor in one bundle can use as a cache source the cache with ID cache-id located in a separate bundle (called cacheprovider):

<wlevs:processor id="myProcessor2">
 <wlevs:cache-source ref="cacheprovider:cache-id"/>
</wlevs:processor>

For more information, see Section 13.2.2, "Configuring a Shared Oracle Coherence Cache".

13.5.3 Configuring a Cache as an Event Listener

You can configure a cache in an EPN to receive events as they pass through the network.

For example, to specify that a cache listens to a channel, configure the channel with a wlevs:listener element that has a reference to the cache, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>

<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

<wlevs:channel id="tradeStream">
 <wlevs:listener ref="cache-id"/>
</wlevs:channel>

As the channel sends new events to the cache, they are inserted into the cache. If the channel sends a remove event (an old event that exits the output window), then the event is removed from the cache.

13.5.3.1 Specifying the Key Used to Index a Cache

When you configure a cache to be a listener, events are inserted into the cache. This section describes the variety of options available to you to specify the key used to index a cache in this instance.

If you do not explicitly specify a key, the event object itself serves as both the key and value when the event is inserted into the cache. In this case, the event class must include a valid implementation of the equals and hashcode methods that take into account the values of the key properties.

See the following for ways to explicitly specify a key:

	
Section 13.5.3.1.1, "Specifying a Key Property in EPN Assembly File"

	
Section 13.5.3.1.2, "Using a Metadata Annotation to Specify a Key"

	
Section 13.5.3.1.3, "Specifying a Composite Key"

13.5.3.1.1 Specifying a Key Property in EPN Assembly File

The first option is to specify a property name for the key property when a cache is declared in the EPN assembly file using the key-properties attribute, as shown in the following example:

<wlevs:cache id="myCache" key-properties="key-property-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

In this case, all events that are inserted into the cache are required to have a property of this name at runtime, otherwise Oracle Event Processing throws an exception.

For example, assume the event type being inserted into the cache looks something like the following; note the key property (only relevant Java source shown):

public class MyEvent {
 private String key;
 public MyEvent() {
 }
 public MyEvent(String key) {
 this.key = key;
 }
 public String getKey() {
 return key;
 }
 public void setKey(String key) {
 this.key = key;
 }
}

The corresponding declaration in the EPN assembly file would look like the following:

<wlevs:cache id="myCache" key-properties="key">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

13.5.3.1.2 Using a Metadata Annotation to Specify a Key

The second option is to use the metadata annotation com.bea.wlevs.ede.api.Key to annotate the event property in the Java class that implements the event type. This annotation does not have any attributes.

To use a metadata annotation to specify a key:

	
Import the com.bea.wlevs.ede.api.Key package.

For more information, see Section 5.7.5, "How to Import a Package".

	
Apply the @Key annotation to a method.

The following example shows how to specify that the key property of the MyEvent event type is the key; only relevant code is shown:

import com.bea.wlevs.ede.api.Key;
public class MyEvent {
 private String key;
 public MyEvent() {
 }
 public MyEvent(String key) {
 this.key = key;
 }
 public String getKey() {
 return key;
 }
 @Key
 public void setKey(String key) {
 this.key = key;
 }
}

13.5.3.1.3 Specifying a Composite Key

The final option is to use the key-class attribute of the wlevs:cache element to specify a composite key in which multiple properties form the key. The value of the key-class attribute must be a JavaBean whose public fields match the fields of the event class. The matching is done according to the field name. For example:

<wlevs:cache id="myCache" key-class="key-class-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

13.5.4 Configuring a Cache as an Event Source

You can configure a cache as a source of events to which another component in the event processing network listens. The listening component can be an adapter or a bean.

A class that listens to a cache must implement an interface that provides methods for receiving events, as follows:

	
A class that listens to a Coherence cache must implement the com.tangosol.util.MapListener interface.

	
A class that listens to an Oracle Event Processing local cache must implement the com.bea.cache.jcache.CacheListener interface.

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="cache-listener-id" />
</wlevs:cache>
...
<bean id="cacheListenerId" class="wlevs.example.LocalListener"/>

In the example, the cacheListenerId Spring bean listens to events coming from the cache. In this case, the class that implements this component, com.bea.wlevs.example.MyCacheListener, is listening to an Oracle Coherence cache. It must implement the appropriate Oracle Coherence-specific Java interfaces, including com.tangosol.util.MapListener. Example 13-4 illustrates this implementation.

Example 13-4 Oracle Coherence Cache LocalListener Implementation

package com.bea.wlevs.example.provider.coherence;

import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;

public class LocalListener implements MapListener {
 public static int deleted = 0;
 public static int inserted = 0;
 public static int updated = 0;

 public void entryDeleted(MapEvent event) {
 deleted++;
 }
 public void entryInserted(MapEvent event) {
 inserted++;
 }
 public void entryUpdated(MapEvent event) {
 updated++;
 }
}

13.5.5 Exchanging Data Between a Cache and Another Data Source

You can have a cache in an EPN exchange data with another data source, including a database. For example, you can load a cache with data when the application starts or create a read/write relationship between the cache and a database.

If the cache will only be reading data, including when the backing store is read-only, you should use a cache loader. If the cache will read and write data, use a cache store. In both cases, creating the relationship involves specific configuration and a Java class that knows how to communicate with the data source.

For more information, see the following topics:

	
Section 13.5.5.1, "Loading Cache Data from a Read-Only Data Source"

	
Section 13.5.5.2, "Exchanging Data with a Read-Write Data Source"

13.5.5.1 Loading Cache Data from a Read-Only Data Source

Using a cache loader, you can have a cache in your EPN load data from a read-only data source. A cache loader is a Java class that loads cache objects into a cache. You create a cache loader by writing a Java class that implements the appropriate interfaces to enable the loader class to communicate with the cache. Then you configure a cache loader by using the wlevs:cache-loader child element of the wlevs:cache element to specify the bean that does the loading work.

If the backing store is read-write, use a cache store instead (see Section 13.5.5.2, "Exchanging Data with a Read-Write Data Source").

When creating a cache loader, you implement interfaces as follows:

	
To load cache data into an Oracle Coherence cache, create a class that implements the appropriate Oracle Coherence-specific Java interfaces, including com.tangosol.net.cache.CacheLoader. See Example 13-6 for an example.

	
To load cache data into an Oracle Event Processing local cache, create a class that implements com.bea.cache.jcache.CacheLoader interface. This interface includes the load method to customize loading a single object into the cache; Oracle Event Processing calls this method when the requested object is not in the cache. The interface also includes loadAll methods that you implement to customize the loading of the entire cache.

In Example 13-5, the localLoader bean loads events into an Oracle Coherence cache when the backing store is read-only.

When working with a Coherence cache, note that if you specify a cache loader in your configuration file, you must also specify the corresponding class factory method name in your Coherence cache configuration file. For a cache loader, you specify the getLoader method of com.bea.wlevs.cache.coherence.configuration.SpringFactory. For example code, see Section 13.2.1.1, "The coherence-cache-config.xml File".

Example 13-5 Oracle Coherence Cache EPN Assembly File for a Cache Loader

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-loader ref="localLoader"/>
</wlevs:cache>
<bean id="localLoader"
 class="com.bea.wlevs.example.provider.coherence.LocalLoader"/>

Example 13-6 Oracle Coherence Cache LocalLoader Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheLoader;

public class LocalLoader implements CacheLoader {
 public static int loadCount = 0;
 public static Set keys = new HashSet();

 public LocalLoader() {
 }
 public Object load(Object key) {
 loadCount++;
 keys.add(key);
 return new ProviderData((String) key);
 }
 public Map loadAll(Collection keys) {
 Map result = new HashMap();

 for (Object key : keys) {
 result.put(key, load(key));
 }
 return result;
 }
}

13.5.5.2 Exchanging Data with a Read-Write Data Source

Using a cache store, you can have a cache in your EPN exchange data with a read-write data source. A cache store is a Java class that exchanges cache objects with a cache. You create a cache store by writing a Java class that implements the appropriate interfaces to enable the it to communicate with the data source. Then you add the cache store to the EPN by using the wlevs:cache-loader child element of the wlevs:cache element to specify the bean that communicates with the data source.

If the backing store is read-only, use a cache loader instead (see Section 13.5.5.1, "Loading Cache Data from a Read-Only Data Source").

When creating a cache store, you implement interfaces as follows:

	
To exchange cache data with an Oracle Coherence cache, create a class that implements the appropriate Oracle Coherence-specific Java interfaces, including com.tangosol.net.cache.CacheStore. See Example 13-8 for an example.

	
To exchange cache data with an Oracle Event Processing local cache, create a class that implements the com.bea.cache.jcache.CacheStore interface. This interface includes the store method that stores the data in the backing store using the passed key; Oracle Event Processing calls this method when it inserts data into the cache. The interface also includes the storeAll method for storing a batch of data to a backing store in the case that you have configured asynchronous writes for a cache with the write-behind configuration element.

In Example 13-7, the localStore bean loads events into the cache when the backing store is read-write.

Note that if you specify a cache store in your Spring configuration file, you must also specify the corresponding class factory method name in your Coherence cache configuration file. For a cache store, you specify the getStore method of com.bea.wlevs.cache.coherence.configuration.SpringFactory. For example code, see Section 13.2.1.1, "The coherence-cache-config.xml File".

Example 13-7 Oracle Coherence Cache EPN Assembly File for a Cache Store

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-store ref="localStore"/>
</wlevs:cache>
<bean id="localStore"
 class="com.bea.wlevs.example.provider.coherence.LocalStore"/>

Example 13-8 Oracle Coherence Cache LocalStore Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheStore;

public class LocalStore implements CacheStore {
 public static int eraseCount = 0;
 public static int storeCount = 0;
 public static int loadCount = 0;

 public void erase(Object key) {
 eraseCount++;
 }
 public void eraseAll(Collection keys) {
 for (Object key : keys) {
 erase(key);
 }
 }
 public void store(Object key, Object value) {
 //
 // Do the store operation here.
 //
 }
 public void storeAll(Map entries) {
 for (Map.Entry entry : (Set <Map.Entry>)entries.entrySet()) {
 store(entry.getKey(), entry.getValue());
 }
 }
 public Object load(Object key) {
 loadCount++;
 return new ProviderData((String) key);
 }
 public Map loadAll(Collection keys) {
 Map result = new HashMap();
 for (Object key : keys) {
 result.put(key, load(key));
 }
 return result;
 }
}

13.6 Accessing a Cache from Application Code

Once you have configured a cache, you can access the cache from several components in an Oracle Event Processing application. This section describes how to do that.

For more information, see the following sections:

	
Section 13.6.1, "Accessing a Cache from an Oracle CQL Statement"

	
Section 13.6.2, "Accessing a Cache From an EPL Statement"

	
Section 13.6.3, "Accessing a Cache from an Adapter"

	
Section 13.6.4, "Accessing a Cache From a Business POJO"

	
Section 13.6.5, "Accessing a Cache From an Oracle CQL User-Defined Function"

	
Section 13.6.6, "Accessing a Cache From an EPL User-Defined Function"

	
Section 13.6.7, "Accessing a Cache Using JMX"

13.6.1 Accessing a Cache from an Oracle CQL Statement

You can reference a cache from an Oracle CQL statement in much the same way you reference an event source such as a channel; this feature enables you to enrich standard streaming data with data from a separate source. Example 13-9 shows a valid Oracle CQL query that joins trade events from a standard channel named S1 with stock symbol data from a cache named stockCache:

Example 13-9 Valid Oracle CQL Query Against a Cache

SELECT S1.symbol, S1.lastPrice, stockCache.description
FROM S1 [Now], stockCache
WHERE S1.symbol = stockCache.symbol

You must abide by these restrictions when using a cache in an Oracle CQL query:

	
Whenever you query a cache, you must join against the [Now] window.

This guarantees that the query will execute against a snapshot of the cache. If you join against any other window type, then if the cache changes before the window expires, the query will be incorrect.

The following example shows an invalid Oracle CQL query that joins a Range window against a cache. If the cache changes before this window expires, the query will be incorrect. Consequently, this query will raise Oracle Event Processing server error "external relation must be joined with s[now]".

SELECT trade.symbol, trade.price, trade.numberOfShares, company.name
FROM TradeStream [Range 8 hours] as trade, CompanyCache as company
WHERE trade.symbol = company.id

When you use data from a cache in an Oracle CQL query, Oracle Event Processing pulls the data rather than it being pushed, as is the case with a channel. This means that, continuing with Example 13-9, the query executes only when a channel pushes a trade event to the query; the stock symbol data in the cache never causes a query to execute, it is only pulled by the query when needed.

	
You must specify the key property needed to do a lookup based on the cache key.

Consider two streams S and C with schemas (id, group, value) where the cache key is id. A valid query is:

select count(*) as n from S [now], C
where S.id = C.id

For instructions on specifying the cache key, see:

	
Section 13.5.3.1, "Specifying the Key Used to Index a Cache"

	
Joins must be executed only by referencing the cache key.

	
You cannot use a cache in a view. Instead, use a join.

	
Only a single channel source may occur in the FROM clause of an Oracle CQL statement that joins cache data source(s).

	
If the cache is a processor source, you connect the cache directly to the processor on the EPN as Figure 13-1 shows.

	
If the cache is a processor sink, you connect the processor to the cache using a channel as Figure 13-2 shows.

13.6.1.1 How to Access a Cache from an Oracle CQL Statement

This section describes how to reference a cache in an Oracle CQL query statement.

This procedure assumes that you have already configured the caching system and caches. For more information, see:

	
Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache"

	
Section 13.2, "Configuring an Oracle Coherence Caching System and Cache"

	
Section 13.4, "Configuring a Third-Party Caching System and Cache"

To access a cache from an Oracle CQL statement:

	
If you have not already done so, create the event type that corresponds to the cache data and register it in the event repository.

See Section 9.3, "Creating Event Types".

	
Specify the key properties for the data in the cache.

For instructions on specifying the cache key, see:

	
Section 13.5.3.1, "Specifying the Key Used to Index a Cache"

	
In the EPN assembly file, update the configuration of the cache to declare the event type of its values; use the value-type attribute of the wlevs:cache element. For example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"
 name="alternative-cache-name"
 value-type="CompanyEvent">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The value-type attribute specifies the type for the values contained in the cache. This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL query. This is because the query processor needs to know the type of events in the cache.

	
In the EPN assembly file, update the configuration of the processor that executes the Oracle CQL query that references a cache:

	
If the cache is a processor source: you connect the cache directly to the processor on the EPN as Figure 13-1 shows.

Figure 13-1 Cache as Processor Source

[image: Description of Figure 13-1 follows]

Update the wlevs:processor element a wlevs:cache-source child element that references the cache. For example:

<wlevs:channel id="S1"/>

<wlevs:processor id="cacheProcessor">
 <wlevs:source ref="S1">
 <wlevs:cache-source ref="cache-id">
</wlevs:processor>

In the example, the processor will have data pushed to it from the S1 channel as usual; however, the Oracle CQL queries that execute in the processor can also pull data from the cache-id cache. When the query processor matches an event type in the FROM clause to an event type supplied by a cache, such as CompanyEvent, the processor pulls instances of that event type from the cache.

	
If the cache is a processor sink: you must connect the processor to the cache using a channel on the EPN (that is, there must be a channel between the processor and the cache sink) as Figure 13-2 shows.

Figure 13-2 Cache as Processor Sink

[image: Description of Figure 13-2 follows]

In this case, the application assembly file looks like this:

<wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor" />
</wlevs:channel>
<wlevs:processor id="processor">
 <wlevs:listener ref="channel2" />
</wlevs:processor>
<wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="cache-id" />
</wlevs:channel>

13.6.2 Accessing a Cache From an EPL Statement

You can reference a cache from an Event Processing Language (EPL) statement in much the same way you reference a channel; this feature enables you to enrich standard streaming data with data from a separate source.

	
Note:

The EPL language is deprecated. For new development, use Oracle CQL. For information on accessing a cache from CQL, see Section 13.6.1, "Accessing a Cache from an Oracle CQL Statement".

For example, the following EPL query joins trade events from a standard channel with company data from a cache:

INSERT INTO EnrichedTradeEvent
SELECT trade.symbol, trade.price, trade.numberOfShares, company.name
FROM TradeEvent trade RETAIN 8 hours, Company company
WHERE trade.symbol = company.id

In the example, both TradeEvent and Company are event types registered in the repository, but they have been configured in such a way that TradeEvents come from a standard stream of events but Company maps to a cache in the event processing network. This configuration happens outside of the EPL query, which means that the source of the data is transparent in the query itself.

When you use data from a cache in an EPL query, Oracle Event Processing pulls the data rather than it being pushed, as is the case with a channel. This means that, continuing with the preceding sample, the query executes only when a channel pushes a trade event to the query; the company data in the cache never causes a query to execute, it is only pulled by the query when needed.

You must abide by these restrictions when using a cache in an EPL query:

	
You must specify the key properties for data in the cache.

For instructions on specifying the cache key, see:

	
Section 13.5.3.1, "Specifying the Key Used to Index a Cache"

	
Joins must be executed only by referencing the cache key.

	
You cannot specify a RETAIN clause for data pulled from a cache. If an event type that gets its data from a cache is included in a RETAIN clause, Oracle Event Processing ignores it.

	
You cannot use a cache in a correlated sub-query. Instead, use a join.

	
Only a single channel source may occur in the FROM clause of an EPL statement that joins cache data source(s). Using multiple cache sources and parameterized SQL queries is supported.

13.6.2.1 How To Access a Cache from an EPL Statement

This section describes how to reference a cache in an EPL query statement.

This procedure assumes that you have already configured the caching system and caches. For more information, see:

	
Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache"

	
Section 13.2, "Configuring an Oracle Coherence Caching System and Cache"

	
Section 13.4, "Configuring a Third-Party Caching System and Cache"

To access a cache from an EPL statement:

	
If you have not already done so, create the event type that corresponds to the cache data, such as Company in the preceding example, and registered it in the event repository. See Section 9.3, "Creating Event Types".

	
Specify the key properties for the data in the cache. There are a variety of ways to do this; see

	
Section 13.5.3.1, "Specifying the Key Used to Index a Cache"

	
In the EPN assembly file, update the configuration of the cache in the EPN assembly file to declare the event type of its values; use the value-type attribute of the wlevs:cache element. For example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"
 name="alternative-cache-name"
 value-type="Company">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The value-type attribute specifies the type for the values contained in the cache. This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an EPL query. This is because the query processor needs to know the type of events in the cache.

	
In the EPN assembly file, update the configuration of the processor that executes the EPL query that references a cache, adding a wlevs:cache-source child element that references the cache. For example:

<wlevs:channel id="stream-id"/>
<wlevs:processor id="processor-id">
 <wlevs:cache-source ref="cache-id">
 <wlevs:source ref="stream-id">
</wlevs:processor>

In the example, the processor will have data pushed to it from the stream-id channel as usual; however, the EPL queries that execute in the processor can also pull data from the cache-id cache. When the query processor matches an event type in the FROM clause to an event type supplied by a cache, such as Company, the processor pulls instances of that event type from the cache.

13.6.3 Accessing a Cache from an Adapter

An adapter can also be injected with a cache using the standard Spring mechanism for referencing another bean. A cache bean implements the java.util.Map interface which is what the adapter uses to access the injected cache.

First, the configuration of the adapter in the EPN assembly file must be updated with a wlevs:instance-property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<wlevs:adapter id="myAdapter" provider="myProvider">
 <wlevs:instance-property name="map" ref="cache-id"/>
</wlevs:adapter>

In the example, the ref attribute of wlevs:instance-property references the id value of the wlevs:cache element. Oracle Event Processing automatically injects the cache, implemented as a java.util.Map, into the adapter.

In the adapter Java source, add a setMap (Map) method with the code that implements whatever you want the adapter to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class MyAdapter implements Runnable, Adapter, EventSource, SuspendableBean {
...
 public void setMap (Map map) {...}
}

13.6.4 Accessing a Cache From a Business POJO

A business POJO, configured as a standard Spring bean in the EPN assembly file, can be injected with a cache using the standard Spring mechanism for referencing another bean. In this way the POJO can view and manipulate the cache. A cache bean implements the java.util.Map interface which is what the business POJO uses to access the injected cache. A cache bean can also implement a vendor-specific sub-interface of java.util.Map, but for portability it is recommended that you implement Map.

First, the configuration of the business POJO in the EPN assembly file must be updated with a property child element, as shown in the following example based on the Output bean of the FX example (see Section 2.5, "HelloWorld Example"):

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean">
 <property name="map" ref="cache-id"/>
</bean>

In the example, the ref attribute of the property element references the id value of the wlevs:cache element. Oracle Event Processing automatically injects the cache, implemented as a java.util.Map, into the business POJO bean.

In the business POJO bean Java source, add a setMap (Map) method with the code that implements whatever you want the POJO to do with the cache:

package com.bea.wlevs.example.helloworld;
…
import java.util.Map;
public class HelloWorldBean implements EventSink {
...
 public void setMap (Map map) {...}
}

13.6.5 Accessing a Cache From an Oracle CQL User-Defined Function

In addition to standard event streams, Oracle CQL rules can also invoke the member methods of a user-defined function.

These user-defined functions are implemented as standard Java classes and are declared in the component configuration file of the Oracle CQL processor, as shown in the following example:

<bean id="orderFunction" class="orderFunction-impl-class"/>

The processor in which the relevant Oracle CQL rule runs must then be injected with the user-defined function using the wlevs:function child element, referencing the Spring bean with the ref attribute:

<wlevs:processor id= "tradeProcessor">
 <wlevs:function ref="orderFunction"/>
</wlevs:processor>

Alternatively, you can specify the bean class in the wlevs:function element:

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="mymod" exec-method=”execute” />
 <bean class="com.bea.wlevs.example.function.MyMod"/>
 </wlevs:function>
</wlevs:processor>

The following Oracle CQL rule, assumed to be configured for the tradeProcessor processor, shows how to invoke the existsOrder method of the orderFunction user-defined function:

INSERT INTO InstitutionalOrder
SELECT er.orderKey AS key, er.symbol AS symbol, er.shares as cumulativeShares
FROM ExecutionRequest er [Range 8 hours]
WHERE NOT orderFunction.existsOrder(er.orderKey)

You can also configure the user-defined function to access a cache by injecting the function with a cache using the standard Spring mechanism for referencing another bean. A cache bean implements the java.util.Map interface which is what the user-defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be updated with a wlevs:property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
 ...
<bean id="orderFunction" class="orderFunction-impl-class">
 <wlevs:property name="cache" ref="cache-id"/>
</bean>

In the example, the ref attribute of the wlevs:property element references the id value of the wlevs:cache element. Oracle Event Processing automatically injects the cache, implemented as a java.util.Map, into the user-defined function.

In the user-defined function's Java source, add a setMap (Map) method with the code that implements whatever you want the function to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class OrderFunction {
...
 public void setMap (Map map) {...}
}

For more information on user-defined functions, see "Functions: User-Defined" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

13.6.6 Accessing a Cache From an EPL User-Defined Function

In addition to standard event streams, EPL rules can also invoke the member methods of a user-defined function.

These user-defined functions are implemented as standard Java classes and are declared in the EPN assembly file using the standard Spring bean tags, as shown in the following example:

<bean id="orderFunction" class="orderFunction-impl-class"/>

The processor in which the relevant EPL rule runs must then be injected with the user-defined function using the wlevs:function child element, referencing the Spring with the ref attribute:

<wlevs:processor id= "tradeProcessor">
 <wlevs:function ref="orderFunction"/>
</wlevs:processor>

The following EPL rule, assumed to be configured for the tradeProcessor processor, shows how to invoke the existsOrder method of the orderFunction user-defined function:

INSERT INTO InstitutionalOrder
SELECT er.orderKey AS key, er.symbol AS symbol, er.shares as cumulativeShares
FROM ExecutionRequest er RETAIN 8 HOURS WITH UNIQUE KEY
WHERE NOT orderFunction.existsOrder(er.orderKey)

You can also configure the user-defined function to access a cache by injecting the function with a cache using the standard Spring mechanism for referencing another bean. A cache bean implements the java.util.Map interface which is what the user-defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be updated with a wlevs:property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<bean id="orderFunction" class="orderFunction-impl-class">
 <wlevs:property name="cache" ref="cache-id"/>
</bean>

In the example, the ref attribute of the wlevs:property element references the id value of the wlevs:cache element. Oracle Event Processing automatically injects the cache, implemented as a java.util.Map, into the user-defined function.

In the user-defined function's Java source, add a setMap (Map) method with the code that implements whatever you want the function to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class OrderFunction {
...
 public void setMap (Map map) {...}
}

For more information on user-defined functions, see "User-Defined Functions" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing.

13.6.7 Accessing a Cache Using JMX

At runtime, you can access a cache programatically using JMX and the MBeans that Oracle Event Processing deploys for the caching systems and caches you define.

This section describes:

	
Section 13.6.7.1, "How to Access a Cache With JMX Using Oracle Event Processing Visualizer"

	
Section 13.6.7.2, "How to Access a Cache With JMX Using Java"

For more information, "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

13.6.7.1 How to Access a Cache With JMX Using Oracle Event Processing Visualizer

The simplest and least error-prone way to access a caching system or cache with JMX is to use the Oracle Event Processing Visualizer.

For more information, see "Server and Domain Tasks" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

13.6.7.2 How to Access a Cache With JMX Using Java

The simplest and least error-prone way to access a caching system or cache with JMX is to use the Oracle Event Processing Visualizer (see Section 13.6.7.1, "How to Access a Cache With JMX Using Oracle Event Processing Visualizer"). Alternatively, you can access a caching system or cache with JMX using Java code that you write.

Oracle Event Processing creates a StageMBean for each cache that your application uses as a stage. The Type of this MBean is Stage.

To access a cache with JMX using Java:

	
Connect to the JMX service that Oracle Event Processing server provides.

For more information, see "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Get a list of cache StageMbean using either of:

	
CachingSystemMBean.getCacheMBeans()

	
ApplicationMBean.getStageMBeans()

	
Get the ObjectName for a given StageMBean that represents a cache in your caching system:

ObjectName cacheName = ObjectName.getInstance (
 'com.bea.wlevs:Name = newCache,Type=Stage,CachingSystem=newCachingSystem,Application=provider'
);

	
Get a proxy instance for the StageMBean with this ObjectName:

StageMBean cache = (StageMBean) MBeanServerInvocationHandler.newProxyInstance(
 server, cacheName, StageMBean.class, false
);

	
Use the methods of the StageMBean to access the cache.

14 Integrating Web Services

This chapter describes how to configure web services for use with Oracle Event Processing, including how to invoke services from an Oracle Event Processing application and expose an Oracle Event Processing application as a web service.

This chapter includes the following sections:

	
Section 14.1, "Understanding Oracle Event Processing and Web Services"

	
Section 14.2, "How to Invoke a Web Service From an Oracle Event Processing Application"

	
Section 14.3, "How to Expose an Oracle Event Processing Application as a Web Service"

14.1 Understanding Oracle Event Processing and Web Services

You can integrate an Oracle Event Processing application with other systems using Web Services.

Oracle Event Processing supports version 2.0 of the JAX-WS API standard using the Glassfish reference implementation of JAX-WS 2.0, including:

	
JAX-WS 2.0 (Java API for XML Web Services, defined in JSR 224)

	
WS-I Basic Profile 1.1

	
WS-I Attachments Profile 1.0 (SOAP Messages with Attachments)

	
WS-I Simple SOAP Binding Profile 1.0

	
SOAP 1.1 and 1.2 (Simple Object Access Protocol)

	
MTOM (Message Transmission Optimization Mechanism)

	
WSDL 1.1 (Web Services Definition Language)

	
JAXB 2.0 (Java API for XML Binding, references through a separate JAXB module)

	
SAAJ 1.3 (SOAP with Attachments API for Java)

14.2 How to Invoke a Web Service From an Oracle Event Processing Application

This procedure describes how to create an Oracle Event Processing application that invokes a Web Service. In this scenario, the Oracle Event Processing application is the Web Service client.

To invoke a Web Service from an Oracle Event Processing application:

	
Create or obtain the WSDL for the Web Service.

In this example, assume the use of a WSDL named EchoService.WSDL.

	
Generate the compiled .class files you will use to invoke the Web Service (in practice, the command should be on one line):

java -cp OCEP_HOME_DIR/modules/com.bea.core.ws.glassfish.jaxws.tools_9.0.0.0.jar
 com.sun.tools.ws.WsImport EchoService.WSDL

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event Processing (such as /oracle_home).

	
Archive the generated .class files within the Oracle Event Processing application JAR file.

For more information, see Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects".

	
Export the Web-Services Java packages for the client-code in the MANIFEST.MF file using the Export-Package header:

Export-Package: com.oracle.ocep.sample.echoService;

For more information, see Section 5.7.4, "How to Export a Package".

	
Import the following packages to the Oracle Event Processing application in the MANIFEST.MF file using the Import-Package header:

Import-Package: com.ctc.wstx.stax,
 com.sun.xml.bind.v2,
 com.sun.xml.messaging.saaj.soap,
 com.sun.xml.messaging.saaj.soap.ver1_1,
 com.sun.xml.ws,
 javax.jws,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.soap,
 javax.xml.transform,
 javax.xml.transform.stream,
 javax.xml.ws,
 javax.xml.ws.spi,
 org.xml.sax,
 weblogic.xml.stax;

For more information, see Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects".

	
Use the client-code to invoke the Web Service as in any other Java application:

EchoService service = new EchoService();
EchoPort port = service.getEchoServicePort();
String echo = port.echo("foo");

14.3 How to Expose an Oracle Event Processing Application as a Web Service

This procedure describes how to expose an Oracle Event Processing application as a Web Service. In this scenario, the Oracle Event Processing application is the Web Service provider.

To expose an Oracle Event Processing application as a Web service:

	
Create or obtain the WSDL for the Web Service.

In this example, assume the use of a WSDL named EchoService.WSDL.

	
Implement the service.

Consider using java.jws annotations @WebService and @WebMethod.

	
Add a bea-jaxws.xml file to your application bundle as Example 14-1 shows. Table 14-1 describes the attributes in this file.

Example 14-1 bea-jaxws.xml File

<endpoints>
 <endpoint>
 <name>EchoService</name>
 <implementation-class>
 com.bea.wlevs.test.echo.impl.EchoServiceImpl
 </implementation-class>
 <url-pattern>/echo</url-pattern>
 <wsdl-location>
 /META-INF/wsdl/echo.wsdl
 </wsdl-location>
 <service-name>
 {http://wsdl.oracle.com/examples/cep/echo}EchoService
 </service-name>
 <port-name>
 {http://wsdl.oracle.com/examples/cep/echo}EchoServicePort
 </port-name>
 </endpoint>
</endpoints>

Table 14-1 bea-jaxws.xml File Attributes

	Attribute	Description
	
name

	
The name of the web service.

	
implementation-class

	
The class that implements the service.

	
url-pattern

	
The url pattern to access the web service.

	
wsdl-location

	
Relative path to the wsdl in the bundle.

	
service-name

	
QName of the service.

	
port-name

	
QName of the port.

For more information, see Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects".

	
Reference the bea-jaxws.xml file in the MANIFEST.MF file using the BEA-JAXWS-Descriptor header:

BEA-JAXWS-Descriptor: META-INF/bea-jaxws.xml;

For more information, see Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects".

	
Import the following packages to the Oracle Event Processing application in the MANIFEST.MF file using the Import-Package header:

Import-Package: com.ctc.wstx.stax,
 com.sun.xml.bind.v2,
 com.sun.xml.messaging.saaj.soap,
 com.sun.xml.ws,
 javax.jws,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.soap,
 javax.xml.transform,
 javax.xml.transform.stream,
 javax.xml.ws,
 javax.xml.ws.spi,
 org.xml.sax,
 weblogic.xml.stax;

For more information, see Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects".

	
Add a glassfish-ws element to the Oracle Event Processing server DOMAIN_DIR/config/config.xml file that describes your Oracle Event Processing domain, where DOMAIN_DIR refers to your domain directory:

<glassfish-ws>
 <name>JAXWS</name>
 <http-service-name>JettyServer</http-service-name>
</glassfish-ws>

15 Integrating an External Component Using a Custom Adapter

This chapter describes how to implement and configure your own Oracle Event Processing adapters for sending and receiving event data between your application and external components, including how to pass login credentials from an adapter.

You can develop adapters to exchange event data with external components that aren't supported by the adapters included with Oracle Event Processing. For more information about included adapters, see Chapter 11, "Integrating the Java Message Service", Chapter 12, "Integrating an HTTP Publish-Subscribe Server", and Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter".

This chapter includes the following sections:

	
Section 15.1, "Overview of Custom Adapters"

	
Section 15.2, "Implementing a Custom Adapter"

	
Section 15.3, "Implementing Support for Thread and Work Management"

	
Section 15.4, "Passing Login Credentials from an Adapter to a Data Feed Provider"

	
Section 15.5, "Configuring a Custom Adapter"

	
Section 15.6, "Creating a Custom Adapter Factory"

15.1 Overview of Custom Adapters

You can develop custom adapters to exchange event data with external components that aren't supported by adapters included with Oracle Event Processing.

You can create adapters of different types, depending on the format of incoming data and the technology you use in the adapter code to do the conversion. The most typical types of adapters are those that:

	
Use a data vendor API, such as Reuters, Wombat, or Bloomberg.

	
Use messaging systems, such as TIBCO Rendezvous.

	
Use a socket connection to the customer's own data protocol.

Adapters you build are likely to go at the beginning of an EPN, where they receive data, or at the end of an EPN, where they send event data elsewhere.

With a custom adapter, you can:

	
Receive raw event data from an external component, then convert the data into event type instances that your application can use to process the events. If necessary, your implementation can authenticate itself with the external component.

One of the main roles of an adapter is to convert incoming data, such as a market data feed, into Oracle Event Processing events. These events are then passed to other components in the EPN.

	
Receive event type instances from within the event processing network, then convert the data to a form that's consumable by an external component. As the exit point of an application, an adapter receives events from another stage in the EPN, converts the event's data into something that an external application can read, and then sends it out.

You implement an adapter by creating an adapter class in Java. An adapter class implements Oracle Event Processing interfaces through which it can create, send, or receive events. For more information, see Section 15.2, "Implementing a Custom Adapter".

You add the adapter to the EPN by configuring it in the EPN assembly file. You can further specify runtime-editable configuration settings by configuring the adapter in a component configuration file. For more information, see Section 15.5, "Configuring a Custom Adapter".

The samples in the following list include source and sink example code

	
The Foreign Exchange (FX) sample includes three adapters that read data from currency data feeds and then pass the data, in the form of a specific event type, to the processors, which are the next components in the network. For more information, see Section 2.8, "Foreign Exchange (FX) Example".

	
The Oracle Spatial sample includes an adapter that reads data from a file and creates event type instances from the data. For more information, see Section 2.7, "Oracle Spatial Example".

15.2 Implementing a Custom Adapter

You implement a custom adapter by writing Java code that can communicate with the external component you're integrating. An adapter class implementation also includes code to receive or send event type instances, depending on where in an EPN the adapter is intended to go.

The implementation will likely use several classes from the Oracle Event Processing API. For Javadoc reference on those, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing. For example code, see Example 15-1, "High-Level View of Input Adapter Class".

The following lists the high-level steps you might typically take when creating a custom adapter:

	
Implement a Java class that can communicate with the external component for which the adapter is intended. Of course, the specifics of your code will depend heavily on how the external component sends or receives the data your adapter is handling.

	
If the adapter will support being suspended and resumed (for example, when it is undeployed and deployed), you can implement interfaces to handle these events. For more information, see Section 15.3.2, "Suspending and Resuming Adapter Event Processing".

	
You might want be able to improve the application's scalability with finer control over adapter threading. For more information, see Section 15.3.1, "Improving Scalability with Multi-Threaded Adapters".

	
In your Java code, implement the interfaces needed to support sending or receiving event type instances.

	
If your adapter will be sending events, such as events it has created from incoming raw event data (as an input adapter would), you will want to implement it as an event source. For more information, see Section 16.2.2, "Implementing an Event Source."

	
If your adapter will be receiving events from some other stage in the EPN, implement it as an event sink. For more information, see Section 16.2.1, "Implementing an Event Sink."

	
If your custom adapter must authenticate itself with a data feed provider, as it might if it will be an input adapter, write Java logic to pass login credentials to the component providing event data. For more information, see Section 15.4, "Passing Login Credentials from an Adapter to a Data Feed Provider."

	
Optionally create a factory class. You need to do this only if multiple applications are going to use instances of the custom adapter. For more information, see Section 15.6, "Creating a Custom Adapter Factory."

If you want to bundle the custom adapter in its own JAR file so that it can be shared among multiple applications, see Section 23.2.4.1, "How to Assemble a Custom Adapter in its Own Bundle."

	
Add the adapter to an event processing network by configuring it in an EPN assembly file. For more information, see Section 15.5, "Configuring a Custom Adapter."

15.2.1 Example: Input Adapter Implementation

This section provides a high-level illustration of an input adapter that retrieves raw event data from a file, converts the data into events, then sends the events to a downstream stage in the EPN.

The code here is excerpted from the Oracle Spatial sample application. Be sure to see its source code for the full implementation. For more information, see Section 2.7, "Oracle Spatial Example".

Example 15-1, "High-Level View of Input Adapter Class" is not a real-world scenario, but it does illustrate a basic flow for an input adapter. The following provides an overview of the work done by this class:

	
Through dependency injection, this class is injected with instances of classes with which it will do some of its work, including:

	
An EventTypeRepository instance (injected with the setEventTypeRepository method) with which to retrieve an instance of the event type specified in the adapter's configuration.

	
A StreamSender instance (injected with the setEventSender method) with which to send events it generates.

	
Through the setPath and setEventType methods, the class is injected with property values specified in the adapter's EPN assembly file configuration.

	
In implementing the RunnableBean interface, this class provides a run() method implementation that does the adapter's real work: retrieving raw event data, parsing the data into event type instances, and sending the new events to a downstream EPN stage.

Example 15-1 High-Level View of Input Adapter Class

package com.oracle.cep.sample.spatial;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.bea.wlevs.ede.api.EventProperty;
import com.bea.wlevs.ede.api.EventRejectedException;
import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSink;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.util.Service;
import java.lang.RuntimeException;

public class BusStopAdapter implements RunnableBean, StreamSource, StreamSink
{
 static final Log s_logger =
 LogFactory.getLog("BusStopAdapter");

 private String m_filePath;
 private String m_eventTypeName;
 private EventType m_eventType;
 private StreamSender m_eventSender;
 private boolean m_stopped;

 private int m_repeat = 1;
 private EventTypeRepository m_etr = null;

 public BusStopAdapter()
 {
 super();
 }

 /**
 * Called by the server to pass in the path
 * to the file with bus stop data.
 *
 * @param path The value specified for the path
 * property in the adapter's configuration
 * in the EPN assembly file.
 */
 public void setPath(String path) throws RuntimeException
 {
 // Code to create a File instance from the path. This
 // File object will be used to retrieve event data
 // from the file.
 }

 /**
 * Called by the server to pass in the name of the event
 * type to which event data should be bound.
 *
 * @param path The value specified for the path
 * property in the adapter's configuration
 * in the EPN assembly file.
 */
 public void setEventType(String typ)
 {
 m_eventTypeName = typ;
 }

 /**
 * Called by the server to set an event type
 * repository instance that knows about event
 * types configured for this application.
 *
 * This repository instance will be used to retrieve an
 * event type instance that will be populated
 * with event data retrieved from the event data file.
 *
 * @param etr The event repository.
 */
 @Service(filter = EventTypeRepository.SERVICE_FILTER)
 public void setEventTypeRepository(EventTypeRepository etr)
 {
 m_etr = etr;
 }

 /**
 * Executes to retrieve raw event data and
 * create event type instances from it, then
 * sends the events to the next stage in the
 * EPN.
 *
 * This method, implemented from the RunnableBean
 * interface, executes when this adapter instance
 * is active.
 */
 public void run()
 {
 if (m_etr == null)
 {
 throw new RuntimeException("EventTypeRepository is not set");
 }

 // Get the event type from the repository by using
 // the event type name specified as a property of
 // this adapter in the EPN assembly file.
 m_eventType = m_etr.getEventType(m_eventTypeName);
 if (m_eventType == null)
 {
 throw new RuntimeException("EventType(" +
 m_eventType + ") is not found.");
 }

 BufferedReader reader = null;

 System.out.println("Sending " + m_eventType +
 " from " + m_filePath);
 while ((m_repeat != 0) && (!m_stopped))
 {
 try
 {
 reader = new BufferedReader(new FileReader(m_filePath));
 } catch (Exception e)
 {
 m_stopped = true;
 break;
 }
 while (!isStopped())
 {
 try
 {
 // Create an object and assign to it
 // an event type instance generated
 // from event data retrieved by the
 // reader.
 Object ev = null;
 ev = readLine(reader);
 if (ev == null)
 {
 reader.close();
 break;
 }

 // Send the newly created event type instance
 // to a downstream stage that is
 // listening to this adapter.
 m_eventSender.sendInsertEvent(ev);

 } catch (Exception e)
 {
 m_stopped = true;
 break;
 }
 }
 }
 }

 /**
 * Called by the server to pass in a
 * sender instance that will be used to
 * send generated events to a downstream
 * stage.
 *
 * @param sender A sender instance.
 */
 public void setEventSender(StreamSender sender)
 {
 m_eventSender = sender;
 }

 /**
 * Returns true if this adapter instance has
 * been suspended, such as because an exception
 * occurred.
 */
 private synchronized boolean isStopped()
 {
 return m_stopped;
 }

 /**
 * Reads data from reader, creating event type
 * instances from that data. This method is
 * called from the run() method.
 *
 * @param reader Raw event data from a file.
 * @return An instance of the event type specified
 * as a property of this adapter.
 */
 protected Object readLine(BufferedReader reader) throws Exception
 {
 // Code to read raw event data and return an event type
 // instance from it.
 }

 /**
 * Called by the server to pass in an
 * insert event received from an
 * upstream stage in the EPN.
 */
 @Override
 public void onInsertEvent(Object event) throws EventRejectedException
 {
 // Code to begin executing the logic needed to
 // convert incoming event data to event type instances.
 }
}

15.3 Implementing Support for Thread and Work Management

You can improve how your adapter's work is managed by implementing or configuring specific threading and work characteristics.

To improve scalability, for example, you might want to configure the adapter to be multi-threaded. To execute logic that responds well when the EPN is suspended or resumed, you can implement interfaces available in the Oracle Event Processing API.

For more information, see the following sections:

	
Section 15.3.1, "Improving Scalability with Multi-Threaded Adapters"

	
Section 15.3.2, "Suspending and Resuming Adapter Event Processing"

15.3.1 Improving Scalability with Multi-Threaded Adapters

You can implement or configure an adapter to use one or more threads for reading from its data source. For example, a multi-threaded adapter might improve performance if its event-processing work is expensive.

Note that when an adapter is single-threaded, event order is guaranteed. Event order is not guaranteed in a multi-threaded adapter.

The simplest way to manage threading is to configure the adapter with a work manager. A work manager is a server feature through which your application can prioritize the execution of its work. You can specify a dedicated work manager used only by the adapter or you can share a work manager among several components such as other adapters.

For more information, see:

	
Section F.45, "work-manager"

	
Section 25.1.2.1, "EventPartitioner"

You can also create a single-threaded adapter by implementing the com.bea.wlevs.ede.api.RunnableBean interface. In your implementation of its run() method, you put the code that reads incoming data, converts it into Oracle Event Processing event type instances, and then send the events to the next stage in the EPN. For reference information on this interface, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

15.3.2 Suspending and Resuming Adapter Event Processing

You can implement your adapter's Java class so that the adapter supports having its work be suspended or resumed by the server. For example, when an event processing network that the adapter part of is suspended, you might want the adapter to stop processing events. When the EPN's work is resumed, other code in the adapter can resume processing events. Supporting these cases might also mean managing resources that the adapter acquires in order to do its work.

To support being suspended or resumed, an adapter implements interfaces in the Oracle Event Processing API. These include the interfaces described in Table 15-1, "Interfaces to Support Suspending and Resuming an Adapter":

Table 15-1 Interfaces to Support Suspending and Resuming an Adapter

	Interface	Description
	
com.bea.wlevs.ede.api.SuspendableBean

	
Implement this to provide logic that executes when the EPN is suspended. The interface's suspend method, you might suspend resources or stop processing events.

	
com.bea.wlevs.ede.api.ResumeableBean

	
Implement this to provide logic that executes when the EPN resumes work. In your implementation of the beforeResume method, you can provide code that should execute before the adapter's work resumes.

For reference information on these interfaces, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

15.4 Passing Login Credentials from an Adapter to a Data Feed Provider

If your adapter accesses an external data feed, the adapter might need to pass login credentials, such as a username and password, to the data feed for user authentication.

The simplest -- and least secure -- way to do this is to hard-code the non-encrypted login credentials in your adapter Java code. However, this method does not allow you to encrypt the password or later change the login credentials without recompiling the code.

The following procedures describe a different method that takes these two issues into account. In the procedure, it is assumed that the username to access the data feed is juliet and the password is superSecret.

You first decide whether you want the login credentials to be configured statically (in the EPN assembly file) or dynamically (by extending the configuration of the adapter). Configuring the credentials statically in the EPN assembly file is easier, but if the credentials later change you must restart the application for an update to the EPN assembly file to take place. Extending the adapter configuration allows you to change the credentials dynamically without restarting the application, but extending the configuration involves additional steps, such as creating an XSD file and compiling it into a JAXB object.

This section describes:

	
Section 15.4.1, "How to Pass Static Login Credentials to the Data Feed Provider"

	
Section 15.4.2, "How to Pass Dynamic Login Credentials to the Data Feed Provider"

	
Section 15.4.3, "How to Access Login Credentials From an Adapter at Runtime"

For more information, see Chapter 26, "Extending Component Configuration".

15.4.1 How to Pass Static Login Credentials to the Data Feed Provider

This section describes how to pass login credentials that you configure statically in the EPN assembly file.

To pass static credentials to the data feed provider

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Change to the directory that contains the EPN assembly file for your application.

	
Edit the EPN assembly XML file by updating the wlevs:adapter element that declares your adapter.

In particular, add two instance properties that correspond to the username and password of the login credentials. For now, specify the cleartext password value; you will encrypt it in a later step. Also add a temporary password element whose value is the cleartext password. For example:

<wlevs:adapter id="myAdapter" provider="myProvider">
 <wlevs:instance-property name="user" value="juliet"/>
 <wlevs:instance-property name="password" value="superSecret"/>
 <password>superSecret</password>
</wlevs:adapter>

	
Save the EPN assembly file.

	
In the command prompt, use the encryptMSAConfig command to encrypt the value of the password element in the EPN assembly file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . epn_assembly_file aesinternal.dat_file

This command includes the following parts:

	
ORACLE_CEP_HOME refers to the main directory into which you installed Oracle Event Processing, such as d:\oracle_cep

	
The second argument refers to the directory that contains the EPN assembly file; because this procedure directs you to change to the directory, the example shows ".".

	
The epn_assembly_file parameter refers to the name of your EPN assembly file.

	
Finally, the aesinternal.dat_file parameter refers to the location of the .aesinternal.dat file associated with your domain; by default this file is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the domain directory such as /oracle_cep/user_projects/domains/mydomain and servername refers to the server instance.

For more information, see "The encryptMSAConfig Command-Line Utility" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

After you run the command, the value of the password element of the EPN assembly file will be encrypted.

	
Update your adapter Java code to access the login credentials properties you have just configured and decrypt the password.

See Section 15.4.3, "How to Access Login Credentials From an Adapter at Runtime."

	
Edit the MANIFEST.MF file of the application and add the com.bea.core.encryption package to the Import-Package header. See Section 23.2.2.1, "Creating the MANIFEST.MF File."

	
Re-assemble and deploy your application as usual. See Chapter 23, "Assembling and Deploying Oracle Event Processing Applications."

15.4.2 How to Pass Dynamic Login Credentials to the Data Feed Provider

This section describes how to pass login credentials that you configure dynamically by extending the configuration of the adapter.

To pass dynamic login credentials to the data feed provider

	
Extend the configuration of your adapter by adding two new elements: user and password, both of type string.

For example, if you were extending the adapter in the HelloWorld example, the XSD file might look like the following:

<xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 <xs:element name="user" type="xs:string"/>
 <xs:element name="password" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

See Chapter 26, "Extending Component Configuration" for detailed instructions.

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Change to the directory that contains the component configuration XML file for your adapter.

	
Update this component configuration XML file by adding the required login credentials using the <user> and <password> elements you defined in the configuration extension. For now, specify the cleartext password value; you will encrypt it in a later step. For example:

<?xml version="1.0" encoding="UTF-8"?>
<myExample:config
 xmlns:myExample="http://www.bea.com/xml/ns/wlevs/example/myExample">
 <adapter>
 <name>myAdapter</name>
 <user>juliet</user>
 <password>superSecret</password>
 </adapter>
</myExample:config>

	
Save the adapter configuration file.

	
Use the encryptMSAConfig command to encrypt the value of the password element in the adapter configuration file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . adapter_config_file aesinternal.dat_file

This command includes the following parts:

	
ORACLE_CEP_HOME refers to the main directory into which you installed Oracle Event Processing, such as d:\oracle_cep

	
The second argument refers to the directory that contains the adapter configuration file; because this procedure directs you to change to the directory, the example shows ".".

	
The adapter_config_file parameter refers to the name of your adapter configuration file.

	
Finally, the aesinternal.dat_file parameter refers to the location of the .aesinternal.dat file associated with your domain; by default this file is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the domain directory such as /oracle_cep/user_projects/domains/mydomain and servername refers to the server instance.

For more information, see "The encryptMSAConfig Command-Line Utility" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

After you run the command, the value of the password element will be encrypted.

	
Update your adapter Java code to access the login credentials properties you have just configured and decrypt the password.

See Section 15.4.3, "How to Access Login Credentials From an Adapter at Runtime."

	
Edit the MANIFEST.MF file of the application and add the com.bea.core.encryption package to the Import-Package header. See Section 23.2.2.1, "Creating the MANIFEST.MF File."

	
Re-assemble and deploy your application as usual. See Chapter 23, "Assembling and Deploying Oracle Event Processing Applications."

15.4.3 How to Access Login Credentials From an Adapter at Runtime

This section describes how update your custom adapter Java code to dynamically get the user and password values from the extended adapter configuration, and then use the com.bea.core.encryption.EncryptionService API to decrypt the encrypted password.

To access login credential properties from an adapter at runtime:

	
Import the additional APIs that you will need to decrypt the encrypted password:

import com.bea.core.encryption.EncryptionService;
import com.bea.core.encryption.EncryptionServiceException;
import com.bea.wlevs.util.Service;

	
Use the @Service annotation to get a reference to the EncryptionService:

private EncryptionService encryptionService;

@Service
public void setEncryptionService(EncryptionService encryptionService) {
 this.encryptionService = encryptionService;
}

	
In the @Prepare callback method, get the values of the user and password properties of the extended adapter configuration as usual (only code for the password value is shown):

private String password;

public String getPassword() {
 return password;
}
public void setPassword(String password) {
 this.password = password;

@Prepare
public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {
 if (adapterConfig.getMessage() == null
 || adapterConfig.getMessage().length() == 0) {
 throw new RuntimeException("invalid message: " + message);
 }
 this.password= adapterConfig.getPassword();
}

See Section 26.3, "Programming Access to the Configuration of a Custom Adapter or Event Bean" for information about accessing the extended adapter configuration.

	
Use the EncryptionService.decryptStringAsCharArray method in the @Prepare callback method to decrypt the encrypted password:

@Prepare
public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {
 if (adapterConfig.getMessage() == null
 || adapterConfig.getMessage().length() == 0) {
 throw new RuntimeException("invalid message: " + message);
 }
 this.password = adapterConfig.getPassword();
 try {
 char[] decrypted = encryptionService.decryptStringAsCharArray(password);
 System.out.println("DECRYPTED PASSWORD is "+ new String(decrypted));
 } catch (EncryptionServiceException e) {
 throw new RuntimeException(e);
 }
}

The signature of the decryptStringAsCharArray method is as follows:

char[] decryptStringAsCharArray(String encryptedString)
 throws EncryptionServiceException

	
Pass these credentials to the data feed provider using the vendor API.

15.5 Configuring a Custom Adapter

When you create a custom adapter, you can add it to an EPN by configuring it in the EPN assembly file. You can also add adapter configuration to a component configuration file to support runtime configuration changes to certain features.

For more information, see the following sections:

	
Section 15.5.1, "Configuring a Custom Adapter in an EPN Assembly File"

	
Section 15.5.2, "Configuring a Custom Adapter in a Component Configuration File"

For a complete description of the configuration file, including registration of other components of your application, see Section 5.3, "Creating EPN Assembly Files."

15.5.1 Configuring a Custom Adapter in an EPN Assembly File

In the EPN assembly file, you use the wlevs:adapter element to declare an adapter as a component in the event processor network. Note that the configuration code will differ for event beans created from a factory. For more information, see Section 15.6, "Creating a Custom Adapter Factory".

	
Note:

The simplest way to create a custom adapter is using the Oracle Event Processing IDE for Eclipse adapter wizard. For more information, see Section 7.4.1.2, "How to Create an Adapter Node".

You can also use wlevs:instance-property child elements of wlevs:adapter to set any static properties in the adapter. Static properties are those that you will not dynamically change after the adapter is deployed.

In the following example, the BusStopAdapter class is configured as an adapter to set properties implemented as methods in the class (setPath, setEventType, and setBuffer):

<wlevs:adapter id="BusStopAdapter"
 class="com.oracle.cep.sample.spatial.BusStopAdapter" >
 <wlevs:instance-property name="path" value="bus_stops.csv"/>
 <wlevs:instance-property name="eventType" value="BusStop"/>
 <wlevs:instance-property name="buffer" value="30.0"/>
</wlevs:adapter>

You reference an adapter that is an event sink by using the wlevs:listener element. In the following example, a BusPositionGen CSV adapter sends events to the BusStopAdapter:

<wlevs:adapter id="BusPositionGen" provider="csvgen">
 <!-- Code omitted -->
 <wlevs:listener ref="BusStopAdapter"/>
</wlevs:adapter>

15.5.2 Configuring a Custom Adapter in a Component Configuration File

You can add configuration for an adapter in a component configuration file. Configuration you add here is available to be updated at runtime. Adding configuration in a component configuration file assumes that you have added the adapter to the EPN by configuring it in the EPN assembly file (see Section 15.5.1, "Configuring a Custom Adapter in an EPN Assembly File" for more information).

You can also create a separate component configuration XML file as needed according to your development environment. For example, if your application has more than one custom event bean, you can create separate XML files for each, or create a single XML file that contains the configuration for all custom event beans, or even all components of your application (beans, adapters, processors, and streams).

In the following example, a BusStopAdapter adapter is configured for event recording. Each adapter configuration should have a separate adapter child element of the config element.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <adapter>
 <name>BusStopAdapter</name>
 <record-parameters>
 <dataset-name>spatial_sample</dataset-name>
 <event-type-list>
 <event-type>BusPos</event-type>
 <event-type>BusStop</event-type>
 <event-type>BusPosEvent</event-type>
 <event-type>BusStopArrivalEvent</event-type>
 <event-type>BusStopPubEvent</event-type>
 <event-type>BusStopPubEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 </event-bean>
</wlevs:config>

Uniquely identify each adapter with the name child element. This name must be the same as the value of the id attribute in the wlevs:adapter element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular custom adapter component in the EPN assembly file this configuration applies.

You can also extend component configuration with your own elements. For more information, see Section 26, "Extending Component Configuration".

For more information, see:

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

15.6 Creating a Custom Adapter Factory

You can use a single adapter implementation in multiple event processing networks by implementing and configuring an adapter factory. The factory class provides adapter instances for the applications that request one.

For detail on the APIs described here, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

Creating an adapter factory involves the following steps:

	
In your adapter class, implement the com.bea.wlevs.ede.api.Adapter interface so that the adapter can be returned by the factory. This is a marker interface, so there are no methods to implement.

public class BusStopAdapter implements Adapter, StreamSource {
 // Adapter implementation code.
}

	
Implement an adapter factory class to create and return instances of the adapter.

Your adapter factory class must implement the com.bea.wlevs.ede.api.AdapterFactory interface. In your implementation of its create method, create an instance of your adapter.

import com.oracle.cep.sample.spatial.BusStopAdapter;
import com.bea.wlevs.ede.api.AdapterFactory;

public class BusStopAdapterFactory implements AdapterFactory {
 public BusStopAdapterFactory() {}
 public synchronized BusStopAdapter create()
 throws IllegalArgumentException {

 // Your code might have a particular way to create the instance.
 return new BusStopAdapter();

 }
}

	
In an EPN assembly file, configure the factory class.

You register factories in the EPN assembly file using the wlevs:factory element, as shown in the following example:

<wlevs:factory provider-name="busStopAdapterProvider"
 class="com.oracle.cep.sample.spatial.BusStopAdapterFactory"/>

If you need to specify service properties, then you must also use the osgi:service element to register the factory as an OSGI service in the EPN assembly file. The scope of the OSGI service registry all of Oracle Event Processing. This means that if more than one application deployed to a given server is going to use the same adapter factory, be sure to register the factory only once as an OSGI service.

Add an entry to register the service as an implementation of the com.bea.wlevs.ede.api.AdapterFactory interface. Provide a property, with the key attribute equal to type, and the name by which this adapter provider will be referenced. Finally, add a nested standard Spring bean element to register your specific adapter class in the Spring application context.

<osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
 <osgi:service-properties>
 <entry key="type" value="busStopAdapterProvider"</entry>
 </osgi:service-properties>
 <bean class="com.oracle.cep.sample.spatial.BusStopAdapterFactory" />
</osgi:service>

	
In applications that will use instances of the adapter, configure the adapter by specifying the configured factory as a provider (rather than specifying the adapter by its class name), as shown in the following example:

<wlevs:adapter id="BusStopAdapter"
 provider="busStopAdapterProvider">
 // ...
</wlevs:adapter>

16 Handling Events with Java

This chapter describes how to implement the Oracle Event Processing interfaces needed for a Java class to act as an event sink and event source, receiving and sending events in an event processing network (EPN). It also describes how to configure a Java class as an Oracle Event Processing event bean or Spring bean.

Whether you are writing new logic in Java or wanting to incorporate existing Java code, Oracle Event Processing provides several ways to add Java code to your application. Your options include where and how the code executes, as well as how you configure it.

This chapter includes the following sections:

	
Section 16.1, "Roles for Java Code in an Event Processing Network"

	
Section 16.2, "Handling Events with Sources and Sinks"

	
Section 16.3, "Configuring Java Classes as Beans"

16.1 Roles for Java Code in an Event Processing Network

Whether you are writing new functionality or have existing logic in Java that you want to incorporate into an Oracle Event Processing application, places where you code might go depending on its role.

Note that many Oracle Event Processing applications have no need for Java code at all. For example, an application's logic might be captured in Oracle CQL alone.

Use the following descriptions of roles for Java code to find the best place for your code.

	
Java classes as beans to handle events passing through an event processing network (EPN)

You can write Java code to handle events as they flow through the EPN, receiving events, sending them, or both. For example, you could add a class that supports both receiving and sending events, using it as intermediate logic in the EPN. There, it could retrieve data from events it receives, then create a new kind event from the data for use by a particular downstream component.

For more information on implementing Java classes that receive and send events, see Section 16.3, "Configuring Java Classes as Beans".

	
Custom adapters to integrate external components for incoming or outgoing events

You can implement a Java class as logic in a custom adapter designed to interact with an external component that is not supported by adapters included with Oracle Event Processing. For example, you could implement an adapter that is able to receive events from an event source that isn't supported by the included JMS or HTTP Publish-Subscribe adapters.

The Java code in custom adapters implements the event source and event sink functionality discussed in this chapter -- see Section 16.2, "Handling Events with Sources and Sinks". For more information about other aspects of custom adapters, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
Java functions to enhance functionality in Oracle CQL code

You can call Java methods from Oracle CQL code to augment Oracle CQL with your own logic. For example, if you have written a Java class with methods that perform calculations on data such as that your application will receive as event data, you might call methods of that class within Oracle CQL code as part of a select statement.

For more information, see "User-Defined Functions" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
JavaBean class as an event type that represents event data

You can create an event type -- the vehicle for carrying event data through your application -- by implementing the type as a JavaBean class. Although there are alternatives, this is the best practice approach.

For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

16.2 Handling Events with Sources and Sinks

When you write Java code designed to handle events, you create a class that is an event sink or event source. An event sink is able to receive events as they flow through an event processing network. An event source can create events and send them along to a downstream stage in the EPN. For example, you might create a class that receive events, does something with their data, then send them along to the next stage.

Event sinks and sources implement particular interfaces provided by the Oracle Event Processing API. An event sink implements interfaces that include methods through which the Oracle Event Processing server can pass into it event type instances. An event source implements an interface that includes a method through which it receives an object with which to send events. A single class can implement either or both kinds of functionality, depending on its role in the event processing network (EPN).

	
Note:

This section assumes that you are familiar with streams and relations and the differing ways they represent events moving through an event processing network. If not, be sure to read Section 1.3, "Overview of Events, Streams and Relations".

Common places for event-handling Java code are adapters and beans. An adapter is a part of the EPN that communicates with external components. It is designed to receive external event data and create events from the data, or to receive internal events and send their data along to another component outside the EPN. Writing event handling code, as described in this chapter, is an important part of creating an adapter. For more on creating adapters, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

[image: Description of java_logic.gif follows]

Like an adapter, a bean can handle events. But you typically add a bean in the midst of an EPN so that events will pass into and out of it. For example, you might want to add a bean whose Java code executes application logic in response to data in events passing through it.

The following procedure describes the typical steps for creating a Java class that receives and sends events.

	
Implement the interfaces needed to receive or send events. Your options for developing Java logic as an EPN component are as follows:

	
To create a class that can receive events as they pass through the EPN, implement interfaces that make the class an event sink. Those interfaces include StreamSink or RelationSink for receiving single events, and BatchStreamSink or BatchRelationSink for receiving batches of events. For more information, see Section 16.2.1, "Implementing an Event Sink".

	
To create a class that can send events to other parts of the EPN, implement interfaces that make the class an event source. Those interfaces include StreamSource or RelationSource for sending single events, and BatchStreamSource or BatchRelationSource for sending batches of events. For more information, see Section 16.2.2, "Implementing an Event Source".

	
Configure the class so that you can add it to the EPN where it belongs.

	
If the class will be part of an adapter, you will want to finish the adapter implementation, then configure it as described in Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
If the class will be added to the EPN as a bean, you will want to configure it as described in Section 16.3, "Configuring Java Classes as Beans".

	
Note:

This procedure assumes that the custom event bean is bundled in the same application JAR file that contains the other components of the EPN, such as the processor, streams, and business logic POJO. If you want to bundle the custom event bean in its own JAR file so that it can be shared among multiple applications, see Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle."

16.2.1 Implementing an Event Sink

You can create a Java class that is able to receive events as they pass through an event processing network. A component that can receive events is an event sink. You might create an event sink, for example, to receive events in the midst of an event processing network, with logic for responding to each event's content.

A Java class that is an event sink implements one of the interfaces described in this section. Each of these interfaces provides methods that the Oracle Event Processing server uses to pass events to the class as the events exit the EPN stage connected upstream of the class, typically a channel.

	
Note:

For a step-by-step development example that includes creating a simple event sink, be sure to see Chapter 8, "Walkthrough: Assembling a Simple Application".

The interfaces described here are intended to provide support for events arriving either as streams or relations. However, interfaces for relation support also support receiving events arriving as streams. As described in the following table, the interfaces are hierarchically related.

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSink

	
Implement this to receive events arriving sequentially as a stream.

	
com.bea.wlevs.ede.api.RelationSink

	
Implement this to receive events arriving sequentially as a relation. Extends StreamSink., so it also provides support for receiving events as a stream.

	
com.bea.wlevs.ede.api.BatchStreamSink

	
Implement this to support receiving batched events arriving as a stream. Events might arrive batched by timestamp if the channel they are coming from is configured to allow batching. Extends StreamSink, so it also provides support for receiving events unbatched.

	
com.bea.wlevs.ede.api.BatchRelationSink

	
Implement this to support receiving batched events arriving as a relation. Events might arrive batched by timestamp if the channel they are coming from is configured to allow batching. Extends RelationSink, so it also provides support for receiving events unbatched as either streams or relations.

16.2.1.1 Implementing StreamSink or BatchStreamSink

A class that receives events as a stream will receive only events that are, from the Oracle Event Processing standpoint, "inserted." That's because in a stream, events are always appended to the end of a sequence. Events in a stream are also always received in ascending time order, so that their timestamps have non-decreasing values from one event to the one that follows it. (The idea of non-decreasing timestamps allows for the possibility that the timestamp of one event can be the same as the timestamp of the event that precedes it, but not earlier than that preceding timestamp. It's either the same or later.)

As a result, the interfaces for support to receive events as a stream have one method each for receiving events. Contrast this with the interfaces for receiving events as a relation, which support receiving multiple kinds of events.

You implement the StreamSink interface if you expect your class to receive unbatched events as a stream. It has a single method, onInsertEvent, which the Oracle Event Processing server calls to pass in each event from the stream as it leaves the upstream stage that is connected to your class.

In Example 16-1, "Implementing the StreamSink Interface", a simple StreamSink implementation that receive stock trade events receives each event as an Object instance, then tests to see if the event is an instance of a particular event type. If it is, then the code retrieves values of properties known to be members of that type.

Example 16-1 Implementing the StreamSink Interface

public class TradeListener implements StreamSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Code to do something with the property values.
 }
 }
}

You implement the BatchStreamSink interface if you expect your class to receive batched events as a stream. The interface has a single method, onInsertEvents, which the Oracle Event Processing server calls to pass in a collection of events received from the upstream stage. (The BatchStreamSink interface extends StreamSink, so can receive unbatched events also.)

For more information about event batching, see Section 10.1.6, "Batch Processing Channels".

16.2.1.2 Implementing RelationSink or BatchRelationSink

A class that receives events as a relation can receive any of the kinds of events possible in a relation: insert events, delete events, and update events. Unlike a stream, events in a relation are unordered and include events that have been updated or deleted by code that created or operated on the relation.

As a result, the interfaces for support to receive events as a relation have methods through which your class can receive insert, delete, or update events.

You implement the RelationSink interface if you expect your class to receive unbatched events as a relation. It has three methods (one inherited from the StreamSink interface, which it extends), onInsertEvent, onDeleteEvent, and onUpdateEvent. At runtime, the Oracle Event Processing server will call the appropriate method depending on which type of event is being received from the upstream channel connected to your class.

Example 16-2 Implementing the RelationSink Interface

public class TradeListener implements RelationSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Do something with the inserted event.
 }
 }

 @Override
 public void onDeleteEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the deleted event.
 }
 }

 @Override
 public void onUpdateEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the updated event.
 }
 }
}

You implement the BatchRelationSink interface if you expect your class to receive batched events as a relation. It has an onEvents method designed to receive all three types of events from the batch in java.util.Collection instances:

onEvents(insertEvents, deleteEvents, updateEvents)

In addition, the interface extends the RelationSink interface to provide support for receiving unbatched events.

At runtime, the Oracle Event Processing server calls the appropriate method to pass in events received from the upstream stage connected to your class.

For more information about event batching, see Section 10.1.6, "Batch Processing Channels".

For complete API reference information about the Oracle Event Processing APIs described in this section, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

16.2.2 Implementing an Event Source

You can create a Java class that is able to send events to a downstream stage in an event processing network. A component that can send events is an event source. You might create an event source, for example, to send events your Java code has created or altered from event data flowing through the EPN.

A Java class that is an event source implements one of the interfaces described in this section. Each of these interfaces provides a method used by the Oracle Event Processing server to pass into your class an instance of a sender class.

The sender instance your event source receives, in turn, implements one of the sender interfaces described in this section. The sender interfaces provide methods your code can call to send events as streams or relations, batched or unbatched, along to the downstream EPN stage that follows it, such as a channel.

The interfaces described here are intended to provide support for sending events either as streams or relations. However, interfaces for relation support also support sending events as streams.

Table 16-1 Interfaces for Implementing an Event Source

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSource

	
Implement this for the ability to send events as a stream. At runtime, the Oracle Event Processing server will inject an instance of a stream sender class.

	
com.bea.wlevs.ede.api.RelationSource

	
Implement this for the ability to send events as a relation or stream. At runtime, the Oracle Event Processing server will inject an instance of a relation sender class. Extends StreamSource., so it also provides support as a source of stream events.

The interfaces listed in Table 16-2, "Interfaces Implemented by Sender Classes" are implemented by sender classes your event source class receives from the Oracle Event Processing server.

Table 16-2 Interfaces Implemented by Sender Classes

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSender

	
Provides a method with which your code can send events as a stream.

	
com.bea.wlevs.ede.api.RelationSender

	
Provides methods with which your code can send events as a relation. Extends StreamSender, so it also provides support for sending events as a stream.

	
com.bea.wlevs.ede.api.BatchStreamSender

	
Provides a method with which your code can send batched events as a stream. You might send ev

ents batched by timestamp if the downstream stage to which you're sending them is a channel configured for batched events. Extends StreamSender, so it also provides support for sending events unbatched.

	
com.bea.wlevs.ede.api.BatchRelationSender

	
Provides a method with which your code can send batched events as a relation. You might send events batched by timestamp if the downstream stage to which you're sending them is a channel configured for batched events. Extends RelationSender, so it also provides support for sending events unbatched.

16.2.2.1 Implementing StreamSource

A class that is a source of events as a stream should send only events that are, from the Oracle Event Processing standpoint, "inserted." Sending only inserted events models a stream, rather than a relation. Events sent from a stream source should also have non-decreasing timestamps from one event to the event that follows it. In other words, the timestamp of an event that follows another should either be the same as or later than the event that preceded it.

When you implement StreamSource, your code can send events batched or unbatched. Your implementation of the StreamSource setEventSender method will receive a sender instance that you can cast to one of the types described in Table 16-2, "Interfaces Implemented by Sender Classes". Your code should use the sender instance to send events as expected by the downstream stage to which the events will be going.

If your code is sending events to a channel that enables batching, you should use one of the batched event senders to batch events by timestamp before sending them. For more information, see Section 10.1.6, "Batch Processing Channels".

The sender instance also provides a sendHeartbeat method with which you can send a heartbeat if the receiving channel is configured to be application timestamped.

16.2.2.2 Implementing RelationSource

A class that is a source of events as a relation can send insert, delete, and update events as expected by the downstream stage that is receiving the events.

When you implement RelationSource, your code can send events batched or unbatched. Your implementation of the RelationSource setEventSender method will receive a sender instance that you can cast to one of the types described in Table 16-2, "Interfaces Implemented by Sender Classes". Your code should use the sender instance to send events as expected by the downstream stage.

As you implement RelationSource, keep in mind the following constraints when using the sender instance your class receives:

	
For sendDeleteEvent, you must send an instance of the same event type as that configured for the channel.

	
For sendInsertEvent, a unique constraint violation exception will be raised and the input event discarded if an event with the same primary key is already in the relation.

	
For sendUpdateEvent, an invalid update tuple exception will be raised and the input event will be discarded if an event with the given primary key is not in the relation.

In Example 16-3, "Implementing the RelationSource Interface", a simple RelationSource implementation receives a StreamSender, then casts the sender to a RelationSender in order to send events as a relation. This class creates a new TradeEvent instance from the event type configured in the repository, but the sendEvents method could as easily have received an instance as a parameter from another part of the code.

Example 16-3 Implementing the RelationSource Interface

package com.oracle.cep.example.tradereport;

import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RelationSender;
import com.bea.wlevs.ede.api.RelationSource;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.util.Service;

public class TradeEventSource implements RelationSource {

 // Variables for event type respository and event sender. Both
 // will be set by the server.
 EventTypeRepository m_repos = null;
 RelationSender m_sender = null;

 // Called by the server to set the repository instance.
 @Service
 public void setEventTypeRepository(EventTypeRepository repos) {
 m_repos = repos;
 }

 // Called by the server to set the sender instance.
 @Override
 public void setEventSender(StreamSender sender) {
 // Cast the received StreamSender to a RelationSender
 m_sender = (RelationSender)sender;
 }

 /**
 * Sends events to the next EPN stage using the sender
 * received from the server. This code assumes that an event
 * instance isn't received from another part of the class,
 * instead creating a new instance from the repository.
 */
 private void sendEvents(){
 EventType eventType = m_repos.getEventType("TradeEvent");
 TradeEvent tradeEvent = (TradeEvent)eventType.createEvent();
 m_sender.sendDeleteEvent(tradeEvent);
 }
}

16.3 Configuring Java Classes as Beans

When you write Java classes to handle events, you can add them to an EPN by configuring them in the EPN assembly file. You can configure a class a either a Spring bean or an Oracle Event Processing event bean.

	
Note:

You can also add a class as part of an adapter, whose code receives or sends events when interacting with an external component. For more about configuring a class as an adapter, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

Whether you configure your class as an event bean or Spring bean depends on your deployment context and the features you want to support. Essentially, however, you might want to configure the class as Spring bean if you're interested in taking advantage of an Spring features, such as when you're already using Spring elsewhere.

Table 16-3, "Comparison of Event Beans and Spring Beans" lists the features provided by event beans and Spring beans.

Table 16-3 Comparison of Event Beans and Spring Beans

	Bean Type	Description
	
Event bean

	
Useful as an EPN stage to actively use the capabilities of the Oracle Event Processing server container. An event bean:

	
Is a type of Oracle Event Processing EPN stage.

	
Can be monitored by the Oracle Event Processing monitoring framework.

	
Can make use of the configuration metadata annotations.

	
Can be set to record and play-back events that pass through it.

	
Can participate in the Oracle Event Processing server bean lifecycle by specifying methods in its XML declaration, rather than by implementing Oracle Event Processing server API interfaces.

	
Spring bean

	
Useful for legacy integration to Spring. A Spring bean:

	
Is useful if you have a Spring bean you want to add to an EPN.

	
Is not a type of Oracle Event Processing EPN stage.

	
Cannot be monitored by the Oracle Event Processing monitoring framework.

	
Cannot use the configuration metadata annotations.

	
Cannot be set to record and play back events that pass through it.

For more details on each of the different bean types, see the following:

	
Section 16.3.1, "Configuring a Java Class as an Event Bean"

	
Section 16.3.2, "Configuring a Java Class as a Spring Bean"

16.3.1 Configuring a Java Class as an Event Bean

You can configure a Java class as an Oracle Event Processing event bean in the EPN assembly file and the componenent configuration file. Configuring it as a event bean in the EPN assembly file will add the bean to the EPN with default settings. You can then configure it in the component configuration file to support runtime configuration changes to certain features.

For more information, see the following sections:

	
Section 16.3.1.1, "Configuring an Event Bean in an EPN Assembly File"

	
Section 16.3.1.2, "Configuring an Event Bean in a Component Configuration File"

For a complete description of the configuration file, including registration of other components of your application, see Section 5.3, "Creating EPN Assembly Files."

16.3.1.1 Configuring an Event Bean in an EPN Assembly File

In an EPN assembly file, you use the wlevs:event-bean element to declare a custom event bean as a component in the event processor network. Note that the configuration code will differ for event beans created from a factory. For more information, see Section 16.3.1.3, "Creating an Event Bean Factory".

In the following example, the TradeListener class is configured as an event bean whose downstream connection is a channel with ID BeanOutputChannel:

<wlevs:event-bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
 <wlevs:listener ref="BeanOutputChannel"/>
</wlevs:event-bean>

You can also use a wlevs:instance-property child element to set any static properties in the bean. Static properties are those that you will not change after the bean is deployed.

For example, if your bean class has a setThreshold method, you can pass it the port number as shown:

<wlevs:event-bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
 <wlevs:instance-property name="threshold" value="6000" />
 <wlevs:listener ref="BeanOutputChannel"/>
</wlevs:event-bean>

You reference an event bean that is an event sink by using the wlevs:listener element. In the following example, a TradeListenerBean event bean receives events from a channel ProcessorOutputChannel:

<wlevs:channel id="ProcessorOutputChannel" >
 <wlevs:listener ref="TradeListenerBean" />
</wlevs:channel>

16.3.1.2 Configuring an Event Bean in a Component Configuration File

You can add configuration for an event bean in a component configuration file. Configuration you add here is available to be updated at runtime. Adding configuration in a component configuration file assumes that you have added the event bean to the EPN by configuring it in the EPN assembly file (see Section 16.3.1.1, "Configuring an Event Bean in an EPN Assembly File" for more information).

You can also create a separate component configuration XML file as needed according to your development environment. For example, if your application has more than one custom event bean, you can create separate XML files for each, or create a single XML file that contains the configuration for all custom event beans, or even all components of your application (beans, adapters, processors, and streams).

In the following example, a TradeListenerBean event bean is configured for event recording. Each event bean configuration should have a separate event-bean child element of the config element.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <event-bean>
 <name>TradeListenerBean</name>
 <record-parameters>
 <dataset-name>tradereport_sample</dataset-name>
 <event-type-list>
 <event-type>TradeEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 </event-bean>
</wlevs:config>

Uniquely identify each event bean with the name child element. This name must be the same as the value of the id attribute in the wlevs:event-bean element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular event bean component in the EPN assembly file this configuration applies.

You can also extend component configuration with your own elements. For more information, see Section 26, "Extending Component Configuration".

For a reference on the component configuration XML schema, see Section B.2, "Component Configuration Schema wlevs_application_config.xsd".

16.3.1.3 Creating an Event Bean Factory

You can use a single event bean implementation in multiple event processing networks by implementing and configuring an event bean factory. The factory class provides event bean instances for the applications that request one.

For detail on the APIs described here, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing

Creating an event bean factory involves the following steps:

	
In your event bean class, implement the com.bea.wlevs.ede.api.EventBean interface so that the bean can be returned by the factory. This is a marker interface, so there are no methods to implement.

public class TradeListener implements EventBean, StreamSink {
 // Bean implementation code.
}

	
Implement an event bean factory class to create and return instances of the event bean.

Your event bean factory class must implement the com.bea.wlevs.ede.api.EventBeanFactory interface. In your implementation of its create method, create an instance of your event bean.

import com.oracle.cep.example.tradereport.TradeListener;
import com.bea.wlevs.ede.api.EventBeanFactory;

public class TradeListenerFactory implements EventBeanFactory {
 public TradeListenerFactory() {
 }
 public synchronized TradeListener create()
 throws IllegalArgumentException {

 // Your code might have a particular way to create the instance.
 return new TradeListener();

 }
}

	
In an EPN assembly file, configure the factory class.

You register factories in the EPN assembly file using the wlevs:factory element, as shown in the following example:

<wlevs:factory provider-name="tradeListenerProvider"
 class="com.oracle.cep.example.tradereport.TradeListenerFactory"/>

If you need to specify service properties, then you must also use the osgi:service element to register the factory as an OSGI service in the EPN assembly file. The scope of the OSGI service registry is all of Oracle Event Processing. This means that if more than one application deployed to a given server is going to use the same even bean factory, be sure to register the factory only once as an OSGI service.

Add an entry to register the service as an implementation of the com.bea.wlevs.ede.api.EventBeanFactory interface. Provide a property, with the key attribute equal to type, and the name by which this event bean provider will be referenced. Finally, add a nested standard Spring bean element to register your specific event bean class in the Spring application context

<osgi:service interface="com.bea.wlevs.ede.api.EventBeanFactory">
 <osgi:service-properties>
 <entry key="type" value="tradeListenerProvider"</entry>
 </osgi:service-properties>
 <bean class="com.oracle.cep.example.tradereport.TradeListenerFactory" />
</osgi:service>

	
In applications that will use instances of the event bean, configure the event bean by specifying the configured event bean factory as a provider (rather than specifying the bean by its class name), as shown in the following example:

<wlevs:event-bean id="TradeListenerBean"
 provider="tradeListenerProvider">
 ...
</wlevs:event-bean>

For more on bundling an event bean in its own bundle for reuse, see Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle".

16.3.2 Configuring a Java Class as a Spring Bean

You can configure a Java class as a Spring bean in order to include the class in an event processing network. This is a good option if you have an existing Spring bean that you want to incorporate into the EPN. Or you might simply want to have your Java code make use of Spring features.

A Spring bean is a Java class managed by the Spring framework. You add a class as a Spring bean by configuring it in the EPN assembly file using the standard bean element.

Keep in mind that a Spring bean is not a type of Oracle Event Processing stage. In other words, it cannot be monitored by the Oracle Event Processing monitoring framework, cannot use the configuration metadata annotations, and cannot be set to record and play-back events that pass through it.

In the EPN assembly file, you use the bean element to declare a custom Spring bean as a component in the event processor network. For example:

<bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
</bean>

16.3.2.1 Supporting Spring Bean Characteristics

In a Spring bean you are planning to add to an EPN, you can implement the various lifecycle interfaces. These include InitializingBean, DisposableBean, and the active interfaces, such as RunnableBean. The Spring bean event source can also use configuration metadata annotations such as @Prepare, @Rollback, and @Activate.

17 Querying an Event Stream with Oracle CQL

This chapter describes how to configure Oracle Continuous Query Language (Oracle CQL) processors for Oracle Event Processing event processing networks. It includes information on configuring the processor's data source and optimizing performance.

This chapter includes the following sections:

	
Section 17.1, "Overview of Oracle CQL Processor Configuration"

	
Section 17.2, "Configuring an Oracle CQL Processor"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

	
Section 17.5, "Configuring an Oracle CQL Processor for Parallel Query Execution"

	
Section 17.6, "Handling Faults"

	
Section 17.7, "Example Oracle CQL Processor Configuration Files"

17.1 Overview of Oracle CQL Processor Configuration

An Oracle Event Processing application contains one or more event processors, or processors for short. Each processor takes as input events from one or more adapters; these adapters in turn listen to data feeds that send a continuous stream of data from a source. The source could be anything, such as a financial data feed or the Oracle Event Processing load generator.

The main feature of an Oracle CQL processor is its associated Oracle Continuous Query Language (Oracle CQL) rules that select a subset of the incoming events to then pass on to the component that is listening to the processor. The listening component could be another processor, or the business object POJO that typically defines the end of the event processing network, and thus does something with the events, such as publish them to a client application. For more information on Oracle CQL, see the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

For each Oracle CQL processor in your application, you must create a processor element in a component configuration file. In this processor element you specify the initial set of Oracle CQL rules of the processor and any optional processor configuration.

You can configure additional optional Oracle CQL processor features in the Oracle CQL processor EPN assembly file.

