
Endeca Content Acquisition
System
API Guide

Version 3.0.2 • March 2012

Contents

Preface...7
About this guide..7
Who should use this guide..7
Contacting Oracle Endeca Customer Support..8
Conventions used in this guide...8

Chapter 1: Introduction to the CAS APIs..9
The CAS APIs...9
Generating client stubs for the CAS Web Services...10

Chapter 2: CAS Server API..13
CAS Server core operations...13
Connecting to the CAS Server..13
Creating crawls...14

About the source properties for crawls..15
Adding file and folder filters...28
About the output properties for crawls...34

Listing crawls..38
Starting a crawl...39
Stopping a crawl...40
Deleting crawls..41
Listing modules available to a crawl..41
Retrieving crawl configurations...42
Updating crawl configurations...43
Getting crawl metrics..44
Getting the status of a crawl...45
Retrieving CAS Server information...46

Chapter 3: Component Instance Manager API.......................................49
Component Instance Manager client utility classes..49
Component Instance Manager core operations..49

Creating a component...50
Deleting a component..50
Listing component instances...51
Listing component types..52

Chapter 4: Record Store API..53
Record Store client utility classes...53
Record Store core operations...54

Getting and setting a Record Store instance configuration...55
Running a baseline read of the last-committed generation...56
Running a delta read...57
Maintaining client read state in the Record Store..58
Performing an incremental write..61
Performing a baseline write...61

SampleWriter client example..63
SampleReader client example..65

iii

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

v

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Guided Search is the most effective way for your customers to dynamically explore
your storefront and find relevant and desired items quickly. An industry-leading faceted search and
Guided Navigation solution, Oracle Endeca Guided Search enables businesses to help guide and
influence customers in each step of their search experience. At the core of Oracle Endeca Guided
Search is the MDEX Engine,™ a hybrid search-analytical database specifically designed for
high-performance exploration and discovery. The Endeca Content Acquisition System provides a set
of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. Endeca Assembler dynamically assembles content from any resource
and seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide provides usage information and examples of how to implement the CAS Server API, the
Component Instance Manager API, and the Record Store API.

The guide assumes that you are familiar with the concepts of the Endeca Content Acquisition System,
as well as how file system data source, CMS data sources, and custom data sources are crawled.

Who should use this guide
This guide is intended for application developers who are building applications using the Content
Acquisition System APIs.

Contacting Oracle Endeca Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding
Oracle Endeca software, implementation questions, product and solution help, as well as overall news
and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support
at https://support.oracle.com.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Endeca ConfidentialEndeca Content Acquisition System API Guide

| Preface8

https://support.oracle.com

Chapter 1

Introduction to the CAS APIs

This section introduces each of the APIs in the Content Acquisition System.

The CAS APIs
There are four APIs in the Content Acquisition System.

These include the following:

• CAS Server API — A WSDL based API that modifies and controls crawling operations against a
variety of file system, CMS, and custom data sources.

• Component Instance Manager API — A WSDL based API that creates, lists, and deletes Record
Store instances.

• Record Store API — A WSDL based API that modifies and controls a variety of reading, writing,
and utility operations against Record Store instances.

• CAS Extension API — A Java based API to build extensions to the Content Acquistion System
such as data sources and manipulators. This API is for plug-in developers and it is documented
in its own guide. For details, see the CAS Extension API Guide.

The rest of this guide documents the WSDL-based APIs. Each WSDL-based API in the Content
Acquisition System is language-agnostic.That is, each API can be used with any programming language
that has Web services support, and developers can write crawl functions in their preferred language
(Java, .NET, etc.) as a Web service.

Name and location of the WSDL files

You can find the following WSDL files under <install path>\CAS\version\doc\wsdl\:

• CAS Server API — CasCrawlerService.wsdl.
• Component Instance Manager API — ComponentInstanceManager.wsdl.
• Record Store API — RecordStore.wsdl.

Java convenience classes

For the sake of convenience, Java versions of each API are included under <install
path>\CAS\version\lib :

• CAS Server API — cas-api\itl-api-3.0.2.jar.
• Component Instance Manager API —
component-manager-api\component-manager-api-3.0.2.jar.

• Record Store API — recordstore-api\recordstore-api-3.0.2.jar.

Each API also includes utility (helper) classes in its JAR file.

If desired, you can use the Java version of the API rather than generate client stubs from the WSDL
files. The Java versions were generated using Apache CXF. For other languages (such as .NET), you
must generate the client stubs in your programming language.

Java examples in the guide

Examples in this guide use the Java versions of the APIs mentioned above. This convention of using
the Java APIs has an important implication in the code examples:

Most types of identifiers are set in the constuctor rather than in a setter method. For example:

 ModuleId moduleId = new ModuleId("File System");

If you are generating client stubs, most types of identifiers are set using a setter method. For example:

 ModuleId moduleId = new ModuleId();
 moduleId.setId();

The specific setter usage depends on the application you use to generate client stubs. For example,
setter usage varies in stubs generate with Apache Axis and Apache CXF.

Javadoc for the CAS APIs

The Javadoc provides online documentation for both the core and utility classes.You can find the
Javadoc under \CAS\version\doc\:

• CAS Server API Reference — cas-server-javadoc
• Component Instance Manager API Reference — component-manager-javadoc
• Record Store API Reference — recordstore-javadoc

Generating client stubs for the CAS Web Services
To create a client application that consumes any of the CAS Web services, you need the particular
Web service's WSDL file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a
programmatic fashion.Typically, a client developer uses a tool that parses the WSDL file and generates
client-side stubs (also called proxy classes) and value types. These generated files include all the
code necessary to serialize and deserialize SOAP messages and make the SOAP layer transparent
to the client developer. The CAS WSDL files can be used with any language that has Web services
support.

Among the tools that generate client stub code from the WSDLs are the following:

• Apache CXF 2.2 or later
• Java Web Services Developer Pack (Java WSDP), version 1.4 or later
• Web Services Description Language Tool (wsdl.exe), available as part of the Microsoft .NET

Framework SDK

Specify the appropriate choice below as the package name when you generate stubs for a particular
Web service:

Endeca ConfidentialEndeca Content Acquisition System API Guide

Introduction to the CAS APIs | Generating client stubs for the CAS Web Services10

• com.endeca.itl.cas.api

• com.endeca.itl.component.manager

• com.endeca.itl.recordstore

For example, the CXF wsdl2java utility takes the WSDL file and generates fully annotated Java code
with one of the following commands:

• wsdl2java -p com.endeca.itl.cas.api -client CasCrawlerService.wsdl

• wsdl2java -p com.endeca.itl.component.manager -client ComponentInstance¬
Manager.wsdl

• wsdl2java -p com.endeca.itl.recordstore -client RecordStore.wsdl

For details on using a WSDL code-generation utility, refer to the utility's documentation.

Keep in mind that the exact syntax of a class member depends on the output of the WSDL tool that
you are using. Therefore, check the client stub classes that are generated by your WSDL tool for the
exact syntax of the class members.

Endeca Content Acquisition System API GuideEndeca Confidential

11Introduction to the CAS APIs | Generating client stubs for the CAS Web Services

Chapter 2

CAS Server API

This section describes the CAS Server API.

CAS Server core operations
This topic presents an overview of the CAS Server API core methods.

The following operations for file system and CMS crawls are supported by the API:

• createCrawl creates and stores a named crawl.
• startCrawl starts a crawl of a file system, CMS, or custom data source.
• listCrawls lists all the crawls that have been created.
• stopCrawl stops a crawl of a file system, CMS, or custom data source that is currently running.
• deleteCrawl deletes an existing file system or CMS crawl.
• getStatus returns the status of a specific crawl.
• getMetrics retrieves crawl statistics for a specific crawl.
• getCrawlConfig gets the configuration settings of a crawl.
• listModules returns a list of the available licensed module IDs for data sources or manipulators.

Module IDs may include any custom data source extensions or custom manipulator extensions
that you installed using the CAS Extension API.

• updateCrawl updates the configuration settings for an existing crawl.
• getServerInfo returns a list of the CAS Server properties.

These operations are described in subsequent topics.

Note: The syntax descriptions for these operations use Java conventions. The examples in this
guide use client stubs generated with Apache CXF 2.2. However, the exact syntax of a class
member depends on the output of the WSDL tool that you are using.

Connecting to the CAS Server
Call the CasCrawlerLocator.create() method to connect to the CAS Server.

The CasCrawlerLocator class allows you to establish a connection with the CAS Server. In particular,
the CasCrawlerLocator.getService() method is the call that makes the connection.

To create a connection to the CAS Server:

1. Create a CasCrawlerLocator by calling create() and specifying the host and port of the server
running the CAS Server. For example:

CasCrawlerLocator locator =
 CasCrawlerLocator.create("localhost", 8500);

2. Create a CasCrawler object and call getService() to establish a connection to the server and
the CAS Server service. For example:

CasCrawler crawler = locator.getService();

As a result of this procedure, you have a connection to the CAS Server that can perform crawling
operations.

