Using Web Server Plug-Ins with Oracle WebLogic Server
11g Release 1 (10.3.5)
E14395-05
April 2011
This document explains the use of plug-ins provided for proxying requests to third party administration servers. This document is intended mainly for system administrators who manage the WebLogic Server application platform and its various subsystems.
Oracle Fusion Middleware Using Web Server Plug-Ins with Oracle WebLogic Server, 11g Release 1 (10.3.5)
E14395-05
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle Corporation
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This preface describes the document accessibility features and conventions used in this guide—Using Web Server Plug-Ins with Oracle WebLogic Server.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes the contents and organization of this guide—Using Web Server Plug-Ins with Oracle WebLogic Server.	
This document explains use of plug-ins provided for proxying requests to third party administration servers. This document is intended mainly for system administrators who manage the Oracle WebLogic Server application platform and its various subsystems.	
This chapter introduces the organization of this guide. The guide is organized as follows:	
Chapter 7, "Parameters for Web Server Plug-Ins" describes the parameters that you use to configure the Apache and Microsoft IIS Web server plug-ins.	
This document contains information on using Web server plug-ins. For information on using a proxy plug-in, see Using Clusters for Oracle WebLogic Server .	
For a comprehensive listing of the new Oracle WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.	
The following sections describe the plug-ins provided by Oracle for use with WebLogic Server:	
Plug-ins are small software programs that developers use to extend a WebLogic Server implementation. Plug-ins enable WebLogic Server to communicate with applications deployed on Oracle HTTP Server, Apache HTTP Server, Sun Java System Web Server, or Microsoft's Internet Information Server. Typically, WebLogic Server handles the application requests that require dynamic functionality, the requests that can best be served with dynamic HTML pages or JSPs (Java Server Pages).	
WebLogic Server includes plug-ins for the following Web servers:	
This release of Using Web Server Plug-Ins with Oracle WebLogic Server documents the following plug-ins:	
Plug-in support is also available for Oracle HTTP Server. These plug-ins are packaged with the Oracle HTTP Server distribution. See Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.	
WebLogic Server Plug-Ins do not support two-way SSL. However, the Plug-Ins can be set up to require the client certificate and pass it on to WebLogic Server. For example:	
Set the WebLogic Plug-in Enabled control in WebLogic Server.	
The WebLogic Plug-in Enabled control specifies whether the WebLogic Server uses the proprietary WL-Proxy-Client-IP header, which is recommended if the server instance will receive requests from a proxy plug-in.	
The following sections describe how to install and configure the Apache HTTP Server Plug-In:	
The Apache HTTP Server Plug-In allows requests to be proxied from an Apache HTTP Server to WebLogic Server. The plug-in enhances an Apache installation by allowing WebLogic Server to handle requests that require the dynamic functionality of WebLogic Server.	
The plug-in is intended for use in an environment where an Apache Server serves static pages, and another part of the document tree (dynamic pages best generated by HTTP Servlets or JavaServer Pages) is delegated to WebLogic Server, which may be operating in a different process, possibly on a different host. To the end user—the browser—the HTTP requests delegated to WebLogic Server still appear to be coming from the same source.	
HTTP-tunneling, a technique which allows HTTP requests and responses access through a company's firewall, can also operate through the plug-in, providing non-browser clients access to WebLogic Server services.	
The Apache HTTP Server Plug-In operates as an Apache module within an Apache HTTP Server. An Apache module is loaded by Apache Server at startup, and then certain HTTP requests are delegated to it. Apache modules are similar to HTTP servlets, except that an Apache module is written in code native to the platform.	
For information on configurations on which the Apache HTTP Server Plug-In is supported, see http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
Note: Apache 2.0 Plug-In was deprecated in the WebLogic Server 10.0 release.	
Version 2.0 of the Apache HTTP Server Plug-In improves performance by using a reusable pool of connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic Server by reusing the same connection in the pool for subsequent requests from the same client. If the connection is inactive for more than 20 seconds, (or a user-defined amount of time) the connection is closed and removed from the pool. You can disable this feature if desired. For more information, see KeepAliveEnabled	
in Table 7-1.	
The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You can proxy requests based on the URL of the request (or a portion of the URL). This is called proxying by path	
. You can also proxy requests based on the MIME type	
of the requested file. Or you can use a combination of the two methods. If a request matches both criteria, the request is proxied by path. You can also specify additional parameters for each type of request that define additional behavior of the plug-in. For more information, see Configuring the Apache HTTP Server Plug-In.	
Although this document refers to Apache 2.0, you can apply the same instructions to use Apache 2.2 with the libraries shown in Table 3-2.	
The Apache HTTP Server Plug-In is supported on AIX, Linux, Solaris, Windows, and HPUX11 platforms. For information on support for specific versions of Apache, see http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
The Apache HTTP Server Plug-In is included with WebLogic Server under the WL_HOME/server/plugin	
directory.	
You can install the Apache HTTP Server Plug-In as an Apache module in your Apache HTTP Server installation and link it as a Dynamic Shared Object (DSO).	
A DSO is compiled as a library that is dynamically loaded by the server at run time, and can be installed without recompiling Apache.	
The Apache plug-in is distributed as a shared object (.so) for Solaris, Linux, AIX, Windows, and HPUX11 platforms.	
Note: The WebLogic Server version 10.3 installation did not include the Apache HTTP server plug-ins. The Apache HTTP Server plug-ins are available in a separate zip file, available from the Oracle download and support sites. These plug-ins contain a fix for the security advisory described at:http://www.oracle.com/technology/deploy/security/alerts/alert_cve2008-3257.html After downloading the zip file, extract the zip to a directory of your choice on disk.	
Table 3-1 shows the directories that contain shared object files for various platforms.	
Table 3-2 identifies the WebLogic Server Apache Plug-In modules for different versions of Apache HTTP Server and different encryption strengths.	
Table 3-1 Locations of Plug-In Shared Object Files	
Operating System	Shared Object Location Under WL_HOME/server/plugin
---	---
AIX	aix/ppc
Solaris	solaris/sparc solaris/sparc/largefileFoot 1 solaris/x86 solaris/x86/largefileFoot 2
Linux	linux/i686 linux/i686/largefileFoot 3 linux/ia64 linux/x86_64
Windows (Apache 2.0 and 2.2, 32-bit)	win\32
HPUX11	hpux11/IPF64 hpux11/PA_RISC Note: If you are running Apache 2.0.x server on HP-UX11, set the environment variables specified immediately below before you build the Apache server. Because of a problem with the order in which linked libraries are loaded on HP-UX, a core dump can result if the load order is not preset as an environment variable before building. Set the following environment variables before proceeding with the Apache configure, make, and make install steps, (described in Apache HTTP Server documentation at export EXTRA_LDFLAGS="-lstd -lstream -lCsup -lm -lcl -ldld -lpthread"
Footnote 1 See "Support for Large Files in Apache 2.0"	
Footnote 2 See "Support for Large Files in Apache 2.0"	
Footnote 3 See "Support for Large Files in Apache 2.0"	
Choose the appropriate version of the plug-in shared object from the following table:	
Table 3-2 Apache Plug-In Shared Object File Versions	
Apache Version	Regular Strength Encryption
---	---
Standard Apache Version 2.0.x	mod_wl_20.so
Standard Apache Version 2.2.x	mod_wl_22.so
To install the Apache HTTP Server Plug-In as a dynamic shared object:	
The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server installation as a Dynamic Shared Object (DSO). DSO support in Apache is based on module mod_so.c, which must be enabled before mod_wl_20.so is loaded. If you installed Apache HTTP Server using the script supplied by Apache, mod_so.c is already enabled. Verify that mod_so.c is enabled by executing the following command:	
(Where APACHE_HOME	
is the directory containing your Apache HTTP Server installation.)	