The component configuration file processor element's name element must match the EPN assembly file processor element's id attribute. For example, given the EPN assembly file processor element shown in Example 17-1, the corresponding component configuration file processor element is shown in Example 17-2.

Example 17-1 EPN Assembly File Oracle CQL Processor Id: proc

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

Example 17-2 Component Configuration File Oracle CQL Processor Name: proc

<processor>
 <name>proc</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
 FROM ExchangeStream [Now], Stock
 WHERE ExchangeStream.symbol = Stock.symbol
]]></query>
 </rules>
</procesor>

You can create a processor element in any of the following component configuration files:

	
The default Oracle Event Processing application configuration file (by default, META-INF/wlevs/config.xml).

	
A separate configuration file.

If your application has more than one processor, you can create a processor element for each of them in the default config.xml file, you can create separate XML files in META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains the configuration for all processors, or even all components of your application (adapters, processors, and channels). Choose the method that best suits your development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component configuration file and one EPN assembly file. When you create an Oracle CQL processor using Oracle Event Processing IDE for Eclipse, by default, the processor element is added to the default component configuration file META-INF/wlevs/config.xml file. Using Oracle Event Processing IDE for Eclipse, you can choose to create a new configuration file or use an existing configuration file at the time you create the Oracle CQL processor.

Component configuration files are deployed as part of the Oracle Event Processing application bundle. You can later update this configuration at runtime using Oracle Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate JMX Mbeans directly.

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 5.3, "Creating EPN Assembly Files"

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

For more information on Oracle CQL processor configuration, see:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.2, "Configuring an Oracle CQL Processor"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

	
Section 17.7, "Example Oracle CQL Processor Configuration Files"

17.1.1 Controlling Which Queries Output to a Downstream Channel

If you configure an Oracle CQL processor with more than one query, by default, all queries output their results to the downstream channel.

You can control which queries may output their results to a downstream channel using the channel selector element to specify a space delimited list of query names that may output their results on this channel.

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

For more information, see Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector".

17.2 Configuring an Oracle CQL Processor

You can configure a processor manually or by using the Oracle Event Processing IDE for Eclipse.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the processor component configuration file.

See Section 17.7, "Example Oracle CQL Processor Configuration Files" for a complete example of an Oracle CQL processor component configuration file and assembly file.

This section describes the following topics:

	
Section 17.2.1, "How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse"

	
Section 17.2.2, "How to Create an Oracle CQL Processor Component Configuration File Manually"

17.2.1 How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to create and edit a processor is to use the Oracle Event Processing IDE for Eclipse. Optionally, you can create and edit a processor manually (see Section 17.2.2, "How to Create an Oracle CQL Processor Component Configuration File Manually").

To configure an Oracle CQL processor using Oracle Event Processing IDE for Eclipse:

	
Use Oracle Event Processing IDE for Eclipse to create a processor.

See Section 7.4.1.3, "How to Create a Processor Node".

When you use the EPN editor to create an Oracle CQL processor, Oracle Event Processing IDE for Eclipse prompts you to choose either the default component configuration file or a new component configuration file. For more information, see Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network".

	
Right-click the processor node and select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the appropriate component configuration file. The default processor component configuration is shown in Example 17-3.

The default processor component configuration includes a name element and rules element.

Use the rules element to group the child elements you create to contain the Oracle CQL statements this processor executes, including:

	
rule: contains Oracle CQL statements that register or create user-defined windows. The rule element id attribute must match the name of the window.

	
view: contains Oracle CQL view statements (the Oracle CQL equivalent of subqueries). The view element id attribute defines the name of the view.

	
query: contains Oracle CQL select statements. The query element id attribute defines the name of the query.

The default processor component configuration includes a dummy query element with id Query.

Example 17-3 Default Processor Component Configuration

<processor>
 <name>proc</name>
 <rules>
 <query id="Query"><!-- <![CDATA[select * from MyChannel [now]]]> -->
 </query>
 </rules>
</processor>

	
Replace the dummy query element with the rule, view, and query elements you create to contain the Oracle CQL statements this processor executes.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Select File > Save.

	
Optionally, configure additional Oracle CQL processor features in the assembly file:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

17.2.2 How to Create an Oracle CQL Processor Component Configuration File Manually

Although the most efficient and least error-prone way to create and edit a processor configuration is to use the Oracle Event Processing IDE for Eclipse (see Section 17.2.1, "How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse"), alternatively, you can also create and maintain a processor configuration file manually.

This section describes the main steps to create the processor configuration file manually. For simplicity, it is assumed in the procedure that you are going to configure all processors in a single XML file, although you can also create separate files for each processor.

To create an Oracle CQL processor component configuration file manually:

	
Design the set of Oracle CQL rules that the processor executes. These rules can be as simple as selecting all incoming events to restricting the set based on time, property values, and so on, as shown in the following:

SELECT *
FROM TradeStream [Now]
WHERE price > 10000

Oracle CQL is similar in many ways to Structure Query Language (SQL), the language used to query relational database tables, although the syntax between the two differs in many ways. The other big difference is that Oracle CQL queries take another dimension into account (time), and the processor executes the Oracle CQL continually, rather than SQL queries that are static.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Create the processor configuration XML file that will contain the Oracle CQL rules you designed in the preceding step, as well as other optional features, for each processor in your application.

You can name this XML file anything you want, provided it ends with the .xml extension.

The root element of the processor configuration file is config, with namespace definitions shown in the next step.

	
For each processor in your application, add a processor child element of config.

Uniquely identify each processor with the name child element. This name must be the same as the value of the id attribute in the wlevs:processor element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular processor component in the EPN assembly file this processor configuration applies. See Section 5.3, "Creating EPN Assembly Files" for details.

For example, if your application has two processors, the configuration file might initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>firstProcessor</name>
 ...
 </processor>
 <processor>
 <name>secondProcessor</name>
 ...
 </processor>
</n1:config>

In the example, the configuration file includes two processors called firstProcessor and secondProcessor. This means that the EPN assembly file must include at least two processor registrations with the same identifiers:

<wlevs:processor id="firstProcessor" ...>
 ...
</wlevs:processor>
<wlevs:processor id="secondProcessor" ...>
 ...
</wlevs:processor>

	
Caution:

Identifiers and names in XML files are case sensitive, so be sure you specify the same case when referencing the component's identifier in the EPN assembly file.

	
Add a rules child element to each processor element.

Use the rules element to group the child elements you create to contain the Oracle CQL statements this processor executes, including:

	
rule: contains Oracle CQL statements that register or create user-defined windows. The rule element id attribute must match the name of the window.

	
view: contains Oracle CQL view statements (the Oracle CQL equivalent of subqueries). The view element id attribute defines the name of the view.

	
query: contains Oracle CQL select statements. The query element id attribute defines the name of the query.

Use the required id attribute of the view and query elements to uniquely identify each rule. Use the XML CDATA type to input the actual Oracle CQL rule. For example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>proc</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty"><![CDATA[
 select mod(price)
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
 <query id="q1"><![CDATA[
 SELECT *
 FROM lastEvents
 WHERE price > 10000
]]></query>
 </rules>
 </processor>
</n1:config>]]></query>

	
Save and close the file.

	
Optionally, configure additional Oracle CQL processor features in the assembly file:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

17.3 Configuring an Oracle CQL Processor Table Source

You can access a relational database table from an Oracle CQL query using:

	
table source: using a table source, you may join a stream only with a NOW window and only to a single database table.

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only join the table source to an event stream using a Now window and you may only join to a single database table. For more information, see "S[now]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

To integrate arbitrarily complex SQL queries and multiple tables with your Oracle CQL queries, consider using the Oracle JDBC data cartridge instead.

For more information, Section 17.3, "Configuring an Oracle CQL Processor Table Source".

	
Oracle JDBC data cartridge: using the Oracle JDBC data cartridge, you may integrate arbitrarily complex SQL queries and multiple tables and datasources with your Oracle CQL queries.

	
Note:

Oracle recommends that you use the Oracle JDBC data cartridge to access relational database tables from an Oracle CQL statement.

For more information, see "Understanding the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

In all cases, you must define datasources in the Oracle Event Processing server config.xml file. For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Oracle Event Processing relational database table event sources are pull data sources: that is, Oracle Event Processing will periodically poll the event source.

In this section, assume that you create the table you want to access using the SQL statement that Example 17-4 shows.

Example 17-4 Table Create SQL Statement

create table Stock (symbol varchar(16), exchange varchar(16));

After configuration, you can define Oracle CQL queries that access the Stock table as if it was just another event stream. In the following example, the query joins one event stream ExchangeStream with the Stock table:

Example 17-5 Oracle CQL Query on Relational Database Table Stock

SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
FROM ExchangeStream [Now], Stock
WHERE ExchangeStream.symbol = Stock.symbol

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only join the table source to an event stream using a Now window and you may only join to a single database table.

To integrate arbitrarily complex SQL queries and multiple tables with your Oracle CQL queries, consider using the Oracle JDBC data cartridge instead.

For more information, see "Understanding the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

17.3.1 How to Configure an Oracle CQL Processor Table Source Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to configure an Oracle CQL processor to access a relational database table is to use the Oracle Event Processing IDE for Eclipse.

To configure an Oracle CQL processor table source using Oracle Event Processing IDE for Eclipse:

	
Create a data source for the database that contains the table you want to use.

Example 17-6 shows an example Oracle Event Processing server config.xml file with data source StockDS.

Example 17-6 Oracle Event Processing Server config.xml File With Data Source StockDS

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <domain>
 <name>ocep_domain</name>
 </domain>

...

 <data-source>
 <name>StockDs</name>
 <connection-pool-params>
 <initial-capacity>1</initial-capacity>
 <max-capacity>10</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:</url>
 <driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
 <properties>
 <element>
 <name>databaseName</name>
 <value>db</value>
 </element>
 <element>
 <name>create</name>
 <value>true</value>
 </element>
 </properties>
 </driver-params>
 <data-source-params>
 <jndi-names>
 <element>StockDs</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
 </data-source>

...

</n1:config>

For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Use Oracle Event Processing IDE for Eclipse to create a table node.

See Section 7.4.1.1, "How to Create a Basic Node".

	
Use Oracle Event Processing IDE for Eclipse to create an Oracle CQL processor.

See Section 7.4.1.3, "How to Create a Processor Node".

	
Connect the table node to the Oracle CQL processor node.

See Section 7.4.2.1, "How to Connect Nodes".

The EPN Editor adds a wlevs:table-source element to the target processor node that references the source table.

	
Right-click the table node in your EPN and select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this table node.

	
Edit the table element as Example 17-7 shows and configure the table element attributes as shown in Table 17-1.

Example 17-7 EPN Assembly File table Element

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

Table 17-1 EPN Assembly File table Element Attributes

	Attribute	Description
	
id

	
The name of the table source. Subsequent references to this table source use this name.

	
event-type

	
The type-name you specify for the table event-type you create in step 9.

	
data-source

	
The data-source name you specified in the Oracle Event Processing server config.xml file in step 1.

	
Right-click the Oracle CQL processor node connected to the table in your EPN and select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this Oracle CQL processor.

	
Edit the Oracle CQL processor element's table-source child element as Example 17-8 shows.

Set the ref attribute to the id of the table element you specified in step 6.

Example 17-8 EPN Assembly File table-source Element

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

	
Edit the EPN assembly file to update the event-type-repository element with a new event-type child element for the table as Example 17-9 shows.

Create a property child element for each column of the table you want to access and configure the property attributes as described in in Section 9.2.3.2, "Constraints on Event Types for Use With a Database Table Source".

Example 17-9 EPN Assembly File event-type element for a Table

<wlevs:event-type-repository>
 ...
 <wlevs:event-type type-name="StockEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 ...
</wlevs:event-type-repository>

For more information on creating event types, see:

	
Chapter 9, "Creating Event Types"

	
Section 9.2.2, "Choosing a Data Type for an Event Type"

	
Right-click the Oracle CQL processor node connected to the table in your EPN and select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the component configuration file for this Oracle CQL processor.

	
Edit the component configuration file to add Oracle CQL queries that use the table's event-type as shown in Example 17-10.

Example 17-10 Oracle CQL Query Using Table Event Type StockEvent

<processor>
 <name>proc</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
 FROM ExchangeStream [Now], Stock
 WHERE ExchangeStream.symbol = Stock.symbol
]]></query>
 </rules>
</processor>

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only use a Now window. For more information, see "S[Now]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

17.4 Configuring an Oracle CQL Processor Cache Source

You can configure an Oracle CQL processor to access the Oracle Event Processing cache.

For more information, see:

	
Section 13.1, "Overview of Integrating a Cache"

	
Section 13.6.5, "Accessing a Cache From an Oracle CQL User-Defined Function"

	
Section 13.6.1, "Accessing a Cache from an Oracle CQL Statement"

17.5 Configuring an Oracle CQL Processor for Parallel Query Execution

For improved performance, you can enable a CQL query to execute in parallel rather than serially, as it does by default. When the CQL code supports it, you can configure a query so that it can process incoming events in parallel when multiple threads are available to the CQL processor.

You should enable parallel query execution only in cases where the relative order of the query output events is unimportant to the query's downstream client. For example, event ordering probably isn't important if your query is intended primarily to filter events, such as to deliver to clients a set of stock transactions involving a particular company, where the transaction sequence is irrelevant.

By default (without enabling parallel execution), queries process events from a channel serially. For events routed through a channel that uses a system timestamp, event order is the order in which events are received; through a channel that is application timestamped, event order is the order determined by a timestamp value included in the event. Relaxing the total order constraint allows the configured query to not consider event order for that query, processing events in parallel where possible.

17.5.1 Setting Up Parallel Query Execution Support

While specifying support for parallel query execution is at its core a simple configuration task, be sure to follow the other steps below so that you get the most out of the feature.

	
Use the ordering-constraint attribute to support parallel execution.

	
Make sure you have enough threads calling into the processor to meet your performance goals. The maximum amount of parallel query execution is constrained by the number of threads available to the CQL processor. For example, if an adapter upstream of the processor supports the number of threads you need and there is a channel between the adapter and the processor, try configuring the channel with a max-threads count of 0 so that it acts as a pass-through.

If you don't want a pass-through, be sure to configure the query's upstream channel with a max-threads value greater than 1. (To make a max-threads value setting useful, you'll need to also set the max-size attribute to a value greater than 0.) For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

	
Follow other guidelines related to setting the max-threads attribute value. For example, to make a max-threads value setting useful, you'll need to also set the max-size attribute to a value greater than 0.

	
Ensure, if necessary, that a bean receiving the query results is thread-aware, such as by using synchronized blocks. For example, you might need to do so if the bean's code builds a list from results received from queries executed on multiple threads.

17.5.2 Using the ordering-constraint Attribute

You enable parallel query execution by relaxing the default ordering constraint that ensures that events are processed serially. You do this by setting the ordering-constraint attribute on a query or view element.

In Example 17-11, the ordering-constraint attribute is set to UNORDERED so that the query will execute in parallel whenever possible:

Example 17-11 Query Configured to Allow Parallel Execution

<query id="myquery" ordering-constraint="UNORDERED">
 SELECT symbol FROM S WHERE price > 10
</query>

The ordering-constraint attribute supports the following three values:

	
ORDERED means that the order of output events (as implied by the order of input events) is important. The CQL engine will process events serially. This is the default behavior.

	
UNORDERED means that order of the output events is not important to the consumer of the output events. This gives the freedom to the CQLProcessor to process events in parallel on multiple threads. When possible, the query will execute in parallel on multiple threads to process the events.

	
PARTITION_ORDERED means that you're specifying that order of output events within a partition is to be preserved (as implied by the order of input events) while order of output events across different partitions is not important to the consumer of the output events. This relaxation provides some freedom to the CQL engine to process events across partitions in parallel (when possible) on multiple threads.

Use the PARTITION_ORDERED value when you want to specify that events conforming to a given partition are processed serially, but that order can be disregarded across partitions and events belonging to different partitions may be processed in parallel. When using the PARTITION_ORDERED value, you must also add the partition-expression attribute to specify which expression for partitioning should be the basis for relaxing the cross-partition ordering constraint.

In Example 17-12, the GROUP BY clause partitions the output based on symbol values. The partition-expression attribute specifies that events in a given subset of events corresponding to a particular symbol value should be handled serially. Across partitions, on the other hand, order can be disregarded.

Example 17-12 Query Configured to Allow Parallel Execution Across Partitions

<query id="myquery" ordering-constraint="PARTITION_ORDERED"
 partitioning-expression="symbol">
 SELECT
 COUNT(*) as c, symbol
 FROM
 S[RANGE 1 minute]
 GROUP BY
 symbol
</query>

17.5.3 Using partition-order-capacity with Partitioning Queries

In general, you'll probably see improved performance for queries by making more threads available and setting the ordering-constraint attribute so that they're able to execute in parallel when possible. As with most performance tuning techniques, a little trial and error with these settings should yield a combination that gets better results.

However, in some cases where your queries use partitioning -- and you've set the ordering-constraint attribute to PARTITION_ORDERED -- you might not see the amount of scaling you'd expect. For example, consider a case in which running with four threads doesn't improve performance very much over running with two threads. In such a case, you can try using the partition-order-capacity value to get the most out of CQL engine characteristics at work with queries that include partitions.

The partition-order-capacity value specifies the maximum amount of parallelism that will be permitted within a given processor instance when processing a PARTITION_ORDERED query. When available threads are handling events belonging to different partitions, the value sets a maximum number of threads that will be allowed to simultaneously run in the query.

As with other aspects of performance tuning, getting the most out of partition-order-capacity may take a bit of experimentation. When tuning with partition-order-capacity, a good starting point is to set it equal to the maximum number of threads you expect to have active in any CQL processor instance. In some cases (for example, at high data rates or with expensive processing downstream from the CQL processor), it may be helpful to set the partition-order-capacity value even higher than the available number of threads. However, you should only do this if performance testing confirms that it's helpful for a given application and load.

The partition-order-capacity value is set from one of four places, two of which are fallbacks when you don't explicitly set it yourself. These are, in order of precedence:

	
The partition-order-capacity element set on a channel configuration. If you specify this on the input channel for a processor, it takes effect for any PARTITION_ORDERED queries in that processor. For more information, see Section D.72, "partition-order-capacity" in Appendix D, "Schema Reference: Component Configuration wlevs_application_config.xsd".

	
The partition-order-capacity property in server configuration. This value will be used for all PARTITION_ORDERED queries running on the server unless the value is set on a channel. For more information, see Section F.29, "partition-order-capacity" in Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd".

	
The max-threads value set on a channel configuration. If you specify this on the input channel for a processor, it takes effect for any PARTITION_ORDERED queries in that processor

	
A system default value (currently set to 4) is used if you don't specify either a partition-order-capacity value or max-threads value, or if the max-threads value is set to 0 (meaning it's a pass-through channel).

When using partition-order-capacity, keep in mind the following:

	
The partition-order-capacity value is only useful when you're setting the ordering-constraint attribute to PARTITION_ORDERED.

	
Increasing partition-order-capacity generally increases parallelism and scaling. For example, if your profiling reveals lock contention bottlenecks, you might find it helpful to increase partition-order-capacity to see if contention is reduced.

	
Setting partition-order-capacity even higher than the number of available threads can be helpful in some cases because of the particular way partitioning is done in the CQL processor.

	
There is some resource cost in memory used by specifying very high values.

	
Tuning this parameter is very dependent on details of the application and the input rate. Tuning by experimentation may be necessary to determine an optimal value.

17.5.4 Limitations

Think of parallel query execution as a performance enhancement feature that you specify support for so that the CQL processor can use it whenever possible. Not all queries can be executed in parallel. This includes queries using certain CQL language features.

For example, if your query uses some form of aggregation -- such as to find the maximum value from a range of values -- the CQL processor may not be able to fully execute the query in parallel (this is needed to guarantee the correct result considering the ordering constraint). Some query semantics in themselves also constrain the query to ordered processing. Such queries will be executed serially regardless of whether you specify support for parallel execution.

Also, the IStream, RStream and DStream operators maintain the state of their operand for processing, making it necessary for the CQL processor to synchronize threads in order to execute the query.

Note that the CQL processor always respects the semantic intention of your query. In cases where the ordering-constraint attribute would change this intention, the attribute is coerced to a value that keeps the intention intact.

If you're using the partitioning-expression attribute, keep in mind that the attribute supports a single expression only. Entering multiple property names for the value is not supported.

17.6 Handling Faults

You can write code to handle faults that occur in code that does not have an inherent fault handling mechanism. This includes Oracle CQL code and multi-threaded EPN channels. By default, the CQL language has no mechanism for handling errors that occur, as does Java with its try/catch structure. To handle faults that occur in CQL, you can write a fault handler, then connect the handler to the EPN stage for which it handles faults, such as an Oracle CQL processor.

You can also associate a fault handler with a multi-threaded channel -- that is, a channel whose max-threads setting is greater than 0. This provides fault handling in the case of exceptions that are thrown to the channel from a stage that is downstream of the channel. Note that channels whose max-threads setting is 0 are pass-through channels that already re-throw exception to their upstream stages. For additional information specific to fault handlers for channels, see Section 10.1.8, "Handling Faults in Channels".

A fault handler is a Java class that implements the com.bea.wlevs.ede.api.FaultHandler interface. You connect the class to an EPN stage by registering your fault handler as an OSGi service and associating it with the stage. For more information about OSGi, see Appendix A, "Additional Information about Spring and OSGi".

Without a custom fault handler, you get the following default fault handling behavior:

	
When an exception occurs in Oracle CQL, the CQL engine catches the exception and stops the query processor.

	
If an exception occurs in a stage that is downstream of the processor, then that stage will be dropped as a listener.

	
Exceptions are logged (under the CQLServer category) and the events that are part of the exception's cause are discarded.

	
Upstream stages are not notified of the failure.

When using custom fault handlers you write, you can:

	
Associate a fault handler with an Oracle CQL processor or multi-threaded channel so that faults in those stages are thrown as exceptions to the handler. There, you can handle or re-throw the exception.

	
Allow query processing to continue as your code either handles the exception or re-throws it to the stage that is next upstream.

	
Save event data from being lost while handling a fault. For example, if you have configured a connection to a data source, you could save event data there.

	
Log fault and event information when faults occur.

	
Use multiple fault handlers where needed in an EPN so that exceptions thrown upstream will be handled when they reach other Oracle CQL processors and channels.

In other words, consider associating a fault handler with a stage that does not have its own mechanism for responding to faults, including Oracle CQL processors and multi-threaded channels. Other stages, such as custom adapters you write in Java, which have their own exception-handling model, would not benefit from a fault handler.

Queries can continue as your fault handling code evaluates the fault to determine what action should be taken, including re-throwing the fault to a stage that is upstream of the CQL processor.

For example, the upstream stage of the CQL processor could be the JMS subscriber adapter, which has the option of rolling back the JMS transaction (if the session is transacted), allowing the event to be re-delivered. It can also commit the transaction if the event has been re-delivered already and found that the problem is not solvable.

Note that even when you are using a custom fault handler, query state is reset after a fault as if the query had been stopped and restarted. Yet contrast this with the default behavior, where the query is stopped and all subsequent events are dropped.

17.6.1 Implementing a Fault Handler Class

You create a fault handler class by implementing the com.bea.wlevs.ede.api.FaultHandler interface. After you have written the class, you associated it with the stage for which it will handle faults by registering it as an OSGi service. For more information, see Section 17.6.2, "Registering a Fault Handler".

Your implementation of the interface's one method, handleFault, receives exceptions for the EPN stage with which the handler is associated. The exception itself is either an instance of com.bea.wlevs.ede.api.EventProcessingException or, if there has been a JVM error, an instance of java.lang.Error.

The method also receives a string array containing the names of upstream stages, or catchers, to which the exception will go if your code re-throws it. If there is more than one catcher in the array, your re-thrown exception will go to all of them. There are two cases when the catchers array will be empty: when the exception occurs while executing a temporal query and if the exception is thrown to a channel's fault handler. In these cases, the fault handler is executed in the context of a background thread; there is no linkage to upstream stages.

An exception that is re-thrown from a fault handler will travel back up through upstream EPN stages until it is either caught or reaches a stage that cannot catch it (such as a processor or multi-threaded channel that does not have an associated fault handler). Note that if you re-throw an exception, any channels in the catchers list must have an associated fault handler in order to catch the exception.

The EventProcessingException instance could also be one of the exception types that extend that class, including CQLExecutionException, ArithmeticExecutionException, and others (be sure to see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing). The EventProcessingException instance provides methods with which your code can retrieve insert, delete, and update events that were involved in generating the fault.

Your implementation of the method should do one of the following:

	
Consume the fault in the way that a Java try/catch statement might. If your implementation does not re-throw the fault, then event processing will continue with subsequent events. However, query processing continues with its state reset as if the query had been restarted. Processing state is lost and processing begins fresh with events that follow those that provoked the fault.

	
Re-throw the fault so that it will be received by upstream stages (or their fault handlers). As when the fault is consumed, queries continue processing events, although query state is reset with subsquent events. The upstream stage receiving the fault always has the option of explicitly stopping the offending query by using the CQL processor's MBean interface.

In Example 17-13, "Fault Handler Class", the code provides a high level illustration of handling a fault.

Example 17-13 Fault Handler Class

package com.example.faulthandler;

import com.bea.wlevs.ede.api.FaultHandler;

public class SimpleFaultHandler implements FaultHandler
{
 private String suppress;

 // Called by the server to pass in fault information.
 @Override
 public void handleFault(Throwable fault, String[] catchers) throws Throwable
 {
 // Log the fault.
 return;
 }
}

17.6.2 Registering a Fault Handler

After you have written a fault handling class, you can associate it with an EPN stage by registering it as an OSGi service. The simplest way to do this is to register the handler declaratively in the EPN assembly file.

	
Note:

Due to inherent OSGi behavior, runtime fault handler registration from your configuration happens asynchronously, meaning that a small amount of warm-up time might be required before the handler is able to receive faults. To be sure your handler is ready for the first events entering the network, consider adding a wait period before the application begins receiving events.

In Example 17-14, "Code to Register a Fault Handler with an EPN Stage", the EPN assembly file excerpt shows a service element stanza that registers the SimpleFaultHandler class as the fault handler for the Oracle CQL processor whose id is exampleProcessor.

Example 17-14 Code to Register a Fault Handler with an EPN Stage

<osgi:service interface="com.bea.wlevs.ede.api.FaultHandler">
 <osgi:service-properties>
 <entry key="application.identity" value="myapp"/>
 <entry key="stage.identity" value="exampleProcessor"/>
 </osgi:service-properties>
 <bean class="com.example.faulthandler.SimpleFaultHandler"/>
</osgi:service>

<!-- A processor with a user-defined function. -->
<wlevs:processor id="exampleProcessor" >
 ...
</wlevs:processor>

For more on the schema for registering OSGi services, see http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html. For more on OSGi, see http://en.wikipedia.org/wiki/OSGi.

17.7 Example Oracle CQL Processor Configuration Files

This section provides example Oracle CQL processor configuration files, including:

	
Section 17.7.1, "Oracle CQL Processor Component Configuration File"

	
Section 17.7.2, "Oracle CQL Processor EPN Assembly File"

17.7.1 Oracle CQL Processor Component Configuration File

The following example shows a component configuration file for an Oracle CQL processor.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>proc</name>
 <rules>
 <view id="lastEvents"><![CDATA[
 select mod(price)
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
 <query id="q1"><![CDATA[
 SELECT *
 FROM lastEvents
 WHERE price > 10000
]]></query>
 </rules>
 </processor>
</n1:config>

In the example, the name element specifies that the processor for which the Oracle CQL rules are being configured is called proc. This in turn implies that the EPN assembly file that defines your application must include a corresponding wlevs:processor element with an id attribute value of proc to link these Oracle CQL rules with an actual proc processor instance (see Section 17.7.2, "Oracle CQL Processor EPN Assembly File").

This Oracle CQL processor component configuration file also defines a view element to specify an Oracle CQL view statement (the Oracle CQL equivalent of a subquery). The results of the view's select are not output to a down-stream channel.

Finally, this Oracle CQL processor component configuration file defines a query element to specify an Oracle CQL query statement. The query statement selects from the view. By default, the results of a query are output to a down-stream channel. You can control this behavior in the channel configuration using a selector element. For more information, see:

	
Section 10.2.1, "How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section 10.2.2, "How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

17.7.2 Oracle CQL Processor EPN Assembly File

The following example shows an EPN assembly file for an Oracle CQL processor.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="ExchangeEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="price" type="java.lang.Double" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="StockExchangeEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="price" type="java.lang.Double" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="StockEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->
 <wlevs:adapter id="adapter" class="com.bea.wlevs.example.db.ExchangeAdapter" >
 <wlevs:listener ref="ExchangeStream"/>
 </wlevs:adapter>

 <wlevs:channel id="ExchangeStream" event-type="ExchangeEvent" >
 <wlevs:listener ref="proc"/>
 </wlevs:channel>

 <wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

 <wlevs:processor id="proc" advertise="true" >
 <wlevs:table-source ref="Stock" />
 </wlevs:processor>

 <wlevs:channel id="OutputStream" advertise="true" event-type="StockExchangeEvent" >
 <wlevs:listener ref="bean"/>
 <wlevs:source ref="proc"/>
 </wlevs:channel>

 <osgi:reference id="ds" interface="com.bea.core.datasource.DataSourceService" cardinality="0..1" />

 <!-- Create business object -->
 <bean id="bean" class="com.bea.wlevs.example.db.OutputBean">
 <property name="dataSourceService" ref="ds"/>
 </bean>

</beans>

18 Configuring Applications With Data Cartridges

This chapter describes how to configure the Oracle JDBC cartridge and Oracle Spatial cartridge, which extend Oracle Continuous Query Language (CQL), for use with Oracle Event Processing.

This chapter includes the following sections:

	
Section 18.1, "Understanding Data Cartridge Application Context"

	
Section 18.2, "How to Configure Oracle Spatial Application Context"

	
Section 18.3, "How to Configure Oracle JDBC Data Cartridge Application Context"

For more information on data cartridges, see "Introduction to Data Cartridges" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

18.1 Understanding Data Cartridge Application Context

Depending on the data cartridge implementation, you may be able to define an application context that the Oracle Event Processing server propagates to an instance of the data cartridge and the complex objects it provides.

You may configure an application context for the following data cartridges:

	
Section 18.2, "How to Configure Oracle Spatial Application Context"

	
Section 18.3, "How to Configure Oracle JDBC Data Cartridge Application Context"

For more information on data cartridges, see "Introduction to Data Cartridges" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

18.2 How to Configure Oracle Spatial Application Context

You define an application context for an instance of Oracle Spatial using element spatial:context in your Oracle Event Processing application's Event Processing Network (EPN) assembly file.

All constructors and methods from com.oracle.cartridge.spatial.Geometry and Oracle Spatial functions are aware of spatial:context. For example, the SRID is automatically set from the value in the Oracle Spatial application context.

For more information, see:

	
"SDO_SRID" in the Oracle Spatial Developer's Guide at http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492

	
"Understanding Oracle Spatial" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

To configure Oracle Spatial application context:

	
Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section 7.1, "Opening the EPN Editor".

	
Import the package com.oracle.cep.cartridge.spatial into your Oracle Event Processing application's MANIFEST.MF file.

For more information, see Section 5.7.5, "How to Import a Package".

	
Right-click any component and select Go to Assembly Source.

	
Edit the EPN file to add the required namespace and schema location entries as Example 18-1 shows:

Example 18-1 EPN Assembly File: Oracle Spatial Namespace and Schema Location

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
 http://www.oracle.com/ns/ocep/spatial
 http://www.oracle.com/ns/ocep/spatial/ocep-spatial.xsd">

	
Edit the EPN file to add a spatial:context element as Example 18-2 shows.

Example 18-2 spatial:context Element in EPN Assembly File

<spatial:context id="SpatialGRS80" />

	
Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent Oracle CQL queries. In Example 18-2, the id is SpatialGRS80.

	
Note:

The id value must not equal the Oracle Spatial name spatial. For more information, see "Data Cartridge Name" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Configure the other attributes of the spatial:context element to suit your application requirements.

Table 18-1 lists the attributes of the spatial:context element.

Table 18-1 spatial:context Element Attributes

	Attribute	Description
	
anyinteract-tolerance

	
The default tolerance for contain or inside operator.

Default: 0.0000005

	
rof

	
Defines the Reciprocal Of Flattening (ROF) parameter used for buffering and projection.

Default: 298.257223563

	
sma

	
Defines the Semi-Major Axis (SMA) parameter used for buffering and projection.

Default: 6378137.0

	
srid

	
SRID integer. Valid values are:

	
CARTESIAN: for cartesian coordinate system.

	
LAT_LNG_WGS84_SRID: for WGS84 coordinate system.

	
An integer value from the Oracle Spatial SDO_COORD_SYS table COORD_SYS_ID column.

Default : LAT_LNG_WGS84_SRID

	
tolerance

	
The minimum distance to be ignored in geometric operations including buffering.

Default: 0.000000001

Example 18-3 shows how to create a spatial context named SpatialGRS80 in an EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate system (srid="4269").

Example 18-3 spatial:context Element in EPN Assembly File

<spatial:context id="SpatialGRS80" srid="4269" sma="63787.0" rof="298.25722101" />

	
Create Oracle CQL queries that reference this application context by name.

Example 18-4 shows how to reference a spatial:context in an Oracle CQL query. In this case, the query uses link name SpatialGRS80 (defined in Example 18-2) to propagate this application context to the Oracle Spatial. The spatial:context attribute settings of SpatialGRS80 are applied to the createPoint method call. Because the application context defines the SRID, you do not need to pass that argument into the createPoint method.

Example 18-4 Referencing spatial:context in an Oracle CQL Query

<view id=”createPoint”>
 select com.oracle.cep.cartridge.spatial.Geometry.createPoint@SpatialGRS80(lng, lat, 0d)
 from CustomerPos[NOW]
</view>

For more information, see "Using Oracle Spatial" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

18.3 How to Configure Oracle JDBC Data Cartridge Application Context

You define an application context for an instance of an Oracle JDBC data cartridge using:

	
A jdbc:jdbc-context element in the EPN assembly file.

	
A jc:jdbc-ctx element in the component configuration file.

The jc:jdbc-ctx element:

	
references one and only one jdbc:jdbc-context

	
references one and only one data-source

	
defines one or more SQL functions

	
Note:

You must provide alias names for every SELECT list column in the SQL function.

For more information see, "Understanding the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

To configure Oracle JDBC data cartridge application context:

	
Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section 7.1, "Opening the EPN Editor".

	
Right-click any component and select Go to Assembly Source.

	
Edit the EPN file to add the required namespace and schema location entries as Example 18-5 shows:

Example 18-5 EPN Assembly File: Oracle JDBC Data Cartridge Namespace and Schema Location

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
 http://www.oracle.com/ns/ocep/jdbc
 http://www.oracle.com/ns/ocep/jdbc/ocep-jdbc.xsd">

	
Edit the EPN file to add a jdbc:jdbc-context element as Example 18-6 shows.

Example 18-6 jdbc:jdbc-context Element in EPN Assembly File: id

<jdbc:jdbc-context id="JdbcCartridgeOne"/>

	
Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent Oracle CQL queries. In Example 18-6, the id is JdbcCartridgeOne.

	
Note:

The id value must not equal the Oracle JDBC data cartridge name jdbc. For more information, see "Data Cartridge Name" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Right-click the desired processor and select Go to Configuration Source.

	
Edit the component configuration file to add the required namespace entries as Example 18-7 shows:

Example 18-7 Component Configuration File: Oracle JDBC Data Cartridge Namespace

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc
 xsi:schemaLocation="
 http://www.oracle.com/ns/ocep/config/jdbc
 http://www.oracle.com/ns/ocep/config/jdbc/ocep_jdbc_context.xsd">

	
Edit the component configuration file to add a jc:jdbc-ctx element as Example 18-8 shows.

Example 18-8 jc:jdbc-ctx Element in Component Configuration File

<jc:jdbc-ctx>
</jc:jdbc-ctx>

	
Add a name child element whose value is the name of the Oracle JDBC application context you defined in the EPN assembly file as Example 18-9 shows.

Example 18-9 jc:jdbc-ctx Element in Component Configuration File: name

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
</jc:jdbc-ctx>

	
Add a data-source child element whose value is the name of a datasource defined in the Oracle Event Processing server config.xml file.

For more information, see:

	
"Configuring JDBC for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Section F.10, "data-source"

Example 18-10 shows how to specify the datasource named StockDS.

Example 18-10 jc:jdbc-ctx Element in Component Configuration File: data-source

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
</jc:jdbc-ctx>

	
Create one or more SQL functions using the function child element as Example 18-11 shows.

Example 18-11 jc:jdbc-ctx Element in Component Configuration File: function

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
]]></sql>
 </function>
</jc:jdbc-ctx>

	
Note:

You must provide alias names for every SELECT list column in the SQL query.

For more information, see "Defining SQL Statements" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Create Oracle CQL queries that invoke the SQL functions using the Oracle JDBC data cartridge application context.

Example 18-12 shows how to reference a jdbc:jdbc-context in an Oracle CQL query. In this case, the query uses link name JdbcCartridgeOne (defined in Example 18-11) to propagate this application context to the Oracle JDBC data cartridge. The Oracle CQL query in Example 18-12 invokes the function getDetailsByOrderIdName defined by Oracle JDBC data cartridge context JdbcCartridgeOne.

Example 18-12 Referencing JDBC Application Context in an Oracle CQL Query

<processor>
 <name>Proc</name>
 <rules>
 <query id="q1"><![CDATA[
 RStream(
 select
 currentOrder.orderId,
 details.orderInfo.employeeName,
 details.orderInfo.employeeemail,
 details.orderInfo.description
 from
 OrderArrival[now] as currentOrder,
 TABLE(getDetailsByOrderIdName@JdbcCartridgeOne(
 currentOrder.orderId, currentOrder.empName
) as orderInfo
) as details
)
]]></query>
 </rules>
</processor>

For more information see, "Defining Oracle CQL Queries With the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

19 Querying an Event Stream with Oracle EPL

This chapter describes how to configure Oracle Event Processing Language (EPL) processors for Oracle Event Processing event processing networks. EPL is deprecated; new applications should use Oracle Continuous Query Language.

This chapter includes the following sections:

	
Section 19.1, "Overview of EPL Processor Component Configuration"

	
Section 19.2, "Configuring an EPL Processor"

	
Section 19.3, "Configuring an EPL Processor Cache Source"

	
Section 19.4, "Example EPL Processor Configuration Files"

	
Note:

Oracle CQL replaces Event Processing Language (EPL) in Oracle Event Processing 11g Release 1 (11.1.1). Oracle Event Processing supports EPL for backwards compatibility. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

19.1 Overview of EPL Processor Component Configuration

An Oracle Event Processing application contains one or more event processors, or processors for short. Each processor takes as input events from one or more adapters; these adapters in turn listen to data feeds that send a continuous stream of data from a source. The source could be anything, from a financial data feed to the Oracle Event Processing load generator.

The main feature of an EPL processor is its associated Event Processing Language (EPL) rules that select a subset of the incoming events to then pass on to the component that is listening to the processor. The listening component could be another processor, or the business object POJO that typically defines the end of the event processing network, and thus does something with the events, such as publish them to a client application. For more information about EPL, see the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing.

For each EPL processor in your application, you must create a processor element in a component configuration file. In this processor element you specify the initial set of EPL rules of the processor and any optional processor configuration such as:

	
JDBC datasource reference if your Oracle Event Processing application requires a connection to a relational database.

	
Enable monitoring of the processor.

You can configure additional optional EPL processor features in the EPL processor EPN assembly file.

The component configuration file processor element's name element must match the EPN assembly file processor element's id attribute. For example, given the EPN assembly file processor element shown in Example 19-1, the corresponding component configuration file processor element is shown in Example 19-2.

Example 19-1 EPN Assembly File EPL Processor Id: proc

<wlevs:processor id="proc" provider="epl" >
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

Example 19-2 Component Configuration File EPL Processor Name: proc

<processor>
 <name>proc</name>
 <rules>
 <rule id="myRule"><![CDATA[
 SELECT symbol, AVG(price)
 FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
 RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
 GROUP BY symbol
 HAVING AVG(price) >= 100
 ORDER BY symbol
]]></rule>
 </rules>
</procesor>

	
Note:

Because Oracle CQL replaces Event Processing Language (EPL) in Oracle Event Processing 11g Release 1 (11.1.1), the default processor provider is cql. To specify an EPL processor, in the EPN assembly file, you must set the wlevs:processor element provider attribute to epl as Example 19-1 shows. Oracle Event Processing supports EPL for backwards compatibility. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

You can create a processor element in any of the following component configuration files:

	
The default Oracle Event Processing application configuration file (by default, META-INF/wlevs/config.xml).

	
A separate configuration file.

If your application has more than one processor, you can create a processor element for each of them in the default config.xml file, you can create separate XML files in META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains the configuration for all processors, or even all components of your application (adapters, processors, and channels). Choose the method that best suits your development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component configuration file and one EPN assembly file. When you create an EPL processor using Oracle Event Processing IDE for Eclipse, by default, the processor element is added to the default component configuration file META-INF/wlevs/config.xml file.

Component configuration files are deployed as part of the Oracle Event Processing application bundle. You can later update this configuration at runtime using Oracle Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate JMX MBeans directly.

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 5.3, "Creating EPN Assembly Files"

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

For more information on EPL processor configuration, see:

	
Section 19.2, "Configuring an EPL Processor"

	
Section 19.3, "Configuring an EPL Processor Cache Source"

	
Section 19.4, "Example EPL Processor Configuration Files"

19.2 Configuring an EPL Processor

This section describes the main steps to create the processor configuration file. For simplicity, it is assumed in the procedure that you are going to configure all processors in a single XML file, although you can also create separate files for each processor.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the processor configuration file.

See Section 19.4, "Example EPL Processor Configuration Files" for a complete example of a processor configuration file.

19.2.1 How to Configure an EPL Processor Manually

You can configure an EPL processor manually using your preferred text editor.

To configure an EPL processor:

	
Design the set of EPL rules that the processor executes. These rules can be as simple as selecting all incoming events to restricting the set based on time, property values, and so on, as shown in the following two examples:

SELECT * from Withdrawal RETAIN ALL
SELECT symbol, AVG(price)
FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
GROUP BY symbol
HAVING AVG(price) >= 100
ORDER BY symbol

EPL is similar in many ways to Structure Query Language (SQL), the language used to query relational database tables, although the syntax between the two differs in many ways. The other big difference is that EPL queries take another dimension into account (time), and the processor executes the EPL continually, rather than SQL queries that are static.

For additional conceptual information about EPL, and examples and reference information to help you design and write your own EPL rules, see Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing.

	
Create the processor configuration XML file that will contain the EPL rules you designed in the preceding step, as well as other optional features, for each processor in your application.

You can name this XML file anything you want, provided it ends with the .xml extension.

The root element of the processor configuration file is config, with namespace definitions shown in the next step.

	
For each processor in your application, add a processor child element of config.

Uniquely identify each processor with the name child element. This name must be the same as the value of the id attribute in the wlevs:processor element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular processor component in the EPN assembly file this processor configuration applies. See Section 5.3, "Creating EPN Assembly Files" for details.

For example, if your application has two processors, the configuration file might initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>firstProcessor</name>
 ...
 </processor>
 <processor>
 <name>secondProcessor</name>
 ...
 </processor>
</n1:config>

In the example, the configuration file includes two processors called firstProcessor and secondProcessor. This means that the EPN assembly file must include at least two processor registrations with the same identifiers:

<wlevs:processor id="firstProcessor" provider="epl"...>
 ...
</wlevs:processor>
<wlevs:processor id="secondProcessor" provider="epl"...>
 ...
</wlevs:processor>

	
Note:

Because Oracle CQL replaces Event Processing Language (EPL) in Oracle Event Processing 11g Release 1 (11.1.1), the default processor provider is cql. To specify an EPL processor, in the EPN assembly file, you must set the wlevs:processor element provider attribute to epl. Oracle Event Processing supports EPL for backwards compatibility. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

	
Caution:

Identifiers and names in XML files are case sensitive, so be sure you specify the same case when referencing the component's identifier in the EPN assembly file.

	
Add a rules child element to each processor to group together one or more rule elements that correspond to the set of EPL rules you have designed for this processor.

Use the required id attribute of the rule element to uniquely identify each rule. Use the XML CDATA type to input the actual EPL rule. For example:

<processor>
 <name>firstProcessor</name>
 <rules>
 <rule id="myFirstRule"><![CDATA[
 SELECT * from Withdrawal RETAIN ALL
]]></rule>
 <rule id="mySecondRule"><![CDATA[
 SELECT * from Checking RETAIN ALL
]]></rule>
 </rules>
</processor>

	
Optionally, override the default processor configuration by adding additional processor child elements:

	
Optionally add a database child element of the processor element to define a JDBC data source for your application. This is required if your EPL rules join a stream of events with an actual relational database table.

Use the name child element of database to uniquely identify the datasource.

Use the data-source-name child element of database to specify the actual name of the data source; this name corresponds to the name child element of the data-source configuration object in the config.xml file of your domain.

For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

For example:

<processor>
 <name>firstProcessor</name>
 <rules>

 </rules>
 <database>
 <name>myDataSource</name>
 <data-source-name>rdbmsDataSource</data-source-name>
 </database>
</processor>

	
Save and close the file.

	
Optionally, configure additional EPL processor features in the assembly file:

	
Section 19.3, "Configuring an EPL Processor Cache Source"

19.3 Configuring an EPL Processor Cache Source

You can configure an EPL processor to access the Oracle Event Processing cache.

For more information, see:

	
Section 13.1, "Overview of Integrating a Cache"

	
Section 13.6.6, "Accessing a Cache From an EPL User-Defined Function"

	
Section 13.6.2, "Accessing a Cache From an EPL Statement"

19.4 Example EPL Processor Configuration Files

This section provides example Oracle CQL processor configuration files, including:

	
Section 19.4.1, "EPL Processor Component Configuration File"

	
Section 19.4.2, "EPL Processor EPN Assembly File"

19.4.1 EPL Processor Component Configuration File

The following example shows how to configure one of the sample EPL queries shown in Section 19.2, "Configuring an EPL Processor" for the myProcessor EPL processor:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>myProcessor</name>
 <rules>
 <rule id="myRule"><![CDATA[
 SELECT symbol, AVG(price)
 FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
 RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
 GROUP BY symbol
 HAVING AVG(price) >= 100
 ORDER BY symbol
]]></rule>
 </rules>
 </processor>
</n1:config>

In the example, the name element specifies that the processor for which the single EPL rule is being configured is called myProcessor. This in turn implies that the EPN assembly file that defines your application must include a corresponding <wlevs:processor id="myProcessor" provider="epl" /> element to link these EPL rules with an actual myProcessor EPL processor instance (see Section 19.4.2, "EPL Processor EPN Assembly File").

19.4.2 EPL Processor EPN Assembly File

The following example shows an EPN assembly file for an EPL processor.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter
 id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter">
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>
 <wlevs:processor id="helloworldProcessor" provider="epl" />
 <wlevs:channel
 id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

20 Configuring Event Record and Playback

This chapter describes how to configure event recording and playback for debugging Oracle Event Processing event processing networks, including how to specify an event persistence store and query the store.

This chapter includes the following sections:

	
Section 20.1, "Overview of Configuring Event Record and Playback"

	
Section 20.2, "Configuring Event Record and Playback in Your Application"

	
Section 20.3, "Creating a Custom Event Store Provider"

20.1 Overview of Configuring Event Record and Playback

Oracle Event Processing event repository feature allows you to persist the events that flow out of a component of the event processing network (EPN) to a store, such as a database table, and then play them back at a later stage or explicitly query the events from a component such as an event bean.

A typical use case of this feature is the ability to debug a problem with a currently running application. If you have been recording the events at a node in the EPN when the problem occurred, you can later playback the same list of events to recreate the problem scenario for debugging purposes.

The following graphic shows the EPN of the Event Record and Playback example and demonstrates at what point events are recorded and where they are played back. The simpleEventSource adapter has been configured to record events; as indicated, the record happens as events flow out of the adapter. The eventStream channel has been configured to playback events; as indicated, the playback happens at the point where events flow into the channel.

Figure 20-1 Configuring Record and Playback in an EPN

[image: Description of Figure 20-1 follows]

This section describes:

	
Section 20.1.1, "Storing Events in the Persistent Event Store"

	
Section 20.1.2, "Recording Events"

	
Section 20.1.3, "Playing Back Events"

	
Section 20.1.4, "Querying Stored Events"

	
Section 20.1.5, "Record and Playback Example"

20.1.1 Storing Events in the Persistent Event Store

When you record events, Oracle Event Processing server stores them in a persistent event store. You can use the persistent event store that Oracle Event Processing server provides or define your own:

	
Section 20.1.1.1, "Default Persistent Event Store"

	
Section 20.1.1.2, "Custom Persistent Event Store"

	
Section 20.1.1.3, "Persistent Event Store Schema"

20.1.1.1 Default Persistent Event Store

By default, Oracle Event Processing uses a Berkeley DB instance bundled with the Oracle Event Processing server to store recorded events.

Berkeley DB is a fast, scalable, transactional database engine with industrial grade reliability and availability. For more information, see:

	
http://www.oracle.com/technology/products/berkeley-db/je/index.html

	
http://www.oracle.com/technology/documentation/berkeley-db/je/index.html

By default, Oracle Event Processing server creates the Berkeley DB instance in:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event Processing (such as /oracle_home), domainname refers to the name of your domain, and servername refers to the name of your server (For example, /oracle_cep/user_projects/domains/mydomain/myserver).

You can change this default by configuring the bdb-config element db-env-path child element as Section 20.2.1, "Configuring an Event Store for Oracle Event Processing Server" describes.

20.1.1.2 Custom Persistent Event Store

Optionally, you can create a custom persistent event store provider to store recorded events. For example, you could specify a Relational Database Management System such as Oracle Database or Derby as your persistent event store.

For more information, see Section 20.3, "Creating a Custom Event Store Provider."

20.1.1.3 Persistent Event Store Schema

You do not create the actual database schema used to store the recorded events. Oracle Event Processing server automatically does this for you after you deploy an application that uses the record and playback feature and recording begins.

For more information, see Section 20.2.5, "Description of the Berkeley Database Schema".

20.1.2 Recording Events

You can configure recording for any component in the event processing network (EPN) that produces events: processors, adapters, streams, and event beans. Processors and streams always produce events; adapters and event beans must implement the EventSource interface. Additionally, you can configure that events from different components in the EPN be stored in different persistent stores, or that all events go to the same store. Note that only events that are outputted by the component are recorded.

You enable the recording of events for a component by updating its configuration file and adding the record-parameters element. Using the child elements of record-parameters, you specify the event store to which the events are recorded, an initial time period when recording should take place, the list of event types you want to store, and so on.

After you deploy the application and events start flowing through the network, recording begins either automatically because you configured it to start at a certain time or because you dynamically start it using administration tools. For each component you have configured for recording, Oracle Event Processing stores the events that flow out of it to the appropriate store along with a timestamp of the time it was recorded.

20.1.3 Playing Back Events

You can configure playback for any component in the event processing network (EPN): processors, adapters, streams, and event beans. Typically the playback component is a node later in the network than the node that recorded the events.

You enable the playback of events for a component by updating its configuration file and adding the playback-parameters element. Using the child elements of playback-parameters, you specify the event store from which the events are played back, the list event types you want to play back (by default all are played back), the time range of the recorded events you want to play back, and so on. By default, Oracle Event Processing plays back the events in a time accurate manner; however, you can also configure that the events get played back either faster or slower than they originally flowed out of the component from which they were recorded.

After you deploy the application and events start flowing through the network, you must start the playback by using the administration tools (Oracle Event Processing Visualizer or wlevs.Admin). Oracle Event Processing reads the events from the appropriate persistent store and inserts them into the appropriate place in the EPN.

It is important to note that when a component gets a playback event, it looks exactly like the original event. Additionally, a component later in the network has been configured to record events, then Oracle Event Processing records the playback events as well as the "real" events.

For more information, see:

	
"Recording and Playing Back Events Flowing Through an EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Controlling Event Record and Playback" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

20.1.4 Querying Stored Events

You can use the event store API to query a store for past events given a record time range and the component from which the events were recorded. The actual query you use depends on the event repository provider; for example, you would use Oracle CQL or EPL for the default persistent event store provider included with Oracle Event Processing. You can also use these APIs to delete old events from the event store.

20.1.5 Record and Playback Example

The sample code in this section is taken from the event record and playback example, located in the ORACLE_CEP_HOME\ocep_11.1\samples\source\applications\recplay directory, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For details about running and building the example, see Section 2.10, "Event Record and Playback Example".

20.2 Configuring Event Record and Playback in Your Application

Depending on how you are going to use the event repository, there are different tasks that you must perform, as described in the following procedure that in turn point to sections with additional details.

To configure record and playback of events in your application:

	
Optionally configure the Berkeley database event store for your Oracle Event Processing server instance.

You may use the default Berkeley database configuration as is. You only need to make configuration changes to customize the location of the Berkeley database instance or to tune performance.

See Section 20.2.1, "Configuring an Event Store for Oracle Event Processing Server."

	
Configure a component in your EPN to record events by updating the component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only events flowing out of the component are recorded.

See Section 20.2.2, "Configuring a Component to Record Events."

	
Configure a component in your EPN to playback events by updating the component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only components that are also event sinks can playback events; events are played to the input side of the component.

See Section 20.2.3, "Configuring a Component to Playback Events."

	
Redeploy your application for the changes to take effect.

	
If you have not specified an explicit start and end time for recording events, you must use Oracle Event Processing Visualizer or wlevs.Admin to start recording. You must always use these administration tools to start and end the playback of events.

See Section 20.2.4, "Starting and Stopping the Record and Playback of Events."

20.2.1 Configuring an Event Store for Oracle Event Processing Server

You may use the default Berkeley database configuration as is. You only need to make configuration changes to customize the location of the Berkeley database instance or to tune performance.

For more information, see Section 20.3, "Creating a Custom Event Store Provider".

To configure an event store for Oracle Event Processing server:

	
Stop your Oracle Event Processing server instance, if it is running.

	
Using your favorite XML editor, open the server's config.xml file for edit.

The config.xml file is located in the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

	
Edit the bdb-config element to the config.xml file.

Example 20-1 shows a fully configured bdb-config element.

Example 20-1 bdb-config Element

<bdb-config>
 <db-env-path>bdb</db-env-path>
 <cache-size>1000</cache-size>
</bdb-config>

Table 20-1 lists the child elements of bdb-config that you can specify.

Table 20-1 Child Elements of bdb-config

	Child Element	Description
	
db-env-path

	
Specifies the subdirectory in which Oracle Event Processing server creates Berkeley database instances relative to the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

Default: bdb

	
cache-size

	
Specifies the amount of memory, in bytes, available for Berkeley database cache entries. You can adjust the cache size to tune Berkeley database performance.

For more information, see:

	
http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/cachesize.html.

	
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/EnvironmentMutableConfig.html#setCacheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

	
Restart your Oracle Event Processing server instance.

20.2.2 Configuring a Component to Record Events

You can configure any processor, adapter, channel, or event bean in your application to record events. As with all other component configuration, you specify that a component records events by updating its configuration file. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

This section describes the main steps to configure a component to record events. For simplicity, it is assumed in the procedure that you are configuring an adapter to record events and that you have already created its component configuration file.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the event recording configuration file elements.

Using your favorite XML editor, open the component configuration XML file and add a record-parameters child element to the component you want to configure to record events. For example, to configure an adapter called simpleEventSource:

<?xml version="1.0" encoding="UTF-8"?>
 <n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 ...
 </record-parameters>
 ...
 </adapter>
 ...
</n1:config>

Add child elements to record-parameters to specify the name of the event store provider, the events that are stored, the start and stop time for recording, and so on. For example:

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
</adapter>

Table 20-2 lists the child elements of record-parameters that you can specify. Only dataset-name is required.

Table 20-2 Child Elements of record-parameters

	Child Element	Description
	
dataset-name

	
Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the database area, or schema, in which the tables that store the recorded events are created.

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
event-type-list

	
Specifies the event types that are recorded to the event store. If this element is not specified, then Oracle Event Processing records all event types that flow out of the component.

Use the event-type child component to list one or more events, such as:

 <event-type-list>
 <event-type>EventOne</event-type>
 <event-type>EventTwo</event-type>
 </event-type-list>

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
time-range

	
Specifies the time period during which recording should take place using a start and end time.

The time period is configured by using a start child element to specify a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that recording should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are recorded when the application is deployed and recording will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
time-range-offset

	
Specifies the time period during which recording should take place, using a start time and a duration.

The time period is configured by using a start child element to specify a start time and duration child element to specify the amount of time after the start time that recording should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that recording should start on January 20, 2010, at 5:00am and continue for 3 hours, enter the following

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are recorded when the application is deployed and recording will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
batch-size

	
Specifies the number of events that Oracle Event Processing picks up in a single batch from the event buffer to write the event store.

Default value is 1000.

	
batch-time-out

	
Specifies the number of seconds that Oracle Event Processing waits for the event buffer window to fill up with the batch-size number of events before writing to the event store.

Default value is 60

	
max-size

	
If specified, Oracle Event Processing uses a stream when writing to the event store, and this element specifies the size of the stream, with non-zero values indicating asynchronous writes.

Default value is 1024.

	
max-threads

	
If specified, Oracle Event Processing uses a stream when writing to the event store, and this element specifies the maximum number of threads that will be used to process events for this stream. Setting this value has no effect when max-size is 0.

The default value is 1.

20.2.3 Configuring a Component to Playback Events

You can configure any processor, adapter, channel, or event bean in your application to playback events, although the component must be a node downstream of the recording component so that the playback component will actually receive the events and play them back. As with all other component configuration, you specify that a component plays back events by updating its configuration file. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

This section describes the main steps to configure a component to play back events. For simplicity, it is assumed in the procedure that you are configuring a channel to playback events from a node upstream in the EPN that has recorded events, and that you have already created the channel's configuration file.

See for the complete XSD Schema that describes the event playback configuration file elements.

Using your favorite XML editor, open the component configuration XML file and add a playback-parameters child element to the component you want to configure to playback events. For example, to configure a channel called eventStream:

<?xml version="1.0" encoding="UTF-8"?>
 <n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <channel>
 <name>eventStream</name>
 <playback-parameters>
 ...
 </playback-parameters>
 </channel>
 ...
</n1:config>

Add child elements to playback-parameters to specify the name of the event store provider, the events that are played back, and so on. For example:

 <channel>
 <name>eventStream</name>
 <playback-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 </playback-parameters>
 </channel>

Table 20-3 lists the child elements of playback-parameters that you can specify. Only dataset-name is required.

Table 20-3 Child Elements of playback-parameters

	Child Element	Description
	
dataset-name

	
Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the database area, or schema, in which the tables that store the recorded events are queried for the playback events.

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
event-type-list

	
Specifies the event types that are played back from the event store. If this element is not specified, then Oracle Event Processing plays back all event types.

Use the event-type child component to list one or more events, such as:

 <event-type-list>
 <event-type>EventOne</event-type>
 <event-type>EventTwo</event-type>
 </event-type-list>

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
time-range

	
Specifies the time period during which play back should take place using a start and end time.

The time period is configured by using a start child element to specify a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are played back when the application is deployed and play back will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
time-range-offset

	
Specifies the time period during which play back should take place, using a start time and a duration.

The time period is configured by using a start child element to specify a start time and duration child element to specify the amount of time after the start time that play back should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and continue for 3 hours, enter the following

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are played back when the application is deployed and play back will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
playback-speed

	
Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A value of 2 means that events will be played back 2 times faster than the original record speed. Similarly, a value of 0.5 means that events will be played back at half the speed.

	
repeat

	
Specifies whether to playback events again after the playback of the specified time interval is over.

Valid values are true and false. Default value is false. A value of true means that the repeat of playback continues an infinite number of times until it is deliberately stopped. False means that events will be played back only once.

	
max-size

	
If specified, Oracle Event Processing uses a stream when playing back events from the event store, and this element specifies the size of the stream, with non-zero values indicating asynchronous writes.

Default value is 1024.

	
max-threads

	
If specified, Oracle Event Processing uses a stream when playing back events from the event store, and this element specifies the maximum number of threads that will be used to process events for this stream. Setting this value has no effect when max-size is 0.

The default value is 1.

20.2.4 Starting and Stopping the Record and Playback of Events

After you configure the record and playback functionality for the components of an application, and you deploy the application to Oracle Event Processing, the server starts to record events only if you specified an explicit start/stop time in the initial configuration.

For example, if you included the following element in a component configuration:

<time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
</time-range>

then recording will automatically start on January 20, 2010 at 5:00 am.

The only way to start the playback of events, however, is by using Oracle Event Processing Visualizer or wlevs.Admin. You also use these tools to dynamically start and stop the recording of events.

For more information, see:

	
"Recording and Playing Back Events Flowing Through an EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Controlling Event Record and Playback" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

Visualizer and wlevs.Admin use managed beans (MBeans) to dynamically start and stop event recording and playback, as well as manage the event store configuration. A managed bean is a Java bean that provides a Java Management Extensions (JMX) interface. JMX is the Java EE solution for monitoring and managing resources on a network. You can create your own administration tool and use JMX to manage event store functionality by using the com.bea.wlevs.management.configuration.StageMBean.

For more information, see:

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Oracle Fusion Middleware Java API Reference for Oracle Event Processing

20.2.5 Description of the Berkeley Database Schema

When you configure a stage for event record and playback, you specify a dataset-name to identify the recorded data.

Oracle Event Processing server creates a subdirectory with this name below the db-env-path you specify in your bdb-config element.

For example, consider the bdb-config element is as Example 20-2 shows.

Example 20-2 Default bdb-config Element

<bdb-config>
 <db-env-path>bdb</db-env-path>
</bdb-config>

If your dataset-name is test1, then Oracle Event Processing server stores recorded data in directory:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb/test1

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event Processing (such as /oracle_home), domainname refers to the name of your domain, and servername refers to the name of your server (For example, /oracle_cep/user_projects/domains/mydomain/myserver).

Within the data-set subdirectory, Oracle Event Processing creates a Berkeley database environment that contains a separate database for each event type you record. The database name is the same as the event type name as specified in the event type repository.

The database key is record time plus sequence number.

20.3 Creating a Custom Event Store Provider

Oracle Event Processing provides an event store API that you can use to create a custom event store provider. Oracle provides an RDBMS-based implementation for storing events in a relational database, or one that supports JDBC connections. If you want to store events in a different kind of database, or for some reason the Oracle RDBMS provider is not adequate for your needs, then you can create your own event store provider using the event store API.

The event store API is in the com.bea.wlevs.eventstore package; the following list describes the most important interfaces:

	
EventStore—Object that represents a single event store. The methods of this interface allow you to persist events to the store and to query the contents of the store using a provider-specific query.

	
EventStoreManager—Manages event stores. Only one instance of the EventStoreManager ever exists on a given Oracle Event Processing server, and this instance registers itself in the OSGi registry so that event store providers can in turn register themselves with the event store manager. You use this interface to find existing event stores, create new ones, get the provider for a given event store, and register an event provider. The event store manager delegates the actual work to the event store provider.

	
EventStoreProvider—Underlying repository that provides event store services to clients.

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

21 Testing Applications With the Load Generator and csvgen Adapter

This chapter describes how to use the included load generator and csvgen adapter to test Oracle Event Processing applications.

This chapter includes the following sections:

	
Section 21.1, "Overview of Testing Applications With the Load Generator and csvgen Adapter"

	
Section 21.2, "Configuring and Running the Load Generator Utility"

	
Section 21.3, "Creating a Load Generator Property File"

	
Section 21.4, "Creating a Data Feed File"

	
Section 21.5, "Configuring the csvgen Adapter in Your Application"

21.1 Overview of Testing Applications With the Load Generator and csvgen Adapter

The load generator is a simple utility provided by Oracle Event Processing to simulate a data feed. The utility is useful for testing the Oracle CQL or EPL rules in your application without needing to connect to a real-world data feed.

The load generator reads an ASCII file that contains the sample data feed information and sends each data item to the configured port. The load generator reads items from the sample data file in order and inserts them into the channel, looping around to the beginning of the data file when it reaches the end; this ensures that a continuous stream of data is available, regardless of the number of data items in the file. You can configure the rate of sent data, from the rate at which it starts, the final rate, and how long it takes the load generator to ramp up to the final rate.

In your application, you must use the Oracle Event Processing-provided csvgen adapter, rather than your own adapter, to read the incoming data; this is because the csvgen adapter is specifically coded to decipher the data packets generated by the load generator.

If you redeploy your application, you must also restart the load generator.

For more information on testing and debugging, see Section 6.4, "Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server".

21.2 Configuring and Running the Load Generator Utility

This procedure describes how to configure and run the load generator utility.

To configure and run the load generator utility:

	
Optionally create a property file that contains configuration properties for particular run of the load generator; these properties specify the location of the file that contains simulated data, the port to which the generator feeds the data, and so on.

Oracle Event Processing provides a default property file you can use if the default property values are adequate.

See Section 21.3, "Creating a Load Generator Property File."

	
Create a file that contains the actual data feed values.

See Section 21.4, "Creating a Data Feed File."

	
Configure the csvgen adapter so that it correctly reads the data feed generated by the load generator. You configure the adapter in the EPN assembly file that describes your Oracle Event Processing application.

See Section 21.5, "Configuring the csvgen Adapter in Your Application."

	
Be sure that you configure a builder factory for creating your event types. Although specifying event type builder factories is typically an optional task, it is required when using the load generator.

See Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class" for details.

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment".

	
Change to the ORACLE_CEP_HOME\ocep_11.1\utils\load-generator directory, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

	
Run the load generator specifying the properties file you created in step 1 to begin the simulated data feed. For example, if the name of your properties file is c:\loadgen\myDataFeed.prop, execute the following command:

prompt> runloadgen.cmd c:\loadgen\myDataFeed.prop

21.3 Creating a Load Generator Property File

The load generator uses an ASCII properties file for its configuration purposes. Properties include the location of the file that contains the sample data feed values, the port to which the utility should send the data feed, and so on.

Oracle Event Processing provides a default properties file called csvgen.prop, located in the ORACLE_CEP_HOME\ocep_11.1\utils\load-generator directory, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

The format of the file is simple: each property-value pair is on its own line. The following example shows the default csvgen.prop file; Oracle recommends you use this file as a template for your own property file:

 test.csvDataFile=test.csv
 test.port=9001
 test.packetType=CSV
 test.mode=client
 test.senders=1
 test.latencyStats=false
 test.statInterval=2000

	
Caution:

If you create your own properties file, you must include the test.packetType, test.mode, test.senders, test.latencyStats, and test.statInterval properties exactly as shown above.

In the preceding sample properties file, the file that contains the sample data is called test.csv and is located in the same directory as the properties file. The load generator will send the data feed to port 9001.

The following table lists the additional properties you can set in your properties file.

Table 21-1 Load Generator Properties

	Property	Description	Data Type	Required?
	
test.csvDataFile

	
Specifies the file that contains the data feed values.

	
String

	
Yes

	
test.port

	
The port number to which the load generator should send the data feed.

Each input adapter must be associated with its own test.port as Section 21.5, "Configuring the csvgen Adapter in Your Application" describes.

	
Integer

	
Yes

	
test.secs

	
Total duration of the load generator run, in seconds.

The default value is 30.

	
Integer

	
No

	
test.rate

	
Final data rate, in messages per second.

The default value is 1.

	
Integer

	
No

	
test.startRate

	
Initial data rate, in messages per second.

The default value is 1.

	
Integer

	
No

	
test.rampUpSecs

	
Number of seconds to ramp up from test.startRate to test.rate.

The default value is 0.

	
Integer

	
No

21.4 Creating a Data Feed File

A load generator data feed file contains the sample data feed values that correspond to the event type registered for your Oracle Event Processing application.

Example 21-1 shows an EmployeeEvent and Example 21-2 shows a load generator data feed file corresponding to this event type.

Example 21-1 EmployeeEvent Event Type

<wlevs:event-type-repository>
 <wlevs:event-type type-name="EmployeeEvent">
 <wlevs:properties>
 <wlevs:property name="name" type="char" />
 <wlevs:property name="age" type="int" />
 <wlevs:property name="birthplace" type="char" length="512" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

Example 21-2 Data Feed File for EmployeeEvent Event Type

 Lucy,23,Madagascar
 Nick,44,Canada
 Amanda,12,Malaysia
 Juliet,43,Spain
 Horatio,80,Argentina

A load generator data feed file follows a simple format:

	
Each item of a particular data feed is on its own line.

	
Separate the fields of a data feed item with commas.

	
Do not include commas as part of a string field.

	
Do not include extraneous spaces before or after the commas, unless the space is literally part of the field value.

	
Include only string and numerical data in a data feed file such as integer, long, double, and float.

	
By default, the maximum length of a string field is 256 characters.

To specify a longer string, set the length attribute of the char property in your event-type as Example 21-1 shows for the birthplace property.

	
Note:

The load generator does not fully comply with the CSV specification (http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm).

For more information, see Section 9.2.3.1, "Constraints on Event Types for Use With the csvgen Adapter".

21.5 Configuring the csvgen Adapter in Your Application

When using the load generator utility, you must use the csvgen adapter in your application because this Oracle Event Processing-provided adapter is specifically coded to read the data packets generated by the load generator.

You register the csvgen adapter using the wlevs:adapter element in the EPN assembly file of your application, as with all adapters. Set the provide attribute to csvgen to specify that the provider is the csvgen adapter, rather than your own adapter. Additionally, you must specify the following child tags:

	
wlevs:instance-property element with name attribute port and value attribute configured_port, where configured_port corresponds to the value of the test.port property in the load generator property file. See Section 21.3, "Creating a Load Generator Property File."

	
wlevs:instance-property element with name attribute eventTypeName and value attribute event_type_name, where event_type_name corresponds to the name of the event type that represents an item from the load-generated feed.

	
wlevs:instance-property element with name attribute eventPropertyNames and value attribute ordered_list_of_properties, where ordered_list_of_properties lists the names of the properties in the order that the load generator sends them, and consequently the csvgen adapter receives them.

Before showing an example of how to configure the adapter, first assume that your application registers an event type called PersonType in the EPN assembly file using the wlevs:metada element shown below:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="PersonType">
 <wlevs:properties>
 <wlevs:property name="name" type="char"/>
 <<wlevs:property name="age" type="int"/>
 <<wlevs:property name="birthplace" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

This event type corresponds to the data feed file shown in Section 21.4, "Creating a Data Feed File."

To configure the csvgen adapter that receives this data, use the following wlevs:adapter element:

<wlevs:adapter id="csvgenAdapter" provider="csvgen">
 <wlevs:instance-property name="port" value="9001"/>
 <wlevs:instance-property name="eventTypeName" value="PersonType"/>
 <wlevs:instance-property name="eventPropertyNames" value="name,age,birthplace"/>
</wlevs:adapter>

Note how the bold values in the adapter configuration example correspond to the PersonType event type registration.

If you use the wlevs:class element to specify your own JavaBean when registering the event type, then the eventPropertyNames value corresponds to the JavaBean properties. For example, if your JavaBean has a getName method, then one of the properties of your JavaBean is name.

For more information on event types, see Chapter 9, "Defining and Using Event Types".

22 Testing Applications With the Event Inspector

This chapter describes how to use the Event Inspector service to trace and inject events with any stage in an Oracle Event Processing event processing network (EPN).

This chapter includes the following sections:

	
Section 22.1, "Overview of Testing Applications With the Event Inspector"

	
Section 22.2, "Configuring the Event Inspector HTTP Pub-Sub Server"

	
Section 22.3, "Injecting Events"

	
Section 22.4, "Tracing Events"

	
Note:

The Event Inspector service is not for use on a production Oracle Event Processing server. It is for use only during development.

22.1 Overview of Testing Applications With the Event Inspector

Using the Event Inspector service, you can:

	
View the events flowing out of any stage in the EPN

	
Inject events into any stage in the EPN

You can use the Event Inspector service to test and debug Oracle CQL queries during development.

This section describes:

	
Section 22.1.1, "Tracing Events"

	
Section 22.1.2, "Injecting Events"

	
Section 22.1.3, "Event Inspector Event Types"

	
Section 22.1.4, "Event Inspector HTTP Publish-Subscribe Channel and Server"

	
Section 22.1.5, "Event Inspector Clients"

For more information on testing and debugging, see Section 6.4, "Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server".

22.1.1 Tracing Events

Using the Event Inspector service, you can view the events leaving any stage of the EPN.

The Event Inspector service uses a common HTTP pub-sub channel and server to trace events.

A trace event must have its binding attribute set to outbound.

For more information, see:

	
Section 22.1.3, "Event Inspector Event Types"

	
Section 22.1.4, "Event Inspector HTTP Publish-Subscribe Channel and Server"

	
Section 22.4, "Tracing Events"

22.1.2 Injecting Events

Using the Event Inspector service, you can inject events into any stage of the EPN.

The Event Inspector service uses a HTTP pub-sub channel and server to inject events.

An injected event must have its binding attribute set to inbound.

Using an Event Inspector client, you can inject:

	
A single, simple event by type, such as the StockTick event.

In this case, the specific event property types that you can use depends on the client.

	
A single event directly to the HTTP pub-sub channel as a JSON-formatted character string.

In this case, you can use any event property that JSON can represent.

	
Multiple events using a file that contains one or more JSON-formatted character strings.

In this case, you can use any event property that JSON can represent. The Event Inspector service client will parse the file and inject all its JSON strings to the HTTP pub-sub channel.

You can use the GSON Java library to help you convert Java objects to JSON format when creating your input file.

For more information, see:

	
http://www.json.org/

	
http://code.google.com/p/google-gson

	
Section 22.1.3, "Event Inspector Event Types"

	
Section 22.1.4, "Event Inspector HTTP Publish-Subscribe Channel and Server"

	
Section 22.3, "Injecting Events"

22.1.3 Event Inspector Event Types

All Oracle Event Processing event types are supported: JavaBean, Map, and tuple.

The Event Inspector service converts events to the JavaScript Object Notation (JSON) format before publishing to the trace channel and you must inject events in JSON format.

JSON-formatted events must conform to the structure that Example 22-1 shows. Table 22-1 lists the required attributes.

	
Note:

Byte arrays are not supported as property types in event types used with the event inspector.

Example 22-1 Event Inspector JSON Event

{
 "event-type": "myEventType",
 "operation": "insert",
 "binding": "outbound",
 "value":{
 "firstname": "Jane",
 "lastname": "Doe",
 "phone": {
 "code": 12345,
 "number": "office"
 },
 }
}

Table 22-1 Event Inspector JSON Event Required Attributes

	Attribute	Description
	
event-type

	
The name of the Oracle Event Processing event as you defined it in the application assembly file's event-type-repository.

	
operation

	
Specify the type of event:

	
insert: insert event.

	
delete: delete event

	
update: update event

	
heartbeat: heartbeat event

	
binding

	
One of:

	
inbound: injected event.

	
outbound: trace event.

	
value

	
One or more JSON-formatted event properties as defined by the event-type.

For more information, see:

	
http://www.json.org/

	
Section 9.1, "Overview of Oracle Event Processing Event Types"

	
Section 22.1.1, "Tracing Events"

	
Section 22.1.2, "Injecting Events"

22.1.4 Event Inspector HTTP Publish-Subscribe Channel and Server

The Event Inspector service uses a dynamic HTTP publish-subscribe (HTTP pub-sub) channel (not configured in config.xml) that is named:

/SERVERNAME/APPLICATIONNAME/STAGENAME/DIRECTION

Where:

	
SERVERNAME: the name of the Oracle Event Processing server on which the Oracle Event Processing EPN stage is running.

	
APPLICATIONNAME: the name of the Oracle Event Processing application.

	
STAGENAME: the name of the EPN stage.

	
DIRECTION: one of either:

	
input: for event injection.

	
output: for event tracing.

For example:

/server-1/myapp/MyInputAdapter/input

The Event Inspector service uses an HTTP pub-sub server. This can be any of:

	
Local: you configure your config.xml file with an event-inspector element and configure its pubsub-server-name child element with the name of local pubsub server running on this machine. For more information, see Section 22.2.1, "How to Configure a Local Event Inspector HTTP Pub-Sub Server".

	
Remote: you configure your config.xml file with an event-inspector element and configure its pubsub-server-url child element with a URL to an HTTP pub-sub server running on a remote machine. For more information, see Section 22.2.2, "How to Configure a Remote Event Inspector HTTP Pub-Sub Server".

	
Default: if there is only one HTTP pub-sub server defined in your config.xml file and you do not specify a local or remote HTTP pub-sub server, then the Event Inspector service uses the local HTTP pub-sub server by default.

The Event Inspector service uses the same HTTP pub-sub channel and server for both tracing and injecting events.

For more information, see:

	
Section 22.1.1, "Tracing Events"

	
Section 22.1.2, "Injecting Events"

22.1.5 Event Inspector Clients

The Event Inspector service supports the following clients:

	
Section 22.1.5.1, "Oracle Event Processing Visualizer"

22.1.5.1 Oracle Event Processing Visualizer

You can access the Event Inspector service using the Oracle Event Processing Visualizer.

For more information, see "Testing Applications With the Event Inspector" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

22.2 Configuring the Event Inspector HTTP Pub-Sub Server

You can configure the Event Inspector service with a local or remote HTTP pub-sub server:

	
Section 22.2.1, "How to Configure a Local Event Inspector HTTP Pub-Sub Server"

	
Section 22.2.2, "How to Configure a Remote Event Inspector HTTP Pub-Sub Server"

You configure the Event Inspector HTTP pub-sub server in a component configuration file. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

If there is only one HTTP pub-sub server defined in your config.xml and you do not specify a local or remote HTTP pub-sub server, then the Event Inspector service uses the local HTTP pub-sub server by default. For more information, see Chapter 12, "Integrating an HTTP Publish-Subscribe Server".

22.2.1 How to Configure a Local Event Inspector HTTP Pub-Sub Server

You configure the Event Inspector service with a local HTTP pub-sub server in a component configuration file. Alternatively, you can configure a remote HTTP pub-sub server as Section 22.2.2, "How to Configure a Remote Event Inspector HTTP Pub-Sub Server" describes.

To configure a local Event Inspector HTTP pub-sub server:

	
Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section 7.1, "Opening the EPN Editor".

	
Right-click any component with a configuration file associated with it and select Go to Configuration Source.

	
Add an event-inspector element as Example 22-2 shows.

Example 22-2 Event Inspector Service Local HTTP Pub-Sub Server

<event-inspector>
 <name>myEventInspectorConfig</name>
 <pubsub-server-name>myPubSub</pubsub-server-name>
</event-inspector>

Where the pubsub-server-name value myPubSub is the value of the http-pubsub element name child element as defined in the local Oracle Event Processing server config.xml file as Example 22-3 shows.

Example 22-3 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element

...
 <http-pubsub>
 <name>myPubSub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 ...
 </channels>
 </pub-sub-bean>
 </http-pubsub>
...

	
Save and close the config.xml file.

22.2.2 How to Configure a Remote Event Inspector HTTP Pub-Sub Server

You configure the Event Inspector service with a remote HTTP pub-sub server in a component configuration file. Alternatively, you can configure a local HTTP pub-sub server as Section 22.2.1, "How to Configure a Local Event Inspector HTTP Pub-Sub Server" describes.

To configure a Remote Event Inspector HTTP pub-sub server:

	
Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section 7.1, "Opening the EPN Editor".

	
Right-click any component with a configuration file associated with it and select Go to Configuration Source.

	
Add an event-inspector element as Example 22-4 shows.

Example 22-4 Event Inspector Service Remote HTTP Pub-Sub Server

<event-inspector>
 <name>myEventInspectorTraceConfig</name>
 <pubsub-server-url>http://HOST:PORT/PATH</pubsub-server-url>
</event-inspector>

Where:

	
HOST: is the host name or IP address of the remote Oracle Event Processing server.

	
PORT: the remote Oracle Event Processing server netio port as defined in the remote Oracle Event Processing server config.xml file. Default: 9002.

	
PATH: the value of the http-pubsub element path child element as defined in the remote Oracle Event Processing server config.xml file.

Given the http-pubsub configuration that Example 22-3 shows, a valid pubsub-server-url would be:

http://remotehost:9002/pubsub

Example 22-5 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element

...
 <http-pubsub>
 <name>myPubSub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 ...
 </channels>
 </pub-sub-bean>
 </http-pubsub>
...

	
Save and close the config.xml file.

22.3 Injecting Events

After you configure the Event Inspector service HTTP pub-sub server, you can use Event Inspector clients to inject events. To configure event injection, you can use the Oracle Event Processing Visualizer or you can edit a component configuration file in your application to specify injection settings that are in place when the application is deployed or redeployed.

Configure event injection in Oracle Event Processing Visualizer with settings that can be discarded when the application is redeployed. For more information on using Oracle Event Processing Visualizer to inject events, see "How to Inject a Simple Event on an Event Inspector Service Dynamic Channel" and "How to Inject an Event as a JSON String on an Event Inspector Service Dynamic Channel" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

If you want to specify event injection configuration settings that are in place when the application is deployed or redeployed, configure injection by editing component configuration settings for the stage to which you want to inject.

For example, the component configuration excerpt shown in Section 22.3, "Event Injection Component Configuration Settings" illlustrates how you might configure a processor for event injection. The inject-parameters element's active child element specifies that injection is on, while the channel-name element specifies the HTTP pub-sub channel from which injected elements should be sent.

Example 22-6 Event Injection Component Configuration Settings

<processor>
 <name>FindCrossRates</name>
 <inject-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </inject-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

For reference information about these elements, see Section D.55, "inject-parameters".

For more information, see:

	
Section 22.2, "Configuring the Event Inspector HTTP Pub-Sub Server"

22.4 Tracing Events

After you configure the Event Inspector service HTTP pub-sub server, you can use Event Inspector clients to trace events flowing out of any stage of your EPN. To trace events, you can either use the Oracle Event Processing Visualizer to configure tracing or you can edit a component configuration file in your application to specify trace settings that are in place when the application is deployed or redeployed.

Configure event tracing in Oracle Event Processing Visualizer with settings that can be discarded when the application is redeployed. For more information on using Oracle Event Processing Visualizer to trace events, see "How to Trace Events on a Dynamic Channel" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

For event tracing configuration that is in place when the application is deployed or redeployed, configure tracing by editing component configuration settings for the stage from which you want to trace.

For example, the component configuration excerpt shown in Section 22.4, "Event Tracing Component Configuration Settings" illlustrates how you might configure a processor for event tracing. The trace-parameters element's active child element specifies that tracing is on, while the channel-name element specifies the HTTP pub-sub channel to which traced elements should be sent.