Creating crawls
Use the CasCrawler.createCrawl() method to create a new crawl of any type (file system, CMS
crawl, record store merger, or custom data source).

The syntax of the method is:

CasCrawler.createCrawl(CrawlConfig crawlConfig)

The crawlConfig parameter is a CrawlConfig object that has the configuration settings of the
crawl.

To create a new crawl:

1. Make sure that you have created a connection to the CAS Server.

2. Instantiate a CrawlId object and set the Id for the crawl in the constructor.

You can create an Id with alphanumeric characters, underscores, dashes, and periods. All other
characters are invalid for an Id.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Instantiate a CrawlConfig object and pass in the CrawlId object .

For example:

// Create a crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

4. Instantiate a SourceConfig object
For example:

// Create source configuration.
SourceConfig sourceConfig = new SourceConfig();

5. Set the source properties and seeds in the SourceConfig object. Detailed information on source
properties is provided in other topics.

6. Set the SourceConfig on the CrawlConfig.
For example:

// Set source configuration.
crawlConfig.setSourceConfig(sourceConfig);

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls14

7. Optionally, you can set configuration options for such features as document conversion, logging,
and filters for files and directories. Detailed information on these options is provided in other topics.

8. Create the crawl by calling CasCrawler.createCrawl() and passing the CrawlConfig (the
configuration) objects:

For example:

crawler.createCrawl(crawlConfig);

If the CasCrawler.createCrawl() method fails, it throws an exception:

• CrawlAlreadyExistsException occurs if a crawl of the same name already exists.
• InvalidCrawlConfigException occurs if the configuration is invalid.You can call
getCrawlValidationFailures() to return the list of crawl validation errors.

To catch these exceptions, use a try block when you issue the method.

If the new crawl is successfully created, it can be started with the CasCrawler.startCrawl()
method.

Related Links
File system source properties and example on page 16

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File
System", a ModuleProperty to specify the seeds, and additional ModuleProperty
objects for any optional source properties.

CMS source properties and example on page 18
The SourceConfig for a CMS crawl contains a mandatory ModuleId and additional
ModuleProperty objects that define the CMS to crawl.

Source properties for a custom data source on page 22
The SourceConfig for a custom data source crawl contains a mandatory ModuleId and
ModuleProperty objects that define the custom data source to crawl and any other optional
properties that are necessary for a custom data source.

Record Store Merger source properties and example on page 20
The SourceConfig object for a record store merger crawl requires a ModuleId that specifies
com.endeca.cas.source.RecordStoreMerger, one or more ModuleProperty to
specify the record store instances to merge, and additional ModuleProperty objects for
optional source properties.

About the source properties for crawls
The SourceConfig class allows a client to specify information about the data source that is being
crawled.The SourceConfig class uses two methods to set data source properties:setModuleId()
and setModuleProperties().

Module ID

The setModuleId() method sets the module ID of the data source for this crawl. A module ID is a
ModuleId object.

The string File System is the module ID for a file system crawl (whose content source is a file
system).You must specify this module ID when you create a file system crawl.

Each CMS connector has its own unique module ID. Use the CasCrawler.listModules() method
to find out the module IDs that are available to your CAS Server.

Endeca Content Acquisition System API GuideEndeca Confidential

15CAS Server API | Creating crawls

The string com.endeca.cas.source.RecordStoreMerger is the module ID for a record store
merger crawl (whose content source is a one or more record store instances).You must specify this
module ID when you create a record store merger crawl.

A plug-in developer specifies the ModuleId for a custom data source. A CAS application developer
can determine the ModuleId for a custom data source by running the listModules and task in the
CAS Server Command-line Utility.

Module Properties

Each ModuleProperty is a key/value pair or a key/multi-value pair that provides configuration
information about this data source.You specify a ModuleProperty by calling setKey() to specify
a string representing the key and by calling setValues() to set one or more corresponding values.

You then set eachModuleProperty on the SourceConfig object by calling addModuleProperty().

File system source properties and example

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File System",
a ModuleProperty to specify the seeds, and additional ModuleProperty objects for any optional
source properties.

Table 1: Module Properties for file system data sources

File crawls can use the module properties listed in the following table.

Key ValueFile System Module Property Key

The seeds property is a key/multi-value pair. The key is
seeds and the multi-value pair is one or more strings to a

seeds

file or folder. File paths used as seeds must be absolute
paths. Required.

The gatherNativeFileProperties property (if set to
true) enables the crawl to gather operating system-level

gatherNativeFileProperties

properties, such as Windows ACL properties (e.g., Ende¬
ca.FileSystem.ACL.AllowRead) or UNIX owner, group,
and readable properties (e.g., Endeca.FileSys¬
tem.IsOwnerReadable). The default is false for this
property. Optional.

The expandArchives property (if set to true) enables
the crawl to expand archived entries. Enabling this property

expandArchives

creates an Endeca record for each archived entry and
populates its properties. Enabling the document conversion
option extracts text. Note that the crawl does not gather
native file properties for archived entries even if that option
is enabled. The default is false for this property. Optional.

Here is an example of the source properties for a file system crawl.

// Connect to the CAS Server.
CasCrawlerLocator locator = CasCrawlerLocator.create("localhost", 8500);
CasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls16

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a file system module ID.
ModuleId moduleId = new ModuleId("File System");

// Set the module ID in the source config.
sourceConfig.setModuleId(moduleId);

// Create a module property object for the seeds.
ModuleProperty seeds = new ModuleProperty();
// Set the key for seeds.
seeds.setKey("seeds");
// Set multiple values for seeds.
seeds.setValues("C:\\tmp\itldocset","C:\\tmp\iapdocset");

// Set the seeds module property on the source config.
sourceConfig.addModuleProperty(seeds);

// Create a module property for gathering native file props.
ModuleProperty nativeFileProps = new ModuleProperty();
// Set the key for gathering native file properties.
nativeFileProps.setKey("gatherNativeFileProperties");
// Set the value to enable gathering native file properties.
nativeFileProps.setValues("true");

// Set the nativeFileProps module property on the source config.
sourceConfig.addModuleProperty(nativeFileProps);

// Create a module property object for expanding archives.
ModuleProperty extractArchives = new ModuleProperty();
// Set the key for extracting archive files.
extractArchives.setKey("expandArchives");
// Set the value to enable expanding archives.
extractArchives.setValues("true");

// Set the nativeFileProps module property on the source config.
sourceConfig.addModuleProperty(extractArchives);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Note that if you retrieve a SourceConfig object from a configured crawl, you can call the
getModuleId() method to get the module ID and the getModuleProperties() method to retrieve
the list of module properties.

Related Links
CMS source properties and example on page 18

The SourceConfig for a CMS crawl contains a mandatory ModuleId and additional
ModuleProperty objects that define the CMS to crawl.

Source properties for a custom data source on page 22

Endeca Content Acquisition System API GuideEndeca Confidential

17CAS Server API | Creating crawls

The SourceConfig for a custom data source crawl contains a mandatory ModuleId and
ModuleProperty objects that define the custom data source to crawl and any other optional
properties that are necessary for a custom data source.

Record Store Merger source properties and example on page 20
The SourceConfig object for a record store merger crawl requires a ModuleId that specifies
com.endeca.cas.source.RecordStoreMerger, one or more ModuleProperty to
specify the record store instances to merge, and additional ModuleProperty objects for
optional source properties.

Creating crawls on page 14
Use the CasCrawler.createCrawl() method to create a new crawl of any type (file
system, CMS crawl, record store merger, or custom data source).

CMS source properties and example

The SourceConfig for a CMS crawl contains a mandatory ModuleId and additional
ModuleProperty objects that define the CMS to crawl.

The source configuration (SourceConfig object) for a CMS crawl requires the module ID (which is
a string that identifies the CMS connector). Use the CasCrawler.listModules() method to find
out which module IDs are available to your CAS Server.

Table 2: Module Properties for CMS data sources

CMS crawls can use the module properties listed in the following table. Other repository-specific
properties may be required by a given CMS connector. For details on these properties, refer to the
CMS Connector Guide for that connector.

Key ValueCMS Module Property Key

The username to access the repository. Required.username

The password for the username.password

The domain name. See the appropriate CMS Connector
Guide to determine if domain is required.

domain

The seeds property is a key/multi-value pair. The key is
seeds and the multi-value pair is one or more strings to a

seeds

file or folder. CMS crawls, depending on their type, may not
need seeds to be set (for details, see your CMS Connector
Guide). Optional.

The expandArchives property (if set to true) enables
the crawl to expand archived entries. Enabling this property

expandArchives

creates an Endeca record for each archived entry and
populates its properties. Enabling the document conversion
option extracts text. The default is false for this property.
Optional.

Here is an example of the source properties for a CMS crawl.