This command lists all enabled modules. If mod_so.c is not listed, you must rebuild your Apache HTTP Server, making sure that the following options are configured:	
See Apache 2.0 Shared Object (DSO) Support at http://httpd.apache.org/docs/2.0/dso.html	
.	
mod_wl_20.so	
file to the APACHE_HOME\modules	
directory and adding the following line to your APACHE_HOME/conf/httpd.conf	
file manually: The Apache HTTP Server Plug-In recognizes the parameters listed in General Parameters for Web Server Plug-Ins. To modify the behavior of your Apache HTTP Server Plug-In, define these parameters:	
Location	
block, for parameters that apply to proxying by path, or IfModule	
block, for parameters that apply to proxying by MIME type. APACHE_HOME\conf\httpd.conf	
file with the following command: The output of this command reports any errors in your httpd.conf	
file or returns:	
The version of Apache 2.0 that ships with some operating systems, including some versions of Solaris and Linux, is compiled with the following flags:	
These compilation flags enable support for files larger than 2 GB. If you want to use a WebLogic Server Web server plug-in on such an Apache 2.0 Web server, you must use plug-ins compiled with the same compilation flags, which are available in the largefile subdirectory for your operating system. For example:	
Note: Apache 2.2 does not require special compilation flags to support files larger than 2 GB. Therefore, you do not need to use a specially compiled Web server plug-in if you are running Apache 2.2.	
After installing the plug-in in the Apache HTTP Server, configure the WebLogic Server Apache Plug-In and configure the server to use the plug-in. This section explains how to edit the Apache httpd.conf	
file to instruct the Apache server to load the WebLogic Server library for the plug-in as an Apache module, and to specify the application requests that should be handled by the module.	
Edit the httpd.conf	
file in your Apache HTTP server installation to configure the Apache HTTP Server Plug-In.	
This section explains how to locate and edit the httpd.conf	
file, to configure the server to use the WebLogic Server Apache Plug-In, to proxy requests by path or by MIME type, to enable HTTP tunneling, and to use other WebLogic Server plug-in parameters.	
httpd.conf	
file. The file is located at APACHE_HOME\conf\httpd.conf	
(where APACHE_HOME	
is the root directory of your Apache HTTP server installation). See a sample httpd.conf	
file at Setting Up Perimeter Authentication.	
httpd.conf	
file: IfModule	
block that defines one of the following: WebLogicHost	
and WebLogicPort	
parameters. WebLogicCluster	
parameter. For example:	
MatchExpression	
line to the IfModule	
block. Note that if both MIME type and proxying by path are enabled, proxying by path takes precedence over proxying by MIME type. For example, the following IfModule	
block for a non-clustered WebLogic Server specifies that all files with MIME type .jsp are proxied:	
You can also use multiple MatchExpressions	
, for example:	
If you are proxying requests by MIME type to a cluster of WebLogic Servers, use the WebLogicCluster	
parameter instead of the WebLogicHost	
and WebLogicPort	
parameters. For example:	
Location	
block and the SetHandler	
statement. SetHandler	
specifies the handler for the Apache HTTP Server Plug-In module. For example the following Location block proxies all requests containing /weblogic in the URL: The PathTrim	
parameter specifies a string trimmed from the beginning of the URL before the request is passed to the WebLogic Server instance (see General Parameters for Web Server Plug-Ins).	
weblogic.jar	
, add the following Location	
block to the httpd.conf	
file: wlclient.jar	
, add the following Location	
block to the httpd.conf	
file: The Apache HTTP Server Plug-In recognizes the parameters listed in General Parameters for Web Server Plug-Ins. To modify the behavior of your Apache HTTP Server Plug-In, define these parameters either:	
Location	
block, for parameters that apply to proxying by path, or IfModule	
block, for parameters that apply to proxying by MIME type. If you choose to not use the IfModule, you can instead directly place the WebLogic properties inside Location	
or VirtualHost	
blocks. Consider the following examples of the Location	
and VirtualHost	
blocks:	
If you want to keep several separate configuration files, you can define parameters in a separate configuration file called weblogic.conf	
file, by using the Apache Include directive in an IfModule	
block in the httpd.conf	
file:	
The syntax of weblogic.conf	
files is the same as that for the httpd.conf	
file.	
This section describes how to create weblogic.conf	
files, and includes sample weblogic.conf	
files.	
Be aware of the following when constructing a weblogic.conf	
file.	
MatchExpression	
in an IfModule	
block and a path specified in a Location	
block, the behavior specified by the Location	
block takes precedence. <VirtualHost>	
block, you must include all configuration parameters (MatchExpression	
, for example) for the virtual host within the <VirtualHost>	
block (see Apache Virtual Host documentation at http://httpd.apache.org/docs/vhosts/	
). Debug	
, WLLogFile	
and WLTempDir	
properties in each virtual host you can specify them just once in the <IfModule>	
tag. httpd.conf	
file: c:/tmp/global_proxy.log	
file. All the requests which match /web/* will have Debug Level set to OFF and no log messages will be logged. All the requests which match /foo/* will have Debug Level set to ERR and log messages will be logged to c:/tmp/foo_proxy.log	
file. MatchExpression	
statement instead of the <Files>	
block. The following examples of weblogic.conf	
files may be used as templates that you can modify to suit your environment and server. Lines beginning with # are comments.	
Example 3-1 Example Using WebLogic Clusters	
In Example 3-2, the MatchExpression	
parameter syntax for expressing the filename pattern, the WebLogic Server host to which HTTP requests should be forwarded, and various other parameters is as follows:	
The first MatchExpression	
parameter below specifies the filename pattern *.jsp, and then names the single WebLogicHost. The paramName=value	
combinations following the pipe symbol specify the port at which WebLogic Server is listening for connection requests, and also activate the Debug option. The second MatchExpression	
specifies the filename pattern *.http and identifies the WebLogicCluster hosts and their ports. The paramName=value	
combination following the pipe symbol specifies the error page for the cluster.	
Example 3-2 Example Using Multiple WebLogic Clusters	
Example 3-3 shows an example without WebLogic clusters.	
Example 3-3 Example Without WebLogic Clusters	
Example 3-4 shows an example of configuring multiple name-based virtual hosts.	
Example 3-4 Example Configuring Multiple Name-Based Virtual Hosts	
You must define a unique value for ServerName	
or some Plug-In parameters will not work as expected.	
This section contains a sample httpd.conf	
file for Apache 2.0. You can use this sample as a template and modify it to suit your environment and server. Lines beginning with # are comments.	
Note that Apache HTTP Server is not case sensitive.	
Example 3-5 Sample httpd.conf file for Apache 2.0	
Use perimeter authentication to secure WebLogic Server applications that are accessed via the Apache Plug-In.	