Example 22-7 Event Tracing Component Configuration Settings

<processor>
 <name>FindCrossRates</name>
 <trace-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </trace-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

For reference information about these elements, see Section D.106, "trace-parameters".

For more information, see:

	
Section 22.2, "Configuring the Event Inspector HTTP Pub-Sub Server"

Part IV

Completing and Refining Oracle Event Processing Applications

Part IV contains the following chapters:

	
Chapter 23, "Assembling and Deploying Oracle Event Processing Applications"

	
Chapter 24, "Developing Applications for High Availability"

	
Chapter 25, "Developing Scalable Applications"

	
Chapter 26, "Extending Component Configuration"

	
Chapter 27, "Performance Tuning"

23 Assembling and Deploying Oracle Event Processing Applications

This chapter describes how to assemble and deploy Oracle Event Processing applications manually, by using the Oracle Event Processing IDE for Eclipse, and by using Oracle Event Processing Visualizer.

This chapter includes the following sections:

	
Section 23.1, "Overview of Application Assembly and Deployment"

	
Section 23.2, "Assembling an Oracle Event Processing Application"

	
Section 23.3, "Managing Application Libraries"

	
Section 23.4, "Managing Log Message Catalogs"

	
Section 23.5, "Deploying Oracle Event Processing Applications"

23.1 Overview of Application Assembly and Deployment

The term application assembly refers to the process of packaging the components of an application, such as the Java files and XML configuration files, into an OSGI bundle that can be deployed to Oracle Event Processing. The term application deployment refers to the process of making an application available for processing client requests in an Oracle Event Processing domain.

This section describes:

	
Section 23.1.1, "Applications"

	
Section 23.1.3, "Application Libraries"

	
Section 23.1.2, "Application Dependencies"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 23.1.5, "Configuration History Management"

	
Note:

Oracle Event Processing applications are built on top of the Spring Framework and OSGi Service Platform and make extensive use of their technologies and services. See Appendix A, "Additional Information about Spring and OSGi," for links to reference and conceptual information about Spring and OSGi.

23.1.1 Applications

In the context of Oracle Event Processing assembly and deployment, an application is defined as an OSGi bundle (see http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html) JAR file that contains the following artifacts:

	
The compiled Java class files that implement some of the components of the application, such as the adapters, adapter factory, and POJO that contains the business logic.

	
One or more Oracle Event Processing configuration XML files that configure the components of the application. The only type of component that is required to have a configuration file is the event processor; all other components (adapters and streams) do not require configuration files if the default configuration of the component is adequate. You can combine all configuration files into a single file, or separate the configuration for individual components in their own files.

The configuration files must be located in the META-INF/wlevs directory of the OSGi bundle JAR file if you plan to dynamically deploy the bundle. If you have an application already present in the domain directory, then the configuration files need to be extracted in the same directory.

	
An EPN assembly file that describes all the components of the application and how they are connected to each other.

The EPN assembly file must be located in the META-INF/spring directory of the OSGi bundle JAR file.

	
A MANIFEST.MF file that describes the contents of the JAR.

23.1.2 Application Dependencies

The OSGI bundle declares dependencies by specifying imported and required packages. It also provides functionality to other bundles by exporting packages. If a bundle is required to provide functionality to other bundles, you must use Export-Package to allow other bundles to reference named packages. All packages not exported are not available outside the bundle.

You define dependencies at design time.

This section describes:

	
Section 23.1.2.1, "Private Application Dependencies"

	
Section 23.1.2.2, "Shared Application Dependencies"

	
Section 23.1.2.3, "Native Code Dependencies"

For more information, see:

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 23.2, "Assembling an Oracle Event Processing Application"

23.1.2.1 Private Application Dependencies

Some dependencies are satisfied by a component bundled in and deployed with an application. For example, standard JAR files or property files.

For more information, see:

	
Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project"

	
Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project"

	
Section 5.7.3, "How to Add a Property File to an Oracle Event Processing Project"

23.1.2.2 Shared Application Dependencies

Some dependencies are satisfied by a component deployed to the Oracle Event Processing server application library directory. These components are not bundled in and deployed with a specific application. Instead, they are accessible to any application that imports one or more of the packages that the application library exports.

For more information, see:

	
Section 23.1.2.3, "Native Code Dependencies"

	
Section 23.1.3, "Application Libraries"

	
Section 5.7.4, "How to Export a Package"

	
Section 5.7.5, "How to Import a Package"

23.1.2.3 Native Code Dependencies

In some cases, you may create an application library that depends on native code libraries that you cannot or may not choose to package as application libraries.

In this case, you can put native code libraries in the operating system path (bootclasspath) of the Oracle Event Processing server when it is started, so that the native code libraries can be loaded by library bundles that need to call this native code.

For more information, see:

	
Section 23.1.2.2, "Shared Application Dependencies"

	
"Configuring the Oracle Event Processing Server Boot Classpath" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.1.3 Application Libraries

The Oracle Event Processing application library gives you a convenient location to deploy shared libraries and gives you complete control over the order in which shared libraries are deployed at Oracle Event Processing server start up time.

An application library is an OSGi bundle that contains a Java archive (JAR) of compiled Java classes and any other required artifacts.

You can use application libraries for a variety of purposes such as drivers or foreign stages (partial or complete Oracle Event Processing applications that are useful to other downstream applications).

Although you can add a library to a project as a simple embedded JAR file, there are advantages to using an application library, including:

	
Simplifying application assembly and maintenance activities such as deploying an updated version of the library.

	
Encouraging re-use.

	
Reducing server disk space consumption.

You deploy application libraries to either of the following Oracle Event Processing server directories:

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.3, "Creating Application Libraries"

For more information, see:

	
Section 23.3, "Managing Application Libraries"

	
Section 23.1.2, "Application Dependencies"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 1.4.1.2, "Referencing Foreign Stages in an EPN Assembly File"

	
Appendix A, "Additional Information about Spring and OSGi"

23.1.3.1 Library Directory

By default, the Oracle Event Processing server library directory is:

DOMAIN_DIR/servername/modules

Where:

	
DOMAIN_DIR: is the domain directory such as /oracle_cep/user_projects/domains/mydomain.

	
servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules

The libraries in this directory are deployed after the components in the library extensions directory but before any Oracle Event Processing applications.

If your library is a driver (such as a JDBC driver), you must put it in the library extensions directory as Section 23.1.3.2, "Library Extensions Directory" describes.

To configure the root of the application library directory path, see Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse".

23.1.3.2 Library Extensions Directory

By default, the Oracle Event Processing server library extensions directory is:

DOMAIN_DIR/servername/modules/ext

Where:

	
DOMAIN_DIR: is the domain directory such as /oracle_cep/user_projects/domains/mydomain.

	
servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules/ext

The libraries in this directory are deployed first along with the Oracle Event Processing server core modules.

If your library is a driver (such as a JDBC driver), you must put it in the library extensions directory so that it is activated in the correct order. For example, to override an older version with a newer version or to provide access to an alternative driver. For more information, see "Configuring Access to a Different Database Driver or Driver Version" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

If your library is not a driver, you may put it in the library directory as Section 23.1.3.1, "Library Directory" describes.

To configure the root of the application library extensions directory path, see Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse".

23.1.3.3 Creating Application Libraries

Oracle Event Processing provides a bundler.sh utility you can use to create an OSGi bundle wrapper around an arbitrary Java Archive. The resultant bundle JAR may be deployed to an OSGi container where the Java packages/classes found within the bundle may be imported and utilized by other deployed bundles. An example use case is the packaging of third-party JDBC drivers.

The utility reads the specified source JAR file and creates a target JAR file that includes the content of the source JAR and a manifest with the appropriate bundle-related entries specified. All Java packages found in the source archive will be exported by the target bundle.

Optionally, a bundle activator can be generated that instantiates one or more classes found within the JAR and registers each object as an OSGi service. This feature provides the ability for component bundles to access and manipulate multiple versions of specific factory classes at runtime.

If you wish to manually configure the activator implementation, you can use the Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 23.3.2, "How to Create an Application Library Using bundler.sh"

	
Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse"

	
"How to Access a Database Driver Using an Application Library Built With bundler.sh" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.1.4 Deployment and Deployment Order

After you have assembled the application, you deploy it by making it known to the Oracle Event Processing domain using the deployment tool appropriate for your needs. For detailed instructions, see Section 23.5, "Deploying Oracle Event Processing Applications."

The Oracle Event Processing server deploys components in the following order at Oracle Event Processing server start up time:

	
Deploy libraries in the library extensions directory (DOMAIN_DIR/servername/modules/ext directory).

	
Deploy libraries in the library directory (DOMAIN_DIR/servername/modules directory).

	
Deploy Oracle Event Processing applications.

The Oracle Event Processing server deploys libraries from both the library extensions directory and library directory based on the lexical order of the library names. Lexical ordering includes the relative directory name plus JAR file name.

For example:

	
modules/a.jar will start before modules/b.jar

	
modules/0/my.jar will start before module/my.jar since 0/my.jar comes before my.jar in lexical order

Using this convention, you can control the order in which Oracle Event Processing server deploys JAR files simply by organizing JAR files into appropriately named subdirectories of either the library extensions directory or library directory.

Once the application is deployed to Oracle Event Processing, the configured adapters immediately start listening for events for which they are configured, such as financial data feeds and so on.

For more information, see Section 23.1.3, "Application Libraries".

23.1.5 Configuration History Management

When you deploy an application to the Oracle Event Processing server, the Oracle Event Processing server creates a configuration history for the application. Any configuration changes you make to rules or Oracle Event Processing high availability adapter configuration are recorded in this history are recorded in this history. You can view and roll-back (undo) these changes using the Oracle Event Processing Visualizer or wlevs.Admin tool.

For more information, see:

	
"Configuration History Management" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Managing Configuration History" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.2 Assembling an Oracle Event Processing Application

Assembling an Oracle Event Processing application refers to bundling the artifacts that make up the application into an OSGi bundle JAR file as http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html describes. These artifacts include:

	
compiled Java classes

	
Oracle Event Processing component configuration files that configure application components (such as the processors or adapters)

	
EPN assembly file

	
MANIFEST.MF file

See Appendix A, "Additional Information about Spring and OSGi," for links to reference and conceptual information about Spring and OSGi.

This section describes:

	
Section 23.2.1, "Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse"

	
Section 23.2.2, "Assembling an Oracle Event Processing Application Manually"

	
Section 23.2.3, "Assembling Applications With Foreign Stages"

	
Section 23.2.4, "Assembling a Custom Adapter or Event Bean in Its Own Bundle"

23.2.1 Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse

You can use Oracle Event Processing IDE for Eclipse to easily assemble your Oracle Event Processing application.

For more information, see:

	
Section 5.5, "Exporting Oracle Event Processing Projects"

	
Section 5.6, "Upgrading Projects"

	
Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects"

If your application depends on foreign stages, see Section 23.2.3, "Assembling Applications With Foreign Stages".

23.2.2 Assembling an Oracle Event Processing Application Manually

Optionally, you can assemble your Oracle Event Processing application manually.

For simplicity, the following procedure creates a temporary directory that contains the required artifacts, and then jars up the contents of this temporary directory. This is just a suggestion and you are not required, of course, to assemble the application using this method.

	
Note:

See the HelloWorld example source directory for a sample build.xml Ant file that performs many of the steps described below. The build.xml file is located in ORACLE_CEP_HOME\ocep_11.1\samples\source\applications\helloworld, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

To assemble an Oracle Event Processing application manually:

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Create an empty directory, such as output:

prompt> mkdir output

	
Compile all application Java files into the output directory.

	
Create an output/META-INF/spring directory.

	
Copy the EPN assembly file that describes the components of your application and how they are connected into the output/META-INF/spring directory.

See Section 5.3, "Creating EPN Assembly Files" for details about this file.

	
Create an output/META-INF/wlevs directory.

	
Copy the XML files that configure the components of your application (such as the processors or adapters) into the output/META-INF/wlevs directory.

	
Create a MANIFEST.MF file that contains descriptive information about the bundle.

See Section 23.2.2.1, "Creating the MANIFEST.MF File."

	
If you need to access third-party JAR files from your Oracle Event Processing application, see Section 23.2.2.2, "Accessing Third-Party JAR Files."

	
Create a JAR file that contains the contents of the output directory.

Be sure you specify the MANIFEST.MF file you created in the previous step rather than the default manifest file.

You can name the JAR file anything you want. In the Oracle Event Processing examples, the name of the JAR file is a combination of Java package name and version, such as:

com.bea.wlevs.example.helloworld_1.0.0.0.jar

Consider using a similar naming convention to clarify which bundles are deployed to the server.

See the Apache Ant documentation at http://ant.apache.org/manual/Tasks/jar.html for information on using the jar task or the Java SE documentation at http://download.oracle.com/javase/6/docs/technotes/tools/windows/jar.html for information on using the jar command-line tool.

	
If your application depends on foreign stages, see Section 23.2.3, "Assembling Applications With Foreign Stages".

23.2.2.1 Creating the MANIFEST.MF File

The structure and contents of the MANIFEST.MF file is specified by the OSGi Framework. Although the value of many of the headers in the file is specific to your application or business, many of the headers are required by Oracle Event Processing.

In particular, the MANIFEST.MF file defines the following:

	
Application name—Specified with the Bundle-Name header.

	
Symbolic application name—Specified with the Bundle-SymbolicName header.

Many of the Oracle Event Processing tools, such as the wlevs.Admin utility and JMX subsystem, use the symbolic name of the bundle when referring to the application.

	
Application version—Specified with the Bundle-Version header.

	
Imported packages—Specified with the Import-Package header.

Oracle Event Processing requires that you import the following packages at a minimum:

Import-Package:
 com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.springframework.beans.factory;version="2.5.6",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0"

If you have extended the configuration of an adapter, then you must also import the following packages:

 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"

	
Exported packages—Specified with the Export-Package header. You should specify this header only if you need to share one or more application classes with other deployed applications. A typical example is sharing an event type JavaBean.

If possible, you should export packages that include only the interfaces, and not the implementation classes themselves. If other applications are using the exported classes, you will be unable to fully undeploy the application that is exporting the classes.

Exported packages are server-wide, so be sure their names are unique across the server.

The following complete MANIFEST.MF file is from the HelloWorld example, which extends the configuration of its adapter:

Manifest-Version: 1.0
Archiver-Version:
Build-Jdk: 1.6.0_06
Extension-Name: example.helloworld
Specification-Title: 1.0.0.0
Specification-Vendor: Oracle.
Implementation-Vendor: Oracle.
Implementation-Title: example.helloworld
Implementation-Version: 1.0.0.0
Bundle-Version: 11.1.1.4_0
Bundle-ManifestVersion: 1
Bundle-Vendor: Oracle.
Bundle-Copyright: Copyright (c) 2006 by Oracle.
Import-Package: com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 net.sf.cglib.proxy,
 net.sf.cglib.core,
 net.sf.cglib.reflect,
 org.aopalliance.aop,
 org.springframework.aop.framework;version="2.5.6",
 org.springframework.aop;version="2.5.6",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0",
 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"
Bundle-Name: example.helloworld
Bundle-Description: WLEvS example helloworld
Bundle-SymbolicName: helloworld

23.2.2.2 Accessing Third-Party JAR Files

When creating your Oracle Event Processing applications, you might need to access legacy libraries within existing third-party JAR files. You can ensure access to this legacy code using any of the following approaches:

	
Section 23.1.3, "Application Libraries"

	
Section 23.2.2.2.1, "Accessing Third-Party JAR Files Using Bundle-Classpath"

	
Section 23.2.2.2.2, "Accessing Third-Party JAR Files Using -Xbootclasspath"

23.2.2.2.1 Accessing Third-Party JAR Files Using Bundle-Classpath

The recommended approach is to package the third-party JAR files in your Oracle Event Processing application JAR file. You can put the JAR files anywhere you want.

	
Note:

This approach gives you little control over the order in which JAR files are loaded and it is possible that dependency conflicts may occur. For this reason, Oracle recommends that you use the Oracle Event Processing server application library approach instead. For more information, see Section 23.1.3, "Application Libraries".

However, to ensure that your Oracle Event Processing application finds the classes in the third-party JAR file, you must update the application classpath by adding the Bundle-Classpath header to the MANIFEST.MF file. Set Bundle-Classpath to a comma-separate list of the JAR file path names that should be searched for classes and resources. Use a period (.) to specify the bundle itself. For example:

Bundle-Classpath: ., commons-logging.jar, myExcitingJar.jar, myOtherExcitingJar.jar

If you need to access native libraries, you must also package them in your JAR file and use the Bundle-NativeCode header of the MANIFEST.MF file to specify their location in the JAR.

For more information, see Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project".

23.2.2.2.2 Accessing Third-Party JAR Files Using -Xbootclasspath

If the JAR files include libraries used by all applications deployed to Oracle Event Processing, such as JDBC drivers, you can add the JAR file to the server's boot classpath by specifying the -Xbootclasspath/a option to the java command in the scripts used to start up an instance of the server.

	
Note:

This approach gives you little control over the order in which JAR files are loaded and it is possible that dependency conflicts may occur. For this reason, Oracle recommends that you use the Oracle Event Processing server application library approach instead. For more information, see Section 23.1.3, "Application Libraries".

The name of the server start script is startwlevs.cmd (Windows) or startwlevs.sh (UNIX), and the script is located in the server directory of your domain directory. The out-of-the-box sample domains are located in ORACLE_CEP_HOME/ocep_11.1/samples/domains, and the user domains are located in ORACLE_CEP_HOME/user_projects/domains, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

Update the start script by adding the -Xbootclasspath/a option to the java command that executes the wlevs_2.0.jar file. Set the -Xbootclasspath/a option to the full pathname of the third-party JAR files you want to access system-wide.

For example, if you want all deployed applications to be able to access a JAR file called e:\jars\myExcitingJAR.jar, update the java command in the start script as follows. The updated section is shown in bold (in practice, the command should be on one line):

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
 -Xbootclasspath/a:e:\jars\myExcitingJAR.jar
 -jar "%USER_INSTALL_DIR%\bin\wlevs_2.0.jar" -disablesecurity %1 %2 %3 %4 %5 %6

23.2.3 Assembling Applications With Foreign Stages

When assembling applications that depend on foreign stages, be aware of classpath dependencies. Consider the application dependency graph that Figure 23-1 shows.

Figure 23-1 Foreign Stage Dependency Graph

[image: Description of Figure 23-1 follows]

In this example, Application A depends on Application B, Application B depends on Application C, and Application C depends on Application A. Application C declares and exports an event type class for Java Bean event type MarketEvent. Applications A and B import the MarketEvent class that Application C provides.

Note the following:

	
When you redeploy a foreign stage, you must redeploy all foreign stages that depend on that application or foreign stage.

For example, if you redeploy Application B, you must also redeploy Application A.

	
If there is a classpath dependency between one foreign stage and another, when you deploy the foreign stage that declares and exports the shared class, you must redeploy all foreign stages that import the shared class.

For example, if you redeploy Application C, you must also redeploy Application A and B because Application A and B have a classpath dependency on Application C (MarketEvent).

For more information, see:

	
Section 1.4.1.2, "Referencing Foreign Stages in an EPN Assembly File"

	
Section 23.5, "Deploying Oracle Event Processing Applications"

23.2.4 Assembling a Custom Adapter or Event Bean in Its Own Bundle

Typically, custom adapters and event beans are bundled in the same application JAR file that contains the other components of the EPN, such as the processor, streams, and business logic POJO. However, you might sometimes want to bundle the adapter in its own JAR file and then reference the adapter in other application bundles.

This is useful if, for example, two different applications read data coming from the same data feed provider and both applications use the same event types. In this case, it makes sense to share a single adapter and event type implementations rather than duplicate the implementation in two different applications.

There is no real difference in how you configure an adapter and an application that uses it in separate bundles; the difference lies in where you put the configuration.

This section describes:

	
Section 23.2.4.1, "How to Assemble a Custom Adapter in its Own Bundle"

	
Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle"

23.2.4.1 How to Assemble a Custom Adapter in its Own Bundle

You can assemble a custom adapter and its dependent classes in its own bundle.

To assemble a custom adapter in its own bundle:

	
Create an OSGI bundle that contains only the custom adapter Java class, the custom adapter factory Java class, and optionally, the event type Java class into which the custom adapter converts incoming data.

In this procedure, this bundle is called GlobalAdapter.

	
In the EPN assembly file of the GlobalAdapter bundle:

	
Register the adapter factory as an OSGI service as Section 15.6, "Creating a Custom Adapter Factory" describes.

	
If you are also including the event type in the bundle, register it as Section 9.5, "Sharing Event Types Between Application Bundles" describes.

	
Do not declare the custom adapter component using the wlevs:adapter element.

You will use this element in the EPN assembly file of the application bundle that actually uses the adapter.

	
If you want to further configure the custom adapter, follow the usual procedure as Section 15.5.2, "Configuring a Custom Adapter in a Component Configuration File" describes.

	
If you are including the event type in the GlobalAdapter bundle, export the JavaBean class in the MANIFEST.MF file of the GlobalAdapter bundle using the Export-Package header as Section 5.7.4, "How to Export a Package" describes.

	
Assemble and deploy the GlobalAdapter bundle as Section 23.5, "Deploying Oracle Event Processing Applications" describes.

	
In the EPN assembly file of the application that is going to use the custom adapter, declare the custom adapter component as Section 15.5.1, "Configuring a Custom Adapter in an EPN Assembly File" describes.

You still use the provider attribute to specify the OSGI-registered adapter factory, although in this case the OSGI registration happens in a different EPN assembly file (of the GlobalAdapter bundle) from the EPN assembly file that actually uses the adapter.

	
If you have exported the event type in the GlobalAdapter bundle, you must explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the MANIFEST.MF file of the application bundle as Section 23.2.2.1, "Creating the MANIFEST.MF File" describes.

23.2.4.2 How to Assemble an Event Bean in its Own Bundle

You can assemble a custom event bean and its dependent classes in its own bundle.

To assemble a custom event bean in its own bundle:

	
Create an OSGI bundle that contains only the custom event bean Java class and the custom event bean factory Java class.

In this procedure, this bundle is called GlobalEventBean.

	
In the EPN assembly file of the GlobalEventBean bundle:

	
Register the custom event bean factory as an OSGI service as Section 16.3.1.3, "Creating an Event Bean Factory" describes.

	
Do not declare the custom event bean component using the wlevs:event-bean element.

You will use this element in the EPN assembly file of the application bundle that actually uses the event-bean.

	
Assemble and deploy the GlobalEventBean bundle as Section 23.5, "Deploying Oracle Event Processing Applications" describes.

	
In the EPN assembly file of the application that is going to use the custom event bean, declare the custom event bean component as Section 16.3.1.3, "Creating an Event Bean Factory" describes.

You still use the provider attribute to specify the OSGI-registered custom event bean factory, although in this case the OSGI registration happens in a different EPN assembly file (of the GlobalEventBean bundle) from the EPN assembly file that actually uses the adapter.

	
If you have exported the event type in the GlobalEventBean bundle, you must explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the MANIFEST.MF file of the application bundle as Section 23.2.2.1, "Creating the MANIFEST.MF File" describes.

23.3 Managing Application Libraries

The Oracle Event Processing application library gives you a convenient location to deploy shared libraries and gives you complete control over the order in which shared libraries are deployed at Oracle Event Processing server start up time.

This section describes how to manage an Oracle Event Processing server application library, including:

	
Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.2, "How to Create an Application Library Using bundler.sh"

	
Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.4, "How to Update an Application Library Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.5, "How to View an Application Library Using the Oracle Event Processing Visualizer"

For more information, see Section 23.1.3, "Application Libraries".

23.3.1 How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse

Before you can use the Oracle Event Processing server application library, you must update your Oracle Event Processing IDE for Eclipse design time configuration with the location of the application library directory.

For information on default application library configuration, see:

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.3.2, "Library Extensions Directory"

For more information, see Section 23.3, "Managing Application Libraries".

To define an application library directory using Oracle Event Processing IDE for Eclipse:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Right-click the project and select Properties.

The Preferences dialog appears as shown in Figure 23-2.

Figure 23-2 Preferences Dialog: Application Library Path

[image: Description of Figure 23-2 follows]

	
Select Oracle Oracle Event Processing Application Library Path.

	
Specify the application library path as Table 23-1 describes.

Table 23-1 Oracle Event Processing Application LIbrary Path

	Option	Description
	
Use an absolute path

	
Select this option to specify an absolute file path to the application library directory.

See Section 23.3.1.1, "How to Configure an Absolute Path".

	
Extend a path variable

	
Select this option to specify an application library path based on a path variable.

See Section 23.3.1.2, "How to Extend a Path Variable".

23.3.1.1 How to Configure an Absolute Path

You can specify the application library path as an absolute file path. It may be more convenient in a team environment to specify the application library path based on a path variable as Section 23.3.1.2, "How to Extend a Path Variable" describes.

To configure an absolute path:

	
Click the Browse button to open a file system browser.

	
Use the file system browser to choose a directory.

	
Note:

The directory must reside within an Oracle Event Processing server domain. For more information, see Section 6.2, "Creating Oracle Event Processing Servers".

	
Click OK.

	
Click Apply.

	
Click OK.

23.3.1.2 How to Extend a Path Variable

You can specify the application library path by extending a path variable. This is the most flexible approach and is appropriate for team environments. Alternatively, you can specify the application library with an absolute path as Section 23.3.1.1, "How to Configure an Absolute Path" describes.

To extend a path variable:

	
Click the Variable button.

The Select Path Variable dialog appears as Figure 23-3 shows.

Figure 23-3 Select Path Variable Dialog

[image: Description of Figure 23-3 follows]

	
Click New.

The New Variable dialog appears as Figure 23-4 shows.

Figure 23-4 New Variable Dialog

[image: Description of Figure 23-4 follows]

	
Configure the New Variable dialog as Table 23-2 describes.

Table 23-2 Oracle Event Processing Application LIbrary Path Variable

	Option	Description
	
Name

	
Enter a name for the variable.

	
Location

	
Click the Folder button to open a file system browser and choose the root directory to use as the application library directory.

NOTE: The directory must reside within an Oracle Event Processing server domain. For more information, see Section 6.2, "Creating Oracle Event Processing Servers"

	
Click OK.

The new variable appears in the Select Path Variable dialog as Figure 23-5 shows.

Figure 23-5 Select Path Variable: With Variable

[image: Description of Figure 23-5 follows]

	
Optionally, select the variable and click Extend.

The Variable Extension dialog appears as Figure 23-6 shows. This dialog shows any directories below the root directory you specified for this variable.

Figure 23-6 Variable Extension Dialog

[image: Description of Figure 23-6 follows]

	
Select a sub-directory and click OK.

The application library path is specified relative to the path variable you defined as Figure 23-7 shows.

Figure 23-7 Preferences Dialog: Application Library Path With Path Variable

[image: Description of Figure 23-7 follows]

	
Click Apply.

	
Click OK.

23.3.2 How to Create an Application Library Using bundler.sh

This procedure describes how to create an OSGi bundle using the bundler utility.

This is the preferred method. If you wish to manually configure the activator implementation, see Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse".

If you are creating an application library for a new JDBC driver, see "How to Access a Database Driver Using an Application Library Built With bundler.sh" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

For more information, see Section 23.1.3.3, "Creating Application Libraries".

To create an application library using bundler.sh:

	
Set up your environment as described in Section 3.2, "Setting Your Development Environment."

	
Execute the bundler.sh script to create an OSGi bundle containing your driver.

The bundler.sh script is located in the ORACLE_CEP_HOME/ocep_11.1/bin directory, where ORACLE_CEP_HOME is the directory in which you installed the Oracle Event Processing server.

Example 23-1 lists the bundler.sh command line options and Table 23-3 describes them.

Example 23-1 bundler.sh Command Line Options

bundler -source JAR -name NAME -version VERSION
[-factory CLASS+] [-service INTERFACE+] [-fragmenthost HOST]
[-stagedir PATH] [-targetdir PATH]
[+import PACKAGE|REGEX+] [-imods REGEX;MODS+] [-import PACKAGE+]
[+export PACKAGE|REGEX+] [-emods REGEX;MODS+]
[-dimport PACKAGE+] [-explode] [-verbose]

Table 23-3 bundler.sh Command Line Options

	Argument	Description
	
-source JAR

	
The path of the source JAR file to be bundled.

	
-name NAME

	
The symbolic name of the bundle. The root of the target JAR file name is derived from the name value.

	
-version VERSION

	
The bundle version number. All exported packages are qualified with a version attribute with this value. The target JAR file name contains the version number.

	
-factory CLASS+

	
An optional argument that specifies a space-delimited list of one or more factory classes that are to be instantiated and registered as OSGi services. Each service is registered with the OSGi service registry with name (-name) and version (-version) properties.

This argument is incompatible with the -fragmenthost argument.

	
-service INTERFACE+

	
An optional argument that specifies a space-delimited list of one or more Java interfaces that are used as the object class of each factory object service registration. If no interface names are specified, or the number of interfaces specified does not match the number of factory classes, then each factory object will be registered under the factory class name.

	
-fragmenthost HOST

	
An optional argument indicating that the resultant bundle is a fragment bundle and specifies the symbolic name of the host bundle.

This argument is incompatible with the -factory argument.

	
-stagedir PATH

	
An optional argument that specifies where to write temporary files when creating the target JAR file.

Default: ./bundler.tmp

	
-targetdir PATH

	
An optional argument that specifies the location of the generated bundle JAR file.

Default: current working directory (.).

	
+import PACKAGE|REGEX+

	
A space-delimited list of one or more packages or regular expressions that select the packages to exclude from the manifest Import-Package attribute.

By default, all dependent packages will be imported (except java.*).

	
-imods REGEX;MODS+

	
The import modifiers will be applied to the packages matching regular expression.

	
-import PACKAGE

	
Additional packages to include on the manifest Import-Package attribute.

Note that any specified import modifiers will not be applied.

	
+export PACKAGE|REGEX+

	
A space-delimited list of one or more packages or regular expressions that select the packages to exclude from the manifest Export-Package attribute.

By default, all bundle packages will be exported.

	
-emods REGEX;MODS+

	
The export modifiers will be applied to the packages matching regular expression.

	
-dimport PACKAGE+

	
Packages to include on the manifest DynamicImport-Package attribute.

	
-explode

	
This optional flag specifies that the content of the source JAR should be exploded into the target JAR file.

By default, the source JAR is nested within the target JAR file and the generated bundle manifest will contain an appropriate Bundle-Classpath attribute.

	
-verbose

	
An optional flag to enable verbose output.

Example 23-2 shows how to use the bundler.sh to create an OSGi bundle for an Oracle JDBC driver.

Example 23-2 Using the Bundler Utility

bundler.sh \
 -source C:\drivers\com.oracle.ojdbc14_11.2.0.jar \
 -name oracle11g \
 -version 11.2.0 \
 -factory oracle.jdbc.xa.client.OracleXADataSource oracle.jdbc.OracleDriver \
 -service javax.sql.XADataSource java.sql.Driver \
 -targetdir C:\stage

The source JAR is an Oracle driver located in directory C:\drivers. The name of the generated bundle JAR is the concatenation of the -name and -version arguments (oracle10g_11.2.0.jar) and is created in the C:\stage directory. The bundle JAR contains the files that Example 23-3 shows.

Example 23-3 Bundle JAR Contents

 1465 Thu Jun 29 17:54:04 EDT 2006 META-INF/MANIFEST.MF
1540457 Thu May 11 00:37:46 EDT 2006 com.oracle.ojdbc14_11.2.0.jar
 1700 Thu Jun 29 17:54:04 EDT 2006 com/bea/core/tools/bundler/Activator.class

The command line options specify that there are two factory classes that will be instantiated and registered as an OSGi service when the bundle is activated, each under a separate object class as Table 23-4 shows.

Table 23-4 Factory Class and Service Interfaces

	Factory Class	Service Interface
	
oracle.jdbc.xa.client.OracleXADataSource

	
javax.sql.XADataSource

	
oracle.jdbc.OracleDriver

	
java.sql.Driver

Each service registration will be made with a name property set to oracle11g and a version property with a value of 11.2.0. Example 23-4 shows the Oracle Event Processing server log messages showing the registration of the services.

Example 23-4 Service Registration Log Messages

...
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g, objectClass=[javax.sql.XADataSource], service.id=23 }
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g, objectClass=[java.sql.Driver], service.id=24 }
INFO: [Jun 29, 2006 5:54:18 PM] Bundle oracle11g STARTED
...

	
Copy the application library JAR to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.1.3, "Application Libraries".

	
Stop and start the Oracle Event Processing server.

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

23.3.3 How to Create an Application Library Using Oracle Event Processing IDE for Eclipse

This procedure describes how to create an OSGi bundle for your driver using the Oracle Event Processing IDE for Eclipse and deploy it on the Oracle Event Processing server.

This is the preferred method. If do not wish to manually configure the activator implementation, see Section 23.3.2, "How to Create an Application Library Using bundler.sh".

If you are creating an application library for a new JDBC driver, see "How to Access a Database Driver Using an Application Library Built With Oracle Event Processing IDE for Eclipse" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

To create an application library using Oracle Event Processing IDE for Eclipse:

	
Using the Oracle Event Processing IDE for Eclipse, create a new Oracle Event Processing project.

For more information, Section 5.2, "Creating Oracle Event Processing Projects".

	
Right-click your project folder and select New > Folder.

	
Enter lib in the Folder name field and click Finish.

	
Outside of the Oracle Event Processing IDE for Eclipse, copy your JDBC JAR file into the lib folder.

	
Inside the Oracle Event Processing IDE for Eclipse, right-click the lib folder and select Refresh.

The JAR file appears in the lib folder as Figure 23-8 shows.

Figure 23-8 Oracle Event Processing IDE for Eclipse lib Directory

[image: Description of Figure 23-8 follows]

	
Right-click the src directory and select New > Class.

The Java Class dialog appears as Figure 23-9 shows.

Figure 23-9 New Java Class Dialog

[image: Description of Figure 23-9 follows]

	
Configure the New Java Class dialog as Table 23-5 shows.

Table 23-5 New Java Class Parameters

	Parameter	Description
	
Package

	
The package name. For example, com.foo.

	
Name

	
The name of the class. For example, MyActivator.

Leave the other parameters at their default values.

	
Click Finish.

A new Java class is added to your project.

	
Edit the Java class to implement it as Example 23-5 shows.

Be sure to set the NAME and VERSION so that they supersede the existing version of JDBC driver. In this example, the existing version is:

	
oracle10g

	
10.0.0

To supersede the existing version, the MyActivator class sets these values to:

	
oracle11g

	
11.2.0

Example 23-5 MyActivator Class Implementation

package com.foo;

import java.util.Dictionary;
import java.util.Properties;

import javax.sql.XADataSource;
import java.sql.Driver;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

public class MyActivator implements BundleActivator {

 private static final String NAME="oracle11g";
 private static final String VERSION="11.2.0";

 private String[] factories = {"oracle.jdbc.xa.client.OracleXADataSource","oracle.jdbc.OracleDriver"};
 private String[] interfaces= {"javax.sql.XADataSource","java.sql.Driver"};
 private ServiceRegistration[] serviceRegistrations = new ServiceRegistration[factories.length];

 public void start(BundleContext bc) throws Exception {
 Dictionary props = new Properties();
 props.put("name", NAME);
 props.put("version", VERSION);
 for (int i=0; i<factories.length; i++) {
 Object svc = bc.getBundle().loadClass(factories[i]).newInstance();
 serviceRegistrations[i] = bc.registerService(interfaces[i], svc, props);
 }
 }

 public void stop(BundleContext bc) throws Exception {
 for (int i=0; i<serviceRegistrations.length; i++) {
 serviceRegistrations[i].unregister();
 }
 }
}

	
Right-click the META-INF/MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor appears as Figure 23-10 shows.

Figure 23-10 Manifest Editor: Overview Tab

[image: Description of Figure 23-10 follows]

	
Click the Runtime tab.

The Runtime tab appears as Figure 23-11 shows.

Figure 23-11 Manifest Editor: Runtime Tab

[image: Description of Figure 23-11 follows]

	
In the Classpath pane, click Add.

The JAR Selection dialog appears as Figure 23-12 shows.

Figure 23-12 JAR Selection Dialog

[image: Description of Figure 23-12 follows]

	
Expand the lib directory and select your database driver JAR file.

	
Click OK.

	
Click the Dependencies tab.

The Dependencies tab appears as Figure 23-13 shows.

Figure 23-13 Manifest Editor: Dependencies Tab

[image: Description of Figure 23-13 follows]

	
In the Imported Packages pane, click Add.

The Package Selection dialog appears as Figure 23-14 shows.

Figure 23-14 Package Selection Dialog

[image: Description of Figure 23-14 follows]

	
In the Exported Packages field, enter org.osgi.framework.

The list box shows all the packages with that prefix as Figure 23-14 shows.

	
Select org.osgi.framework in the list box and click OK.

	
Click the MANIFEST.MF tab.

The MANIFEST.MF tab appears as Figure 23-15 shows.

Figure 23-15 Manifest Editor

[image: Description of Figure 23-15 follows]

	
Un-JAR your JAR to a temporary directory as Example 23-6 shows.

Example 23-6 Un-JAR the Database Driver

$ pwd
/tmp
$ ls com.*
com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ mkdir driver
$ cd driver
$ jar -xvf ../com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ ls
META-INF oracle
$ cd META-INF
$ ls
MANIFEST.MF services

	
Open your JAR MANIFEST.MF file and copy its Export-Package entry and paste it into the Manifest Editor as Example 23-7 shows.

Example 23-7 Adding Export-Package to the Manifest Editor

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7,oracle.core.l
 vf;version=1.0.0.0_11-1-0-7,oracle.jdbc;version=1.0.0.0_11-1-0-7,orac
 le.jdbc.aq;version=1.0.0.0_11-1-0-7,oracle.jdbc.connector;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.dcn;version=1.0.0.0_11-1-0-7,oracle.jdbc.dr
 iver;version=1.0.0.0_11-1-0-7,oracle.jdbc.internal;version=1.0.0.0_11
 -1-0-7,oracle.jdbc.oci;version=1.0.0.0_11-1-0-7,oracle.jdbc.oracore;v
 ersion=1.0.0.0_11-1-0-7,oracle.jdbc.pool;version=1.0.0.0_11-1-0-7,ora
 cle.jdbc.rowset;version=1.0.0.0_11-1-0-7,oracle.jdbc.util;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.xa;version=1.0.0.0_11-1-0-7,oracle.jdbc.xa.
 client;version=1.0.0.0_11-1-0-7,oracle.jpub.runtime;version=1.0.0.0_1
 1-1-0-7,oracle.net.ano;version=1.0.0.0_11-1-0-7,oracle.net.aso;versio
 n=1.0.0.0_11-1-0-7,oracle.net.jndi;version=1.0.0.0_11-1-0-7,oracle.ne
 t.ns;version=1.0.0.0_11-1-0-7,oracle.net.nt;version=1.0.0.0_11-1-0-7,
 oracle.net.resolver;version=1.0.0.0_11-1-0-7,oracle.security.o3logon;
 version=1.0.0.0_11-1-0-7,oracle.security.o5logon;version=1.0.0.0_11-1
 -0-7,oracle.sql;version=1.0.0.0_11-1-0-7,oracle.sql.converter;version
 =1.0.0.0_11-1-0-7

	
Add a Bundle-Activator element to the Manifest Editor as Example 23-8 shows.

The value of the Bundle-Activator is the fully qualified class name of your Activator class.

Example 23-8 Adding a Bundle-Activator Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

	
Add a DynamicImport-Package element to the Manifest Editor as Example 23-9 shows.

Example 23-9 Adding a DynamicImport-Package Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
DynamicImport-Package: *
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

	
Export your Oracle Event Processing application to a JAR file.

For more information, see Section 5.5.1, "How to Export an Oracle Event Processing Project".

	
Copy the bundler JAR to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.1.3, "Application Libraries".

	
Stop and start the Oracle Event Processing server.

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

23.3.4 How to Update an Application Library Using Oracle Event Processing IDE for Eclipse

When you add, replace, or remove a JAR file in the application library extension or application library directory or their user-defined subdirectories, you must make this change in two places:

	
On the local Oracle Event Processing server you used to create a server runtime in the Oracle Event Processing IDE for Eclipse.

	
On the production Oracle Event Processing server to which you deploy dependent applications.

These changes need not be performed simultaneously: you must make the change to the local Oracle Event Processing server before making code changes to projects that depend on the application library change; you must make the change to the production Oracle Event Processing server before you deploy applications that depend on the application library change.

For more information, see Section 23.3, "Managing Application Libraries".

To update an application library using Oracle Event Processing IDE for Eclipse:

	
Add a new or revised bundle to the application library extension or application library directory on the production Oracle Event Processing server.

This is the server to which you will deploy applications that depend on this application library.

To control library deployment order, organize your libraries in appropriately named subdirectories.

For more information, see:

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Stop and start the production Oracle Event Processing server.

The Oracle Event Processing server refreshes itself from the updated application library extension or application library directory.

For more information, see:

	
"Starting and Stopping an Oracle Event Processing Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Starting and Stopping an Oracle Event Processing Server in a Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Add the same new or revised bundle to the application library extension or application library directory on your Oracle Event Processing IDE for Eclipse targeted runtime Oracle Event Processing server.

	
Start the Oracle Event Processing IDE for Eclipse.

	
Right click a project and select Refresh Targeted Runtimes.

The Oracle Event Processing IDE for Eclipse refreshes this project from the updated application library extension or application library directory on your Oracle Event Processing IDE for Eclipse targeted runtime Oracle Event Processing server.

	
If necessary, update your application's dependencies.

For example, if you added a new bundle or changed the version of an existing bundle.

For more information, see Section 23.1.2, "Application Dependencies".

	
Assemble and deploy your application to the production Oracle Event Processing server.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

The dependencies you defined for this application in the Oracle Event Processing IDE for Eclipse at development time will be satisfied by the components you installed in the application library of your production Oracle Event Processing server at runtime.

23.3.5 How to View an Application Library Using the Oracle Event Processing Visualizer

Using the Oracle Event Processing Visualizer, you can view the application libraries deployed to the Oracle Event Processing server.

You can view libraries from both the library extensions directory and libraries directory.

	
Note:

You cannot deploy an application library to an Oracle Event Processing server using the Oracle Event Processing Visualizer. You may only deploy Oracle Event Processing applications to an Oracle Event Processing server using the Oracle Event Processing Visualizer.

For more information, see:

	
"How to View the Application Libraries Deployed to an Oracle Event Processing Server" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.1, "Library Directory"

	
Section 23.3, "Managing Application Libraries"

23.4 Managing Log Message Catalogs

This section describes how to manage log message catalogs that you can use to localize an Oracle Event Processing application, including:

	
Section 23.4.1, "Using Message Catalogs With Oracle Event Processing Server"

	
Section 23.4.2, "How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization"

For more information, see:

	
"Configuring Logging and Debugging for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

23.4.1 Using Message Catalogs With Oracle Event Processing Server

A message catalog is a single XML file that contains a collection of text messages, with each message indexed by a unique identifier. You compile these XML files into classes using weblogic.i18ngen during the build process. (See weblogic.i18ngen Utility for more information). The methods of the resulting classes are the objects used to log messages at runtime.

Message catalogs support multiple locales or languages. For a specific message catalog there is exactly one default version, known as the top-level catalog, which contains the English version of the messages. Then there are corresponding locale-specific catalogs, one for each additional supported locale.

The top-level catalog (English version) includes all the information necessary to define the message. The locale-specific catalogs contain only the message ID, the date changed, and the translation of the message for the specific locale.

The message catalog files are defined by one of the following XML document type definition (DTD) files:

	
msgcat.dtd - Describes the syntax of top-level, default catalogs.

	
l10n_msgcat.dtd - Describes the syntax of locale-specific catalogs.

The DTDs are stored in ORACLE_CEP_HOEM/modules/com.bea.core.i18n.generator_1.4.0.0.jar.

You can create a single log message catalog for all logging requirements, or create smaller catalogs based on a subsystem or Java package. Oracle recommends using multiple subsystem catalogs so you can focus on specific portions of the log during viewing.

For simple text catalogs, we recommend creating a single catalog for each utility being internationalized

This section describes:

	
Section 23.4.1.1, "Message Catalog Hierarchy"

	
Section 23.4.1.2, "Guidelines for Naming Message Catalogs"

	
Section 23.4.1.3, "Using Message Arguments"

	
Section 23.4.1.4, "Message Catalog Formats"

	
Section 23.4.1.5, "Message Catalog Localization"

For more information, see:

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

23.4.1.1 Message Catalog Hierarchy

All messages must be defined in the default, top-level catalog.

Catalogs that provide different localizations of the base catalogs are defined in msgcat subdirectories named for the locale (for example, msgcat/de for Germany). You might have a top-level catalog named mycat.xml, and a German translation of it called ..de/mycat.xml. Typically the top-level catalog is English. However, English is not required for any catalogs.

Locale designations (for example, de) also have a hierarchy as defined in the java.util.Locale documentation. A locale can include a language, country, and variant. Language is the most common locale designation. Language can be extended with a country code. For instance, en\US, indicates American English. The name of the associated catalog is ..en\US\mycat.xml. Variants are vendor or browser-specific and are used to introduce minor differences (for example, collation sequences) between two or more locales defined by either language or country.

23.4.1.2 Guidelines for Naming Message Catalogs

Because the name of a message catalog file (without the .xml extension) is used to generate runtime class and property names, you should choose the name carefully.

Follow these guidelines for naming message catalogs:

	
Do not choose a message catalog name that conflicts with the names of existing classes in the target package for which you are creating the message catalog.

	
The message catalog name should only contain characters that are allowed in class names.

	
Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are XyzLogLocalizer and XyzLogger.

The following considerations also apply to message catalog files:

	
Message IDs are generally six-character strings with leading zeros. Some interfaces also support integer representations.

	
Note:

This only applies to log message catalogs. Simple text catalogs can have any string value.

	
Java lets you group classes into a collection called a package. Oracle recommends that a package name be consistent with the name of the subsystem in which a particular catalog resides. Consistent naming makes OSGi imports easier to define.

	
The log Localizer "classes" are actually ResourceBundle property files.

23.4.1.3 Using Message Arguments

The message body, message detail, cause, and action sections of a log message can include message arguments, as described by java.text.MessageFormat. Make sure your message contents conform to the patterns specified by java.text.MessageFormat. Only the message body section in a simple text message can include arguments. Arguments are values that can be dynamically set at runtime. These values are passed to routines, such as printing out a message. A message can support up to 10 arguments, numbered 0-9. You can include any subset of these arguments in any text section of the message definition (Message Body, Message Detail, Probable Cause), although the message body must include all of the arguments. You insert message arguments into a message definition during development, and these arguments are replaced by the appropriate message content at runtime when the message is logged.

The following excerpt from an XML log message definition shows how you can use message arguments. The argument number must correspond to one of the arguments specified in the method attribute. Specifically, {0} with the first argument, {1} with the second, and so on. In Example 23-10, {0} represents the file that cannot be opened, while {1} represents the file that will be opened in its place.

Example 23-10 Message Arguments

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in body.</messagebody>

 <messagedetail> File, {0} does not exist. The server will restore the file
 contents from {1}, resulting in the use of default values for all future
 requests. </messagedetail>

 <cause>The file was deleted</cause>

 <action>If this error repeats then investigate unauthorized access to the
 file system.</action>

An example of a method attribute is as follows:

-method="logNoFile(String name, String path)"

The message example in Example 23-10 expects two arguments, {0} and {1}:

	
Both are used in the <messagebody>

	
Both are used in the <messagedetail>

	
Neither is used in <cause> or <action>

	
Note:

A message can support up to 10 arguments, numbered 0-9. You can include any subset of these arguments in any text section of the message definition (message detail, cause, action), although the message body must include all of the arguments

In addition, the arguments are expected to be of String type, or representable as a String type. Numeric data is represented as {n,number}. Dates are supported as {n,date}. You must assign a severity level for log messages. Log messages are generated through the generated Logger methods, as defined by the method attribute.

23.4.1.4 Message Catalog Formats

The catalog format for top-level and locale-specific catalog files is slightly different. The top-level catalogs define the textual messages for the base locale (by default, this is the English language). Locale-specific catalogs (for example, those translated to Spanish) only provide translations of text defined in the top-level version. Log message catalogs are defined differently from simple text catalogs.

23.4.1.4.1 Log Message Catalog

Example 23-11 shows a log message catalog, MyUtilLog.xml, containing one log message. This log message illustrates the usage of the messagebody, messagedetail, cause, and action elements.

Example 23-11 Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100"
 <log_message
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)"
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </log_message>
</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog msgcat.dtd".

23.4.1.4.2 Simple Text Catalog

Example 23-12 shows a simple text catalog, MyUtilLabels.xml, with one simple text definition.

Example 23-12 Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 <message>
 messageid="FileMenuTitle"
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog msgcat.dtd".

23.4.1.4.3 Locale-Specific Catalog

Example 23-13 shows a French translation of a message that is available in ..\msgcat\fr\MyUtilLabels.xml.

Example 23-13 Locale-Specific Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message>
 <messageid="FileMenuTitle">
 <messagebody> Fichier </messagebody>
 </message>
</locale_message_catalog>

When entering text in the messagebody, messagedetail, cause, and action elements, you must use a tool that generates valid Unicode Transformation Format-8 (UTF-8) characters, and have appropriate keyboard mappings installed. UTF-8 is an efficient encoding of Unicode character-strings that optimizes the encoding ASCII characters. Message catalogs always use UTF-8 encoding.

For more information, see Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd".

23.4.1.5 Message Catalog Localization

Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes (for example, ja for Japanese and fr for French). You can find supported language codes in the java.util.Locale Javadoc.

Variations to language codes are achievable through the use of uppercase, two-letter ISO 3166 country codes and variants, each of which are subordinate to the language code. The generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified Chinese, whereas TW is the country code for traditional Chinese. Therefore zh\CN and zh\TW are two distinct locales for Chinese.

Variants are of use when, for instance, there is a functional difference in platform vendor handling of specific locales. Examples of vendor variants are WIN, MAC, and POSIX. There may be two variants used to further qualify the locale. In this case, the variants are separated with an underscore (for example, Traditional_Mac as opposed to Modern_MAC).

	
Note:

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese on a Win32 platform.

Message catalogs to support the above locale would involve the following files:

	
*.xml - default catalogs

	
\zh*.xml - Chinese localizations

	
\zh\TW*.xml - Traditional Chinese localizations

	
\zh\TW\WIN*.xml - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent localizations.

23.4.2 How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization

After you create your message catalog XML file, you can use the weblogic.i18ngen utility to create Logger and TextFormatter classes.

use the weblogic.i18ngen utility to parse message catalogs (XML files) to produce Logger and TextFormatter classes used for localizing the text in log messages. The utility creates or updates the i18n_user.properties properties file, which is used to load the message ID lookup class hashtable weblogic.i18n.L10nLookup.

Any errors, warnings, or informational messages are sent to stderr.

In order for user catalogs to be recognized, the i18n_user.properties file must reside in a directory identified in the Oracle Event Processing server classpath.

Oracle recommends that the i18n_user.properties file reside in the Oracle Event Processing server classpath. If the i18n_user.properties file is in targetdirectory, then targetdirectory should be in the Oracle Event Processing server classpath.

To parse a message catalog to generate Logger and TextFormatter classes:

	
Create your message catalog XML file.

See Section 23.4.1, "Using Message Catalogs With Oracle Event Processing Server".

	
Set up your development environment.

See Section 3.2, "Setting Your Development Environment."

	
Execute the weblogic.i18ngen utility using the following syntax:

java weblogic.i18ngen [options] [filelist]

Where:

	
options: see Table 23-6.

	
filelist: Process the files and directories in this list of files. If directories are listed, the command processes all XML files in the listed directories. The names of all files must include an XML suffix. All files must conform to the msgcat.dtd syntax. weblogic.i18ngen prints the fully-qualified list of names (Java source) to stdout for those files actually generated.

Table 23-6 weblogic.i18ngen Utility Options

	Option	Description
	
-build

	
Generates all necessary files and compiles them.

The -build option combines the -i18n, -l10n, -keepgenerated, and -compile options.

	
-d targetdirectory

	
Specifies the root directory to which generated Java source files are targeted. User catalog properties are placed in i18n_user.properties, relative to the designated targetdirectory. Files are placed in appropriate directories based on the i18n_package and l10n_package values in the corresponding message catalog. The default target directory is the current directory. This directory is created as necessary.

If this argument is omitted, all classes are generated in the current directory, without regard to any class hierarchy described in the message catalog.

	
-n

	
Parse and validate, but do not generate classes.

	
-keepgenerated

	
Keep generated Java source (located in the same directory as the class files).

	
-ignore

	
Ignore errors.

	
-i18n

	
Generates internationalizers (for example, Loggers and TextFormatters).

	
-l10n

	
Generates localizers (for example, LogLocalizers and TextLocalizers).

	
-compile

	
Compiles generated Java files using the current CLASSPATH. The resulting classes are placed in the directory identified by the -d option. The resulting classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or properties file being created. i18ngen exits with a bad exit status.

	
-nobuild

	
Parse and validate only.

	
-debug

	
Debugging mode.

	
-dates

	
Causes weblogic.i18ngen to update message timestamps in the catalog. If the catalog is writable and timestamps have been updated, the catalog is rewritten.

	
Note:

Utilities can be run from any directory, but if files are listed on the command line, then their path is relative to the current directory.

	
Translate your log messages and generate the required localized resource bundles.

	
Ensure that the i18n_user.properties file is in the Oracle Event Processing server classpath.

	
Import the following packages in your Oracle Event Processing application:

	
weblogic.i18n.logging

	
weblogic.logging

	
Assemble and deploy your application, including your log message resource bundles.

23.5 Deploying Oracle Event Processing Applications

After you assemble your Oracle Event Processing application, you deploy it to an Oracle Event Processing server domain.

This section describes:

	
Section 23.5.1, "How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse"

	
Section 23.5.2, "How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer"

	
Section 23.5.3, "How to Deploy an Oracle Event Processing Application Using the Deployer Utility"

For more information, see:

	
"Deploying an Application to an Oracle Event Processing Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Deploying an Oracle Event Processing Application to a Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.5.1 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse

You can deploy an Oracle Event Processing application using Oracle Event Processing IDE for Eclipse.

Using the Oracle Event Processing IDE for Eclipse, you can deploy an application to either a stand-alone or multi-server domain.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using Oracle Event Processing IDE for Eclipse:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Use the Oracle Event Processing IDE for Eclipse to deploy your application.

See Section 6.3.6, "How to Deploy an Application to an Oracle Event Processing Server".

23.5.2 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer

The simplest way to deploy an Oracle Event Processing application to an Oracle Event Processing server domain is to use the Oracle Event Processing Visualizer.

Using the Oracle Event Processing Visualizer, you can deploy an application to either a stand-alone or multi-server domain.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using Oracle Event Processing Visualizer:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Start the Oracle Event Processing Visualizer.

See Section 6.3.9, "How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse".

	
Use the Oracle Event Processing Visualizer to deploy your application.

See "Deploying an Application" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

23.5.3 How to Deploy an Oracle Event Processing Application Using the Deployer Utility

The following procedure describes how to deploy an application to Oracle Event Processing using the Deployer command-line utility.

Using the Deployer, you can deploy an application to either a stand-alone or multi-server domain.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using the Deployer utility:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Update your CLASSPATH variable to include the wlevsdeploy.jar JAR file, located in the ORACLE_CEP_HOME/ocep_11.1/bin directory where, ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as /oracle_cep.

	
Note:

If you are running the Deployer on a remote computer, see "Running the Deployer Utility Remotely" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Be sure you have configured Jetty for the Oracle Event Processing instance to which you are deploying your application.

For more information, see "Configuring Jetty for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
In the command window, run the Deployer utility using the following syntax to install your application (in practice, the command should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://host:port/wlevsdeployer
 -user user -password password -install application_jar_file

where

	
host refers to the hostname of the computer on which Oracle Event Processing is running.

	
port refers to the port number to which Oracle Event Processing listens; default value is 9002.

This port is specified in the DOMAIN_DIR/config/config.xml file that describes your Oracle Event Processing domain, where DOMAIN_DIR refers to your domain directory.

The port number is the value of the <Port> child element of the <Netio> element:

<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

	
user refers to the username of the Oracle Event Processing administrator.

	
password refers to the password of the Oracle Event Processing administrator.

	
application_jar_file refers to your application JAR file, assembled into an OSGi bundle as described in Section 23.2, "Assembling an Oracle Event Processing Application." This file must be located on the same computer from which you execute the Deployer utility.

For example, if Oracle Event Processing is running on host ariel, listening on port 9002, username and password of the administrator is wlevs/wlevs, and your application JAR file is called myapp_1.0.0.0.jar and is located in the /applications directory, then the command is (in practice, the command should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer
 -user wlevs -password wlevs -install /applications/myapp_1.0.0.0.jar

After the application JAR file has been successfully installed and all initialization tasks completed, Oracle Event Processing automatically starts the application and the adapter components immediately start listening for incoming events.

The Deployer utility provides additional options to resume, suspend, update, and uninstall an application JAR file, as well as deploy an application to a specified group of a multi-server domain. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Note:

You may only deploy to a group if the server is part of a multi-server domain (that is, if clustering is enabled). You may not deploy to a group if the server is part of a standalone-server domain (that is, if clustering is disabled). For more information, see "Overview of Oracle Event Processing Multi-Server Domain Administration" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Oracle Event Processing uses the deployments.xml file to internally maintain its list of deployed application OSGi bundles. This file is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the main domain directory corresponding to the server instance to which you are deploying your application and servername refers to the actual server. See Appendix B, "Deployment Schema deployment.xsd" for information about this file. This information is provided for your information only; Oracle does not recommend updating the deployments.xml file manually.

24 Developing Applications for High Availability

This chapter introduces Oracle Event Processing components and design patterns that you can use to increase the availability of your Oracle Event Processing applications, along with how to configure high availability for your Oracle Event Processing application to provide the quality of service you require.

This chapter includes the following sections:

	
Section 24.1, "Understanding High Availability"

	
Section 24.2, "Configuring High Availability"

24.1 Understanding High Availability

This section introduces Oracle Event Processing components and design patterns that you can use to increase the availability of your Oracle Event Processing applications.

This section includes the following sections:

	
Section 24.1.1, "High Availability Architecture"

	
Section 24.1.2, "Choosing a Quality of Service"

	
Section 24.1.3, "Designing an Oracle Event Processing Application for High Availability"

24.1.1 High Availability Architecture

Like any computing resource, Oracle Event Processing servers can be subject to both hardware and software faults that can lead to data- or service-loss. Oracle Event Processing high availability options seek to mitigate both the likelihood and the impact of such faults.

Oracle Event Processing supports an active-standby high availability architecture. This approach has the advantages of high performance, simplicity, and short failover time.

An Oracle Event Processing application that needs to be highly available is deployed to a group of two or more Oracle Event Processing server instances running in an Oracle Event Processing multi-server domain. Oracle Event Processing will automatically choose one server in the group to be the active primary. The remaining servers become active secondaries.

The primary and secondary servers are all configured to receive the same input events and process them in parallel but only the primary server outputs events to the Oracle Event Processing application client. Depending on the quality of service you choose, the secondary servers buffer their output events using in-memory queues and the primary server keeps the secondary servers up to date with which events the primary has already output.

Figure 24-1 shows a typical configuration.

Figure 24-1 Oracle Event Processing High Availability: Primary and Secondary Servers

[image: Description of Figure 24-1 follows]

This section describes:

	
Section 24.1.1.1, "High Availability Lifecycle and Failover"

	
Section 24.1.1.2, "Deployment Group and Notification Group"

	
Section 24.1.1.3, "High Availability Components"

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.1.5, "High Availability and Oracle Coherence"

24.1.1.1 High Availability Lifecycle and Failover

Figure 24-2 shows a state diagram for the Oracle Event Processing high availability lifecycle. In this diagram, the state names (SECONDARY, BECOMING_PRIMARY, and PRIMARY) correspond to the Oracle Event Processing high availability adapter RuntimeMBean method getState return values. These states are specific to Oracle Event Processing.

Figure 24-2 Oracle Event Processing High Availability Lifecycle State Diagram

[image: Description of Figure 24-2 follows]

It is not possible to specify the server that will be the initial primary. Initially, the first server in the multi-server domain to start up becomes the primary so by starting servers in a particular order, you can influence primary selection. There is no way to force a particular, running server to become the primary. If a primary fails, and then comes back up, it will not automatically become the primary again unless the current primary fails causing a failover.

This section describes the Oracle Event Processing high availability lifecycle in more detail, including:

	
Section 24.1.1.1.1, "Secondary Failure"

	
Section 24.1.1.1.2, "Primary Failure and Failover"

	
Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain"

24.1.1.1.1 Secondary Failure

In general, when a secondary server fails, there is no effect on Oracle Event Processing application operation as Figure 24-3 shows. Regardless of the quality of service you choose, there are no missed or duplicate events.

Figure 24-3 Secondary Failure

[image: Description of Figure 24-3 follows]

24.1.1.1.2 Primary Failure and Failover

However, when a primary server fails, as Figure 24-4 shows, Oracle Event Processing performs a failover that may cause missed or duplicate events, depending on the quality of service you choose.

Figure 24-4 Primary Failure and Failover

[image: Description of Figure 24-4 follows]

During failover, Oracle Event Processing automatically selects a new primary and the new primary transitions from the SECONDARY state to the BECOMING_PRIMARY state. Depending on the quality of service you choose, the new primary will not transition to PRIMARY state until a configurable readiness threshold is met. For details, see the specific quality of service option in Section 24.1.2, "Choosing a Quality of Service".

24.1.1.1.3 Rejoining the High Availability Multi-Server Domain

When a new Oracle Event Processing server is added to an Oracle Event Processing high availability multi-server domain or an existing failed server restarts, the server will not have fully joined the Oracle Event Processing high availability deployment and notification groups until all applications deployed to it have fully joined. The type of application determines when it can be said to have fully joined.

If the application must generate exactly the same sequence of output events as existing secondaries (a Type 1 application), then it must be able to rebuild its internal state by processing input streams for some finite period of time (the warm-up-window-length period). This warm-up-window-length time determines the minimum time it will take for the application to fully join the Oracle Event Processing high availability deployment and notification groups.

If the application does not need to generate exactly the same sequence of output events as existing secondaries (a Type 2 application), then it does not require a warm-up-window-length time and will fully join the Oracle Event Processing high availability deployment and notification groups as soon as it is deployed.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.1.1.2 Deployment Group and Notification Group

All the servers in the multi-server domain belong to the same deployment group: this is the group to which you deploy an application. For the purposes of Oracle Event Processing high availability, you must deploy the same application to all the servers in this group.

By default, all the servers in the multi-server domain also belong to the same notification group. The servers listen to the notification group for membership notifications that indicate when a server has failed (and exited the group) or resumed operation (and rejoined the group), as well as for synchronization notifications from the primary.

If you need to scale your Oracle Event Processing high availability application, you can use the ActiveActiveGroupBean to define a notification group that allows two or more servers to function as a primary server unit while retaining the convenience of a single deployment group that spans all servers (primaries and secondaries).

You must use Oracle Coherence-based clustering to create the multi-server domain deployment group. You may use either default groups or custom groups.

For more information, see:

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.1.5, "High Availability and Oracle Coherence"

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

24.1.1.3 High Availability Components

To implement Oracle Event Processing high availability options, you configure your Event Processing Network (EPN) with a high availability input adapter after each input adapter and a high availability output adapter before each output adapter.

Figure 24-5 shows a typical EPN with all possible high availability adapters in place.

Figure 24-5 High Availability Adapters in the EPN

[image: Description of Figure 24-5 follows]

	
Note:

For simplicity, Figure 24-5 does not show channels and shows only one processor. However, the EPN may be arbitrarily complex with multiple input streams and output streams, channels, multiple processors, event beans, and so on. The only restriction is that each input adapter must be followed by a high availability input adapter and each output adapter must be preceded by a high availability output adapter. Similarly, for simplicity, a multi-server domain of only two Oracle Event Processing servers is shown but you may have an arbitrary number of secondary servers.

The optional high availability input adapter in the primary communicates with the corresponding high availability input adapters in each secondary to normalize event timestamps.

Oracle Event Processing high availability provides one type of high availability input adapter. See Section 24.1.1.3.1, "High Availability Input Adapter".

The high availability output adapter in the primary is responsible for outputting events to the output streams that connect the Oracle Event Processing application to its downstream client. The high availability output adapter in the primary also communicates with the corresponding high availability output adapters in each secondary, and, depending on the high availability quality of service you choose, may instruct the secondary output adapters to trim their in-memory queues of output events.

Oracle Event Processing high availability provides the following high availability output adapters:

	
Section 24.1.1.3.2, "Buffering Output Adapter"

	
Section 24.1.1.3.3, "Broadcast Output Adapter"

	
Section 24.1.1.3.4, "Correlating Output Adapter"

Oracle Event Processing high availability also provides a notification groups Spring bean to increase scalability in JMS applications. See Section 24.1.1.3.5, "ActiveActiveGroupBean".

Which adapter you choose is determined by the high availability quality of service you choose. See Section 24.1.2, "Choosing a Quality of Service".

24.1.1.3.1 High Availability Input Adapter

The optional Oracle Event Processing high availability input adapter on the primary Oracle Event Processing server assigns a time (in nanoseconds) to events as they arrive at the adapter and forwards the time values assigned to events to all secondary servers. This ensures that all servers running the application use a consistent time value (and generate the same results) and avoids the need for distributed clock synchronization.

Since a time value is assigned to each event before the event reaches any downstream channels in the EPN, downstream channels should be configured to use application time so that they do not assign a new time value to events as they arrive at the channel.

Input events must have a key that uniquely identifies each event in order to use this adapter.

You can configure the Oracle Event Processing high availability input adapter to send heartbeat events.

The Oracle Event Processing high availability input adapter is applicable to all high availability quality of service options. However, because the high availability input adapter increases performance overhead, it is not appropriate for some high availability quality of service options (such as Section 24.1.2.1, "Simple Failover" and Section 24.1.2.2, "Simple Failover with Buffering"). For these options, you should instead consider using application time with some incoming event property.

For more information, see:

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 24.2.2.1, "How to Configure the High Availability Input Adapter".

24.1.1.3.2 Buffering Output Adapter

The Oracle Event Processing high availability buffering output adapter implements a buffered queue trimming strategy. The buffer is a sliding window of output events from the stream. The size of the window is measured in milliseconds.

The Oracle Event Processing high availability buffering output adapter is applicable to simple failover and simple failover with buffering high availability quality of service options.

For more information, see:

	
Section 24.1.2.1, "Simple Failover"

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Section 24.2.2.2, "How to Configure the Buffering Output Adapter".

24.1.1.3.3 Broadcast Output Adapter

The Oracle Event Processing high availability broadcast output adapter implements a distributed queue trimming strategy. The active primary instance broadcasts messages to the active secondary instances in the notification group telling them when to trim their local representation of the queue.

The Oracle Event Processing high availability broadcast output adapter is applicable to the light-weight queue trimming high availability quality of service option.

For more information, see:

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
Section 24.2.2.3, "How to Configure the Broadcast Output Adapter".

24.1.1.3.4 Correlating Output Adapter

The Oracle Event Processing high availability correlating output adapter correlates two event streams, usually from JMS. This adapter correlates an inbound buffer of events with a second source of the same event stream, outputting the buffer if correlation fails after a configurable time interval. Correlated events are trimmed from the queue. Correlated events are assumed to be in-order.

The Oracle Event Processing high availability correlating output adapter is applicable to precise recovery with JMS high availability quality of service option.

For more information, see:

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 24.2.2.4, "How to Configure the Correlating Output Adapter".

24.1.1.3.5 ActiveActiveGroupBean

The com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean is a Spring bean that allows you to partition an input stream from a JMS input adapter.

This component is applicable to precise recovery with JMS high availability quality of service only. However, it can also be used without high availability to increase Oracle Event Processing application scalability.

For more information, see:

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 25.1.2.2, "ActiveActiveGroupBean"

24.1.1.4 High Availability and Scalability

If you need to scale your Oracle Event Processing high availability application, you can use the ActiveActiveGroupBean to define a notification group that allows two or more servers to function as a high availability unit while retaining the convenience of a single deployment group that spans all servers (primaries and secondaries).

Figure 24-6 shows three Oracle Event Processing application scenarios progressing from the simplest configuration, to high availability, and then to both high availability and scalability.

Figure 24-6 High Availability and Scalability

[image: Description of Figure 24-6 follows]

Most applications begin in a single-server domain without high availability. In this, the simplest scenario, an Oracle Event Processing application running on one Oracle Event Processing server processes an input event stream and produces output events.

In the high availability scenario, the Oracle Event Processing application has been configured to use Oracle Event Processing high availability options. This application is deployed to the deployment group of a multi-server domain composed of two servers. In this scenario, only the primary server outputs events.

In the high availability and scalability scenario, the Oracle Event Processing high availability application has been configured to use the ActiveActiveGroupBean to define notification groups. Each notification group contains two or more Oracle Event Processing servers that function as a single, high availability unit. In this scenario, only the primary server in each notification group outputs events. Should the primary server in a notification group go down, an Oracle Event Processing high availability fail over occurs and a secondary server in that notification group is declared the new primary and resumes outputting events according to the Oracle Event Processing high availability quality of service you configure.

For more information, see:

	
Section 25.1.2.2, "ActiveActiveGroupBean"

	
Section 25.2.2.2, "How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability"

24.1.1.5 High Availability and Oracle Coherence

Oracle Event Processing high availability options depend on Oracle Coherence. You cannot implement Oracle Event Processing high availability options without Oracle Coherence.

When considering performance tuning, be sure to evaluate your Oracle Coherence configuration in addition to your Oracle Event Processing application.

For more information, see:

	
Section 27.2.5, "Oracle Coherence Performance Tuning Options"

	
"Configuring the Oracle Coherence Cluster" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Oracle Coherence Developer's Guide at http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/toc.htm

24.1.2 Choosing a Quality of Service

Using Oracle Event Processing high availability, you may choose any of the quality of service options that Table 24-1 lists. Choose the quality of service option that suits your application's tolerance for missed and duplicate events as well as expected event throughput. Note that primary and secondary server hardware requirements increase as the quality of service becomes more precise.

Table 24-1 Oracle Event Processing High Availability Quality of Service

	High Availability Option	Missed Events?	Duplicate Events?	Performance Overhead
	
Section 24.1.2.1, "Simple Failover"

	
Yes (many)

	
Yes (few)

	
Negligible

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Yes (few)Foot 1

	
Yes (many)

	
Low

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
No

	
Yes (few)

	
Low-MediumFoot 2

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
No

	
No

	
High

Footnote 1 If you configure a big enough buffer then there will be no missed events.

Footnote 2 The performance overhead is tunable. You can adjust the frequency of trimming to reduce the overhead, but incur a higher number of duplicates at failover.

24.1.2.1 Simple Failover

This high availability quality of service is characterized by the lowest performance overhead (fastest recovery time) and the least data integrity (both missed events and duplicate events are possible during failover).

The primary server outputs events and secondary servers simply discard their output events; they do not buffer output events. If the current active primary fails, a new active primary is chosen and begins sending output events once it is notified.

During failover, many events may be missed or duplicated by the new primary depending on whether it is running ahead of or behind the old primary, respectively.

During the failover window, events may be missed. For example, if you are processing 100 events per second and failover takes 10 s then you miss 1000 events

The new primary enters the PRIMARY state immediately. There is no configurable readiness threshold that must be met before the new primary transitions out of the BECOMING_PRIMARY state.

When an Oracle Event Processing server rejoins the multi-server domain, it is immediately available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability buffering output adapter (with a sliding window of size zero) before each output adapter. To reduce performance overhead, rather than use a high availability input adapter, use application time with some incoming event property.

For more information, see Section 24.2.1.1, "How to Configure Simple Failover".

24.1.2.2 Simple Failover with Buffering

This high availability quality of service is characterized by a low performance overhead (faster recovery time) and increased data integrity (no missed events but many duplicate events are possible during failover).

The primary server outputs events and secondary servers buffer their output events. If the current active primary fails, a new active primary is chosen and begins sending output events once it is notified.

During the failover window, events may be missed. For example, if you are processing 100 events per second and failover takes 10 s then you miss 1000 events. If the secondary buffers are large, a significant number of duplicates may be output. On the other hand, a larger buffer reduces the chances of missed messages.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability buffering output adapter (with a sliding window of size greater than zero) before each output adapter. To reduce performance overhead, rather than use a high availability input adapter, use application time with some incoming event property.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.1.2, "How to Configure Simple Failover With Buffering"

24.1.2.3 Light-Weight Queue Trimming

This high availability quality of service is characterized by a low performance overhead (faster recovery time) and increased data integrity (no missed events but a few duplicate events are possible during failover).

The active primary communicates to the secondaries the events that it has actually processed. This enables the secondaries to trim their buffer of output events so that it contains only those events that have not been sent by the primary at a particular point in time. Because events are only trimmed after they have been sent by the current primary, this allows the secondary to avoid missing any output events when there is a failover.

The frequency with which the active primary sends queue trimming messages to active secondaries is configurable:

	
Every n events (n>0)

This limits the number of duplicate output events to at most n events at failover.

	
Every n milliseconds (n>0)

The queue trimming adapter requires a way to identify events consistently among the active primary and secondaries. The recommended approach is to use application time to identify events, but any key value that uniquely identifies events will do.

The advantage of queue trimming is that output events are never lost. There is a slight performance overhead at the active primary, however, for sending the trimming messages that need to be communicated and this overhead increases as the frequency of queue trimming messages increases.

During failover, the new primary enters the BECOMING_PRIMARY state and will not transition into the PRIMARY state until its event queue (that it was accumulating as a secondary) has been flushed. During this transition, new input events are buffered and some duplicate events may be output.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (an application that must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability input adapter after each input adapter and a high availability broadcast output adapter before each output adapter.

For more information, see Section 24.2.1.3, "How to Configure Light-Weight Queue Trimming".

24.1.2.4 Precise Recovery with JMS

This high availability quality of service is characterized by a high performance overhead (slower recovery time) and maximum data integrity (no missed events and no duplicate events during failover).

This high availability quality of service is compatible with only JMS input and output adapters.

In this high availability quality of service, we are not concerned with transactional guarantees along the event path for a single-server but in guaranteeing a single output from a set of servers. To achieve this, secondary servers listen, over JMS, to the event stream being published by the primary. As Figure 24-7 shows, this incoming event stream is essentially a source of reliable queue-trimming messages that the secondaries use to trim their output queues. If JMS is configured for reliable delivery we can be sure that the stream of events seen by the secondary is precisely the stream of events output by the primary and thus failover will allow the new primary to output precisely those events not delivered by the old primary.

Figure 24-7 Precise Recovery with JMS

[image: Description of Figure 24-7 follows]

During failover, the new primary enters the BECOMING_PRIMARY state and will not transition into the PRIMARY state its event queue (that it was accumulating as a secondary) has been flushed. During this transition, new input events are buffered and no duplicate events are output.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability input adapter after each input adapter and a high availability correlating output adapter before each output adapter.

To increase scalability, you can also use the cluster groups bean with high availability quality of service.

For more information, see:

	
Section 24.2.1.4, "How to Configure Precise Recovery With JMS"

	
Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean"

24.1.3 Designing an Oracle Event Processing Application for High Availability

Although you can implement Oracle Event Processing high availability declaratively, to fully benefit from the high availability quality of service you choose, you must design your Oracle Event Processing application to take advantage of the high availability options that Oracle Event Processing provides.

When designing your Oracle Event Processing application for high availability, consider the following:

	
Section 24.1.3.1, "Primary Oracle Event Processing High Availability Use Case"

	
Section 24.1.3.2, "High Availability Design Patterns"

	
Section 24.1.3.3, "Oracle CQL Query Restrictions"

24.1.3.1 Primary Oracle Event Processing High Availability Use Case

You can adapt Oracle Event Processing high availability options to various Oracle Event Processing application designs but in general, Oracle Event Processing high availability is designed for the following use case:

	
An application receives input events from one or more external systems.

	
The external systems are publish-subscribe style systems that allow multiple instances of the application to connect simultaneously and receive the same stream of messages.

	
The application does not update any external systems in a way that would cause conflicts should multiple copies of the application run concurrently.

	
The application sends output events to an external downstream system. Multiple instances of the application can connect to the downstream system simultaneously, although only one instance of the application is allowed to send messages at any one time.

Within these constraints, the following different cases are of interest:

	
The application is allowed to skip sending some output events to the downstream system when there is a failure. Duplicates are also allowed.

For this case, the following Oracle Event Processing high availability quality of service options are applicable:

	
Section 24.1.2.1, "Simple Failover"

	
The application is allowed to send duplicate events to the downstream system, but must not skip any events when there is a failure.

For this case, the following Oracle Event Processing high availability quality of service options are applicable:

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
The application must send exactly the same stream of messages/events to the downstream system when there is a failure, modulo a brief pause during which events may not be sent when there is a failure.

For this case, the following Oracle Event Processing high availability quality of service options are applicable

	
Section 24.1.2.4, "Precise Recovery with JMS"

24.1.3.2 High Availability Design Patterns

When designing your Oracle Event Processing application for use with Oracle Event Processing high availability options, observe the following design patterns:

	
Section 24.1.3.2.1, "Select the Minimum High Availability Your Application can Tolerate"

	
Section 24.1.3.2.2, "Use Oracle Event Processing High Availability Components at All Ingress and Egress Points"

	
Section 24.1.3.2.3, "Only Preserve What You Need"

	
Section 24.1.3.2.4, "Limit Oracle Event Processing Application State"

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.1.3.2.8, "Ensure Applications are Idempotent"

	
Section 24.1.3.2.9, "Source Event Identity Externally"

	
Section 24.1.3.2.10, "Understand the Importance of Event Ordering"

	
Section 24.1.3.2.14, "Write Oracle CQL Queries with High Availability in Mind"

	
Section 24.1.3.2.15, "Avoid Coupling Servers"

	
Section 24.1.3.2.16, "Plan for Server Recovery"

24.1.3.2.1 Select the Minimum High Availability Your Application can Tolerate

Be sure that the extra cost of precise recovery (per-node throughput decrease) is actually necessary for your application.

24.1.3.2.2 Use Oracle Event Processing High Availability Components at All Ingress and Egress Points

You must use an Oracle Event Processing high availability input adapter after each regular input adapter and you must use an Oracle Event Processing high availability output adapter before each regular output adapter.

24.1.3.2.3 Only Preserve What You Need

Most Oracle Event Processing systems are characterized by a large number of raw input events being queried to generate a smaller number of “enriched” events. In general it makes sense to only try and preserve these enriched events – both because there are fewer of them and because they are more valuable.

24.1.3.2.4 Limit Oracle Event Processing Application State

Oracle Event Processing systems allow you to query windows of events. It can be tempting to build systems using very large windows, but this increases the state that needs to be rebuilt when failure occurs. In general it is better to think of long-term state as something better kept in stable storage, such as a distributed cache or a database – since the high availability facilities of these technologies can be appropriately leveraged.

24.1.3.2.5 Choose an Adequate warm-up-window-length Time

When a new Oracle Event Processing server is added to an Oracle Event Processing high availability multi-server domain or an existing failed server restarts, the server will not have fully joined the Oracle Event Processing high availability deployment and notification groups until all applications deployed to it have fully joined. The type of application determines when it can be said to have fully joined.

Oracle Event Processing high availability applications can be described as Type 1 or Type 2 applications as Table 24-2 shows.

Table 24-2 Oracle Event Processing High Availability Application Types

	Application Type	Must generate exactly the same sequence of output events?	Must be able to rebuild internal state by processing input streams within a finite period of time?	Must wait this period of time before it has fully joined?
	
Type 1

	
Yes

	
Yes

	
Yes

	
Type 2

	
No

	
No

	
No

For more information, see Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain".

24.1.3.2.6 Type 1 Applications

A Type 1 application requires the new secondary to generate exactly the same sequence of output events as existing secondaries once it fully joins the Oracle Event Processing high availability deployment and notification groups.

It is a requirement that a Type 1 application be able to rebuild its internal state by processing its input streams for some finite period of time (warm-up-window-length time), after which it generates exactly the same stream of output events as other secondaries running the application.

The warm-up-window-length time is configured on an Oracle Event Processing high availability output adapter. The warm-up-window-length time length is specified in terms of seconds or minutes. For example, if the application contains Oracle CQL queries with range-based windows of 5, 7, and 15 minutes then the minimum warm-up-window-length time is 15 minutes (the maximum range-based window size). Oracle recommends that the maximum window length be padded with a few minutes time, as well, to absolutely ensure that the necessary state is available. So, in the previous example 17 minutes or even 20 minutes would be a good length for the warm-up-window-length time.

The Oracle Event Processing server uses system time during the warm-up-window-length time period, so it is not directly correlated with the application time associated with events being processed.

Type 1 applications must only be interested in events that occurred during a finite amount of time. All range-based Oracle CQL windows must be shorter than the warm-up-window-length time and tuple-based windows must also be qualified by time. For example, the application should only care about the last 10 events if they occurred within the last five minutes. Applications that do not have this property cannot be Type 1 applications and cannot use the warm-up-window-length period. For example, an application that uses an tuple-based partitioned window that has no time qualification cannot use the warm-up-window-length period, since an arbitrary amount of time is required to rebuild the state of the window.

If a Type 1 application uses the Oracle Event Processing high availability broadcast output adapter, it may trim events using a unique application-specific key, or a monotonic key like application time. Trimming events using application time is encouraged as it is more robust and less susceptible to bugs in the application that may cause an output event to fail to be generated.

For more information, see:

	
Section 24.1.3.3, "Oracle CQL Query Restrictions"

	
Section 24.1.1.3.2, "Buffering Output Adapter"

	
Section 24.1.1.3.3, "Broadcast Output Adapter"

	
Section 24.1.1.3.4, "Correlating Output Adapter"

24.1.3.2.7 Type 2 Applications

A Type 2 application does not require the new secondary to generate exactly the same sequence of output events as existing secondaries once it fully joins the Oracle Event Processing high availability deployment and notification groups. It simply requires that the new cluster member generate valid output events with respect to the point in time at which it begins processing input events.

A Type 2 application does not require a warm-up-window-length period.