// Connect to the CAS Server.
CasCrawlerLocator locator = CasCrawlerLocator.create("localhost", 8500);
CasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls18

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a CMS module ID for a SampleLink repository.
ModuleId moduleId = new ModuleId("SampleLink");

// Set the module ID in the source configuration.
sourceConfig.setModuleId(moduleId);

// Create a list for the module property objects.
List<ModuleProperty> cmsPropsList = new ArrayList<ModuleProperty>();

// Configure the source properties that are specific to this
// CMS. This example sets properties
// for a SampleLink repository (a non-existent repository used to
// illustrate the process).

// Create a module property for the DNS name.
ModuleProperty sampleLinkServer = new ModuleProperty();
// Set the key/value pair for the url source property.
sampleLinkServer.setKey("url");
sampleLinkServer.setValues("http://samplelink45.mysite.com");
// Set the module property in the module property list.
cmsPropsList.add(sampleLinkServer);

// Create a module property object to enable archive expansion.
ModuleProperty extractArchives = new ModuleProperty();
// Set the key for archive expansion.
extractArchives.setKey("expandArchives");
// Set the value to enable archive expansion.
extractArchives.setValues("true");
// Set the module property in the module property list.
cmsPropsList.add(extractArchives);

// Create a module property for username.
ModuleProperty uname = new ModuleProperty();
// Set the key for username.
uname.setKey("username");
// Set the value and prepend the domain for Windows systems.
uname.setValues("SALES\\username");
// Set the module property in the module property list.
cmsPropsList.add(uname);

// Create a module property for password.
ModuleProperty upass = new ModuleProperty();
// Set the password key.
upass.setKey("password");
// Set the password value.
upass.setValues("endeca");
// Set the module property in the module property list.
cmsPropsList.add(upass);

// Set the module property list in the source configuration.
sourceConfig.setModuleProperties(cmsPropsList);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

Endeca Content Acquisition System API GuideEndeca Confidential

19CAS Server API | Creating crawls

// Create the crawl.
crawler.createCrawl(crawlConfig);

Note that if you retrieve a SourceConfig object from a configured crawl, you can use its
getModuleId() method to get the module ID and the getModuleProperties() method to retrieve
the list of module properties..

Related Links
File system source properties and example on page 16

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File
System", a ModuleProperty to specify the seeds, and additional ModuleProperty
objects for any optional source properties.

Source properties for a custom data source on page 22
The SourceConfig for a custom data source crawl contains a mandatory ModuleId and
ModuleProperty objects that define the custom data source to crawl and any other optional
properties that are necessary for a custom data source.

Record Store Merger source properties and example on page 20
The SourceConfig object for a record store merger crawl requires a ModuleId that specifies
com.endeca.cas.source.RecordStoreMerger, one or more ModuleProperty to
specify the record store instances to merge, and additional ModuleProperty objects for
optional source properties.

Creating crawls on page 14
Use the CasCrawler.createCrawl() method to create a new crawl of any type (file
system, CMS crawl, record store merger, or custom data source).

Record Store Merger source properties and example

The SourceConfig object for a record store merger crawl requires a ModuleId that specifies
com.endeca.cas.source.RecordStoreMerger, one or more ModuleProperty to specify the
record store instances to merge, and additional ModuleProperty objects for optional source properties.

Table 3: Module Properties for Record Store Merger data sources

Record Store Merger crawls can use the module properties listed in the following table.

Key ValueModule Property Key for a Record
Store Merger

The dataRecordStores property is a key/multi-value pair.
The key is dataRecordStores and the multi-value pair is

dataRecordStores

one or more strings indicating the names of data Record
Store instances. Required.

The dimensionValueRecordStores property is a
key/multi-value pair. The key is

dimensionValueRecordStores

dimensionValueRecordStores and the multi-value pair
is one or more strings indicating the names of Dimension
Value Record Store instances. Optional.

The isPortSsl property specifies whether the port for CAS
Server hosting the record store is an SSL port or not. Specify

isPortSsl

true to connect to the record store instances using HTTPS,
or select false to connect using HTTP. Specify false if

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls20

Key ValueModule Property Key for a Record
Store Merger

you enabled HTTPS redirects in Oracle Endeca Workbench.
The default value is false. Optional.

Here is an example of the source properties for a Record Store Merger crawl.

// Connect to the CAS Server.
CasCrawlerLocator locator = CasCrawlerLocator.create("localhost", 8500);
CasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a record store merger module ID.
ModuleId moduleId = new ModuleId("com.endeca.cas.source.RecordStoreMerger");

// Set the module ID in the source config.
sourceConfig.setModuleId(moduleId);

// Create a module property object for the data record stores.
ModuleProperty dataRecStores = new ModuleProperty();
// Set the key for data record stores.
dataRecStores.setKey("dataRecordStores");
// Set multiple values for each data record store name.
dataRecStores.setValues("DataStore1","DataStore2","DataStore3");

// Set the data record store module property on the source config.
sourceConfig.addModuleProperty(dataRecStores);

// Create a module property object for the dimension value record stores.
ModuleProperty dvalRecStores = new ModuleProperty();
// Set the key for dimension value record stores.
dvalRecStores.setKey("dimensionValueRecordStores");
// Set multiple values for each taxonomy record store name.
dvalRecStores.setValues("DvalStoreCrawl1","DvalStoreCrawl2","DvalStore¬
Crawl3");

// Set the dimension value record store module property on the source config.
sourceConfig.addModuleProperty(dvalRecStores);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Note that if you retrieve a SourceConfig object from a configured crawl, you can call the
getModuleId() method to get the module ID and the getModuleProperties() method to retrieve
the list of module properties.

Related Links
File system source properties and example on page 16

Endeca Content Acquisition System API GuideEndeca Confidential

21CAS Server API | Creating crawls

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File
System", a ModuleProperty to specify the seeds, and additional ModuleProperty
objects for any optional source properties.

CMS source properties and example on page 18
The SourceConfig for a CMS crawl contains a mandatory ModuleId and additional
ModuleProperty objects that define the CMS to crawl.

Source properties for a custom data source on page 22
The SourceConfig for a custom data source crawl contains a mandatory ModuleId and
ModuleProperty objects that define the custom data source to crawl and any other optional
properties that are necessary for a custom data source.

Creating crawls on page 14
Use the CasCrawler.createCrawl() method to create a new crawl of any type (file
system, CMS crawl, record store merger, or custom data source).

Source properties for a custom data source

The SourceConfig for a custom data source crawl contains a mandatory ModuleId and
ModuleProperty objects that define the custom data source to crawl and any other optional properties
that are necessary for a custom data source.

Module ID for a custom data source

A plug-in developer specifies the ModuleId for a custom data source. A CAS application developer
can determine the ModuleId for a custom data source by running the listModules and task in the
CAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the listModules

task with the module type (-t) option and specify and argument of SOURCE. For example:

C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat listModules -t SOURCE
Sample Data Source
 *Id: Sample Data Source
 *Type: SOURCE
 *Description: Sample Data Source for Testing

...

3. In the list of data sources returned by listModules, locate the custom data source and Id value.

Module Properties for a custom data source

Custom data sources can use any number of module properties. A plug-in developer determines what
module properties are necessary for a custom data source and whether the module properties are
required or optional.

A CAS application developer can check the available module properties for a custom data source by
running the getModuleSpec task in the CAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getModuleSpec

task with the ID of the module whose source properties you want to see. For example:

C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat getModuleSpec -id "Sample Data Source"

 Sample Data Source

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls22

 =================
 [Module Information]
 *Id: Sample Data Source
 *Type: SOURCE
 *Description: Sample Data Source for Testing

 [Sample Data Source Configuration Properties]
 Group: Basic Settings

 User name:
 *Name: username
 *Type: {http://www.w3.org/2001/XMLSchema}string
 *Required: true
 *Max Length: 256
 *Description: The name of the user used to log on to the repository
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: true

 Password:
 *Name: password
 *Type: {http://www.w3.org/2001/XMLSchema}string
 *Required: true
 *Max Length: 256
 *Description: The password used to log on to the repository
 *Multiple Values: false
 *Multiple Lines: false
 *Password: true
 *Always Show: true

...

Here is an example of the source properties for a custom data source crawl.

// Connect to the CAS Server.
CasCrawlerLocator locator = CasCrawlerLocator.create("localhost", 8500);
CasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a module ID for a Sample Data Source repository.
// Set the module ID in the constructor.
ModuleId moduleId = new ModuleId("Sample Data Source");

// Create a list for the module property objects.
List<ModuleProperty> cmsPropsList = new ArrayList<ModuleProperty>();

// Create a module property for username.
// Set key/values of the module property as strings in the constructor.
ModuleProperty uname = new ModuleProperty("username", "SALES\\username");

// Set the module property in the module property list.
cmsPropsList.add(uname);

Endeca Content Acquisition System API GuideEndeca Confidential

23CAS Server API | Creating crawls

// Create a module property for password.
// Set key/values of the module property as strings in the constructor.
ModuleProperty upass = new ModuleProperty("password", "endeca");

// Set the module property in the module property list.
cmsPropsList.add(upass);

// Set the module property list in the source configuration.
sourceConfig.setModuleProperties(cmsPropsList);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Related Links
File system source properties and example on page 16

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File
System", a ModuleProperty to specify the seeds, and additional ModuleProperty
objects for any optional source properties.