A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access your WebLogic Server application, including users who access your WebLogic Server application through the Apache HTTP Server Plug-In. Create an Identity Assertion Provider that will safely secure your Plug-In as follows:	
clientCertProxy	
to True in the web.xml deployment descriptor file for the Web application (or, if using a cluster, optionally set the Client Cert Proxy Enabled attribute to true for the whole cluster on the Administration Console Cluster-->Configuration-->General tab). The clientCertProxy	
attribute can be used with a third party proxy server, such as a load balancer or an SSL accelerator, to enable 2-way SSL authentication. For more information about the clientCertProxy	
attribute, see "context-param" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server. clientCertProxy	
, be sure to use a connection filter to ensure that WebLogic Server accepts connections only from the machine on which the Apache Plug-In is running. See "Using Network Connection Filters" in Programming Security for Oracle WebLogic Server. DemoTrust.jks	
keystore file that resides in WL_HOME/server/lib	
. Change the alias name to obtain a different trusted CA file from the keystore.	
To look at all of the keystore's trusted CA files, use:	
Press enter if prompted for password.	
See "Identity Assertion Providers" in Developing Security Providers for Oracle WebLogic Server.	
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol provides confidentiality and integrity to the data passed between the Apache HTTP Server Plug-In and WebLogic Server.	
The Apache HTTP Server Plug-In does not use the transport protocol (http or https) specified in the HTTP request (usually by the browser) to determine whether or not the SSL protocol is used to protect the connection between the Apache HTTP Server Plug-In and WebLogic Server.	
Although two-way SSL can be used between the HTTP client and Apache HTTP server, note that one-way SSL is used between Apache HTTP Server and WebLogic Server.	
To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:	
WebLogicPort	
parameter in the httpd.conf	
file to the WebLogic Server SSL listen port configured in Step 2. SecureProxy	
parameter in the httpd.conf	
file to ON. httpd.conf	
file that define information about the SSL connection. For a complete list of the SSL parameters that you can configure for the plug-in, see SSL Parameters for Web Server Plug-Ins. These known issues arise when you configure the Apache plug-in to use SSL:	
PathTrim	
parameter (see SSL Parameters for Web Server Plug-Ins) must be configured inside the <Location>	
tag. The following configuration is incorrect:	
The following configuration is the correct setup:	
When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the plug-in uses several configuration parameters to determine how long to wait for connections to the WebLogic Server host and, after a connection is established, how long the plug-in waits for a response. If the plug-in cannot connect or does not receive a response, the plug-in attempts to connect and send the request to other WebLogic Server instances in the cluster. If the connection fails or there is no response from any WebLogic Server in the cluster, an error message is sent.	
Figure 3-1 demonstrates how the plug-in handles failover.	
Failure of the WebLogic Server host to respond to a connection request could indicate the following problems:	
Failure of all WebLogic Server instances to respond could indicate the following problems:	
Under load, an Apache plug-in may receive CONNECTION_REFUSED errors from a back-end WebLogic Server instance. Follow these tuning tips to reduce CONNECTION_REFUSED errors:	
AcceptBackLog	
setting in the configuration of your WebLogic Server domain. KeepAlive	
directive in the httpd.conf	
file to On. For example: See Apache HTTP Server 2.0 documentation at http://httpd.apache.org/docs-project/	
.	
TcpTimedWaitDelay	
on the proxy and WebLogic Server servers to a lower value. Set the TIME_WAIT interval in Windows NT by editing the registry key under HKEY_LOCAL_MACHINE: If this key does not exist you can create it as a DWORD value. The numeric value is the number of seconds to wait and may be set to any value between 30 and 240. If not set, Windows NT defaults to 240 seconds for TIME_WAIT.	
TcpTimedWaitDelay	
by editing the registry key under HKEY_LOCAL_MACHINE: tcp_time_wait_interval	
to one second (for both the WebLogic Server machine and the Apache machine, if possible): If you are running only a single WebLogic Server instance the plug-in only attempts to connect to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is returned. The plug-in continues trying to connect to that same WebLogic Server instance for the maximum number of retries as specified by the ratio of ConnectTimeoutSecs	
and ConnectRetrySecs	
.	
The WebLogicCluster	
parameter is required to proxy to a list of back-end servers that are clustered, or to perform load balancing among non-clustered managed server instances.	
In the case of proxying to clustered managed servers, when you use the WebLogicCluster	
parameter in your httpd.conf	
or weblogic.conf	
file to specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load balancing among the members of the cluster. After the first request is routed to one of these servers, a dynamic server list is returned containing an updated list of servers in the cluster. The updated list adds any new servers in the cluster and deletes any that are no longer part of the cluster or that have failed to respond to requests. This list is updated automatically with the HTTP response when a change in the cluster occurs.	
When a request contains session information stored in a cookie or in the POST data, or encoded in a URL, the session ID contains a reference to the specific server instance in which the session was originally established (called the primary server). A request containing a cookie attempts to connect to the primary server. If that attempt fails, the plug-in attempts to make a connection to the next available server in the list in a round-robin fashion. That server retrieves the session from the original secondary server and makes itself the new primary server for that same session. See Figure 3-1.	
Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot route the request to the correct primary or secondary server, resulting in possible loss of session data.	
In this figure, the Maximum number of retries allowed in the red loop is equal to ConnectTimeoutSecs/ConnectRetrySecs	
.	
The following sections describe how to install and configure the Microsoft Internet Information Server Plug-In:	
The Microsoft Internet Information Server Plug-In allows requests to be proxied from a Microsoft Internet Information Server (IIS) to WebLogic Server. The plug-in enhances an IIS installation by allowing WebLogic Server to handle those requests that require the dynamic functionality of WebLogic Server.	
You use the Microsoft Internet Information Server Plug-In in an environment where the Internet Information Server (IIS) serves static pages such as HTML pages, while dynamic pages such as HTTP Servlets or JavaServer Pages are served by WebLogic Server. WebLogic Server may be operating in a different process, possibly on a different host. To the end user—the browser—the HTTP requests delegated to WebLogic Server still appear to be coming from IIS. The HTTP-tunneling facility of the WebLogic client-server protocol also operates through the plug-in, providing access to all WebLogic Server services.	
The Microsoft Internet Information Server Plug-In improves performance using a pool of connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic Server by re-using the same connection for subsequent requests from the same client. If the connection is inactive for more than 30 seconds, (or a user-defined amount of time) the connection is closed. The connection with the client can be reused to connect to the same client at a later time if it has not timed out. You can disable this feature if desired. For more information, see KeepAliveEnabled	
in Table 7-1.	
The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You can proxy requests based on either the URL of the request or a portion of the URL. This is called proxying by path.	
You can also proxy a request based on the MIME type of the requested file, which is called proxying by file extension.	
You can also enable both methods. If you do enable both methods and a request matches both criteria, the request is proxied by path.	
You can also specify additional parameters for each of these types of requests that define additional behavior of the plug-in. For more information, see Using Wildcard Application Mappings to Proxy by Path and Installing and Configuring the Microsoft Internet Information Server Plug-In.	
For the latest information on operating system and IIS version compatibility with the Microsoft Internet Information Server Plug-In, see http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
As described in "Installing Wildcard Application Mappings (IIS 6.0)" (http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true	
), and "Add a Wildcard Script Map" for IIS 7.0 (http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx	
), you can configure a Web site or virtual directory to run an Internet Server API (ISAPI) application at the beginning of every request to that Web site or virtual directory, regardless of the extension of the requested file. You can use this feature to insert a mapping to iisproxy.dll	
and thereby proxy requests by path to WebLogic Server.	