Most applications will be Type 2 applications. It is common for an application to be brought up at an arbitrary point in time (on the primary Oracle Event Processing server), begin processing events from input streams at that point, and generate valid output events. In other words, the input stream is not paused while the application is started and input events are constantly being generated and arriving. It is reasonable to assume that in many cases a secondary node that does the same thing, but at a slightly different time, will also produce output events that are valid from the point of view of the application, although not necessarily identical to those events produced by the primary because of slight timing differences.For example, a financial application that only runs while the market is open might operate as a Type 2 application as follows: all servers can be brought up before the market opens and will begin processing incoming events at the same point in the market data stream. Multiple secondaries can be run to protect against failure and as long as the number of secondaries is sufficient while the market is open, there is no need to restart any secondaries that fail nor add additional secondaries, so no secondary needs to recover state.

24.1.3.2.8 Ensure Applications are Idempotent

You should be able to run two copies of an application on different servers and they should not conflict in a shared cache or database. If you are using an external relation (such as a cache or table), then you must ensure that when a Oracle Event Processing server rejoins the cluster, your application is accessing the same cache or table as before: it must be joining against the same external relation again. The data source defined on the server must not have been changed; must ensure you're pulling data from same data source.

24.1.3.2.9 Source Event Identity Externally

Many high availability solutions require that events be correlated between different servers and to do this events need to be universally identifiable. The best way to do this is use external information – preferably a timestamp – to seed the event, rather than relying on the Oracle Event Processing system to provide this.

For more information, see Section 24.1.3.3.6, "Prefer Application Time".

24.1.3.2.10 Understand the Importance of Event Ordering

For Oracle Event Processing high availability quality of service options that use queue trimming, not only must primary and secondary servers generate the same output events, but they must also generate them in exactly the same order.

Primary and secondary servers must generate the same output events and in exactly the same order when you choose Oracle Event Processing high availability quality of service options that use queue trimming and equality-based event identify (that is, nonmonotonic event identifiers - event identifiers that do not increase continually). In this case, generating output events in different orders can lead to either missed output events or unnecessary duplicate output events when there is a failure

Consider the output event streams shown in Figure 24-8. The primary has output events a, b, and c. After outputting event c, the primary sends the secondary a queue trimming message.

Figure 24-8 Event Order

[image: Description of Figure 24-8 follows]

The secondary trims all events in its queue generated prior to event c including event c itself. In this case, the set of events trimmed will be {a, b, e, d, c} which is wrong because the primary has not yet output events d and e. If a failover occurs after processing the trimming message for event c, events will be lost.

To manage event ordering, consider the following design patterns:

	
Section 24.1.3.2.11, "Prefer Deterministic Behavior"

	
Section 24.1.3.2.12, "Avoid Multithreading"

	
Section 24.1.3.2.13, "Prefer Monotonic Event Identifiers"

24.1.3.2.11 Prefer Deterministic Behavior

In order for an application to generate events in the same order when run on multiple instances, it must be deterministic. The application must not rely on things like:

	
Random number generator that may return different results on different machines.

	
Methods like System.getTimeMillis or System.nanoTime which can return different results on different machines because the system clocks are not synchronized.

24.1.3.2.12 Avoid Multithreading

Because thread scheduling algorithms are very timing dependent, multithreading can be a source of nondeterministic behavior in applications. That is, different threads can be scheduled at different times on different machines.

For example, avoid creating an EPN in which multiple threads send events to an Oracle Event Processing high availability adapter in parallel. If such a channel is an event source for an Oracle Event Processing high availability adapter, it would cause events to be sent to the adapter in parallel by different threads and could make the event order nondeterministic.

For more information on channel configuration to avoid, see:

	
Section 25.1.2.1, "EventPartitioner"

	
max-threads in Table C-9, "Attributes of the wlevs:channel Application Assembly Element"

24.1.3.2.13 Prefer Monotonic Event Identifiers

Event identifiers may be monotonic or nonmontonic.

A monotonic identifier is one that increases continually (such as a time value).

A nonmonotonic identifier does not increase continually and may contain duplicates.

In general, you should design your Oracle Event Processing application using monotonic event identifiers. Using a monotonic event identifier, the Oracle Event Processing high availability adapter can handle an application that may produce events out of order.

24.1.3.2.14 Write Oracle CQL Queries with High Availability in Mind

Not all Oracle CQL query usage is supported when using Oracle Event Processing high availability. You may need to redefine your Oracle CQL queries to address these restrictions.

For more information, see Section 24.1.3.3, "Oracle CQL Query Restrictions".

24.1.3.2.15 Avoid Coupling Servers

The most performant high availability for Oracle Event Processing systems is when servers can run without requiring coordination between them. Generally this can be achieved if there is no shared state and the downstream system can tolerate duplicates. Increasing levels of high availability are targeted at increasing the fidelity of the stream of events that the downstream system sees, but this increasing fidelity comes with a performance penalty.

24.1.3.2.16 Plan for Server Recovery

When a secondary server rejoins the multi-server domain, the server must have time to rebuild the Oracle Event Processing application state to match that of the current primary and active secondaries as Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time" describes.

The time it takes for a secondary server to become available as an active secondary after rejoining the multi-server domain will be a factor in the number of active secondaries you require.

If a secondary is declared to be the new primary before it is ready, the secondary will throw an exception.

24.1.3.3 Oracle CQL Query Restrictions

When writing Oracle CQL queries in an Oracle Event Processing application that uses Oracle Event Processing high availability options, observe the following restrictions:

	
Section 24.1.3.3.1, "Range-Based Windows"

	
Section 24.1.3.3.2, "Tuple-Based Windows"

	
Section 24.1.3.3.3, "Partitioned Windows"

	
Section 24.1.3.3.4, "Sliding Windows"

	
Section 24.1.3.3.5, "DURATION Clause and Non-Event Detection"

	
Section 24.1.3.3.6, "Prefer Application Time"

For more information on Oracle CQL, see the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.1 Range-Based Windows

In a Type 1 application (where the application must generate exactly the same sequence of output events as existing secondaries), all range-based Oracle CQL windows must be shorter than the warm-up-window-length time. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

Channels must use application time if Oracle CQL queries contain range-based Windows. See also Section 24.1.3.3.6, "Prefer Application Time".

For more information, see "Range-Based Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.2 Tuple-Based Windows

In a Type 1 application (where the application must generate exactly the same sequence of output events as existing secondaries), all tuple-based windows must also be qualified by time. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

For more information, see "Tuple-Based Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.3 Partitioned Windows

Consider avoiding partitioned windows: there are cases where a partition cannot be rebuilt. If using partitioned windows, configure a warm-up-window-length time long enough to give the Oracle Event Processing server time to rebuild the partition. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

For more information, see "Partitioned Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.4 Sliding Windows

Oracle CQL queries should not use sliding windows if new nodes that join the multi-server domain are expected to generate exactly the same output events as existing nodes.

For more information, see:

	
Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain"

	
"S[range T1 slide T2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"S [rows N1 slide N2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"S [partition by A1,..., Ak rows N range T1 slide T2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

24.1.3.3.5 DURATION Clause and Non-Event Detection

You must use application time if Oracle CQL queries contain a DURATION clause for non-event detection.

For more information, see:

	
Section 24.1.3.3.6, "Prefer Application Time"

	
"DURATION Clause" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

24.1.3.3.6 Prefer Application Time

In Oracle Event Processing each event is associated with a point in time at which the event occurred. Oracle CQL recognizes two types of time:

	
Application time: a time value assigned to each event outside of Oracle CQL by the application before the event enters the Oracle CQL processor.

	
System time: a time value associated with an event when it arrives at the Oracle CQL processor, essentially by calling System.nanoTime().

Application time is generally the best approach for applications that need to be highly available. The application time is associated with an event before the event is sent to Oracle Event Processing, so it is consistent across active primary and secondary instances. System time, on the other hand, can cause application instances to generate different results since the time value associated with an event can be different on each instance due to system clocks not being synchronized.

You can use system time for applications whose Oracle CQL queries do not use time-based windows. Applications that use only event-based windows depend only on the arrival order of events rather than the arrival time, so you may use system time in this case.

If you must use system time with Oracle CQL queries that do use time-based windows, then you must use a special Oracle Event Processing high availability input adapter that intercepts incoming events and assigns a consistent time that spans primary and secondary instances.

24.2 Configuring High Availability

This section describes how to configure high availability for your Oracle Event Processing application to provide the quality of service you require, including information on configuring failover, recovery and queue trimming, as well as configuring high availability adapters.

This section includes the following sections:

	
Section 24.2.1, "Configuring High Availability Quality of Service"

	
Section 24.2.2, "Configuring High Availability Adapters"

24.2.1 Configuring High Availability Quality of Service

You configure Oracle Event Processing high availability quality of service in the EPN assembly file and component configuration files. For general information about these configuration files, see:

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Note:

After making any Oracle Event Processing high availability configuration changes, you must redeploy your Oracle Event Processing application. See Section 23.5, "Deploying Oracle Event Processing Applications".

This section describes:

	
Section 24.2.1.1, "How to Configure Simple Failover"

	
Section 24.2.1.2, "How to Configure Simple Failover With Buffering"

	
Section 24.2.1.3, "How to Configure Light-Weight Queue Trimming"

	
Section 24.2.1.4, "How to Configure Precise Recovery With JMS"

For more information on configuring an Oracle Event Processing high availability application for scalability, see Chapter 25, "Developing Scalable Applications".

24.2.1.1 How to Configure Simple Failover

You configure simple failover using the Oracle Event Processing buffering output adapter with a sliding window size of zero (0).

This procedure starts with the example EPN that Figure 24-9 shows and adds the required components to configure it for simple failover. Example 24-1 shows the corresponding EPN assembly file and Example 24-2 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.1, "Simple Failover".

Figure 24-9 Simple Failover EPN

[image: Description of Figure 24-9 follows]

Example 24-1 Simple Failover EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-2 Simple Failover Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure simple failover:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability buffering output adapter as Example 24-3 shows.

	
Add a wlevs:adapter element with provider set to ha-buffering after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-buffering adapter by its id.

	
Add a wlevs:listener element to the ha-buffering adapter that references the HelloWorldBean class.

Example 24-3 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Optionally, configure the channel downstream from the input adapter (helloworldInputChannel) to configure an application timestamp based on an appropriate event property as Example 24-4 shows.

For simple failover, you can use system timestamps because events are not correlated between servers. However, it is possible that slightly different results might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Example 24-4 Application Timestamp Configuration

...
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to zero (0) as Example 24-5 shows.

Example 24-5 Configuring windowLength in the Buffering Output Adapter

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="0"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration".

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability buffering output adapter as Example 24-6 shows.

Example 24-6 Simple Failover Component Configuration File With High Availability Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>0</window-length>
 </ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.2 How to Configure Simple Failover With Buffering

You configure simple failover using the Oracle Event Processing buffering output adapter with a sliding window size greater than zero (0).

This procedure starts with the example EPN that Figure 24-10 shows and adds the required components to configure it for simple failover with buffering. Example 24-7 shows the corresponding EPN assembly file and Example 24-8 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.2, "Simple Failover with Buffering".

Figure 24-10 Simple Failover With Buffering EPN

[image: Description of Figure 24-10 follows]

Example 24-7 Simple Failover With Buffering EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-8 Simple Failover With Buffering Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure simple failover with buffering:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability buffering output adapter as Example 24-3 shows.

	
Add a wlevs:adapter element with provider set to ha-buffering after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-buffering adapter by its id.

	
Add a wlevs:listener element to the ha-buffering adapter that references the HelloWorldBean class.

Example 24-9 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Optionally, configure the channel downstream from the input adapter (helloworldInputChannel) to configure an application timestamp based on an appropriate event property as Example 24-10 shows.

For simple failover with buffering, you can use system timestamps because events are not correlated between servers. However, it is possible that slightly different results might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Example 24-10 Application Timestamp Configuration

...
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to a value greater than zero (0) as Example 24-11 shows.

Example 24-11 Configuring windowLength in the Buffering Output Adapter

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration".

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability buffering output adapter as Example 24-12 shows.

Example 24-12 Simple Failover With Buffering Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>15000</window-length>
 </ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the buffering output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.3 How to Configure Light-Weight Queue Trimming

You configure light-weight queue trimming using the Oracle Event Processing high availability input adapter and the broadcast output adapter.

This procedure starts with the example EPN that Figure 24-11 shows and adds the required components to configure it for light-weight queue trimming. Example 24-13 shows the corresponding EPN assembly file and Example 24-14 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.3, "Light-Weight Queue Trimming".

Figure 24-11 Light-Weight Queue Trimming EPN

[image: Description of Figure 24-11 follows]

Example 24-13 Light-Weight Queue Trimming EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-14 Light-Weight Queue Trimming Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure light-weight queue trimming:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability input adapter as Example 24-15 shows:

	
Add a wlevs:adapter element with provider set to ha-inbound after the regular input adapter helloworldAdapter.

	
Add a wlevs:listener element to the regular input adapter helloworldAdapter that references the ha-inbound adapter by its id.

	
Add a wlevs:source element to the helloworldInputChannel that references the ha-inbound adapter by its id.

Example 24-15 Light-Weight Queue Trimming EPN Assembly File: High Availability Input Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability broadcast output adapter as Example 24-16 shows.

	
Add a wlevs:adapter element with provider set to ha-broadcast after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-broadcast adapter by its id.

	
Add a wlevs:listener element to the ha-broadcast adapter that references the HelloWorldBean class.

Example 24-16 Light-Weight Queue Trimming EPN Assembly File: Broadcast Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaBroadcastAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaBroadcastAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

	
Example 24-17, "High Availability Input Adapter: Default Configuration"

	
Example 24-18, "High Availability Input Adapter: Tuple Events"

	
Example 24-19, "High Availability Input Adapter: Key of One Event Property"

	
Example 24-20, "High Availability Input Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration".

Example 24-17 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-18 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. Because the events are tuple-based events, you must specify the event type (MyEventType) using the eventType property.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
 </wlevs:adapter>
...

Example 24-19 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the mandatory key is based on one event property (named id) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-20 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the mandatory key is based on more than one event property (properties orderID and accountID) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-21. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 </wlevs:adapter>
...

Example 24-21 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Configure the channel downstream from the high availability input adapter (helloworldInputChannel) to configure an application timestamp based on the high availability input adapter timeProperty setting as Example 24-22 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24-22 Application Timestamp Configuration

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability broadcast output adapter.

Consider the following example configurations:

	
Example 24-23, "Broadcast Output Adapter: Default Configuration"

	
Example 24-24, "Broadcast Output Adapter: Key of One Event Property"

	
Example 24-25, "Broadcast Output Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.3.1, "Broadcast Output Adapter EPN Assembly File Configuration".

Example 24-23 Broadcast Output Adapter: Default Configuration

This example shows a broadcast output adapter configuration using all defaults. The mandatory key is based on all event properties, key values are nonmonotonic (do not increase continually) and total order (unique).

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>
...

Example 24-24 Broadcast Output Adapter: Key of One Event Property

This example shows a broadcast output adapter configuration where the mandatory key is based on one event property (named timeProperty), key values are monotonic (they do increase continually) and not total order (not unique).

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyProperties" value="timeProperty"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="false"/>
 </wlevs:adapter>
...

Example 24-25 Broadcast Output Adapter: Key of Multiple Event Properties

This example shows a broadcast output adapter configuration where the mandatory key is based on more than one event property (properties timeProperty and accountID), key values are monotonic (they do increase continually) and total order (unique). A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-26. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="true"/>
 </wlevs:adapter>
...

Example 24-26 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int timeProperty;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getTimeProperty() {
 return orderID;
 }
 public setTimeProperty(int timeProperty) {
 this.timeProperty = timeProperty;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + timeProperty.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability input adapter and buffering output adapter as Example 24-27 shows.

Example 24-27 Light-Weight Queue Trimming Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 </ha:ha-inbound-adapter>

 <ha:ha-broadcast-adapter>
 <name>myHaBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
 </ha:ha-broadcast-adapter>

</wlevs:config>

For more information, see:

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the broadcast output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.4 How to Configure Precise Recovery With JMS

You configure precise recovery with JMS using the Oracle Event Processing high availability input adapter and correlating output adapter.

This procedure describes how to create the example EPN that Figure 24-12 shows. Example 24-28 shows the corresponding EPN assembly file and Example 24-29 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.4, "Precise Recovery with JMS".

	
Note:

The JMS destination used by JMS adapters for precise recovery must be topics, rather than queues.

Figure 24-12 Precise Recovery With JMS EPN

[image: Description of Figure 24-12 follows]

Example 24-28 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>
</beans>

Example 24-29 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from channel1 [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure precise recovery with JMS:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability input adapter as Example 24-30 shows:

	
Add a wlevs:adapter element with provider set to ha-inbound after the regular input adapter JMSInboundAdapter.

	
Add a wlevs:listener element to the regular input adapter JMSInboundAdapter that references the ha-inbound adapter by its id.

	
Add a wlevs:source element to the channel channel1 that references the ha-inbound adapter by its id.

Example 24-30 Precise Recovery With JMS EPN Assembly File: High Availability Input Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

...

</beans>

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability correlating output adapter as Example 24-31 shows.

	
Add a wlevs:adapter element with provider set to ha-correlating after channel channel2.

	
Update the wlevs:listener element in channel channel2 to reference the ha-correlating adapter by its id.

	
Add a wlevs:listener element to the ha-correlating adapter that references the regular output adapter JMSOutboundAdapter.

Example 24-31 Precise Recovery With JMS EPN Assembly File: Correlating Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

...

</beans>

	
Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

	
Example 24-32, "High Availability Input Adapter: Default Configuration"

	
Example 24-33, "High Availability Input Adapter: Tuple Events"

	
Example 24-34, "High Availability Input Adapter: Key of One Event Property"

	
Example 24-35, "High Availability Input Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration".

Example 24-32 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-33 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. Because the events are tuple-based events, you must specify the event type (MyEventType) using the eventType property.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
 </wlevs:adapter>
...

Example 24-34 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the mandatory key is based on one event property (named sequenceNo) and the event property that the high availability input adapter assigns a time value to is an event property named inboundTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>
...

Example 24-35 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the mandatory key is based on more than one event property (properties orderID and accountID) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-36. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 </wlevs:adapter>
...

Example 24-36 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Configure the channel downstream from the high availability input adapter (channel1) to configure an application timestamp based on the high availability input adapter timeProperty setting as Example 24-37 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24-37 Application Timestamp Configuration

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability correlating output adapter failOverDelay.

Example 24-38 shows a correlating output adapter configuration where the failOverDelay is 2000 milliseconds.

Example 24-38 Correlating Output Adapter Configuration: failOverDelay

...
 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration".

	
Create a second regular JMS input adapter.

Example 24-39 shows a JMS adapter named JMSInboundAdapter2.

Example 24-39 Inbound JMS Adapter Assembly File

...
 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>
...

This JMS input adapter must be configured identically to the first JMS input adapter (in this example, JMSInboundAdapter). Example 24-40 shows the component configuration file for both the JMS input adapters. Note that both have exactly the same configuration, including the same provider.

Example 24-40 Inbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>

 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>
 ...
</wlevs:config>

	
Create a channel to function as the correlated source.

You must configure this channel with the second regular JMS input adapter as its source.

Example 24-41 shows a correlated source named clusterCorrelatingOutstream whose source is JMSInboundAdapter2.

Example 24-41 Creating the Correlated Source

...
 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>

	
Configure the Oracle Event Processing high availability correlating output adapter with the correlatedSource.

Example 24-38 shows a correlating output adapter configuration where the correlatedSource is clusterCorrelatingOutstream.

Example 24-42 Correlating Output Adapter: correlatedSource

...
 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:instance-property name="correlatedSource" value="clusterCorrelatingOutstream"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration".

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the correlating output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

	
Configure the component configuration file to enable session-transacted for both inbound JMS adapters and the outbound JMS adapter as Example 24-43 shows:

Example 24-43 Inbound and Outbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>

 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
</wlevs:config>

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability input adapter and correlating output adapter as Example 24-27 shows.

Example 24-44 High Availability Input and Output Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 </ha:ha-inbound-adapter>
 ...
 <ha:ha-correlating-adapter>
 <name>myHaBroadcastAdapter</name>
 <fail-over-delay>2000</fail-over-delay>
 </ha:ha-correlating-adapter>
 ...
</wlevs:config>

For more information, see:

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

	
Optionally, add an ActiveActiveGroupBean to your EPN to improve scalability.

For more information, see Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean".

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.2 Configuring High Availability Adapters

You configure Oracle Event Processing high availability adapters in the EPN assembly file and component configuration files, similar to how you configure other components in the EPN, such as channels or processors. For general information about these configuration files, see:

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Note:

After making any Oracle Event Processing high availability configuration changes, you must redeploy your Oracle Event Processing application. See Section 23.5, "Deploying Oracle Event Processing Applications".

This section describes the configurable options for each of the Oracle Event Processing high availability adapters, including:

	
Section 24.2.2.1, "How to Configure the High Availability Input Adapter"

	
Section 24.2.2.2, "How to Configure the Buffering Output Adapter"

	
Section 24.2.2.3, "How to Configure the Broadcast Output Adapter"

	
Section 24.2.2.4, "How to Configure the Correlating Output Adapter"

24.2.2.1 How to Configure the High Availability Input Adapter

The Oracle Event Processing high availability broadcast input adapter is implemented by BroadcastInputAdapter.

This section describes how to configure the Oracle Event Processing high availability input adapter, including:

	
Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration"

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.1, "High Availability Input Adapter".

24.2.2.1.1 High Availability Input Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability input adapter is wlevs:adapter with provider element set to ha-inbound as Example 24-45 shows. You specify a wlevs:listener element for the Oracle Event Processing high availability input adapter in the actual input adapter as Example 24-45 shows.

Example 24-45 High Availability Input Adapter EPN Assembly File

<wlevs:adapter id="jmsAdapter" provider="jms-inbound"
 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound">
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
</wlevs:adapter>

<wlevs:channel id="inputChannel" event-type="MyEventType ">
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

Table 24-3 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability input adapter.

Table 24-3 Child Elements of wlevs:adapter for the High Availability Input Adapter

	Child Element	Description
	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-4 describes.

Table 24-4 lists the instance properties that the Oracle Event Processing high availability input adapter supports.

Table 24-4 High Availability Input Adapter Instance Properties

	Name	Value
	
timeProperty

	
Specify the name of the event property to which the high availability input adapter assigns a time value.

This is the same property that you use in the wlevs:application-timestamped element of the downstream EPN component to which the high availability input adapter is connected as Example 24-45 shows.

	
keyProperties

	
Specify a space delimited list of one or more event properties that the Oracle Event Processing high availability input adapter uses to identify event instances.

If you specify more than one event property, you must specify a keyClass.

Default: all event properties.

	
keyClass

	
Specify the fully qualified class name of a Java class used as a compound key.

By default, all JavaBean properties in the keyClass are assumed to be keyProperties, unless the keyProperties setting is used.

	
eventType

	
Specify the type name of the events that the Oracle Event Processing high availability input adapter receives from the actual input adapter. This is the same event type that you use in the downstream EPN component to which the high availability input adapter is connected as Example 24-45 shows.

For tuple events, this property is mandatory.

For all other Java class-based event types, this property is optional.

For more information, see Section 9.1, "Overview of Oracle Event Processing Event Types".

24.2.2.1.2 High Availability Input Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability input adapter is ha-inbound-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-50 shows.

Example 24-46 High Availability Input Adapter Component Configuration File

<ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 <heartbeat units="millis">1000</heartbeat>
 <batch-size>10</batch-size>
</ha:ha-inbound-adapter>

Table 24-5 describes the additional child elements of ha-inbound-adapter you can configure for an Oracle Event Processing high availability input adapter.

Table 24-5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter

	Child Element	Description
	
heartbeat

	
Specify the length of time that the Oracle Event Processing high availability input adapter can be idle before it generates a heartbeat event to advance time as an integer number of units.

Valid values for attribute units:

	
nanos: wait the specified number of nanoseconds.

	
millis: wait the specified number of milliseconds.

	
secs: wait the specified number of seconds.

Default: Heartbeats are not sent.

	
batch-size

	
Specify the number of events in each timing message that the primary broadcasts to its secondaries. A value of n means that n {key, time} pairs are sent in each message. You can use this property for performance tuning (see Section 27.2.3, "High Availability Input Adapter Configuration"

Default: 1 (disable batching).

24.2.2.2 How to Configure the Buffering Output Adapter

The Oracle Event Processing high availability buffering output adapter is implemented by SlidingWindowQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability buffering output adapter, including:

	
Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.2, "Buffering Output Adapter".

24.2.2.2.1 Buffering Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability buffering output adapter is wlevs:adapter with provider element set to ha-buffering as Example 24-47 shows.

Example 24-47 Buffering Output Adapter EPN Assembly File

<wlevs:adapter id="mySlidingWindowingAdapter" provider ="ha-buffering">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
</wlevs:adapter>

Table 24-6 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability buffering output adapter.

Table 24-6 Child Elements of wlevs:adapter for the Buffering Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability buffering output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-7 describes.

Table 24-7 lists the instance properties that the Oracle Event Processing high availability broadcast output adapter supports.

Table 24-7 Buffering Output Adapter Instance Properties

	Name	Value
	
windowLength

	
Specify the size of the sliding window as an integer number of milliseconds.

Default: 15000.

24.2.2.2.2 Buffering Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability buffering output adapter is ha-buffering-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-48 shows.

Example 24-48 Buffering Output Adapter Component Configuration File

<ha:ha-buffering-adapter >
 <name>mySlidingWindowingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-buffering-adapter >

Table 24-8 describes the additional child elements of ha-buffering-adapter you can configure for an Oracle Event Processing high availability buffering output adapter.

Table 24-8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter

	Child Element	Description
	
window-length

	
Specify the size of the sliding window as an integer number of milliseconds.

Default: 15000.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.2.2.3 How to Configure the Broadcast Output Adapter

The Oracle Event Processing high availability broadcast output adapter is implemented by class GroupBroadcastQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability broadcast output adapter, including:

	
Section 24.2.2.3.1, "Broadcast Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.3, "Broadcast Output Adapter".

24.2.2.3.1 Broadcast Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability broadcast output adapter is wlevs:adapter with provider element set to ha-broadcast as Example 24-49 shows.

Example 24-49 Broadcast Output Adapter EPN Assembly File

<wlevs:adapter id="myBroadcastAdapter" provider="ha-broadcast">
 <wlevs:listener ref="actualAdapter"/>
 <wlevs:instance-property name="keyProperties" value="time"/>
 <wlevs:instance-property name="monotonic" value="true"/>
</wlevs:adapter>

Table 24-9 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability broadcast output adapter.

Table 24-9 Child Elements of wlevs:adapter for the Broadcast Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability broadcast output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-10 describes.

Table 24-10 lists the instance properties that the Oracle Event Processing high availability broadcast output adapter supports.

Table 24-10 Broadcast Output Adapter Instance Properties

	Name	Value
	
keyProperties

	
Specify a space delimited list of one or more event properties that the Oracle Event Processing high availability broadcast output adapter uses to identify event instances.

If you specify more than one event property, you must specify a keyClass.

Default: all event properties.

	
keyClass

	
Specify the fully qualified class name of a Java class used as a compound key.

By default, all JavaBean properties in the keyClass are assumed to be keyProperties, unless the keyProperties setting is used.

A compound key may be monotonic and may be totalOrder.

	
monotonic

	
Specify whether or not the key value is constantly increasing (like a time value).

Valid values are:

	
true: the key is constantly increasing.

	
false: the key is not constantly increasing.

Default: false.

	
totalOrder

	
Specify whether or not event keys are unique. Applicable only when instance property monotonic is set to true.

Valid values are:

	
true: event keys are unique.

	
false: event keys are not unique.

Default: true.

24.2.2.3.2 Broadcast Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability broadcast output adapter is ha-broadcast-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-50 shows.

Example 24-50 Broadcast Output Adapter Component Configuration File

<ha:ha-broadcast-adapter>
 <name>myBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-broadcast-adapter>

Table 24-11 describes the additional child elements of ha-broadcast-adapter you can configure for an Oracle Event Processing high availability broadcast output adapter.

Table 24-11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter

	Child Element	Description
	
trimming-interval

	
Specify the interval at which trimming messages are broadcast as an integer number of units. You can use this property for performance tuning (see Section 27.2.4, "Broadcast Output Adapter Configuration").

Valid values for attribute units:

	
events: broadcast trimming messages after the specified number of milliseconds.

	
millis: broadcast trimming messages after the specified number of events are processed.

Default: units is events.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.2.2.4 How to Configure the Correlating Output Adapter

The Oracle Event Processing high availability correlating output adapter is implemented by class CorrelatedQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability correlating output adapter, including:

	
Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.4, "Correlating Output Adapter".

24.2.2.4.1 Correlating Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability correlating output adapter is wlevs:adapter with provider element set to ha-correlating as Example 24-51 shows.

Example 24-51 Correlating Output Adapter EPN Assembly File

<wlevs:adapter id="myCorrelatingAdapter" provider="ha-correlating">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
</wlevs:adapter>

Table 24-12 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability correlating output adapter.

Table 24-12 Child Elements of wlevs:adapter for the Correlating Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability buffering output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-13 describes.

Table 24-13 lists the instance properties that the Oracle Event Processing high availability correlating output adapter supports.

Table 24-13 Correlating Output Adapter Instance Properties

	Name	Value
	
correlatedSource

	
Specify the event source that will be used to correlate against. Events seen from this source will be purged from the trimming queue. Events still in the queue at failover will be replayed.

	
failOverDelay

	
Specify the delay timeout in milliseconds that is used to decide how soon after failover correlation should restart.

Default: 0 ms.

24.2.2.4.2 Correlating Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability correlating output adapter is ha-correlating-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-52 shows.

Example 24-52 Correlating Output Adapter Component Configuration File

<ha:ha-correlating-adapter>
 <name>myCorrelatingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-correlating-adapter>

Table 24-14 describes the additional child elements of ha-broadcast-adapter you can configure for an Oracle Event Processing high availability correlating output adapter.

Table 24-14 Child Elements of ha-correlating-adapter for the Correlating Output Adapter

	Child Element	Description
	
fail-over-delay

	
Specify the delay timeout in milliseconds that is used to decide how soon after failover correlation should restart.

Default: 0 ms.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

25 Developing Scalable Applications

This chapter introduces components and design patterns that you can use to allow your Oracle Event Processing applications to scale with an increasing event load, along with how to configure scalability for your application, including information on setting up event partitioning.

This chapter includes the following sections:

	
Section 25.1, "Understanding Scalability"

	
Section 25.2, "Configuring Scalability"

25.1 Understanding Scalability

This section introduces components and design patterns that you can use to allow your Oracle Event Processing applications to scale with an increasing event load.

This section includes the following sections:

	
Section 25.1.1, "Scalability Options"

	
Section 25.1.2, "Scalability Components"

25.1.1 Scalability Options

Oracle Event Processing provides options that you can use to allow your Oracle Event Processing application to scale with an increasing event load.

In general, you can design your application to partition an input event stream and process events in parallel at the point of event ingress, within the Event Processing Network (EPN), or both.

You should plan to use scalability and parallel processing as early in the event processing sequence as possible. For example, parallel process high-volume, low-value events to extract the typically low-volume, high-value events your application depends on.

Oracle Event Processing provides a variety of scalability components you can use as Section 25.1.2, "Scalability Components" describes.

25.1.1.1 Scalability and High Availability

Because scalability often involves deploying an application to multiple servers, it is advantageous to also consider high availability options when designing your Oracle Event Processing application for scalability.

Input stream partitioning and parallel processing impose important restrictions on application design, such as preserving event order and carefully managing the use of multi-threading.

For more information on high availability options, see:

	
Section 24.1.1, "High Availability Architecture"

	
Section 24.1.3, "Designing an Oracle Event Processing Application for High Availability"

25.1.2 Scalability Components

Oracle Event Processing provides the following components that you can use to improve the scalability of your Oracle Event Processing applications:

	
Section 25.1.2.1, "EventPartitioner"

	
Section 25.1.2.2, "ActiveActiveGroupBean"

25.1.2.1 EventPartitioner

A com.bea.wlevs.channel.EventPartitioner provides a mechanism for partitioning events on a channel across its output event sinks as Figure 25-1 shows.

Figure 25-1 Event Partitioner EPN

[image: Description of Figure 25-1 follows]

This section describes:

	
Section 25.1.2.1.1, "EventPartitioner Implementation"

	
Section 25.1.2.1.2, "EventPartitioner Initialization"

	
Section 25.1.2.1.3, "EventPartitioner Threading"

	
Section 25.1.2.1.4, "EventPartitioner Restrictions"

For more information, see Section 25.2.1, "Configuring Scalability With a Channel EventPartitioner".

25.1.2.1.1 EventPartitioner Implementation

Oracle Event Processing provides a default event property-based EventPartitioner that you can configure a channel to use.

When you configure a channel to use the default EventPartitioner, you specify the name of an event property by which the channel partitions events. The default EventPartitioner calculates a hash key using the event property value's Object.hashCode() as input to an internal hash function. The hashkey % number-of-listeners is used to calculate which listener will receive the event. This algorithm is based on the same algorithm used by HashMap to calculate in which bucket to place a new item. In practice, this means events with the same event property value are sent to the same listener.

	
Note:

The default event property-based EventPartitioner does not dispatch in Round Robin fashion.

Optionally, you can create your own event partitioner instance and configure a channel to use it instead to customize how events are dispatched to the channel's listeners.

For more information, see:

	
Section 25.2.1.1, "How to Configure Scalability With the Default Channel EventPartitioner"

	
Section 25.2.1.2, "How to Configure Scalability With a Custom Channel EventPartitioner"

25.1.2.1.2 EventPartitioner Initialization

By default, the Oracle Event Processing server initializes each event partitioner on deployment and will re-initialize event partitioners on re-deployment by invoking the EventPartitioner method activateConfiguration is before ActivatableBean.afterConfigurationActive and before your EventPartitioner class's partition method is invoked.

25.1.2.1.3 EventPartitioner Threading

Table 25-1 lists the threading options you can use with an event partitioner channel.

Table 25-1 Event Partitioner Channel Threading Options

	Threads Allocated In	Description	When to Use
	
Channel

	
	
Channel max-threads set to the number of listeners.

	
Usually acceptable if conversion of the external message format into the internal event format is inexpensive.

Lets the multithreading be controlled at the channel granularity. Some channels may require a higher number of threads than others due to differences in volume.

	
Adapter

	
	
Channel max-threads set to 0.

	
Implement a multi-threaded adapter with at least one thread per partition listener.

	
Usually preferable if conversion of the external message format into the internal event format is expensive.

This approach is best when the adapter is multithreaded and the inbound event rate is high enough that the adapter becomes a bottleneck unless multiple threads can be used to scale the inbound processing.

	
Note:

In either approach, event order cannot be guaranteed. This is true whenever multiple threads are used.

25.1.2.1.4 EventPartitioner Restrictions

When configuring a channel to use an event partitioner, consider the following restrictions:

	
Batching is not supported when you configure a channel with an event partitioner.

For more information, Section 10.1.6, "Batch Processing Channels".

25.1.2.2 ActiveActiveGroupBean

Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can partition an incoming JMS stream in Oracle Event Processing applications by utilizing the notification groups that the ActiveActiveGroupBean creates.

You add an ActiveActiveGroupBean to your EPN assembly file as Example 25-1 shows.

Example 25-1 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

By default, the ActiveActiveGroupBean creates notification groups named:

ActiveActiveGroupBean_X

Where X is a string.

At runtime, the ActiveActiveGroupBean scans the existing groups defined on the Oracle Event Processing server and applies a default pattern match of:

ActiveActiveGroupBean_\\w+

When it finds a match, it creates a notification group of that name.

Optionally, you can define your own cluster group pattern match as Section 25.2.2.3, "How to Configure the ActiveActiveGroupBean Group Pattern Match" describes.

This section describes:

	
Section 25.1.2.2.1, "Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean Without High Availability"

	
Section 25.1.2.2.2, "Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean With High Availability"

For more information, see:

	
Section 24.1.1.2, "Deployment Group and Notification Group"

	
Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean"

25.1.2.2.1 Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean Without High Availability

You can use the ActiveActiveGroupBean to partition an incoming JMS event stream by selector in an Oracle Event Processing application that is not configured for high availability.

Consider the multi-server domain that Figure 25-2 shows.

Figure 25-2 Oracle Event Processing ActiveActiveGroupBean Without High Availability

[image: Description of Figure 25-2 follows]

In this scalability scenario, you define a cluster group in the Oracle Event Processing server config.xml on each server (ActiveActiveGroupBean_group1 on Host 1, ActiveActiveGroupBean_group2 on Host 2, and so on) and add an instance of the ActiveActiveGroupBean to your Oracle Event Processing application to define notification groups based on these cluster groups.

Each notification group is bound to a different JMS selector. The component configuration file in your Oracle Event Processing application contains the same jms-adapter configuration as Example 25-2 shows.

Example 25-2 Common jms-adapter Selector Definitions

<jms-adapter>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

At runtime, the ActiveActiveGroupBean instance in each Oracle Event Processing application instance on each Oracle Event Processing server finds its ActiveActiveGroupBean_ cluster group and creates a notification group based on it. The Oracle Event Processing application then configures itself with the message-selector that corresponds to the group-id that matches that notification group. This partitions the JMS topic so that each instance of App1 processes a subset of the total number of messages in parallel.

	
Note:

Within each instance of App1, you could further increase parallel processing by configuring an event partitioner channel as Section 25.1.2.1, "EventPartitioner" describes.

For more information, see Section 25.2.2.1, "How to Configure Scalability in a JMS Application Without Oracle Event Processing High Availability".

25.1.2.2.2 Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean With High Availability

In addition to partitioning an incoming JMS event stream by selector, you can also use the ActiveActiveGroupBean to configure two or more Oracle Event Processing servers to function as a single, high availability unit.

Consider the multi-server domain with an Oracle Event Processing high availability application deployed to it that Figure 25-3 shows.

Figure 25-3 Oracle Event Processing ActiveActiveGroupBean With High Availability

[image: Description of Figure 25-3 follows]

In this scenario, you create the same ActiveActiveGroupBean_ cluster group on Host 1 and Host 2 (ActiveActiveGroupBean_group1) and the same ActiveActiveGroupBean_ cluster group on Host 3 and Host 4 (ActiveActiveGroupBean_group2).

At runtime, the ActiveActiveGroupBean instance in each Oracle Event Processing application instance on each Oracle Event Processing server finds its ActiveActiveGroupBean_ cluster group and creates a notification group based on it. Both Host 1 and Host 2 belong to one notification group (ActiveActiveGroupBean_group1) and both Host 3 and Host 4 belong to another notification group (ActiveActiveGroupBean_group2).

Each Oracle Event Processing application then configures itself with the message-selector that corresponds to the group-id that matches that notification group. This partitions the JMS topic so that each instance of App1 processes a subset of the total number of messages in parallel.

When more than one Oracle Event Processing server belongs to the same notification group, the ActiveActiveGroupBean ensures that only the primary server in each notification group outputs events. Within a given notification group, should the primary server go down, then an Oracle Event Processing high availability fail over occurs and one of the secondary servers in that notification group is declared the new primary and resumes outputting events according to the Oracle Event Processing high availability quality of service you configure.

	
Note:

Within each instance of App1, you could further increase parallel processing by configuring an event partitioner channel as Section 25.1.2.1, "EventPartitioner" describes.

For more information, see Section 25.2.2.2, "How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability".

25.2 Configuring Scalability

This section describes how to configure scalability for yourOracle Event Processing application, including information on setting up event partitioning.

This section includes the following sections:

	
Section 25.2.1, "Configuring Scalability With a Channel EventPartitioner"

	
Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean"

25.2.1 Configuring Scalability With a Channel EventPartitioner

This section describes how to configure a channel with an Oracle Event Processing event partitioner as Figure 25-4 shows, including:

	
Section 25.2.1.1, "How to Configure Scalability With the Default Channel EventPartitioner"

	
Section 25.2.1.2, "How to Configure Scalability With a Custom Channel EventPartitioner"

Figure 25-4 EventPartitioner EPN

[image: Description of Figure 25-4 follows]

In this example, assume that the inbound adapter is sending events of type PriceEvent, defined as Example 25-3 shows:

Example 25-3 Definition of Event Type PriceEvent

<wlevs:event-type-repository>
 <wlevs:event-type type-name="PriceEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char" />
 <wlevs:property name="price" type="long" />
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

For more information, see Section 25.1.2.1, "EventPartitioner".

25.2.1.1 How to Configure Scalability With the Default Channel EventPartitioner

You can configure a channel to use the default event property-based event partitioner. Each time an incoming event arrives, the channel selects a listener and dispatches the event to that listener instead of broadcasting each event to every listener.

Optionally, you can implement your own EventPartitioner class to customize how the channel dispatches events to its listeners as Section 25.2.1.2, "How to Configure Scalability With a Custom Channel EventPartitioner" describes.

To configure scalability with the default channel EventPartitioner:

	
Add a channel to your EPN.

In Figure 25-4, the channel is EventPartitionerChannel.

For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

	
Connect the channel to an upstream adapter.

In Figure 25-4, the upstream adapter is inbound.

For more information, see Section 7.4.2, "Connecting Nodes".

	
Connect the channel to two or more listeners.

In Figure 25-4, the channel is connected to Oracle CQL processors processor1, processor2, and processor3.

For more information, see Section 7.4.2, "Connecting Nodes"

	
Edit the EPN assembly file to add a partitionByEventProperty instance property to the channel element.

The value of this instance-property is the name of the event property by which the channel partitions events.

In this example, the channel partitions events by event property symbol.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent">
 <wlevs:instance-property name="partitionByEventProperty" value="symbol" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
 </wlevs:channel>
...

For more information, see Section 25.1.2.1.1, "EventPartitioner Implementation".

	
Decide how you want Oracle Event Processing to allocate threads as Section 25.1.2.1.3, "EventPartitioner Threading" describes:

	
If you want the channel to allocate threads:

	
Edit the EPN assembly file to configure the channel to set max-threads to the number of listeners.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="3" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
 </wlevs:channel>
...

	
If you want the upstream adapter to allocate threads:

	
Edit the EPN assembly file to configure the channel to set max-threads to 0.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="0" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
 </wlevs:channel>
...

	
Edit the Oracle Event Processing server config.xml file to add a work-manager element.

If this work manager is shared by more than one component (such as other adapters and Jetty), then set the min-threads-constraint and max-threads-constraint elements each to a value greater than the number of listeners.

If this work manager is not shared by more than one component (that is, it is dedicated to the upstream adapter in this configuration), then set the min-threads-constraint and max-threads-constraint elements equal to the number of listeners.

...
<work-manager>
 <name>adapterWorkManager</name>
 <min-threads-constraint>3</min-threads-constraint>
 <max-threads-constraint>3</max-threads-constraint>
</work-manager>
...

For more information, see Section F.45, "work-manager".

	
Edit the component configuration file to configure the upstream adapter with this work-manager.

...
<adapter>
 <name>inbound</name>
 <work-manager-name>adapterWorkManager</work-manager-name>
 ...
</adapter>
...

	
Assemble and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

At runtime, the channel uses the default event property-based EventPartitioner to determine how to dispatch each incoming event to its listeners.

25.2.1.2 How to Configure Scalability With a Custom Channel EventPartitioner

You can implement your own EventPartitioner class to customize how a channel dispatches events to its listeners.

Optionally, you can use the default event property-based EventPartitioner as Section 25.2.1.1, "How to Configure Scalability With the Default Channel EventPartitioner" describes.

To configure scalability with a custom channel EventPartitioner:

	
Using the Oracle Event Processing IDE for Eclipse, open your Oracle Event Processing project.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit your MANIFEST.MF to import package com.bea.wlevs.channel.

For more information, see Section 5.7.5, "How to Import a Package".

	
Right-click your project's src folder and select New > Class.

The New Java Class dialog appears as Figure 25-5 shows.

Figure 25-5 New Java Class Dialog

[image: Description of Figure 25-5 follows]

	
Configure the New Java Class dialog as Table 25-2 describes.

Table 25-2 New Java Class Options for EventPartitioner

	Option	Description
	
Package

	
Enter the class's package name.

	
Name

	
Enter the class's name.

	
Interfaces

	
Click Add and use the Implemented Interfaces Selection dialog to locate the com.bea.wlevs.channel.EventPartitioner interface, select it in the Matching Items list, and then click OK.

	
Click Finish.

A new EventPartitioner class is created as Example 25-4 shows.

Example 25-4 EventPartitioner Class

package com.acme;

import com.bea.wlevs.channel.EventPartitioner;
import com.bea.wlevs.ede.api.EventProcessingException;
import com.bea.wlevs.ede.api.EventType;

public class MyEventPartitioner implements EventPartitioner {

 @Override
 public void activateConfiguration(int arg0, EventType arg1) {
 // TODO Auto-generated method stub

 }

 @Override
 public int partition(Object arg0) throws EventProcessingException {
 // TODO Auto-generated method stub
 return 0;
 }

}

	
Complete the implementation of your EventPartitioner as Example 25-5 shows.

Example 25-5 EventPartitioner Class Implementation

package com.acme;

import com.bea.wlevs.channel.EventPartitioner;
import com.bea.wlevs.ede.api.EventProcessingException;
import com.bea.wlevs.ede.api.EventType;

public class MyEventPartitioner implements EventPartitioner {

 private final EventType eventType;
 private int numberOfPartitions;

 @Override
 public void activateConfiguration(int numberOfPartitions, EventType eventType) {
 this.numberOfPartitions = numberOfPartitions;
 this.eventType = eventType;
 }

 @Override
 public int partition(Object event) throws EventProcessingException {
 int dispatchToListener = 0;
 ... // Your implementation.
 return dispatchToListener;
 }

}

The activateConfiguration method is a callback that the Oracle Event Processing server invokes before ActivatableBean.afterConfigurationActive and before your EventPartitioner class's partition method is invoked.

When you associate this EventPartitioner with a channel, the channel will invoke your EventPartitioner class's partition method each time the channel receives an event.

Your partition method must return the index of the listener to which the channel should dispatch the event. The index must be an int between 0 and numberOfPartitions - 1.

	
Add a channel to your EPN.

In Figure 25-4, the channel is EventPartitionerChannel.

For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

	
Connect the channel to an upstream adapter.

In Figure 25-4, the upstream adapter is inbound.

For more information, see Section 7.4.2, "Connecting Nodes".

	
Connect the channel to two or more listeners.

In Figure 25-4, the channel is connected to Oracle CQL processors processor1, processor2, and processor3.

If you want to the channel to perform load balancing, each listener must be identical.

For more information, see:

	
Section 7.4.2, "Connecting Nodes"

	
Edit the EPN assembly file to add an eventPartitioner instance property to the channel element.

The value of this instance-property is the fully qualified class name of the EventPartitioner instance the channel will use to partition events.

This class must be on your Oracle Event Processing application class path.

In this example, the channel uses EventPartitioner instance com.acme.MyEventPartitioner to partition events.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="0" >
 <wlevs:instance-property name="eventPartitioner" value="com.acme.MyEventPartitioner" />
 <wlevs:listener ref="filterFanoutProcessor1" />
 <wlevs:listener ref="filterFanoutProcessor2" />
 <wlevs:listener ref="filterFanoutProcessor3" />
 <wlevs:source ref="PriceAdapter" />
 </wlevs:channel>
...

	
Decide how you want Oracle Event Processing to allocate threads as Section 25.1.2.1.3, "EventPartitioner Threading" describes:

	
If you want the channel to allocate threads:

	
Edit the EPN assembly file to configure the channel to set max-threads to the number of listeners.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="3" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
 </wlevs:channel>
...

	
If you want the upstream adapter to allocate threads:

	
Edit the EPN assembly file to configure the channel to set max-threads to 0.

...
 <wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="0" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
 </wlevs:channel>
...

	
Edit the Oracle Event Processing server config.xml file to add a work-manager element.

If this work manager is shared by more than one component (such as other adapters and Jetty), then set the min-threads-constraint and max-threads-constraint elements each to a value greater than the number of listeners.

If this work manager is not shared by more than one component (that is, it is dedicated to the upstream adapter in this configuration), then set the min-threads-constraint and max-threads-constraint elements equal to the number of listeners.

...
<work-manager>
 <name>adapterWorkManager</name>
 <min-threads-constraint>3</min-threads-constraint>
 <max-threads-constraint>3</max-threads-constraint>
</work-manager>
...

For more information, see Section F.45, "work-manager".

	
Edit the component configuration file to configure the upstream adapter with this work-manager.

...
<adapter>
 <name>inbound</name>
 <work-manager-name>adapterWorkManager</work-manager-name>
 ...
</adapter>
...

	
Assemble and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

At runtime, the channel uses your EventPartitioner to determine how to dispatch each incoming event to its listeners.

25.2.2 Configuring Scalability With the ActiveActiveGroupBean

This section describes how to configure your Oracle Event Processing application to use the ActiveActiveGroupBean to partition an incoming JMS event stream by selector, including:

	
Section 25.2.2.1, "How to Configure Scalability in a JMS Application Without Oracle Event Processing High Availability"

	
Section 25.2.2.2, "How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability"

	
Section 25.2.2.3, "How to Configure the ActiveActiveGroupBean Group Pattern Match"

For more information, see Section 25.1.2.2, "ActiveActiveGroupBean".

25.2.2.1 How to Configure Scalability in a JMS Application Without Oracle Event Processing High Availability

You can use the ActiveActiveGroupBean to partition an incoming JMS event stream by selector in a multi-server domain for an application that does not use Oracle Event Processing high availability.

For information on how to use the ActiveActiveGroupBean in an Oracle Event Processing high availability application, see Section 25.2.2.2, "How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability".

For more information, see Section 25.1.2.2.1, "Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean Without High Availability".

To configure scalability in a JMS application without Oracle Event Processing high availability:

	
Create a multi-server domain.

For more information, see "Introduction to Multi-Server Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

In this example, the deployment group is named MyDeploymentGroup.

	
Configure the Oracle Event Processing server configuration file on each Oracle Event Processing server to add the appropriate ActiveActiveGroupBean notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file, config.xml, is located in the DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main domain directory and servername refers to a particular server instance.

For example, Table 25-4 shows cluster elements for Oracle Event Processing servers ocep-server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The deployment group is MyDeploymentGroup and notification groups are defined using default ActiveActiveGroupBean notification group naming.

Optionally, you can specify your own group naming convention as Section 25.2.2.3, "How to Configure the ActiveActiveGroupBean Group Pattern Match" describes.

Table 25-3 Oracle Event Processing Server Configuration File groups Element Configuration

	Partition	cluster Element
	
ocep-server-1

	

<cluster>
 <server-name>ocep-server-1</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

	
ocep-server-2

	

<cluster>
 <server-name>ocep-server-2</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

	
ocep-server-3

	

<cluster>
 <server-name>ocep-server-3</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group3</groups>
</cluster>

	
ocep-server-4

	

<cluster>
 <server-name>ocep-server-4</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group4</groups>
</cluster>

	
Create an Oracle Event Processing application.

	
Configure the EPN assembly file to add an ActiveActiveGroupBean element as Example 25-10 shows.

Example 25-6 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

	
Define a parameterized message-selector in the jms-adapter element for the JMS inbound adapters.

Edit the component configuration file to add group-binding child elements to the jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value as Example 25-12 shows.

Example 25-7 jms-adapter Selector Definition for ocep-server-1

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid > 400 and the application processes events whose acctid property is greater than 400.

	
Note:

Each in-bound JMS adapter must listen to a different topic.

For more information, see Chapter 11, "Integrating the Java Message Service".

	
Deploy your application to the deployment group of your multi-server domain.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

At runtime, each Oracle Event Processing server configures its instance of the application with the message-selector that corresponds to its ActiveActiveGroupBean notification group. This partitions the JMS topic so that each instance of the application processes a subset of the total number of messages in parallel.

25.2.2.2 How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability

You can use the ActiveActiveGroupBean to partition an incoming JMS event stream in a multi-server domain with Oracle Event Processing high availability.

This procedure uses the example application from Section 24.2.1.4, "How to Configure Precise Recovery With JMS", including the example EPN that Figure 25-6 shows, the corresponding EPN assembly file that Example 25-8 shows, and the corresponding component configuration file that Example 25-9 shows.

Figure 25-6 Precise Recovery With JMS EPN

[image: Description of Figure 25-6 follows]

Example 25-8 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>
</beans>

Example 25-9 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from channel1 [Now]]]>
 </query>
 </rules>
 </processor>
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
</wlevs:config>

This procedure will create the Oracle Event Processing high availability configuration that Figure 25-7 shows.

Figure 25-7 Oracle Event Processing ActiveActiveGroupBean With High Availability

[image: Description of Figure 25-7 follows]

For more information, see Section 25.1.2.2.2, "Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean With High Availability".

To configure scalability in a JMS application with Oracle Event Processing high availability:

	
Create a multi-server domain.

For more information, see "Introduction to Multi-Server Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

In this example, the deployment group is named MyDeploymentGroup.

	
Configure the Oracle Event Processing server configuration file on each Oracle Event Processing server to add the appropriate ActiveActiveGroupBean notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file, config.xml, is located in the DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main domain directory and servername refers to a particular server instance.

For example, Table 25-4 shows cluster elements for Oracle Event Processing servers ocep-server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The deployment group is MyDeploymentGroup and notification groups are defined using default ActiveActiveGroupBean notification group names.

Note that ocep-server-1 and ocep-server-2 use the same notification group name (ActiveActiveGroupBean_group1) and ocep-server-3 and ocep-server-4 use the same notification group name (ActiveActiveGroupBean_group2).

Optionally, you can specify your own group naming convention as Section 25.2.2.3, "How to Configure the ActiveActiveGroupBean Group Pattern Match" describes.

Table 25-4 Oracle Event Processing Server Configuration File groups Element Configuration

	Partition	cluster Element
	
ocep-server-1

	

<cluster>
 <server-name>ocep-server-1</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

	
ocep-server-2

	

<cluster>
 <server-name>ocep-server-2</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

	
ocep-server-3

	

<cluster>
 <server-name>ocep-server-3</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

	
ocep-server-4

	

<cluster>
 <server-name>ocep-server-4</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

	
Create an Oracle Event Processing high availability application.

For more information, see Chapter 24, "Developing Applications for High Availability".

	
Configure the EPN assembly file to add an ActiveActiveGroupBean element as Example 25-10 shows.

Example 25-10 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

	
Edit the component configuration file to configure a jms-adapter element for the inbound JMS adapters as Example 25-11 shows:

	
Each in-bound JMS adapter must listen to a different topic.

	
Set session-transacted to true.

Example 25-11 jms-adapter Element for Inbound JMS Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
</wlevs:config>

For more information, see Chapter 11, "Integrating the Java Message Service".

	
Define a parameterized message-selector in the jms-adapter element for each JMS inbound adapter.

Edit the component configuration file to add group-binding child elements to the jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value as Example 25-12 shows.

Example 25-12 jms-adapter Selector Definition for ocep-server-1

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid <= 1000</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid > 1000</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid <= 1000 and the application processes events whose acctid property is less than or equal to 1000. Similarly, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group2, then the CONDITION parameter is defined as acctid > 1000 and the application processes events whose acctid property is greater than 1000.

	
Edit the component configuration file to configure a jms-adapter element for the outbound JMS adapter as Example 25-13 shows:

	
Configure the out-bound JMS adapter with the same topic as the correlating in-bound adapter (in this example, JMSInboundAdapter2: ./Topic2).

	
Set session-transacted to true.

Example 25-13 jms-adapter Element for Outbound JMS Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
</wlevs:config>

For more information, see Chapter 11, "Integrating the Java Message Service".

	
Deploy your application to the deployment group of your multi-server domain.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

At runtime, each Oracle Event Processing server configures its instance of the application with the message-selector that corresponds to its ActiveActiveGroupBean notification group. This partitions the JMS topic so that each instance of the application processes a subset of the total number of messages in parallel.

If the active Oracle Event Processing server in an ActiveActiveGroupBean group goes down, the Oracle Event Processing server performs an Oracle Event Processing high availability failover to the standby Oracle Event Processing server in that ActiveActiveGroupBean group.

25.2.2.3 How to Configure the ActiveActiveGroupBean Group Pattern Match

By default, the ActiveActiveGroupBean creates notification groups named:

ActiveActiveGroupBean_X

Where X is a string.

At runtime, the ActiveActiveGroupBean scans the existing groups defined on the Oracle Event Processing server and applies a default pattern match of:

ActiveActiveGroupBean_\\w+

When it finds a match, it creates a notification group of that name.

Optionally, you can define your own group pattern to specify a different notification group naming pattern.

How to configure the ActiveActiveGroupBean group pattern match:

	
Configure the EPN assembly file to add a groupPattern attribute to your ActiveActiveGroupBean element as Example 25-14 shows.

Example 25-14 ActiveActiveGroupBean bean Element With groupPattern Attribute

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
 <property name="groupPattern" value="MyNotificationGroupPattern*"/>
</bean>

	
Specify a value for the groupPattern attribute that matches the cluster group naming convention you want to use for notification groups.

26 Extending Component Configuration

This chapter describes how to use an XML schema to extend the default configuration for adapters and event beans used with Oracle Event Processing, including information on using Java annotations to generate the configuration XML.

This chapter includes the following sections:

	
Section 26.1, "Overview of Extending Component Configuration"

	
Section 26.2, "Extending Component Configuration"

	
Section 26.3, "Programming Access to the Configuration of a Custom Adapter or Event Bean"

26.1 Overview of Extending Component Configuration

Adapters and event beans have default configuration data. This default configuration is typically adequate for simple and basic applications.

However, you can also extend this configuration by using a XML Schema Definition (XSD) schema to specify a new XML format of an adapter configuration file that extends the built-in XML type provided by Oracle Event Processing. By extending the XSD Schema, you can add as many new elements to the adapter configuration as you want, with few restrictions other than each new element must have a name attribute.

This feature is based on standard technologies, such as XSD and Java Architecture for XML Binding (JAXB).

You can extend component configuration by:

	
Annotating your adapter or event bean Java class with the annotations that javax.xml.bind.annotation specifies.

See Section 26.1.1, "Extending Component Configuration Using Annotations".

	
Manually generating an XSD.

See Section 26.1.2, "Extending Component Configuration Using an XSD".

	
Manually generating a custom schema which does not extend the application schema.

This allows you to create custom configuration in your own namespace without having to define all the other elements. This mechanism functions like the annotation approach after you generate the schema.

For more information, see:

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Section 16.3.1, "Configuring a Java Class as an Event Bean"

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

26.1.1 Extending Component Configuration Using Annotations

The simplest and most efficient way to extend component configuration is to annotate your adapter or event bean Java class using the annotations that javax.xml.bind.annotation specifies.

Oracle Event Processing supports the inclusion of multiple namespaces in an EPN configuration file as well as supporting sourcing configuration information from the providing bundle rather than the client bundle. Oracle Event Processing scans for multiple ObjectFactories in the accessible class-space and each of these will be initialized through createConfig.

The schema search takes into account the wlevs:factory element provider-schema child element in adapter bundles. So if you are defining an adapter in its own bundle you can put the schema in that bundle as long as you define the provider-bundle property.

Oracle recommends that you use elementFormDefault="unqualified" so that locally defined elements will not have a namespace, but global elements will leverage the targetNamespace. This will avoid name clashes across schemas without requiring excessive prefixing.

For more information, see http://www.xfront.com/HideVersusExpose.html.

For more information, see:

	
Section 26.2.1, "How to Extend Component Configuration Using Annotations"

	
http://java.sun.com/javaee/6/docs/api/javax/xml/bind/annotation/package-summary.html

26.1.2 Extending Component Configuration Using an XSD

If you require more detailed control over your custom component configuration, you can extend your component configuration by creating your own XSD.

For more information, see:

	
Section 26.2.2, "How to Extend Component Configuration Using an XSD"

	
http://jaxb.java.net/

26.2 Extending Component Configuration

You can extend component configuration in either of the following ways:

For more information, see Section 26.1, "Overview of Extending Component Configuration".

26.2.1 How to Extend Component Configuration Using Annotations

The simplest and most efficient way to extend component configuration is to annotate your adapter or event bean Java class.

Alternatively, you can extend component configuration by creating your own XSD as Section 26.2.2, "How to Extend Component Configuration Using an XSD" describes.

For more information, see Section 26.1.1, "Extending Component Configuration Using Annotations".

To extend component configuration using annotations:

	
Implement your custom adapter or event bean Java class.

For more information, see:

	
Section 15.2, "Implementing a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Annotate the attributes of your custom adapter or event bean to specify the component configuration using the annotations that javax.xml.bind.annotation specifies.

Important javax.xml.bind.annotation annotations include:

	
@XmlElement: property is an optional part of the component configuration.

	
@XmlElement(required=true): property is a required part of the component configuration.

	
@XmlTransient: property is not part of the component configuration.

	
@XmlJavaTypeAdapter: property elements annotated with this can specify custom handling to accommodate most Java data types.

	
Note:

If you require extensive use of @XmlJavaTypeAdapter, consider defining your own custom schema as Section 26.2.2, "How to Extend Component Configuration Using an XSD" describes.

	
Note:

A property without an annotation is assumed to be an optional configuration property (default: @XmlElement).

Example 26-1 shows a custom adapter implementation annotated with javax.xml.bind.annotation annotations to specify:

	
count: not part of the component configuration.

	
doit: required part of the component configuration.

	
size: required part of the component configuration; maps to instance property howBig.

Example 26-1 Annotated Custom Adapter Implementation

@XmlType(name="SampleAdapterConfig", namespace="http://www.oracle.com/ns/cep/config/sample")
public class SampleAdapterImpl implements Adapter {
 @XmlTransient
 private int count;

 @XmlElement(name="size")
 private int howBig;

 @XmlElement(required=true)
 private boolean doit;

...

 public void setDoit(boolean doit) {
 this.doit = doit;
 }

 public boolean getDoit() {
 return doit;
 }
}

	
Within your custom adapter or event bean code, access the extended configuration as Section 26.3, "Programming Access to the Configuration of a Custom Adapter or Event Bean" describes.

	
Modify the component configuration XML file that describes the custom components of your application.

For more information, see Section 15.5.2, "Configuring a Custom Adapter in a Component Configuration File".

	
When you create the component configuration XML file that describes the components of your application, be sure to use the extended XSD file as its description. In addition, be sure you identify the namespace for this schema rather than the default schema.

Example 26-2 shows a component configuration file for the custom adapter in Example 26-1.

Example 26-2 Extended Component Configuration: Annotations

<?xml version="1.0" encoding="UTF-8"?>
<app:config
 xmlns:app="http://www.bea.com/ns/wlevs/config/application"
 xmlns:sample="http://www.oracle.com/ns/cep/config/sample"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.bea.com/ns/wlevs/config/application
 http://www.bea.com/ns/wlevs/config/application/wlevs_application_config.xsd
 http://www.oracle.com/ns/cep/config/sample
 http://www.oracle.com/ns/cep/config/sample/ocep_sample_config.xsd">
 <processor>
 <name>clusterProcessor</name>
 <rules>
 <query id="clusterRule"><![CDATA[select * from clusterInstream [Now]]]></query>
 </rules>
 </processor>
 <sample:adapter>
 <name>myadapter</name>
 <config>
 <size>15</size> <!-- optional -->
 <doit>true</doit> <!-- required -->
 </config>
 </sample:adapter>
</app:config>

	
Note:

The extended component configuration schema requires a nested config element as Example 26-5 shows.

	
Package and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event Processing Applications".

26.2.2 How to Extend Component Configuration Using an XSD

You can extend the component configuration of a custom adapter or event bean using your own XSD.

Alternatively, you can extend component configuration by annotating your adapter or event bean Java class as Section 26.2.1, "How to Extend Component Configuration Using Annotations" describes.

For more information, see Section 26.1.2, "Extending Component Configuration Using an XSD".

To extend component configuration using an XSD:

	
Create the new XSD Schema file that describes the extended adapter or event bean configuration.

This XSD file must also include the description of the other components in your application (processors and streams), although you typically use built-in XSD types, defined by Oracle Event Processing, to describe them.

See Section 26.2.2.1, "Creating the XSD Schema File".

	
As part of your application build process, generate the Java representation of the XSD schema types using a JAXB binding compiler, such as the com.sun.tools.xjc.XJCTask Ant task from Sun's GlassFish reference implementation. This Ant task is included in the Oracle Event Processing distribution for your convenience.

The following sample build.xml file shows how to do this:

<property name="base.dir" value="." />
<property name="output.dir" value="output" />
<property name="sharedlib.dir" value="${base.dir}/../../../../../modules" />
<property name="wlrtlib.dir" value="${base.dir}/../../../../modules"/>
<path id="classpath">
 <pathelement location="${output.dir}" />
 <fileset dir="${sharedlib.dir}">
 <include name="*.jar" />
 </fileset>
 <fileset dir="${wlrtlib.dir}">
 <include name="*.jar"/>
 </fileset>
</path>
<taskdef name="xjc" classname="com.sun.tools.xjc.XJCTask">
 <classpath refid="classpath" />
</taskdef>
<target name="generate" depends="clean, init">
 <copy file="../../../../xsd/wlevs_base_config.xsd"
 todir="src/main/resources/extension" />
 <copy file="../../../../xsd/wlevs_application_config.xsd"
 todir="src/main/resources/extension" />
 <xjc extension="true" destdir="${generated.dir}">
 <schema dir="src/main/resources/extension"
 includes="helloworld.xsd"/>
 <produces dir="${generated.dir}" includes="**/*.java" />
 </xjc>
</target>

In the example, the extended XSD file is called helloworld.xsd. The build process copies the Oracle Event Processing XSD files (wlevs_base_config.xsd and wlevs_application_config.xsd) to the same directory as the helloworld.xsd file because helloworld.xsd imports the Oracle Event Processing XSD files.

For more information, see http://jaxb.java.net/nonav/2.0.2/docs/xjcTask.html.

	
Compile these generated Java files into classes.

	
Package the compiled Java class files in your application bundle.

See Section 23.2, "Assembling an Oracle Event Processing Application".

	
Program your custom adapter or event bean.

For more information, see:

	
Section 15.2, "Implementing a Custom Adapter."

	
Chapter 16, "Handling Events with Java"

	
Within your custom adapter or event bean code, access the extended configuration as Section 26.3, "Programming Access to the Configuration of a Custom Adapter or Event Bean" describes.

	
When you create the component configuration XML file that describes the components of your application, be sure to use the extended XSD file as its description. In addition, be sure you identify the namespace for this schema rather than the default schema.

Example 26-3 shows a component configuration file for the XSD you created in Section 26.2.2.1, "Creating the XSD Schema File".

Example 26-3 Extended Component Configuration File: XSD

<?xml version="1.0" encoding="UTF-8"?>
<helloworld:config
 xmlns:helloworld="http://www.bea.com/xml/ns/wlevs/example/helloworld">
 <adapter>
 <name>helloworldAdapter</name>
 <message>HelloWorld - the current time is:</message>
 </adapter>
</helloworld:config>

26.2.2.1 Creating the XSD Schema File

The new XSD schema file extends the wlevs_application_config.xsd XSD schema and then adds new custom information, such as new configuration elements for an adapter. Use standard XSD schema syntax for your custom information.

Oracle recommends that you use the XSD schema in Section 26.2.2.1.1, "Complete Example of an Extended XSD Schema File" as a basic template, and modify the content to suit your needs. In addition to adding new configuration elements, other modifications include changing the package name of the generated Java code and the element name for the custom adapter. You can control whether the schema allows just your custom adapter or other components like processors.

For more information, see Section B.2, "Component Configuration Schema wlevs_application_config.xsd".

To create a new XSD schema file:

	
Using your favorite XML Editor, create the basic XSD file with the required namespaces, in particular those for JAXB. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.bea.com/xml/ns/wlevs/example/helloworld"
 xmlns="http://www.bea.com/xml/ns/wlevs/example/helloworld"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 jxb:extensionBindingPrefixes="xjc" jxb:version="1.0"
 elementFormDefault="unqualified" attributeFormDefault="unqualified">
...
</xs:schema>

	
Import the wlevs_application_config.xsd XSD schema:

<xs:import
 namespace="http://www.bea.com/ns/wlevs/config/application"
 schemaLocation="wlevs_application_config.xsd"/>

The wlevs_application_config.xsd in turn imports the wlevs_base_config.xsd XSD file.

	
Use the complexType XSD element to describe the XML type of the extended adapter configuration.

The new type must extend the AdapterConfig type, defined in wlevs_application_config.xsd. AdapterConfig extends ConfigurationObject. You can then add new elements or attributes to the basic adapter configuration as needed. For example, the following type called HelloWorldAdapterConfig adds a message element to the basic adapter configuration:

<xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

	
Define a top-level element that must be named config.

In the definition of the config element, define a sequence of child elements that correspond to the components in your application. Typically the name of the elements should indicate what component they configure (adapter, processor, channel) although you can name then anything you want.

Each element must extend the ConfigurationObject XML type, either explicitly using the xs:extension element with base attribute value base:ConfigurationObject or by specifying an XML type that itself extends ConfigurationObject. The ConfigurationObject XML type, defined in wlevs_base_config.xsd, defines a single attribute: name.

The type of your adapter element should be the custom one you created in a preceding step of this procedure.

You can use the following built-in XML types that wlevs_application_config.xsd describes, for the child elements of config that correspond to processors or streams:

	
DefaultProcessorConfig—For a description of the default processor configuration, see:

	
Section 17.1, "Overview of Oracle CQL Processor Configuration"

	
Section 19.1, "Overview of EPL Processor Component Configuration"

	
DefaultStreamConfig—For a description of the default channel configuration, see Section 10.1, "Overview of Channel Configuration".

For example:

<xs:element name="config">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="adapter" type="HelloWorldAdapterConfig"/>
 <xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

	
Optionally use the jxb:package child element of jxb:schemaBindings to specify the package name of the generated Java code:

<xs:annotation>
 <xs:appinfo>
 <jxb:schemaBindings>
 <jxb:package name="com.bea.adapter.wlevs.example.helloworld"/>
 </jxb:schemaBindings>
 </xs:appinfo>
</xs:annotation>

26.2.2.1.1 Complete Example of an Extended XSD Schema File

Use the following extended XSD file as a template:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.bea.com/xml/ns/wlevs/example/helloworld"
 xmlns="http://www.bea.com/xml/ns/wlevs/example/helloworld"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 jxb:extensionBindingPrefixes="xjc" jxb:version="1.0"
 elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:annotation>
 <xs:appinfo>
 <jxb:schemaBindings>
 <jxb:package name="com.bea.adapter.wlevs.example.helloworld"/>
 </jxb:schemaBindings>
 </xs:appinfo>
 </xs:annotation>
 <xs:import namespace="http://www.bea.com/ns/wlevs/config/application"
 schemaLocation="wlevs_application_config.xsd"/>
 <xs:element name="config">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="adapter" type="HelloWorldAdapterConfig"/>
 <xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
 <xs:element name="channel" type="wlevs:DefaultStreamConfig"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

26.3 Programming Access to the Configuration of a Custom Adapter or Event Bean

This section applies to both adapters and event beans. For simplicity the text mentions only adapters.

When you deploy your application, Oracle Event Processing maps the configuration of each component (specified in the component configuration XML files) into Java objects using the Java Architecture for XML Binding (JAXB) standard (for more information, see http://jaxb.java.net/). Because there is a single XML element that contains the configuration data for each component, JAXB in turn also produces a single Java class that represents this configuration data. Oracle Event Processing passes an instance of this Java class to the component (processor, channel, or adapter) at runtime when the component is initialized, and also whenever there is a dynamic change to the component's configuration.

You can access this component configuration at runtime in either of the following ways:

	
Using resource injection as Section 26.3.1, "How to Access Component Configuration Using Resource Injection" describes.

This is the simplest and most efficient way to access component configuration at runtime.

	
Using callbacks as Section 26.3.2, "How to Access Component Configuration Using Lifecycle Callbacks".

This is the most flexible way to access component configuration at runtime. Consider this option if you cannot easily accomplish your intentions using resource injection.

	
Note:

Clients needing to use schema from an adapter provider must import the appropriate package from the provider bundle so that the provider's ObjectFactory is visible to the client bundle.

26.3.1 How to Access Component Configuration Using Resource Injection

By default, Oracle Event Processing configures adapters by direct injection of their Java bean properties followed by the usual configuration callbacks.

Consider the annotated custom adapter implementation that Example 26-4 shows.

Example 26-4 Custom Adapter Implementation

@XmlType(name="SampleAdapterConfig", namespace="http://www.oracle.com/ns/cep/config/sample")
public class SampleAdapterImpl implements Adapter {
 private boolean doit;

 public void setDoit(boolean doit) {
 this.doit = doit;
 }

 public boolean getDoit() {
 return doit;
 }
}

And consider the component configuration file for an instance of this custom adapter that Example 26-5

Example 26-5 Extended Component Configuration

<?xml version="1.0" encoding="UTF-8"?>
<app:config
 xmlns:app="http://www.bea.com/ns/wlevs/config/application"
 xmlns:sample="http://www.oracle.com/ns/cep/config/sample"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.bea.com/ns/wlevs/config/application
 http://www.bea.com/ns/wlevs/config/application/wlevs_application_config.xsd
 http://www.oracle.com/ns/cep/config/sample
 http://www.oracle.com/ns/cep/config/sample/ocep_sample_config.xsd">
 <processor>
 <name>clusterProcessor</name>
 <rules>
 <query id="clusterRule"><![CDATA[select * from clusterInstream [Now]]]></query>
 </rules>
 </processor>
 <sample:adapter>
 <name>myadapter</name>
 <config>
 <doit>true</doit>
 </config>
 </sample:adapter>
</app:config>

At runtime, by default Oracle Event Processing directly injects the value (true) of the Java bean property doit.

	
Note:

The extended component configuration schema requires a nested config element as Example 26-5 shows.

For more information, see:

	
Section 26.3.2, "How to Access Component Configuration Using Lifecycle Callbacks"

	
Section 1.4.3, "Configuring Oracle Event Processing Resource Access"

26.3.2 How to Access Component Configuration Using Lifecycle Callbacks

In your adapter implementation, you can use metadata annotations to specify the Java methods that are invoked by Oracle Event Processing at runtime.

Oracle Event Processing passes an instance of the configuration Java class to these specified methods; you can then program these methods to get specific runtime configuration information about the adapter.

The following example shows how to annotate the activateAdapter method with the @Activate annotation to specify the method invoked when the adapter configuration is first activated:

@Activate
public void activateAdapter(HelloWorldAdapterConfig adapterConfig) {
 this.message = adapterConfig.getMessage();
}

By default, the data type of the adapter configuration Java class is com.bea.wlevs.configuration.application.DefaultAdapterConfig. If, however, you have extended the configuration of your adapter by creating your own XSD file that describes the configuration XMLfile, then you specify the type in the XSD file. In the preceding example, the data type of the Java configuration object is com.bea.wlevs.example.helloworld.HelloWorldAdapterConfig.

This section describes:

	
Section 26.3.2.1, "Lifecycle Callback Annotations"

	
Section 26.3.2.2, "Lifecycle"

26.3.2.1 Lifecycle Callback Annotations

You can use the following metadata annotations to specify various lifecycle callback methods:

	
com.bea.wlevs.management.Activate—Specifies the method invoked when the configuration is activated.

See Section I.2, "com.bea.wlevs.configuration.Activate" for additional details about using this annotation in your adapter code.

	
com.bea.wlevs.management.Prepare—Specifies the method invoked when the configuration is prepared.

See Section I.3, "com.bea.wlevs.configuration.Prepare" for additional details about using this annotation in your adapter code.

	
com.bea.wlevs.management.Rollback—Specifies the method invoked when the adapter is terminated due to an exception.

See Section I.4, "com.bea.wlevs.configuration.Rollback" for additional details about using this annotation in your adapter code.

For more information, see Section 26.3.2.2, "Lifecycle".

26.3.2.2 Lifecycle

Oracle Event Processing follows the following lifecycle during custom adapter and event bean instantiation:

	
Create adapter or event bean instance.

	
Inject static properties.

	
Call afterPropertiesSet.

	
Prepare phase:

	
If @Prepare with one or more configuration arguments is present, call it.

	
Otherwise, directly inject configuration properties.

See Section 26.3.1, "How to Access Component Configuration Using Resource Injection".

	
If @Prepare without arguments is present, call it.

	
Activate phase:

	
If @Activate with one or more configuration arguments is present, call it.

	
If @Activate without arguments is present, call it.

	
Call afterConfigurationActive.

	
Continue with other configuration.

27 Performance Tuning

This chapter describes techniques for improving Oracle Event Processing application performance by using partitioning and batching, and includes information specific to high availability performance tuning.

This chapter includes the following sections:

	
Section 27.1, "EPN Performance Tuning"

	
Section 27.2, "High Availability Performance Tuning"

27.1 EPN Performance Tuning

When creating your EPN, consider the following performance tuning options:

	
Section 27.1.1, "Event Partitioner Channel"

	
Section 27.1.2, "Batching Channel"

	
Section 27.1.3, "Scalability Using the ActiveActiveGroupBean"

For more information, see Chapter 25, "Developing Scalable Applications".

27.1.1 Event Partitioner Channel

You can improve scalability by configuring an event partitioner channel. When you configure a channel to use an event partitioner, each time an incoming event arrives, the channel selects a listener and dispatches the event to that listener instead of broadcasting each event to every listener for partitioning events on a channel across its output event sinks.

For more information, see Section 25.1.2.1, "EventPartitioner".

27.1.2 Batching Channel

By default, a channel processes events as they arrive. Alternatively, you can configure a channel to batch events together that have the same timestamp by setting the wlevs:channel attribute batching to true.

For more information, see Section 10.1.6, "Batch Processing Channels".

27.1.3 Scalability Using the ActiveActiveGroupBean

Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can partition an incoming JMS stream in Oracle Event Processing applications by utilizing the notification groups that the ActiveActiveGroupBean creates.

For more information, see Section 25.1.2.2, "ActiveActiveGroupBean".

27.2 High Availability Performance Tuning

When creating high-availability applications for deployment to multi-server domains, consider the following performance tuning options:

	
Section 27.2.1, "Host Configuration"

	
Section 27.2.2, "High Availability Input Adapter and Quality of Service"

	
Section 27.2.3, "High Availability Input Adapter Configuration"

	
Section 27.2.4, "Broadcast Output Adapter Configuration"

	
Section 27.2.5, "Oracle Coherence Performance Tuning Options"

For more information, see Section 24.1.3, "Designing an Oracle Event Processing Application for High Availability"

27.2.1 Host Configuration

If you only want availability and are not concerned with recovery time, then it is possible to use smaller, less equipped hosts as secondaries. However, to maximize high availability performance, ensure that all hosts in the multi-server domain are identical: same number and type of processor, same quantity of memory, same number and size of disks.

27.2.2 High Availability Input Adapter and Quality of Service

The Oracle Event Processing high availability input adapter is applicable to all high availability quality of service options. However, because the high availability input adapter increases performance overhead, it is not appropriate for some high availability quality of service options (such as Section 24.1.2.1, "Simple Failover" and Section 24.1.2.2, "Simple Failover with Buffering").

If you are using application time from the event then you do not need to use the input adapter. Application time from the event is always preferable from a performance standpoint.

27.2.3 High Availability Input Adapter Configuration

Consider increasing the batch-size to reduce the amount of time the primary server spends broadcasting event messages and to reduce the amount of time the secondary servers spend processing these messages.

Increasing the batch-size may increase the likelihood of missed and duplicate events if the primary fails before broadcasting an event message with a large number of events.

For more information, see Table 24-5, "Child Elements of ha-inbound-adapter for the High Availability Input Adapter".

27.2.4 Broadcast Output Adapter Configuration

Consider decreasing the trimming-interval to reduce the amount of time the primary server spends broadcasting trimming messages and to reduce the amount of time the secondary servers spend processing these messages.

Decreasing the trimming-interval may increase recovery time as the new primary server's in-memory queue will be more out of date relative to the old primary.

For more information, see Table 24-11, "Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter".

27.2.5 Oracle Coherence Performance Tuning Options

When configuring Oracle Coherence in a high-availability architecture, consider the following performance tuning options:

	
Section 27.2.5.1, "Oracle Coherence Heartbeat Frequency"

	
Section 27.2.5.2, "Oracle Coherence Serialization"

For more information, see "Performance Tuning" in the Oracle Coherence Developer's Guide at http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_perftune.htm.

27.2.5.1 Oracle Coherence Heartbeat Frequency

To reduce failover time, increase Coherence heartbeat timeout machine frequency and reduce the number of heartbeats before failure.

27.2.5.2 Oracle Coherence Serialization

To improve messaging performance, implement the Oracle Coherence Portable Object Format (POF) for serialization. POF is a language agnostic binary format that was designed to be very efficient in both space and time. Using POF instead of Java serialization can greatly improve performance.

For more information, see http://coherence.oracle.com/display/COH35UG/The+Portable+Object+Format.

Part V

Appendices

Part V contains the following appendices:

	
Appendix A, "Additional Information about Spring and OSGi"

	
Appendix B, "Oracle Event Processing Schemas"

	
Appendix C, "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd"

	
Appendix D, "Schema Reference: Component Configuration wlevs_application_config.xsd"

	
Appendix E, "Schema Reference: Deployment deployment.xsd"

	
Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd"

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

	
Appendix I, "Oracle Event Processing Metadata Annotation Reference"

A Additional Information about Spring and OSGi

This appendix lists links to more information about the Spring Framework and OSGi Service Platform, on which Oracle Event Processing applications are built.

For additional information about Spring and OSGi, see:

	
Spring Framework API 2.5: http://static.springframework.org/spring/docs/2.5.x/api/index.html

	
The Spring Framework - Reference Documentation 2.5: http://static.springframework.org/spring/docs/2.5.x/reference/index.html

	
Spring-OSGi Project: http://www.springframework.org/osgi

	
OSGi Release 4 Service Platform Javadoc: http://www.springframework.org/osgi

	
OSGi Release 4 Core Specification: http://www.osgi.org/osgi_technology/download_specs.asp?section=2#Release4

B Oracle Event Processing Schemas

This appendix introduces schemas behind Oracle Event Processing configuration and deployment XML files, including brief examples of each.

This appendix includes the following sections:

	
Section B.1, "EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd"

	
Section B.2, "Component Configuration Schema wlevs_application_config.xsd"

	
Section B.3, "Deployment Schema deployment.xsd"

	
Section B.4, "Server Configuration Schema wlevs_server_config.xsd"

B.1 EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd

You use the EPN assembly file to declare the components that make up your Oracle Event Processing application and how they are connected to each other, or in other words, the event processing network. The EPN assembly file is an extension of the standard Spring context file. You also use the file to register the Java classes that implement the adapter and POJO components of your application, register the event types that you use throughout your application and EPL rules, and reference in your environment the Oracle Event Processing-specific services.