CMS source properties and example on page 18
The SourceConfig for a CMS crawl contains a mandatory ModuleId and additional
ModuleProperty objects that define the CMS to crawl.

Record Store Merger source properties and example on page 20
The SourceConfig object for a record store merger crawl requires a ModuleId that specifies
com.endeca.cas.source.RecordStoreMerger, one or more ModuleProperty to
specify the record store instances to merge, and additional ModuleProperty objects for
optional source properties.

Creating crawls on page 14
Use the CasCrawler.createCrawl() method to create a new crawl of any type (file
system, CMS crawl, record store merger, or custom data source).

Source properties for a manipulator

The ManipulatorConfig for a manipulator contains a mandatory ModuleId and ModuleProperty
objects that define the manipulator to run and any other optional properties that are necessary for a
manipulator.

Module ID for a manipulator

A plug-in developer specifies the ModuleId for a manipulator. A CAS application developer can
determine the ModuleId for a manipulator by running the listModules and task in the CAS Server
Command-line Utility:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the listModules

task with the module type (-t) option and specify and argument of MANIPULATOR. For example:

C:\Endeca\CAS\3.0.2\bin>cas-cmd listModules -t MANIPULATOR
Substring Manipulator
 *Id: com.endeca.cas.extension.sample.manipulator.substring.SubstringMa¬
nipulator

 *Type: MANIPULATOR

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls24

 *Description: Generates a new property that is a substring of another
property
value

3. In the list of manipulators returned by listModules, locate the manipulator and its Id value. That
becomes the ModuleId.

Module Properties for a manipulator

Manipulators can use any number of module properties. A plug-in developer determines what module
properties are necessary for a manipulator and whether the module properties are required or optional.

A CAS application developer can check the available module properties for a manipulator by running
the getModuleSpec task in the CAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getModuleSpec

task with the Id of the module whose source properties you want to see. For example:

C:\Endeca\CAS\3.0.2\bin>cas-cmd getModuleSpec -id com.endeca.cas.exten¬
sion.sample.manipulator.substring.SubstringManipulator
Substring Manipulator
=====================
[Module Information]
 *Id: com.endeca.cas.extension.sample.manipulator.substring.SubstringMa¬
nipulator

 *Type: MANIPULATOR
 *Description: Generates a new property that is a substring of another
property
value

[Substring Manipulator Configuration Properties]
Group:

Source Property:
 *Name: sourceProperty
 *Type: {http://www.w3.org/2001/XMLSchema}string
 *Required: true
 *Default Value:
 *Max Length: 255
 *Description:
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Target Property:
 *Name: targetProperty
 *Type: {http://www.w3.org/2001/XMLSchema}string
 *Required: true
 *Default Value:
 *Max Length: 255
 *Description:
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Substring Length:
 *Name: length

Endeca Content Acquisition System API GuideEndeca Confidential

25CAS Server API | Creating crawls

 *Type: {http://www.w3.org/2001/XMLSchema}integer
 *Required: true
 *Default Value: 2147483647
 *Min Value: -2147483648
 *Max Value: 2147483647
 *Description: Substring length
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Substring Start Index:
 *Name: startIndex
 *Type: {http://www.w3.org/2001/XMLSchema}integer
 *Required: false
 *Default Value: 0
 *Min Value: -2147483648
 *Max Value: 2147483647
 *Description: Substring start index (zero based)
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Here is an example of the source properties for a crawl that includes the manipulator in the above
example.

// Connect to the CAS Server.
CasCrawlerLocator locator = CasCrawlerLocator.create("localhost", 8500);
CasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create a list for manipulator configurations, even if
// there is only one.
List<ManipulatorConfig> manipulatorList = new ArrayList<ManipulatorConfig>();

// Create a manipulator configuration.
ManipulatorConfig manipulator = new ManipulatorConfig(moduleId);

// Create a module ID for a Substring Manipulator.
// Set the module ID in the constructor.
ModuleId moduleId = new ModuleId("com.endeca.cas.extension.sample.manipula¬
tor.substring.SubstringManipulator");

// Create a list for the module property objects.
List<ModuleProperty> manipulatorPropsList = new ArrayList<ModuleProperty>();

// Create a module property for sourceProperty.
// Set key/values of the module property as strings in the constructor.
ModuleProperty sp = new ModuleProperty("sourceProperty", "Endeca.Docu¬
ment.Text");

// Set the module property in the module property list.
manipulatorPropsList.add(sp);

// Create a module property for targetProperty.

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls26

// Set key/values of the module property as strings in the constructor.
ModuleProperty tp = new ModuleProperty("targetProperty", "Truncated.Text");

// Set the module property in the module property list.
manipulatorPropsList.add(tp);

// Create a module property for length.
// Set key/values of the module property as strings in the constructor.
ModuleProperty length = new ModuleProperty("length", "20");

// Set the module property in the module property list.
manipulatorPropsList.add(length);

// Set the module property list in the manipulator configuration.
manipulator.setModuleProperties(manipulatorPropsList);
manipulatorList.add(manipulator);

// Set the list of manipulator configurations in the crawl configuration.
crawlConfig.setManipulatorConfigs(manipulatorList)

// Create the crawl.
crawler.createCrawl(crawlConfig);

Setting text extraction options

The TextExtractionConfig class allows a client to specify document conversion parameters to
override default values.

Note: The phrases text extraction and document conversion mean the same thing.

The TextExtractionConfig class has methods to set these document conversion options:

• Whether document conversion should be performed. The default for file system crawls and CMS
connector crawls is true.The default for custom data source extensions defaults to false unless
the extension developer implements an interface that supports binary content. If set to true, the
next options can be used.

• Whether to use local file copies to perform the text extraction (file system crawls only).
• The time that CAS Server waits for text extraction results from the Document Conversion Module

before retrying.

To set the text-extraction options:

1. Make sure that you have already created a SourceConfig, a CrawlConfig, and set the name
and the seeds (if required for the source type) for the crawl.

2. Instantiate an empty TextExtractionConfig object

For example:

TextExtractionConfig textOptions = new TextExtractionConfig();

3. Call the setEnabled() method to set a Boolean indicating that extraction should be performed:

// Enable text extraction for this crawl.
textOptions.setEnabled(true);

4. For file system crawls, you can use the setMakeLocalCopy() method to set a Boolean indicating
whether files should be copied to a local temporary directory before text is extracted from them.
The default for setMakeLocalCopy() is false. Custom data source extensions may also make

Endeca Content Acquisition System API GuideEndeca Confidential

27CAS Server API | Creating crawls

local copies if the extension developer implemented the BinaryContentFileProvider interface
of the CAS Extension API.

// Enable use of local file copying.
textOptions.setMakeLocalCopy(true);

5. If desired, call the setTimeout() method and specify an integer to set amount of time (in seconds)
CAS waits for text extraction on a document to finish before attempting again. The default is 90
seconds.

// Set timeout to 120 seconds.
textOptions.setTimeout(120);

6. Call the CrawlConfig.setTextExtractionConfig() method to set the populated
TextExtractionConfig object in the CrawlConfig object:

// Set the text extraction options in the configuration
crawlConfig.setTextExtractionConfig(textOptions);

7. Create the file system crawl:

crawler.createCrawl(crawlConfig);

Note that if you retrieve a TextExtractionConfig object from a configured crawl, each of the set
methods has a corresponding get method, such as the getTimeout() method.

Adding file and folder filters
The API provides classes that specify inclusion and exclusion filters for files and folders.

You can add include and exclude filters to the crawl configuration to ensure that the CAS Server
processes the proper files and folders when crawling a file system or CMS connector data source.

Note: Custom data sources built using the CAS Extension API do not support filters.

Keep in mind that if you use both include and exclude filters, the exclude filters take precedence. For
additional detailed information about how filters interact with each other and Endeca properties, see
the "About filters" topic in the Endeca CAS Developer's Guide.

The filter classes are the following:

• WildcardFilter for filtering based on a wildcard value.
• RegexFilter for filtering based on a regular expression value.
• DateFilter for filtering based on a datetime value.
• LongFilter for filtering based on a long value.

For all filters, you must specify a property against which the filter is applied. The property is typically
a standard property generated by the CAS Server (such as the Endeca.FileSystem.Name property),
but it can also be a custom property.

Some of the classes used for creating filters are the following:

• ComparisonOperator provides comparison operators, such as EQUAL, NOT_EQUAL, LESS,
and GREATER.