The following steps summarize the instructions available at "Installing Wildcard Application Mappings (IIS 6.0)" (http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true	
) for adding a wildcard application mapping to a Web server or Web site in IIS 6.0:	
iisproxy.dll	
DLL in the Executable text box or click Browse to navigate to. The following steps summarize the instructions available at "Add a Wildcard Script Map" for IIS 7.0 (http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx	
) to add a wildcard script map to do proxy-by-path with ISAPI in IIS 7.0:	
http://technet.microsoft.com/en-us/library/cc770472(WS.10).aspx	
. For information about navigating to locations in the UI, see "Navigation in IIS Manager" at http://technet.microsoft.com/en-us/library/cc732920(WS.10).aspx	
. iisproxy.dll	
that processes the request. For example, type systemroot\system32\inetsrv\iisproxy.dll	
. http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx	
. To install the Microsoft Internet Information Server Plug-In:	
WL_HOME/server/plugin/win/32	
or WL_HOME/server/plugin/win/64	
directory of your WebLogic Server installation (where WL_HOME	
is the top-level directory for the WebLogic Platform and Server and contains the WebLogic Server installation files into a convenient directory that is accessible to IIS). This directory must also contain the iisproxy.ini	
file that you will create in step 4. Set the user permissions for the iisproxy.dll	
file to include the name of the user who will be running IIS. One way to do this is by right clicking on the iisproxy.dll	
file and selecting Permissions, then adding the username of the person who will be running IIS. Figure 4-1 Selecting Web Site in Service Manager	
Figure 4-2 Selecting Properties for Selected Web Site	
Figure 4-3 Home Directory Tab of the Properties Panel	
Figure 4-4 Click the Add Button to Add File Types	
iisproxy.dll	
file. Note: In the URL, any path information you add after the server and port is passed directly to WebLogic Server. For example, if you request a file from IIS with the URL:http://myiis.com/jspfiles/myfile.jsp it is proxied to WebLogic Server with a URL such as http://mywebLogic:7001/jspfiles/myfile.jsp	
Note: To avoid out-of-process errors, do not deselect the "Cache ISAPI Applications" check box.	
iisproxy.ini	
file.) Proxying by path takes precedence over proxying by MIME type. You can also proxy multiple Web sites defined in IIS by path. For more information, see Proxying Requests from Multiple Virtual Web Sites to WebLogic Server.	
To configure proxying by path:	
iisforward.dll	
file in the same directory as the iisproxy.dll	
file and add the iisforward.dll	
file as a filter service in IIS (WebSite Properties ->ISAPI Filters tab -> Add the iisforward dll). Set the user permissions for the iisforward.dll	
file to include the name of the user who will be running IIS. One way to do this is by right clicking on the iisproxy.dll	
file and selecting Permissions, then adding the username of the person who will be running IIS. iisproxy.dll	
in IIS. WlForwardPath	
in iisproxy.ini	
. WlForwardPat	
h defines the path that is proxied to WebLogic Server, for example: WlForwardPath=/weblogic	
. PathTrim	
parameter to trim off the WlForwardPath	
when necessary. For example, using trims a request from IIS to Weblogic Server. Therefore, /weblogic/session is changed to /session.	
DefaultFileName	
parameter to the name of the welcome page of the Web Application to which the request is being proxied. The value of this parameter is appended to the URL. iisproxy.ini	
. A c:\tmp\iisforward.log	
is generated containing a log of the plug-in's activity that you can use for debugging purposes. iisproxy.ini	
file. The iisproxy.ini	
file contains name=value	
pairs that define configuration parameters for the plug-in. The parameters are listed in Table 7-1.	
Use the example iisproxy.ini	
file in Sample iisproxy.ini File as a template for your iisproxy.ini	
file.	
Note: Changes in the parameters will not go into effect until you restart the “IIS Admin Service” (under services, in the control panel).	
Oracle recommends that you locate the iisproxy.ini	
file in the same directory that contains the iisproxy.dll	
file. You can also use other locations. If you place the file elsewhere, note that WebLogic Server searches for iisproxy.ini	
in the following directories, in the following order:	
iisproxy.dll	
is located. iisproxy.ini	
file in the home directory, it continues looking in the Windows Registry for older versions of WebLogic Server and looks for the iisproxy.ini	
file in the home directories of those installations.) c:\weblogic	
, if it exists. iisproxy.ini	
file. For example: iisproxy.ini	
file. For example: Where myweblogic.com and yourweblogic.com are instances of Weblogic Server running in a cluster.	
iisproxy.ini	
file. A complete list of parameters is available in the appendix General Parameters for Web Server Plug-Ins. iisproxy.dll	
. Use the IIS Manager console to enable the Plug-In: This section describes differences in how you set up the Microsoft Internet Information Server Plug-In for IIs 7.0.	
To set up the Microsoft Internet Information Server Plug-In for IIs 7.0, follow these steps:	
Fill in the Web Site Name with the name you want to give to your web application; for example, MyApp. Select the physical path of your web application Port (any valid port number not currently in use).	
Click OK to create the web application.	
If you can see the name of your application under Web Sites it means that your application has been created and started running. Click on the MyApp node under Web Sites to see all of the settings related to the MyApp application, which you can change, as shown in Figure 4-5.	
Figure 4-6 Setting the Handler Mappings	
Figure 4-7 Editing the Request Path for Module	
Browse to the iisproxy.dll	
file and add it as the executable. Name it proxy	
.	
Figure 4-8 Editing the Request Path for Script	
Figure 4-9 Editing the Request Restrictions	
Figure 4-10 Adding the Script Map	
*.wlforward	
and select the executable as iisproxy.dll	
. Click on the "Request Restrictions…" button and uncheck the box "Invoke handler only if the request is mapped to".	
Click OK to add this Handler mapping. Click Yes on the Add Script Map dialog box.	
Figure 4-11 Adding the Script Map for Proxying by Path	
Enter the Filter name as forward	
and select the executable as iisforward.dll	
. Click OK.	
Figure 4-12 Editing ISAPI Filters	
Figure 4-13 Editing ISAPI and CGI Restrictions	
iisproxy.ini	
with the following contents and place it in the directory with the plug-in: http://<hostname>:<port>	
. You should be able to see the Medrec Sample Application from your Weblogic Server. If you want to run the plug-in in SSL mode, change the value of WeblogicPort	
to the SSL port of your application, and change the SecureProxy	
value to ON.	
Figure 4-14 Medrec Sample Application	
To proxy requests from multiple Web sites (defined as virtual directories in IIS) to WebLogic Server:	
iisforward.dll	
to the directory you created in step1. iisforward.dll	
for each website with IIS. iisforward.ini	
. Place this file in the same directory that contains iisforward.dll	
. This file should contain the following entry for each virtual website defined in IIS: Where:	
websiteName	
is the name of the virtual website as registered with IIS. port	
is the port number where IIS listens for HTTP requests. dll_directory	
is the path to the directory you created in step 1. For example:	
iisproxy.ini	
file for the virtual Web sites, as described in step 4 in Proxying Requests. Copy this iispoxy.ini	
file to the directory you created in step 1. iisproxy.dll	
to the directory you created in step 1. iisproxy.ini	
of the first website. For IIS 6.0 and later, create a separate application pool for each virtual directory.	
As described in "Creating Application Pools (IIS 6.)" (http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/93275ef2-2f85-4eb1-8b92-a67545be11b4.mspx?mfr=true	
), you can isolate different Web applications or Web sites in pools, which are called application pools. In an application pool, process boundaries separate each worker process from other worker processes so that when an application is routed to one application pool, applications in other application pools do not affect that application.	