The spring-wlevs-v11_1_1_6.xsd file describes the structure of EPN assembly files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For more information, see Appendix C, "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd".

B.1.1 Example EPN Assembly File

The following XML file shows the EPN assembly file for the HelloWorld example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Adapter can be created from a local class, without having to go through a adapter factory -->
 <wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <!-- The default processor for Oracle Event Processing 11.0.0.0 is CQL -->
 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

B.2 Component Configuration Schema wlevs_application_config.xsd

An Oracle Event Processing application contains one or more component configuration files in its META-INF/wlevs directory. You use component configuration files to override the default configuration for Oracle Event Processing components such as adapters, channels, and processors.

The wlevs_application_config.xsd schema file describes the structure of component configuration files. This XSD schema imports the following schemas:

	
wlevs_base_config.xsd

	
wlevs_eventstore_config.xsd

	
wlevs_diagnostic_config.xsd

These schema files are located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For more information, see Appendix D, "Schema Reference: Component Configuration wlevs_application_config.xsd".

B.2.1 Example Component Configuration File

The following example shows the component configuration file for the HelloWorld sample application:

<?xml version="1.0" encoding="UTF-8"?><n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
 <channel>
 <name>helloworldInputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
 <channel>
 <name>helloworldOutputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
</n1:config>

B.3 Deployment Schema deployment.xsd

The deployment file for an Oracle Event Processing instance is called deployments.xml and is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the main domain directory and servername refers to the name of the server instance. This XML file lists the OSGi bundles that have been deployed to the server.

The deployment.xsd schema file describes the structure of deployment files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For more information, see Appendix E, "Schema Reference: Deployment deployment.xsd".

B.3.1 Example Deployment XML File

The following example shows the deployments.xml file for the sample FX domain:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
 </bean>
 <wlevs:deployment id="fx" state="start"
 location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>
</beans>

B.4 Server Configuration Schema wlevs_server_config.xsd

The Oracle Event Processing server configuration file, config.xml, is located in the DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main domain directory and servername refers to a particular server instance. To change the configuration of an Oracle Event Processing instance, you can update this file manually and add or remove server configuration elements.

The welvs_server_config.xsd schema file describes the structure of server configuration files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For more information, see Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd".

B.4.1 Example Server Configuration XML File

The following sample config.xml, from the ORACLE_CEP_HOME/user_projects/domains/ocep_domain/defaultserver template domain, shows how to configure some of these services:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="
 http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>
 <netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
 </netio>
 <work-manager>
 <name>JettyWorkManager</name>
 <min-threads-constraint>5</min-threads-constraint>
 <max-threads-constraint>10</max-threads-constraint>
 </work-manager>
 <jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 </jetty>
 <rmi>
 <name>RMI</name>
 <http-service-name>JettyServer</http-service-name>
 </rmi>
 <jndi-context>
 <name>JNDI</name>
 </jndi-context>
 <exported-jndi-context>
 <name>exportedJndi</name>
 <rmi-service-name>RMI</rmi-service-name>
 </exported-jndi-context>
 <jmx>
 <rmi-service-name>RMI</rmi-service-name>
 <jndi-service-name>JNDI</jndi-service-name>
 </jmx>
 <ssl>
 <name>sslConfig</name>
 <key-store>./ssl/dsidentity.jks</key-store>
 <key-store-pass>
 <password>changeit</password>
 </key-store-pass>
 <key-store-alias>ds</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
 </ssl>
 <http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <name>pubsubbean</name>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>
</n1:config>

C Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd

This appendix provides a reference to elements of the spring-wlevs-v11_1_1_6.xsd schema, the schema behind assembly XML files with which you declare the components that make up your Oracle Event Processing event processing networks (EPNs).

This appendix includes the following sections:

	
Section C.1, "Overview of the Oracle Event Processing Application Assembly Elements"

	
Section C.2, "wlevs:adapter"

	
Section C.3, "wlevs:application-timestamped"

	
Section C.4, "wlevs:cache"

	
Section C.5, "wlevs:cache-listener"

	
Section C.6, "wlevs:cache-loader"

	
Section C.7, "wlevs:cache-source"

	
Section C.8, "wlevs:cache-store"

	
Section C.9, "wlevs:caching-system"

	
Section C.10, "wlevs:channel"

	
Section C.11, "wlevs:class"

	
Section C.12, "wlevs:event-bean"

	
Section C.13, "wlevs:event-type"

	
Section C.14, "wlevs:event-type-repository"

	
Section C.15, "wlevs:expression"

	
Section C.16, "wlevs:factory"

	
Section C.17, "wlevs:function"

	
Section C.18, "wlevs:instance-property"

	
Section C.19, "wlevs:listener"

	
Section C.20, "wlevs:metadata"

	
Section C.21, "wlevs:processor"

	
Section C.22, "wlevs:properties"

	
Section C.23, "wlevs:property"

	
Section C.24, "wlevs:property"

	
Section C.25, "wlevs:source"

	
Section C.26, "wlevs:table"

	
Section C.27, "wlevs:table-source"

C.1 Overview of the Oracle Event Processing Application Assembly Elements

Oracle Event Processing provides a number of application assembly elements that you use in the EPN assembly file of your application to register event types, declare the components of the event processing network and specify how they are linked together. The EPN assembly file is an extension of the standard Spring context file.

C.1.1 Element Hierarchy

The Oracle Event Processing application assembly elements are organized into the following hierarchy:

beans
 Standard Spring and OSGi elements such as bean, osgi-service, and so on.
 wlevs:event-type-repository
 wlevs:event-type
 wlevs:class
 wlevs:metadata
 wlevs:properties
 wlevs:property
 wlevs:adapter
 wlevs:listener
 wlevs:instance-property
 wlevs:property
 wlevs:processor
 wlevs:listener
 wlevs:source
 wlevs:function
 wlevs:instance-property
 wlevs:property
 wlevs:cache-source
 wlevs:table-source
 wlevs:channel
 wlevs:listener
 wlevs:source
 wlevs:instance-property
 wlevs:property
 wlevs:application-timestamped
 wlevs:expression
 wlevs:event-bean
 wlevs:listener
 wlevs:instance-property
 wlevs:property
 wlevs:factory
 wlevs:cache
 wlevs:caching-system
 wlevs:cache-loader
 wlevs:cache-store
 wlevs:cache-listener
 wlevs:caching-system
 wlevs:instance-property
 wlevs:property
 wlevs:table

C.1.2 Example of an EPN Assembly File That Uses Oracle Event Processing Elements

The following sample EPN assembly file from the HelloWorld application shows how to use many of the Oracle Event Processing elements:

<?xwml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message"
 value="HelloWorld - the currenttime is:"/>
 </wlevs:adapter>
 <wlevs:processor id="helloworldProcessor" />
 <wlevs:channel id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>
 <wlevs:channel id="helloworldOutstream" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

C.2 wlevs:adapter

Use this element to declare an adapter component to the Spring application context.

C.2.1 Child Elements

The wlevs:adapter application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:instance-property

	
wlevs:property

C.2.2 Attributes

Table C-1 lists the attributes of the wlevs:adapter application assembly element.

Table C-1 Attributes of the wlevs:adapter Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this adapter, if one exists.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
provider

	
Specifies the adapter service provider. Typically the value of this attribute is a reference to the OSGi-registered adapter factory service.

If you are using the csvgen or loadgen utilities to simulate a data feed, use the hard-coded csvgen or loadgen values, respectively, such as:

provider="csvgen"

If you are using one of the built-in HTTP publish-subscribe adapters, then specify the following hard-coded values:

	
For the built-in pub-sub adapter used for publishing, specify the hard-coded httppub value, such as:

provider="httppub"

	
For the built-in pub-sub adapter used for subscribing, specify the hard-coded httpsub value, such as:

provider="httpsub"

If you are using a JMS adapter, then specify one of the following hard-coded values:

	
For the inbound JMS adapter, specify the jms-inbound value, such as:

provider="jms-inbound"

	
For the outbound JMS adapter, specify the jms-outbound value, such as:

provider="jms-outbound"

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No.

	
class

	
Specifies the Java class that implements this adapter.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No

	
onevent-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the adapter receives an event.

	
String

	
No

	
init-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has set all the supplied instance properties. This method allows the adapter instance to perform initialization only possible when all bean properties have been set and to throw an exception in the event of misconfiguration.

	
String

	
No

	
activate-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the dynamic configuration of the adapter has completed. This method allows the adapter instance to perform initialization only possible when all dynamic bean properties have been set and the EPN has been wired.

	
String

	
No

	
suspend-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the application is suspended.

	
String

	
No

	
destroy-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the application is stopped.

	
String

	
No

C.2.3 Example

The following example shows how to use the wlevs:adapter element in the EPN assembly file:

<wlevs:adapter id="helloworldAdapter" provider="hellomsgs">
 <wlevs:instance-property name="message"
 value="HelloWorld - the current time is:"/>
</wlevs:adapter>

In the example, the adapter's unique identifier is helloworldAdapter. The provider is an OSGi service, also registered in the EPN assembly file, whose reference is hellomsgs. The adapter has a static property called message, which implies that the adapter Java file has a setMessage method.

C.3 wlevs:application-timestamped

Use this element to specify if an wlevs:channel is application timestamped, that is, if the application is responsible for assigning a timestamp to each event, using any time domain.

Otherwise, wlevs:channel is system timestamped, that is, the Oracle Event Processing server is responsible for assigning a timestamp to each event using System.nanoTime.

C.3.1 Child Elements

The wlevs:application-timestamped application assembly element supports the following child elements.

	
wlevs:expression—Specifies an expression to be used as an application timestamp for event processing.

C.3.2 Attributes

Table C-2 lists the attributes of the wlevs:application-timestamped application assembly element.

Table C-2 Attributes of the wlevs:application-timestamped Application Assembly Element

	Attribute	Description	Data Type	Required?
	
is-total-order

	
Indicates if the application time published is always strictly greater than the last value used.

Valid values are true or false. Default: false.

For more information, see "Time" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Boolean

	
No.

C.3.3 Example

The following example shows how to use the wlevs:application-timestamped element in the EPN assembly file to specify an implicitly application timestamped channel:

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the application handles event timestamps internally.

The following example shows how to use wlevs:application-timestamped element in the EPN assembly file to specify an explicitly application timestamped channel by specifying the wlevs:expression element.

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 <wlevs:expression>mytime+10</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used to assign a timestamp to each event.

C.4 wlevs:cache

Use this element to declare a cache to the Spring application context.

C.4.1 Child Elements

The wlevs:cache application assembly element supports the following child elements.

	
wlevs:caching-system—Specifies the caching system to which this cache belongs.

	
Note:

This child element is different from the wlevs:caching-system element used to declare a caching system. The child element of the wlevs:cache element takes a single attribute, ref, that references the id attribute of a declared caching system.

	
wlevs:cache-loader—Specifies the cache loader for this cache.

	
wlevs:cache-store—Specifies a cache store for this cache.

	
wlevs:cache-listener—Specifies a listener for this cache, or a component to which the cache sends events.

C.4.2 Attributes

Table C-3 lists the attributes of the wlevs:cache application assembly element.

Table C-3 Attributes of the wlevs:cache Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this cache.

	
String

	
Yes.

	
name

	
Specifies an alternate name for this cache. If not specified, then the name of the cache is the same as its id attribute.

	
String

	
No.

	
key-properties

	
Specifies a comma-separated list of names of the properties that together form the unique key value for the objects in the cache, or cache key. A cache key may be composed of a single property or multiple properties. When you configure a cache as a listener in an event processing network, Oracle Event Processing inserts events that reach the cache using the unique key value as a key.

If you specify a key class using the key-class attribute, then this attribute is optional. If you specify neither key-properties nor key-class, then Oracle Event Processing uses the event object itself as both the key and value when it inserts the event object into the cache.

	
String

	
No.

	
key-class

	
Specifies the name of the Java class used for the cache key when the key is a composite key.

If you do not specify the key-properties attribute, then all properties on the key-class are assumed to be key properties. If you specify neither key-properties nor key-class, then Oracle Event Processing uses the event object itself as both the key and value when it inserts the event object into the cache

	
String

	
No.

	
value-type

	
Specifies the type for the values contained in the cache. Must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL or EPL query. This is because the query processor needs to know the type of events in the cache.

	
String

	
No.

	
caching-system

	
Specifies the caching system in which this cache is contained.

The value of this attribute corresponds to the id attribute of the appropriate wlevs:caching-system element.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

C.4.3 Example

The following example shows how to use the wlevs:cache element in the EPN assembly file:

<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="tradeListener" />
</wlevs:cache>

In the example, the cache's unique identifier is cache-id and its alternate name is alternative-cache-name. The caching system to which the cache belongs has an id of caching-system-id. The cache has a listener to which the cache sends events; the component that listens to it has an id of tradeListener.

C.5 wlevs:cache-listener

Use this element to specify a cache as a source of events to the listening component. The listening component must implement the com.bea.cache.jcache.CacheListener interface.

This element is always a child of wlevs:cache.

C.5.1 Attributes

Table C-4 lists the attributes of the wlevs:cache-listener application assembly element.

Table C-4 Attributes of the wlevs:cache-listener Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the component that listens to this cache.

Set this attribute to the value of the id attribute of the listening component. The listening component can be an adapter or a Spring bean.

	
String

	
No.

C.5.2 Example

The following example shows how to use the wlevs:cache-listener element in the EPN assembly file:

 <wlevs:caching-system id="caching-system-id"/>
 ...
 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="cache-listener-id" />
 </wlevs:cache>
 ...
 <bean id="cache-listener-id" class="wlevs.example.MyCacheListener"/>

In the example, the cache-listener-id Spring bean listens to events coming from the cache; the class that implements this component, wlevs.example.MyCacheListener, must implement the com.bea.jcache.CacheListener interface. You must program the wlevs.example.MyCacheListener class yourself.

C.6 wlevs:cache-loader

spring-wlevs-v11_1_1_6.xsdSpecifies the Spring bean that implements an object that loads data into a cache.

This element is always a child of wlevs:cache.

C.6.1 Attributes

Table C-5 lists the attributes of the wlevs:cache-loader application assembly element.

Table C-5 Attributes of the wlevs:cache-loader Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the Spring bean that implements the class that loads data into the cache.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the com.bea.cache.jcache.CacheLoader interface.

	
String

	
Yes.

C.6.2 Example

The following example shows how to use the wlevs:cache-loader element in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-loader ref="cache-loader-id" />
 </wlevs:cache>
 ...
 <bean id="cache-loader-id" class="wlevs.example.MyCacheLoader"/>

In the example, the cache-loader-id Spring bean, implemented with the wlevs.example.MyCacheLoader class that in turn implements the com.bea.cache.jcache.CacheLoader interface, is a bean that loads data into a cache. The cache specifies this loader by pointing to it with the ref attribute of the wlevs:cache-loader child element.

C.7 wlevs:cache-source

Specifies a cache that supplies data to this processor component. The processor component in turn is associated with an Oracle CQL or EPL query that directly references the cache.

Use the value-type attribute of the wlevs:cache element to declare the event type of the data supplied by the cache.

This element is a child of only wlevs:processor element.

C.7.1 Attributes

Table C-6 lists the attributes of the wlevs:cache-source application assembly element.

Table C-6 Attributes of the wlevs:cache-source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the cache that is a source of data for the processor component.

Set this attribute to the value of the id attribute of the cache.

	
String

	
Yes.

C.7.2 Example

The following example shows how to use the wlevs:cache-source element in the EPN assembly file:

<wlevs:caching-system id="caching-system-id"/>
 ...
 <wlevs:cache id="cache-id"
 name="alternative-cache-name"
 value-type="Company">
 <wlevs:caching-system ref="caching-system-id"/>
 </wlevs:cache>
 <wlevs:channel id="stream-id"/>
 <wlevs:processor id="processor-id">
 <wlevs:cache-source ref="cache-id">
 <wlevs:source ref="stream-id">
 </wlevs:processor>

In the example, the processor will have data pushed to it from the stream-id channel as usual; however, the Oracle CQL or EPL queries that execute in the processor can also pull data from the cache-id cache. When the query processor matches an event type in the FROM clause to an event type supplied by a cache, such as Company, the processor pulls instances of that event type from the cache.

C.8 wlevs:cache-store

Specifies the Spring bean that implements a custom store that is responsible for writing data from the cache to a backing store, such as a table in a database.

This element is always a child of wlevs:cache.

C.8.1 Attributes

Table C-7 lists the attributes of the wlevs:cache-store application assembly element.

Table C-7 Attributes of the wlevs:cache-store Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the Spring bean that implements the custom store.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the com.bea.cache.jcache.CacheStore interface.

	
String

	
Yes.

C.8.2 Example

The following example shows how to use the wlevs:cache-store element in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-store ref="cache-store-id" />
 </wlevs:cache>
 ...
 <bean id="cache-store-id" class="wlevs.example.MyCacheStore"/>

In the example, the cache-store-id Spring bean, implemented with the wlevs.example.MyCacheStore class that in turn implements the com.bea.cache.jcache.CacheStore interface, is a bean for the custom store, such as a database. The cache specifies this store by pointing to it with the ref attribute of the wlevs:cache-store child element.

C.9 wlevs:caching-system

Specifies the caching system used by the application.

C.9.1 Child Elements

The wlevs:caching-system application assembly element supports the following child element:

	
wlevs:instance-property

	
wlevs:property

C.9.2 Attributes

Table C-8 lists the attributes of the wlevs:caching-system application assembly element.

Table C-8 Attributes of the wlevs:caching-system Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Specifies the unique identifier for this caching system.

This identifier must correspond to the <name> element in the XML configuration file for this caching system

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
provider

	
Specifies the provider of the caching system if you are using a third-party implementation, such as Oracle Coherence:

<wlevs:caching-system id="myCachingSystem" provider=coherence" />

Typically this attribute corresponds to the provider-name attribute of a <factory> Spring element that specifies the factory class that creates instances of the third-party caching system.

If you do not specify the provider or class attribute, then the default value is the Oracle Event Processing native caching implementation for local single-JVM caches; this implementation uses an in-memory store.

	
String

	
No.

	
class

	
Specifies the Java class that implements this caching system; use this attribute to specify a third-party implementation rather than the Oracle Event Processing native caching implementation.

If you specify this attribute, it is assumed that the third-party implementation code resides inside the Oracle Event Processing application bundle itself. The class file to which this attribute points must implement the com.bea.wlevs.cache.api.CachingSystem interface.

If you do not specify the provider or class attribute, then the default value is the Oracle Event Processing native caching implementation for local single-JVM caches; this implementation uses an in-memory store.

	
String

	
No

C.9.3 Example

The following example shows the simplest use of the wlevs:caching-system element in the EPN assembly file:

 <wlevs:caching-system id="caching-system-id"/>

The following example shows how to specify a third-party implementation that uses a factory as a provider:

 <wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
 <factory id="factory-id" provider-name="caching-provider">
 <class>the.factory.class.name</class>
 </factory>

In the example, the.factory.class.name is a factory for creating some third-party caching system; the provider attribute of wlevs:caching-system in turn references it as the caching system implementation for the application.

C.10 wlevs:channel

Use this element to declare a channel to the Spring application context.

By default, channels assume that events are system timestamped. To configure application timestamped events, see child element wlevs:application-timestamped.

C.10.1 Child Elements

The wlevs:channel application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:source

	
wlevs:instance-property

	
wlevs:property

	
wlevs:application-timestamped

C.10.2 Attributes

Table C-9 lists the attributes of the wlevs:channel application assembly element.

Table C-9 Attributes of the wlevs:channel Application Assembly Element

	Attribute	Description	Data Type	Required?
	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
batching

	
Specifies whether batching of events should be enabled for the event channel.

Valid values are true and false. Default value is false.

For more information, see Section 10.1.6, "Batch Processing Channels".

	
Boolean

	
No.

	
event-type

	
Specifies the type of events that are allowed to pass through the event channel.

	
String

	
Yes.

	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this channel, if one exists.

	
String

	
Yes.

	
is-relation

	
Specifies the kind of events that are allowed to pass through the event channel. Two kind of events are supported: streams and relations. Streams are append-only. Relations support insert, delete, and updates.

The default value for this attribute is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component. Separate multiple components using commas.

Set this attribute to the value of the id attribute of the element (wlevs:adapter, wlevs:channel, or wlevs:processor) that defines the listening component.

	
String

	
No.

	
max-size

	
Specifies the maximum size of the FIFO buffer for this channel as max-size number of events.

When max-size = 0, the channel synchronously passes-through events.

When max-size > 0, the channel processes events asynchronously, buffering events by the requested size.

If max-threads is zero, then max-size is zero.

The default value for this attribute is 1024.

	
integer

	
No.

	
max-threads

	
Specifies the maximum number of threads that will be used to process events for this channel.

When max-threads = 0, the channel acts as a pass-through. Event ordering is preserved.

When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue. Event ordering is non-deterministic.

You can change max-threads from 0 to a positive integer (that is, from a pass through to multiple threads) without redeploying. However, if you change max-threads from a positive integer to 0 (that is, from multiple threads to a pass through), then you must redeploy your application.

If the max-size attribute is 0, then setting a value for max-threads has no effect.

The default value for this attribute is 1.

	
integer

	
No.

	
primary-key

	
Specifies the primary key of a relation, as a list of event property names, separated by "," or white-spaces.

For more information, see Section 10.1.2.2, "Channels as Relations".

	
String

	
No.

	
provider

	
Specifies the streaming provider.

Valid values are:

	
oracle.channel

Default value is oracle.channel, which is the out-of-the-box streaming provider.

	
String

	
No.

	
source

	
Specifies the component from which the channel sources events.

Set this attribute to the value of the id attribute of the element (wlevs:adapter, wlevs:channel, or wlevs:processor) that defines the source component.

	
String

	
No.

C.10.3 Example

The following example shows how to use the wlevs:channel element in the EPN assembly file:

<wlevs:channel id="fxMarketAmerOut" />

The example shows how to declare a channel service with unique identifier fxMarketAmerOut.

C.11 wlevs:class

Use this element to specify the fully-qualified name of the JavaBean class to use as an event type implementation. This element must be a child of the wlevs:event-type element.

C.11.1 Example

The following example shows how to use the wlevs:class element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:class>com.example.myapp.MyEventType</wlevs:class>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

C.12 wlevs:event-bean

Use this element to declare to the Spring application context that an event bean is part of your event processing network (EPN). Event beans are managed by the Oracle Event Processing container, analogous to Spring beans that are managed by the Spring framework. In many ways, event beans and Spring beans are similar so it is up to a developer which one to use in their EPN. Use a Spring bean for legacy integration to Spring. Use an event bean if you want to take full advantage of the additional capabilities of Oracle Event Processing.

For example, you can monitor an event bean using the Oracle Event Processing monitoring framework, make use of the Configuration framework metadata annotations, and record and playback events that pass through the event bean. An event-bean can also participate in the Oracle Event Processing bean lifecycle by specifying methods in its EPN assembly file declaration, rather than by implementing Oracle Event Processing API interfaces.

C.12.1 Child Elements

The wlevs:event-bean application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:instance-property

	
wlevs:property

C.12.2 Attributes

Table C-10 lists the attributes of the wlevs:event-bean application assembly element.

Table C-10 Attributes of the wlevs:event-bean Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this event-bean, if one exists.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
class

	
Specifies the Java class that implements this event bean. The bean is not required to implement any Oracle Event Processing interfaces.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
	

	
provider

	
Specifies the service provider.

In this case, an EDE factory registered with this specific provider name must exist in the application.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No.

	
onevent-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the event bean receives an event.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
init-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has set all the supplied instance properties. This method allows the bean instance to perform initialization only possible when all bean properties have been set and to throw an exception in the event of misconfiguration.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
activate-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the dynamic configuration of the bean has completed. This method allows the bean instance to perform initialization only possible when all dynamic bean properties have been set and the EPN has been wired.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
suspend-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the application is suspended.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
destroy-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the application is stopped.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

C.12.3 Example

The following example shows how to use the wlevs:event-bean element in the EPN assembly file:

 <wlevs:event-bean id="myBean" class="com.customer.SomeEventBean" >
 <wlevs:listener ref="myProcessor" />
 </wlevs:event-bean>

In the example, the event bean called myBean is implemented with the class com.customer.SomeEventBean. The component called myProcessor receives events from the myBean event bean.

C.13 wlevs:event-type

Specifies the definition of an event type used in the Oracle Event Processing application. Once you define the event types of the application, you can reference them in the adapter and business class POJO, as well as the Oracle CQL rules.

You can define an event type in the following ways:

	
Create a JavaBean class that represents your event type and specify its fully qualified classname using the wlevs:class child element.

	
Specify event type properties declaratively by using a wlevs:properties child element.

You can specify one of either wlevs:class or wlevs:properties as a child of wlevs:event-type, but not both.

The best practice is to define your event type by using the wlevs:class child element because you can then reuse the specified JavaBean class, and you control exactly what the event type looks like.

C.13.1 Child Elements

The wlevs:event-type application assembly element supports the following child elements:

	
wlevs:class

	
wlevs:metadata (deprecated)

	
wlevs:properties

	
wlevs:property

C.13.2 Attributes

Table C-11 lists the attributes of the wlevs:event-type application assembly element.

Table C-11 Attributes of the wlevs:event-type Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Specifies the unique identifier for this event type.

If you do not specify this attribute, Oracle Event Processing automatically generates an identifier for you.

	
String

	
No.

	
type-name

	
Specifies the name of this event type.

This is the name you use whenever you reference the event type in the adapter, business POJO, or Oracle CQL or EPL rules.

	
String

	
Yes.

	
object-support

	
Specifies if Java objects should be fully supported. Allowable values are true, false, and object-relational; default is object-relational.

If set to false, then the Java primitive wrappers (for example, java.lang.Integer) and java.lang.String are treated solely as primitive types.

If set to true, then Java primitive wrappers are treated as classes.

If set to object-relational,

	
String

	
No.

C.13.3 Example

The following example shows how to use the wlevs:event-type element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

C.14 wlevs:event-type-repository

Use this element to group together one or more wlevs:event-type elements, each of which is used to register an event type used throughout the application.

This element does not have any attributes.

C.14.1 Child Elements

The wlevs:event-type-repository application assembly element supports the following child element:

	
wlevs:event-type

C.14.2 Example

The following example shows how to use the wlevs:event-type-repository element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>
 com.bea.wlevs.event.example.helloworld.HelloWorldEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

In the example, the wlevs:event-type-repository element groups a single wlevs:event-type element to declare a single event type: HelloWorldEvent. See Section C.13, "wlevs:event-type" for additional details.

C.15 wlevs:expression

Use this element to specify an arithmetic expression in wlevs:application-timestamped to be used as an application timestamp for event processing.

For more information, see "arith_expr" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

C.15.1 Example

The following example shows how to use wlevs:expression element in the EPN assembly file to specify an explicitly application timestamped channel.

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 <wlevs:expression>mytime + 10</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used to assign a timestamp to each event.

C.16 wlevs:factory

Use this element to register a factory class as a service. Use of this element decreases the dependency of your application on Spring-OSGi interfaces.

The Java source of this factory must implement the com.bea.wlevs.ede.api.Factory interface.

The factory element does not allow you to specify service properties. If you need to specify service properties, then you must use the Spring- OSGi osgi:service element instead.

This element does not have any child elements.

C.16.1 Attributes

Table C-12 lists the attributes of the wlevs:factory application assembly element.

Table C-12 Attributes of the wlevs:factory Application Assembly Element

	Attribute	Description	Data Type	Required?
	
class

	
Specifies the Java class that implements the factory. This class must implement the com.bea.wlevs.ede.api.Factory interface.

	
String

	
Yes.

	
provider-name

	
Specifies the name of this provider. Reference this name later in the component that uses this factory.

	
String

	
Yes.

C.16.2 Example

The following example shows how to use the wlevs:factory element in the EPN assembly file:

<wlevs:factory provider-name="myEventSourceFactory"
 class="com.customer.MyEventSourceFactory" />

In the example, the factory implemented by the com.customer.MyEventSourceFactory goes by the provider name of myEventSourceFactory.

C.17 wlevs:function

Use this element to specify a bean that contains user-defined functions for a processor. Oracle Event Processing supports both single-row and aggregate functions.

This element always has a standard Spring bean element either as a child or as a reference that specifies the Spring bean that implements the user-defined function.

For a single-row function for an Oracle CQL processor, you may specify one method on the implementing class as the function using the exec-method attribute. In this case, the method must be public and must be uniquely identifiable by its name (that is, the method cannot have been overridden). You may define an alias for the exec-method name using the function-name attribute. In the Oracle CQL query, you may call only the exec-method (either by its name or the function-name alias).

For a single-row function on an EPL processor, you may define an alias for the implementing class name using the function-name attribute. The exec-method name is not applicable in this case. In the EPL query, you may call any public or static method on the implementing class using either the implementing class name or the function-name alias.

For an aggregate function on either an Oracle CQL or EPL processor, the Spring bean must implement the following interfaces from the com.bea.wlevs.processor package:

	
AggregationFunctionFactory

	
AggregationFunction

For an aggregate function, the exec-method attribute is not applicable on both an Oracle CQL processor and an EPL processor.

For more information, see:

	
"User-Defined Functions" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"EPL Reference: Functions" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

C.17.1 Attributes

Table C-13 lists the attributes of the wlevs:function application assembly element.

Table C-13 Attributes of the wlevs:function Application Assembly Element

	Attribute	Description	Data Type	Required?
	
exec-method

	
For a user-defined single-row function on an Oracle CQL processor, this element specifies the method name of the Spring bean that implements the function. In this case, the method must be public and must be uniquely identifiable by its name (that is, the method cannot have been overridden).

For a user-defined single-row or aggregate function on an EPL processor or a user-defined aggregate function on an Oracle CQL processor, this attribute is not applicable.

	
String

	
No.

	
function-name

	
For a user-defined single-row function on an Oracle CQL processor, use this attribute to define an alias for the exec-method name. You can then use the function-name in your Oracle CQL query instead of the exec-name.

For a user-defined single-row function on an EPL processor, use this attribute to define an alias for the implementing Spring bean class name. You can then use the function-name in your EPL query instead of the Spring bean class name and still invoke any public or static method that the Spring bean class implements.

For a user-defined aggregate function on an Oracle CQL or EPL processor, use this attribute to define an alias for the implementing Spring bean class name. You can then use the function-name in your EPL query instead of the Spring bean class name.

The default value is the Spring bean name.

	
String

	
No.

	
ref

	
Specifies the Spring bean that implements the function.

Set this attribute to the value of the id attribute of the Spring bean.

This is an alternative to making the Spring bean element a child of the wlevs:function element.

	
String

	
No.

C.17.2 Example

The following examples show how to use the wlevs:function element and its attributes on both Oracle CQL and EPL processors:

	
Section C.17.2.1, "Single-Row User-Defined Function on an Oracle CQL Processor"

	
Section C.17.2.2, "Single-Row User-Defined Function on an EPL Processor"

	
Section C.17.2.3, "Aggregate User-Defined Function on an Oracle CQL Processor"

	
Section C.17.2.4, "Aggregate User-Defined Function on an EPL Processor"

	
Section C.17.2.5, "Specifying the Implementation Class: Nested Bean or Reference"

C.17.2.1 Single-Row User-Defined Function on an Oracle CQL Processor

Example C-1 shows how you implement a single-row user-defined the function for an Oracle CQL processor.

Example C-1 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class MyMod {
 public Object execute(int arg0, int arg1) {
 return new Integer(arg0 % arg1);
 }
}

Example C-2 shows how to use the wlevs:function to define a single-row function on an Oracle CQL processor in the EPN assembly file.

Example C-2 Single-Row User Defined Function for an Oracle CQL Processor

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="mymod" exec-method=”execute” />
 <bean class="com.bea.wlevs.example.function.MyMod"/>
 </wlevs:function>
</wlevs:processor>

Example C-3 shows how you invoke the function in an Oracle CQL query.

Example C-3 Invoking the Single-Row User-Defined Function on an Oracle CQL Processor

...
<view id="v1" schema="c1 c2 c3 c4"><![CDATA[
 select
 mymod(c1, 100), c2, c3, c4
 from
 S1
]]></view>
...
<query id="q1"><![CDATA[
 select * from v1 [partition by c1 rows 1] where c4 - c3 = 2.3
]]></query>
...

C.17.2.2 Single-Row User-Defined Function on an EPL Processor

Example C-4 shows how you implement a single-row user-defined the function for an EPL processor.

Example C-4 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class LegacyMathBean {
 public Object square(Object[] args) {
 ...
 }
 public Object cube(Object[] args) {
 ...
 }
}

Example C-5 shows how to use the wlevs:function to define a single-row function for an EPL processor in the EPN assembly file.

Example C-5 Single-Row User Defined Function for an EPL Processor

 <wlevs:processor id="testProcessor" provider="epl">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="math" />
 <bean class="com.bea.wlevs.example.function.LegacyMathBean"/>
 </wlevs:function>
 </wlevs:processor>

Example C-6 shows how you invoke the function in an EPL query.

Example C-6 Invoking the Single-Row User-Defined Function on an EPL Processor

<rule><![CDATA[
 select math.square(inputValue) ...
]]></rule>

C.17.2.3 Aggregate User-Defined Function on an Oracle CQL Processor

Example C-7 shows how to implement a user-defined aggregate function for an Oracle CQL processor.

Example C-7 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

 private int count;
 private float sum;
 private float sumSquare;

 public Class<?>[] getArgumentTypes() {
 return new Class<?>[] {Integer.class};
 }

 public Class<?> getReturnType() {
 return Float.class;
 }

 public AggregationFunction newAggregationFunction() {
 return new Variance();
 }

 public void releaseAggregationFunction(AggregationFunction function) {
 }

 public Object handleMinus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count--;
 sum -= param;
 sumSquare -= (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Object handlePlus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count++;
 sum += param;
 sumSquare += (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Float getVariance() {
 float avg = sum / (float) count;
 float avgSqr = avg * avg;
 float var = sumSquare / (float)count - avgSqr;
 return var;
 }

 public void initialize() {
 count = 0;
 sum = 0.0F;
 sumSquare = 0.0F;
 }

}

Example C-8 shows how to use the wlevs:function to define an aggregate function on an Oracle CQL processor in the EPN assembly file.

Example C-8 Aggregate User Defined Function for an Oracle CQL Processor

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>
 </wlevs:function>
 </wlevs:processor>

Example C-9 shows how you invoke the function in an Oracle CQL query.

Example C-9 Invoking the Aggregate User-Defined Function on an Oracle CQL Processor

...
<query id="uda6"><![CDATA[
 select var(c2) from S4[range 3]
]]></query>
...

C.17.2.4 Aggregate User-Defined Function on an EPL Processor

Example C-10 shows how to implement a user-defined aggregate function for an EPL processor.

Example C-10 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

 private int count;
 private float sum;
 private float sumSquare;

 public Class<?>[] getArgumentTypes() {
 return new Class<?>[] {Integer.class};
 }

 public Class<?> getReturnType() {
 return Float.class;
 }

 public AggregationFunction newAggregationFunction() {
 return new Variance();
 }

 public void releaseAggregationFunction(AggregationFunction function) {
 }

 public Object handleMinus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count--;
 sum -= param;
 sumSquare -= (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Object handlePlus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count++;
 sum += param;
 sumSquare += (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Float getVariance() {
 float avg = sum / (float) count;
 float avgSqr = avg * avg;
 float var = sumSquare / (float)count - avgSqr;
 return var;
 }

 public void initialize() {
 count = 0;
 sum = 0.0F;
 sumSquare = 0.0F;
 }

}

Example C-11 shows how to use the wlevs:function to define an aggregate function on an EPL processor in the EPN assembly file.

Example C-11 Aggregate User Defined Function for an EPL Processor

 <wlevs:processor id="testProcessor" provider="epl">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>
 </wlevs:function>
 </wlevs:processor>

Example C-12 shows how you invoke the function in an EPL query.

Example C-12 Invoking the Aggregate User-Defined Function on an EPL Processor

...
<rule><![CDATA[
 select var(c2) from S4
]]></rule>
...

C.17.2.5 Specifying the Implementation Class: Nested Bean or Reference

Example C-13 shows how to use the wlevs:function element with a nested bean element in the EPN assembly file.

Example C-13 User Defined Function Using Nested Bean Element

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction">
 <bean class="com.bea.wlevs.example.cache.function.TestFunction"/>
 </wlevs:function>
 </wlevs:processor>

Example C-14 shows how to use the wlevs:function element and its ref attribute to reference a bean element defined outside of the wlevs:function element in the EPN assembly file.

Example C-14 User Defined Function Using Reference

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction" ref="testFunctionID" />
 </wlevs:processor>
 ...
 <bean id="testFunctionID" class="com.bea.wlevs.example.cache.function.TestFunction"/>

C.18 wlevs:instance-property

Specifies the properties that apply to the create stage instance of the component to which this is a child element. This allows declarative configuration of user-defined stage properties.

For example, when you specify an wlevs:instance-property for a wlevs:event-bean, Oracle Event Processing will look for a corresponding setter method on the Java class you implement, not on the com.bea.wlevs.spring.EventBeanFactoryBean that instantiates your class. To specify a property on the factory, use wlevs:property

This element is used only as a child of wlevs:adapter, wlevs:event-bean, wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:instance-property element is defined as the Spring propertyType type; for additional details of this Spring data type, the definition of the allowed child elements, and so on, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.18.1 Child Elements

You can specify one of the following standard Spring elements as a child element of the wlevs:instance-property element:

	
meta

	
bean

	
ref

	
idref

	
value

	
null

	
list

	
set

	
map

	
props

C.18.2 Attributes

Table C-14 lists the attributes of the wlevs:instance-property application assembly element.

Table C-14 Attributes of the wlevs:instance-property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Specifies the name of the property, following JavaBean naming conventions.

	
String

	
Yes.

	
ref

	
A short-cut alternative to a nested <ref bean='...'/> element.

	
String

	
No.

	
value

	
A short-cut alternative to a nested <value>...</value> element.

	
String

	
No.

C.18.3 Example

The following example shows how to use the wlevs:instance-property element in the EPN assembly file:

<wlevs:event-bean id="pubsubCounterBeanRemote"
 class="com.oracle.cep.example.httppubsub.RemoteEventCounter">
 <wlevs:listener ref="pubsubRemote" />
 <wlevs:instance-property name="expectedEvents" value="4000" />
</wlevs:event-bean>

In the example, the event bean com.oracle.cep.example.httppubsub.RemoteEventCounter class provides an appropriate setter method:

...
 private int expectedEvents;

 public void setExpectedEvents(String expectedEvents) {
 this.expectedEvents = new Integer(expectedEvents).intValue();
 }
...

Note that the instance-property is of type String. Your setter method must convert this if necessary. In this example, the String is converted to an int value.

The name of the setter method must conform to JavaBean naming conventions. In this example, the setter name is setExpectedEvents and this corresponds to the wlevs:instance-property element name attribute value expectedEvents, according to JavaBean conventions. If the name attribute value is obj and the setter method name is setObject, Oracle Event Processing will throw an Invalid Property exception. In this case, the setter name should be setObj.

C.19 wlevs:listener

Specifies the component that listens to the component to which this element is a child. A listener can be an instance of any other component. You can also nest the definition of a component within a particular wlevs:listener component to specify the component that listens to the parent.

	
Caution:

Nested definitions are not eligible for dynamic configuration or monitoring.

This element is always a child of wlevs:adapter, wlevs:processor, wlevs:channel, or wlevs:caching-system.

C.19.1 Attributes

Table C-15 lists the attributes of the wlevs:listener application assembly element.

Table C-15 Attributes of the wlevs:listener Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the component that listens to the parent component .

Set this attribute to the value of the id attribute of the listener component.

You do not specify this attribute if you are nesting listeners.

	
String

	
No.

C.19.2 Example

The following example shows how to use the wlevs:listener element in the EPN assembly file:

 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener ref="helloworldOutstream"/>
 </wlevs:processor>

In the example, the hellworldOutstream component listens to the helloworldProcessor component. It is assumed that the EPN assembly file also contains a declaration for a wlevs:adapter, wlevs:channel, or wlevs:processor element whose unique identifier is helloworldOutstream.

C.20 wlevs:metadata

Specifies the definition of an event type by listing its fields as a group of Spring entry elements. When you define an event type this way, Oracle Event Processing automatically generates the Java class for you.

Use the key attribute of the entry element to specify the name of a field and the value attribute to specify the Java class that represents the field's data type.

This element is used only as a child of wlevs:event-type.

The wlevs:metadata element is defined as the Spring mapType type; for additional details of this Spring data type, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.20.1 Child Elements

The wlevs:metadata element can have one or more standard Spring entry child elements as defined in the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.20.2 Attributes

Table C-16 lists the attributes of the wlevs:metadata application assembly element.

Table C-16 Attributes of the wlevs:metadata Application Assembly Element

	Attribute	Description	Data Type	Required?
	
key-type

	
The default fully qualified classname of a Java data type for nested entry elements.

You use this attribute only if you have nested entry elements.

	
String

	
No.

C.20.3 Example

The following example shows how to use the wlevs:metadata element in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:metadata>
 <entry key="symbol" value="java.lang.String"/>
 <entry key="price" value="java.lang.Double"/>
 <entry key="fromRate" value="java.lang.String"/>
 <entry key="toRate" value="java.lang.String"/>
 </wlevs:metadata>
 ...
</wlevs:event-type>

In the example, the wlevs:metadata element groups together four standard Spring entry elements that represent the four fields of the ForeignExchangeEvent: symbol, price, fromRate, and toRate. The data types of the fields are java.lang.String, java.lang.Double, java.lang.String, and java.lang.String, respectively.

C.21 wlevs:processor

Use this element to declare a processor to the Spring application context.

C.21.1 Child Elements

The wlevs:processor Spring element supports the following child elements:

	
wlevs:instance-property

	
wlevs:listener

	
wlevs:property

	
wlevs:cache-source

	
wlevs:table-source

	
wlevs:function

C.21.2 Attributes

Table C-17 lists the attributes of the wlevs:processor application assembly element.

Table C-17 Attributes of the wlevs:processor Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this processor; this is how Oracle Event Processing knows which Oracle CQL or EPL rules to execute for which processor component in your network.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
provider

	
Specifies the language provider of the processor, such as the Oracle Continuous Query Language (Oracle CQL) or Event Processor Language (EPL).

Valid values are:

	
epl

	
cql

The default value is cql.

	
String

	
No.

	
queryURL

	
Specifies a URL that points to an Oracle CQL or EPL rules definition file for this processor.

	
String.

	
No.

C.21.3 Example

The following example shows how to use the wlevs:processor element in the EPN assembly file:

<wlevs:processor id="spreader" />

The example shows how to declare a processor with ID spreader. This means that in the processor configuration file that contains the Oracle CQL rules for this processor, the name element must contain the value spreader. This way Oracle Event Processing knows which Oracle CQL or EPL rules it must file for this particular processor.

C.22 wlevs:properties

Defines the list of properties for an event type. Use this element when you are defining an event type declaratively, such as for a type based on a tuple or java.util.Map. For an event type created from a JavaBean class, allow properties to be defined by accessor methods in the class.

C.22.1 Child Elements

The wlevs:properties application assembly element supports the following child elements:

	
wlevs:property

C.22.2 Attributes

Table C-18 lists the attributes of the wlevs:event-type application assembly element.

Table C-18 Attributes of the wlevs:properties Application Assembly Element

	Attribute	Description	Data Type	Required?
	
type

	
Specifies the type that this event type should be created from. Allowable values are tuple and map; default is tuple.

If this attribute's value is map, then Oracle Event Processing will instantiate the event type as a java.util.Map instance. Otherwise, the type will be instantiated as a tuple.

	
String

	
No.

C.22.3 Example

The following example shows how to use the wlevs:properties element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

C.23 wlevs:property

Defines the property of an event type that you create declaratively, such as an event type based on a tuple or java.util.Map. You use this wlevs:property element as a child of the wlevs:properties element.

Note that this element is different from the wlevs:property element that is an extension of the Spring beans property element. This element must always be used as a child of the wlevs:properties element.

C.23.1 Attributes

Table C-19 lists the attributes of the wlevs:property application assembly element.

Table C-19 Attributes of the wlevs:property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Name of the event property.

	
String

	
Yes.

	
type

	
Type of the event property.

If this event type is defined as a tuple, then the type attribute value must be one of the OCEP native types defined by com.bea.wlevs.ede.api.Type. Those include bigint, boolean, byte, char, double, float, int, interval, object, sqlxml, timestamp, unknown, xmltype.

If this event type is defined as a map, then the type attribute value is the fully qualified name of a Java class that must be available in the class loader of the application that defines the event type. The string used as the Java class name must conform to the same rules as Class.forName(). In addition, Java primitives can be used (e.g. int, float).

Finally, you can specify an array by appending the characters '[]' to the Java class name

	
String

	
Yes.

	
length

	
If the property is of array type, this specifies the length of the array. If the type is not an array and length is specified, it will be ignored.

.

	
String

	
No.

C.23.2 Example

The following example shows how to use the wlevs:property element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

C.24 wlevs:property

Specifies a custom property to apply to the event type.

For example, when you specify a wlevs:property for a wlevs:event-bean, Oracle Event Processing will look for a corresponding setter method on the com.bea.wlevs.spring.EventBeanFactoryBean that instantiates your Java class, not on the Java class you implement. To specify a property on your Java class, use wlevs:instance-property.

This element is used only as a child of wlevs:adapter, wlevs:event-bean, wlevs:event-type, wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:property element is defined as the Spring propertyType type; for additional details of this Spring data type, the definition of the allowed child elements, and so on, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.24.1 Child Elements

You can specify one of the following standard Spring elements as a child element of the wlevs:property element:

	
meta

	
bean

	
ref

	
idref

	
value

	
null

	
list

	
set

	
map

	
props

C.24.2 Attributes

Table C-20 lists the attributes of the wlevs:property application assembly element.

Table C-20 Attributes of the wlevs:property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Specifies the name of the property, following JavaBean naming conventions.

	
String

	
Yes.

	
ref

	
A short-cut alternative to a nested <ref bean='...'/> element.

	
String

	
No.

	
value

	
A short-cut alternative to a nested <value>...</value> element.

	
String

	
No.

C.24.3 Example

The following example shows how to use the wlevs:property element in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:metadata>
 <entry key="symbol" value="java.lang.String"/>
 <entry key="price" value="java.lang.Double"/>
 </wlevs:metadata>
 <wlevs:property name="builderFactory">
 <bean id="builderFactory"
 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
 </wlevs:property>
</wlevs:event-type>

In the example, the wlevs:property element defines a custom property of the ForeignExchangeEvent called builderFactory. The property uses the standard Spring bean element to specify the Spring bean used as a factory to create ForeignExchangeEvents.

C.25 wlevs:source

Specifies an event source for this component, or in other words, the component which the events are coming from. Specifying an event source is equivalent to specifying this component as an event listener to another component.

You can also nest the definition of a component within a particular wlevs:source component to specify the component source.

	
Caution:

Nested definitions are not eligible for dynamic configuration or monitoring.

This element is a child of wlevs:channel or wlevs:processor.

C.25.1 Attributes

Table C-21 lists the attributes of the wlevs:source application assembly element.

Table C-21 Attributes of the wlevs:source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the source of the channel to which this element is a child.

Set this attribute to the value of the id attribute of the source component.

You do not specify this attribute if you are nesting sources.

	
String

	
No.

C.25.2 Example

The following example shows how to use the wlevs:source element in the EPN assembly file:

 <wlevs:channel id="helloworldInstream">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

In the example, the component with id helloworldAdapter is the source of the helloworldInstream channel component.

C.26 wlevs:table

Specifies a relational database table that supplies data to one or more processor components. The processor components in turn are associated with an Oracle CQL query that directly references the table.

C.26.1 Attributes

Table C-22 lists the attributes of the wlevs:table application assembly element.

Table C-22 Attributes of the wlevs:table Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this table.

	
String

	
Yes.

	
event-type

	
The name of the event type associated with this table as defined in the event type repository.

	
String

	
Yes.

	
data-source

	
The name of the relational data source defined in the Oracle Event Processing server configuration file used to access this database table.

	
String

	
Yes.

C.26.2 Example

The following example shows how to use the wlevs:table element in the EPN assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

In this example, a wlevs:processor references the table using its wlevs:table-source element.

C.27 wlevs:table-source

Specifies a relational database table that supplies data to this processor component. The processor component in turn is associated with an Oracle CQL query that directly references the table.

This element is a child of only wlevs:processor element.

C.27.1 Attributes

Table C-23 lists the attributes of the wlevs:table-source application assembly element.

Table C-23 Attributes of the wlevs:table-source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the relational database table that is a source of data for the processor component.

Set this attribute to the value of the id attribute of a wlevs:table element.

	
String

	
Yes.

C.27.2 Example

The following example shows how to use the wlevs:table-source element in the EPN assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

D Schema Reference: Component Configuration wlevs_application_config.xsd

This appendix provides a reference to the elements of the wlevs_application_config.xsd schema, the schema behind XML files you use to configure Oracle Event Processing application components such as adapters, channels, caching systems, and event beans.

This appendix includes the following sections:

	
Section D.1, "Overview of the Oracle Event Processing Component Configuration Elements"

	
Section D.2, "accept-backlog"

	
Section D.3, "active"

	
Section D.4, "adapter"

	
Section D.5, "amount"

	
Section D.6, "application"

	
Section D.7, "average-interval"

	
Section D.8, "average-latency"

	
Section D.9, "batch-size"

	
Section D.10, "batch-time-out"

	
Section D.11, "binding"

	
Section D.12, "bindings (jms-adapter)"

	
Section D.13, "bindings (processor)"

	
Section D.14, "buffer-size"

	
Section D.15, "buffer-write-attempts"

	
Section D.16, "buffer-write-timeout"

	
Section D.17, "cache"

	
Section D.18, "caching-system"

	
Section D.19, "channel"

	
Section D.20, "channel (http-pub-sub-adapter Child Element)"

	
Section D.21, "channel-name"

	
Section D.22, "coherence-cache-config"

	
Section D.23, "coherence-caching-system"

	
Section D.24, "coherence-cluster-config"

	
Section D.25, "collect-interval"

	
Section D.26, "concurrent-consumers"

	
Section D.27, "connection-jndi-name"

	
Section D.28, "connection-encrypted-password"

	
Section D.29, "connection-password"

	
Section D.30, "connection-user"

	
Section D.31, "database"

	
Section D.32, "dataset-name"

	
Section D.33, "delivery-mode"

	
Section D.34, "destination-jndi-name"

	
Section D.35, "destination-name"

	
Section D.36, "destination-type"

	
Section D.37, "diagnostic-profiles"

	
Section D.38, "direction"

	
Section D.39, "durable-subscription"

	
Section D.40, "durable-subscription-name"

	
Section D.41, "duration"

	
Section D.42, "enabled"

	
Section D.43, "encrypted-password"

	
Section D.44, "end"

	
Section D.45, "end-location"

	
Section D.46, "event-bean"

	
Section D.47, "event-type"

	
Section D.48, "event-type-list"

	
Section D.49, "eviction-policy"

	
Section D.50, "fail-when-rejected"

	
Section D.51, "group-binding"

	
Section D.52, "heartbeat"

	
Section D.53, "http-pub-sub-adapter"

	
Section D.54, "idle-time"

	
Section D.55, "inject-parameters"

	
Section D.56, "jms-adapter"

	
Section D.57, "jndi-factory"

	
Section D.58, "jndi-provider-url"

	
Section D.59, "listeners"

	
Section D.60, "location"

	
Section D.61, "max-latency"

	
Section D.62, "max-size"

	
Section D.63, "max-threads"

	
Section D.64, "message-selector"

	
Section D.65, "name"

	
Section D.66, "netio"

	
Section D.67, "num-threads"

	
Section D.68, "offer-timeout"

	
Section D.69, "param"

	
Section D.70, "parameter"

	
Section D.71, "params"

	
Section D.72, "partition-order-capacity"

	
Section D.73, "password"

	
Section D.74, "playback-parameters"

	
Section D.75, "playback-speed"

	
Section D.76, "processor (EPL)"

	
Section D.77, "processor (Oracle CQL)"

	
Section D.78, "profile"

	
Section D.79, "provider-name"

	
Section D.80, "query"

	
Section D.81, "record-parameters"

	
Section D.82, "repeat"

	
Section D.83, "rule"

	
Section D.84, "rules"

	
Section D.85, "schedule-time-range"

	
Section D.86, "schedule-time-range-offset"

	
Section D.87, "selector"

	
Section D.88, "server-context-path"

	
Section D.89, "server-url"

	
Section D.90, "session-ack-mode-name"

	
Section D.91, "session-transacted"

	
Section D.92, "stage"

	
Section D.93, "start"

	
Section D.94, "start-location"

	
Section D.95, "start-stage"

	
Section D.96, "store-policy-parameters"

	
Section D.97, "stream"

	
Section D.98, "symbol"

	
Section D.99, "symbols"

	
Section D.100, "threshold"

	
Section D.101, "throughput"

	
Section D.102, "throughput-interval"

	
Section D.103, "time-range"

	
Section D.104, "time-range-offset"

	
Section D.105, "time-to-live"

	
Section D.106, "trace-parameters"

	
Section D.107, "unit"

	
Section D.108, "user"

	
Section D.109, "value"

	
Section D.110, "view"

	
Section D.111, "work-manager"

	
Section D.112, "work-manager-name"

	
Section D.113, "write-behind"

	
Section D.114, "write-none"

	
Section D.115, "write-through"

D.1 Overview of the Oracle Event Processing Component Configuration Elements

Oracle Event Processing provides a number of component configuration elements that you use to define the characteristics of the of the components you declare in the EPN assembly file.

D.1.1 Element Hierarchy

The top-level Oracle Event Processing component configuration elements are organized into the following hierarchy:

	
config

	
adapter (see Example D-1)

	
http-pub-sub-adapter (see Example D-2)

	
jms-adapter (see Example D-3)

	
processor (see Example D-4 and Example D-5)

	
stream (see Example D-6)

	
channel (see Example D-7)

	
event-bean (see Example D-8)

	
caching-system (see Example D-9)

	
coherence-caching-system (see Example D-10)

	
diagnostic-profiles (see Example D-11)

Example D-1 adapter Element Hierarchy

adapter
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 symbols
 symbol
 work-manager-name
 netio
 provider-name
 num-threads
 accept-backlog

Example D-2 http-pub-sub-adapter Element Hierarchy

http-pub-sub-adapter
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 symbols
 symbol
 work-manager-name
 netio
 provider-name
 num-threads
 accept-backlog
 One of:
 server-context-path
 server-url
 channel (http-pub-sub-adapter Child Element)
 event-type
 user
 One of:
 password
 encrypted-password

Example D-3 jms-adapter Element Hierarchy

jms-adapter
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 event-type
 jndi-provider-url
 jndi-factory
 connection-jndi-name
 One of:
 destination-jndi-name
 destination-name
 user
 One of:
 password
 encrypted-password
 connection-user
 One of:
 connection-password
 connection-encrypted-password
 work-manager
 concurrent-consumers
 message-selector
 session-ack-mode-name
 session-transacted
 delivery-mode
 bindings (jms-adapter)
 group-binding
 param
 destination-type
 durable-subscription
 durable-subscription-name

Example D-4 processor (EPL) Element Hierarchy

processor (EPL)
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 rules
 rule
 query
 view
 database
 bindings (processor)
 binding
 params

Example D-5 processor (Oracle CQL) Element Hierarchy

processor (Oracle CQL)
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 rules
 rule
 query
 view
 bindings (processor)
 binding
 params

Example D-6 stream Element Hierarchy

stream
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 max-size
 max-threads

Example D-7 channel Element Hierarchy

channel
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-threads
 max-size
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration
 inject-parameters
 trace-parameters
 max-size
 max-threads
 selector
 heartbeat
 partition-order-capacity
 offer-timeout
 fail-when-rejected

Example D-8 event-bean Element Hierarchy

event-bean
 name
 record-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 batch-size
 batch-time-out
 playback-parameters
 dataset-name
 event-type-list
 event-type
 provider-name
 store-policy-parameters
 parameter
 name
 value
 max-size
 max-threads
 time-range
 start
 end
 time-range-offset
 start
 duration
 schedule-time-range
 start
 end
 schedule-time-range-offset
 start
 duration

Example D-9 caching-system Element Hierarchy

caching-system
 name
 cache
 name
 max-size
 eviction-policy
 time-to-live
 idle-time
 One of:
 write-none
 write-through
 write-behind
 work-manager-name
 batch-size
 buffer-size
 buffer-write-attempts
 buffer-write-timeout
 work-manager-name
 listeners

Example D-10 coherence-caching-system Element Hierarchy

coherence-caching-system
 name
 coherence-cache-config
 coherence-cluster-config

Example D-11 diagnostic-profiles Element Hierarchy

diagnostic-profiles
 name
 profile
 name
 enabled
 start-stage
 max-latency
 name
 collect-interval
 amount
 unit
 start-location
 application
 stage
 direction
 end-location
 application
 stage
 direction
 average-latency
 name
 collect-interval
 amount
 unit
 start-location
 application
 stage
 direction
 end-location
 application
 stage
 direction
 threshold
 throughput
 name
 throughput-interval
 amount
 unit
 average-interval
 amount
 unit
 location
 application
 stage
 direction

D.1.2 Example of an Oracle Event Processing Component Configuration File

The following sample component configuration file from the HelloWorld application shows how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
 <channel>
 <name>helloworldInputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
 <channel>
 <name>helloworldOutputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
</n1:config>

D.2 accept-backlog

Use this element to define the maximum number of pending connections allowed on a socket. This element is only applicable in a netio element.

D.2.1 Child Elements

The accept-backlog component configuration element has no child elements.

D.2.2 Attributes

The accept-backlog component has no attributes.

D.2.3 Example

The following example shows how to use the accept-backlog element in the component configuration file:

<netio> <provider-name>providerCache</provider-name>
 <num-threads>1000</num-threads>
 <accept-backlog>50</accept-backlog>
</netio>

D.3 active

Specify true for this element to specify that event tracing or event injection is on. The default is true.

Note that when the value of the active element is false, the channel-name value will be ignored.

For more on event tracing and injection, see the following:

	
Section 22.4, "Tracing Events"

	
Section 22.3, "Injecting Events"

D.3.1 Child Elements

The active component configuration element has no child elements.

D.3.2 Attributes

The active component configuration element has no attributes.

D.3.3 Example

The component configuration excerpt shown in the following example illlustrates how you might configure a processor for event tracing. The trace-parameters element's active child element specifies that tracing is on, while the channel-name element specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
 <name>FindCrossRates</name>
 <trace-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </trace-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

D.4 adapter

Use this element to define a custom adapter component. For an HTTP publish-subscribe or JMS adapter, use the specific http-pub-sub-adapter and jms-adapter elements.

For more information, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

D.4.1 Child Elements

The adapter component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
symbols

	
work-manager-name

	
netio

D.4.2 Attributes

The adapter component configuration element has no attributes.

D.4.3 Example

The following example shows how to use the adapter element in the component configuration file:

<adapter>
 <name>trackdata</name>
 <symbols>
 <symbol>BEAS</symbol>
 <symbol>IBM</symbol>
 </symbols>
 </adapter>

In the example, the adapter's unique identifier is trackdata.

D.5 amount

Use this element to define the a time duration of a diagnostic profile. This element is applicable in any of the following elements:

	
average-interval

	
collect-interval

	
throughput-interval

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.5.1 Child Elements

The amount component configuration has no child elements:

D.5.2 Attributes

The amount component has no attributes.

D.5.3 Example

The following example shows how to use the amount element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.6 application

Use this element to define the type of application Oracle Event Processing server applies to a foreign stage. In a diagnostic profile, this element always has a value of diagnostic.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.6.1 Child Elements

The application component configuration has no child elements:

D.6.2 Attributes

The application component has no attributes.

D.6.3 Example

The following example shows how to use the application element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.7 average-interval

Use this element to define the time interval for which you want to gather metrics.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.7.1 Child Elements

The average-interval component configuration element supports the following child elements:

	
amount

	
unit

D.7.2 Attributes

The average-interval component has no attributes.

D.7.3 Example

The following example shows how to use the average-interval element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <throughput>
 <throughput-interval>
 <amount>100000</amount>
 <unit>MICROSECONDS</unit>
 </throughput-interval>
 <average-interval>
 <amount>100000000</amount>
 <unit>NANOSECONDS</unit>
 </average-interval>
 <location>
 <application>diagnostic</application>
 <stage>AlertEventStream</stage>
 <direction>INBOUND</direction>
 </location>
 </throughput>
 </profile>
</diagnostic-profiles>

D.8 average-latency

Use this element to define an average latency calculation in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.8.1 Child Elements

The average-latency component configuration element supports the following child elements:

	
name

	
collect-interval

	
start-location

	
end-location

	
threshold

D.8.2 Attributes

The average-latency component has no attributes.

D.8.3 Example

The following example shows how to use the average-latency element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <average-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 <threshhold>
 <amount>100</amount>
 <unit>MILLISECONDS</unit>
 </threshhold>
 </average-latency>
 </profile>
</diagnostic-profiles>

D.9 batch-size

Use this element to define the number of updates that are picked up from the store buffer to write back to the backing store. This element may be changed dynamically.

D.9.1 Child Elements

The batch-size component configuration element has no child elements.

D.9.2 Attributes

The batch-size component has no attributes.

D.9.3 Example

The following example shows how to use the batch-size element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.10 batch-time-out

Use this element to define The number of seconds event buffer will wait to accumulate batch-size number of events before to write to the event store.

D.10.1 Child Elements

The batch-time-out component configuration element has no child elements.

D.10.2 Attributes

The batch-time-out component has no attributes.

D.10.3 Example

The following example shows how to use the batch-time-out element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.11 binding

Use this element to define values for a parameterized Oracle CQL or EPL rule in an EPL processor component.

For more information, see:

	
"Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

D.11.1 Child Elements

The binding component configuration element supports the following child elements:

	
params

D.11.2 Attributes

Table D-1 lists the attributes of the binding component configuration element.

Table D-1 Attributes of the binding Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
The identifier of the EPL rule to which this binding applies.

	
String

	
Yes.

D.11.3 Example

The following example shows how to use the binding element in the component configuration file:

<processor>
 <name>processor1</name>
 <record-parameters>
 <dataset-name>test1data</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 <rules>
 <rule id="rule1"><![CDATA[
 select stockSymbol, avg(price) as percentage
 from StockTick retain 5 events
 where stockSymbol=?
 having avg(price) > ? or avg(price) < ?
]]></rule>
 </rules>
 <bindings>
 <binding id="rule1">
 <params>BEAS,10.0,-10.0</params>
 <params id="IBM">IBM,5.0,5.0</params>
 </binding>
 </bindings>
</processor>

D.12 bindings (jms-adapter)

Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can partition an incoming JMS stream in Oracle Event Processing applications by utilizing the notification groups that the ActiveActiveGroupBean creates.

Use this element to associate a notification group with a particular message-selector value.

For more information, see Section 25.1.2.2, "ActiveActiveGroupBean".

D.12.1 Child Elements

The bindings component configuration element supports the following child elements:

	
group-binding

D.12.2 Attributes

The bindings component has no attributes.

D.12.3 Example

The following example shows how to use the bindings element in the component configuration file:

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid > 400 and the application processes events whose acctid property is greater than 400.

D.13 bindings (processor)

Use this element to define bindings for one or more parameterized Oracle CQL or EPL rules in a processor component.

For more information, see:

	
"Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

D.13.1 Child Elements

The bindings component configuration element supports the following child elements:

	
binding

D.13.2 Attributes

The bindings component has no attributes.

D.13.3 Example

The following example shows how to use the bindings element in the component configuration file:

<processor>
 <name>processor1</name>
 <record-parameters>
 <dataset-name>test1data</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 <rules>
 <rule id="rule1"><![CDATA[
 select stockSymbol, avg(price) as percentage
 from StockTick retain 5 events
 where stockSymbol=?
 having avg(price) > ? or avg(price) < ?
]]></rule>
 </rules>
 <bindings>
 <binding id="rule1">
 <params>BEAS,10.0,-10.0</params>
 <params id="IBM">IBM,5.0,5.0</params>
 </binding>
 </bindings>
</processor>

D.14 buffer-size

Use this element to define the size of the internal store buffer that's used to temporarily hold asynchronous updates that need to be written to the store. Does not support dynamic updates.

D.14.1 Child Elements

The buffer-size component configuration element has no child elements.

D.14.2 Attributes

The buffer-size component has no attributes.

D.14.3 Example

The following example shows how to use the buffer-size element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <batch-size>100</batch-size>
 <buffer-size>100</buffer-size>
 <buffer-write-attempts>100</buffer-write-attempts>
 <buffer-write-timeout>100</buffer-write-timeout>
 </write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.15 buffer-write-attempts

Use this element to define the number of attempts that the user thread will make to write to the store buffer. The user thread is the thread that creates or updates a cache entry. If the user thread cannot write to the store buffer (all write attempts fail), it will invoke the store synchronously. This element may be changed dynamically.

D.15.1 Child Elements

The buffer-write-attempts component configuration element has no child elements.

D.15.2 Attributes

The buffer-write-attempts component has no attributes.

D.15.3 Example

The following example shows how to use the buffer-write-attempts element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <batch-size>100</batch-size>
 <buffer-size>100</buffer-size>
 <buffer-write-attempts>100</buffer-write-attempts>
 <buffer-write-timeout>100</buffer-write-timeout>
 </write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.16 buffer-write-timeout

Use this element to define the time in milliseconds that the user thread will wait before aborting an attempt to write to the store buffer. The attempt to write to the store buffer fails only in case the buffer is full. After the timeout, further attempts may be made to write to the buffer based on the value of buffer-write-attempts. This element may be changed dynamically.

D.16.1 Child Elements

The buffer-write-timeout component configuration element has no child elements.

D.16.2 Attributes

The buffer-write-timeout component has no attributes.

D.16.3 Example

The following example shows how to use the buffer-write-timeout element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <batch-size>100</batch-size>
 <buffer-size>100</buffer-size>
 <buffer-write-attempts>100</buffer-write-attempts>
 <buffer-write-timeout>100</buffer-write-timeout>
 </write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.17 cache

Use this element to define a cache for a component. A cache is a temporary storage area for events, created exclusively to improve the overall performance of your Oracle Event Processing application; it is not necessary for the application to function correctly. Oracle Event Processing applications can optionally publish or consume events to and from a cache to increase the availability of the events and increase the performance of their applications.

For more information, see Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache".

D.17.1 Child Elements

The cache component configuration element supports the following child elements:

	
name

	
max-size

	
eviction-policy

	
time-to-live

	
idle-time

	
One of:

	
write-none

	
write-through

	
write-behind

	
work-manager-name

	
listeners

D.17.2 Attributes

The cache component has no attributes.

D.17.3 Example

The following example shows how to use the cache element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.18 caching-system

Use this element to define an Oracle Event Processing local caching system component. A caching system refers to a configured instance of a caching implementation. A caching system defines a named set of configured caches as well as the configuration for remote communication if any of the caches are distributed across multiple machines.

For more information, see Section 13.5.3, "Configuring a Cache as an Event Listener".

D.18.1 Child Elements

The caching-system component configuration element supports the following child elements:

	
name

	
cache

D.18.2 Attributes

The caching-system component has no attributes.

D.18.3 Example

The following example shows how to use the caching-system element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

In the example, the channel's unique identifier is providerCachingSystem.

D.19 channel

Use this element to define a channel component. An Oracle Event Processing application contains one or more channel components that represent the physical conduit through which events flow between other types of components, such as between adapters and processors, and between processors and event beans (business logic POJOs).

D.19.1 Child Elements

The channel component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
max-size

	
max-threads

	
selector

	
heartbeat

	
partition-order-capacity

D.19.2 Attributes

The channel component has no attributes.

D.19.3 Example

The following example shows how to use the channel element in the component configuration file:

<channel>
 <name>MatchOutputChannel</name>
 <max-size>0</max-size>
 <max-threads>0</max-threads>
 <selector>match</selector>
</channel>

In the example, the channel's unique identifier is MatchOutputChannel.

D.20 channel (http-pub-sub-adapter Child Element)

Use the channel element to specify the channel that the http-pub-sub-adapter publishes or subscribes to, whichever is appropriate, for all http-pub-sub-adapter, whether they are local or remote or for publishing or subscribing.

D.20.1 Child Elements

The channel component configuration element has no child elements.

D.20.2 Attributes

The channel component has no attributes.

D.20.3 Example

The following example shows how to use the channel element in the component configuration file:

<http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 <channel>/channel2</channel>
</http-pub-sub-adapter>

In the example, the localPublisher pub-sub adapter publishes to a local channel with pattern /channel2.

D.21 channel-name

Use this element to specify the name of the channel onto which events should be injected or to which traced events should be sent. The element's value must be a path to the channel in a form like the following default values (note that the path must begin with a slash):

	
For event tracing:

/serverID/appID/stageID/output

	
For event injection:

/serverID/appID/stageID/input

Note that when the value of the active element is false, the channel-name value will be ignored.

For more on event tracing and injection, see the following:

	
Section 22.4, "Tracing Events"

	
Section 22.3, "Injecting Events"

D.21.1 Child Elements

The channel-name component configuration element has no child elements.

D.21.2 Attributes

The channel-name component configuration element has no attributes.

D.21.3 Example

The component configuration excerpt shown in the following example illlustrates how you might configure a processor for event tracing. The trace-parameters element's active child element specifies that tracing is on, while the channel-name element specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
 <name>FindCrossRates</name>
 <trace-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </trace-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

D.22 coherence-cache-config

Use this element to define the Oracle Coherence cache configuration for a coherence-caching-system.

For more information, see Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache".

D.22.1 Child Elements

The coherence-cache-config component configuration element has no child elements.

D.22.2 Attributes

The coherence-cache-config component has no attributes.

D.22.3 Example

The following example shows how to use the coherence-cache-config element in the component configuration file:

<coherence-caching-system>
 <name>nativeCachingSystem</name>
 <coherence-cache-config>
 applications/cache_cql/coherence/coherence-cache-config.xml
 </coherence-cache-config></coherence-caching-system>

D.23 coherence-caching-system

Use this element to define an Oracle Coherence caching system component. A caching system refers to a configured instance of a caching implementation. A caching system defines a named set of configured caches as well as the configuration for remote communication if any of the caches are distributed across multiple machines.

For more information, see Section 13.2, "Configuring an Oracle Coherence Caching System and Cache".

D.23.1 Child Elements

The coherence-caching-system component configuration element supports the following child elements:

	
name

	
coherence-cache-config

	
coherence-cluster-config

D.23.2 Attributes

The coherence-caching-system component has no attributes.

D.23.3 Example

The following example shows how to use the coherence-caching-system element in the component configuration file:

<coherence-caching-system>
 <name>nativeCachingSystem</name>
 <coherence-cache-config>
 applications/cache_cql/coherence/coherence-cache-config.xml
 </coherence-cache-config>
</coherence-caching-system>

In the example, the channel's unique identifier is nativeCachingSystem.

D.24 coherence-cluster-config

Use this element to define the Oracle Coherence cluster configuration for a coherence-caching-system.

For more information, see "Overview of Oracle Event Processing Multi-Server Domain Administration" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

D.24.1 Child Elements

The coherence-cache-config component configuration element has no child elements.

D.24.2 Attributes

The coherence-cache-config component has no attributes.

D.24.3 Example

The following example shows how to use the coherence-cache-config element in the component configuration file:

<coherence-caching-system>
 <name>nativeCachingSystem</name>
 <coherence-cluster-config>
 applications/cluster_cql/coherence/coherence-cluster-config.xml
 </coherence-cluster-config></coherence-caching-system>

D.25 collect-interval

Use this element to define the collection interval of an average-latency or max-latency element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.25.1 Child Elements

The collect-interval component configuration element supports the following child elements:

	
amount

	
unit

D.25.2 Attributes

The collect-interval component has no attributes.

D.25.3 Example

The following example shows how to use the collect-interval element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.26 concurrent-consumers

Use this element to define the number of consumers to create. Default value is 1.

If you set this value to number greater than one, be sure that your converter bean is thread-safe because the converter bean will be shared among the consumers.

If concurrent-consumers is greater than 1 and you want all the consumers to be run concurrently, then consider how you configure the work-manager you associate with this JMS adapter:

	
If the work-manager is shared with other components (such as other adapters and Jetty) then set the work-manager attribute max-threads-constraint greater than or equal to the concurrent-consumers setting.

	
If the work-manager is not shared (that is, it is dedicated to this inbound JMS adapter only) then set the work-manager attribute max-threads-constraint equal to the concurrent-consumers setting.

For more information, see:

	
Section 11.3, "Creating a Custom Converter Between JMS Messages and Event Types"

	
Section D.111, "work-manager"

D.26.1 Child Elements

The concurrent-consumers component configuration element has no child elements.

D.26.2 Attributes

The concurrent-consumers component has no attributes.

D.26.3 Example

The following example shows how to use the concurrent-consumers element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.27 connection-jndi-name

Use this optional element to define a JNDI name of the JMS connection factory. Default value is weblogic.jms.ConnectionFactory for Oracle Event Processing server JMS.

D.27.1 Child Elements

The connection-jndi-name component configuration element has no child elements.

D.27.2 Attributes

The connection-jndi-name component has no attributes.

D.27.3 Example

The following example shows how to use the connection-jndi-name element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.28 connection-encrypted-password

Use the connection-encrypted-password element to define the encrypted jms-adapter password that Oracle Event Processing uses when it acquires a connection to the JMS service provider.

When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password or connection-encrypted-password element, if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) elements.

Use either connection-encrypted-password or connection-password but not both.

For more information, see Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File".

D.28.1 Child Elements

The connection-encrypted-password component configuration element has no child elements.

D.28.2 Attributes

The connection-encrypted-password component has no attributes.

D.28.3 Example

The following example shows how to use the connection-encrypted-password element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
 <connection-user>wlevscon</user>
 <encrypted-password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</encrypted-password>
</http-pub-sub-adapter>

D.29 connection-password

Use the connection-password element to define the jms-adapter password that Oracle Event Processing uses when it acquires a connection to the JMS service provider.

When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password or connection-encrypted-password element, if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) elements.

Use either connection-password or connection-encrypted-password but not both.

D.29.1 Child Elements

The connection-password component configuration element has no child elements.

D.29.2 Attributes

The connection-password component has no attributes.

D.29.3 Example

The following example shows how to use the connection-password element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
 <connection-user>wlevscon</user>
 <connection-password>wlevscon</password>
</http-pub-sub-adapter>

D.30 connection-user

Use the connection-user element to define the jms-adapter user name that Oracle Event Processing uses when it acquires a connection to the JMS service provider.

When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password or connection-encrypted-password element, if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) elements.

You can use the connection-user and connection-password (or connection-encrypted-password) settings in applications where one security provider is used for JNDI access and a separate security provider is used for JMS access.

D.30.1 Child Elements

The connection-user component configuration element has no child elements.

D.30.2 Attributes

The connection-user component has no attributes.

D.30.3 Example

The following example shows how to use the connection-user element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
 <connection-user>wlevscon</user>
 <connection-password>wlevscon</password>
</http-pub-sub-adapter>

D.31 database

Use this element to define a database reference for an EPL processor component.

For more information, see Chapter 19, "Querying an Event Stream with Oracle EPL".

D.31.1 Child Elements

The database component configuration element has no child elements.

D.31.2 Attributes

Table D-2 lists the attributes of the database component configuration element.

Table D-2 Attributes of the database Component Configuration Element

	Attribute	Description	Data Type	Required?
	
name

	
Unique identifier for this query.

	
String

	
Yes.

	
data-source-name

	
The name of the data source as defined in the Oracle Event Processing server config.xml file.

	
String

	
Yes.

D.31.3 Example

The following example shows how to use the database element in the component configuration file:

<processor>
 <name>proc</name>
 <rules>
 <rule id="rule1"><![CDATA[
 SELECT symbol, price
 FROM ExchangeEvent retain 1 event,
 StockDb ('SELECT symbol FROM Stock WHERE symbol = ${symbol}')
]]></rule>
 </rules>

 <database name="StockDb" data-source-name="StockDs" />

</processor>

D.32 dataset-name

Use this element to define the group of data that the user wants to group together. In the case of the Oracle RDBMS-based provider, it specifies the database area, or schema, in which the tables that store the recorded events are created. When configuring the Oracle RDBMS-based provider, you are required to specify this element.

D.32.1 Child Elements

The dataset-name component configuration element has no child elements.

D.32.2 Attributes

The dataset-name component has no attributes.

D.32.3 Example

The following example shows how to use the dataset-name element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.33 delivery-mode

Use this element to define the delivery mode for a jms-adapter.

Valid values are:

	
persistent (default)

	
nonpersistent

D.33.1 Child Elements

The delivery-mode component configuration element has no child elements.

D.33.2 Attributes

The delivery-mode component has no attributes.

D.33.3 Example

The following example shows how to use the delivery-mode element in the component configuration file:

<jms-adapter>
 <name>jmsOutbound-map</name>
 <event-type>JMSTestEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
</jms-adapter>

D.34 destination-jndi-name

Use this required element to define the JMS destination name for a jms-adapter.

Specify either the JNDI name or the actual destination-name, but not both.

D.34.1 Child Elements

The destination-jndi-name component configuration element has no child elements.

D.34.2 Attributes

The destination-jndi-name component has no attributes.

D.34.3 Example

The following example shows how to use the destination-jndi-name element in the component configuration file:

<jms-adapter>
 <name>jmsOutbound-map</name>
 <event-type>JMSTestEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
</jms-adapter>

D.35 destination-name

Use this required element to define the JMS destination name for a jms-adapter.

Specify either the actual destination name or the destination-jndi-name, but not both.

D.35.1 Child Elements

The destination-name component configuration element has no child elements.

D.35.2 Attributes

The destination-name component has no attributes.

D.35.3 Example

The following example shows how to use the destination-name element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.36 destination-type

Use this element to define the JMS destination type for a jms-adapter. Valid values are TOPIC or QUEUE. This property must be set to TOPIC whenever the durable-subscription property is set to true.

D.36.1 Child Elements

The destination-type component configuration element has no child elements.

D.36.2 Attributes

The destination-type component has no attributes.

D.36.3 Example

The following example shows how to use the destination-type element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <destination-type>TOPIC</destination-name>
 <durable-subscription>true</durable-subscription>
 <durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.37 diagnostic-profiles

Use this element to define one or more Oracle Event Processing diagnostic profiles.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.37.1 Child Elements

The diagnostics-profiles component configuration element supports the following child elements:

	
name

	
profile

D.37.2 Attributes

The diagnostics-profiles component has no attributes.

D.37.3 Example

The following example shows how to use the diagnostics-profiles element in the component configuration file:

<diagnostics-profiles>
 <name>myDiagnosticProfiles</name>
 <profile>
 ...
 </profile>
</diagnostics-profiles>

In the example, the channel's unique identifier is myDiagnosticProfiles.

D.38 direction

Use this element to define the direction for a diagnostic profile end-location or start-location.

Valid values are:

	
INBOUND

	
OUTBOUND

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.38.1 Child Elements

The direction component configuration has no child elements:

D.38.2 Attributes

The direction component has no attributes.

D.38.3 Example

The following example shows how to use the direction element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.39 durable-subscription

Use this element to specify whether the JMS topic subscription of a jms-adapter is durable, meaning that it can persist even if subscribers become inactive. Valid values are true or false. This property is only valid if destination-type is set to TOPIC.

D.39.1 Child Elements

The durable-subscription component configuration element has no child elements.

D.39.2 Attributes

The durable-subscription component has no attributes.

D.39.3 Example

The following example shows how to use the durable-subscription element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <destination-type>TOPIC</destination-name>
 <durable-subscription>true</durable-subscription>
 <durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.40 durable-subscription-name

Use this element to specify the name to uniquely identify a durable subscription of a jms-adapter. A durable subscription can persist even if subscribers become inactive.

D.40.1 Child Elements

The durable-subscription-name component configuration element has no child elements.

D.40.2 Attributes

The durable-subscription-name component has no attributes.

D.40.3 Example

The following example shows how to use the durable-subscription-name element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <destination-type>TOPIC</destination-name>
 <durable-subscription>true</durable-subscription>
 <durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.41 duration

Use this element to define a time duration for a schedule-time-range-offset or time-range-offset element in the form:

HH:MM:SS

Where: HH is a number of hours, MM is a number of minutes, and SS is a number of seconds.

D.41.1 Child Elements

The duration component configuration element has no child elements.

D.41.2 Attributes

The duration component has no attributes.

D.41.3 Example

The following example shows how to use the duration element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.42 enabled

Use this element to define whether or not a diagnostic profile is enabled.

Valid values are:

	
true

	
false

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.42.1 Child Elements

The enabled component configuration element has no child elements.

D.42.2 Attributes

The enabled component has no attributes.

D.42.3 Example

The following example shows how to use the enabled element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.43 encrypted-password

Use the encrypted-password element in the following parent elements:

	
http-pub-sub-adapter: Use the encrypted-password element to define the encrypted password if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication.

	
jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it uses the user and password (or encrypted-password) elements. When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password (or connection-encrypted-password element), if configured. Otherwise, Oracle Event Processing the user and password (or encrypted-password) elements.

Use either encrypted-password or password but not both.

For more information, see Section 11.4, "Encrypting Passwords in the JMS Adapter Component Configuration File".

D.43.1 Child Elements

The encrypted-password component configuration element has no child elements.

D.43.2 Attributes

The encrypted-password component has no attributes.

D.43.3 Example

The following example shows how to use the encrypted-password element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <encrypted-password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</encrypted-password>
</http-pub-sub-adapter>

D.44 end

Use this element to define an end time for a time-range or schedule-time-range element.

Express the end time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

D.44.1 Child Elements

The end component configuration element has no child elements.

D.44.2 Attributes

The end component has no attributes.

D.44.3 Example

The following example shows how to use the end element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.45 end-location

Use this element to define the end location of a average-latency or max-latency element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.45.1 Child Elements

The end-location component configuration element supports the following child elements:

	
application

	
stage

	
direction

D.45.2 Attributes

The end-location component has no attributes.

D.45.3 Example

The following example shows how to use the end-location element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.46 event-bean

Use this element to define an event bean component.

For more information, see Chapter 16, "Configuring a Java Class as an Event Bean".

D.46.1 Child Elements

The event-bean component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

D.46.2 Attributes

The event-bean component has no attributes.

D.46.3 Example

The following example shows how to use the event-bean element in the component configuration file:

<event-bean>
 <name>myEventBean</name>
</event-bean>

In the example, the channel's unique identifier is myEventBean.