• Filter is the base type for all filters, providing for an optional filter scope property.
• FilterScope provides enumerations for the FILE and DIRECTORY filter scopes.

After you create a filter, you must set it in a SourceConfig object, which in turn is set in the
CrawlConfig configuration object.

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls28

Adding wildcard filters

The WildcardFilter class allows a client to specify a wildcard as an inclusion or exclusion filter.

A WildcardFilter is a filter that applies a wildcard to a particular property. The wildcard matcher
uses the question-mark (?) character to represent a single wildcard character and the asterisk (*) to
represent multiple wildcard characters. Matching is case insensitive: this is not configurable (If case
sensitivity is required, consider using a regular expression). In the example below, the filter is applied
to the Endeca.FileSystem.Name property.

To create a wildcard filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

2. Instantiate a new, empty WildcardFilter object:

WildcardFilter filter = new WildcardFilter();

3. Call the setPropertyName() method (inherited from the Filter class) to set the name of the
property against which the filter will be applied:

// filter on the file name
filter.setPropertyName("Endeca.FileSystem.Name");

4. Use the setWildcard() method to set the wildcard:

// exclude Word files
filter.setWildcard("*.doc");

5. Use the setScope() method (inherited from the Filter class) to set the filter scope.You can
set the scope to files (as in the following example), or to folders (FilterScope.DIRECTORY).

// set the scope of the filter for only files
filter.setScope(FilterScope.FILE);

6. Create a list of Filter objects and use the add() method (inherited from the List interface) to
add the wildcard filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

7. Use the SourceConfig.setExcludeFilters() method to set the populated list in the
SourceConfig configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

8. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in
the main CrawlConfig configuration object.

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Note that the WildcardFilter class has a getWildcard() method to retrieve a wildcard value.
In addition, the SourceConfig class has the getExcludeFilters() and getIncludeFilters()
methods to retrieve the filters from the source configuration.

Adding regular expression filters

The RegexFilter class allows a client to specify a regular expression as an inclusion or exclusion
filter.

Endeca Content Acquisition System API GuideEndeca Confidential

29CAS Server API | Creating crawls

A RegexFilter is a filter that applies a regular expression to a particular property. Matching is case
sensitive by default (this is not configurable through the API). In the example below, the filter will be
applied to the Endeca.FileSystem.Name property.

The CAS Server implements Sun’s java.util.regex package to parse and match the pattern of the
regular expression. Therefore, the supported regular-expression constructs are the same as those in
the documentation page for the java.util.regex.Pattern class:

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

This means that among the valid constructs you can use are:

• Escape characters, such \t for the tab character.
• Character classes (simple, negation, range, intersection, subtraction). For example, [^abc] means

match any character except a, b, or c, while [a-zA-Z] means match any upper- or lower-case letter.
• Predefined character classes, such as \d for a digit or \s for a whitespace character.
• POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum}

for an alphanumeric character, and \p{Punct} for punctuation.
• Boundary matchers, such as ^ for the beginning of a line, $ for the end of a line, and \b for a word

boundary.
• Logical operators, such as X|Y for either X or Y.

For a full list of valid constructs, see the Pattern class documentation page referenced above.

To create a regex filter:

1. Make sure that you have created a SourceConfig (see the following example) and a
CrawlConfig.

SourceConfig sourceConfig = new SourceConfig();

2. Instantiate a new, empty RegexFilter object:

RegexFilter filter = new RegexFilter();

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the
property against which the filter will be applied:

For example:

// Filter on the file name.
filter.setPropertyName("Endeca.FileSystem.Name");

4. Call the setRegex() method to set the regular expression:

For example:

// Exclude executable and help files.
filter.setRegex(".*\.(exe|bin|dll|hlp)$");

5. Use the setScope() method (inherited from the Filter class) to set the filter scope.You can
set the scope to files (as in the following example), or to directories (FilterScope.DIRECTORY).

For example:

// Set the scope of the filter for only files.
filter.setScope(FilterScope.FILE);

6. Create a list of Filter objects and add the regex filter to it.

For example:

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls30

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

7. Use the SourceConfig.setExcludeFilters() method to set the populated list in the
SourceConfig configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

For example:

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

8. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in
the main CrawlConfig configuration object.

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Note that the RegexFilter class has a getRegex() method to retrieve a regex value. In addition,
the SourceConfig class has the getExcludeFilters() and getIncludeFilters() methods
to retrieve the filters from the source configuration.

Adding date filters

The DateFilter class specifies a date against which files and folders can be filtered.

A DateFilter uses a datetime value to filter temporal-based properties, such as the Ende¬
ca.FileSystem.ModificationDate property (used in the example below). The filter also uses
a comparison operator that specifies how the operands are compared, using the enumeration:

• BEFORE
• AFTER

For example, if you create a date exclude filter that performs a BEFORE comparison against the En¬
deca.FileSystem.ModificationDate property, then files that have been modified before the
date reference are excluded.

To create a date filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

For example:

SourceConfig sourceConfig = new SourceConfig();

2. Instantiate a new, empty DateFilter object:

DateFilter filter = new DateFilter();

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the
property against which the filter will be applied:

// Filter on the last-modified date.
filter.setPropertyName("Endeca.FileSystem.ModificationDate");

4. Use the setReferenceValue() method to set the date/time value. Note that the Java API takes
a Date object as its parameter and the WSDL-generated classes take a XMLGregorianCalendar
object:

For example:

// Create a Date object.
Date date = new Date();
// set the time to noon on May 1, 2009
date.setYear(2009);
date.setMonth(5);

Endeca Content Acquisition System API GuideEndeca Confidential

31CAS Server API | Creating crawls

date.setDay(1);
date.setTime(12,0,0);
filter.setReferenceValue(date);

5. Call the setOperator() method to specify that the filter will exclude files that have an earlier
modification date:

For example:

// Exclude files with an earlier modification date.
filter.setOperator(DateComparisonOperator.BEFORE);

6. Call the setScope() method (inherited from the Filter class) to set the filter scope.You can
set the scope to files or to directories (FilterScope.DIRECTORY).

For example:

// Set the scope of the filter for only files.
filter.setScope(FilterScope.FILE);

7. Create a list of Filter objects and use the add() method to add the date filter.

For example:

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

8. Use the SourceConfig.setExcludeFilters() method to set the populated list in the
SourceConfig configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

For example:

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

9. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in
the main CrawlConfig configuration object.

For example:

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Note that the DateFilter class has a getReferenceValue() method to retrieve the
XMLGregorianCalendar object. In addition, the SourceConfig class has the
getExcludeFilters() and getIncludeFilters() methods to retrieve the filters from the source
configuration.

Adding long filters

The LongFilter class specifies a long value against which files can be filtered.LongFilter extends
the ComparableValueFilter class.

A LongFilter is a comparison filter that specifies a value (as a long) to be compared against a
numerical property, such as the Endeca.File.Size property (used in the example below).The filter
uses a comparison operator that specifies how the operands are compared, using the enumerations:

• EQUAL
• GREATER
• GREATER_EQUAL
• LESS

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls32

• LESS_EQUAL
• NOT_EQUAL

For example, if you create a long exclusion filter that performs a GREATER comparison against the
Endeca.File.Size property, then files whose size is greater than the reference value are excluded.

To create a long filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

For example:

SourceConfig sourceConfig = new SourceConfig();

2. Instantiate a new, empty LongFilter object:

LongFilter filter = new LongFilter();

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the
property against which the filter will be applied:

// filter on the file size, which is in bytes
filter.setPropertyName("Endeca.File.Size");

4. Use the setReferenceValue() method to set the long value to compare against the property:

// exclude files larger than ~1GB
filter.setReferenceValue(1000000000);

5. Call the setOperator() method (inherited from the ComparableValueFilter class) to specify
that the filter will apply only to files that have a size greater than the reference value:

// exclude files with a size larger than the reference value
filter.setOperator(ComparisonOperator.GREATER);

6. Call the setScope() method (inherited from the Filter class) to set the filter scope.You can
set the scope to files or to directories (FilterScope.DIRECTORY).

For example:

// set the scope of the filter for only files
filter.setScope(FilterScope.FILE);

7. Create a list of Filter objects and use the add() method to add the filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

8. Use the SourceConfig.setExcludeFilters() method to set the populated list in the
SourceConfig configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

// set the filter in the source config
sourceConfig.setExcludeFilters(filterList);

9. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in
the main CrawlConfig configuration object.

// set the source config in the main config
crawlConfig.setSourceConfig(sourceConfig);

Note that the LongFilter class has a getReferenceValue() method to retrieve the long value
and a getPropertyName() method to retrieve the Endeca property. In addition, the SourceConfig

Endeca Content Acquisition System API GuideEndeca Confidential

33CAS Server API | Creating crawls

class has the getExcludeFilters() and getIncludeFilters() methods to retrieve the filters
from the source configuration.

About the output properties for crawls
The OutputConfig class specifies whether the output from a crawl is stored in a Record Store
instance, an output file, or in an MDEX compatible format (Dgidx files).