Here is a sample iisproxy.ini	
file for use with a single, non-clustered WebLogic Server. Comment lines are denoted with the “#” character.	
Here is a sample iisproxy.ini	
file with clustered WebLogic Servers. Comment lines are denoted with the “#” character.	
Note: If you are using SSL between the plug-in and WebLogic Server, the port number should be defined as the SSL listen port.	
ACLs will not work through the Microsoft Internet Information Server Plug-In if the Authorization header is not passed by IIS. Use the following information to ensure that the Authorization header is passed by IIS.	
When using Basic Authentication, the user is logged on with local log-on rights. To enable the use of Basic Authentication, grant each user account the Log On Locally user right on the IIS server. Two problems may result from Basic Authentication's use of local logon:	
To enable Basic Authentication, in the Directory Security tab of the console, ensure that the Allow Anonymous option is “on” and all other options are “off”.	
Use perimeter authentication to secure your WebLogic Server applications that are accessed via the Microsoft Internet Information Server Plug-In.	
A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access your WebLogic Server application, including users who access your WebLogic Server application through the Microsoft Internet Information Server Plug-In. Create an Identity Assertion Provider that will safely secure your Plug-In as follows:	
clientCertProxy	
attribute to True in the web.xml deployment descriptor file for the Web application (or, if using a cluster, optionally set the Client Cert Proxy Enabled	
attribute to true for the whole cluster on the Administration Console Cluster-->Configuration-->General tab). See "context-param" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server. clientCertProxy	
, be sure to use a connection filter to ensure that WebLogic Server accepts connections only from the machine on which the Microsoft Internet Information Server Plug-In is running. See "Using Network Connection Filters" in Programming Security for Oracle WebLogic Server. DemoTrust.jks	
keystore file that resides in WL_HOME/server/lib	
. Change the alias name to obtain a different trusted CA file from the keystore.	
To look at all of the keystore's trusted CA files, use: keytool -list -keystore DemoTrust.jks	
.	
Press enter if prompted for password.	
java utils.der2pem trustedcafile.der	
. See "Identity Assertion Providers" in Developing Security Providers for Oracle WebLogic Server for more information about Identity Assertion Providers.	
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between WebLogic Server and the Microsoft Internet Information Server Plug-In. The SSL protocol provides confidentiality and integrity to the data passed between the Microsoft Internet Information Server Plug-In and WebLogic Server.	
The Microsoft Internet Information Server Plug-In does not use the transport protocol (http or https) to determine whether the SSL protocol will be used to protect the connection between the proxy plug-in and the Microsoft Internet Information Server. In order to use the SSL protocol with the Microsoft Internet Information Server Plug-In, configure the WebLogic Server instance receiving the proxied requests to use the SSL protocol. The port on the WebLogic Server that is configured for secure SSL communication is used by the Microsoft Internet Information Server Plug-In to communicate with the Microsoft Internet Information Server.	
To use the SSL protocol between Microsoft Internet Information Server Plug-In and WebLogic Server:	
iisproxy.ini	
file to the listen port configured in step 2. iisproxy.ini	
file to ON. iisproxy.ini	
file that define the SSL connection. For a complete list of parameters, see SSL Parameters for Web Server Plug-Ins. For example:	
You can proxy servlets by path if the iisforward.dll	
is registered as a filter. You would then invoke your servlet with a URL similar to the following:	
To proxy servlets if iisforward.dll	
is not registered as a filter, you must configure servlet proxying by file type.To proxy servlets by file type:	
where virtualName is the URL pattern defined in the <servlet-mapping>	
element of the Web Application deployment descriptor (web.xml) for this servlet and ext is a file type (extension) registered with IIS for proxying to WebLogic Server. The anyfile part of the URL is ignored in this context.	
Note: If the image links called from the servlet are part of the Web Application, you must also proxy the requests for the images to WebLogic Server by registering the appropriate file types (probably .gif and .jpg) with IIS. You can, however, choose to serve these images directly from IIS if desired.If the servlet being proxied has links that call other servlets, then these links must also be proxied to WebLogic Server, conforming to the pattern described in step 3.	
After you install and configure the Microsoft Internet Information Server Plug-In, follow these steps for deployment and testing:	
If filename.jsp is displayed in your browser, the plug-in is functioning.	
When the Microsoft Internet Information Server Plug-In attempts to connect to WebLogic Server, the plug-in uses several configuration parameters to determine how long to wait for connections to the WebLogic Server host, and, after a connection is established, how long the plug-in waits for a response. If the plug-in cannot connect or does not receive a response, the plug-in attempts to connect and sends the request to other WebLogic Servers in the cluster. If the connection fails or there is no response from any WebLogic Server instance in the cluster, an error message is sent.	
Figure 4-15 demonstrates how the plug-in handles failover.	
Failure of the WebLogic Server host to respond to a connection request could indicate problems with the host machine, networking problems, or other server failures.	
Failure of any WebLogic Server instance in the cluster to respond, could indicate that WebLogic Server is not running or is unavailable, a hung server, a database problem, or other application failure.	
If you are running only a single WebLogic Server, the plug-in only attempts to connect to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is returned. The plug-in continues trying to connect to WebLogic Server as determined by the ConnectTimeoutSecs	
and ConnectRetrySecs	
parameters.	
The WebLogicCluster	
parameter is required to proxy to a list of back-end servers that are clustered, or to perform load balancing among non-clustered managed server instances.	
In the case of proxying to clustered managed servers, when you use the WebLogicCluster	
parameter in your httpd.conf	
or weblogic.conf	
file to specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load balancing among the members of the cluster. After the first request is routed to one of these servers, a dynamic server list is returned containing an updated list of servers in the cluster. The updated list adds any new servers in the cluster and deletes any that are no longer part of the cluster or that have failed to respond to requests. This list is updated automatically with the HTTP response when a change in the cluster occurs.	
When a request contains session information stored in a cookie or in the POST data, or encoded in a URL, the session ID contains a reference to the specific server instance in which the session was originally established (called the primary server). A request containing a cookie attempts to connect to the primary server. If that attempt fails, the plug-in attempts to make a connection to the next available server in the list in a round-robin fashion. That server retrieves the session from the original secondary server and makes itself the new primary server for that same session. For more information see Figure 4-15.	
Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot route the request to the correct primary or secondary server, resulting in possible loss of session data.	
This release documents how to install and configure the Sun Java System Web Server plug-in.	
In previous releases of WebLogic Server, this plug-in was referred to as the Netscape Enterprise Server plug-in. References to file specifications in this chapter continue to use the Netscape Enterprise Server nomenclature.	
The following sections describe how to install and configure the Sun Java System Web Server proxy plug-in:	
The Sun Java System Web Server Plug-In enables requests to be proxied from Sun Java System Web Server to WebLogic Server. The plug-in enhances a Sun Java System Web Server installation by allowing WebLogic Server to handle those requests that require the dynamic functionality of WebLogic Server.	
The Sun Java System Web Server Plug-In is designed for an environment where Sun Java System Web Server serves static pages, and a Weblogic Server instance (operating in a different process, possibly on a different machine) is delegated to serve dynamic pages, such as JSPs or pages generated by HTTP Servlets. The connection between WebLogic Server and the Sun Java System Web Server Plug-In is made using clear text or Secure Sockets Layer (SSL). To the end user—the browser—the HTTP requests delegated to WebLogic Server appear to come from the same source as the static pages. Additionally, the HTTP-tunneling facility of WebLogic Server can operate through the Sun Java System Web Server Plug-In, providing access to all WebLogic Server services (not just dynamic pages).	