D.47 event-type

Use the event-type element in the following parent elements:

	
http-pub-sub-adapter:

	
Publishing: Optional. For both local and remote HTTP pub-sub adapters for publishing, specify the fully qualified class name of the JavaBean event to limit the types of events that are published. Otherwise, all events sent to the HTTP pub-sub adapter are published.

	
Subscribing: Required. For both local and remote HTTP pub-sub adapters for subscribing, specify the fully qualified class name of the JavaBean to which incoming messages are mapped. At runtime, Oracle Event Processing uses the incoming key-value pairs in the message to map the message data to the specified event type.

You must register this class in the EPN assembly file as a wlevs:event-type-repository element wlevs:class child element. For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

	
jms-adapter: Use the event-type element to specify an event type whose properties match the JMS message properties. Specify this child element only if you want Oracle Event Processing to automatically perform the conversion between JMS messages and events. If you have created your own custom converter bean, then do not specify this element.

	
record-parameters: Use the event-type element to specify an event that you want to record.

The value of the event-type element must be one of the event types you defined in your event type repository. For more information, see Section 9.1, "Overview of Oracle Event Processing Event Types".

D.47.1 Child Elements

The event-type component configuration element has no child elements.

D.47.2 Attributes

The event-type component has no attributes.

D.47.3 Example

The following example shows how to use the event-type element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.48 event-type-list

Use this element to define one or more events for record or playback for a component.

D.48.1 Child Elements

The event-type-list component configuration element supports the following child elements:

	
event-type

D.48.2 Attributes

The event-type-list component has no attributes.

D.48.3 Example

The following example shows how to use the event-type-list element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.49 eviction-policy

Use this element to define the eviction policy the cache uses when max-size is reached.

Valid values are:

	
FIFO: first in, first out.

	
LRU: least recently used

	
LFU: least frequently used (default)

	
NRU: not recently used

D.49.1 Child Elements

The eviction-policy component configuration element has no child elements.

D.49.2 Attributes

The eviction-policy component has no attributes.

D.49.3 Example

The following example shows how to use the eviction-policy element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.50 fail-when-rejected

Use this element to specify whether an com.bea.wlevs.ede.api.EventProcessingException should be raised if the event queue is full when the offer timeout expires. If set to false or not set at all, then the event is dropped rather than an exception raised. This configuration is only applicable for event queues whose max-size value is greater than 0. The default value is false.

For more on setting the offer timeout, see 0, "offer-timeout".

D.50.1 Child Elements

The fail-when-rejected component configuration element has no child elements.

D.50.2 Attributes

The fail-when-rejected component configuration element has no attributes.

D.50.3 Example

In the following example, the channel is configured to raise an EventProcessingException if 15 seconds pass while the event queue is full.

<channel>
 <name>QueuedChannel</name>
 <max-size>1000</max-size>
 <max-threads>1</max-threads>
 <offer-timeout>15000000000</offer-timeout>
 <fail-when-rejected>true</fail-when-rejected>
</channel>

D.51 group-binding

Edit the component configuration file to add group-binding child elements to the jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value.

For more information, see Section D.12, "bindings (jms-adapter)".

D.51.1 Child Elements

The group-binding component configuration element supports the following child elements:

	
param

D.51.2 Attributes

Table D-3 lists the attributes of the group-binding component configuration element.

Table D-3 Attributes of the group-binding Component Configuration Element

	Attribute	Description	Data Type	Required?
	
group-id

	
The name of a cluster element groups child element.

	
String

	
Yes.

D.51.3 Example

The following example shows how to use the group-binding element in the component configuration file:

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid > 400 and the application processes events whose acctid property is greater than 400.

D.52 heartbeat

Use this element to define a new heartbeat timeout for a system-timestamped channel component. By default, the timeout value is 100 milliseconds, or 100,000,000 nanoseconds.

For system-timestamped relations or streams, time is dependent upon the arrival of data on the relation or stream data source. Oracle Event Processing generates a heartbeat on a system timestamped relation or stream if there is no activity (no data arriving on the stream or relation's source) for more than the value for this setting. Either the relation or stream is populated by its specified source or Oracle Event Processing generates a heartbeat every heartbeat number of nanoseconds.

The heartbeat child element applies to system-timestamped relations or streams only when no events arrive in the event channels that are feeding the processors and the processor has been configured with a statement that includes some temporal operator, such as a time-based window or a pattern matching with duration.

D.52.1 Child Elements

The heartbeat component configuration element has no child elements.

D.52.2 Attributes

The heartbeat component configuration element has no attributes.

D.52.3 Example

The following example shows how to use the heartbeat element in the component configuration file:

<channel>
 <name>MatchOutputChannel</name>
 <max-size>0</max-size>
 <max-threads>0</max-threads>
 <selector>match</selector>
 <heartbeat>10000</heartbeat>
</channel>

In the example, the channel's unique identifier is MatchOutputChannel.

D.53 http-pub-sub-adapter

Use this element to define an HTTP publish-subscribe server adapter component.

For more information, see Chapter 12, "Integrating an HTTP Publish-Subscribe Server".

D.53.1 Child Elements

The http-pub-sub-adapter component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
symbols

	
work-manager-name

	
netio

	
One of:

	
server-context-path

	
server-url

	
event-type

	
user

	
One of:

	
password

	
encrypted-password

D.53.2 Attributes

The http-pub-sub-adapter component configuration element has no attributes.

D.53.3 Example

The following example shows how to use the http-pub-sub-adapter element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

In the example, the adapter's unique identifier is remotePub.

D.54 idle-time

Use this element to define the number of milliseconds a cache entry may not be accessed before being actively removed from the cache. By default, there is no idle-time set. This element may be changed dynamically.

D.54.1 Child Elements

The idle-time component configuration element has no child elements.

D.54.2 Attributes

The idle-time component has no attributes.

D.54.3 Example

The following example shows how to use the idle-time element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.55 inject-parameters

Use this element to configure event injection for a stage in the event processing network.

For more information about event injection, see Section 22.3, "Injecting Events".

D.55.1 Child Elements

The inject-parameters component configuration element supports the following child elements:

	
channel-name

	
active

D.55.2 Attributes

The inject-parameters component configuration element has no attributes.

D.55.3 Example

The component configuration excerpt shown in the following example illlustrates how you might configure a processor for event injection. The inject-parameters element's active child element specifies that injection is on, while the channel-name element specifies the HTTP pub-sub channel to which injected elements should be sent.

<processor>
 <name>FindCrossRates</name>
 <inject-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/input</channel-name>
 </inject-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

D.56 jms-adapter

Use this element to define a JMS adapter component.

For more information, see Chapter 11, "Integrating the Java Message Service".

D.56.1 Child Elements

The jms-adapter component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
event-type

	
jndi-provider-url

	
connection-jndi-name

	
One of:

	
destination-jndi-name

	
destination-name

	
user

One of:

	
password

	
encrypted-password

	
connection-user

One of:

	
connection-password

	
connection-encrypted-password

	
work-manager

	
concurrent-consumers

	
message-selector

	
session-ack-mode-name

	
session-transacted

	
delivery-mode

D.56.2 Attributes

The jms-adapter component configuration element has no attributes.

D.56.3 Example

The following example shows how to use the jms-adapter element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

In the example, the adapter's unique identifier is jmsInbound-text.

D.57 jndi-factory

Use this optional element to define a JNDI factory for a jms-adapter. The JNDI factory name. Default value is weblogic.jndi.WLInitialContextFactory, for Oracle Event Processing server JMS

D.57.1 Child Elements

The jndi-factory component configuration element has no child elements.

D.57.2 Attributes

The jndi-factory component has no attributes.

D.57.3 Example

The following example shows how to use the jndi-provider-url element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.58 jndi-provider-url

Use this required element to define a JNDI provider URL for a jms-adapter.

D.58.1 Child Elements

The jndi-provider-url component configuration element has no child elements.

D.58.2 Attributes

The jndi-provider-url component has no attributes.

D.58.3 Example

The following example shows how to use the jndi-provider-url element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.59 listeners

Use this element to define the behavior for cache listeners.

The listeners element has a single child element, work-manager-name, that specifies the work manager to be used for asynchronously invoking listeners. This value is ignored if synchronous invocations are enabled. If a work manager is specified for the cache itself, this value overrides it for invoking listeners only.

D.59.1 Child Elements

The listeners component configuration element supports the following child elements:

	
work-manager-name

D.59.2 Attributes

Table D-4 lists the attributes of the listeners component configuration element.

Table D-4 Attributes of the listeners Component Configuration Element

	Attribute	Description	Data Type	Required?
	
asynchronous

	
Execute listeners asynchronously.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

D.59.3 Example

The following example shows how to use the listeners element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <batch-size>100</batch-size>
 <buffer-size>100</buffer-size>
 <buffer-write-attempts>100</buffer-write-attempts>
 <buffer-write-timeout>100</buffer-write-timeout>
 </write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.60 location

Use this element to define the location of a throughput element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.60.1 Child Elements

The location component configuration element supports the following child elements:

	
application

	
stage

	
direction

D.60.2 Attributes

The location component has no attributes.

D.60.3 Example

The following example shows how to use the location element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <throughput>
 <throughput-interval>
 <amount>100000</amount>
 <unit>MICROSECONDS</unit>
 </throughput-interval>
 <average-interval>
 <amount>100000000</amount>
 <unit>NANOSECONDS</unit>
 </average-interval>
 <location>
 <application>diagnostic</application>
 <stage>AlertEventStream</stage>
 <direction>INBOUND</direction>
 </location>
 </throughput>
 </profile>
</diagnostic-profiles>

D.61 max-latency

Use this element to define the maximum latency calculation of a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.61.1 Child Elements

The max-latency component configuration element supports the following child elements:

	
name

	
collect-interval

	
start-location

	
end-location

D.61.2 Attributes

The max-latency component has no attributes.

D.61.3 Example

The following example shows how to use the max-latency element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.62 max-size

Use the max-size element in the following parent elements:

	
channel or stream: Use the max-size child element to specify the maximum size of the channel. Zero-size channels synchronously pass-through events. Non-zero size channels process events asynchronously, buffering events by the requested size. If max-threads is zero, then max-size is zero. The default value is 0.

	
cache: Use the max-size element to define the number of cache elements in memory after which eviction or paging occurs. Currently, the maximum cache size is 2^31-1 entries. This element may be changed dynamically

D.62.1 Child Elements

The max-size component configuration element has no child elements.

D.62.2 Attributes

The max-size component has no attributes.

D.62.3 Example

The following example shows how to use the max-size element in the component configuration file:

<stream>
 <name>monitoring-control-stream</name>
 <max-size>10000</max-size>
 <max-threads>1</max-threads>
</stream>

D.63 max-threads

Use this element to define the maximum number of threads that Oracle Event Processing server uses to process events for a channel or stream. The default value is 0.

When set to 0, the channel acts as a pass-through. When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue.

You can change max-threads from 0 to a positive integer (that is, from a pass through to multiple threads) without redeploying. However, if you change max-threads from a positive integer to 0 (that is, from multiple threads to a pass through), then you must redeploy your application.

If the max-size attribute is 0, then setting a value for max-threads has no effect.

The default value for this attribute is 0.

Setting this value has no effect when max-size is 0.

D.63.1 Child Elements

The max-threads component configuration element has no child elements.

D.63.2 Attributes

The max-threads component has no attributes.

D.63.3 Example

The following example shows how to use the max-threads element in the component configuration file:

<channel>
 <name>monitoring-control-stream</name>
 <max-size>10000</max-size>
 <max-threads>1</max-threads>
</channel>

D.64 message-selector

Use this element to JMS message selector to use to filter messages in a jms-adapter.

The syntax of a message selector expression is based on a subset of the SQL92 conditional expression syntax and message headers and properties. For example, to select messages based on property EventType, you could use:

EventType = 'News' OR 'Commentary'

D.64.1 Child Elements

The message-selector component configuration element has no child elements.

D.64.2 Attributes

The message-selector component has no attributes.

D.64.3 Example

The following example shows how to use the message-selector element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <message-selector>EventType = 'News' OR 'Commentary'</message-selector>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.65 name

Use the name element in the following parent elements:

	
adapter, http-pub-sub-adapter, jms-adapter, processor (EPL), processor (Oracle CQL), stream, channel, event-bean, caching-system, and coherence-caching-system: Use the name element to associate this application configuration element with its corresponding element in the EPN assembly file. Valid value is the corresponding EPN assembly file element id attribute.

	
diagnostic-profiles: Use the name element to uniquely identify the diagnostic-profiles element and each of its profile child elements.

	
parameter: Use the name element to define the name of a name/value pair.

D.65.1 Child Elements

The name component configuration element has no child elements:

D.65.2 Attributes

The name component has no attributes.

D.65.3 Example

The following example shows how to use the name element in the component configuration file:

<diagnostics-profiles>
 <name>myDiagnosticProfiles</name>
 <profile>
 ...
 </profile>
</diagnostics-profiles>

In the example, the channel's unique identifier is myDiagnosticProfiles.

D.66 netio

Use this element to define a network input/output port for a component.

	
Note:

When a child of the adapter element, this element is for internal use only.

D.66.1 Child Elements

The netio component configuration element supports the following child elements:

	
provider-name

	
num-threads

	
accept-backlog

D.66.2 Attributes

The netio component has no attributes.

D.66.3 Example

The following example shows how to use the netio element in the component configuration file:

<netio>
 <provider-name>providerCache</provider-name>
 <num-threads>1000</num-threads>
</netio>

D.67 num-threads

Use this element to define the number of threads in a network input/output port for a component.

D.67.1 Child Elements

The num-threads component configuration element has no child elements.

D.67.2 Attributes

The num-threads component has no attributes.

D.67.3 Example

The following example shows how to use the num-threads element in the component configuration file:

<netio>
 <provider-name>providerCache</provider-name>
 <num-threads>1000</num-threads>
</netio>

D.68 offer-timeout

Use this element to specify the amount of time, when an event queue is full and a pending insert (the "offer") is blocked, after which the pending event will be dropped or an exception raised. An exception will be raised when the fail-when-rejected value is set to true; otherwise, the event will be dropped. This setting is only applicable for event queues whose max-size value is greater than 0. The offer-timeout value should be specified as nanoseconds. The default is 60 seconds.

D.68.1 Child Elements

The offer-timeout component configuration element has no child elements:

D.68.2 Attributes

The offer-timeout component has no attributes.

D.68.3 Example

In the following example, the channel is configured to raise an EventProcessingException if 15 seconds pass while the event queue is full.

<channel>
 <name>QueuedChannel</name>
 <max-size>1000</max-size>
 <max-threads>1</max-threads>
 <offer-timeout>15000000000</offer-timeout>
 <fail-when-rejected>true</fail-when-rejected>
</channel>

D.69 param

Use the param element to associate a message selector value with the parameter name specified in the message-selector element.

For more information, see Section D.12, "bindings (jms-adapter)".

D.69.1 Child Elements

The param component configuration element has no child elements.

D.69.2 Attributes

Table D-5 lists the attributes of the param component configuration element.

Table D-5 Attributes of the param Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
The parameter name specified in the message-selector.

	
String

	
Yes.

D.69.3 Example

The following example shows how to use the param element in the component configuration file:

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing server with a cluster element groups child element that contains ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid > 400 and the application processes events whose acctid property is greater than 400.

D.70 parameter

Use this element to define a name/value parameter for a component.

D.70.1 Child Elements

The parameter component configuration element supports the following child elements:

	
name

	
value

D.70.2 Attributes

The parameter component has no attributes.

D.70.3 Example

The following example shows how to use the parameter element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.71 params

Use this element to define the parameters for a binding element.

The value of this element is a comma separated list of simple type values. The order of the values must correspond with the order of the parameters in the EPL rule associated with this binding.

For more information, see:

	
"Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

D.71.1 Child Elements

The params component configuration element has no child elements.

D.71.2 Attributes

Table D-6 lists the attributes of the params component configuration element.

Table D-6 Attributes of the params Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this params element.

	
String

	
No.

D.71.3 Example

The following example shows how to use the params element in the component configuration file:

<processor>
 <name>processor1</name>
 <record-parameters>
 <dataset-name>test1data</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 <rules>
 <rule id="rule1"><![CDATA[
 select stockSymbol, avg(price) as percentage
 from StockTick retain 5 events
 where stockSymbol=?
 having avg(price) > ? or avg(price) < ?
]]></rule>
 </rules>
 <bindings>
 <binding id="rule1">
 <params>BEAS,10.0,-10.0</params>
 <params id="IBM">IBM,5.0,5.0</params>
 </binding>
 </bindings>
</processor>

D.72 partition-order-capacity

Use this element to define the maximum capacity of a query partition when the ordering-constraint attribute is set to PARTITION_ORDERED. Set this on a channel component. Consider setting this element's value when you've configured a query processor for parallel execution, and when the query's ordering-constraint attribute is set to PARTITION_ORDERED.

For more information, including best practices and information on the locations where this value can be set (including their precedence), see "Using partition-order-capacity with Partitioning Queries" in Chapter 17, "Querying an Event Stream with Oracle CQL".

To have the capacity value apply at a larger scope, you can set it in the server configuration file. For more information, see "partition-order-capacity" in Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd".

D.72.1 Child Elements

The partition-order-capacity component configuration element has no child elements.

D.72.2 Attributes

The partition-order-capacity component configuration element has no attributes.

D.72.3 Example

The following example shows how to use the partition-order-capacity element in the component configuration file:

<channel>
 <name>MatchOutputChannel</name>
 <max-size>0</max-size>
 <max-threads>0</max-threads>
 <selector>match</selector>
 <partition-order-capacity>20</partition-order-capacity>
</channel>

D.73 password

Use the password element in the following parent elements:

	
http-pub-sub-adapter: Use the password element to define the user password if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication.

	
jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it uses the user and password (or encrypted-password) elements. When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password (or connection-encrypted-password element), if configured. Otherwise, Oracle Event Processing the user and password (or encrypted-password) elements.

Use either encrypted-password or password but not both.

D.73.1 Child Elements

The password component configuration element has no child elements.

D.73.2 Attributes

The password component has no attributes.

D.73.3 Example

The following example shows how to use the password element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

D.74 playback-parameters

Use this element to define event playback parameters for a component.

For more information, see Chapter 20, "Configuring Event Record and Playback".

D.74.1 Child Elements

The playback-parameters component configuration element supports the following child elements:

	
dataset-name

	
event-type-list

	
provider-name

	
store-policy-parameters

	
max-size

	
max-threads

	
One of:

	
time-range

	
time-range-offset

	
One of:

	
schedule-time-range

	
schedule-time-range-offset

	
playback-speed

	
repeat

D.74.2 Attributes

The playback-parameters component has no attributes.

D.74.3 Example

The following example shows how to use the playback-parameters element in the component configuration file:

<playback-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
</playback-parameters>

D.75 playback-speed

Use this element to define the playback speed as a positive float. The default value is 1, which corresponds to normal speed. A value of 2 means that events will be played back 2 times faster than the original record speed. Similarly, a value of 0.5 means that events will be played back at half the speed.

D.75.1 Child Elements

The playback-speed component configuration element has no child elements.

D.75.2 Attributes

The playback-speed component has no attributes.

D.75.3 Example

The following example shows how to use the duration element in the component configuration file:

<playback-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>
 <playback-speed>100</playback-speed>
</playback-parameters>

D.76 processor (EPL)

Use this element to define an Oracle CQL or EPL processor component.

For more information, see Chapter 19, "Querying an Event Stream with Oracle EPL".

For information on the processor element for Oracle CQL processors, see processor (Oracle CQL).

D.76.1 Child Elements

The processor component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
rules

	
database

	
bindings (processor)

D.76.2 Attributes

The processor component has no attributes.

D.76.3 Example

The following example shows how to use the processor element in the component configuration file:

<processor>
 <name>processor1</name>
 <record-parameters>
 <dataset-name>test1data</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 <rules>
 <rule id="rule1"><![CDATA[
 select stockSymbol, avg(price) as percentage
 from StockTick retain 5 events
 where stockSymbol=?
 having avg(price) > ? or avg(price) < ?
]]></rule>
 </rules>
 <bindings>
 <binding id="rule1">
 <params>BEAS,10.0,-10.0</params>
 <params id="IBM">IBM,5.0,5.0</params>
 </binding>
 </bindings>
</processor>

In the example, the processor's unique identifier is processor1.

D.77 processor (Oracle CQL)

Use this element to define an Oracle CQL processor component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For information on the processor element for EPL processors, see processor (EPL).

D.77.1 Child Elements

The processor component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
rules

	
bindings (processor)

D.77.2 Attributes

The processor component has no attributes.

D.77.3 Example

The following example shows how to use the processor element in the component configuration file:

<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,
 ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
 bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,
 "BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>
 <query id="MarketRule"><![CDATA[
 SELECT symbol, AVG(price) AS average, :1 AS market
 FROM StockTick [RANGE 5 SECONDS]
 WHERE symbol = :2
]]></query>
 </rules>
 <bindings>
 <binding id="MarketRule">
 <params id="nasORCL">NASDAQ, ORCL</params>
 <params id="nyJPM">NYSE, JPM</params>
 <params id="nyWFC">NYSE, WFC</params>
 </binding>
 </bindings>
</processor>

In the example, the processor's unique identifier is cqlProcessor.

D.78 profile

Use this element to define a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.78.1 Child Elements

The profile component configuration element supports the following child elements:

	
name

	
enabled

	
start-stage

	
max-latency

	
average-latency

	
throughput

D.78.2 Attributes

The profile component has no attributes.

D.78.3 Example

The following example shows how to use the profile element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 <average-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 <threshhold>
 <amount>100</amount>
 <unit>MILLISECONDS</unit>
 </threshhold>
 </average-latency>
 <throughput>
 <throughput-interval>
 <amount>100000</amount>
 <unit>MICROSECONDS</unit>
 </throughput-interval>
 <average-interval>
 <amount>100000000</amount>
 <unit>NANOSECONDS</unit>
 </average-interval>
 <location>
 <application>diagnostic</application>
 <stage>AlertEventStream</stage>
 <direction>INBOUND</direction>
 </location>
 </throughput>
 </profile>
</diagnostic-profiles>

D.79 provider-name

Use the provider-name element in the following parent elements:

	
netio: Use the provider-name element to define which provider to use for the underlying socket implementation. Valid value is an Oracle Event Processing server config.xml file netio child element provider-type.

	
record-parameters: Use the provider-name element to define the name of the event store provider. The value of this element corresponds to the value of the name child element of the rdbms-event-store-provider element in the config.xml file of the Oracle Event Processing server instance.

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

This may be left blank to configure to use the default Berkeley database provider.

D.79.1 Child Elements

The provider-name component configuration element has no child elements.

D.79.2 Attributes

The provider-name component has no attributes.

D.79.3 Example

The following example shows how to use the provider-name element in the component configuration file:

<netio>
 <provider-name>providerCache</provider-name>
 <num-threads>1000</num-threads>
</netio>

D.80 query

Use this element to define an Oracle CQL query for a component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

D.80.1 Child Elements

The query component configuration element has no child elements.

D.80.2 Attributes

Table D-7 lists the attributes of the query component configuration element.

Table D-7 Attributes of the query Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this query.

	
String

	
Yes.

	
active

	
Execute this query when the application is deployed and run.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
ordering-constraint

	
Enable or disable parallel query execution, through which events can be processed in parallel rather than serially.

The attribute supports the following three values:

	
ORDERED means that the query must handle events serially. This is the default behavior.

	
UNORDERED means that, whenever possible, the CQL processor will execute in parallel on multiple threads to process the events.

	
PARTITION_ORDERED means that when the query is partitioning events, ensure total order within a partition and (if possible) disregard order across partitions.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

	
partition-expression

	
The partition expression (used in the CQL code) that should be the basis for relaxing the cross-partition ordering constraint.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

D.80.3 Example

The following example shows how to use the query element in the component configuration file:

<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,
 ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
 bba.askSrcId, bba.ask, bba.bidQty, bba.askQty, "BBAStrategy" as intermediateStrategy,
 p.seq as correlationId, 1 as priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>
 </rules>
</processor>

D.81 record-parameters

Use this element to define event record parameters for a component.

For more information, see Chapter 20, "Configuring Event Record and Playback".

D.81.1 Child Elements

The record-parameters component configuration element supports the following child elements:

	
dataset-name

	
event-type-list

	
provider-name

	
store-policy-parameters

	
max-size

	
max-threads

	
One of:

	
time-range

	
time-range-offset

	
batch-size

	
batch-time-out

D.81.2 Attributes

The record-parameters component has no attributes.

D.81.3 Example

The following example shows how to use the record-parameters element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.82 repeat

Use this element to define whether or not to repeat playback-parameters.

Valid values are:

	
true

	
false

D.82.1 Child Elements

The repeat component configuration element has no child elements.

D.82.2 Attributes

The repeat component has no attributes.

D.82.3 Example

The following example shows how to use the duration element in the component configuration file:

<playback-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>
 <repeat>true</repeat>
</playback-parameters>

D.83 rule

Use this element to define an EPL rule for a component.

This element is applicable only in a rules element.

D.83.1 Child Elements

The rule component configuration element has no child elements.

D.83.2 Attributes

Table D-8 lists the attributes of the rule component configuration element.

Table D-8 Attributes of the rule Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this rule.

	
String

	
Yes.

	
active

	
Execute this rule when the application is deployed and run.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
ordering-constraint

	
Enable or disable parallel query execution, through which events can be processed in parallel rather than serially.

The attribute supports the following three values:

	
ORDERED means that the query must handle events serially. This is the default behavior.

	
UNORDERED means that, whenever possible, the CQL processor will execute in parallel on multiple threads to process the events.

	
PARTITION_ORDERED means that when the query is partitioning events, ensure total order within a partition and (if possible) disregard order across partitions.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

	
partition-expression

	
The partition expression (used in the CQL code) that should be the basis for relaxing the cross-partition ordering constraint.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

D.83.3 Example

The following example shows how to use the rule element in the component configuration file:

<processor>
 <name>rvSampleProcessor</name>
 <rules>
 <rule id="rvSampleRule1"><![CDATA[
 select * from RVSampleEvent retain 1 event
]]></rule>
 </rules>
</processor>

D.84 rules

Use this element to define one or more Oracle CQL queries or views for a processor (Oracle CQL) or EPL rules for a processor (EPL).

D.84.1 Child Elements

The rules component configuration element supports the following child elements:

	
rule

	
query

	
view

D.84.2 Attributes

The rules component has no attributes.

D.84.3 Example

The following example shows how to use the rules element in the component configuration file:

<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,
 ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
 bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,
 "BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>
 </rules>
</processor>

D.85 schedule-time-range

Use this element to define the time during which events will be played back to the stage. Playing back will start at the specified start time and will continue until all the events are played back or specified end time. If repeat is set to true, playback will continue until the specified end time or until playback is explicitly stopped by the user.

This element is applicable only to the playback-parameters element.

D.85.1 Child Elements

The schedule-time-range component configuration element supports the following child elements:

	
start

	
end

D.85.2 Attributes

The schedule-time-range component has no attributes.

D.85.3 Example

The following example shows how to use the schedule-time-range element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <schedule-time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </schedule-time-range>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.86 schedule-time-range-offset

Use this element to define the time during which events will be played back to the stage. Playing back will start at the specified start time and will continue until all the events are played back or specified end time. If repeat is set to true, playback will continue until the specified end time or until playback is explicitly stopped by the user.

This element is applicable only to the playback-parameters element.

D.86.1 Child Elements

The schedule-time-range-offset component configuration element supports the following child elements:

	
start

	
duration

D.86.2 Attributes

The schedule-time-range-offset component has no attributes.

D.86.3 Example

The following example shows how to use the schedule-time-range-offset element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <schedule-time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </schedule-time-range-offset>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.87 selector

Use this element to specify which up-stream Oracle CQL processor queries are permitted to output their results to a downstream channel.

Figure D-1 shows an EPN with channel filteredStream connected to up-stream Oracle CQL processor filteredFanoutProcessor.

Figure D-1 EPN With Oracle CQL Processor and Down-Stream Channel

[image: Description of Figure D-1 follows]

Example D-12 shows the queries configured for the Oracle CQL processor.

Example D-12 filterFanoutProcessor Oracle CQL Queries

<processor>
 <name>filterFanoutProcessor</name>
 <rules>
 <query id="Yr3Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="3_YEAR"
]]></query>
 <query id="Yr2Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="2_YEAR"
]]></query>
 <query id="Yr1Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="1_YEAR"
]]></query>
 </rules>
</processor>

If you specify more than one query for an Oracle CQL processor as Example D-12 shows, then, by default, all query results are output to the processor's out-bound channel (filteredStream in Figure D-1). Optionally, in the component configuration source, you can use the channel element selector child element to specify a space-delimited list of one or more Oracle CQL query names that may output their results to the channel as Example D-13 shows. In this example, query results for query Yr3Sector and Yr2Sector are output to filteredStream but not query results for query Yr1Sector.

Example D-13 Using selector to Control Which Query Results are Output

<channel>
 <name>filteredStream</name>
 <selector>Yr3Sector Yr2Sector</selector>
</channel>

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

	
Note:

The selector attribute is only applicable if the up-stream node is an Oracle CQL processor. For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

D.87.1 Child Elements

The selector component configuration element has no child elements.

D.87.2 Attributes

The selector component has no attributes.

D.87.3 Example

The following example shows how to use the selector element in the component configuration file:

<processor>
 <name>PatternProcessor</name>
 <rules>
 <query id="match"><![CDATA[
 select T.firstW as firstw, T.lastZ as lastz, T.price as price
 from StockInputsStream
 MATCH_RECOGNIZE (
 MEASURES A.c1 as firstW, last(Z.c1) as lastZ, A.c2 as price
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE A as A.c1 = A.c1,
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2))
 as T
]]></query>
 <query id="stock"><![CDATA[
 select c1 as ts, c2 as price from StockInputsStream
]]></query>
 </rules>
</processor>
<channel>
 <name>StockOutputChannel</name>
 <selector>stock</selector>
</channel>
<channel>
 <name>MatchOutputChannel</name>
 <selector>match</selector>
</channel>

D.88 server-context-path

Required. For each local http-pub-sub-adapter for publishing, specify the value of the Oracle Event Processing server config.xml file element http-pubsub child element path of the local HTTP pub-sub server associated with the Oracle Event Processing instance hosting the current Oracle Event Processing application.

Default: /pubsub.

If you have created a new local HTTP pub-sub server, or changed the default configuration, then specify the appropriate path child element value.

	
Note:

Do not specify this option for a remote HTTP pub-sub adapter.

D.88.1 Child Elements

The server-context-path component configuration element has no child elements.

D.88.2 Attributes

The server-context-path component has no attributes.

D.88.3 Example

The following example shows how to use the server-context-path element in the component configuration file:

<http-pub-sub-adapter>
 <name>localPub</name>
 <server-context-path>/pubsub</server-context-path>
 <channel>/test1</channel>
</http-pub-sub-adapter>

D.89 server-url

Required. For each remote http-pub-sub-adapter for publishing or subscribing, specify the URL of the remote HTTP pub-sub server to which the Oracle Event Processing application will publish. The remote HTTP pub-sub server could be another instance of Oracle Event Processing, or a WebLogic Server instance, or it could be any third-party HTTP pub-sub server. For example:

http://myhost.com:9102/pubsub

	
Note:

Do not specify this option for a local HTTP pub-sub adapter.

D.89.1 Child Elements

The server-url component configuration element has no child elements.

D.89.2 Attributes

The server-url component has no attributes.

D.89.3 Example

The following example shows how to use the server-url element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

In the example, the URL of the remote HTTP pub-sub server to which the remotePublisher adapter will publish events is http://myhost.com:9102/pubsub.

D.90 session-ack-mode-name

Use this element to define the session acknowledge mode name for a jms-adapter.

Valid values from javax.jms.Session are:

	
AUTO_ACKNOWLEDGE: With this acknowledgment mode, the session automatically acknowledges a client's receipt of a message either when the session has successfully returned from a call to receive or when the message listener the session has called to process the message successfully returns.

	
CLIENT_ACKNOWLEDG: With this acknowledgment mode, the client acknowledges a consumed message by calling the message's acknowledge method.

	
DUPS_OK_ACKNOWLEDGE: This acknowledgment mode instructs the session to lazily acknowledge the delivery of messages.

Default: AUTO_ACKNOWLEDGE.

D.90.1 Child Elements

The session-ack-mode-name component configuration element has no child elements.

D.90.2 Attributes

The session-ack-mode-name component has no attributes.

D.90.3 Example

The following example shows how to use the session-ack-mode-name element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <session-ack-mode-name>AUTO_ACKNOWLEDGE</session-ack-mode-name>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.91 session-transacted

Use this element to define whether or not a session is transacted for both an inbound or outbound jms-adapter.

Valid values are:

	
true

	
false

D.91.1 Child Elements

The session-transacted component configuration element has no child elements.

D.91.2 Attributes

The session-transacted component has no attributes.

D.91.3 Example

The following example shows how to use the session-transacted element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <session-ack-mode-name>AUTO_ACKNOWLEDGE</session-ack-mode-name>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.92 stage

Use this element to define the stage for a start-location or end-location element of a diagnostic profile.

Valid values are the name of an existing stage in your Event Processing Network (EPN).

D.92.1 Child Elements

The stage component configuration has no child elements:

D.92.2 Attributes

The stage component has no attributes.

D.92.3 Example

The following example shows how to use the stage element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.93 start

Use this element to define a start time for a time-range, time-range-offset, or schedule-time-range-offset element.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

D.93.1 Child Elements

The start component configuration element has no child elements.

D.93.2 Attributes

The start component has no attributes.

D.93.3 Example

The following example shows how to use the start element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.94 start-location

Use this element to define the start location of a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.94.1 Child Elements

The start-location component configuration element supports the following child elements:

	
application

	
stage

	
direction

D.94.2 Attributes

The start-location component has no attributes.

D.94.3 Example

The following example shows how to use the start-location element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.95 start-stage

Use this element to define the starting stage of a diagnostic profile.

Valid values are the name of an existing stage in your Event Processing Network (EPN).

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.95.1 Child Elements

The start-stage component configuration element has no child elements.

D.95.2 Attributes

The start-stage component has no attributes.

D.95.3 Example

The following example shows how to use the start-stage element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.96 store-policy-parameters

Use this element to define one or more store policy parameter, specific to the event store provider.

D.96.1 Child Elements

The store-policy-parameter component configuration element supports the following child elements:

	
parameter

D.96.2 Attributes

The store-policy-parameter component has no attributes.

D.96.3 Example

The following example shows how to use the store-policy-parameter element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.97 stream

Use this element to define a stream component.

	
Note:

The stream component is deprecated in 11g Release 1 (11.1.1). Use the channel element instead.

D.97.1 Child Elements

The stream component configuration element supports the following child elements:

	
name

	
record-parameters

	
playback-parameters

	
max-size

	
max-threads

D.97.2 Attributes

The stream component has no attributes.

D.97.3 Example

The following example shows how to use the stream element in the component configuration file:

<stream>
 <name>fxMarketEuroOut</name>
 <max-size>0</max-size>
 <max-threads>0</max-threads>
</stream>

In the example, the stream's unique identifier is fxMarketEuroOut.

D.98 symbol

Use this element to define a symbol for an adapter, http-pub-sub-adapter, or jms-adapter element.

	
Note:

The symbol component is deprecated in 11g Release 1 (11.1.1).

D.98.1 Child Elements

The symbol component configuration has no child elements:

D.98.2 Attributes

The symbol component has no attributes.

D.98.3 Example

The following example shows how to use the symbol element in the component configuration file:

<adapter>
 <name>trackdata</name>
 <symbols>
 <symbol>BEAS</symbol>
 <symbol>IBM</symbol>
 </symbols>
</adapter>

D.99 symbols

Use this element to define one or more symbol elements for a component.

	
Note:

The symbol component is deprecated in 11g Release 1 (11.1.1).

D.99.1 Child Elements

The symbols component configuration element supports the following child elements:

	
symbol

D.99.2 Attributes

The symbols component has no attributes.

D.99.3 Example

The following example shows how to use the symbols element in the component configuration file:

<adapter>
 <name>trackdata</name>
 <symbols>
 <symbol>BEAS</symbol>
 <symbol>IBM</symbol>
 </symbols>
</adapter>

D.100 threshold

Use this element to define the threshold above which Oracle Event Processing server logs a monitoring event.

This element is applicable only in an average-latency element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.100.1 Child Elements

The threshold component configuration element supports the following child elements:

	
amount

	
unit

D.100.2 Attributes

The threshhold component has no attributes.

D.100.3 Example

The following example shows how to use the threshhold element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <average-latency>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 <threshhold>
 <amount>100</amount>
 <unit>MILLISECONDS</unit>
 </threshhold>
 </average-latency>
 </profile>
</diagnostic-profiles>

D.101 throughput

Use this element to define a throughput diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.101.1 Child Elements

The throughput component configuration element supports the following child elements:

	
name

	
throughput-interval

	
average-interval

	
location

D.101.2 Attributes

The throughput component has no attributes.

D.101.3 Example

The following example shows how to use the throughput element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <throughput>
 <throughput-interval>
 <amount>100000</amount>
 <unit>MICROSECONDS</unit>
 </throughput-interval>
 <average-interval>
 <amount>100000000</amount>
 <unit>NANOSECONDS</unit>
 </average-interval>
 <location>
 <application>diagnostic</application>
 <stage>AlertEventStream</stage>
 <direction>INBOUND</direction>
 </location>
 </throughput>
 </profile>
</diagnostic-profiles>

D.102 throughput-interval

Use this element to define the throughput interval of a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

D.102.1 Child Elements

The throughput-interval component configuration element supports the following child elements:

	
amount

	
unit

D.102.2 Attributes

The throughput-interval component has no attributes.

D.102.3 Example

The following example shows how to use the throughput-interval element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <throughput>
 <throughput-interval>
 <amount>100000</amount>
 <unit>MICROSECONDS</unit>
 </throughput-interval>
 <average-interval>
 <amount>100000000</amount>
 <unit>NANOSECONDS</unit>
 </average-interval>
 <location>
 <application>diagnostic</application>
 <stage>AlertEventStream</stage>
 <direction>INBOUND</direction>
 </location>
 </throughput>
 </profile>
</diagnostic-profiles>

D.103 time-range

Use this element to define a filter that Oracle Event Processing server applies to the events in the event store. Only events with a record-time in this time range will be played back to the stage.

Use either time-range-offset or time-range but not both.

For more information, see Chapter 20, "Configuring Event Record and Playback".

D.103.1 Child Elements

The time-range component configuration element supports the following child elements:

	
start

	
end

D.103.2 Attributes

The time-range component has no attributes.

D.103.3 Example

The following example shows how to use the time-range element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.104 time-range-offset

Use this element to define a filter that Oracle Event Processing server applies to the events in the event store. Only events with a record-time in this time range will be played back to the stage.

Use either time-range or time-range-offset but not both.

For more information, see Chapter 20, "Configuring Event Record and Playback".

D.104.1 Child Elements

The time-range-offset component configuration element supports the following child elements:

	
start

	
duration

D.104.2 Attributes

The time-range-offset component has no attributes.

D.104.3 Example

The following example shows how to use the time-range-offset element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.105 time-to-live

Use this element to define the maximum amount of time, in milliseconds, that an entry is cached. Default value is infinite.

For more information, see Section 13.3, "Configuring an Oracle Event Processing Local Caching System and Cache".

D.105.1 Child Elements

The time-to-live component configuration element has no child elements.

D.105.2 Attributes

The time-to-live component has no attributes.

D.105.3 Example

The following example shows how to use the time-to-live element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.106 trace-parameters

Use this element to configure event tracing for a stage in the event processing network.

For more information about event tracing, see Section 22.4, "Tracing Events".

D.106.1 Child Elements

The trace-parameters component configuration element supports the following child elements:

	
channel-name

	
active

D.106.2 Attributes

The trace-parameters component configuration element has no attributes.

D.106.3 Example

The component configuration excerpt shown in the following example illlustrates how you might configure a processor for event tracing. The trace-parameters element's active child element specifies that tracing is on, while the channel-name element specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
 <name>FindCrossRates</name>
 <trace-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </trace-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

D.107 unit

Use this element to define the duration units of amount element.

Valid values are:

	
NANOSECONDS

	
MICROSECONDS

	
MILLISECONDS

	
SECONDS

	
MINUTES

	
HOURS

	
DAYS

D.107.1 Child Elements

The unit component configuration has no child elements:

D.107.2 Attributes

The unit component has no attributes.

D.107.3 Example

The following example shows how to use the unit element in the component configuration file:

<diagnostic-profiles>
 <name>myselfprofiles</name>
 <profile>
 <name>testProfile0</name>
 <enabled>true</enabled>
 <start-stage>MetricSubscriber</start-stage>
 <max-latency>
 <collect-interval>
 <amount>1000</amount>
 <unit>s</unit>
 </collect-interval>
 <name>testProfile0MaxLat</name>
 <start-location>
 <application>diagnostic</application>
 <stage>MetricSubscriber</stage>
 <direction>INBOUND</direction>
 </start-location>
 <end-location>
 <application>diagnostic</application>
 <stage>MonitorProcessor</stage>
 <direction>OUTBOUND</direction>
 </end-location>
 </max-latency>
 </profile>
</diagnostic-profiles>

D.108 user

Use the user element in the following parent elements:

	
http-pub-sub-adapter: Use the user element to define the user name if the HTTP pub-sub server to which the Oracle Event Processing application is publishing requires user authentication.

	
jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it uses the user and password (or encrypted-password) elements. When Oracle Event Processing calls the createConnection method on the javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS queue or topic), it uses the connection-user and connection-password (or connection-encrypted-password element), if configured. Otherwise, Oracle Event Processing uses the user and password (or encrypted-password) elements.

D.108.1 Child Elements

The user component configuration element has no child elements.

D.108.2 Attributes

The user component has no attributes.

D.108.3 Example

The following example shows how to use the user element in the component configuration file:

<http-pub-sub-adapter>
 <name>remotePub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/test1</channel>
 <event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

D.109 value

Use this element to define the value of a parameter element.

D.109.1 Child Elements

The value component configuration element has no child elements.

D.109.2 Attributes

The value component has no attributes.

D.109.3 Example

The following example shows how to use the value element in the component configuration file:

<record-parameters>
 <dataset-name>tuple1</dataset-name>
 <event-type-list>
 <event-type>TupleEvent1</event-type>
 </event-type-list>
 <provider-name>test-rdbms-provider</provider-name>
 <store-policy-parameters>
 <parameter>
 <name>timeout</name>
 <value>300</value>
 <parameter>
 </store-policy-parameters>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
</record-parameters>

D.110 view

Use this element to define an Oracle CQL view for a component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

D.110.1 Child Elements

The view component configuration element has no child elements.

D.110.2 Attributes

Table D-9 lists the attributes of the view component configuration element.

Table D-9 Attributes of the view Component Configuration Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this query.

	
String

	
Yes.

	
active

	
Execute this query when the application is deployed and run.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
ordering-constraint

	
Enable or disable parallel query execution, through which events can be processed in parallel rather than serially.

The attribute supports one of the following three values:

	
ORDERED means that the query must handle events serially. This is the default behavior.

	
UNORDERED means that, whenever possible, the CQL processor will execute in parallel on multiple threads to process the events.

	
PARTITION_ORDERED means that when the query is partitioning events, ensure total order within a partition and (if possible) disregard order across partitions.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

	
partition-expression

	
The partition expression (used in the CQL code) that should be the basis for relaxing the cross-partition ordering constraint.

For more information see "Using the ordering-constraint Attribute" in Chapter 17, "Querying an Event Stream with Oracle CQL".

	
String

	
No.

	
schema

	
Space delimited list of stream elements used in the view.

	
String of space delimited tokens.

	
No.

D.110.3 Example

The following example shows how to use the view element in the component configuration file:

<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,
 ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
 bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,
 "BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>
 </rules>
</processor>

D.111 work-manager

Use this element to define the name of a work manager for a jms-adapter.

Valid value is the name specified in the Oracle Event Processing server config.xml file work-manager element name child element.The default value is the work manager configured for the application itself.

For more information, see Section F.45, "work-manager".

D.111.1 Child Elements

The work-manager component configuration element has no child elements:

D.111.2 Attributes

The work-manager component has no attributes.

D.111.3 Example

The following example shows how to use the work-manager element in the component configuration file:

<jms-adapter>
 <name>jmsInbound-text</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-name>JMSServer-0/Module1!Queue1</destination-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>false</session-transacted>
</jms-adapter>

D.112 work-manager-name

Use this element to define a work manager for a cache.

The listeners element has a single child element, work-manager-name, that specifies the work manager to be used for asynchronously invoking listeners. This value is ignored if synchronous invocations are enabled. If a work manager is specified for the cache itself, this value overrides it for invoking listeners only.

Valid value is the name specified in the Oracle Event Processing server config.xml file work-manager element name child element.The default value is the work manager configured for the application itself.

D.112.1 Child Elements

The work-manager-name component configuration element has no child elements:

D.112.2 Attributes

The work-manager-name component has no attributes.

D.112.3 Example

The following example shows how to use the work-manager-name element in the component configuration file:

<cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
</cache>

D.113 write-behind

Use this element to specify asynchronous writes to the cache store. The cache store is invoked from a separate thread after a create or update of a cache entry. This element may be changed dynamically.

D.113.1 Child Elements

The write-behind component configuration element supports the following child elements:

	
work-manager-name

	
batch-size

	
buffer-size

	
buffer-write-attempts

	
buffer-write-timeout

D.113.2 Attributes

The write-behind component has no attributes.

D.113.3 Example

The following example shows how to use the write-behind element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <batch-size>100</batch-size>
 <buffer-size>100</buffer-size>
 <buffer-write-attempts>100</buffer-write-attempts>
 <buffer-write-timeout>100</buffer-write-timeout>
 </write-behind>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.114 write-none

Use this element to specify no writes to a cache store. This is the default write policy. This element may be changed dynamically.

D.114.1 Child Elements

The write-none component configuration element has no child elements.

D.114.2 Attributes

The write-none component has no attributes.

D.114.3 Example

The following example shows how to use the write-none element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-none/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

D.115 write-through

Use this element to specify synchronous writes to the cache store. As soon as an entry is created or updated the write occurs. This element may be changed dynamically.

D.115.1 Child Elements

The write-through component configuration element has no child elements.

D.115.2 Attributes

The write-through component has no attributes.

D.115.3 Example

The following example shows how to use the write-through element in the component configuration file:

<caching-system>
 <name>providerCachingSystem</name>
 <cache>
 <name>providerCache</name>
 <max-size>1000</max-size>
 <eviction-policy>FIFO</eviction-policy>
 <time-to-live>60000</time-to-live>
 <idle-time>120000</idle-time>
 <write-through/>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <listeners asynchronous="false">
 <work-manager-name>JettyWorkManager</work-manager-name>
 </listeners>
 </cache>
</caching-system>

E Schema Reference: Deployment deployment.xsd

This appendix provides a reference to the elements of the deployment.xsd schema, the schema behind the XML with which you configure Oracle Event Processing application deployment.

This appendix includes the following sections:

	
Section E.1, "Overview of the Oracle Event Processing Deployment Elements"

	
Section E.2, "wlevs:deployment"

E.1 Overview of the Oracle Event Processing Deployment Elements

Oracle Event Processing provides a number of application assembly elements that you use in the EPN assembly file of your application to register event types, declare the components of the event processing network and specify how they are linked together. The EPN assembly file is an extension of the standard Spring context file.

E.1.1 Element Hierarchy

The Oracle Event Processing component configuration elements are organized into the following hierarchy:

beans
 Standard Spring and OSGi elements such as bean, osgi-service, and so on.

E.1.2 Example of an Oracle Event Processing Deployment Configuration File

The following sample deployment configuration file from the fx application shows how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment
 id="fx"
 state="start"
 location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>
</beans>

E.2 wlevs:deployment

Use this element to declare an adapter component to the Spring application context.

E.2.1 Child Elements

The wlevs:deployment deployment element has no child elements:

E.2.2 Attributes

Table E-1 lists the attributes of the wlevs:deployment deployment element.

Table E-1 Attributes of the wlevs:deployment Deployment Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this deployed application.

	
String

	
Yes.

	
depends-on

	
The names of the beans that this deployment bean depends on being initialized. The bean factory will guarantee that these beans get initialized before this bean.

	
String

	
Yes.

	
location

	
URL that specifies the location of the bundle that is to be deployed. If a relative URL is specified then the location is relative the DOMAIN_DIR domain directory.

For example:

location="file:applications/simpleApp/simpleApp.jar"

Specifies that the bundle simpleApp.jar, located in the DOMAIN_DIR/applications/simpleApp directory, is to be deployed to Oracle Event Processing server.

	
String

	
No.

	
state

	
Specifies the state that the bundle should be in once it is deployed to the Oracle Event Processing server. The value of this attribute must be one of the following:

	
start: Install and start the bundle so that it immediately begins taking client requests.

	
install: Install the bundle, but do not start it.

	
update: Update an existing bundle.

Default value: start.

	
String

	
No.

E.2.3 Example

The following example shows how to use the wlevs:deployment element in the deployment file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment
 id="fx"
 state="start"
 location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>
</beans>

F Schema Reference: Server Configuration wlevs_server_config.xsd

This appendix provides a reference to elements of the welvs_server_config.xsd schema, the schema behind XML you use to configure Oracle Event Processing server attributes and services such as logging, Oracle Continuous Query Language (CQL), Secure Sockets Layer (SSL), Java Management Extensions (JMX), HTTP Publish-Subscribe, and more.

This appendix includes the following sections:

	
Section F.1, "Overview of the Oracle Event Processing Server Configuration Elements"

	
Section F.2, "auth-constraint"

	
Section F.3, "bdb-config"

	
Section F.4, "channels"

	
Section F.5, "channel-constraints"

	
Section F.6, "channel-resource-collection"

	
Section F.7, "cluster"

	
Section F.8, "connection-pool-params"

	
Section F.9, "cql"

	
Section F.10, "data-source"

	
Section F.11, "data-source-params"

	
Section F.12, "driver-params"

	
Section F.13, "domain"

	
Section F.14, "debug"

	
Section F.15, "event-store"

	
Section F.16, "exported-jndi-context"

	
Section F.17, "http-pubsub"

	
Section F.18, "jetty"

	
Section F.19, "jetty-web-app"

	
Section F.20, "jmx"

	
Section F.21, "jndi-context"

	
Section F.22, "log-file"

	
Section F.23, "log-stdout"

	
Section F.24, "logging-service"

	
Section F.25, "message-filters"

	
Section F.26, "name"

	
Section F.27, "netio"

	
Section F.28, "netio-client"

	
Section F.29, "partition-order-capacity"

	
Section F.30, "path"

	
Section F.31, "pubsub-bean"

	
Section F.32, "rdbms-event-store-provider"

	
Section F.33, "rmi"

	
Section F.34, "scheduler"

	
Section F.35, "server-config"

	
Section F.36, "services"

	
Section F.37, "show-detail-error-message"

	
Section F.38, "ssl"

	
Section F.39, "timeout-seconds"

	
Section F.40, "transaction-manager"

	
Section F.41, "use-secure-connections"

	
Section F.42, "weblogic-instances"

	
Section F.43, "weblogic-jta-gateway"

	
Section F.44, "weblogic-rmi-client"

	
Section F.45, "work-manager"

	
Section F.46, "xa-params"

F.1 Overview of the Oracle Event Processing Server Configuration Elements

Oracle Event Processing provides a number of server configuration elements that you use to configure Oracle Event Processing server-specific attributes and services.

F.1.1 Element Hierarchy

The top-level Oracle Event Processing server configuration elements are organized into the following hierarchy:

	
config

	
domain

	
rmi

	
jndi-context

	
exported-jndi-context

	
jmx

	
transaction-manager

	
work-manager

	
logging-service

	
log-stdout

	
log-file

	
jetty-web-app

	
netio

	
jetty

	
netio-client

	
debug

	
data-source

	
http-pubsub

	
event-store

	
cluster

	
bdb-config

	
rdbms-event-store-provider

	
ssl

	
weblogic-rmi-client

	
weblogic-jta-gateway

	
use-secure-connections

	
show-detail-error-message

	
cql

F.1.2 Example of an Oracle Event Processing Server Configuration File

The following sample Oracle Event Processing server configuration file from the HelloWorld application shows how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <domain>
 <name>WLEventServerDomain</name>
 </domain>

 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>

 <netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
 </netio>

 <work-manager>
 <name>JettyWorkManager</name>
 <min-threads-constraint>5</min-threads-constraint>
 <max-threads-constraint>10</max-threads-constraint>
 </work-manager>

 <jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 </jetty>

 <rmi>
 <name>RMI</name>
 <http-service-name>JettyServer</http-service-name>
 </rmi>

 <jndi-context>
 <name>JNDI</name>
 </jndi-context>

 <exported-jndi-context>
 <name>exportedJndi</name>
 <rmi-service-name>RMI</rmi-service-name>
 </exported-jndi-context>

 <jmx>
 <rmi-service-name>RMI</rmi-service-name>
 <rmi-jrmp-port>9999</rmi-jrmp-port>
 <jndi-service-name>JNDI</jndi-service-name>
 <rmi-registry-port>9004</rmi-registry-port>
 </jmx>

 <ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
 </ssl>

 <http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>

 <!-- Sample cluster configuration -->
 <!--
 <cluster>
 <server-name>myServer</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>coherence</enabled>
 <security>none</security>
 <groups></groups>
 </cluster>
 -->

 <logging-service>
 <name>myLogService</name>
 <log-file-config>myFileConfig</log-file-config>
 <stdout-config>myStdoutConfig</stdout-config>
 <logger-severity>Notice</logger-severity>
 <!-- logger-severity-properties is used to selectively enable logging for
 individual categories -->
 <!--logger-severity-properties>
 <entry>
 <key>org.springframework.osgi.extender.internal.dependencies.startup</key>
 <value>Debug</value>
 </entry>
 </logger-severity-properties-->
 </logging-service>

 <log-file>
 <name>myFileConfig</name>
 <rotation-type>none</rotation-type>
 </log-file>

 <log-stdout>
 <name>myStdoutConfig</name>
 <stdout-severity>Debug</stdout-severity>
 </log-stdout>

</n1:config>

F.2 auth-constraint

Use this element to configure an authorization constraint for a channel-constraints element.

For more information on channels, see channels.

F.2.1 Child Elements

The auth-constraint server configuration element supports the child elements that Table F-1 lists

Table F-1 Child Elements of: auth-constraint

	XML Tag	Type	Description
	
description

	
string

	
The description of the role.

	
role-name

	
string

	
A valid role name.

"Users, Groups, and Roles" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

F.2.2 Attributes

The auth-constraint server configuration element has no attributes.

F.2.3 Example

The following example shows how to use the auth-constraint element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
...
 <auth-constraint>
 <description>Administrators</description>
 <role-name>admin</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.3 bdb-config

Use this element to configure the default event store provider that uses a Berkeley database instance.

Optionally, you may configure Oracle Event Processing server to use a relational database instance as the event store provider as Section F.32, "rdbms-event-store-provider" describes.

F.3.1 Child Elements

The bdb-config server configuration element supports the child elements that Table F-2 lists

Table F-2 Child Elements of: bdb-config

	XML Tag	Type	Description
	
db-env-path

	
string

	
Specifies the subdirectory in which Oracle Event Processing server creates Berkeley database instances relative to the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

Default: bdb

	
cache-size

	
long

	
Specifies the amount of memory, in bytes, available for Berkeley database cache entries. You can adjust the cache size to tune Berkeley database performance.

For more information, see:

	
http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/cachesize.html.

	
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/EnvironmentMutableConfig.html#setCacheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

F.3.2 Attributes

The bdb-config server configuration element has no attributes.

F.3.3 Example

The following example shows how to use the bdb-config element in the Oracle Event Processing server configuration file:

<bdb-config>
 <db-env-path>bdb</db-env-path>
 <cache-size>1000</cache-size>
</bdb-config>

F.4 channels

Use this element to configure one or more channels for a pubsub-bean element.

Channel patterns always begin with a forward slash (/). Clients subscribe to these channels to either publish or receive messages

F.4.1 Child Elements

The channels server configuration element contains one or more element child elements that each contain a channel-pattern child element and zero or more message-filters child elements. Each message-filters child element contains an element child element with the string value of a message-filter-name that corresponds to a message-filters element.

F.4.2 Attributes

The channels server configuration element has no attributes.

F.4.3 Example

The following example shows how to use the channels element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>
 true
 </publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

F.5 channel-constraints

Use this element to configure one or more channel constraints for a pubsub-bean element.

For more information on channels, see channels.

F.5.1 Child Elements

The channel-constraints server configuration element contains one or more element child element that each support the following child elements:

	
channel-resource-collection

	
auth-constraint

F.5.2 Attributes

The channel-constraints server configuration element has no attributes.

F.5.3 Example

The following example shows how to use the channel-constraints element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
 <channel-resource-collection>
 <element>
 <channel-resource-name>Foo</channel-resource-name>
 <descriptions>
 <element>Foo</element>
 </descriptions>
 <channel-patterns>
 <element>Foo</element>
 </channel-patterns>
 <channel-operations>
 <element>Foo</element>
 </channel-operations>
 </element>
 </channel-resource-collection>
 <auth-constraint>
 <description>Foo</description>
 <role-name>Foo</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.6 channel-resource-collection

Use this element to configure one or more channel resource collections for a channel-constraints element.

For more information on channels, see channels.

F.6.1 Child Elements

The channel-resource-collection server configuration element contains zero or more element child elements that support the child elements that Table F-3 lists

Table F-3 Child Elements of: channel-resource-collection

	XML Tag	Type	Description
	
channel-resource-name

	
string

	
The name of this channel resource.

	
descriptions

	
string

	
Description of this channel resource collection.

This element contains an element child element with a string value.

	
channel-patterns

	
string

	
Specifies a channel pattern.

This element contains an element child element with a string value.

	
channel-operations

	
string

	
Specifies the operation to channel, validate values include:

	
create

	
delete

	
subscribe

	
publish

This element contains an element child element with a string value.

F.6.2 Attributes

The channel-resource-collection server configuration element has no attributes.

F.6.3 Example

The following example shows how to use the channel-resource-collection element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
 <channel-resource-collection>
 <element>
 <channel-resource-name>Foo</channel-resource-name>
 <descriptions>
 <element>Foo</element>
 </descriptions>
 <channel-patterns>
 <element>Foo</element>
 </channel-patterns>
 <channel-operations>
 <element>Foo</element>
 </channel-operations>
 </element>
 </channel-resource-collection>
 <auth-constraint>
 <description>Foo</description>
 <role-name>Foo</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.7 cluster

Use this element to configure a cluster component in the Oracle Event Processing server.

For more information, see "Administrating Multi-Server Domains With Oracle Event Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

F.7.1 Child Elements

The cluster server configuration element supports the child elements that Table F-4 lists.

Table F-4 Child Elements of: cluster

	XML Tag	Type	Description
	
name

	
string

	
The name of this cluster. For more information, see name.

	
server-name

	
string

	
Specifies a unique name for the server. Oracle Event Processing Visualizer uses the value of this element when it displays the server in its console.

Default value:

	
Oracle Event Processing native clustering: WLEvServer-identity where identity is the value of the identity element.

	
Oracle Coherence: WLEvServer-identity where identity is the member ID as determined by Oracle Coherence.

	
server-host-name

	
string

	
Specifies the host address or IP used for point-to-point HTTP multi-server communication. Default value is the IP address associated with the default NIC for the machine.

	
multicast-address

	
string

	
This child element is required unless all servers of the multi-server domain are hosted on the same computer; in that case you can omit the multicast-address element and Oracle Event Processing automatically assigns a multicast address to the multi-server domain based on the computer's IP address.

If, however, the servers are hosted on different computers, then you must provide an appropriate domain-local address. Oracle recommends you use an address of the form 239.255.X.X, which is what the auto-assigned multicast address is based on.

All the Oracle Event Processing servers using this multicast-address must be on the same subnet.

Using Oracle Coherence, there is also an extension: if you use a unicast address then Oracle Coherence will be configured in Well Known Address (WKA) mode. This is necessary in environments that do not support multicast.

	
multicast-interface

	
string

	
The name of the interface that the multicast address should be bound to. This can be one of:

	
Simple name, such as eth0.

	
IP address to which the NIC is bound, such as 192.168.1.2.

	
IP address and network mask to which the NIC is bound separated by a /, such as 192.68.1.2/255.255.255.0.

	
multicast-port

	
int

	
Specifies the port used for multicast traffic. Default value is 9100.

	
identity

	
string

	
Applicable only to Oracle Event Processing native clustering: specifies the server's identity and must be an integer between 1 and INT_MAX. Oracle Event Processing numerically compares the server identities during multi-server operations; the server with the lowest identity becomes the domain coordinator. Be sure that each server in the multi-server domain has a different identity; if servers have the same identity, the results of multi-server operations are unpredictable.

Not applicable to Oracle Coherence.

	
enabled

	
See Description

	
Specifies whether or not the cluster is enabled. Valid values:

	
coherence

	
evs4j

	
true: cluster is enabled (Oracle Coherence mode)

	
false: cluster is not enabled (default).

	
security

	
See Description

	
Specifies the type of security for this cluster. Valid values:

	
none—Default value. Specifies that no security is configured for the multi-server domain.

	
encrypt—Specifies that multi-server messages should be encrypted.

	
groups

	
string

	
Specifies a comma-separated list of the names of the groups this cluster belongs to. For more information, see "Groups" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
operation-timeout

	
int

	
Specifies, in milliseconds, the timeout for point-to-point HTTP multi-server requests. Default value is 30000.

F.7.2 Attributes

The cluster server configuration element has no attributes.

F.7.3 Example

The following example shows how to use the cluster element in the Oracle Event Processing server configuration file:

<cluster>
 <name>MyCluster</name>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>true</enabled>
</cluster>

In the example, the cluster element's unique identifier is MyCluster.

F.8 connection-pool-params

Use this element to specify connection pool-related data-source parameters.

F.8.1 Child Elements

The connection-pool-params server configuration element supports the child elements that Table F-5 lists.

Table F-5 Child Elements of: connection-pool-params

	XML Tag	Type	Description
	
statement-timeout

	
int

	
The time after which a statement currently being executed will time out. statement-timeout relies on underlying JDBC driver support. The server passes the time specified to the JDBC driver using the java.sql.Statement.setQueryTimeout method. If your JDBC driver does not support this method, it may throw an exception and the timeout value is ignored. A value of -1 disables this feature. A value of 0 means that statements will not time out.

Default: -1.

	
profile-harvest-frequency-seconds

	
int

	
The number of seconds between diagnostic profile harvest operations.

Default: 300.

	
inactive-connection-timeout-seconds

	
int

	
The number of inactive seconds on a reserved connection before the connection is reclaimed and released back into the connection pool.

Default: 0.

	
shrink-frequency-seconds

	
int

	
The number of seconds to wait before shrinking a connection pool that has incrementally increased to meet demand.

Default: 900.

	
driver-interceptor

	
string

	
Specifies the absolute name of the application class used to intercept method calls to the JDBC driver. The application specified must implement the weblogic.jdbc.extensions.DriverInterceptor interface.

	
seconds-to-trust-an-idle-pool-connection

	
int

	
The number of seconds within a connection use that the server trusts that the connection is still viable and will skip the connection test, either before delivering it to an application or during the periodic connection testing process.

Default: 10.

	
pinned-to-thread

	
boolean

	
This option can improve performance by enabling execute threads to keep a pooled database connection even after the application closes the logical connection.

Default: false.

	
test-connections-on-reserve

	
boolean

	
Test a connection before giving it to a client. Requires that you specify test-table-name.

Default: false.

	
profile-type

	
int

	
Specifies that type of profile data to be collected.

	
statement-cache-type

	
string

	
The algorithm used for maintaining the prepared statements stored in the statement cache. Valid values:

	
LRU - when a new prepared or callable statement is used, the least recently used statement is replaced in the cache

	
FIXED - the first fixed number of prepared and callable statements are cached

Default: LRU.

	
connection-reserve-timeout-seconds

	
int

	
The number of seconds after which a call to reserve a connection from the connection pool will timeout. When set to 0, a call will never timeout. When set to -1, a call will timeout immediately.

Default: -1.

	
credential-mapping-enabled

	
boolean

	
Enables the server to set a light-weight client ID on the database connection based on a map of database IDs when an application requests a database connection.

Default: false.

	
login-delay-seconds

	
int

	
The number of seconds to delay before creating each physical database connection. This delay supports database servers that cannot handle multiple connection requests in rapid succession. The delay takes place both during initial data source creation and during the lifetime of the data source whenever a physical database connection is created.

Default: 0.

	
test-table-name

	
string

	
The name of the database table to use when testing physical database connections. This name is required when you specify test-frequency-seconds and enable test-reserved-connections. The default SQL code used to test a connection is select count(*) from test-table-name where test-table-name is the value of the test-table-name element. Most database servers optimize this SQL to avoid a table scan, but it is still a good idea to set test-table-name to the name of a table that is known to have few rows, or even no rows. If test-table-name begins with SQL, then the rest of then the rest of the string following that leading token will be taken as a literal SQL statement that will be used to test connections instead of the standard query.

	
statement-cache-size

	
int

	
The number of prepared and callable statements stored in the cache between 1 and 1024. This may increase server performance.

Default: 10.

	
init-sql

	
string

	
SQL statement to execute that will initialize newly created physical database connections. Start the statement with SQL followed by a space.

	
connection-creation-retry-frequency-seconds

	
int

	
The number of seconds between attempts to establish connections to the database. If you do not set this value, data source creation fails if the database is unavailable. If set and if the database is unavailable when the data source is created, the server will attempt to create connections in the pool again after the number of seconds you specify, and will continue to attempt to create the connections until it succeeds. When set to 0, connection retry is disabled.

Default: 0.

	
test-frequency-seconds

	
int

	
The number of seconds between when the server tests unused connections. (Requires that you specify a Test Table Name.) Connections that fail the test are closed and reopened to re-establish a valid physical connection. If the test fails again, the connection is closed. In the context of multi data sources, this attribute controls the frequency at which the server checks the health of data sources it had previously marked as unhealthy. When set to 0, the feature is disabled.

Default: 120.

	
jdbc-xa-debug-level

	
int

	
Specifies the JDBC debug level for XA drivers.

Default: 10.

	
initial-capacity

	
int

	
The number of physical connections to create when creating the connection pool in the data source. If unable to create this number of connections, creation of the data source will fail.

Default: 1.

	
max-capacity

	
int

	
The maximum number of physical connections that this connection pool can contain.

Default: 15.

	
capacity-increment

	
int

	
The number of connections created when new connections are added to the connection pool.

Default: 1.

	
highest-num-waiters

	
int

	
The maximum number of connection requests that can concurrently block threads while waiting to reserve a connection from the data source's connection pool.

Default: Integer.MAX_VALUE.

F.8.2 Attributes

The connection-pool-params server configuration element has no attributes.

F.8.3 Example

The following example shows how to use the connection-pool-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.9 cql

Use this element to configure Oracle CQL-specific options in the Oracle Event Processing server.

F.9.1 Child Elements

The cql server configuration element supports the following child elements:

	
name

	
scheduler

	
partition-order-capacity

F.9.2 Attributes

The cql server configuration element has no attributes.

F.9.3 Example

The following example shows how to use the cql element in the Oracle Event Processing server configuration file:

<cql>
 <name>myCQL</name>
 <storage>
 <folder>myfolder</folder>
 <metadata-name>myname</metadata-name>
 </storage>
 <scheduler>
 <class-name>myclass</class-name>
 <threads>10</threads>
 <direct-interop>false</direct-interop>
 </scheduler>
</cql>

In the example, the cql element's unique identifier is myCQL.

F.10 data-source

This configuration type defines configuration for a DataSource service.

F.10.1 Child Elements

The data-source server configuration element supports the following child elements:

	
name

	
xa-params

	
data-source-params

	
connection-pool-params

	
driver-params

F.10.2 Attributes

The data-source server configuration element has no attributes.

F.10.3 Example

The following example shows how to use the data-source element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

In the example, the data-source element's unique identifier is orads.

F.11 data-source-params

Use this element to specify data source-related data-source parameters.

F.11.1 Child Elements

The data-source-params server configuration element supports the child elements that Table F-6 lists.

Table F-6 Child Elements of: data-source-params

	XML Tag	Type	Description
	
algorithm-type

	
See Description

	
The algorithm determines the connection request processing for the multi data source. Valid values:

	
Failover

	
Load-Balancing

Default: Failover.

	
stream-chunk-size

	
int

	
Specifies the data chunk size for steaming data types between 1 and 65536.

Default: 256.

	
row-prefetch

	
boolean

	
Specifies whether or not multiple rows to be prefetched (that is, sent from the server to the client) in one server access.

Default: false.

	
data-source-list

	
string

	
The list of data sources to which the multi data source will route connection requests. The order of data sources in the list determines the failover order.

	
failover-request-if-busy

	
boolean

	
For multi data sources with the Failover algorithm, enables the multi data source to failover connection requests to the next data source if all connections in the current data source are in use.

Default: false.

	
row-prefetch-size

	
int

	
If row prefetching is enabled, specifies the number of result set rows to prefetch for a client between 2 and 65536.

Default: 48.

	
jndi-names

	
See Description

	
The JNDI path to where this Data Source is bound. By default, the JNDI name is the name of the data source. This element contains the following child elements:

	
element: contains the string name of a valid data-source element. For more information, see data-source.

	
config-data-source-DataSourceParams-JNDINames.

	
scope

	
boolean

	
Specifies the scoping of the data source. Note that Global is the only scoped supported by MSA.

Default: Global.

	
connection-pool-failover-callback-handler

	
string

	
The name of the application class to handle the callback sent when a multi data source is ready to failover or fail back connection requests to another data source within the multi data source. The name must be the absolute name of an application class that implements the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

	
global-transactions-protocol

	
int

	
Determines the transaction protocol (global transaction processing behavior) for the data source. Valid values:

	
TwoPhaseCommit - Standard XA transaction processing. Requires an XA driver

	
LoggingLastResource - A performance enhancement for one non-XA resource

	
EmulateTwoPhaseCommit - Enables one non-XA resource to participate in a global transaction, but has some risk to data

	
OnePhaseCommit - One-phase XA transaction processing using a non-XA driver. This is the default setting

	
None - Support for local transactions only

Default: OnePhaseCommit.

F.11.2 Attributes

The data-source-params server configuration element has no attributes.

F.11.3 Example

The following example shows how to use the data-source-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.12 driver-params

Use this element to specify JDBC driver-related data-source parameters.

F.12.1 Child Elements

The driver-params server configuration element supports the child elements that Table F-7 lists.

Table F-7 Child Elements of: driver-params

	XML Tag	Type	Description
	
use-xa-data-source-interface

	
boolean

	
Specifies that the server should use the XA interface of the JDBC driver. If the JDBC driver class used to create database connections implements both XA and non-XA versions of a JDBC driver, you can set this attribute to indicate that the server should treat the JDBC driver as an XA driver or as a non-XA driver.

Default: true.

	
password

	
string

	
The password attribute passed to the JDBC driver when creating physical database connections.

	
driver-name

	
string

	
The full package name of JDBC driver class used to create the physical database connections in the connection pool in the data source.

	
url

	
string

	
The URL of the database to connect to. The format of the URL varies by JDBC driver. The URL is passed to the JDBC driver to create the physical database connections.

	
properties

	
string

	
Specifies the list of properties passed to the JDBC driver when creating physical database connections. This element contains one or more element child elements that contain child elements:

	
name: the property name.

	
value: the property value.

F.12.2 Attributes

The driver-params server configuration element has no attributes.

F.12.3 Example

The following example shows how to use the driver-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.13 domain

Use this element to configure a domain name in the Oracle Event Processing server.

F.13.1 Child Elements

The domain server configuration element supports the following child elements:

	
name

F.13.2 Attributes

The domain server configuration element has no attributes.

F.13.3 Example

The following example shows how to use the domain element in the Oracle Event Processing server configuration file:

<domain>
 <name>WLEventServerDomain</name>
</domain>

In the example, the domain's unique identifier is WLEventServerDomain.

F.14 debug

Use this element to configure one or more debug properties for the Oracle Event Processing server.

F.14.1 Child Elements

The debug server configuration element supports the child elements that Table F-8 lists.

Table F-8 Child Elements of: debug

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
debug-properties

	
string

	
One or more child elements formed by taking a debug flag name (without its package name) and specifying a value of true.

For more information including a full list of all debug flags, see "How to Configure Oracle Event Processing Debugging Options Using a Configuration File" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

F.14.2 Attributes

The debug server configuration element has no attributes.

F.14.3 Example

The following example shows how to use the debug element to turn on Simple Declarative Services (SDS) debugging using debug flag com.bea.core.debug.DebugSDS in the Oracle Event Processing server configuration file.

<debug>
 <name>myDebug</name>
 <debug-properties>
 <DebugSDS>true</DebugSDS>
...
 </debug-properties>
</debug>

F.15 event-store

Use this element to configure an event store for the Oracle Event Processing server.

F.15.1 Child Elements

The event-store server configuration element supports the child elements that Table F-9 lists.

Table F-9 Child Elements of: event-store

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
provider-order

	
string

	
Specifies the name of one or more provider child elements in the order in which the Oracle Event Processing server should access them.

For more information, see:

	
rdbms-event-store-provider

F.15.2 Attributes

The event-store server configuration element has no attributes.

F.15.3 Example

The following example shows how to use the event-store element in the Oracle Event Processing server configuration file:

<config>
 <event-store>
 <name>myEventStore</name>
 <provider-order>
 <provider>provider1</provider>
 <provider>provider2</provider>
 </provider-order>
 </event-store>
</config>

In the example, the adapter's unique identifier is myEventStore.

F.16 exported-jndi-context

This configuration type is used to export a remote JNDI service that may be accessed via clients using RMI. It registers the JNDI context with the RMI service, so that it may be accessed remotely by clients that pass a provider URL parameter when they create their InitialContext object. This service requires that a jndi-context configuration object also be specified. If it is not, then this service will not be able to start.

F.16.1 Child Elements

The exported-jndi-context server configuration element supports the child elements that Table F-10 lists.

Table F-10 Child Elements of: exported-jndi-context

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
rmi-service-name

	
string

	
The name of the RMI service that should be used to serve this JNDI context over the network. It must match an existing RMI object in the configuration. For more information, see rmi.

F.16.2 Attributes

The exported-jndi-context server configuration element has no attributes.

F.16.3 Example

The following example shows how to use the exported-jndi-context element in the Oracle Event Processing server configuration file:

<rmi>
 <name>myRMI</name>
 <http-service-name>TestJetty</http-service-name>
</rmi>

<exported-jndi-context>
 <name>RemoteJNDI</name>
 <rmi-service-name>myRMI</rmi-service-name>
</exported-jndi-context>

In the example, the adapter's unique identifier is RemoteJNDI.

F.17 http-pubsub

Use this element to configure an HTTP publish-subscribe service.

F.17.1 Child Elements

The http-pubsub server configuration element supports the following child elements:

	
name

	
path

	
pubsub-bean

F.17.2 Attributes

The http-pubsub server configuration element has no attributes.

F.17.3 Example

The following example shows how to use the http-pubsub element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>
 true
 </publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

In the example, the http-pubsub element's unique identifier is myPubsub.

F.18 jetty

Use this element to configure an instance of the Jetty HTTP server.

F.18.1 Child Elements

The jetty server configuration element supports the child elements that Table F-11 lists.

Table F-11 Child Elements of: jetty

	XML Tag	Type	Description
	
name

	
string

	
The name of this jetty element. For more information, see name.

	
network-io-name

	
string

	
The name of the Network I/O service that should be used. This also defines which port the server listens on. This parameter must refer to the name of a valid "netio" configuration object.

	
work-manager-name

	
string

	
The name of the Work Manager that should be used for thread pooling. If this parameter is not specified, then Jetty will use a default work manager. For more information, see work-manager.

	
scratch-directory

	
string

	
The name of a directory where temporary files required for Web applications, JSPs, and other types of Web artifacts are kept. This parameter is overridden by the scratch-directory parameter on the jetty-web-app element. If this directory does not exist, it will be created.

	
debug-enabled

	
boolean

	
Enable debugging in the Jetty code. Specified debug messages are logged the same way as all other Debug level messages in the log service.

	
listen-port

	
int

	
The name of the network port that should be set. This parameter may not be set if the network-io-name parameter is not specified. When this parameter is used instead of network-io-name, a simplified socket I/O subsystem is used that does not require the netio module.

	
secure-network-io-name

	
string

	
The name of the Network I/O service that should be used for secure communications. The specified service must be configured to support SSL encryption. This parameter must refer to the name of a valid netio configuration object.

F.18.2 Attributes

The jetty server configuration element has no attributes.

F.18.3 Example

The following example shows how to use the jetty element in the Oracle Event Processing server configuration file:

<jetty>
 <name>TestJetty</name>
 <work-manager-name>WM</work-manager-name>
 <network-io-name>Netio</network-io-name>
 <secure-network-io-name>SecureNetio</secure-network-io-name>
 <debug-enabled>false</debug-enabled>
 <scratch-directory>JettyWork</scratch-directory>
</jetty>

In the example, the jetty element's unique identifier is TestJetty.

F.19 jetty-web-app

Use this element to represent a Web application for use by Jetty. Each instance of this object represents a Web application which must be deployed using the Jetty service.

F.19.1 Child Elements

The jetty-web-app server configuration element supports the child elements that Table F-12 lists.

Table F-12 Child Elements of: jetty-web-app

	XML Tag	Type	Description
	
name

	
string

	
The name of this jetty-web-app element. For more information, see name.

	
context-path

	
string

	
The context path where this web app will be deployed in the web server's name space.

Default:/

	
scratch-directory

	
string

	
The location where Jetty should store temporary files for this web app. This parameter overrides the scratch-directory parameter on the jetty element. If this directory does not exist, it will be created.

	
path

	
string

	
A file name that points to the location of the web app on the server. It may be a directory or a WAR file.

	
jetty-name

	
string

	
The name of the Jetty service where this Web application should be deployed. This name must match the name of an existing jetty configuration object. For more information, see jetty.

F.19.2 Attributes

The jetty-web-app server configuration element has no attributes.

F.19.3 Example

The following example shows how to use the jetty-web-app element in the Oracle Event Processing server configuration file:

<jetty-web-app>
 <name>financial</name>
 <context-path>/financial</context-path>
 <path>../testws2/financialWS.war</path>
 <jetty-name>TestJetty</jetty-name>
</jetty-web-app>

In the example, the jetty-web-app element's unique identifier is financial.

F.20 jmx

Use this element to configure Java Management Extension (JMX) properties in the Oracle Event Processing server.

F.20.1 Child Elements

The jmx server configuration element supports the child elements that Table F-13 lists.

Table F-13 Child Elements of: jmx

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
rmi-service-name

	
string

	
The name of the RMI service that should be used to serve this JNDI context over the network. It must match an existing RMI object in the configuration. For more information, see rmi.

	
jndi-service-name

	
string

	
The name of the JNDI service to which the JMX server will bind its object.

F.20.2 Attributes

The jmx server configuration element has no attributes.

F.20.3 Example

The following example shows how to use the jmx element in the Oracle Event Processing server configuration file:

<jmx>
 <name>myJMX</name>
 <jndi-service-name>JNDI</jndi-service-name>
 <rmi-service-name>RMI</rmi-service-name>
</jmx>

In the example, the jmx element's unique identifier is myJMX.

F.21 jndi-context

This configuration object is used to configure the JNDI provider. When it is placed in the configuration, the MSA JNDI Context is initialized. One instance of this configuration type must be placed in the configuration if the JNDI service is to be used, either locally, or remotely through the exported-jndi-context configuration type.

F.21.1 Child Elements

The jndi-context server configuration element supports the child elements that Table F-14 lists.

Table F-14 Child Elements of: jndi-context

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
default-provider

	
string

	
This parameter defaults to true. If it is set to false then the provider will not be installed as the default. The provider will be set as the default as long as there is at least one JNDIContextType bean in the configuration with DefaultProvider set to true. If multiple JNDIContextType objects are placed in the configuration, the effect will be the same as if one was started.

F.21.2 Attributes

The jndi-context server configuration element has no attributes.

F.21.3 Example

The following example shows how to use the jndi-context element in the Oracle Event Processing server configuration file:

<jndi-context>
 <name>myJNDI</name>
 <default-provider>true</default-provider>
</jndi-context>

In the example, the adapter's unique identifier is myJNDI.

F.22 log-file

Use this element to configure logging to a file on the Oracle Event Processing server.

F.22.1 Child Elements

The log-file server configuration element supports the child elements that Table F-15 lists.

Table F-15 Child Elements of: log-file

	XML Tag	Type	Description
	
name

	
string

	
The name of this work-manager element. For more information, see name.

	
number-of-files-limited

	
boolean

	
Determines whether old rotated files need to be kept around forever.

Default: false.

	
rotation-type

	
string

	
Determines how the log file rotation will be performed based on size, time or not at all. Valid values:

	
bySize

	
byTime

	
none

Default: bySize.

	
rotation-time

	
string

	
The time in k:mm format when the first rotation happens where k is the hour specified in 24-hour notation and mm is the minutes.

Default: 00:00.

	
rotated-file-count

	
int

	
If old rotated files are to be deleted, this parameter determines how many of the last files to always keep.

Default: 7.

	
rotation-size

	
int

	
The size threshold at which the log file is rotated in KB.

Default: 500.

	
rotation-time-span-factor

	
long

	
The factor that is applied to the timespan to arrive at the number of milliseconds that will be the frequency of time based log rotations.

Default: (long)(3600 * 1000).

	
rotation-time-span

	
int

	
The interval for every time based log rotation.

Default: 24.

	
base-log-file-name

	
string

	
Log file name.

Default: server.log

	
rotate-log-on-startup-enabled

	
boolean

	
Specifies whether the log file will be rotated on startup.

Default: true.

	
log-file-severity

	
string

	
Specifies the threshold importance of the messages that are propagated to the handlers. The default is Info so that to see Debug and Trace messages you need to ensure that the severity is set to either Debug or Trace. Valid values:

	
Emergency

	
Alert

	
Critical

	
Error

	
Warning

	
Notice

	
Info

	
Debug

	
Trace

Default: Notice.

	
log-file-rotation-dir

	
string

	
The directory where the old rotated files are stored. If not set, the old files are stored in the same directory as the base log file.

F.22.2 Attributes

The log-file server configuration element has no attributes.

F.22.3 Example

The following example shows how to use the log-file element in the Oracle Event Processing server configuration file:

<log-file>
 <name>logFile</name>
 <number-of-files-limited>true</number-of-files-limited>
 <rotated-file-count>4</rotated-file-count>
 <rotate-log-on-startup-enabled>true</rotate-log-on-startup-enabled>
</log-file>

In the example, the log-file element's unique identifier is logFile.