The OutputConfig class uses two methods to set the properties: setModuleId() and
setModuleProperties().

Module ID

The setModuleId() method sets the module ID of the output type.You specify a string value to
indicate the type of output. The string can be set to either:

• Record Store if you want the crawl output to go to a Record Store (this is the default).
• com.endeca.cas.output.Mdex if you want the crawl output in an MDEX compatible format

(Dgidx input files).
• File System if you want the crawl output to go to a file system.

You can set one output option per crawl configuration.

Module Properties

Each ModuleProperty is a key/value pair or a key/multi-value pair that provides configuration
information about this an output type.

You specify a ModuleProperty by calling setKey() to specify a string representing the key and
by calling setValues() to set one or more corresponding values.

You then set eachModuleProperty on the SourceConfig object by calling addModuleProperty().

Record Store output properties and example

The OutputConfig class allows a client to write the crawl output to a Record Store instance.

Table 4: Module Properties for Record Store output

The configuration for Record Store output can include some or all of the module properties listed in the
following table.

Key ValueRecord Store Property Key Name

The name of the host on which the Record Store is running.
The default is localhost.

host

The port number on which the Record Store is listening.The
default is 8500.

port

Specify how to interpret the port setting.

A value of true means that port is an SSL port and the
API uses HTTPS for connections.

isPortSsl

A value of false means that port is a non-SSL port and
the API uses HTTP for connections. The default is false.

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls34

Key ValueRecord Store Property Key Name

Specify false if you enabled HTTPS redirects.

The name of the Record Store instance that you want to
write output to. The default is <crawlID>.

instanceName

A Boolean value that indicates whether the Record Store
instance is managed or not. Managment ties a Record Store

isManaged

instance to its corresponding crawl configuration. Specifying
true indicates that a Record Store instance is created if
you run a crawl and a Record Store instance does not
already exist. Specifying true also indicates that a Record
Store instance is deleted if you delete the corresponding
crawl configuration. The default is true (is managed).

Here is an example of the output properties for a crawl writing to a Record Store instance.

// Create the output configuration.
OutputConfig outputConfig = new OutputConfig();

// Create a Record Store module ID.
ModuleId moduleId = new ModuleId("Record Store");

// Set the module ID in the output configuration.
outputConfig.setModuleId(moduleId);

// Create a module property object.
ModuleProperty host = new ModuleProperty();
// Set the key for specifying the host name.
host.setKey("host");
host.setValues("localhost");

// create a module property object.
ModuleProperty port = new ModuleProperty();
// set the key for specifying the port number
port.setKey("port");
port.setValues("8500");

// Create a module property object.
ModuleProperty instanceName = new ModuleProperty();
// set the key for specifying the instance name of the Record Store
instanceName.setKey("instanceName");
instanceName.setValues("RS1");

// Create a module property object.
ModuleProperty isManaged = new ModuleProperty();
// Set the key for specifying whether the Record Store is managed.
isManaged.setKey("isManaged");
isManaged.setValues("true");

// Create a list for the module property objects.
List<ModuleProperty> outputPropsList = new ArrayList<ModuleProperty>();

// Set the module property objects in the list.
outputPropsList.add(host);
outputPropsList.add(port);
outputPropsList.add(instanceName);
outputPropsList.add(isManaged);

Endeca Content Acquisition System API GuideEndeca Confidential

35CAS Server API | Creating crawls

// Set the module property in the output config (if not already done).
outputConfig.setModuleProperties(outputPropsList);

// Set the output configuration in the main crawl configuration.
crawlConfig.setOutputConfig(outputConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

MDEX compatible output properties and example

The OutputConfig class allows a client to write the crawl output in an MDEX compatible format
(Dgidx input files).

Table 5: Module Properties for MDEX compatible output

The configuration for MDEX compatible output includes the following module properties:

Key ValueMDEX Compatible Property Key Name

The path to the directory containing Developer Studio
instance configuration files.

inputDirectory

The path to the directory where CAS writes output in an
MDEX compatible format (i.e. as Dgidx input files).This CAS
output is consumed by Dgidx.

outputDirectory

The name of the Dimension Value Id Manager for the
application.

dimensionValueIdManagerInstanceName

Here is an example of the output properties for a crawl writing to an MDEX compatible format (Dgidx
files).

// Create the output configuration.
OutputConfig outputConfig = new OutputConfig();

// Create an MDEX module ID.
ModuleId moduleId = new ModuleId("com.endeca.cas.output.Mdex");

// Set the module ID in the output configuration.
outputConfig.setModuleId(moduleId);

// Create a module property object.
ModuleProperty inputDir = new ModuleProperty();
// Set the key for specifying Developer Studio instance configuration files.
inputDir.setKey("inputDirectory");
inputDir.setValues("C:/Endeca/apps/ebizsampleapp/data/complete_index_con¬
fig");

// create a module property object.
ModuleProperty outputDir = new ModuleProperty();
// Set the key for specifying the directory to store
// CAS output in an MDEX compatible format.
outputDir.setKey("outputDirectory");
outputDir.setValues("C:/Endeca/apps/ebizsampleapp/data/dgidx_input");

// Create a module property object.
ModuleProperty dvalMgr = new ModuleProperty();
// set the key for specifying the instance name of the Record Store
dvalMgr.setKey("dimensionValueIdManagerInstanceName");

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Creating crawls36

dvalMgr.setValues("ebizsampleapp-dimension-value-id-manager");

// Create a list for the module property objects.
List<ModuleProperty> outputPropsList = new ArrayList<ModuleProperty>();

// Set the module property objects in the list.
outputPropsList.add(inputDir);
outputPropsList.add(outputDir);
outputPropsList.add(dvalMgr);

// Set the module property in the output config (if not already done).
outputConfig.setModuleProperties(outputPropsList);

// Set the output configuration in the main crawl configuration.
crawlConfig.setOutputConfig(outputConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

File system output properties and example

The OutputConfig class allows a client to write the crawl output to a record output file (i.e. file system
output).

Table 6: Module Properties for record output files

The configuration for file system output can include some or all of the module properties listed in the
following table.

Key ValueFile System Property Key Name

The prefix of the output file (CrawlerOutput is the default
prefix). Optional.

outputPrefix

The name and path of the output directory under the CAS
Server's workspace directory. The default name of

outputDirectory

outputDirectory is output and the default name of
<crawlID> is used to create a subdirectory for each crawl.
This ensures each crawl has a unique subdirectory for its
output. For example, if you use the default value for
outputDirectory and have a <crawlID> of
FileSystemCrawl, the resulting directory structure is
CAS\workspace\output\FileSystemCrawl\.

A Boolean value that sets the output format to either XML
or binary. Specifying true sets the output to XML. Specifying
false sets the output to binary. The default is false.

outputXml

A Boolean value that indicates whether the output file should
be compressed. Specifying true compresses the output.
The default is false (not compressed). Optional.

outputCompressed

Here is an example of the output properties for a file system crawl.

// Create the output configuration.
OutputConfig outputConfig = new OutputConfig();

// Create a file system module ID.
ModuleId moduleId = new ModuleId("File System");

Endeca Content Acquisition System API GuideEndeca Confidential

37CAS Server API | Creating crawls

// Set the module ID in the output configuration.
outputConfig.setModuleId(moduleId);

// Create a module property object.
ModuleProperty outputPrefix = new ModuleProperty();
// set the key for the output prefix
outputPrefix.setKey("outputPrefix");
outputPrefix.getValue().add("newPrefix");

// Set the outputPrefix module property on the output config.
outputConfig.addModuleProperty(outputPrefix);

// Create a module property object.
ModuleProperty outputDirectory = new ModuleProperty();
// Set the key for the output directory.
outputDirectory.setKey("outputDirectory");
outputDirectory.setValues("output");

// Set the outputDirectory module property on the output config.
outputConfig.addModuleProperty(outputDirectory);

// Create a module property object.
ModuleProperty outputXml = new ModuleProperty();
// Set the key for specifying whether output is in XML format.
outputXml.setKey("outputXml");
outputXml.setValues("true");

// Set the outputXml module property on the output config.
outputConfig.addModuleProperty(outputXml);

// Create a module property object.
ModuleProperty outputCompressed = new ModuleProperty();
// Set the key for specifying whether output is compressed.
outputCompressed.setKey("outputCompressed");
outputCompressed.setValues("true");

// Set the outputCompressed module property on the output config.
outputConfig.addModuleProperty(outputCompressed);

// Set the output config in the main crawl configuration.
crawlConfig.setOutputConfig(outputConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Listing crawls
Call the CasCrawler.listCrawls() method to list the existing crawls.

The syntax of the method is:

CasCrawler.listCrawls()

The method returns a List<CrawlId> object, which has zero or more CrawlId objects. Each
CrawlId has the name of a crawl.