The Sun Java System Web Server Plug-In operates as a module within a Sun Java System Web Server. The module is loaded at startup, and then certain HTTP requests are delegated to it. The module is similar to an HTTP (Java) servlet, except that a module is written in code native to the platform.	
For more information on supported versions of Sun Java System Web Server see http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
The WebLogic Server Sun Java System Web Server Plug-In provides efficient performance by using a re-usable pool of connections from the plug-in to WebLogic Server. The plug-in automatically implements “keep-alive” connections between the plug-in and WebLogic Server. If a connection is inactive for more than 30 seconds or a user-defined amount of time, the connection is closed. You can disable this feature if desired. For more information, see KeepAliveEnabled	
in Table 7-1.	
The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You can proxy requests based on the URL of the request (or a portion of the URL). This is called proxying by path. You can also proxy request based on the MIME type of the requested file. Or you can use a combination of both methods. If a request matches both criteria, the request is proxied by path. You can also specify additional parameters for each of these types of requests that define additional behavior of the plug-in. For more information, see Installing and Configuring the Sun Java System Web Server Plug-In.	
Note: The request processing behavior has changed in Sun Java System Web Server 7.0 Update 2 release. Seehttp://wikis.sun.com/display/WebServerdocs/Release+Notes , issue 6747123.	
To install and configure the Sun Java System Web Server Plug-In:	
The WebLogic Sun Java System Web Server plug-in module is distributed as a shared object (.so) on UNIX platforms and as a dynamic-link library (.dll) on Windows. These files are located in the WL_HOME/server/plugin/OperatingSystem/Architecture	
directory of your WebLogic Server distribution. WL_HOME represents the top level installation directory for your WebLogic platform. The server directory contains installation files for WebLogic Server. OperatingSystem refers to the operating system, such as UNIX or Windows.	
Choose the appropriate library file for your environment from based on http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
and copy that file into the file system where Sun Java System Web Server is located.	
The Sun Java System Web Server 7.0 can use the plug-in named xxx_61	
. For example, libproxy128_61.so and libproxy_61.so.	
obj.conf	
file as described in the following steps. The obj.conf	
file defines which requests are proxied to WebLogic Server and other configuration information. obj.conf	
. The obj.conf file for your instance is in the following location:	
Where NETSCAPE_HOME	
is the root directory of the installation, and INSTANCE_NAME	
is the particular “instance” or server configuration that you are using. For example, on a UNIX machine called myunixmachine, the obj.conf	
file would be found here:	
To use iPlanet 4.x or earlier, add the following lines to the beginning of the obj.conf file.	
Where SHARED_LIBRARY	
is the shared object or dll (for example libproxy.so) that you installed in step 1 under Installing and Configuring the Sun Java System Web Server Plug-In. The function load-modules	
tags the shared library for loading when Sun Java System Web Server starts up. The values wl_proxy	
and wl_init	
identify the functions that the Sun Java System Web Server Plug-In executes.	
To use iPlanet 6.0, add the following lines to the beginning of the magnus.conf	
file. These lines instruct Sun Java System Web Server to load the native library (the .so or .dll file) as a module:	
Note: Spacing is important. There must be a space between the " and \, or there must be a leading space beforeshlib .	
Where SHARED_LIBRARY	
is the shared object or dll (for example libproxy.so) that you installed in step 1 under Installing and Configuring the Sun Java System Web Server Plug-In. The function load-modules	
tags the shared library for loading when Sun Java System Web Server starts up. The values wl_proxy	
and wl_init	
identify the functions that the Sun Java System Web Server Plug-In executes.	
<Object>	
tag for each URL that you want to proxy and define the PathTrim	
parameter. (You can proxy requests by MIME type, in addition to or instead of proxying requests by path. See step 6 Proxying by path supersedes proxying by MIME type.) The following is an example of an <Object>	
tag that proxies a request containing the string */weblogic/*	
. To create an <Object>	
tag to proxy requests by URL:	
<Object>	
tag using the name attribute. The name attribute is informational only and is not used by the Sun Java System Web Server Plug-In. For example: <Object>	
tag, using the ppath	
attribute. For example: The value of the ppath	
attribute can be any string that identifies requests intended for Weblogic Server. When you use a ppath	
, every request that contains that path is redirected. For example, a ppath of */weblogic/*	
redirects every request that begins http://enterprise.com/weblogic	
to the Sun Java System Web Server Plug-In, which sends the request to the specified Weblogic host or cluster.	
<Object>	
and </Object>	
tags. In the Service directive you can specify any valid parameters as name=value pairs. Separate multiple name=value pairs with one and only one space. For example: For a complete list of parameters, see General Parameters for Web Server Plug-Ins. You must specify the following parameters:	
For a non-clustered WebLogic Server: the WebLogicHost and WebLogicPort parameters.	
For a cluster of WebLogic Server instances: the WebLogicCluster parameter.	
Always begin the Service directive with Service fn=wl_proxy	
, followed by valid name=value pairs of parameters.	
Here is an example of the object definitions for two separate ppaths that identify requests to be sent to different instances of WebLogic Server:	
Note: Parameters that are not required, such as PathTrim, can be used to further configure the way the ppath is passed through the Sun Java System Web Server Plug-In. For a complete list of plug-in parameters, see General Parameters for Web Server Plug-Ins.	
obj.conf	
file to the MIME.types file. You can add MIME types by using the Netscape server console or by editing the MIME.types file directly. To directly edit the MIME.types	
file, open the file for edit and type the following line:	
Note: For Netscape Enterprise Server 4.0 (iPlanet), instead of adding the MIME type for JSPs, change the existing MIME type from magnus-internal/jsp to text/jsp.	
To use the Netscape console, select Manage PreferencesÆ Mime Types, and make the additions or edits.	
<Object name=default ...>	
) For example, to proxy all JSPs to a WebLogic Server, the following Service directive should be added after the last line that begins with:	
and before the line that begins with:	
This Service directive proxies all files with the .jsp extension to the designated WebLogic Server, where they are served with a URL like this:	
The value of the PathPrepend	
parameter should correspond to the context root of a Web Application that is deployed on the WebLogic Server or cluster to which requests are proxied.	
After adding entries for the Sun Java System Web Server Plug-In, the default Object definition will be similar to the following example:	
For proxy-by-MIME to work properly you need to disable JAVA from the Sun One Web Server otherwise SUN One will try to serve all requests that end in *.jsp and will return a 404 error as it will fail to locate the resource under $doc_root.	
To disable JAVA from the Sun One Web Server, comment out the following in the obj.conf	
file under the name="default"#NameTrans fn="ntrans-j2ee" name="j2ee"	
and restart the webserver.	
obj.conf	
file, substituting the WebLogic Server host name and the WebLogic Server port number, or the name of a WebLogic Cluster that you wish to handle HTTP tunneling requests. wlclient.jar	
, add the following object definition to the obj.conf	
file, substituting the WebLogic Server host name and the WebLogic Server port number, or the name of a WebLogic Cluster that you wish to handle HTTP tunneling requests. /weblogic/	
, which should bring up the default WebLogic Server HTML page, welcome file, or default servlet, as defined for the default Web Application as shown in this example: For information on how to create a default Web Application, see Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.	
To use the Sun Java System Web Server Plug-In, you must make several modifications to the obj.conf	
file. These modifications specify how requests are proxied to WebLogic Server. You can proxy requests by URL or by MIME type. The procedure for each is described in Installing and Configuring the Sun Java System Web Server Plug-In.	