F.23 log-stdout

Use this element to configure logging to standard out (console) on the Oracle Event Processing server.

F.23.1 Child Elements

The log-stdout server configuration element supports the child elements that Table F-16 lists.

Table F-16 Child Elements of: log-stdout

	XML Tag	Type	Description
	
name

	
string

	
The name of this work-manager element. For more information, see name.

	
stack-trace-depth

	
int

	
Determines the number of stack trace frames to display on standard out. All frames are displayed in the log file. A value of -1 means all frames are displayed.

Default: -1.

	
stack-trace-enabled

	
boolean

	
Specifies whether to dump stack traces to the console when included in a logged message.

Default: true.

	
stdout-severity

	
string

	
Defines the threshold importance of the messages that are propagated to the handlers. The default is Info so that to see Debug and Trace messages you need to ensure that the severity is set to either Debug or Trace. Valid values:

	
Emergency

	
Alert

	
Critical

	
Error

	
Warning

	
Notice

	
Info

	
Debug

	
Trace

Default: Notice.

F.23.2 Attributes

The log-stdout server configuration element has no attributes.

F.23.3 Example

The following example shows how to use the log-stdout element in the Oracle Event Processing server configuration file:

<log-stdout>
 <name>logStdout</name>
 <stdout-severity>Debug</stdout-severity>
</log-stdout>

In the example, the log-stdout element's unique identifier is logStdout.

F.24 logging-service

Use this element to configure a logging service on the Oracle Event Processing server.

F.24.1 Child Elements

The logging-service server configuration element supports the child elements that Table F-17 lists.

Table F-17 Child Elements of: logging-service

	XML Tag	Type	Description
	
name

	
string

	
The name of this work-manager element. For more information, see name.

	
log-file-config

	
string

	
The configuration of the log file and its rotation policies.

	
stdout-config

	
string

	
The configuration of the stdout output.

	
logger-severity

	
string

	
Defines the threshold importance of the messages that are propagated to the handlers. The default is Info so that to see Debug and Trace messages you need to ensure that the severity is set to either Debug or Trace. Valid values:

	
Emergency

	
Alert

	
Critical

	
Error

	
Warning

	
Notice

	
Info

	
Debug

	
Trace

Default: Info.

	
logger-severity-properties

	
See Description

	
The Severity values for different nodes in the Logger tree composed of one or more entry child elements each containing a key and value child element.

F.24.2 Attributes

The logging-service server configuration element has no attributes.

F.24.3 Example

The following example shows how to use the logging-service element in the Oracle Event Processing server configuration file:

<logging-service>
 <name>myLogService</name>
 <stdout-config>myStdoutConfig</stdout-config>
 <logger-severity>Notice</logger-severity>
 <logger-severity-properties>
 <entry>
 <key>FileAdapter</key>
 <value>Debug</value>
 </entry>
 <entry>
 <key>CQLProcessor</key>
 <value>Debug</value>
 </entry>
 </logger-severity-properties>
</logging-service>

In the example, the logging-service element's unique identifier is myLogService.

F.25 message-filters

Use this element to configure one or more message filters for a pubsub-bean element.

F.25.1 Child Elements

The message-filters server configuration element contains one or more element child elements that each contain a message-filter-name and message-filter-class child element.

F.25.2 Attributes

The message-filters server configuration element has no attributes.

F.25.3 Example

The following example shows how to use the message-filters element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <message-fitlers>
 <element>
 <message-filter-name>Foo</message-filter-name>
 <message-filter-class>Foo</message-filter-class>
 </element>
 <element>
 <message-filter-name>Foo</message-filter-name>
 <message-filter-class>Foo</message-filter-class>
 </element>
 </message-filters>
...
 </pub-sub-bean>
</http-pubsub>

F.26 name

Use this element to declare a unique identifier for an Oracle Event Processing server configuration element.

F.26.1 Child Elements

The name server configuration element has no child elements.

F.26.2 Attributes

The name server configuration element has no attributes.

F.26.3 Example

The following example shows how to use the name element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
...
</http-pubsub>

F.27 netio

Use this element to represent a network input/output (IO) service, that may be used by other services to act as the server for network IO.

F.27.1 Child Elements

The netio server configuration element supports the child elements that Table F-18 lists.

Table F-18 Child Elements of: netio

	XML Tag	Type	Description
	
name

	
string

	
The name of this netio element. For more information, see name.

	
ssl-config-bean-name

	
string

	
The name of the SSL configuration object to use. If not null, then this client will create secure sockets using the specified SSL configuration. If not set, then no SSL will be supported.

	
provider-type

	
string

	
Specify which provider to use for the underlying socket implementation. For a list of the valid provider types, see "Network IO Providers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
io-threads

	
int

	
A hint to the provider as to the number of threads to use for processing sockets. A value of zero will result in the provider choosing based on its own default.Default: 0.

	
port

	
int

	
The port to listen on. The server will immediately start to listen for incoming connections on this port.

	
listen-address

	
string

	
The address on which this instance of Netio should listen for incoming connections. It may be set to a numeric IP address in the a.b.c.d format, or to a host name. If not set, then netio will listen on all network interfaces. Note that the value of this parameter cannot be validated until the server actually starts.

F.27.2 Attributes

The netio server configuration element has no attributes.

F.27.3 Example

The following example shows how to use the netio element in the Oracle Event Processing server configuration file:

<netio>
 <name>myNetio</name>
 <port>12345</port>
</netio>

In the example, the netio element's unique identifier is myNetio.

F.28 netio-client

Use this element to register a network input/output (IO) service that may be used to perform non-blocking network IO, but which will not act as a server and listen for incoming connections.

F.28.1 Child Elements

The netio-client server configuration element supports the child elements that Table F-19 lists.

Table F-19 Child Elements of: netio-client

	XML Tag	Type	Description
	
name

	
string

	
The name of this netio element. For more information, see name.

	
ssl-config-bean-name

	
string

	
The name of the SSL configuration object to use. If not null, then this client will create secure sockets using the specified SSL configuration. If not set, then no SSL will be supported.

	
provider-type

	
string

	
Specify which provider to use for the underlying socket implementation. For a list of the valid provider types, see "Network IO Providers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

F.28.2 Attributes

The netio-client server configuration element has no attributes.

F.28.3 Example

The following example shows how to use the netio-client element in the Oracle Event Processing server configuration file:

<netio-client>
 <name>netiossl</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <provider-type>NIO</provider-type>
</netio-client>

In the example, the netio-client element's unique identifier is netiossl.

F.29 partition-order-capacity

Use this element to define the maximum capacity of a query partition when the ordering-constraint attribute is set to PARTITION_ORDERED. Set this on a cql component. Consider setting this element's value when you've configured a query processor for parallel execution, and when the query's ordering-constraint attribute is set to PARTITION_ORDERED.

The element's default value is 4.

For more information, including best practices and information on the locations where this value can be set (including their precedence), see "Using partition-order-capacity with Partitioning Queries" in Chapter 17, "Querying an Event Stream with Oracle CQL".

F.29.1 Child Elements

The partition-order-capacity element has no child elements.

F.29.2 Attributes

The partition-order-capacity element has no attributes.

F.29.3 Example

The following example shows how to use the partition-order-capacity element in the Oracle Event Processing server configuration file:

<cql>
 <name>myCQL</name>
 <partition-order-capacity>20</partition-order-capacity>
</cql>

F.30 path

Use this element to configure the path for an http-pubsub element.

F.30.1 Child Elements

The path element has no child elements.

F.30.2 Attributes

The path element has no attributes.

F.30.3 Example

The following example shows how to use the path element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>
 true
 </publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

F.31 pubsub-bean

Use this element to configure a publish-subscribe bean for an http-pubsub element.

F.31.1 Child Elements

The pubsub-bean server configuration element supports the following child elements:

	
name

	
server-config

	
message-filters

	
channels

	
channel-constraints

	
services

F.31.2 Attributes

The pubsub-bean server configuration element has no attributes.

F.31.3 Example

The following example shows how to use the pubsub-bean element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>
 true
 </publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

F.32 rdbms-event-store-provider

Use this element to configure an event store provider that uses a relational database management system in the Oracle Event Processing server.

By default, Oracle Event Processing server uses a Berkeley database instance as the event store provider as Section F.3, "bdb-config" describes.

F.32.1 Child Elements

The rdbms-event-store-provider server configuration element supports the child elements that Table F-20 lists.

Table F-20 Child Elements of: rdbms-event-store-provider

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
init-timeout

	
int

	
The maximum time (in milliseconds) that the Oracle Event Processing server will wait for this provider to initialize.

Default: 10000 ms.

	
data-source-name

	
string

	
The name of a data source element. For more information, see data-source.

	
user-policy-attributes

	
See Description

	
One or more entry child elements that each contain a key and value child element that you use to specify additional data source properties.

F.32.2 Attributes

The rdbms-event-store-provider server configuration element has no attributes.

F.32.3 Example

The following example shows how to use the rdbms-event-store-provider element in the Oracle Event Processing server configuration file:

<rdbms-event-store-provider>
 <name>test-rdbms-provider</name>
 <init-timeout>10000</init-timeout>
 <data-source-name>derby1</data-source-name>
 <user-policy-attributes>
 <entry>
 <key>key1</key>
 <value>value1</value>
 </entry>
 <key>key1</key>
 <value>value1</value>
 <entry>
 </entry>
 </user-policy-attributes>
</rdbms-event-store-provider>

In the example, the rdbms-event-store-provider element's unique identifier is test-rdbms-provider.

F.33 rmi

Use this element to configure an RMI service, which allows server- side objects to be exported to remote clients.

F.33.1 Child Elements

The rmi server configuration element supports the child elements that Table F-21 lists.

Table F-21 Child Elements of: rmi

	XML Tag	Type	Description
	
name

	
string

	
The name of this rmi element. For more information, see name.

	
heartbeat-period

	
int

	
The number of failed heartbeat attempts before triggering disconnect notifications to all registered listeners.Default-Value: 4.

	
http-service-name

	
string

	
The name of the HTTP service that this service should use to register remote objects. The service may be provided by a Jetty or Tomcat instance of the same name.

	
heartbeat-interval

	
int

	
The time in milliseconds between heartbeats. Once the number of unsuccessful heartbeat attempts has reached the value specified by the HeartbeatPeriod attribute, all registered DisconnectListener instances will be notified.

Default-Value: 5000.

F.33.2 Attributes

The rmi server configuration element has no attributes.

F.33.3 Example

The following example shows how to use the rmi element in the Oracle Event Processing server configuration file:

<rmi>
 <name>myRMI</name>
 <http-service-name>TestJetty</http-service-name>
</rmi>

In the example, the rmi element's unique identifier is myRMI.

F.34 scheduler

Use this element to configure cql scheduler options in the Oracle Event Processing server.

F.34.1 Child Elements

The scheduler server configuration element supports the child elements that Table F-22 lists.

Table F-22 Child Elements of: scheduler

	XML Tag	Type	Description
	
class-name

	
string

	
Specify the value for one of the sched_name scheduling option as the fully qualified package name of Java class that implements the Oracle Event Processing Service Engine scheduling algorithm. This class determines in what order the Oracle Event Processing Service Engine scheduler executes Oracle CQL queries. Valid values:

	
oracle.cep.execution.scheduler.RoundRobinScheduler: This algorithm assigns time slices to each Oracle CQL query in equal portion and in order, handling all processes without priority. This option is appropriate if the number of Oracle CQL queries is not prone to large variations.

	
oracle.cep.execution.scheduler.FIFOScheduler: This algorithm assigns time slices to each Oracle CQL query in the order that they were created. This algorithm is appropriate if the number of Oracle CQL queries is prone to large variations.

Default: oracle.cep.execution.scheduler.RoundRobinScheduler

	
runtime

	
long

	
Total number of seconds that the Oracle Event Processing Service Engine scheduler will run.

Default: 1000000 ms.

	
time-slice

	
int

	
The frequency at which the Oracle Event Processing Service Engine scheduler executes Oracle CQL queries.

Default: 1000 ms

	
schedule-on-new-thread

	
boolean

	
Whether or not the Oracle Event Processing Service Engine scheduler will use a separate thread. Options are:

	
true: the scheduler runs in a separate thread.

	
false: the scheduler runs in the same thread as the Oracle Event Processing Service Engine (Default).

F.34.2 Attributes

The scheduler server configuration element has no attributes.

F.34.3 Example

The following example shows how to use the scheduler element in the Oracle Event Processing server configuration file:

<cql>
 <name>myCQL</name>
 <scheduler>
 <class-name>oracle.cep.execution.scheduler.FIFOScheduler</class-name>
 </scheduler>
</cql>

F.35 server-config

Use this element to configure the server-specific properties of a pubsub-bean element.

F.35.1 Child Elements

The server-config server configuration element supports the child elements that Table F-23 lists.

Table F-23 Child Elements of: server-config

	XML Tag	Type	Description
	
name

	
string

	
The name of this server-config element. For more information, see name.

	
supported-transport

	
See Description

	
This element contains one or more types child elements, one for each supported transport. Each types child element contains an element child element with the transport name as a string value. Valid values:

	
long-polling: Using this transport, the client requests information from Oracle Event Processing server and if Oracle Event Processing server does not have information available, it does not reply until it has. When the Oracle Event Processing server replies, the client typically sends another request immediately.

	
callback-polling: Use this transport for HTTP publish-subscribe applications using a cross domain configuration in which the browser downloads the page from one Web server (including the JavaScript code) and connects to another server as an HTTP publish-subscribe client. This is required by the Bayeux protocol. For more information on the Bayeux protocol, see http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html.

For more information, see "How the HTTP Pub-Sub Server Works" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
client-timeout-secs

	
int

	
Specifies the number of seconds after which the HTTP pub-sub server disconnects a client if the client does has not sent back a connect/reconnect message.

Default: 60.

	
persistent-client-timeout-secs

	
int

	
Specifies the number of seconds after which persistent clients are disconnected and deleted by the pub-sub server, if during that time the persistent client does not send a connect or re-connect message. This value must be larger than client-timeout-secs. If the persistent client reconnects before the persistent timeout is reached, the client receives all messages that have been published to the persistent channel during that time; if the client reconnects after the timeout, then it does not get the messages.

Default: 600 seconds.

	
interval-millisecs

	
int

	
Specifies how long (in milliseconds) the client can delay subsequent requests to the /meta/connect channel.

Default: 500 ms.

	
work-manager

	
string

	
Specifies the name of the work manager that delivers messages to clients. The value of this element corresponds to the value of the name child element of the work-manager you want to assign.

For more information, see work-manager.

	
publish-without-connect-allowed

	
boolean

	
Specifies whether clients can publish messages without having explicitly connected to the HTTP pub-sub server. Valid values:

	
true

	
false

F.35.2 Attributes

The server-config server configuration element has no attributes.

F.35.3 Example

The following example shows how to use the server-config element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <name>/pubsub</name>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

F.36 services

Use this element to configure the service properties of a pubsub-bean element.

F.36.1 Child Elements

The services server configuration element contains one or more element child elements that each support the child elements that Table F-24 lists.

Table F-24 Child Elements of: services

	XML Tag	Type	Description
	
service-channel

	
string

	
Specifies a service channel, for example: /service/echo.

	
service-class

	
string

	
Specifies the class to service this service, for example: EchoService.

	
service-method

	
string

	
Define a service method in the service class. The service method must have only one payload parameter of type Object. For example: Object echo(Object payload).

F.36.2 Attributes

The services server configuration element has no attributes.

F.36.3 Example

The following example shows how to use the services element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <name>/pubsub</name>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 <services>
 <element>
 <service-channel>Foo</service-channel>
 <service-class>Foo</service-class>
 <service-method>Foo</service-method>
 </element>
 </services>
 </pub-sub-bean>
</http-pubsub>

F.37 show-detail-error-message

Use this element to configure whether or not the Oracle Event Processing server uses secure connections.

F.37.1 Child Elements

The show-detail-error-message server configuration element supports the child elements that Table F-25 lists.

Table F-25 Child Elements of: show-detail-error-message

	XML Tag	Type	Description
	
name

	
string

	
The name of this show-detail-error-message element. For more information, see name.

	
value

	
boolean

	
Whether or not to show detailed error messages. Valid values:

	
true: the Oracle Event Processing server shows detailed error messages.

	
false: the Oracle Event Processing server shows abbreviated error messages (default).

F.37.2 Attributes

The show-detail-error-message server configuration element has no attributes.

F.37.3 Example

The following example shows how to use the show-detail-error-message element in the Oracle Event Processing server configuration file:

<show-detail-error-message>
 <name>myShowDetail</name>
 <value>true</value>
</show-detail-error-message>

In the example, the show-detail-error-message element's unique identifier is myShowDetail.

F.38 ssl

Use this element to configure Secure Sockets Layer-specific properties on the Oracle Event Processing server.

F.38.1 Child Elements

The ssl server configuration element supports the child elements that Table F-26 lists.

Table F-26 Child Elements of: ssl

	XML Tag	Type	Description
	
name

	
string

	
The name of this cluster. For more information, see name.

	
key-store

	
string

	
Specifies the file path to the key store such as ./ssl/evsidentity.jks.

	
key-store-pass

	
See Description

	
This element contains a password child element with a string value that specifies the password used to access the key store.

	
key-store-alias

	
string

	
Specifies the alias for the key store.

	
key-manager-algorithm

	
string

	
Specifies the key manager algorithm such as SunX509.

	
ssl-protocol

	
string

	
Specifies the SSL protocol such as TLS.

	
trust-store

	
string

	
Specifies the file path to the trust store such as ./ssl/evstrust.jks.

	
trust-store-pass

	
See Description

	
This element contains a password child element with a string value that specifies the password used to access the trust store.

	
trust-store-alias

	
string

	
Specifies the alias for the trust store.

	
trust-store-type

	
string

	
Specifies the trust store type such as JKS.

	
trust-manager-algorithm

	
string

	
Specifies the trust manager algorithm such as SunX509.

	
enforce-fips

	
boolean

	
Specifies whether or not Oracle Event Processing server uses a Federal Information Processing Standards (FIPS)-certified pseudo-random number generator.

For more information, see "FIPS" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
need-client-auth

	
boolean

	
Specifies whether or not client certificate authentication is required.

	
ciphers

	
See Description

	
This element contains one or more cipher child elements, each with a string value that specifies the ciphers that are required.

	
secure-random-algorithm

	
string

	
When enforce-fips is set to true, specify the secure random algorithm to use. Valid values:

	
FIPS186PRNG

	
secure-random-provider

	
string

	
When enforce-fips is set to true, specify the secure random provider to use. Valid values:

	
JsafeJCE

F.38.2 Attributes

The ssl server configuration element has no attributes.

F.38.3 Example

The following example shows how to use the ssl element in the Oracle Event Processing server configuration file:

<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
</ssl>

In the example, the ssl element's unique identifier is sslConfig.

F.39 timeout-seconds

Use this element to configure weblogic-jta-gateway default transaction timeout in seconds in the Oracle Event Processing server.

Default: 60.

F.39.1 Child Elements

The timeout-seconds server configuration element has no attributes.

F.39.2 Attributes

The timeout-seconds server configuration element has no attributes.

F.39.3 Example

The following example shows how to use the timeout-seconds element in the Oracle Event Processing server configuration file:

<weblogic-jta-gateway>
 <name>myJTAGateway</name>
 <timeout-seconds>90</timeout-seconds>
 <weblogic-instances>
 <weblogic-instance>
 <domain-name>ocep_domain</domain-name>
 <server-name>fxserver</server-name>
 <protocol>t3</protocol>
 <host-address>ariel</host-address>
 <port>9002</port>
 </weblogic-instance>
 </weblogic-instances>
</weblogic-jta-gateway>

F.40 transaction-manager

Use this element to configure transaction manager properties in the Oracle Event Processing server.

F.40.1 Child Elements

The transaction-manager server configuration element supports the child elements that Table F-27 lists.

Table F-27 Child Elements of: transaction-manager

	XML Tag	Type	Description
	
name

	
string

	
The name of this transaction-manager element. For more information, see name.

	
max-resource-requests-on-server

	
int

	
Maximum number of concurrent requests to resources allowed for each server.

Default: 50.

	
max-resource-unavailable-millis

	
long

	
Maximum duration in milliseconds that a resource is declared dead. After the duration, the resource will be declared available again, even if the resource provider does not explicitly re-register the resource.Default: 1800000.

	
security-interop-mode

	
string

	
Specifies the security mode of the communication channel used for XA calls between servers that participate in a global transaction. All server instances in a domain must have the same security mode setting. Valid values:

	
default: The transaction coordinator makes calls using the kernel identity over an admin channel if it is enabled, and anonymous otherwise. Man-in-the-middle attacks are possible if the admin channel is not enabled.

	
Performance: The transaction coordinator makes calls using anonymous at all times. This implies a security risk since a malicious third party could then try to affect the outcome of transactions using a man-in-the-middle attack.

	
Compatibility: The transaction coordinator makes calls as the kernel identity over an insecure channel. This is a high security risk because a successful man-in-the-middle attack would allow the attacker to gain administrative control over both domains. This setting should only be used when strong network security is in place.

Default: default.

	
parallel-xa-enabled

	
boolean

	
Execute XA calls in parallel if there are available threads.

Default: true.

	
tlog-location

	
string

	
The location of the file store that contains the transaction log. This attribute can be either an absolute or relative path in the filesystem.

	
max-xa-call-millis

	
long

	
Maximum allowed duration of XA calls to resources. If a particular XA call to a resource exceeds the limit, the resource is declared unavailable.

Default: 120000.

	
timeout-seconds

	
int

	
The default transaction timeout in seconds.

Default: 30.

	
checkpoint-interval-seconds

	
int

	
The interval at which the transaction manager performs transaction log checkpoint operations.

Default: 300.

	
forget-heuristics

	
boolean

	
Specifies whether the transaction manager will automatically perform an XAResource forget operation for heuristic transaction completions. When enabled, the transaction manager automatically performs an XA Resource forget operation for all resources as soon as the transaction learns of a heuristic outcome. Disable this feature only if you know what to do with the resource when it reports a heuristic decision.

Default: true.

	
before-completion-iteration-limit

	
int

	
The maximum number of cycles that the transaction manager will perform the before completion synchronization callback processing.

Default: 10.

	
abandon-timeout-seconds

	
int

	
The transaction abandon timeout seconds for transactions in the second phase of the two-phase commit (prepared and later). During the second phase of the two-phase commit process, the transaction manager will continue to try to complete the transaction until all resource managers indicate that the transaction is completed. Using this timeout, you can set the maximum time that a transaction manager will persist in attempting to complete a transaction during the second phase of the transaction. After the abandon transaction timer expires, no further attempt is made to resolve the transaction. If the transaction is in a prepared state before being abandoned, the transaction manager will roll back the transaction to release any locks held on behalf of the abandoned transaction.

Default: 86400.

	
serialize-enlistments-gc-interval-millis

	
long

	
The interval at which internal objects used to serialize resource enlistment are cleaned up.

Default: 30000.

	
unregister-resource-grace-period

	
int

	
The grace period (number of seconds) that the transaction manager waits for transactions involving the resource to complete before unregistering a resource. The grace period can help minimize the risk of abandoned transactions because of an unregistered resource, such as a JDBC data source module packaged with an application. During the specified grace period, the unregisterResource call will block until the call can return, and no new transactions are started for the associated resource. If the number of outstanding transactions for the resource goes to 0, the unregisterResource call returns immediately. At the end of the grace period, if there are still outstanding transactions associated with the resource, the unregisterResource call returns and a log message is written on the server on which the resource was previously registered.

Default: 30.

	
rmi-service-name

	
string

	
The name of the RMI service that is used for distributed transaction coordination.

For more information, see rmi.

	
max-unique-name-statistics

	
int

	
The maximum number of unique transaction names for which statistics will be maintained.

Default: 1000.

	
purge-resource-from-checkpoint-interval-seconds

	
int

	
The interval that a particular resource must be accessed within for it to be included in the checkpoint record.

Default: 86400.

	
max-transactions

	
int

	
The maximum number of simultaneous in-progress transactions allowed on this server.

Default: 10000.

	
migration-checkpoint-interval-seconds

	
int

	
The interval that the checkpoint is done for the migrated transaction logs (TLOGs).

Default: 60.

	
recovery-threshold-millis

	
long

	
The interval that recovery is attempted until the resource becomes available.

Default: 300000.

	
max-transactions-health-interval-millis

	
long

	
The interval for which the transaction map must be full for the JTA subsystem to declare its health as CRITICAL.

Default: 60000.

	
parallel-xa-dispatch-policy

	
string

	
The dispatch policy to use when performing XA operations in parallel. By default the policy of the thread coordinating the transaction is used.

F.40.2 Attributes

The transaction-manager server configuration element has no attributes.

F.40.3 Example

The following example shows how to use the transaction-manager element in the Oracle Event Processing server configuration file:

<transaction-manager>
 <name>My_tm</name>
 <timeout-seconds>30</timeout-seconds>
 <abandon-timeout-seconds>86400</abandon-timeout-seconds>
 <forget-heuristics>true</forget-heuristics>
 <before-completion-iteration-limit>12</before-completion-iteration-limit>
 <max-transactions>10100</max-transactions>
 <max-unique-name-statistics>500</max-unique-name-statistics>
 <max-resource-requests-on-server>50</max-resource-requests-on-server>
 <max-resource-unavailable-millis>1800000</max-resource-unavailable-millis>
 <recovery-threshold-millis>300000</recovery-threshold-millis>
 <max-transactions-health-interval-millis>
 60000
 </max-transactions-health-interval-millis>
 <purge-resource-from-checkpoint-interval-seconds>
 86400
 </purge-resource-from-checkpoint-interval-seconds>
 <checkpoint-interval-seconds>300</checkpoint-interval-seconds>
 <parallel-xa-enabled>true</parallel-xa-enabled>
 <unregister-resource-grace-period>30</unregister-resource-grace-period>
 <security-interop-mode>default</security-interop-mode>
 <rmi-service-name>RMI_ce1</rmi-service-name>
 </transaction-manager>

In the example, the transaction-manager element's unique identifier is My_tm.

F.41 use-secure-connections

Use this element to configure whether or not the Oracle Event Processing server uses secure connections.

For more information, see "How to Configure SSL in a Multi-Server Domain for Oracle Event Processing Visualizer" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

F.41.1 Child Elements

The use-secure-connections server configuration element supports the child elements that Table F-28 lists.

Table F-28 Child Elements of: use-secure-connections

	XML Tag	Type	Description
	
name

	
string

	
The name of this use-secure-connections element. For more information, see name.

	
value

	
boolean

	
Whether or not to use secure connections. Valid values:

	
true: the Oracle Event Processing server uses only secure connections.

	
false: the Oracle Event Processing server accepts connections that are not secure.

F.41.2 Attributes

The use-secure-connections server configuration element has no attributes.

F.41.3 Example

The following example shows how to use the use-secure-connections element in the Oracle Event Processing server configuration file:

<use-secure-connections>
 <name>myUseSecConn</name>
 <value>true</value>
</use-secure-connections>

In the example, the use-secure-connections element's unique identifier is myUseSecConn.

F.42 weblogic-instances

Use this element to configure Oracle Event Processing server instances for a weblogic-jta-gateway element.

F.42.1 Child Elements

The weblogic-instances server configuration element supports zero or more weblogic-instance child elements that each contain the child elements that Table F-29 lists.

Table F-29 Child Elements of: weblogic-instances

	XML Tag	Type	Description
	
domain-name

	
string

	
Specifies the name of the domain of the Oracle Event Processing server.

	
server-name

	
string

	
Specifies the name of the Oracle Event Processing server.

	
protocol

	
string

	
Specifies the JTA protocol.

Default: t3.

	
host-address

	
string

	
The host name or IP address of the Oracle Event Processing server.

	
port

	
int

	
The netio port for the Oracle Event Processing server.

F.42.2 Attributes

The weblogic-instances server configuration element has no attributes.

F.42.3 Example

The following example shows how to use the weblogic-instances element in the Oracle Event Processing server configuration file:

<weblogic-jta-gateway>
 <name>myJTAGateway</name>
 <timeout-seconds>90</timeout-seconds>
 <weblogic-instances>
 <weblogic-instance>
 <domain-name>ocep_domain</domain-name>
 <server-name>fxserver</server-name>
 <protocol>t3</protocol>
 <host-address>ariel</host-address>
 <port>9002</port>
 </weblogic-instance>
 </weblogic-instances>
</weblogic-jta-gateway>

F.43 weblogic-jta-gateway

Use this element to configure the attributes for the singleton Oracle Event Processing server client JTA gateway service.

F.43.1 Child Elements

The weblogic-jta-gateway server configuration element supports the following child elements:

	
name

	
timeout-seconds

	
weblogic-instances

F.43.2 Attributes

The weblogic-jta-gateway server configuration element has no attributes.

F.43.3 Example

The following example shows how to use the weblogic-jta-gateway element in the Oracle Event Processing server configuration file:

<weblogic-jta-gateway>
 <name>myJTAGateway</name>
 <timeout-seconds>90</timeout-seconds>
 <weblogic-instances>
 <weblogic-instance>
 <domain-name>ocep_domain</domain-name>
 <server-name>fxserver</server-name>
 <protocol>t3</protocol>
 <host-address>ariel</host-address>
 <port>9002</port>
 </weblogic-instance>
 </weblogic-instances>
</weblogic-jta-gateway>

In the example, the weblogic-jta-gateway element's unique identifier is myJTAGateway.

F.44 weblogic-rmi-client

Use this element to configure the attributes for the singleton Oracle Event Processing server RMI client.

F.44.1 Child Elements

The weblogic-rmi-client server configuration element supports the child elements that Table F-30 lists.

Table F-30 Child Elements of: weblogic-rmi-client

	XML Tag	Type	Description
	
name

	
string

	
The name of this weblogic-rmi-client element. For more information, see name.

	
netio-name

	
string

	
Specifies the name of the netio-client element to use. For more information, see netio-client.

	
secure-netio-name

	
string

	
Specifies the name of the netio-client element configured for SSL. For more information, see netio-client.

F.44.2 Attributes

The weblogic-rmi-client server configuration element has no attributes.

F.44.3 Example

The following example shows how to use the weblogic-rmi-client element in the Oracle Event Processing server configuration file:

<netio-client>
 <name>netio</name>
 <provider-type>NIO</provider-type>
</netio-client>

<netio-client>
 <name>netiossl</name>
 <provider-type>NIO</provider-type>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
</netio-client>

<weblogic-rmi-client>
 <name>wlclient</name>
 <netio-name>netio</netio-name>
 <secure-netio-name>netiossl</secure-netio-name>
</weblogic-rmi-client>

In the example, the weblogic-rmi-client element's unique identifier is wlclient.

F.45 work-manager

Use this element to configure a work manager on the Oracle Event Processing server.

F.45.1 Child Elements

The work-manager server configuration element supports the child elements that Table F-31 lists.

Table F-31 Child Elements of: work-manager

	XML Tag	Type	Description
	
name

	
string

	
The name of this work-manager element. For more information, see name.

	
min-threads-constraint

	
int

	
The minimum threads constraint this work manager should use.

Default: -1.

	
fairshare

	
int

	
The fairshare value this work manager should use.

Default: -1.

	
max-threads-constraint

	
int

	
The maximum threads constraint this work manager should use.

Default: -1.

F.45.2 Attributes

The work-manager server configuration element has no attributes.

F.45.3 Example

The following example shows how to use the work-manager element in the Oracle Event Processing server configuration file:

<work-manager>
 <name>WM</name>
 <fairshare>5</fairshare>
 <min-threads-constraint>1</min-threads-constraint>
 <max-threads-constraint>4</max-threads-constraint>
</work-manager>

In the example, the work-manager element's unique identifier is WM.

F.46 xa-params

Use this element to specify distributed transaction-related data-source parameters.

F.46.1 Child Elements

The xa-params server configuration element supports the child elements that Table F-32 lists.

Table F-32 Child Elements of: xa-params

	XML Tag	Type	Description
	
keep-xa-conn-till-tx-complete

	
boolean

	
Enables the server to associate the same XA database connection from the connection pool with a global transaction until the transaction completes. Only applies to connection pools that use an XA driver. Use this setting to work around specific problems with JDBC XA drivers.

Default: true.

	
xa-transaction-timeout

	
int

	
The number of seconds to set as the transaction branch timeout. If set, this value is passed as the transaction timeout value in the XAResource.setTransactionTimeout call on the XA resource manager, typically the JDBC driver. When this value is set to 0, the Transaction Manager passes the global server transaction timeout in seconds in the method. If set, this value should be greater than or equal to the global server transaction timeout. Note: You must enable xa-set-transaction-timeout to enable setting the transaction branch timeout.

Default: 0.

	
rollback-local-tx-upon-conn-close

	
boolean

	
Enables the server to call rollback on the connection before returning the connection to the connection pool. Enabling this attribute will have a performance impact as the rollback call requires communication with the database server.

Default: false.

	
xa-retry-duration-seconds

	
int

	
Determines the duration in seconds for which the transaction manager will perform recover operations on the resource. A value of zero indicates that no retries will be performed.

Default: 60.

	
xa-set-transaction-timeout

	
boolean

	
Enables the server to set a transaction branch timeout based on the value for xa-transaction-timeout. When enabled, the Transaction Manager calls XAResource.setTransactionTimeout before calling XAResource.start, and passes either the XA Transaction Timeout value or the global transaction timeout. You may want to set a transaction branch timeout if you have long-running transactions that exceed the default timeout value on the XA resource.

Default: false.

	
keep-logical-conn-open-on-release

	
boolean

	
Enables the server to keep the logical JDBC connection open for a global transaction when the physical XA connection is returned to the connection pool. Select this option if the XA driver used to create database connections or the DBMS requires that a logical JDBC connection be kept open while transaction processing continues (although the physical XA connection can be returned to the connection pool). Only applies to data sources that use an XA driver. Use this setting to work around specific problems with JDBC XA drivers.

Default: false.

	
resource-health-monitoring

	
boolean

	
Enables JTA resource health monitoring for an XA data source. When enabled, if an XA resource fails to respond to an XA call within the period specified in MaxXACallMillis, the server marks the data source as unhealthy and blocks any further calls to the resource. This property applies to XA data sources only, and is ignored for data sources that use a non-XA driver.

Default: true.

	
new-xa-conn-for-commit

	
boolean

	
Specifies that a dedicated XA connection is used for commit and rollback processing for a global transaction. Only applies to data sources that use an XA driver. Use this setting to work around specific problems with JDBC XA drivers.

Default: false.

	
xa-end-only-once

	
boolean

	
Specifies that XAResource.end is called only once for each pending XAResource.start. This option prevents the XA driver from calling XAResource.end(TMSUSPEND) and XAResource.end(TMSUCCESS) successively. Only applies to data sources that use an XA driver. Use this setting to work around specific problems with JDBC XA drivers.

Default: false.

	
xa-retry-interval-seconds

	
int

	
The number of seconds between XA retry operations if XARetryDurationSeconds is set to a positive value.

Default: 60.

	
recover-only-once

	
boolean

	
Specifies that the transaction manager calls recover on the resource only once. Only applies to data sources that use an XA driver. Use this setting to work around specific problems with JDBC XA drivers.

Default: false.

	
need-tx-ctx-on-close

	
boolean

	
Specifies whether the XA driver requires a distributed transaction context when closing various JDBC objects (result sets, statements, connections, and so forth). Only applies to connection pools that use an XA driver. When enabled, SQL exceptions that are thrown while closing the JDBC objects without a transaction context will be suppressed. Use this setting to work around specific problems with JDBC XA drivers.

Default: false.

F.46.2 Attributes

The xa-params server configuration element has no attributes.

F.46.3 Example

The following example shows how to use the xa-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

G Schema Reference: Message Catalog msgcat.dtd

This appendix provides a reference to elements of the msgcat.dtd schema, the schema behind XML you use to configure message catalog elements for log messages you can localize.

This appendix includes the following sections:

	
Section G.1, "Overview of the Message Catalog Elements"

	
Section G.2, "message_catalog"

	
Section G.3, "logmessage"

	
Section G.4, "message"

	
Section G.5, "messagebody"

	
Section G.6, "messagedetail"

	
Section G.7, "cause"

	
Section G.8, "action"

G.1 Overview of the Message Catalog Elements

Oracle Event Processing provides a number of message catalog elements that you use to define log messages that you can localize.

G.1.1 Element Hierarchy

The top-level Oracle Event Processing message catalog elements are organized into the following hierarchies, depending on message catalog type:

	
Example G-1, "Log Message Catalog Hierarchy"

	
Example G-2, "Simple Text Catalog Hierarchy"

Example G-1 Log Message Catalog Hierarchy

message_catalog
 log_message
 messagebody
 messagedetail
 cause
 action

Example G-2 Simple Text Catalog Hierarchy

message_catalog
 message
 messagebody

G.1.2 Examples

This section provides the following message catalog examples:

	
Example G-3, "Log Message Catalog"

	
Example G-4, "Simple Text Catalog"

Example G-3 Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

Example G-4 Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message messageid="FileMenuTitle">
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

G.2 message_catalog

This element represents the log message catalog.

G.2.1 Child Elements

The message_catalog element supports the following child elements:

	
message

	
logmessage

G.2.2 Attributes

Table G-1 lists the attributes of the message_catalog element.

Table G-1 Attributes of the message_catalog Element

	Attribute	Description	Data Type	Required?
	
i18n_package

	
Java package containing generated Logger classes for this catalog. The classes are named after the catalog file name. For example, for a catalog using mycat.xml, a generated Logger class would be called i18n_package.mycatLogger.class.

Syntax: standard Java package syntax.

Example: i18n_package="programs.utils"

Default: weblogic.i18n

	
String

	
No.

	
I10n_package

	
A Java package containing generated LogLocalizer properties for the catalog. For example, for a catalog called mycat.xml, the following property files would be generated:

	
l10n_package.mycatLogLocalizer.properties

	
l10n_packagemycatLogLocalizerDetail.properties

Syntax: standard Java package syntax.

Example: l10n_package="programs.utils"

Default: weblogic.i18n

	
String

	
No.

	
subsystem

	
An acronym identifying the subsystem associated with this catalog. The name of the subsystem is included in the server log and is used for message isolation purposes.

Example: subsystem="MYUTIL"

	
String

	
Yes.

	
version

	
Specifies the version of the msgcat.dtd being used.

Use: Must be "1.0"

Syntax: x.y where x and y are numeric.

Example: version="1.0"

	
String

	
Yes.

	
baseid

	
Specifies the lowest message ID used in this catalog.Syntax: one to six decimal digits.Example: baseid="600000"

Valid values are:

	
000000 for Oracle Event Processing server catalogs

	
500000 for user-defined catalogs

	
String

	
No.

	
endid

	
Specifies the highest message ID used in this catalog.

Syntax: one to six decimal digits.

Example: endid="600100"

Valid values are:

	
499999 for Oracle Event Processing server catalogs

	
999999 for user-defined catalogs

	
String

	
No.

	
loggables

	
Indicates whether to generate additional methods that return loggable objects.

Example: loggable="true"

Valid values are:

	
true

	
false

Default: false

	
String

	

	
prefix

	
Specifies a String to be prepended to message IDs when logged. Oracle Event Processing server messages default to "CEP" as the prefix and may not specify a different prefix. User messages can specify any prefix. A prefixed message ID is presented in a log entry as follows:

<[prefix-]id>

Where prefix is this attribute and id is the six-digit message ID associated with a specific message.

For example, if prefix is "XYZ", then message 987654 would be shown in a log entry as <XYZ-987654>. If prefix is not defined, then the log entry would be <987654>.

Syntax: any String (should be limited to five characters).

Example: prefix="CEP"

Valid values are:

	
"CEP" for Oracle Event Processing server catalogs.

	
null for user-defined catalogs

	
String

	
No.

	
description

	
An optional attribute that serves to document the catalog content.

Example: description="Contains messages logged by the foobar application"

	
String

	
No.

G.2.3 Example

The following example shows how to use the message_catalog element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

G.3 logmessage

Use this element to define a formal log message.

G.3.1 Child Elements

The logmessage component configuration element supports the following child elements:

	
messagebody

	
messagedetail

	
cause

	
action

G.3.2 Attributes

Table G-2 lists the attributes of the logmessage component configuration element.

Table G-2 Attributes of the logmessage Element

	Attribute	Description	Data Type	Required?
	
messageid

	
Unique identifier for this log message. Uniqueness should extend across all catalogs. Value must be in range defined by baseid and endid attributes.

Use: Value must be in the range defined by the baseid and endid attributes defined in the message_catalog element.

Syntax: one to six decimal digits.

Example: messageid="600001"

	
String

	
Yes.

	
datelastchanged

	
Date/time stamp used for managing modifications to this message. The date is supplied by utilities that run on the catalogs.

Use: The date is supplied by utilities that run on the catalogs.

Syntax: Long.toString(new Date().getTime());

	
String

	
No.

	
severity

	
Indicates the severity of the log message. User-defined catalogs may only use debug, info, warning, and error.

Valid values:

	
error

	
warning

	
info

	
debug

Example: severity="warning"

	
String

	
Yes.

	
method

	
Method signature for logging this message.

The syntax is the standard Java method signature, without the qualifiers, semicolon, and extensions. Argument types can be any Java primitive or class. Classes must be fully qualified if not in java.lang. Classes must also conform to java.text.MessageFormat conventions. In general, class arguments should have a useful toString() method.

Arguments can be any valid name, but should follow the convention of argn where n is 0 through 9. There can be no more than 10 arguments. For each argn there should be at least one corresponding placeholder in the text elements Section G.3.1, "Child Elements" describes. Placeholders are of the form {n}, {n,number} or {n,date}.

	
String

	
Yes.

	
methodtype

	
Specifies type of method to generate. Methods can be:

	
Logger methods format the message body into the default locale and log the results.

	
Getter methods return the message body prefixed by the subsystem and messageid, as follows: [susbsystem:msgid]text.

Valid values are:

	
logger

	
getter

Default: logger.

	
String

	
No.

	
stacktrace

	
Indicates whether to generate a stack trace for Throwable arguments. When the value is true, a trace is generated.

Valid values are:

	
true

	
false

Default: true.

	
String

	
No.

	
retired

	
Indicates whether message is retired. A retired message is one that was used in a previous release but is now obsolete and not used in the current version. Retired messages are not represented in any generated classes or resource bundles.

Valid values are:

	
true

	
false

Default: false.

	
String

	
No.

G.3.3 Example

The following example shows how to use the logmessage element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

G.4 message

Use this element to define an informal log message.

G.4.1 Child Elements

The message element supports the following child elements:

	
messagebody

G.4.2 Attributes

Table G-3 lists the attributes of the message element.

Table G-3 Attributes of the message Element

	Attribute	Description	Data Type	Required?
	
messageid

	
Unique identifier for this log message in alpha-numeric string format. Uniqueness is required only within the context of this catalog.

	
String

	
Yes.

	
datelastchanged

	
Date/time stamp used for managing modifications to this message. The date is supplied by utilities that run on the catalogs.

Use: The date is supplied by utilities that run on the catalogs.

Syntax: Long.toString(new Date().getTime());

	
String

	
No.

	
method

	
Method signature for formatting this message.

The syntax is a standard Java method signature, less return type, qualifiers, semicolon, and extensions. The return type is always String. Argument types can be any Java primitive or class. Classes must be fully qualified if not in java.lang. Classes must also conform to java.text.MessageFormat conventions. In general, class arguments should have a useful toString() method, and the corresponding MessageFormat placeholders must be strings; they must be of the form {n}. Argument names can be any valid name. There can be no more than 10 arguments.

For each argument there must be at least one corresponding placeholder in the messagebody element. Placeholders are of the form {n}, {n,number} or {n,date}.

Example: method="getNoAuthorization(String filename, java.util.Date creDate)"

This example would result in a method in the TextFormatter class as follows:

public String getNoAuthorization(String filename, java.util.Date creDate)

	
String

	
No.

	
retired

	
Indicates whether message is retired. A retired message is one that was used in a previous release but is now obsolete and not used in the current version. Retired messages are not represented in any generated classes or resource bundles.

Valid values are:

	
true

	
false

Default: false.

	
String

	
No.

G.4.3 Example

The following example shows how to use the message element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message messageid="FileMenuTitle">
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

G.5 messagebody

Use this element to define a short description for this message.

The messagebody element can contain a 0 to 10 placeholder as {n}, to be replaced by the appropriate argument when the log message is localized.

The message body must include placeholders for all arguments listed in the corresponding method attribute, unless the last argument is throwable or a subclass.

Be careful when using single quotes, because these are specially parsed by java.text.MessageFormat. If it is appropriate to quote a message argument, use double quotes (Section G.5.3, "Example" shows). If a message has one or more placeholders, in order for a single quote to appear correctly (for example, as an apostrophe), it must be followed by a second single quote.

Syntax: a String

G.5.1 Child Elements

The messagebody element has no child elements.

G.5.2 Attributes

The messagebody element has no attributes.

G.5.3 Example

The following example shows how to use the messagebody element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, "{0}" on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

G.6 messagedetail

Use this element to define a detailed description of the event. This element may contain any argument place holders.

Syntax: a String

G.6.1 Child Elements

The messagedetail element supports has no child elements.

G.6.2 Attributes

The messagedetail element has no attributes.

G.6.3 Example

The following example shows how to use the messagedetail element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

G.7 cause

Use this element to define the root cause of the problem. This element can contain any argument place holders.

Syntax: a String.

G.7.1 Child Elements

The cause element supports has no child elements.

G.7.2 Attributes

The cause element has no attributes.

G.7.3 Example

The following example shows how to use the cause element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

G.8 action

Use this element to define the recommended resolution. This element can contain any argument place holders.

Syntax: a String.

G.8.1 Child Elements

The action element supports has no child elements.

G.8.2 Attributes

The action element has no attributes.

G.8.3 Example

The following example shows how to use the action element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100">
 <logmessage
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H Schema Reference: Locale Message Catalog l10n_msgcat.dtd

This appendix provides a reference to elements of the l10n_msgcat.dtd schema, the schema behind XML you use to define log messages localized for a specific Java locale.

This appendix includes the following sections:

	
Section H.1, "Overview of the Locale Message Catalog Elements"

	
Section H.2, "locale_message_catalog"

	
Section H.3, "logmessage"

	
Section H.4, "message"

	
Section H.5, "messagebody"

	
Section H.6, "messagedetail"

	
Section H.7, "cause"

	
Section H.8, "action"

H.1 Overview of the Locale Message Catalog Elements

Oracle Event Processing provides a number of locale message catalog elements that you use to define log messages localized for a given Java locale.

H.1.1 Element Hierarchy

The top-level Oracle Event Processing locale message catalog elements are organized into the following hierarchies, depending on message catalog type:

	
Example H-1, "Locale-Specific Log Message Catalog Hierarchy"

	
Example H-2, "Locale-Specific Simple Text Catalog Hierarchy"

Example H-1 Locale-Specific Log Message Catalog Hierarchy

locale_message_catalog
 logmessage
 messagebody
 messagedetail
 cause
 action

Example H-2 Locale-Specific Simple Text Catalog Hierarchy

message_catalog
 message
 messagebody

H.1.2 Examples

This section provides the following message catalog examples:

	
Example H-3, "Locale-Specific Log Message Catalog"

	
Example H-4, "Locale-Specific Simple Text Catalog"

Example H-3 Locale-Specific Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </log_message>
</message_catalog>

Example H-4 Locale-Specific Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message>
 <messageid="FileMenuTitle">
 <messagebody> Fichier </messagebody>
 </message>
</locale_message_catalog>

H.2 locale_message_catalog

Use this element to define values for a parameterized Oracle CQL or EPL rule in an EPL processor component.

H.2.1 Child Elements

The locale_message_catalog element supports the following child elements:

	
message

	
logmessage

H.2.2 Attributes

Table H-1 lists the attributes of the locale_message_catalog element.

Table H-1 Attributes of the locale_message_catalog Element

	Attribute	Description	Data Type	Required?
	
I10n_package

	
Java package containing generated LogLocalizer or TextLocalizer properties for this catalog.properties file are named after the catalog file name.

For example, for a French log message catalog called mycat.xml, a properties file called <l10n_package>.mycatLogLocalizer_fr_FR.properties is generated.

	
String

	
No.

	
version

	
Specifies the version of the I10n_msgcat.dtd being used.

Use: Must be "1.0"

Syntax: x.y where x and y are numeric.

Example: version="1.0"

	
String

	
Yes.

H.2.3 Example

The following example shows how to use the message_catalog element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H.3 logmessage

Use this element to define a formal log message.

H.3.1 Child Elements

The logmessage component configuration element supports the following child elements:

	
messagebody

	
messagedetail

	
cause

	
action

H.3.2 Attributes

Table H-2 lists the attributes of the logmessage component configuration element.

Table H-2 Attributes of the logmessage Element

	Attribute	Description	Data Type	Required?
	
messageid

	
Unique identifier for this log message. Uniqueness should extend across all catalogs. Value must be in range defined by baseid and endid attributes.

Use: Value must be in the range defined by the baseid and endid attributes defined in the message_catalog element.

Syntax: one to six decimal digits.

Example: messageid="600001"

	
String

	
Yes.

	
datelastchanged

	
Date/time stamp used for managing modifications to this message. The date is supplied by utilities that run on the catalogs.

Use: The date is supplied by utilities that run on the catalogs.

Syntax: Long.toString(new Date().getTime());

	
String

	
No.

H.3.3 Example

The following example shows how to use the logmessage element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H.4 message

Use this element to define an informal log message.

H.4.1 Child Elements

The message element supports the following child elements:

	
messagebody

H.4.2 Attributes

Table H-3 lists the attributes of the message element.

Table H-3 Attributes of the message Element

	Attribute	Description	Data Type	Required?
	
messageid

	
Unique identifier for this log message in alpha-numeric string format. Uniqueness is required only within the context of this catalog.

	
String

	
Yes.

	
datelastchanged

	
Date/time stamp used for managing modifications to this message. The date is supplied by utilities that run on the catalogs.

Use: The date is supplied by utilities that run on the catalogs.

Syntax: Long.toString(new Date().getTime());

	
String

	
No.

H.4.3 Example

The following example shows how to use the message element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <message messageid="FileMenuTitle">
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

H.5 messagebody

Use this element to define a concise, one-line log message body.

H.5.1 Child Elements

The messagebody element has no child elements.

H.5.2 Attributes

The messagebody element has no attributes.

H.5.3 Example

The following example shows how to use the messagebody element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H.6 messagedetail

Use this element to define a more detailed explanation of the issue being logged.

H.6.1 Child Elements

The messagedetail element supports has no child elements.

H.6.2 Attributes

The messagedetail element has no attributes.

H.6.3 Example

The following example shows how to use the messagedetail element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H.7 cause

Use this element to define the root cause of the issue being logged.

H.7.1 Child Elements

The cause element supports has no child elements.

H.7.2 Attributes

The cause element has no attributes.

H.7.3 Example

The following example shows how to use the cause element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

H.8 action

Use this element to define how to fix the issue being logged, if possible.

H.8.1 Child Elements

The action element supports has no child elements.

H.8.2 Attributes

The action element has no attributes.

H.8.3 Example

The following example shows how to use the action element in log message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 version="1.0">
 <logmessage
 messageid="600001">
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </logmessage>
</message_catalog>

I Oracle Event Processing Metadata Annotation Reference

This appendix provides a reference to Oracle Event Processing Java annotations you can use to specify methods that handle adapter lifecycle stages, a method injected with an OSGi service reference, and to configure resource access at design time.

This appendix includes the following sections:

	
Section I.1, "Overview of Oracle Event Processing Metadata Annotations"

	
Section I.2, "com.bea.wlevs.configuration.Activate"

	
Section I.3, "com.bea.wlevs.configuration.Prepare"

	
Section I.4, "com.bea.wlevs.configuration.Rollback"

	
Section I.5, "com.bea.wlevs.util.Service"

I.1 Overview of Oracle Event Processing Metadata Annotations

Oracle Event Processing metadata annotations are used to access the configuration of an Oracle Event Processing component. Oracle Event Processing offers the following annotations:

	
Section I.1.1, "Adapter Lifecycle Annotations"

	
Section I.1.2, "OSGi Service Reference Annotations"

	
Section I.1.3, "Resource Access Annotations"

For more information, see:

	
Section 1.7, "Oracle Event Processing Application Lifecycle"

	
Section 1.4.3, "Configuring Oracle Event Processing Resource Access"

I.1.1 Adapter Lifecycle Annotations

You use the following annotations to specify the methods of an adapter Java implementation that handle various stages of the adapter's lifecyle: when its configuration is prepared, when the configuration is activated, and when the adapter is terminated due to an exception:

	
com.bea.wlevs.configuration.Activate

	
com.bea.wlevs.configuration.Prepare

	
com.bea.wlevs.configuration.Rollback

I.1.2 OSGi Service Reference Annotations

Use the com.bea.wlevs.util.Service annotation to specify the method of a component that is injected with an OSGi service reference.

I.1.3 Resource Access Annotations

Use the following annotations to configure resource access at design time and the corresponding deployment XML to override this configuration at deploy time:

	
javax.annotation.Resource

For more information, see Section 1.4.3, "Configuring Oracle Event Processing Resource Access".

I.2 com.bea.wlevs.configuration.Activate

Target: Method

The @Activate annotation is one of the adapter lifecycle annotations that you use in the Java file that implements your custom adapter to explicitly specify the methods that Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls methods marked with the @Activate annotation after, and if, the server has called and successfully executed all the methods marked with the @Prepare annotation. You typically use the @Activate method to actually get the adapter's configuration data to use in the rest of the adapter implementation.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers to the Java representation of the adapter's configuration XML file which is deployed with the application. The type of this class is com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if, however, you have extended the configuration of the adapter, then the type is whatever have specified in the XSD that describes the extended XML file. For example, in the HelloWorld sample, the type is com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class, populates it with data from the actual XML file, and passes the instance to the adapter. The adapter methods annotated with the adapter lifecycle annotations can then use the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

I.2.1 Example

Example I-1 shows how to use the @Activate annotation in the adapter component of the HelloWorld example; only relevant code is shown:

Example I-1 @Activate Annotation

package com.bea.wlevs.adapter.example.helloworld;
...
import com.bea.wlevs.configuration.Activate;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...
 @Activate
 public void activateAdapter(HelloWorldAdapterConfig adapterConfig) {
 this.message = adapterConfig.getMessage();
 }
...
}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is a Java representation of the adapter's configuration XML file. In the HelloWorld example, the configuration has been extended; this means a custom XSD file describes the XML file. Example I-2 shows this XSD file also specifies the fully qualified name of the resulting Java configuration object, as shown in bold:

Example I-2 HelloWorldAdapterConfig

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.bea.com/ns/wlevs/example/helloworld"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 targetNamespace="http://www.bea.com/ns/wlevs/example/helloworld"
 elementFormDefault="unqualified" attributeFormDefault="unqualified"
 jxb:extensionBindingPrefixes="xjc" jxb:version="1.0">
 <xs:annotation>
 <xs:appinfo>
 <jxb:schemaBindings>
 <jxb:package name="com.bea.wlevs.adapter.example.helloworld"/>
 </jxb:schemaBindings>
 </xs:appinfo>
 </xs:annotation>
 <xs:import namespace="http://www.bea.com/ns/wlevs/config/application"
 schemaLocation="wlevs_application_config.xsd"/>
 <xs:element name="config">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="adapter" type="HelloWorldAdapterConfig"/>
 <xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
 <xs:element name="channel" type="wlevs:DefaultStreamConfig" />
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Oracle Event Processing automatically creates an instance of this class when the application is deployed. For example, the adapter section of the helloworldAdapter configuration file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <helloworld:config
 ...
 <adapter>
 <name>helloworldAdapter</name>
 <message>HelloWorld - the current time is:</message>
 </adapter>
</helloworld:config>

In the Java code of the adapter above, the activateAdapter method is annotated with the @Activate annotation. The method uses the getMessage method of the configuration object to get the value of the message property set in the adapter's configuration XML file. In this case, the value is HelloWorld - the current time is:. This value can then be used in the main part of the adapter implementation file.

I.3 com.bea.wlevs.configuration.Prepare

Target: Method

The @Prepare annotation is one of the adapter lifecycle annotations that you use in the Java file that implements your custom adapter to explicitly specify the methods that Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls the method annotated with @Prepare whenever a component's state has been updated by a particular configuration change.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers to the Java representation of the adapter's configuration XML file which is deployed with the application. The type of this class is com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if, however, you have extended the configuration of the adapter, then the type is whatever have specified in the XSD that describes the extended XML file. For example, in the HelloWorld sample, the type is com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class, populates it with data from the actual XML file, and passes the instance to the adapter. The adapter methods annotated with the adapter lifecycle annotations can then use the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

I.3.1 Example

Example I-3, from the adapter component of the HelloWorld example, shows how to use the @Prepare annotation; only relevant code is shown:

Example I-3 @Prepare Annotation

package com.bea.wlevs.adapter.example.helloworld;
...
import com.bea.wlevs.configuration.Prepare;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...
 @Prepare
 public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {
 if (adapterConfig.getMessage() == null
 || adapterConfig.getMessage().length() == 0) {
 throw new RuntimeException("invalid message: " + message);
 }
 }
...
}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is a Java representation of the adapter's configuration XML file; Oracle Event Processing automatically creates an instance of this class when the application is deployed. In the HelloWorld example, the adapter configuration has been extended. See the example in Appendix I, "com.bea.wlevs.configuration.Activate" for additional details.

In the Java code of the adapter above, the checkConfiguration method is annotated with the @Prepare annotation, which means this method is called when the adapter's configuration changes in some way. The example further shows that the method checks to make sure that the message property of the adapter's configuration (set in the extended adapter configuration file) is not null or empty; if it is, then the method throws an exception.

I.4 com.bea.wlevs.configuration.Rollback

Target: Method

The @Rollback annotation is one of the adapter lifecycle annotations that you use in the Java file that implements your custom adapter to explicitly specify the methods that Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls the method annotated with @Rollback whenever a component whose @Prepare method was called but threw an exception. The server calls the @Rollback method for each component for which this is true.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers to the Java representation of the adapter's configuration XML file which is deployed with the application. The type of this class is com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if, however, you have extended the configuration of the adapter, then the type is whatever have specified in the XSD that describes the extended XML file. For example, in the HelloWorld sample, the type is com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class, populates it with data from the actual XML file, and passes the instance to the adapter. The adapter methods annotated with the adapter lifecycle annotations can then use the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

I.4.1 Example

Example I-4, sample code from the adapter component of the HelloWorld example, shows how to use the @Rollback annotation; only relevant code is shown:

Example I-4 @Rollback Annotation

package com.bea.wlevs.adapter.example.helloworld;
...
import com.bea.wlevs.configuration.Rollback;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...
 @Rollback
 public void rejectConfigurationChange(HelloWorldAdapterConfig adapterConfig) {
 }

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is a Java representation of the adapter's configuration XML file; Oracle Event Processing automatically creates an instance of this class when the application is deployed. In the HelloWorld example, the adapter configuration has been extended. See the example in Appendix I, "com.bea.wlevs.configuration.Activate" for additional details.

In the example, the rejectConfigurationChange method is annotated with the @Rollback annotation, which means this is the method that is called if the @Prepare method threw an exception. In the example above, nothing actually happens.

I.5 com.bea.wlevs.util.Service

Target: Method

Specifies that the annotated method, typically a JavaBean setter method, requires an OSGi service reference.

I.5.1 Attributes

Table I-1 describes the attributes of the com.bea.wlevs.util.Service JWS annotation.

Table I-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

	Name	Description	Data Type	Required?
	
serviceBeanName

	
The name of the bean that backs the injected service. May be null.

	
String

	
No.

	
cardinality

	
Valid values for this attribute are:

	
ServiceCardinality.C0__1

	
ServiceCardinality.C0__N

	
ServiceCardinality.C1__1

	
ServiceCardinality.C1__N

Default value is ServiceCardinality.C1__1.

	
enum

	
No.

	
contextClassloader

	
Valid values for this attribute are:

	
ServiceClassloader.CLIENT

	
ServiceClassloader.SERVICE_PROVIDER

	
ServiceClassloader.UNMANAGED

Default value is ServiceClassloader.CLIENT.

	
enum

	
No.

	
timeout

	
Timeout for service resolution in milliseconds.

Default value is 30000.

	
int

	
No.

	
serviceType

	
Interface (or class) of the service to be injected

Default value is Service.class.

	
Class

	
No.

	
filter

	
Specifies the filter used to narrow service matches. Value may be null.

	
String

	
No.

I.5.2 Example

Example I-5 shows how to use the @Service annotation.

Example I-5 @Service Annotation

@Service(filter = "(Name=StockDs)")
public void setDataSourceService(DataSourceService dss) {
 initStockTable(dss.getDataSource());
}

For another example, see Section 9.4, "Accessing the Event Type Repository".

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/visqwssource.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

rd

Query

Q/[8][F] Dvover [& [&][@][Q] zom 023 oo

| choose et v |

RSourcs CacheTable

Paten ouput
LsSoure I Q
son Windaw
Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/depgraph.png
package com. foo.event;

public final class MarketEvent {
public Marketvent (

public Double getPrice() {

public String getSymbol() { ...

public long getTimestamp() { -.. }

public long getVolune() { ... }

b

T T T
Import Import Declare and Export

P 4 .
[opicaion A | Appiction & - Agpistin
|

OEBPS/img/vismain.png
astibosrd 2 Vewstresm (@ Logot [FulScreen [Preference (@) Helo

ORACLE' CEP Visualizer ! Home [seaurty

1 Welcome : wlevs, Dashboard [EEEEE]
v @ WLEventServerDomain Management Events Clear.

eployment @ rtormation

v @ NonClusteredSener

v T Awplcations
om beawievs data

al
» £ Senvices _i\ Warning
) securiy Performance Monitoring (Drag a diagniostic profile into the table)
Average Throughput (Number of Events) Latency (Microseconds)
o £ rsshoit 120
) i
2
o 3w
w HE)
Pa fx
L] ¥ o
| 190000 | 190000

Open ttems.

Dashboard

Profile Name Application Stage Throughtput | [average Late MaxLatency | |op

OEBPS/img/selectconfig3a.png
Step 1- Froject

[Distinct Results TargetEvent Tyne MovingAvaEvent I+
Source Propeties (select fom here) Selected Properies
| Stockvolstionn RliEEED

Propettes (4)

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Project EXpression gy ekyalot 000.symbol

Generated COL Statement

SELECT * FROM StockvoIGH1000 [PARTITION BY symbol ROWS 2]

@ e & vaiivate | | @ save | [@ cancel

OEBPS/img/playtab.png
= strea

eventStream - recplay@NonClusteredServer LEEEE

Playback

Playback Current Status.

PlayBack Parameters. Event Type List

J— simpleEvent
DatagetName recplay_sample I

Provider Name | test-rdbms-provider v

Playback Fitter Entry

Filer Start Time Filter End Time.

Playback Schedule Entry

Schedule Start Time. Schedule End Time. Speed Repeat

1.0 false

Change Playback Filter Paramet

Change Playback Sch

Fitlr Start Time @ (0 00 00 = Schedule Stari Time 2 (o0 00: 00
Fittr End Time @ (0 00 00 = Schedule End Time 2 (o0 00: 00
Speed 10 Repeat [fase v

+ [/m”usm\ [=] a [x

OEBPS/img/epnedit-delete-epn-after.png
X] *Secondassembly.context. il

Fler: Secondissenbly contortom ER T —

2]

eventBean

OEBPS/img/visqwselect3.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

lomsne o] (@[B][E] Dww [&](a](@][a]zr o5, o=

SSouee RSowes CacheTable
Paten Dutput
Jein Window Fiter

D% 3%
T 55— (oo (Y 3500t Unn e s

Ol D324 D%

ISteam DSteam RSteam

Tl Templates
Tl User-defined templates

OEBPS/img/upgrade-select-facet.png
£ Modify Faceted Project

Project Facets
Selec the Facets that should be enabled or this project,

Cotirations: [<camom> =

ot Facet verson
) 3a 60 -

¢ Orade CEP 2.0
i

& Implementation o version 2.0 o project Facet wlevs.modul cauld ot be found. Functionalty wil be e

<< show Runtimes

i | s | o) (e)

OEBPS/img/selectconfig12.png
Step 1- Froject

[Distinct Results Target Eveni Type Select or nput Event Type | v |
Source Propeties (select fom here) Source Properties

Select a source v | [soeaime

Propeties ©

Generated CQL Statement

SELECT *FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES Custorder orderid AS
orderid, CustOrder amount AS amount PATTERN(CustOrder NoApproval*? Shipment) DEFINE CustOrder S
orderChannel eventType = ‘C', NoApproval AS NOT(orderChannel eventType = &), Shipment AS

orderChannel eventType = ') AS Orders

@ e & vaiivate | | @ save | [@ concel

OEBPS/img/connectssfilt.png
Y 1550mee @
. [@] 25w

OEBPS/img/importpkg.png
L Heloworldhingroadcast £

% Dependencies

Required Plug-ins o
Specifythe st of plug-ins required for the operation of this pug-in
add)
Total 0
» Automated Management of Dependencies o

Overview | Dependencies |Runtime | Buid | MANIFEST.MF | buld properties

Imported Packages

=8

DRE O]

Specify packages on which ths plug-in depends withoLt explctly

identFying their orginating plug-n

3 com.bea.wlevs.configuration (11.1.1.1_0)

3 com bea.wlevs.ede (11.1,1,1_0)
Fcom.bea.wlevs.ede.api (11.1,1.1.0)

3 com bea.wlevs.ede. api.cluster

F com.bea.wlevsede.impl (1.1.1.1_0)

i com.bea.wlevs.ede.spi (11,1.1,10)

& com.bea.wlevs.management.spi (11.1.1.1.0)
3 com.bea.wlevs.spring (11.1.1.1_0)

3 com.bea.wlevs.spring.support (11.1.1.1_0)
3 com bea.wlevs.utl (11.1.1.1_0)

3 comoracle.cep.cluster ha. adapter

3 com.oracle.cep.cluster.ha.api

com.oracle.cep.cluster hagroups
org.apache.commens.logaing (1.1.0)

3 org.springframework. beans (2.5.6)

3 org.springframework. beans.factory (2.5.6)

3 org.springframework.beans.factory.config (2.5,
3 org.springframework.core. annotation (2.5.6)
 org.springramemork.osgi contest (1,2.0)

3 org.springframework.osgi.extensions. annotatic

B o rvineframatinel e caviin 17 1

< | ®

add)

Total: 22

» Dependency Analysis

OEBPS/img/visgen.png
cal @NonClusteredserver

General Information

Application Name cal

State RUNNING

OEBPS/img/install-site.png
£ Install

Available Software
Check the tems that you wish to nsal,

work with: | Oracle CEP Tools Update - hitpjdownload. oracle.comtechnology/softwarecepride/11/ v

Find more software by working with the ‘valable Software ites' preferences.

Version

Detalls

how oy the latest versions of avalable software [l items that are abeady installd
Group tems by category What is keady instaled?

[Contact all update sites during install to find required software

OEBPS/img/adptwiz-httpsub.png
43 New Adapter.

Adapter Configuration

Enter configuration values for this adapter.

Propertis; Property Descripton:

Connection Server URL
Server URL:*

The Server URL s used when
publihing or subscribing to a remate.
channel, .. & channel osted by a
Event Type: remote Pub-5ub server, The Server
URL identfis the remote Pub-5ub
server. For example, a value such
Szl s hitp:fnyhost. com: 3002 pubsb
User couldbe used to identiy the
Pub-Sb server runring on host
O Password; yhost. com at port 9002,

Channel*

O Encrypted Password;

* Reguired property

<gack

OEBPS/img/rulesview2.png
& Processor: stockProcessor - cql@NonClusteredServer

O view @ Guery (O All Rules

Rule 1D Rule Type Ordering | Running

MovingAverage SELECT StockolG1 000.symbol AS symbol AVG(StockValGt1 000 price) AS movingavgPrice FROM | QUERY. =
StockValGt1 000 [PARTITION BY symbol ROWS 2] GROUP BY StackValGt1 000 symbol

Working Area - for Modify and Delste Operation, select a rule from the table

QueryID

Ordering Constraints v

Fartiion Expression

[
Query
Enable () o

G Acd Guery | [3 Delete All Queries

| 12 e = 8 e @ rele

OEBPS/img/epned-new-renm-procr.png
R T —

adapterl BeanClass

o)

processor

OEBPS/img/winconfig4.png
Q) Window [1D:2] x

Partiton Source Property List Partiion List (selectfom the lis)
price symbol
symbol

Twe - - @ Partition

[Row Based 2

[Time Based

sie [

Generated COL Statement

SELECT * FROM StockvoIGH1000 [PARTITION BY symbol ROWS 2]

@tew [Ase window | | & validete | | Eljseve | @ concel |

OEBPS/img/pkgsel.png
L3 Package Selection,

Exported Packages:

org.osg. framemork

3 org.osgi framework.hooks. service (1.0.0)
3 org.0sgt framework.Jaunch (1.0.0)

< "

[show non-exported packages

&

OEBPS/img/hypercql1.png
O ep: ceprx (] 3 =0
<very 10 "EuroriltercrossRatests <! [CDATA[select * From EurToGbpia
<ruless
</proceszor>

<processor>
<newe>FindCrossRates</nane>
<rules>
<query id="FindCrossRatesRule"<![CDATAL
select ((a.price * b.price) + 0.05) as internalPrice
a.fromRate as crossRatel,
b.coRadTas crossRatez
from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
where
HOT {a.price IS NULL)
ana
HOT (p.price IS NULL)

11></query>
</rules>
</processor>
</nl:iconfig>

<

OEBPS/img/file-new-epn2.png
8] New OEP Assembly File

New OEP Assembly File
Create a new OP assembly file.

Enter o select the parent folder:
/MyCEPProj/META-INF/spring

&
& MyCEPProj

@& settings

& build

(= META-INF
& spring
@& wlevs.

& sre

File name: "comoracle.oep.cxample.mykontedaml

@ <Back New>] [concel

OEBPS/img/tradereport_projexp.png
&5 Project Explorer 2

& TradeReport

@ s
‘= JRE System Library [JavaSE-16]
& resourcesjar - C\Oracle\Middleware\jrockit 160_2¢
& tjar- C\Oracle\Middleware\jrockit 160_29\jre\ib
8 jssjar- CA\Oracle\Midlwar\ocki 160 B9\l
racle\Middleware\jrockit160_29\jre\
- CA\Oracle\Middleware\jockit_160 29\
& dnsnsjar- CA\Oracle\Middleware\jockit_160_29\je
 localedatajar - C:\Oracle\Middleware\jrockit_1602
& sunjce_providerjar - C:\Oracle\Middleware\jrockic
=) OFP Classpath

& combeawlevsspi 11117 0jar - CA\Oracle cep_ps
& combeavlevs.edeapi 11117 0jar - C:\Oracle ce
5 combeswilevs.ede 11117 0jar - C:\Oracle_cep.o:
5 combesievsmansgementspi 11,11
5 combealevs.pringsupport 11117 0jar- C:.0r
5 combeswlevsspring 11117 0jar - C\Orscl cep
% combeawlevs.uti 11117 0jar- C:\Oracle cep.ps
5 combes.core.apache.commons logging.spi 110,
5 orgspringrameworkspring-beans 256jar - €101

OEBPS/img/epn-eventtype3.png
PN: CEPFx ©3 X spreader.l [X] *com.oracle.cep.sample.Fx.context.xl (3] MarketEvent java

Event Type Defi + x

S B comorade.cep.sanpl.fcontext i
(3 stockTick
(3 crosshatekvent
3 SpreaderouputEvent
3 CrossrateSummaryEvent

D newtvent

Event Type Details

Type name:

newEvent

O Properties defined declaratively

©rapetes e s b

Class:

OEBPS/img/epn-open-context.png
[project Explorer £

& [signal_generation
@ src
% resources
‘=) Plug-in Dependencies
B IRE System Library [jdk1.5.0_11]
& buid
& data
& dist
= & META-INF

= spring

4 Fpemem——esrs

= vlevs

3

B e e -

) buid sl
bundle.properties | [Copy
) Sona Generaton D [pasee

Bl amDssrectind 3¢ e
) aonpsarecdian

[startDatafeed.sh

Move,
Rename

3 Import
243 Export

& Refresh

bud.properties Gt

»

[
ey
Delete

2

s

OEBPS/img/tradereport_breakpoint.png
Flle Edit Source Refactor Navigate Search Project Run Window Help

o4 ©i%-0-QU- 0 PEAvEMN :-§ -~

P

%5 Debug 52 4 Servers| =8 jariables 5396 Breakpoints |

% > HreeF(R[e

P Daemon Threod [[ACTIVE]ExccuteThre ~
radel istener.onlnsertEvent(Object)
radeListenerSSFastClassByCGLIBSS:
MethodProxynvoke(Object, Object]
Cglib2AopProxySCglibMethodinvoc]
Cglib2AopProxySCglibMethodinvoc:
EventBeanProryinvoke(Methodinvo
Cglib2AopProxySCglibMethodinvoc:
Cglib2AopProxySDynamicAdvisedin
radeListenerSSEnhancerByCGLIBSS«

Value
Tradelistener (id=131)

54 EPN: TradeReport | [X] TradeReport contertaml M

BF Outline 53

if (event instanceof TradeEvent){
String symbolProp = ((TradeEvent) event).getSynbol();
Integer volumeProp = ((TradeEvent) event).getVolume();
System.out.println(synbolProp + ":" + volumeProp);

BV e W §
& com.oracle.cep.exampletradereport
importdeclaations
© TradeLitener
6 ... onlnsertEvent(Object) : void

] Console 57 & Tasks|

(Oracle Event Processing vI1.1 at localhost [Oracle Event Processing vi1.1] "
UL 51, ce> <Spring:

<3ul 31, 2012 8:09:19 PH PDT> <lotice> <Spring> <BEA-2047000> <The application context for "com.bea.wlevs.dataservices” was started

<ul 31, <lotice> <Server> <BEA-2046000> <Server STARTED>

<ul 31, <Notice> <Deployment> <BEA-2045000> <The application bundle "TradeReport” was deployed successfully t
<ul 31, <Notice> <spring> <BEA-2047000> <The application context for "TradeReport” was started successfully> |

T8M: 3000
Sun:5000

Oracle:6000
Google:4000

0

OEBPS/img/libs-runtime3.png
=\ Runtime

Exported Packages Classpath

Enumerate all the packages that this plug-in exposes to cients. Speciy the lbraries and folders that consttute the plug-n
Al ther packages wil be hidden from clints at al tines. classpath. IF unspecied,the classes and resources are
assumed ko be at the roat of the plug-n.

=

e
Remove. Bhlibfjavax.jws_2.0.jar

Propertis,

add)

Calclate Uses

Overview |Dependencies |Runtime |Buid | MANIFEST.MF | buld properties

OEBPS/img/epnedit-connect-gb.png
] Secondassembly.context.xml

Fiter: v SecandAssembly.context.xrl & 4% [100%

—B

adapter

OEBPS/img/connection.png

OEBPS/img/project-create2.png
8] New Oracle Event Processing Application Project

Oracle Event Processing Application Content

Enter the data required to create application.

Bundle Properties

Bundle D:
Bundle Version: 1.0.0
Bundle Name: MyCEPProj
Bundle Provider:

J

OEBPS/img/manifestrun.png
] Myhctivator.java DBCDriver 7 am

=\ Runtime oK A

Exported Packages Classpath

Enumerate all the packages that this plug-in exposes to cients. Specifythe lbraries and folders that consttute the
Al ther packages wil be hidden from clints at al tines. plug-in classpath. IF unspeciid, the classes and
Yesarces are assumed to be at the root o the plug-n,

=

add)

Remave

e

Remave

Properties,

Calelate Uses

Overview |Dependencies |Runtime |Buid | MANIFEST.MF | buld properties

OEBPS/img/expessionbuilder4.png
Expression Builder 9] @&

CustOrder.orderid

Variables. Functions Operands
v | | Selectafunctiontype v o+
Praparies (12) Functions -

CustOrder amount _java lang L

CustOderts java lang Sting i

CustOrder ventType java ane|

© CumDrderortend jesiong o)

Shipment amount _java lang L

Shipmentss _java.lang Sting

ShipmenteventType _java lans| 7] -

Function Description

@ e & save | [@ cancel

OEBPS/img/selectconfig8.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (9)

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Project BXpression sy stockvalGt 000 price)

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol from StockVolGH 000 [parition by symbol rows 2]

@ cancel

@ Heln o vaidate | | B save

OEBPS/img/spatialweb.png
%) Mozilla Firefox
Ble Edt Vew

- ¢

| L) httpi//localhost:9002/bus/mainhtml |

Hstory Bookmarks Tooks

Bus Track

Help

@ (1) hepiffocahost:o002jbusjmain il

Cental
Richmond|

sozast

2oz

!

10 F Kernagy D

Goiden
Gate Park,
Mg O W

Laxe.
Metson Lake.

RO s

Loy Loke

o*Mv

EKGien
e 4

“seviine
ot
i W

5 e

Satelite

Terrain

vy

o uorsond
v

L Catfora:
e Young gy

depanesel Sifisum ;e

Tea Garden

v,

Son Francsco
Botanica Garden

e

Uiy pone
saOLE.

2 [Matgh case

OEBPS/img/filtexpression2.png
Filter Predicate - type directly nto the text area OR use Builder

StockvoIG 000valume > 1000

Generated Filter Staterent

SELECT * FROM stockChannel AS StockvalGt 000 WHERE StackvolGt 000 valume = 1000

@ Heln (G At fitter | |) Deete fitter

& et |

Q@ cancel |

Aspe

OEBPS/img/ha-over2.png
Event
Input

Deployment Group.

Nofiication Group 1

ActiveActiveGroupBean
generated Notiication Group

Event
Output
Notfication Group 2
Event
i output
Notfication Group 3 | |
i | Event
1 output
Noiacaton Group 4 | |
i | Event
| output

OEBPS/img/patterncfg2a.png
[o [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propettes (1)

CustOnder_oraerChanneleventType =

Generated Pattern Match Staterment
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
Noapproval*? Shipment) DEFINE CustOrder AS orderChannel eventType = C) AS Orders

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/selectclusterdeploy.png
£ Select Cluster Deployment Group Name

Select Cluster Deployment Group Neme

‘AlDomainierbers
testgroup
WLEVServer-2
WLEVServer-3

OEBPS/img/epn-configuration-badge.png
exampleprocessdmhContia

OEBPS/img/epn-overview.png
& Java - CQL Test - Eclipse Platform
Fle Edt Navigte Search Project Run Mindow Hep

i-EHGiIB-0-Q- (BEHG- I ODF D!

s

[8 packs 50 g Herar | 7 O[T EpN: COUTest £3 . [X) ciipoc.contest xml

| X] com.oracle.cep.sample.fx.context xml \

Bl Task it £

2 BES Fter: v FulEP
@ 5 colerest

@59 carx
=5 coures

8 src

B JRE System Library [jre1.6

Febtarketasia
& buid
& dst

- e

=2 spring Foo W e

X citpor.context sl
% FikerEurastream

B comorace.cep.sa
bt

Fiternsiastream
Fiterasia

8

FiterEura

- _,:}._,Q-,

/’

EH T a—]

go9=-|e~

EJD

FindCrassRat

12}

bhaProcess

) pPubsubidaptercor
B spresderm
0 summarzeResuts
) manteesr e
&) buid properties
) buidxnl
bunde propertes
@ 5 courenz
gy

B =0

) channelxm
pricsstream
PriceAdapter

%) citpocom

) processor
adapter

<

Sug s

fiteredstream

o)

analyticsproce:

& Uncategorizd

Pl oy ad

Overview | Event Types|

B2 outine 33

0 MyCEPProj

& servers 2. problems | @ 3avadoc | Declaration | 4t Servers &2

server
5 orack CePYiL

state
o stopped

Status
Republsh

OEBPS/img/patterncfg2.png
[o [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propetties)

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder

NoApproval*? Shipment) AS Orders

@ el

o validate

B save

@ cancel

OEBPS/img/altt-epn2.png
¥ Java EE - CEPFXIMETA-INF/spring/com.oracle.cep.sample. fx.context.xml - Eclipse

Fle Edt Navigate Search Projct Run Desn Window Help

- X=N 4

558 smvae |

(25 Project Explorer 23 & ¥ = O[5 epn: ceprx [X) com.oracle.cep.sample.fx.context.aml 22 = O[22 1 =0

B & Ceprx
5@ s
= com.oracke.cop.sample.fx
3 marketevent.java
[3) outputsean.java
= IRE System Library 131551 6]
= OCEP Classpath
& buid
& G METATNE
= & spring
[X] com.oracle.cep.sample.fx.context.xml
G wevs

in a real application —-> -

<ulevs:channel id="FilterAsiaStream” ev
<ulevs:listener ref=rFilterAsia"/>
</vlevs:channel>
<wlevs:processor id:
<wlevs:listener re:
</wlevs:processor>

" provic
FrQuoteStrean'

<ulevs:adapter id="EeMarketEuro” provic
<wlevs:instance-property name=r"port
<wlevs:listener ref=rFilterEuroStre
</wlevs:adapter>

8
5 beansa &
(¢l viev

X PubsubAdapterConfiguration. il
X spreader sl <1-- This processor is simply here to T
) SummarizeResuls. i to make it appear more realistic. It wcw
£ maniresT. K)
[buid.properties
bunde.properties
3] startDatareed.cmd

(€] wlev,
ERCp
Design | source < >

21 Markers | £ properties | 4ib Servers 53 I8 Data sourc | () srippets € Progress ~ O
& 9 o
i [rarle CEP VAT, 1 aflocahost [<iopped]
<

g Ditems selected

OEBPS/img/project-export.png
8] Oracle Event Processing Applications.

Oracle Event Processing Appli

Select the projects to export as Oracle Event Processing applications and.
the directory where they will be placed.

Avalable Projects:
Project Output File
[[] MyCEPProj (1L00) MyCEPProj_10.0jar

® i][

OEBPS/img/ha-prifail.png
Ut Streams.

Mult-Server Domain
(Deployment Group and
Notiicaton Group)

OEBPS/img/epn-nested-bean.png
[oo X oo

helowordinputchannel helowordouputchannel
helloworidAdapter P helloworldProcessor i HelloworldBean

OEBPS/img/visqwoutput2.png
-
£ Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

Lo o] (@][B][E] Do [&][](@][Q 2 o5, o=

SSouee RSowes CacheTable

b {2

® @

W%M_{W' st [] 4o o Windo
3y B33

Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/epn-understand-filter.png
Fiker:) FullEPN : [100% =]

FulEPH
algo_trading.context.xm
<ub_Flow.cortext sl

AgaTradigBean

socketadspter sgnalgeneratonprocessar .