To list the set of existing crawls:

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Listing crawls38

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Use the CasCrawler.listCrawls() method to return a list of crawl names.

For example:

List<CrawlId> crawlList = crawler.listCrawls();

3. Call the CrawlId.getId() method to get the actual name (as a string) of each crawl.

You can also use the following to print out the number of crawls:

System.out.println("There are " + crawler.listCrawls().size() + " crawls
configured");

The CasCrawler.listCrawls() method does not throw an exception if it fails.

Starting a crawl
Call the CasCrawler.startCrawl() method to start a crawl.

The syntax of the method is:

CasCrawler.startCrawl(CrawlId crawlId, CrawlMode crawlMode)

The crawlId parameter is a CrawlId object that has the crawl ID set. The crawlMode parameter
is one of the following CrawlMode data types:

• CrawlMode.FULL_CRAWL performs a full crawl and creates a crawl history.
• CrawlMode.INCREMENTAL_CRAWL performs an incremental crawl and updates the crawl history.

There are several cases in which the CrawlMode automatically switches over from
INCREMENTAL_CRAWL to run a FULL_CRAWL. A full crawl runs in the following cases:

• If a crawl has not been run before.
• If the document conversion option has changed - either by being enabled or disabled.
• If the repository properties have changed.
• If any filters have been modified, added, or removed.
• If any seeds have been removed.
• If you are writing records to a Record Store instance that contains no generations.

This method does not return a value.

To start a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Instantiate a CrawlId object and then set its Id in the constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.startCrawl() method with the crawl ID and the appropriate crawl mode.
To catch exceptions, use a try block with the appropriate catch clauses.

For example:

try {
 crawler.startCrawl(crawlId, CrawlMode.INCREMENTAL_CRAWL);

Endeca Content Acquisition System API GuideEndeca Confidential

39CAS Server API | Starting a crawl

}
catch (CrawlNotFoundException e) {
 System.out.println(e.getLocalizedMessage());
}

If the CasCrawler.startCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the CAS Server is already running the specified crawl.
• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not

exist or is otherwise not found.
• InvalidCrawlConfigException occurs if the configuration is invalid.You can call
getCrawlValidationFailures() to return the list of crawl validation errors.

• ItlException occurs if other problems prevent the crawl from running.

As shown in step 3, use a try block to catch these exceptions.

Stopping a crawl
Call the CasCrawler.stopCrawl() method to stop a crawl.

The syntax of the method is:

CasCrawler.stopCrawl(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl to stop.

To stop a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl to stop by first instantiating a CrawlId object and then its Id.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.stopCrawl() method with the crawl ID. To catch an exception, use a try
block with the appropriate catch clause.

For example:

try {
 crawler.stopCrawl(crawlId);
}
catch (CrawlNotFoundException e) {
 System.out.println(e.getLocalizedMessage());
}

The CasCrawler.stopCrawl() method throws a CrawlNotFoundException if the specified
crawl (the crawlId parameter) does not exist or is otherwise not found.

When the stop request is issued, the crawl first goes into a STOPPING state and then (when it finally
stops) into a NOT_RUNNING state.

Note: Stopping a crawl means that:

• The CAS Server produces no record output for the stopped crawl (and all Record Store
transactions roll back).

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Stopping a crawl40

• Crawl history returns to its previous state before the crawl started.
• Metrics do not roll back to their state before the crawl started.

Deleting crawls
Call the CasCrawler.deleteCrawl() method to delete an existing crawl.

The syntax of the method is:

CasCrawler.deleteCrawl(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl to be deleted.

Note: You cannot delete a crawl that is running.

To delete a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl to be deleted by first instantiating a CrawlId object and then setting
Id in the constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.deleteCrawl() method with the CrawlId object. To catch exceptions,
use a try block with the appropriate catch clauses, as in this example:

try {
 crawler.deleteCrawl(crawlId);
}
catch (CrawlNotFoundException e) {
 System.out.println(e.getLocalizedMessage());
}

If the CasCrawler.deleteCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the crawl is running.
• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not

exist or is otherwise not found.
• ItlException occurs if a problem is encountered that prevents the crawl from being deleted.

As shown in step 3, use a try block to catch these exceptions.

Listing modules available to a crawl
Call the CasCrawler.listModules() method to return a list of modules you can include in a crawl.
Modules include CMS connectors that you have licensed and enabled, and any data source extensions
and manipulator extensions you may have created using the CAS Extension API.

The syntax of the method is:

CasCrawler.listModules(ModuleType moduleType)

Endeca Content Acquisition System API GuideEndeca Confidential

41CAS Server API | Deleting crawls

where moduleType is an enumeration value of either:

• SOURCE to return data sources
• MANIPULATOR to return manipulators

The method returns a List<ModuleInfo> object, which has zero or more ModuleInfo objects.
Each ModuleInfo has the name and ID of a data source or manipulator.

To list the modules available to a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Call the CasCrawler.listModules() method and specify an enumeration value to return either
data sources or manipulators.

For example:

List<ModuleInfo> modules = crawler.listModules(ModuleType.SOURCE);

3. For each ModuleInfo object:

a) Call the ModuleInfo.getModuleId() method to get the ID of the module (the data source
or manipulator).

b) Call the ModuleInfo.getModuleType() method to get the type of the module (the data
source or manipulator).

c) Call the ModuleInfo.getDescription() method to get the description of the module (the
data source or manipulator).

d) Call the ModuleInfo.getDisplayName() method to get the display name of the module
(the data source or manipulator).

For example:

List<ModuleInfo> moduleInfoList = modules.getModuleInfo();
for (ModuleInfo moduleInfo : moduleInfoList) {
 System.out.println(moduleInfo.getDisplayName());
 System.out.println(" *Id: "+ moduleInfo.getModuleId().getId());
 System.out.println(" *Type: "+ moduleInfo.getModuleType());
 System.out.println(" *Description: " + moduleInfo.getDescription());
 System.out.println();
}

The CasCrawler.listModules() method does not throw checked exceptions if it fails.

Retrieving crawl configurations
Call the CasCrawler.getCrawlConfig() method to retrieve the configuration settings of a crawl.

The syntax of the method is:

CasCrawler.getCrawlConfig(CrawlId crawlId, Boolean fillInDefaults)

Where:

• crawlId is a CrawlId object that contains the name of the crawl for which the configuration is
to be returned.

• fillInDefaults is a Boolean flag that, if set to true, fills in the default value for any setting
that has not been specified. If a setting is a password, truereturns the name but not the value. If
the flag is set to false, it does not modify the value for any setting.

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Retrieving crawl configurations42

If you retrieve a crawl configuration that contains a ModuleProperty for a password property, the
crawl configuration retrieves the value as a zero length list.

The method returns a CrawlConfig object, which contains the following:

• sourceConfig - a SourceConfig object that contains the seeds, filters, and specific information
about the systems from which content is fetched, such as CMS information or whether file properties
from the native file system should be gathered for file system crawls.

• manipulatorConfig - a list of ManipulatorConfig objects. Each ManipulatorConfig specifies a
manipulation that is performed in a particular crawl.

• textExtractionConfig - a TextExtractionConfig object that contains the text extraction options,
such as whether text extraction should be enabled and the number of retry attempts.

• outputConfig - an OutputConfig object that contains the output options, such as whether the
records are written to a Record Store instance or a record output file, the path of the output directory
and the output format (binary or XML).

• crawlthreads - a property indicating the number of threads per crawl.
• loggingLevel - a property indicating the logging level.

To get the configuration settings of a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its Id.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.getCrawlConfig() method with the crawl ID and the default settings
Boolean flag.

For example:

CrawlConfig crawlConfig = crawler.getCrawlConfig(crawlId, true);

4. Process the returned CrawlConfig according to the requirements of your application.

The CasCrawler.getCrawlConfig() method throws a CrawlNotFoundException if the specified
crawl (the crawlId parameter) does not exist or is otherwise not found. To catch an exception, use
a try block with the appropriate catch clause.

Note that for CMS crawls (which require a username and password), the retrieved password will be
returned as a null value from the server.

Updating crawl configurations
Call the CasCrawler.updateCrawl() method to change the configuration settings for an existing
crawl.

The syntax of the method is:

CasCrawler.updateCrawl(CrawlConfig crawlConfig)

The crawlConfig parameter is a CrawlConfig object that has the configuration settings of the
crawl.

Endeca Content Acquisition System API GuideEndeca Confidential

43CAS Server API | Updating crawl configurations

If you update a crawl configuration and specify an empty ModuleProperty for a password property,
the crawl configuration reuses the password stored on CAS Server.

Note: You cannot change the configuration if the crawl is running.

To update the configuration settings of an existing crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl to be modified by first instantiating a CrawlId object and then setting
its Id in the constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.getCrawlConfig() method to retrieve the current configuration.