The Netscape obj.conf	
file is very strict about the placement of text. To avoid problems, note the following regarding the obj.conf	
file:	
Below is an example of lines that should be added to the obj.conf	
file if you are not using a cluster. You can use this example as a template that you can modify to suit your environment and server. Lines beginning with # are comments.	
Note: Make sure that you do not include any extraneous white space in the obj.conf file. Copying and pasting from the samples below sometimes adds extra white space, which can create problems when reading the file.	
You can read the full documentation on Enterprise Server configuration files in the Sun Java System Web Server documentation.	
Below is an example of lines that should be added to obj.conf	
if you are using a WebLogic Server cluster. You can use this example as a template that you can modify to suit your environment and server. Lines beginning with # are comments.	
Note: Make sure that you do not include any extraneous white space in theobj.conf file. Copying and pasting from the samples below sometimes adds extra white space, which can create problems when reading the file.	
For more information, see the full documentation on Enterprise Server configuration files from Netscape.	
Use perimeter authentication to secure your WebLogic Server applications that are accessed via the Sun Java System Web Server Plug-In.	
A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access your WebLogic Server application, including users who access your WebLogic Server application through the Sun Java System Web Server Plug-In. Create an Identity Assertion Provider that will safely secure your Plug-In as follows:	
WL_HOME/server/lib	
. wlsdemoca	
file, for example, use the command: Change the alias name to obtain a different trusted CA file from the keystore.	
To look at all of the keystore's trusted CA files, use: keytool -list -keystore DemoTrust.jks	
Press enter if prompted for password.	
java utils.der2pem trustedcafile.der	
See "Identity Assertion Providers" in Developing Security Providers for Oracle WebLogic Server for more information about Identity Assertion Providers.	
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the Sun Java System Web Server Plug-In, and WebLogic Server. The SSL protocol provides confidentiality and integrity to the data passed between the Sun Java System Web Server Plug-In and WebLogic Server.	
The Sun Java System Web Server Plug-In does not use the transport protocol (http or https) specified in the HTTP request (usually by the browser) to determine whether or not the SSL protocol will be used to protect the connection between the Sun Java System Web Server Plug-In and WebLogic Server.	
To use the SSL protocol between Sun Java System Web Server Plug-In and WebLogic Server:	
obj.conf	
file to the listen port configured in step 2. obj.conf	
file file to ON. obj.conf	
file that define information about the SSL connection. For a complete list of parameters, see “SSL Parameters for Web Server Plug-Ins” on page 7-14. When the Sun Java System Web Server Plug-In attempts to connect to WebLogic Server, the plug-in uses several configuration parameters to determine how long to wait for connections to the WebLogic Server host, and, after a connection is established, how long the plug-in waits for a response. If the plug-in cannot connect or does not receive a response, the plug-in attempts to connect and send the request to other WebLogic Servers in the cluster. If the connection fails or there is no response from any WebLogic Server in the cluster, an error message is sent.	
Figure 5-1 demonstrates how the plug-in handles failover. The Maximum number of retries allowed in the red loop is equal to ConnectTimeoutSecs ÷ ConnectRetrySecs	
.	
Failure of the WebLogic Server host to respond to a connection request could indicate possible problems with the host machine, networking problems, or other server failures.	
Failure of all WebLogic Server instances to respond, could indicate that WebLogic Server is not running or is unavailable, a hung server, a database problem, or other application failure.	
If you are running a single WebLogic Server instance, the plug-in attempts to connect to that server which is defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is returned. The plug-in continues trying to connect to WebLogic Server until ConnectTimeoutSecs	
is exceeded.	
The WebLogicCluster	
parameter is required to proxy to a list of back-end servers that are clustered, or to perform load balancing among non-clustered managed server instances.	
In the case of proxying to clustered managed servers, when you use the WebLogicCluster	
parameter in your httpd.conf	
or weblogic.conf	
file to specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load balancing among the members of the cluster. After the first request is routed to one of these servers, a dynamic server list is returned containing an updated list of servers in the cluster. The updated list adds any new servers in the cluster and deletes any that are no longer part of the cluster or that have failed to respond to requests. This list is updated automatically with the HTTP response when a change in the cluster occurs.	
When a request contains session information stored in a cookie or in the POST data, or encoded in a URL, the session ID contains a reference to the specific server instance in which the session was originally established (called the primary server). A request containing a cookie attempts to connect to the primary server. If that attempt fails, the plug-in attempts to make a connection to the next available server in the list in a round-robin fashion. That server retrieves the session from the original secondary server and makes itself the new primary server for that same session. For more information, see Figure 5-1.	
Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot route the request to the correct primary or secondary server, resulting in possible loss of session data.	
In most configurations, the Sun Java System Web Server Plug-In sends a request to the primary instance of a cluster. When that instance is unavailable, the request fails over to the secondary instance. However, in some configurations that use combinations of firewalls and load-directors, any one of the servers (firewall or load-directors) can accept the request and return a successful connection while the primary instance of WebLogic Server is unavailable. After attempting to direct the request to the primary instance of WebLogic Server (which is unavailable), the request is returned to the plug-in as “connection reset.”	
Requests running through combinations of firewalls (with or without load-directors) are handled by WebLogic Server. In other words, responses of connection reset fail over to a secondary instance of WebLogic Server. Because responses of connection reset fail over in these configurations, servlets must be idempotent. Otherwise duplicate processing of transactions may result.	
The following sections discuss how to proxy HTTP requests to another Web server:	
When you use WebLogic Server as your primary Web server, you may also want to configure WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as Apache or Microsoft Internet Information Server. Any request that gets proxied is redirected to a specific URL.You can even proxy to another Web server on a different machine.You proxy requests based on the URL of the incoming request.	
The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects it to the proxy URL, and sends the response to the client's browser back through WebLogic Server. To use the HttpProxyServlet, you must configure it in a Web Application and deploy that Web Application on the WebLogic Server that is redirecting requests.	
To set up a proxy to a secondary HTTP server:	
weblogic.servlet.proxy.HttpProxyServlet	
. For more information, see Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server. ProxyServlet	
with a <param-name>	
of redirectURL	
and a <param-value>	
containing the URL of the server to which proxied requests should be directed. <KeyStore>	
initialization parameters to use two-way SSL with your own identity certificate and key. If no <KeyStore>	
is specified in the deployment descriptor, the proxy will assume one-way SSL. <KeyStore>	
– The key store location in your Web application. <KeyStoreType>	
– The key store type. If it is not defined, the default type will be used instead. <PrivateKeyAlias>	
– The private key alias. <KeyStorePasswordProperties>	
– A property file in your Web application that defines encrypted passwords to access the key store and private key alias. The file contents looks like this: You must use the weblogic.security.Encrypt command-line utility to encrypt the password. For more information on the Encrypt utility, as well as the CertGen, and der2pem utilities, see "Using the Oracle WebLogic Server Java Utilities" in the Command Reference for Oracle WebLogic Server.	
<servlet-mapping>	
element in the web.xml Web Application deployment descriptor. If you set the <url-pattern>	
to “/”, then any request that cannot be resolved by WebLogic Server is proxied to the remote server. However, you must also specifically map the following extensions: *.jsp, *.html, and *.html if you want to proxy files ending with those extensions.	
Example 6-1 is an sample of a Web Applications deployment descriptor for using the Proxy Servlet.	