OEBPS/img/epnedit-delete-context.png
Fiter: v SecandAssembly.context.xrl

=

adapter
Go'to Configuration Source
Gato Assembly Source.

re—

OEBPS/img/visqwssource2.png
-
£ Processor: stockProcessor - cal@NonClusteredServer

o

[oroosermest. v| (@[B [E] Orover (& [& |[8|[Q] 2o 0 oo

1y Wizard

RSourcs CacheTable

Paten ouput
® @
son Windaw
% 2%
Unionntemsst Minus
DO D3 D%
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/tradereport_newserv_conf.png
8] New Server

Add and Remove
Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available:

[<Remove

e)

[nsams |

T, TrodeReport

OEBPS/img/prefs-prob-ws-2.png
@) Preferences oo}
typefittertet Oracle Event Processing Problem Severities GrDv
> General Configure Project Specific Settings...
> Ant
 Data Management Select the severity level fo the following optional Oracle Event Processing compiler problems:
> Help ~ Cache Configuration
> Install/Update o
- Unresolved cache loaders or resolved loaders with incorrect interface:
e declarations
vt Unresolved cache stores or resolved stores with incorrect interface
> Java Persistence K
> Javascript
" Ny ~ Event Processing Network

Oracle Event Processing Problem Severiis|

> Plug-in Development
> Remote Systems
> Run/Debug
4 Server
Audio
Launching
Profilers
Runtime Environments
> Team
Terminal
> Usage Data Collector
Validation
> Web
> Web Services
b XML

Configuration objects without a matching assembly definition

Configuration objects with duplicate name declarations.

Unresolved event listeners or resolved listeners with incorrect interface.
declarations.

Unresolved event sources or resolved sources with incorrect interface
declarations.

Unresolved query selectors configured for channels

Unresolved processor table sources

‘Channels not associated with CQL processors mis
declaration

“event-type”

Unresolved event type references

Event types with duplicate type name declarations wit
event type repository.

Deprecated EPN elements

the global

~ Event Type Repository

Event property type values that are not predefined types of do not
resolve to a known class

~ JDBC Data Cartridge

Function parameter or return type values that are not predefined types or
do not resolve to a known class.

~ Query Validation
Problems found validating CQL statements

Problems preventing the validation of CQL statements

CQLstatements in disconnected processors (no upstream channels in
the EPN)

OEBPS/img/epnedit-new-rename.png
R T —

adapterl BeanClass

OEBPS/img/manifestmf.png
] Myactivator.java | {4} *IDBCDriver £

Hanifest-version: 1.0
Bundle-Manifestversion: 2
Bundle-Name: *project.name
Bundle-SymholicName: JDECDEiver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: *project.vendor
Bundle-RequiredExecut ionEnvironment: JavaSE-1.6
Bundle-ClassPath: .,
1ih/com. bea. aracle.ojdhes_1.0.0.0_11-2-0-0. jax
Import-Package: com.bea.wlevs.configuration;version=ril.1.1.1 07,
com.hea. ulevs. ede; version="11.1.1.1 0,
com.hea. ulevs. ede. api; vession="il.1.1.1 07,
com.bea.ulevs.ede. iupl; version="11.1.1.1 0",

_ com.bea.vlevs.ede.spi; version="11.1.1.1 0",
com. hea. ulevs . management . spi; version="11.1.1.1 0%,
com.bhea.levs. spring; version="11.1.1.1_0",

_ com.bea.vlevs.spring. support; version="11.1.1.1_0%,
com.bea. ulevs.uril; version="11.1.1.1 0%,
org. apache . comons. Logying; version="1.1.0",
org. osgl. framevork; version="1.5.0",
org. springEranevork.beans; version="2.5.67,
org. springEraneuork beans. factory; version=2.5. 67,

_ org.springfranevork.beans. factory.config; version=r2.5. 6",
org. springEranevork. core. annatation; version="2.5. 67,
org. springframevork.osgl.context; version="1.2.0",
org. springEranevork.osgi. extensions. annotation; versio
org. springframevork.osgl.service; version="1.2.0",

T org.opringframevork.util; version"2.5.6"

"1.2.0m,

Overvisw |Dependencies |Runtime |Buid | MANIFEST.MF | buid properties

OEBPS/img/ha-precisejms.png

OEBPS/img/epnedit-new-context.png
Fiter

< FulEPy

B8

adapterl

BeanClass

adapter,

Help

Bean.
Cache,

Event Bean. %

Pracessor.
Tabl,

OEBPS/img/helloepn.png
) - . ~———%

heloworldinputChannel helonoridoutputchannel
helomoridadapter heloworldprocessor HelltaridBan

=
b—0%
Adapter Channel Processor Business.

OEBPS/img/add_site.png
£3 Add Repository.

s [] |

ocaton: o] | (oo

@ o |Ce=]

OEBPS/img/epn-understand-print.png
Fiter: v FulEPN

h,)_,a Aogtaogieon
sockesadepter sgnalgenerationProcessar -

OEBPS/img/icon-processor.png

OEBPS/img/ha-adapters.png
nput
Streams

HalnputAdapter Processor HautputAdapter Outputadapter

Server2
Secondary

i
elete ot
ey, Timestamp. Messages i

Mesgeges (optiona)

[

Inputadapter HalnputAdapter Processor HautputAdapter Outputadapter

Server1
Primary

Wull-Server Domain
(Deployment Group and Netification Group)

output
Streams

OEBPS/img/visprocqw2.png
.
& Processor: Filter Amer - fx@NonClusteredServer

Query Wizard

| choosetyout. v | [NNE] B | Ovover | & || & 2] Zoom:

SSouee RSowes CacheTable

ISteam DSteam RSteam

Tl rempiates

T e

OEBPS/img/linksrcassembly.png
</vlevs:processor>

<ulevs
event-type="FilteredPriceEvent”>
<ulevs:listener ref="bbaProcessor” />
<ulevs:listener ref=vanalyticsProcessor” />
<ulevs:source ref=vfilterFanoutProcessor” />
</wlevs:channel>

hannel i

£1lteredstrean”

OEBPS/img/tradereport_jredef.png
@) Add JRE - (=] &
JRE Definition
Specty trbutes fora KE
R home: C\OradleMiddiewsre\jrockit 16029
RE rame: Jocki 16029
Defout UM Arguments:
RE sysem orres:
[Add el k.. |

55 C\Oracle\Middieare\jrockt 160_29\e\ib\resourcesjar
53 Ci\Oracle\Middieware\jrockit_160_29e\ b\ jar

53 C\Oracle\Middieware\jrockit 160_29\e\\ssejar

53 C\Oracle\Middieware\jrockit_160_29\e\lb\cejar

53 C\Oracle\Middieware\jrockit 160_29\je\lb\charsetsjar
5 CA\Oracle\Middlewarejrockit 160_29\re\ib\ext\dnsnsjar
5 CAOracle\Middlewarejrockit 160_29\jre\ib\extlocaledsta,
5 CAOracle\Middlewarejrockit 160_29\jre\ib\extcunce.pro|

‘Add External
Javadoc Location,
Source Attachment.
Remove
U

Down

|

Restore Default

@] Neo iy | [Gone

OEBPS/img/server-stop.png
New 3
Open
Intialze Server Status

% Delete.
Rename

35 Debug

© Restart
5 prfie
@ stop

0 publsh

OEBPS/img/icon-eventbean.png

OEBPS/img/project-add-3.png
g b Oy wm~ =0

) Eb Oracke CEP vi1.1 atlocahost [Started, ynchronized]

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developer's Guide
for Oracle Event Processing for Eclipse,
11g Release 1 (11.1.1.7)

OEBPS/img/cqlepn.png
ad—0%

Legend

B——=0 <=~
B——=0 ="

—

&

E
adapter —

. cacheprocessor

stockCache

- _..
s

Bean

OEBPS/img/ha-failsec.png
Mult-Server Domain
(Deployment Group and
Notiicaton Group)

OEBPS/img/selectconfig11.png
s .. consion [

Step 2- GROUP BY

[swockvaioron |+ [+]| oot Grounng roperas

SereatLit(t)

Propettes (4)

Stadkal6t1000 2ymbol

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol AVG(StockyolGt 000 price) AS movingévgPiice from StockyolGt000

[pariition by symbol rows 2] GROUP BY Stockvalot1 000 symbol

@ Heln & Validate

B save

@ cancel

OEBPS/img/libs-package-select.png
& Package Selection

Select packages to export

8 com.oracle.cep.sample.fx
B javax.jus

OEBPS/img/rectab.png
3, Adapter: simpleEventSource - recplay@MonClusteredServer

Recor

ng Current Status
Recording Parameters Event Type List

[simpleEvent
DataSetName recplay_sample I

Provider Name | test-rdbms-provider

Recording Schedule Entry.

stat Time

End Time

Start Recording

& [o0: 00: 00

Stop Recording & [o0: 00: 00

2 eat | [@start

OEBPS/img/epn-understand-rename.png
G0 to Configuration Source
Gato Assembly Source.

Renane...

OEBPS/img/epn-eventtype2.png
PN: CEPFx ©3 (X spreader. sl (X *com.oracle.cep.sample.Fx.context.xl [J) MarketEvent java

Event Type Defi + x

S B comorade.cep.sanpl.fcontext i

(D CrossRateEvent
D spreaderOupuiEvent
(D CrossreteSummanyEvent

Event Type Details

Type name:

StockTick

® Properties defined declaratively

(O Properties defined in Java bean

Name
lastprice
symbol

“char' Length

OEBPS/img/outputconfig2.png
() output [1D:4]

Tie O cuery

Query Narme

@ view

View Name | StockvolGt 00|

View Schema

Froject List

Propattes)

1 StodvolGHODD.price

2 Stodeoloti000 symbal

3 Stodwelotinmgvalume

Generated COL Statement

SELECT StockvalGt1 000 price StockVolGt1 000 symbol StockolGH 000 volume FROM stockChannel AS StockVolGH 000
WHERE StockvolGt 000 valume > 1000

@ Heln | @ nectigule | | £ Replace Rule | | o validate | | @ save | | @ cancel |

OEBPS/img/newclass.png
£ New Java Class

Java Class

Create anew Java dlass.

Saurce folder
Package:

[endosing type:

Nome:

Modfiers:

Superclass:

Interfaces:

IDBCOrverfsrc

(defaul)

@pubic O defaule
Cabstract [final

Javalang Object

Erowse.

Which method stubs would you ke to create?

[lpuble staic yoid main(strinal] rgs)
[Constructors from superclass

inheried abstract methods

0 you want to add comments? (Configure templates and defaul value here)

[enerate comments

OEBPS/img/server-open-visualizer.png
%0

New
Open
Intialze Server Status

% Delete.
Rename

35 Debug

O Restart
& profle
® stop

0 publsh

Clean.

ey Add and Remove Projecs,
Worioring

‘Open Damain Configuration File

Propertiss

mg =0

OEBPS/img/filtexpression.png
Expression Builder

StockvolG 000 valume > 1000

Operands

Variables Functions.
StockVolGt1000 v | | setectafunctiontype
Propeties @ Functions

price_java.lang Double

symbol _java lang Sting

percChange javalang Dovble

® volume javalang Long

lastPrice_java ang Double

ELEMENT_TIME _timestamp

Function Description

@ el

EE-E

OEBPS/img/manifestover.png
] Myactivator.java | {4k J0BCDAver 53

& Qverview

General Information
This secton describes general nformation about this pug-in.

I DBCDrver

Version: [1.0.0

tame: [ouproject.name

Provider: [2uproject.vendor

actvator: Erowse,

[activate this plug-in when one of its classes is loaded

[This plugrin s & singleton

Execution Environments

Specify the minimum execution environments required to run
ths plugin

EJavase 16 add)

Confioure JRE associatins.
Update the classpath setfings

=
DRE O]

Plug-in Content

The content of the plug-in s made up of two sections:

[Dependenies: lss a the plugins reaired on this
Pl ' classpath ta compie and

[Runtime: Ists the lbraries that make up tis plug-n's
rurtime.

Extension / Extension Point Content

This plugrin may define extensions and extensian paints:

[Extensions: dclares contributions this phugrin makes
tothe platform

[Extension Points: decleres new function points this
plug-in adds to the platform,

Testing

Test this plug-in by launching an OSGi Framewcrk:
O Launch the framework
%5 Launch the framework in Debuq mode

Exporting

To package and export the plug-in

1. Organize the plug-in sing the Organize Marifests
weard

2. Externalze the strings within the plug-in using the
Externalze Strings Wizard

3. Speciy what needs to be packaged in the deployable
plug-in on the Buld Canfiquration page

4. Export the plug-in n a Format sultable for deplayment
Using the Export Wizard

Overvisw [Dependencies | Runtime | Buid | MANIFEST.MF | buld properties

OEBPS/img/ssourcecfg2.png
CLe. Sweam[:1]

T O Stream @ View

| Stockvolstono

Source Froperties [propettes (@)

price double

symbol java lang ting

walumeans

ELEMENT_TIME timestamp

Generated COL Statement

SELECT * FROM StockVoIGH1 000

@tew & vaiivate | | @ save | [@ cancel

OEBPS/img/confirminject.png
Rule has heen sucessfully added,

OEBPS/img/tradereport_newlistener.png
8] New Java Class

Java Class
Create a new Java class.

Sourcefolder: TradeReport/src

[SE)
(€]

Package: com.oracle.oep.example.tradereport
[C]Enclosing type: Browse.
Nome:
Modifers TR D

[abstract [final static.
Supercass jvalong Objet
Interfaces: @ com beawlevs.edeapi StreamSink
Which method st would you e o creste?

[public static oid main(String] args)

[Constructors from superclass.

Do you want to add comments? (Configure templates and default value here)

[T Generate comments:

OEBPS/img/project-create3.png
8] New Oracle Event Processing Application Project

New Oracle Event Processing Application Project =

Seectone of the avalble template to generae fully functioning Orace Event QD
rovseimg Appicaion

Create an Oracle Event Processing Application using an application template.
Templates:

ETd /A Hello World applicaion fo the Oracle Event

Processing server. It includes asimple adapter that
repeatedly sends a Hello World message. The message

¢ Hello World (using a ProbeKit) |2 U0 er consale.

% Signsl Generation

@ <Back New> s [\] [concel

OEBPS/img/tradereport_csvadapter.png
Fiter: | Bundle: TradeReport

StockTradeCSVAdapter

Fx

Overview| Event Types

OEBPS/img/tradereport_eventdef.png
(FLERN: Trodehpot 50, =
 Event Type Definitions 4 X EventType Details
4 B TradeReport.contedxml Typename: TradeEvent

© Propertes defined declaratively
© Propertes defined in Java bean

Class: com.oracle.oep.example tradereport TradeEvent

OEBPS/img/hyperconfig.png
5L EPN: COLTest X citipoc context. sl (X comoracle.cep.sample.Fx.context. sl =g

/<75l version="1.0" encoding="UTF-8"23] a
2<niiconfig xsi:schemalocations"http://vwy.bea.con/ns/ulevs/contig/applicari
/www.bea. con/ns/ wlevs/contig/application”
4xmlns:xsi=vhtep://vuw.v3.org/2001/ XMLSchena- instance >

S<processor>

6 <nawe>filterFanoutProcgssor</name>
7 <rules> i

s <query 1d=rYr3Sectorts<![CDATAL

9 select cusip, bid, sreld, bidGty, ask, askQty, seq £rom priceStream whe

10 115</cquery>

11 </ruless

12</processor>

IS

14<processor>

15 <name-bbaProcessor</name:

16 <ruless

7 <view 1d="lastEvents" schema='cusip bid srcld bidQry ask askQry seq”

15 select cusip, bid, srcld, bidQty, ask, askQty, seq

19 from £ilteredstreaniyertition by sreld, cusip rovs 1

20 1></view

21 <view id="bidask" schema="cusip bid ask'><![CDATA

22 select cusip, max(bid), min(ask

25 from lastEvents

23 group by cusip]
@ i] >

Design |Source

OEBPS/img/tradereport_genaccess.png
File Edit [Source] Refactor Navigate Search Project Run Window _Help

r-i
5 project
gs

(] 3

g‘ H WEDE @ B &1 60 E1E I E @ EIE EE

=

Toggle Comment
‘Add Block Comment
Remove Block Comment
Generate Element Comment

shif Right
Shit Left

Externalze Strings...
Find Broken Externalized Strings

7
CtleShifts/
Ctreshifts\
Al Shift+)

Ctrisl
Ctrl+Shift+F

Ctrl+ShiftsM
Ctrl+Shift-0

AltsShiftZ >

PE EED O R §-§ -

fotebvemma £t

package com.oracle.oep. exanple. tradereport

public class TradeEvent {
// One varisble for each field in the
private S
private

private
private
private

OEBPS/img/recplaycfg.png
B =0 b

simpleEventSource recplayEventsink playhackHtipPubisher
Legend
adapters <channel> 9
namesimpleEvertSourcesinams> <name-evertStream<iname= e
<record-parameters> <playback-parameters> -
Sirecord-parameters> Siplayback-parameters> Adepter Chanmel Processor
<iacapter> <ichernel

OEBPS/img/server-view.png
2 Markers 5 Properties 4l Servers &3 W& Date Source Explorer | 5 Snippets |

Y=o

No servers available. Define 2 new server from the 5164, Server Wizard...

Alt+Enter

OEBPS/img/jarsel.png
£} JAR Selection

Select 4R archives to be added to the plug-ins classpath

& settings
& buid
@ dst
CR=
£
& METAINE
=

date the buld path

]

OEBPS/img/libs-afterimport.png
= & cepsample
8 src
= IRE System Lirary [idk1.6.0_13]
A OCEP Classpath

= METATNE
& spring
& wevs
MANIFEST MF
bud.properties
bunde.properties
5] startpatareed.cmd

OEBPS/img/visprocgen.png
=
4, Processor: stockProcessor - cal@NonClusteredServer

Processor Properties

FrocessorType COLProcessor

) Create Diagnastics

OEBPS/img/server-new1.png
8] New Server (S

Define a New Server
Choose the type of server to create.

Download sdditional server adapters
Select the server type:

type filter text

> & B =

b & JBoss

» & Objectieb

4 (= Oracle ml
|5, Oracle Event Processing il
& Oracle OCA) Standslone Server 101.3
& Oracle OCA) Standslone Server 1013 S

.

Supports controlling Oracle Event Processing Servers Allows staring/stopping the server,
and deploying appiications.

@

Server's host name: localhost

Server name: Oracle Event Processing vI1.1 at localhost

©) oo =

OEBPS/img/ha-epn2.png
B—B—

MSInboundidenter myHalnputAdspter processort myHaCorrelatingdapter MSOutboundAdapter

%_

MSInboundadapter?

dusterCorrelstingOutstream

OEBPS/img/patterncfg3.png
[e [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propettes)

CustOrder_orgerChannel eventType =

NoApproval NOT(orderChannel eventType

Shipmant _arerChannel eventType =5

Generated Pattern Match Statement
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval®? Shipment) DEFINE CustOrder AS orderChannel eventType = C' NoApproval AS
NOT(orderChannel evenfType = &) , Shipment AS orderChannel.eventType = 'S AS Orders

@ e o vaiivate | | @ save | [@ concel

OEBPS/img/lifecycle-ha.png
[Start Server With

Deployed Application] [Deploy Application]

[secondary +—)

[Current Primary Fails)

Becoming_Primary

[Configureable Readiness.
Threshold Met]

{Unregister ApplicationRuntimeMBean
4 and Uninstall Completed]

[

{Host Fails and
Rejoins Domin]

OEBPS/img/epn-understand-overview.png
Fiter: v FulEPN 100% =]

h,)_,ha Agsradeggenn

socketadspter sgnalgeneratonprocessar .

OEBPS/img/ha-scalab.png
Single-Server Domain High Availabilty High Availabilty and Scalability

Deployment
Group
Notfication
Group 1
Event
Output
Event H
Input H
E |
4 H
ndary | |
ActveAciiveGroupBean

generated Notification Group.

OEBPS/img/expessionbuilder5.png
Expression Builder 9] @&

Custorder amound

Variables Functions Operands
v | | Selectafunctiontype v - =
Praparies (12) Functions -

© CutDrderamount s e

CustOrderts java.lang Sting i

CustOrdereventType java ane|

CustOrderorderid_java 0o 51|

NoApproval.amaunt _java.ang

Nopprovalts java.lang Sting =

Nospproval eventType java afx| - =

Function Description

@ tew B save | [@ cancel

OEBPS/img/libs-runtime2.png
=\ Runtime

Exported Packages Classpath

Enumerate all the packages that this plug-in exposes to cients. Speciy the lbraries and folders that consttute the plug-n

Al ther packages wil be hidden from clints at al tines. classpath. IF unspecied,the classes and resources are
assumed ko be at the roat of the plug-n.

add)
Remave
Properties,

Calelate Uses

Overview |Dependencies |Runtime |Buid | MANIFEST.MF | buld properties

OEBPS/img/file-new-component.png
& New

Select a wizard

Wizards:

[typefittertex

& Eclpse Modeling Framework
=23
b & Java
b @ JavaEE
b @ Java Emitter Templates
b (> JavaScript
b & IAXB
» @& JPA
4 & Oracle Event Processing
[Oracle Event Processing Application Configuration File|
5 Oracle Event Processing Application Project
5 Oracle Event Processing Assembly Fie

OEBPS/img/siggenconsole.png
WLEVS Signal Generation Demo - Windows Internet Explorer

()~ [eepitpocatiost:soozjsignaigenerationjdashboard himl

Ele Edt View Favortes Toos Help

P & [@wievs sondl eneration pere

Page + () Tools -

Start | Stop | Latency Max Y

Percentage
Change
Time Symbol Price Change
07:53:15 $143.89 287
07:32:15 52032 -240
07:07:32 $59.44 243
06:42:24 $19.96 572
06:14:43 $50.08 307
05:51:16 2117 2n
05:45:16 S151.74 244
05:33:46 $104.11 211
05:14:05 $50.52
04:5026 $161.48

Trend
Time Price
23943 57838
200850 510139
151131 7564
132105 59775
104828 59318
01141 51371
024339 BIEF)
01:4034 §7353
0120 516387
003919 512236

T

 100%

OEBPS/img/server-new-locrem.png
8] New Server

New Oracle Event Processing v11.1 Server =

Define s new Oracle Event Procesing i1 servr QD

Alocal server executes on this machine, In addition to deploying and undeploying
applications, you can also start, stop, and debug the local server process.

A remote server executes on a machine on a network accessible by this machine. Instead of

controlling the server process, you can only attach to an already running remote server. Java,
debugging is not available for remote servers.

© Local Server

Remote Server

® <wo |[THerr [g J[e

OEBPS/img/spatialepn.png
e

BusstopRelation

=8

BusstopChannel

% Busstopadapter susstopPub
sspostioncen — B .

e
sposstean P

Procesor st

\ogem S n
[IT——

e susstopaTaR

Bean

BusStopArrivaloutputBean

OEBPS/img/visepn.png
cal @NonClusteredServer

Event Processing Network

Event Processor Network Graphical View

S== Layout | mierarchic v| zoom
===}

[ERN

S T -

o st

[) = e

! stockChannel movingfvgChanel 4

i

B S » Vo D
B 52

” |

adspter

COLStockTick

OEBPS/img/epn-understand-link-source.png
- ——
E

iterFanoutPracessor

OEBPS/img/epn-und-link-list.png
O e —

CrossRatestream
FindcrossRates

OEBPS/img/ssourcecfg3.png
T g B g

Tie @ Stream O View

orderChannel a5

Source Froperties [propetties(e)

amount javalang Long

& javalang.Sting

eventType javalang Sting

orderidjava lang Sting

Generated CaL Statement

SELECT* FROM orderChannel

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/selectconfig7.png
Expression Builder

AVG(StockvalG 000.price)|

Variables Functions. Operands
Selectasource v | | Agoregate Function B |
Fope®) o] -

Ve -
caunr ;
FiRsT |
st
MAX. N
i E
sum > =
Function Description
syntaxc
AVG(bigint expr), AVG(float expr), AVG(integer expr)
@ Heln B save | | @ cancel |

OEBPS/img/upgrade-targeted-runtime103.png
& Properties for CEPProj

type fiter text

Resource
Beaninfo Path

Bulders

JavaBuid Path

Java Code Style

Java Compler

JavaEdtor

Javadac Location

Plug-in Development.

Profile Compliance and Validatic
Project Facets

Project References
Refactoring History.
RunjDebug settings

Task Repostory.
Task Tags
Valdation
¥Dockt

Targeted Runtimes

Runtimes:

Th orace e v103

[show sl runtimes.

Runime Compostion;

Torock CEPv103
EAREG: ol 60,07

1 a runtime that you want to select i not displayed or s disabled you may nied to
urinstall one or more of the currently nstalled project acets.

Uninstal Facets.

Con

OEBPS/img/epnedit-connect-drag.png
Fler: Secondissenbly.contortom R —

dapter

OEBPS/img/install.png
£ Install

Available Software

Select a sie or enter the location of a i,

work ith: v

Find more software by working with the ‘valable Software ites' preferences.

Name Version
O There s no ste selected.

Detalls

how oy the latest versions of avalable software [l items that are abeady nstalld
Group tems by category What is keady installed?

[Contact all update sites during install to find required software

OEBPS/img/manifestdeps.png
] Myactivator java | &5k JDBCDriver 53
% Dependencies

Required Plug-ins ey

Specify the st of plug-ins required for the operation of this
plugein

=

DRE O]

Imported Packages

Specify packages on which ths plug-in depends wthaut

explcly dentying their originating plug-in.

add)

Total: 0

» Automated Management of Dependencies |a,

i com.bea.wlevs.configuration (11.1.1.1,
3 com bea.wlevs.ede (11.1.1,1_0)
o bea.wlevs.ede.api (11.1,1.1.0)
i com.beawlevsede.impl (1.1.1.1_0)
Fcom.bea.wlevs.ede.spi(11,1.1,10)
#} com.bea.wlevs.management.spi (11.1,
com.bea.wlevs.spring (11.1.1.1_0)

8 com bea.wlevs.spring support (11.1.1
3 com bea.wlevs.ut (11.1.1.1_0)
Forg.apache.commens.logaing (1.1.0)
3 org.springframework. beans (2.5.6)

3 org.springframework. beans.Factory (2.1
3 org.springframework. beans. factory. cor|
3 org.springframework.core, annokation ({
horg.springframemork,osgi.context (1.2,
3 org.springframework,osgi.extensions. ai
Forg.springframemork,osgl service (1.2,
3 org.springframework.utl (2.5.6)

» Dependency Analysis

Overview | Dependncies |Runtime | Buid | MANIFEST.MF | buld properties

add)

Tatal 18

OEBPS/img/project-add.png
£ Add and Remove....

Add and Remove

Modfy the resources thet are configured on the server

Move resources to the right o configure them on the server
Avalable: Configured

T cepproect

&

add Al >>

server s started, publsh changes immedately

@

OEBPS/img/validation1.png
Validate failed,
Ertor at 71083

Caused by: not a single-group group function

Include a GROUP BY clause containing the
attribute or remove the reference to the atrute in

the select list

OEBPS/img/prefs-applibpath-selvar.png
£ Select Path Variable

Defined path variables:

OEBPS/img/visprocqw.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Onery Wizara
[ommmes. o] [@ (B[] O [&][(&][@] G = o=
[Templates
Tl User-defined templates

OEBPS/img/libs-manifest.png
Lk #cepsample £

Menifest-Version: 1.0

Bundle-ManifestVersion: 2
Bundle-Hame: %project.name

Bundle-SymbolicHame: CEPSample
Bundle-Version: 1.0.0
Bundle-Localization: bundle

Bundle-Vendor:

“project.vendor

com.bea.ulevs. adapter . defaultprovider; version="11.1.1.1_0",
-configuration; version="1l.1.1.1_0",

.ede; version="11.1.1.1 0,

.ede.api; version="11.1.1.1_0",

Lede. impl; version="11.1.1.1_0",
.ede.spi;version="11.1.1.1 0",
com.bea.levs.management . spi; version="11.1.1.1 0%,
com.bea.levs. spring; version="11.1.1.1_0",
com.bea.wlevs.spring. support; version="11.1.1.1 0",

com.bea.ulevs.util; version="11.1.1.1_0",

org. apache. comuons. logging; version="1.1.0%,

org. springframevork.beans; version="2.5.6",
org.springframevork.beans. factary; version="z.5.6",

org. springframevork.beans. faCtory.contig; version=rz.5.6",
Org.springframevork.core.annotation; version="z.5.6",
org. springframevork.osgi.context; version="1.2.0",
org. springframevork.osgi.extensions. annotation; versio
org.springframevork.osgi.service; version="1.2.0",
org.springframevork.util; version="z.s.s"

1.z.0m,

Overview |Dependencies |Runtime |Buid | MANIFEST.MF | buld properties

OEBPS/img/server-create-1.png
8] New Server (S

Define a New Server g

Choose the type of server to create.

Download sdditional server adapters
Select the server type:

type filter text

> & BM 2
> & JBoss
> & ObjectWeb
4 (= Oracle

(5 Oracle Event Processing i1 |

& Oracle OCA Standalone Server 101.3
 Oracle OCH Standalone Server 10130 |
Supports controlling Oracle Event Processing Severs. Allows staring/stopping the sever,
and deploying applcations.

.

Server's host name: localhost

Server name: Oracle Event Processing vI1.1 at localhost

Server runtime environment: [Oracle Event Processing vi11] a

Configure runtime environments...

) e =

OEBPS/img/fxepn.png
&B-

csvTestData

- —»<:>—»—»b—,

Fiteramerstream
Foarketamer Fikersmer

B ‘—-@-, e

Fikerpsiastream
Fiterasia

NS

FikerEurastream

Febtarketisia

[

PxMarketEuro

FiterEuro

- —-ﬁ— o

CrossRatestream
FindCrassRates

OutputBzan

o)

summarizeResuts

OutputBzan

———-C-—

SunmeryResultsstream h
PublihsummaryResuts
Legend
Adepter Channel Processor Business
Ofject
(POJO)

OEBPS/img/server-addproj.png
4 servers £9 [problems | EJ Console | O mEp 0

Server - | State | Status

New
Open
Intialze Server Status

% Delete.
Rename

35 Debug

O st

5 prfie
- sop

£ publeh

Open CEP Visusizer
Open Damain Configuration File

Properties.

OEBPS/img/file-new-component2.png
8] New OEP Application Configuration File

New OEP Application Configuration File
et et ®
s

Enter or select the parent folder:
/MyCEPProj/META-INF/wlevs

&
& MyCEPProj

@& settings

& build

(= META-INF
& spring
& wlevs.

& sre

File name: | componentxml

@ <Back New> st] [concel

OEBPS/img/visprocgen2.png
& Processor: calProc - cql@NonClusteredServer

Processor Properties

FrocessorType COLProcessor

] Create Diagnastics

OEBPS/img/pubsubsub.png
Web-based dlient
publisher, such as
abrowser

OEBPS/img/server-new-rem.png
8] New Server

New Oracle Event Processing v11.1 Server

Define a new Oracle Event Processing vI1.1 server

Remote Server P Address: 10159108215

Remote Server Port: %002
User Name: wlevs
User Password: wlevs

@ <goo|[THeez][Emen

OEBPS/img/upgrade-targeted-runtime.png
& Properties for CEPProj

type fiter text

Resource
Beaninfo Path

Bulders

JavaBuid Path

Java Code Style

Java Compler

JavaEdtor

Javadac Location

Plug-in Development.

Profile Compliance and Validatic
Project Facets

Project References
Refactoring History.
RunjDebug settings

Task Repostory.
Task Tags
Valdation
¥Dockt

Targeted Runtimes

Runtimes:

R orace eP 110

[show sl runtimes.

Runime Compostion;

Torack CEP 110
EAREG: ol 60,07

1 a runtime that you want to select i not displayed or s disabled you may nied to
urinstall one or more of the currently nstalled project acets.

Uninstal Facets.

Con

OEBPS/img/cache-sink.png
-~

channell channelz
adapter pracessor cache-d

OEBPS/img/importpkg2.png
L #hlloworkdHagrosdeast 7

% Dependencies

Required Plug-ins o
Specifythe st of plug-ins required for the operation of this pug-in
add)
Total 0
» Automated Management of Dependencies o

Overview | Dependencies |Runtime | Buid | MANIFEST.MF | buld properties

Imported Packages

Specify packages on which ths plug-in depends wthaut
identFying their orginating plug-n

=8

DRE O]

explctly

H3icom.bea,wievs.configuration (11.1.1,1 0)] &
3 com.bea.wlevs.ede (11.11,1_0)
Fcom.bea.wlevs.ede.api (11.1,1.1.0)

3 com bea.wlevs.ede. api.cluster

F com.bea.wlevsede.impl (1.1.1.1_0)

i com.bea.wlevs.ede.spi (11,1.1,10)

& com.bea.wlevs.management.spi (11.1.1.1.0)
3 com.bea.wlevs.spring (11.1.1.1_0)

3 com.bea.wlevs.spring.support (11.1.1.1_0)
3 com bea.wlevs.utl (11.1.1.1_0)

3 comoracle.cep.cluster ha. adapter

3 com.oracle.cep.cluster.ha.api

com.oracle.cep.cluster hagroups.

@ org.apache.commens.logaing (1.1.0)

3 org.springframework. beans (2.5.6)

3 org.springframework. beans.factory (2.5.6)
 org.springframework beans factory.config (2.5
3 org.springframework.core. annotation (2.5.6)
 org.springramemork.osgi contest (1,2.0)

8L o crvinobramatinel s aotareinns. anrotatic ¥

< | "B

add)

Tatal: 23

» Dependency Analysis

OEBPS/img/expessionbuilder1.png
Expression Builder

orderChannel eventrype =

Variables. Functions Operands
orderChannel Select a function type v 3
Fropeties () Functions I
amount_javalang Long <
& javalangsting <

D eventType java lang Sting

orderid_java lang Sting

Function Description

@ el

B save | [@ cancel

OEBPS/img/project-add-2.png
B console

OEBPS/img/altt-browser.png
£3 Open CEP Type

Select an tem ko open (7 = any character, * = any strng):

Fiter*

Matching tems:

[e—
Sitcrmerstroon
o
Ftersiosream
@it
Siwosten

@, Fiterfsia- C:feclpse-galiec-projects/CEPFx|META-INFjspringjcom. racle cep.sample,x.context.xl.

@ o o)

OEBPS/img/siggenepn.png
SymbolsCacheloader

- -
B st

—
=
10080

OEBPS/img/libs-selectjar.png
& JAR Selection

Select AR archives ta be added to the plug-ins classpath

& settings
& buid
& dat
=&
1) PERESRERE]
& VETAINE
=

date the buld path

OEBPS/img/lifecycle-app.png
[Start Server With
Deployed Appiication] 1

Ermor]

[Deploy Applcation)

[Resume
Application]

[Uninstall [Suspend
Application] ‘Appiication]

l«———1 suspending

¥ (Unregister AppiiationFuntimeMBean
' and Uninstall Completed]

i

OEBPS/img/debug2.png
Intialze Server Status

% Delete.
Rename

35 Debug

OEBPS/img/tradereport_finishedepn.png
Overview| Event Types.

OEBPS/img/icon-channel.png

OEBPS/img/upgrade-cfg-valid.png
& Preferences

type fiter text validation

Gereral
At

Conectivty o projects o ovrridethese reference settings
o
InstallfUpdate:
Iteet
Javs
wa [5ave ol modriedresources automaticaly prc to vadating
M

Oracl CER Problem Severties
Pl Development
Runfoebug vaidator Varusl | Bud | Settngs
Server Application Client Yalidator 1 1

Sat Develpmet e Query Valdstor

Tean Clsspath Dependency Valdator

[suspend all validators.

The selected valdetors wil run when validation is performed:

Connestor Validator
DTD valdator

EAR Valdator

EIB Validator

EPN Validator

HIML Syntax Validator

PA valdator

35 Applicaton Configuration Validator
35 Content Validator

35 Semantics Valdetor (15F)

35 Synta Valdator

ModueCore Validator

iar Valdator

WSDL Valdator

WS- Message Valdator

XML Schema Validator

XML validator

Enable Al

ieh and L
ieh Services
¥Dockt

OEBPS/img/libs-runtime.png
=\ Runtime

Exported Packages Classpath

Enumerate all the packages that this plug-in exposes to cients. Speciy the lbraries and folders that consttute the plug-n
Al ther packages wil be hidden from clints at al tines. classpath. IF unspecied,the classes and resources are
assumed ko be at the roat of the plug-n.

=

add)

Remave

e

Remave

Properties,

Calelate Uses

Overview |Dependencies |Runtime |Buid | MANIFEST.MF | buld properties

OEBPS/img/epnedit-delete-epn-before.png
Fler: Secondissenbly contortom R —

=

s %

eventBean

OEBPS/img/facets-103.png
& Properties for, CQUDBTest

type fiter text Project Facets

Resource

Beaninfo Path Project Facet Version
Java

Oracle CEP

Bulders
JavaBuid Path

Java Code Style

Java Compler

JavaEdtor

Javadac Location

Oracle CEP Prablem Severiies
Plug-in Development.

Profile Compliance and Valdatic

Project References
RunjDebug Settings
Targeted Runtimes
Task Repostory
Task Tags
Valdation

¥Dockt

OEBPS/img/epn-understand-export.png
Fiter: v FulEPN

h,)_.h Aogtaogieon
sockesadepter sgnalgenerationProcessar .

OEBPS/img/epn-channel.png
B—c- o~

pricsstream fiteredstream
Priceadapter ierFanoutProcessor

OEBPS/img/tradereport_tradeevt.png
8] New Java Class

Java Class
Create a new Java class.

Sourcefolder: TradeReport/src

[SE)
(€]

Package: comoracle.oep.cxample.tradereport
[CJEnclosing type: Browse
Name:]
Modifers: defoult Cprite) protected

[Cabstract [final static
Supercoss jvalong Object
Interfaces:

Remove

Which method stubs would you ke to create?
([public static void mein(Stringl] args)
7] Constructors from superclass.

Do you want to add comments? (Configure templates and default value here)

[T Generate comments:

OEBPS/img/icon-cache.png

OEBPS/img/selectlocalsite.png
Repository archive

My Computer

€ e owenmmmse
R e

OEBPS/img/ha-prisec.png
Mult-Server Domain
(Deployment Group and
Notiicaton Group)

Input Streams

Server2

Server3

‘Secondary

Output Streams

| Primary | Smnazry

Queve.

Queue

OEBPS/img/adptwiz-done.png
Fiter: v Bundle: SimpleProject

hD

heloworldinputChannel helonoridoutputchannel
hellweridadapter heloworldprocessor

)

adapter

OEBPS/img/newproject_oep.png
8] New Project

Select a wizard

Wizards:

[type fittertext

> s
b (> Eclipse Modeling Framework
=1
b @ Java
b G Java e
b G Javascript
b @ IAXB
b @A
4 > Oracle Event Processing
(5 Oracle Event Processing Application Project|
& & Plug-in Development
b G Web

I

Einish

OEBPS/img/server-config2.png
B Overview

General Information
Specify the host name and ather comman settings.

Server name: Oracle CEP v11.1 atlocahost

Host name: lacahost

Runtime Environment: | Oracle CEP v11.1

 Publishing
Moy settings for publshing,

(@ Never publish automatically

O Automatically publish when resources changs

Publihing interval (n seconds): [15

~ Server Properties
Moy settings for the server.

OlLocal Server

Domain Directory: [Cifaps-aceplacep-ps2/user projects/domainsjocep_domain/defaultserver

(zromse.

Start Script Cifaps-oceplocep-pe2user_projectsjdomains]ocep._ domeinjdefaultserver/startulevs.cnd

(eromse.

Stop Serpt: Cifaps-oceplocep-pe2user _projectsjdomains/ocep_domainjdefaukserverfstopulevs.cnd

(eromse.

Detug Port; 43

(@ Remote Server

Remote Server IP Address: [10.11.12.13

Remte Server Port o002

User Name:

User password:

~ Timeouts
Specify the time it o complete server operations,

Start inseconds):

Stop (in seconds):

OEBPS/img/pubsubrem.png
Events from a source
coming over a transport
such as HTTP, JMS, etc

Bill-in Pub-Sub
Adapter For
Remote Publishing

Web-based ciient
subscriber, such as
abrowswer

OEBPS/img/logon.png
Ele Edt View Hstory Bookmarks Ioos Help

G- ¢ X & (O mwiocabosssooziwievst

ORACLE CEP Visualizer

omplex Event Processing Visualizer - Mozilla Fir

Gongle 7

Welcome

Userlg

Password

e CO8 50 43115 81 e It T e T e 2 g onen

Dore

OEBPS/img/prefs-applibpath.png
43 Properties for CEPProject

Oracle GEP Application Library Path [cRd

s i rade CEP domain may containappcaton lvaris tht estnd he CEP i Spcky the
e patn R e e
TovaCoe il
JovaCompler
Jova it =)
Tovadoc Location

Ol

(@ Use an absolute path:

Extend a path verisbe:

Oracle CEP Problem Severiies
Plug-in Development.
Project Facets
Project References
RunjDebug Settings
Targeted Runtimes
Task Repostory
Task Tags

Valdation

wikText

¥Dockt

OEBPS/img/eventpartclass.png
£ New Java Class

Java Class

Create anew Java dass.

soucoadors [mprociore (o

actoe (oo

[encosing type:

o, WyEventPartioner]
Modfiers ©pubie O defaule
Cabstract [final

Superclass: Javalang Object [Coromse..]

Interfaces: © com bea.evs.channel EventPartitioner

‘Which method stubs would you lie to create?
[Cpublc static yoid main(Stringl] args)
] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and defaul value here)
[enerate comments.

OEBPS/img/server-visualizer.png
ORACLE' CEP Visualizer ' Home ([Seouty [Dashboard 8 ViewSream @ Logot |1 FulSoreen (i Preference 55 Help

] Dashboard (=Bl
» @ WLEven(SererDomain Management Events Clear.

@ rvormation

B

Performance Monitoring (Drag a diagnostic profile into the table)

Average Throughput (Number of Events) Latency (Microseconds)

;10 100 Treshaa 180

o o

@ @

@ @

Y Y

[ET——

Opentems.

] Dashboard ° °
w0050 w0000

Profile Name Application Throughtput | Average Late. Max Latency

48 servers 52 [21 problems| B console | #O0¢ M0

5} orade CEP v11 B started Synchronized

OEBPS/img/adptwiz-httppub.png
43 New Adapter.

Adapter Configuration

Enter configuration values for this adapter.

Propertis; Property Descripton:

Connection
@ Berver Context Pathi®

O Server URLi*

Channel*

Event Type:

Securiy
User

O Password;

O Encrypted Password;

* Reguired property

o) Fr

OEBPS/img/outputconfig3.png
(@) Output [10: 41 x
Twe @ Query
QueryName Tracking
Enable @ e O faise

O view

View Narme
View Schema

Froject List

Propettes 3)

1 Onesorangortena

2 Ousmamountamaunt

S "Ewor- Missing EventalerType

Generated CaL Statement

SELECT Orders.orderid AS orderid,Orders.amount AS amountError - Missing Event AS aleType
FROM ordsrChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES
CustOrder.orderid AS orderid, CustOrder amaunt AS amount PATTERN(CustOrder NoApproval®?
Shipment) DEFINE CustOrder AS orderChannel.eventType = ‘C', NoApproval AS
NOT(orderChannel eventType = &), Shipment AS orderChannel eventType = '5) AS Orders

[@tep | [nect Rute | [£ Replace Fule | | o vaidate | [B save | | @ cancel |

OEBPS/img/server-open-config.png
%0 v

New
Open
Intialze Server Status

% Delete.
Rename

35 Debug

O Restart
& profe
® stop

0 publsh

Clean.

e Add and Remove Projecs,
Worioring

Open CEP Visuslzer

Propertiss

mg "~

OEBPS/img/upgrade-add-new-runtime.png
& Preferences.

type fiter text Installed Server Runtime Environments

General
ant
Connestivity Installd server runtimes:

dd, remove, o edit installed server runtime definitions.

relp Name Type
Instaljupdate

Internet
Java
A
Plug-in Development.
Runjoebug
Server
audo
Installd Runtimes
Launching
50L Development
Team
Valdation
ieh and L
ieh Services
WindowTester
¥Dackt

OEBPS/img/server-domaincfg.png
<i--Sample ¥NL file generated by XNLSpy v2007 spz (hetp://www.altova.com)
<niiconfig xsi:schemalocation="http://vus.bea.com/ns/ulevs/contig/server vl -
<domain>
<newe>vlevs30_domain</nawe>
</ aomain>

<netio>
<name>NetT0</ name>
<port>9002</port>
</metio>

<netio>
<name>ssINet To</ nane>
<ss1-config-bean-nane>ss1Config</ssl-config-hean-nane>
<port>9003</part>

</metio>

<work-manager>

<nsesdmttyorkianager </ e
<winthresds-constraint>S</in-threads-constraTat
i i

OEBPS/img/facets-103-11.png
& Properties for, CQUDBTest

type fiter text Project Facets

Resource

Beaninfo Path Project Facet Version
Java 50

Oracle CEP 103

Bulders
JavaBuid Path

Java Code Style

Java Compler

JavaEdtor

Javadac Location

Oracle CEP Prablem Severiies
Plug-in Development.

Profile Compliance and Valdatic

Project References
RunjDebug Settings
Targeted Runtimes
Task Repostory
Task Tags
Valdation

¥Dockt

OEBPS/img/hyperassembly.png
5L EPN: CQLTest X citipo 3) com.oracle.cep.sample. . context.xml X citipoc.xml o m

</wlevs:adapter>

<wlevs:channel id="priceStream” event-type="PriceEvent’>
<ulevs:listener ref=vfilterFanoutProcessor” />
<wlevs:source ref=rPriceidapter” />
</vlevs:channel>

<1-- By default, CQL is used for OCEP 11.0 -

<wlevs:processor id="filterFanoutProcessor” >

</wlevs:processor> {

<wlevs:channel id="filteredStream”
event-type="FilteredPriceEvent”>
<ulevs:listener ref="bbaProcessor” />
<ulevs:listener ref=vanalyticsProcessor” />

<ulevs:source ref=vfilterFanoutProcessor” />
</vlevs:channel>

<1-- Explicitly specify provider CQL -->
<wlevsiprocessor id="hhaProcessor" provide

<ulevs:listener ref="bidAskBEAStrean” />
</wlevs:processor>

OEBPS/img/epn-understand-zoom.png
Fiter: v FulEPN

T

sacketadapter signalgenerationProcessor

OEBPS/img/outputconfig.png
(4] output [ID:6]

Tie @ cuery

QueryName | Movingaverage

Enable @ True (O False
O view

View Narme
View Schema

Froject List

Propettes 2)

1 Stodolctonn symbolsymbol

2 AVG(StodialoHD00 pice ymovingAvaPrice

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol AVG(StockyolGt 000 price) AS movingévgPiice from StockyolGt000
[pariition by symbol rows 2] GROUP BY Stockvalot1 000 symbol

@ Heln | @ nectigule | | £ Replace Rule | | & validate | | @ save | | @ cancel |
1

OEBPS/img/tradereport_csv_chan.png
Overview| Event Types

OEBPS/img/measurecfg2.png
Measure

Step 4 - Create measure objscts

Onjctame 48 I

Measure List click fo select)

Propetties 2)

orderidCoonacortens

amount_Cutiaeramaunt

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES
CustOrder.orderid AS orderid, CustOrder amaunt AS amaunt PATTERN(Custorder NoApproval®?
Shipment) DEFINE CustOrder AS orderChannel.eventType = C', NoApproval AS
NOT(orderChannel eventType = &), Shipment AS orderChannel eventType = '5) AS Orders

@ e & vaiivate | | @ save | [@ concel

OEBPS/img/server-start-1.png
B console

New
Open
Intialze Server Status

% Delete.
Rename

%5 Debug
O sant

5 prfie
 stop

OEBPS/img/project-import-projs.png
Import Projects

Select a directory to search for existing Ecipse projects.

® elect raot, directory [Cerowse.

O select archive fie: Browse,

Projects:

Select Al
cloct Al

esh

[Copy projects into workspace

OEBPS/img/abouteclipse.png
£3 About Eclipse
Ecipse Java EE IDE for Web Developers.

Version: Helos Release
Buld d: 20100617-1415

(€) Copyright Ecipse cortributors and others 2005, 2010, Allights reserved,
Vit htp: . eclpse.orgjwebtools

e IPICIC) =

@)

OEBPS/img/epn-nested.png
helowsrdputchannel helonordoutputchanmel
helloworidAdapter helloworldProcessor s HelloworldBean

OEBPS/img/ha-order.png
Output Event Stream —-

Prinary. {f

b,a}
im

Secondary: {f,c,d,2,b,a}

OEBPS/img/ha-epn1.png
E o X - '

heloworldinputChannel helonoridoutputchannel
helloworldadapter hellowarldProcessor HelloWorldBsan

OEBPS/img/patterncfg.png
Pattern

T A
PR EET T |

Step 1 - Create Pattern

Pattern Bxpression - custorger NoApproval®? Shipment
(e AB77C)

Duration

(e.0.1 minute)
Patitonsy |oweia v |[+ |[@
Paten Aias Orders

O anmatches

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval*? Shipment) AS Orders

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/libs-plugin-select.png
& Plugin Selection

Select a PlugHn

%p-com.bea backplane.bundlemanager (6.0.0.0)
Hpcom.beacie.bsu (5.2.0.0)
2pcom.bea,ciecomdev (5.6.0.0)
%p-com.bea,ciecomdev (5.7.0.0)
%p-com.bea,ciecomdev (6.0.0.0)
pcom.beacie.gpr (2:3.0.0)
Hpcom.beacie.gpr (2.6.0.0)
Ep-com.beacie.gpr (2:9.0.0)
com.bea.ce.gor-impl 2.3.0.0)
com.bea.ce.gor-impl 2.6.0.0)
Xcom.bea.ce.gor-impl 2.9.0.0)
Xcombea.ciegpr-xbean (2.3.0.0)

OEBPS/img/cache-source.png
a———
sdater o . @E_@J_'.
. cachebrocessor = sean

stockCache

OEBPS/img/hypercql2.png
) EPH: CEPFx | [X) spreaderaxm
<wlevs:property name=symhol” ypesrchar® />
</uievs:propertiess
</vieve:evant—cyper
<wlevs:event-type cype-names"CrossRateEvente
<wlevs:propertiess
<vleve:property naesprice! type=rdouble" />
<wlev:property typesrchazr />
<wleva:property chazr />
</uievs:propertiess
</vieve:evant—cyper
<wlevs:event-type cype-names"SpreaderouputEvente
Coleve:propertios typertuplens
<wlevs:property name=internalPrice” typesrdouble” />
<wlevs:property name="crossRatei” typesrchar” />
<wlevs:property name="crossRatez” ypes"char” />
</uievs:propertiess
</vieve:evant—cyper
<vlevs:event-type cype-names"CrosszateSumaryEvent s
<wlevs:propertiess
<wlevs:propercy name=raverageInternalPrice” typesndouple” />
<wlevs:property name="crossRatebairn types’char” />
<wlev:proverty name="totaiCount” typesrint” />

OEBPS/img/icon-bean.png

OEBPS/img/pubsubloc.png
Oracle CEP

Events from a source

coming over transport Aitrary. Arbitrary.
Processor

such as HTTP, JMS, et

HTTP Pub-Sub

Server Built-in Pub-Sub

Adapter For Local
Publishing

Ichannel

HTTP

‘Web-based client
subscriber, such
as a browser

OEBPS/img/assemblyafterdel.png
<wlevs:adapter id="adapter” provider="httppub”>

</wlevs:adapter>

<wlevs:processor i
</wlevs:processors

"processor”>

OEBPS/img/expessionbuilder2.png
Expression Builder

orderChannel sventType = 5|

Operands

Variables. Functions
orderChannel Select a function type v
Propetties) Functions

amount_javalang Long

& javalangsting

D eventType java lang Sting

orderid_javalang Sting

Function Description

@ el

B save | [@ cancel

OEBPS/img/assemblybefore.png
<ulevs:adapter id="adapter” providers"httppus’s
</wlevs:adapter>

<wlevs:channel id="channel"s
</vlevs:channel>

<wlevs:processor i
</wlevs:processors

processorn>

OEBPS/img/prefs-applibpath-varexten.png
£ Variable Extension,

Choose extensinto APP_LT
Sl

OEBPS/img/tradereport_bundleprop.png
8] New Oracle Event Processing Application Project

Oracle Event Processing Application Content
Enter the data required to create application.

Bundle Properties

Bundle D:
Bundle Version: 1.0.0
BundleName: TradeReport
Bundle Provider:

J(

Einish M [cancel

OEBPS/img/server-new2.png
8] New Server

New Oracle Event Processing v11.1 Runtime

Define a new Oracle Event Processing vI1.1 runtime

Oracle Middieware Home Directory:

You can use Installed JRE preferences to create a new JRE

e

OEBPS/img/icon-table.png

OEBPS/img/streamvis.png
{ bome () Securty

ashbosrd 2 View Stream @ Logout [FulSoreen [Preference @) Help

= Stream Visualizer [FEEEE]

CEP ServerName | NonClusteredServer + Pubsub SenverName pubsub -
PuB/Sub Server URL itoii141.144.176.34:8002fpubsub B Discannect
[FBIEERY suvscrive

Channel Name

Jevermonitor

Jevealert

Jevedomainchange

©|0|0| O

Iplaybackshannel

Output messages from subscription Refresh
play

{'creationTime
{'creationTime
{'creationTime
{'creationTime 1:12:30.040
{'creationTime"*11:17:17 908" "playbackTime"*11:19:30.345"}
{ereationTime"11:17:18.221", playbackTim;
{ereationTime"11:17:18.512" playbackTim;
{ereationTime"11:17:18.815", playbackTime’
{ereationTime"11:17:19.112" playbackTim;
{ereationTime"11:17:19.424", playbackTim;
{ereationTime"11:17:19.721", playbackTime’
{ereationTime"11:17:20.012" playbackTim;

=) subsorive | | T Clean Text

19:20.143)
19:20.4407)
1:18:20.752')

19:32.158)
19:32.458) &

OEBPS/img/prefs-applibpath-selvar2.png
£ Select Path Variable

Defined path variables:

OEBPS/img/server-runtime2.png
8] New Server Runtime Environment

New Server Runtime Environment

Define a new server runtime environment

Select the type of runtime environment:
type filter text

Download sdditional server adapters

& Apache Tomcat 60
& Apache Tomcatv7.0
b & Basic
=)
b & JBoss
» & Objectieb
4 (= Oracle
(5} Oracle Event Processing 111
& Oracle OCA) Standlone 101.3
& Oracle OCA) Standslone 101.3.0

.

Supports controlling Oracle Event Processing Servers. Allows starting/stopping the server,

and deploying appiications.

[]Create a new local server

®

OEBPS/img/selectconfigview.png
Step 1- Froject

O pistinet Results Target Event Type Select or Input Event Type u

Sours rapeties Gelctom hee) Selects Propetes %]
| Stockvorstionn o] [comae

symbol _java lang Sting

percChange javalang Dovble

® volume javalang Long

lastPrice_java ang Double

ELEMENT_TIME _timestamp

Froject Expression

Generated COL Statement

SELECT StockvolGt1 000 price StockVolGt 000 symbol StockolGH 000 volurne FROM stockChannel AS
StockvolGt 000 WHERE StockVolGt 000 volume = 1000

OEBPS/img/assemblyafter.png
<wlevs:adapter id="adapter” provider="httppub”>

channel” />

<wlevs:listener re:
</wlevs:adapter>

<wlevs:listener re:
</vlevs:channel>

processor” />

<wlevs:processor id="processor”s
</wlevs:processor>

OEBPS/img/epn-understand-config.png
outstream

algoTradingProcessor

OEBPS/img/selectconfig13.png
Step 1- Froject

[Distinct Results TargetEvent e merevent |v |
Source Propeties (select fom here) Source Properties

orders v | [soeaime

s [

Ordars.amount
onderidCostOndzcortens

“Enor- Missing Event:

amount_Cuttnaeramaunt

Generated CQL Statement

SELECT Orders.orderid AS orderid,Orders.amount AS amountError - Missing Event AS aleType FROM orderChannel
MATCH_RECOGNIZE (PARTITION BY orderid MEASURES CustOrder orderid AS orderid, CustOrder amount AS
amount PATTERN(CustOrder NoApproval™? Shipment) DEFINE CustOrder AS orderChannel sventType = €'
NoApproval AS NOT(orderChannel eventType = A), Shipment AS orderChanne| eventType = '5) AS Orders

@ tew & vaiivate | | @ save | [@ concel

OEBPS/img/prefs-applibpath-newvar.png
£ New Variable

Define a New Path variable

Enter a new variable name and it associated locaton,

Neme:

Location:

©]

s

Ciaps-oceplocep-ps2user_projectsidomainslocep_domaindefaultserverlib

OEBPS/img/selectconfig4.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (4)

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Froject Expression

Generated COL Statement

SELECT StackvalGt 000.symbol AS symbol FROM Stockvaloti 000 [PARTITION BY symhal ROWS 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/props-build.png
Lt #cepsample £ oo

& Build Configuration
[custom Build

Runtime Information

Define the liaries, speciy the order in which they should be bt and list the source folders tha should be compled into each
selected lbrary.

B, Add Library. ‘Add Folder.
W
Down
Binary Build Source Build
Select the Foders and fies toinclude n the binary buld, Select the folders and fies to include in the source buld,
I clsspath
O project O project
D& settings D& settings
& METAINE D& verae
D& build D& buid
buid properties [b buid.properties
bundle properties 18 bundie.propertes:
Oe dst Oe dst
o= m[="
= [F properties & properties
test properties O s
O& s [startatafeed.cmd
[startDataFesd.cmd

» Extra Classpath Entries

Gverview | Dependendes [Rurine | euid [FHANIFEST 1 | i properties

OEBPS/img/adptwiz-jmsin.png
43 New Adapter.

Adapter Configuration

Enter configuration values for this adapter.

Propertis; Property Descripton:

Connection Event Type
Event Type:

Event type whose property
INDI Provider LRL rmes mtchnound 115 p
fessage praperty names

NI Factory: ‘weblogicndi WlinifalContextFactory Specky this property only
you want Oracke CEP to

Connection DI Neme: weblogicjms.ConnectionFactory automatically perform the
conversion between JH5

(O Destination JNDI Name:* messages and events. IF you
have created your own custom

O Destinaton Name converter bean, then do ot
speciy this property.

Securiy
User

O Password;

O Encrypted Password;
Connection Lser:

O Connection Password:

O Connection Encrypted Password:

Advanced
Work Manager:

Concurrent Consumers:

Message selector

Session Acknowledament Made: | AUTO_ACKNOWLEDGE

Session Transacted: O

* Reguired property

OEBPS/img/debug1.png
Gheptielo | Helo

1) Helloworldssan.java 57

BSuppressiarnings ({ "unchecked” })
public void onEvent (List nevEvents] throws EventRejectedException {

for_ifhiser swent - nevEvents] (
© Toggle Breakpoint beof HellolorldEvent)

Togal Ensblement Ent helloWorldEvent = (HelloWorldEvent) event;
intln("Hessage: " + helloVorldEvent.getMessage()]:

‘dd Bookmark.
Add Task,

v show Quick Diff Civshiftr
Shaw Line Numbers
Folding >

OEBPS/img/epn-understand-unconbeans.png
Fiter: v FulEPN

AgaTradigBean

socketadspter sgnalgeneratonprocessar -

OEBPS/img/epnedit-layout.png
Fiter: v SecandAssembly.context.xrl

Q

eventBean

stream

OEBPS/dcommon/oracle.gif

OEBPS/img/altt-epn.png
£} Java EE - CEPFx - Eclipse.
Fle Edt Navigte Search Profect Run Mindow Hep

2

G- €~

(R project Explorer 53

= & ceprx
ERES
5 com.oradle.cep.sample.fx
1) MarketEvent.java
) outputgean.java
B RE System Lbrary [avaE-1.]
B OCEP Classpath
& buid
= META T
& & spring
X com.oracle.cep.sample.fx.context.xm
= vevs
X PubsubAdapterConfiguration. il
X spreader sl
) SummarizeResuls.xmi
{5 maniresT.
buid properties

5 epn: PR £

Fiter; /Bu.. | 9.

W et

Fiteramerstream

%_

Fetarketamer

%_

Febtarketasia

< %“

W et

Fikerasiastream

W et

Fiteramer

Fiterasia

Oversiew | Event Types |

bunde.properties
] startataFesd.cd

([markers | = properties | 4 servers 5 I8 Data Source Explorer | 5 Sippets |

=i

%0 ¢

s Oracke CEP v11.1 atlocahost [stoppe]

OEBPS/img/spatialweb3.png
%) Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

- @ % @ ([hpfiocahostioonzibusimain hem

localhost:9002/bus/main.html

Bus Track

Bus Stop Arri

il
Terrain

Metro Mall ey

Gresriaun
cam®™ | (Conetery. Colma

S

Time

2010 Mar, 4 14123 P10

2010 Mar, 4 14124 P10

Bus stop 1d
1
2

& text 4 rrevious o Hghlght (] Metgh cese

OEBPS/img/epned-new-cntxt-adap.png
Fiter: v FulEPN

B8

adapterl BeanClass

Cache,
Channel,

Event Bean.
Pracessor.
Tabl,

OEBPS/img/prefs-applibpath-done.png
43 Properties for CEPProject

o

Resource
Buiders i Oracle CEP domain may contain applicaton lbraries that extend the CEP runtime, Specify the domain
Jva Buid Path applcaton lbrary dectory to add o this project’s classpath,

Java Code Style
Java Compler
JavaEdtor Erowse,

O Use an absolute path:

Javada Location
Oracl CEP Applicationbrary Pt | &
Oracle CEP Problem Severiies ${4PP_LIE}my-lb Variable.
Plug-in Development.

Project Facets

Project References

RunjDebug Settings

Targeted Runtimes

Task Repostory

Task Tags

Valdation

wikText

¥Dockt

Extend a path verisbe:

OEBPS/img/project-newprojwiz.png
8] New Project

Select a wizard

Wizards:

[type fittertext

& Eclipse Modeling Framework
=1
b @ Java
b G Java e
b G Javascript
b @ IAXB
b @A
4 > Oracle Event Processing
(5 Oracle Event Processing Application Project|
» G Plug-in Development
b G Web
b & Bamples

I

“

OEBPS/img/upgrade-select-facet103.png
£ Modify Faceted Project

Project Facets
Selec the Facets that should be enabled or this project,

Cotirations: [<camom> =

ot Facet verson
) 3a so -

5) orace e 20
:

<< show Runtimes

i | s | o) (e)

OEBPS/img/ha-scalab-config.png
Input

<<JMS Selector>>
acctd <= 1000

<<JMS Selector>>

acctd <= 1000

<<JMS Selector>>
acctid > 1000

<<JMS Selector>>
acctid > 1000

Deployment Group

Notiication Group 1

Notification Group 2

S

[P["

ActiveActiveGroupBean
generated Notfication Group

Ll

OEBPS/img/tradereport_eventbeanadded.png
Overview| Event Types

OEBPS/img/icon-adapter.png

OEBPS/img/recplayepn.png
B——=—8—0

snpeEentsource btk playbacstpPublsher
Tovond
% - i

OEBPS/img/visqwselect2.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

[t -] [©] (B [F] @rover

SSouee RSowes CacheTable
Paten Dutput

Q9 B
B33 3%

Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/epn-badged.png
B——8—

pricsstream
PriceAdapter iterFanoutPracessor

OEBPS/img/visqwwindow.png
& Processor: stockProcessor - cal@NonClusteredServer
Query Wizard
[ctoosetmet. || [@][@][E] Dre [&][&][@][EH 2 o=, o
soue Rooue CameTabe
Faen Ouput select
soin e
5] sssome Q2w Unn e s
wan osweam Asveam
[l Templates
[l user-defined templates

OEBPS/img/epn-understand-layout.png
Fiter: v FulEPN x|

h,)_.h Aogtaogieon
sockesadepter sgnalgenerationProcessar .

OEBPS/img/review.png
£ Install

Install Details

Review the ftems to be instaled.

Hame version 1
5% Oracle CEP Tools LL1120110915-1619 com bea.wlvs.edipse.took feature feat,

Size: Unknown
Details

B W

OEBPS/img/project-create-java6vm.png
£ Eclipse Installation Details

Installed Sftware | Instalation History | Features | Plug-ins | Configuration

Eclipse
—-launcher. Library
C:\eclipselplugins/org.eclipse . equinox. launcher . win3z . vin32 . x86
—startup
C:\eclipselplugins/org.eclipse . equinox. launcher_1.1.0.v20100507
—product.

org.eclipse.epp.package. jee. product

C:\daval jres\bin\client) jvm. dll

eclipse.home. location=file:/C:/eclipse/

eclipse. launcher=C:\eclipseieclipse.exe

eclipse. launcher . nane=Eclipse

eclipse.p2.data.area=Bcontig. dir/../p2/
eclipse.p2.profilesepp.package. jee
eclipse.product=org.eclipse.epp. package. jee. product
eclipse.startTine=1319650054578

eclipse.viargs
C:\daval jretbind javav. exe

-Dosgi.requiredlavaversion=1.5

s a0m

—Tmxs12m

_XX:NaxPerngize=256m
-Djava.class.pach=C:\eclipse\plugins/org. eclipse. equinox. launch
equinox. use. ds=true

<

OEBPS/img/rulesview.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

@® view O Guery (O All Rules

Rule 1D Rule Tye | [orderin

Running

StockvolGH 000 SELECT StackvalGt1 000.price,StockVolGt1 000.symbol StockVolGt 000 volume FROM IEW false
StockChannel A3 StockvolGH1 000 WHERE StockVoIGt! 000volume » 1000

Working Area - for Modify and Delste Operation, select a rule from the table

ViewID
View Schema
Ordering Constraints v

Fartiion Expression

View

Enable () o

[Ava view | [€ Detete il views

| 12 e = 8 e @ rele

OEBPS/img/epn-eventtype4.png
PN; CEPFx ©3 (X *com.oracle.cep.sample.Fx.context. sl

Event Type Defi + x

S B comorade.cep.sanpl.fcontext i
(3 stockTick
(3 crosshatekvent
3 SpreaderouputEvent
3 CrossratesummaryEvent

o

Event Type Details

Type name:

newEvent

® Properties defined declaratively

(O Properties defined in Java bean

Name

“char' Length

OEBPS/img/upgrade-configure-builder.png
X helo.context.xml | (5 EP 53 =0

Fiter: v FulEPN

The EPH cannat be displayed becase the Oracke CEP buld s configured in an invald order.
Clckthe button below to reconfigure the buide i the correct order.

Configure Buider

OEBPS/img/rectabalert.png
You are aboutto start recording immediately

OEBPS/img/eventpartitioner.png
hﬁ .

processort

»

nbound

&

channel h

processorz outbound

bﬁ .

processor3

EventpartitionerChannel

OEBPS/img/libs-jarcomplete.png
& & cepsample
@
0 javax.jus_2.0.jar
B\ IRE System Library [jdk1.6.0_13]
E OCEP Classpath
& buig
@ dst
=& b
[5) java.jus 2.0,
= (& METAINF
& spring
& wevs

bud.properties
bunde.properties
] startataFesd.cd

OEBPS/img/server-runtime1.png
Edit.

Remove

OEBPS/img/selectconfig9.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [caw

Stodkol6H1D0D symbolsymbol

Propettes (9)
AVG(StodVoIGHODD price ymovingAvgPrios

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Froject Expression

53]

Generated COL Statement

SELECT StockvalGt1 000 symbol AS symbol AVG(StockyalGt 000 price) AS movingévgPiice from StockyolGt000
Ipariiion by symbol rows 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/visqwfilter.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

Q|8][F] OHover

| choose et v |

& |[&][@][O zm o= 900

SSouee RSowes CacheTable
Paten Duput Select

2Fiter Join Window ﬁ

D23 23

Y 1soume

Unionntemsst Minus
lsteam Steam Rsteam
T Templates

[User-defined templates

OEBPS/img/libs-build.png
& Build Configuration

[custom Build

Runtime Information

Define the liaries, speciy the order in which they should be bt and list the source folders that should be compied into each

selected lbrary.

up

= Add Library.

‘add Folder.

Binary Build
Select the foders and fles to incude n the binary buld,

Source Build
Select the foders and fles to ncude n the source buld,

O project
& settings
& vETAINE
& buid
build.properties
bundie properties
O dst
SEE b
[sava.ws 2.0
O& s
] startDataFesd.cmd

I clsspath

O project

& settings

& verae

e buid

(0] b b properies
1 bundle properties
O ast

Oeib

Oe sc

[startpatareed.cmd

» Extra Classpath Entries

Overview |Dependencies |Runtime |uid [MANIFEST.MF | buld properties

OEBPS/img/epnedit-new-processor.png
& New Processor

Specify an ID and configuration location for the new processor

Processor I:

Configuration locaton:

@ Create a new file:

processor sl

(O Use an existing configuration il

OEBPS/img/file-new-epn.png
8 New

Select a wizard

Wizards:

[type fittertext

» & Java Emitter Templates
b & Javascript
=y
b & A
4 & Oracle Event Processing
& Oracle Event Processing Application Configuration File
5; Oracle Event Processing Application Project
(5 Oracle Event Processing Assembly File|
» & Plug-in Development
» @ Remote System Explorer
b @ Sewver
» (> SQL Development

I

OEBPS/img/expessionbuilder3.png
Expression Builder 9] @[

NOT(orderChannel evenfType = &)

Variables. Functions Operands

orderChannel v | | Selectafunctiontype v

Propetties ®) Functions

amount_javalang Long

& javalang.sting

D eventType java lang Sting

orderid_javalang Sting

Function Description

@ e B save | [@ concel

OEBPS/img/streamvis2.png
o

> Stream Visualizer

CEP Server Name

PublSUb Server URL hito/141.144.184.207:3002/pubsub

- scribe

NonClusteredServer . Pubsub Server Name

)

pubsub. v

bisconnect

_
HoE=E

Channel Name

Jevermonitor

Jevealert

Jevedomainchange

©|0|0| O

Jstackmoving

Output messages from subscription

Refresh

15.40000009999917)
15.400000000000055)
10.8)

10.8)
14.100000000000003)

ovingAvPric
ovingAvPric
ovingAvPric

o0gle" movingAvgPrice’: 30}
B "movingAvgPrice"15 49999999999991 7}
BN movingAvgPrice’”15.443993999999957)

=) subsorive | | T Clean Text

OEBPS/img/tradereport_gendialog.png
8] Generate Getters and Setters

Select geters and sefters to create:

lastPrice|
percChange
prce
symbol
volume

i |

i
]

[Allow seters for final felds (remove‘final moclfie from fields f necessary)

) default © priyate
[Generate method comments
‘The format of the getters/setters may be configured on the Code Templates preference page.
i 10 of 10 selected.

®

OEBPS/img/tradereport_cqlcode.png
& <wlevs:config xalns “hetp:/ /. bea. con/ns/ulevs/ config/application”

snlns: jdbe="http: //wwm. oracle. com/ns/ocep/config/jdbe™>
& <processor>

<name>GetHighvolumeProcessor</name>

<rules>

<query id="GetHighVoLume"><! [CDATA[
select trade.symbol, trade.volume

#rom AdapterOutputChannel [nou] as trade
where trade.volune > 4000

0 10>
| <Jauery>

</rules>
</processor>

</wlevs:config>

OEBPS/img/epn-open.png
[Project Explorer 23

@ src

5 resources

B Plug-in Depe

A JRE System

& buid

& data

& dist

= (& METAINF
= spring

10 oo

= wlevs
0 conf

2 mavre

o rope]

B b

ude.pror

5) sgnl Gene

5 cosore

1) sttvatre

) stvatre

ShawIn a e

copy

(7 Paste

 Delete
Buld Path
Refactor

3 Import
£ Export

& Refresh
Close Project

valdate
Runfs

Debug As

Profie s

Team

Compare With

Restore from Local History.

3

[

ey

Delete
»

ALSHFLT >

s

OEBPS/img/visqwoutput.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

[omezeroet. | (@][@[T

1:SSowre. 2Window

5Select

60utput

Dwover (& J[&J[@[O0 zoom 022 o2

Ssouse Roouce CaheTable
Patin

son Windaw
Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/playtabalert.png
You are aboutto start playback immediately.

OEBPS/img/altt-epn3.png
3 Java EE - CEPFXIMETA-INFAwlevs/spreader. xml - Eclipse

Bl Edt Source Navigate Search Project Run Window belp

BE@ %0 Q-
Hog-wo-
(25 Project Explorer 23 sl .

B & ceprx
5@ s
=3 com.oracke.cop.sample.fx
[3) marketevent.java
[3) outputsean.java
L IRE System Library 131551 6]
= OCEP Classpath
@ buid
B METATNE
= & spring
X) com.oracle.cep.sample.fx.context.xml
G wevs
[X] PubSubAdapterConfiguration.xml

G- €

X spreader sl
) SummarizeResuls. i
£ maniresT. v
(&) buid.properties
bunde.properties
3] startDatareed.cmd

<

n [nticonfigjprocessor/name/#text

- I SE e

%) com.arace.cop.sampl

<oquery id="AmerFilterCrossRatesAl
</rules>

</processor>

<processor>

<rules>
<vieu id="EurTolpy" schema="las
select lastPrice, symbol from F
11></views
<view id="EurTospyPre” schemas'
select avgllastPrice) as price,
£rom EurTolpy
where lastPrice < 200.0 and las
11></views
<oquery id="AsiaFilterCrossRatesVl
< >
Design |source

) spreadersanl 53 ™t 5D

(48 st |

S

¢+ B

= (@ nticonfig xr

[€] process:
(€] process|
[€] nam

(€] rule:

[€] process:
[€] process:

21 Markers | £ properties | 4% Servers 52 | Data Sourc | (5 srippets | € Progress| ~

g
s Oracle CEP v11.1 atlocahost [Stoppec]

wiikable Smart Insert | 15125

OEBPS/img/linklistassembly.png
<wlevs:processor id= " provider=regl®s
<ulevs:listener ref="CrossRateStrean”/>
</vlevs:processor>

<wlevs:channel id="CrossRateStrean” event-type
istener ref="sumarizeResults”/>
istener>

SpreaderouputEvent” advertise=rtruen

"com.oracle.cep.sanple. £x.OutputBean” autovire
</wlevs:listensr>
</wlevs:channel>

Dyllanen/>

OEBPS/img/filtconfig.png
Filter Predicate - type directly nto the text area OR use Builder

Generated Filter Staterment

SELECT * FROM stockChannel AS StockvolGt 000

@ el

(i Aua fiter

 validate

& save

@ cancel

OEBPS/img/measurecfg.png
m

Step 4 - Create measure objscts

Object Name a5

Measure List click fo select)

Propetties)

Generated Pattern Match Staterment
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval®? Shipment) DEFINE CustOrder AS orderChannel eventType = C' NoApproval AS
NOT(orderChannel evenfType = &) , Shipment AS orderChannel.eventType = 'S AS Orders

@ e o vaiivate | | @ save | [@ concel

OEBPS/img/spatialweb2.png
%) Mozilla Firefox

Bus Stop Arrivals

Sateite | ybris

Terrain

Bus Stop 1d.

& tiext 4 Erevious 0 Hghlght 8l [Matgh cese

OEBPS/img/server-new3.png
) New Server (2] ©

New Oracle Event Processing v11.1 Server [r—
Define s new Oracle Event Procesing i1 servr QD

Domain Directory: C/Oracle/Middleware/user_projects/domains/ocep_domainy/defaultserver

[Bieneei]

Domain Configuration

Start Script: C:/Oracle/Middleware/user_projects/domains/ocep_domain/defaultserver/starty
Stop Script C:/Oracle/Middleware/user_projects/domains/ocep_domain/defaultserver/stopy
Debug Port: 8453

Server Configuration

User Name: wlevs

User Password: wlevs

Automatic Publishing: © Disabled

) Use workspace default

@ <Bsck [New>][Enish%J[Cancel

OEBPS/img/adptwiz1.png
43 New Adapter.

Basic Adapter Information

Specify an ID, provider, and configuration ocation for the new adapter

Adapter ID: [adapter

Type:
® provider:

figuration location;
O Create a new file:

adapter.xm

(@ Use an existing cofiguration il

configoxm

OEBPS/img/libs-depends.png
L cepproy 2
% Dependencies

Required Plug-ins o

Specify the st of plug-ins required for the operation of this
plugein

add)

Total: 0

» Biifomated Manaaement of DERFRERCES |a,

Imported Packages

Specify packages on which ths plug-in depends wthaut

explcly dentying their originating plug-in.

5 combea wlovs. sdapter defaulprovs &
3 com bea.wlevs.configuration (3.0.0.
o beawlevs.ede (3.0.0.0)

o beawlevs ede.api (3.0.0.0)

F com.beawlevs.ede.impl (3.0.0.0)

F com.bea.wlevs.ede.5pi (3.0.0.0)

3 com.bea,wlevs. management. configu
F com.bea.wlevs management.spi (3.0
com.bea.wlevs.spring (3.0.0.0)

3 com.bea.wlevs.spring.support (3.0.C_
2 com.bea.wlevs.utl(3.0.0.0)
Forg.apache.commens.logging (1.1.0)
3 org.springframework. beans (2.5)

3 org.springframework beans Factory {
5 cn <rvinaframensnrk heans Factory

< [B

» Dependency Analysis

Overview | Dependencies |Runtime | Buid | MANIFEST.MF | buld properties

add)

Tatal: 20

OEBPS/img/visqwtemplate.png
-
&k Processor: calProc - cal@NonClusteredServer

|oreoseimon. v| (@ |[B [T Ower (& |[&][& Zoom: 028

Tl rempiates

a
s

Join Template

2paton et acusu
Lisouree
ISowse ZFeflem 3Seket 4Oupu [

Viewn Template

- OO O Cesswesess]

OEBPS/img/eclipseplugins.png
43 Feature Plug-ins

Feature Plug-ns

Plug-ins contrbuted by Feature: com bea.wlevs.ecipse.tools.feature

Si. | Provider | Plugin Name Version Plugin 4
Orace Oracle CEP Tools Care. 11.1.1.20110919-1619 com.bea.ulevs.eclpse.tools.core
Oracle Oracle CEP Tools Documentation 11,1,1.20100923-1754 com.bea.levs.eclpse.tools.doc
Orade Orade CEP Tools Ul 11.1.1.20110919-1619 com.bea.wlevs.ecipse.tools.ui.

cqaro | [shom s o

OEBPS/img/project-structure-1.png
0} com.bea.wievs.adapter.example.helloworld
-} com.bea.wievs.event.example. helloworld
-} com.bea.wevs.example.helloword

) JRE System Library [re1.6.0_02]

-2 Plug-n Dependencies

@ buld

B-@& METAI
@ spring

¥ Helo.context.xmi
@ wevs
[X) config.xml
MANIFEST.MF
&b buid.propertes
) buid.anl

Java Files

XML Configuration
Files

Bundle Manifest

OEBPS/img/selectconfig5.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (9)

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Project EXpression gyckyalot 000.price

Generated COL Statement

SELECT StackvalGt 000.symbol AS symbol FROM Stockvaloti 000 [PARTITION BY symhal ROWS 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/epned-new-cntxt-proc.png
Fiter: v FulEPN

B8

adapterl BeanClass
D adenter.
| Eean

Cache,

Channel,

Help

Event Bean.

OEBPS/img/project-export-build.png
54 EPN: Helloworld . build properties & =8

& Build Configuration @
[custom Build

Runtime Information

Define the liaries, speciy the order in which they should be bt and list the source folders tha should be compled into each
selected lbrary.

= Add Library. ‘Add Folder.

U
Down
Binary Build Source Build
Select the foders and fles to nclude n the binary buld, Select the foders and fles to ncude inthe source buld,

I META N
£ D buid

O project

O settings
[ib buitd properties & meTane
%) buid.xl O& buid
bundle, properties = [ib buitd properties
e dist 1) buid
[bundie.properties:
Oe ast =

A IR casspath £]

& images v

» Extra Classpath Entries

Buid [buid properties

OEBPS/img/java_logic.gif
—| Adapters Adapters ——»{

Business
™| Logic Beans |

OEBPS/img/ssourcecfg.png
S Sweam[D:1] e

T @ Stream O View

| stockchamen

Source Froperties [propetties®)

price java.lang Double

symbol java lang ting

persChange javalang Double

volume java lang Long

lastPrioe java ang Double

ELEMENT_TIME timestamp

Generated COL Statement

SELECT* FROM stockChannel AS StackvolGt 000

Validate

OEBPS/img/project-create.png
8] New Oracle Event Processing Application Project

Create an Oracle Event Processing Application. =
Creste an OrcleEvent Processing Appliction Project QD
Projectname. WhCERPG
Use default location
ot =
TargetRutime
P <) (ewe)
@ PrEa T (M —

OEBPS/img/abouteclipsefeat.png
£3 About Eclipse Features

‘about Ecipse Features

Provider Feature Name. Version Feature Id

Taals for reating, debugaing, and deploying Orace CEP applcations.
= verson: 11.1.1.20110919-1618
Copyright (<) 2010, 2011 Oracle Alrights reserved,

Oracle CEP Documentation
Vit htps/downioad.oracle.comjdocs]cd{E17904 01503 btm

Based on technclogy from the Eclpss Project
Vit htp: fuwa.eclpse.orgfuebtools

(oo] (Pugrnpetas) [[cotams.

OEBPS/img/adptwiz-jmsout.png
43 New Adapter.

Adapter Configuration

Enter configuration values for this adapter.

Propertis; Property Descripton:

Connection Event Type
Event Type:

Event type whose property
INDI Provider LRL rmes mtchnound 115 p
fessage praperty names

NI Factory: ‘weblogicndi WlinifalContextFactory Specky this property only
you want Oracke CEP to

Connection DI Neme: weblogicjms.ConnectionFactory automatically perform the
conversion between JH5

(O Destination JNDI Name:* messages and events. IF you
have created your own custom

O Destinaton Name converter bean, then do ot
speciy this property.

Securiy
User

O Password;

O Encrypted Password;
Connection Lser:

O Connection Password:

O Connection Encrypted Password:

Advanced
Session Transacted: []

Delivery Mode: persistent

* Reguired property