Example 6-1 Sample web.xml for Use with ProxyServlet	
The following sections describe the parameters that you use to configure the Apache and Microsoft IIS Web server plug-ins:	
You enter the parameters for each Web server plug-in in special configuration files. Each Web server has a different name for this configuration file and different rules for formatting the file. For details, see the following sections on each plug-in:	
The general parameters for Web server plug-ins are shown in Table 7-1. Parameters are case sensitive.	
Table 7-1 General Parameters for Web Server Plug-Ins	
Parameter Name	Default
---	---
none	WebLogic Server host (or virtual host name as defined in WebLogic Server) to which HTTP requests should be forwarded. If you are using a WebLogic cluster, use the
none	Port at which the WebLogic Server host is listening for connection requests from the plug-in (or from other servers). (If you are using SSL between the plug-in and WebLogic Server, set this parameter to the SSL listen port (see Configuring SSL) and set the If you are using a WebLogic Cluster, use the
(Required when proxying to a cluster of WebLogic Servers, or to multiple non-clustered servers.)	none
If you are using SSL between the plug-in and WebLogic Server, set the port number to the SSL listen port (see Configuring SSL) and set the The plug-in does a simple round-robin between all available servers. The server list specified in this property is a starting point for the dynamic server list that the server and plug-in maintain. WebLogic Server and the plug-in work together to update the server list automatically with new, failed, and recovered cluster members. You can disable the use of the dynamic cluster list by setting the The plug-in directs HTTP requests containing a cookie, URL-encoded session, or a session stored in the POST data to the server in the cluster that originally created the cookie.	ISAPI, Apache and NSAPI plug-in,and HttpClusterServlet
null	As per the RFC specification, generic syntax for URL is: [PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...
http://myWeb.server.com/weblogic/foo is passed to the plug-in for parsing and if http://myWeb.server.com:7001/foo Note that if you are newly converting an existing third-party server to proxy requests to WebLogic Server using the plug-in, you will need to change application paths to	ISAPI, Apache and NSAPI plug-in, HttpClusterServlet, and HttpProxyServlet
null	As per the RFC specification, generic syntax for URL is: [PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...
Note that if you need to append File Name, use	ISAPI, Apache and NSAPI plug-in, HttpClusterServlet, and HttpProxyServlet
10	Maximum time in seconds that the plug-in should attempt to connect to the WebLogic Server host. Make the value greater than You can customize the error response by using the ErrorPage parameter.
2	Interval in seconds that the plug-in should sleep between attempts to connect to the WebLogic Server host (or all of the servers in a cluster). Make this number less than the To specify no retries, set You can customize the error response by using the
OFF	Sets the type of logging performed for debugging operations. The debugging information is written to the Override this location and filename by setting the WLLogFile parameter to a different directory and file. (See the Ensure that the tmp or TEMP directory has write permission assigned to the user who is logged in to the server. Set any of the following logging options (HFC,HTW,HFW, and HTC options may be set in combination by entering them separated by commas, for example “HFC,HTW”):
NSAPI, ISAPI, and Apache plug-in, HttpClusterServlet, and HttpProxyServlet. For HttpClusterServlet and HttpProxyServlet, the only possible values are ON and OFF.	
See the	Specifies path and file name for the log file that is generated when the
0 (Lookup once, during startup)	Only applies to NSAPI and Apache. If defined in the proxy configuration, specifies number of seconds interval at which WebLogic Server refreshes DNS name to IP mapping for a server. This can be used in the event that a WebLogic Server instance is migrated to a different IP address, but the DNS name for that server's IP remains the same. In this case, at the specified refresh interval the DNS<->IP mapping will be updated.
WLTempDir	See the Debug parameter
DebugConfigInfo	OFF
StatPath (Not available for the Microsoft Internet Information Server Plug-In)	false
ErrorPage	none
WLSocketTimeoutSecs	2 (must be greater than 0)
WLIOTimeoutSecs (new name for HungServerRecoverSecs)	300
Idempotent	ON
WLCookieName CookieName parameter is deprecated	JSESSIONID
DefaultFileName	none
MaxPostSize	-1
MatchExpression (Apache HTTP Server only)	none
FileCaching	ON
FilterPriorityLevel	2
WLExcludePathOrMimeType	none
WlForwardPath	null
KeepAliveSecs	20
KeepAliveEnabled	true (Microsoft IIS plug-in) ON (Apache plug-in)
QueryFromRequest (Apache HTTP Server only)	OFF
When set to	Apache plug-in
MaxSkipTime	10
ISAPI, Apache and NSAPI plug-in, and HttpClusterServlet	
DynamicServerList	ON
NSAPI, ISAPI, and Apache plug-in, and HttpClusterServlet	
WLProxySSL	OFF
When WLProxySSL is set to	NSAPI, ISAPI, and Apache plug-in, HttpClusterServlet, and HttpProxyServlet
WLProxyPassThrough	OFF
WLLocalIP	none
WLSendHdrSeparately	ON
When the FileCaching parameter is set to ON, and the size of the POST data in a request is greater than 2048 bytes, the POST data is first read into a temporary file on disk and then forwarded to the WebLogic Server in chunks of 8192 bytes. This preserves the POST data during failover.	
The temporary POST file is located under /tmp/_wl_proxy	
for UNIX. For Windows it is located as follows (if WLTempDir	
is not specified):	
TMP	
TEMP	
C:\Temp	
/tmp/_wl_proxy	
is a fixed directory and is owned by the HTTP Server user. When there are multiple HTTP Servers installed by different users, some HTTP Servers might not be able to write to this directory. This condition results in an error similar to the following:	
To correct this condition, use the WLTempDir	
parameter to specify a different location for the _wl_proxy	
directory for POST data files.	
Note: SCG Certificates are not supported for use with WebLogic Server Proxy Plug-Ins. Non-SCG certificates work appropriately and allow SSL communication between WebLogic Server and the plug-in.KeyStore-related initialization parameters are not supported for use with WebLogic Server Proxy Plug-Ins	
The SSL parameters for Web Server plug-ins are shown in Table 7-2. Parameters are case sensitive.	
Table 7-2 SSL Parameters for Web Server Plug-Ins	
Parameter	Default
---	---
EnforceBasicConstraint	Strong
NSAPI, ISAPI, and Apache plug-in	
SecureProxy	OFF
TrustedCAFile	none
RequireSSLHostMatch	true
SSLHostMatchOID	22
ISAPI, NSAPI, and Apache plug-ins	
KeyStore | none | For generic proxy servlets, the key store location in a Web application when using two-way SSL to create a user-defined identity certificate and key. | Applies only to the HttpClusterServlet and to the HttpProxyServlet. |
KeyStoreType | none | The key store type when using two-way SSL with a generic proxy servlet. If it is not defined, the default type will be used instead. | Applies only to the HttpClusterServlet and to the HttpProxyServlet. |
PrivateKeyAlias | none | The private key alias when using two-way SSL with a generic proxy servlet. | Applies only to the HttpClusterServlet and to the HttpProxyServlet. |
KeyStorePasswordProperties | none | A property file in a Web application that defines encrypted passwords to access the key store and private key alias when using two-way SSL with a generic proxy servlet. The file contents looks like this: KeyStorePassword={3DES}i4+50LCKenQO8BBvlsXTrg\=\= PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwH3p7yA\=\= You must use the | Applies only to the HttpClusterServlet and to the HttpProxyServlet. |
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.