For example:

CrawlConfig crawlConfig = crawler.getCrawlConfig(crawlId, false);

4. Change the configuration settings as desired.

5. Update the file system crawl by using the CasCrawler.updateCrawl() method with the previously
created crawlConfig.

For example:

crawler.updateCrawl(crawlConfig);

If the CasCrawler.updateCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the crawl is running.
• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not

exist or is otherwise not found.
• InvalidCrawlConfigException occurs if the configuration is invalid.

To catch these exceptions, use a try block when you issue the method.

Getting crawl metrics
Call the CasCrawler.getMetrics() method to return the metrics of a crawl. Metrics can be returned
for a running crawl or (if the crawl is not running) for the last complete crawl.

The syntax of the method is:

CasCrawler.getMetrics(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl for which metrics
are to be returned.

The method returns a List<Metric> object, which (if not empty) will have one or more Metric
objects. A Metric is a key-value pair that holds the value of a particular metric. The keys are the
metric's ID (a MetricId enum class). See the CAS Server API Reference (Javadoc) for the list of
MetricId enumerations.

The CRAWL_STOP_CAUSE MetricId has one of the following values:

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Getting crawl metrics44

• COMPLETED
• FAILED
• ABORTED

If a crawl fails, the CRAWL_FAILURE_REASON MetricId provides a message from the CAS Server
explaining the failure.

Your application can print out all or some of the metric values.

To get the metrics of a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its Id.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the CasCrawler.getMetrics() method with the crawl ID.

For example:

List<Metric> metricList = crawler.getMetrics(crawlId);

4. Print the metrics by retrieving the values from the Metric objects. For example, if you want to print
the number of records that have been processed so far by a running crawl, the code would be:

if (crawler.getStatus(demoCrawlId).getState.equals(CrawlerState.RUNNING))
 {
 List<Metric> metricList = crawler.getMetrics(crawlId);
 for (Metric metric : metricList.getMetric()) {
 MetricId id = metric.getMetricId();
 if (id.equals(MetricId.TOTAL_RECORDS)) {
 System.out.println("Total records: " + metric.getValue());
 }
 }
}

The CasCrawler.getMetrics() method throws a CrawlNotFoundException if the specified
crawl (the crawlId parameter) does not exist or is otherwise not found.

Getting the status of a crawl
Call the CasCrawler.getStatus() method to retrieve the status of a crawl.

The syntax of the method is:

CasCrawler.getStatus(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl for which status is
to be returned.

The method returns a Status object, which will have the status of the crawl as a CrawlerState
simple data type:

• NOT_RUNNING
• STOPPING
• RUNNING

Endeca Content Acquisition System API GuideEndeca Confidential

45CAS Server API | Getting the status of a crawl

To get the status of a crawl:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its Id in the
constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Declare a CrawlerState variable and initialize it by calling the CasCrawler.getStatus()
method with the crawl ID. Note that the status is actually returned by the State.getState()
method.

For example:

CrawlerState state;
state = crawler.getStatus(crawlId).getState();

4. Print the status.

For example:

System.out.println("Crawl status: " + state);

The CasCrawler.getStatus() method throws a CrawlNotFoundException if the specified
crawl (the crawlId parameter) does not exist or is otherwise not found. To catch an exception, use
a try block with the appropriate catch clause.

Retrieving CAS Server information
Call the Cas.getServerInfo() method to get the server properties of the CAS Server.

The syntax of the method is:

CasCrawler.getServerInfo()

The method returns a List<Property> object, which contains Property objects with host machine
and CAS Server information.

To retrieve information about the CAS Server:

1. Make sure that you have created a connection to the CAS Server. (A CasCrawler object named
crawler is used in this example.)

2. Use the CasCrawler.getServerInfo() method to return the server information.

For example:

List<Property> serverInfo = crawler.getServerInfo();

3. Call the Property.getKey() and Property.getValue() methods to get the property key-value
pairs.

The returned server properties (Property objects) contain the following key-value information:

Property valueProperty key

The version of the CAS Server.itl.version

Endeca ConfidentialEndeca Content Acquisition System API Guide

CAS Server API | Retrieving CAS Server information46

Property valueProperty key

The path of the CAS Server workspace directoryitl.workspace

The hardware architecture on which the operating system is running (such
as amd64), as specified in the CAS Server's JVM.

os.arch

The operating system of the machine on which the CAS Server is running
(such as Windows 2003), as specified in the CAS Server's JVM.

os.name

The version of the operating system of the machine on which the CAS Server
is running (such as 5.2), as specified in the CAS Server's JVM.

os.version

The Cas.getServerInfo() method does not throw an exception if it fails.

Endeca Content Acquisition System API GuideEndeca Confidential

47CAS Server API | Retrieving CAS Server information

Chapter 3

Component Instance Manager API

This section documents the Component Instance Manager (CIM) API.

Component Instance Manager client utility classes
The Component Instance Manager API provides client utility classes for the manipulation of objects.

ComponentInstanceManagerLocator class

The main purpose of the ComponentInstanceManagerLocator class is to create a connection to
a Component Instance Manager server. The steps for obtaining a connection are:

1. Call the create() method to create a ComponentInstanceManagerLocator object with the
host name and port of the server running the Component Instance Manager:

ComponentInstanceManagerLocator locator = ComponentInstanceManagerLoca¬
tor.create("localhost", 8500);

2. Call the getService() method to make a connection to the Component Instance Manager service
on that server:

ComponentInstanceManager cim = locator.getService();

Component Instance Manager core operations
This topic presents an overview of the Component Instance Manager API core methods.

The Component Instance Manager API has a ComponentInstanceManager interface, which is
used to create, list, and delete Record Store instances. (In this release, Record Store components are
the only supported component type.)

The following Component Instance Manager core operations are provided by methods in the
ComponentInstanceManager interface:

• createComponentInstance() creates a component instance of the given type with the given
id.

• deleteComponentInstance() deletes the given component instance.
• listComponentInstances() lists all component instances defined in the system.
• listComponentTypes() lists all component types defined in the system.

These operations are described in subsequent topics.

Note: The syntax descriptions for these operations use Java conventions. The examples in this
guide use client stubs generated with Apache CXF 2.2. However, the exact syntax of a class
member depends on the output of the WSDL tool that you are using.

Creating a component
Call the ComponentInstanceManager.createComponentInstance() method to create a
component instance of the given type (a RecordStore) with the given id (a Record Store instance
name).

The syntax of the method is:

ComponentInstanceManager.createComponentInstance(ComponentTypeId component¬
TypeId, ComponentInstanceId componentInstanceId)

The componentTypeId parameter is a ComponentTypeId that should be set to "RecordStore".

The componentInstanceId parameter is a ComponentInstanceId that is the Record Store
instance name.

To create a component:

1. Create a ComponentInstanceManagerLocator by calling create() and specifying the host
and port of the server running the Component Instance Manager. For example:

ComponentInstanceManagerLocator locator =
 ComponentInstanceManagerLocator.create("localhost", 8500);

2. Create a ComponentInstanceManager object and call getService() to establish a connection
to the server and the Component Instance Manager service. For example:

ComponentInstanceManager cim = locator.getService();

3. Create a Record Store instance by calling createComponentInstance() and specifying
RecordStore and a Record Store instance name. For example:

cim.createComponentInstance(new ComponentTypeId("RecordStore"),
new ComponentInstanceId("rs1"));

Deleting a component
Call the ComponentInstanceManager.deleteComponentInstance() method to delete a
specified component instance (a Record Store).

The syntax of the method is:

ComponentInstanceManager.deleteComponentInstance(ComponentInstanceId compo¬
nentInstanceId)

The componentInstanceId parameter is a ComponentInstanceId that is the Record Store
instance name that you want to delete.

To delete a component:

Endeca ConfidentialEndeca Content Acquisition System API Guide

Component Instance Manager API | Component Instance Manager core operations50

1. Create a ComponentInstanceManagerLocator by calling create()and specifying the host
and port of the server running the Component Instance Manager. For example:

ComponentInstanceManagerLocator locator =
 ComponentInstanceManagerLocator.create("localhost", 8500);

2. Create a ComponentInstanceManager object and call getService() to establish a connection
to the server and the Component Instance Manager service itself. For example:

ComponentInstanceManager cim = locator.getService();

3. Delete a Record Store instance by calling deleteComponentInstance() and specifying a
Record Store instance name. For example:

cim.deleteComponentInstance(new ComponentInstanceId("rs1");

If the ComponentInstanceManager.deleteComponentInstance() method fails, it will throw
an exception:

• ComponentInstanceNotFoundException is thrown if the ComponentInstanceManager does
not contain the component instance.

• ComponentManagerException is thrown if there was an error stopping the component instance.

To catch these exceptions, use a try block when you call the method.

Listing component instances
Call the ComponentInstanceManager.listComponentInstances() method to list all component
instances in the CAS Service. In this release, components are Record Store instances that are running
in the CAS Service.

The syntax of the method is:

ComponentInstanceManager.listComponentInstances()

The method returns a list of ComponentInstanceDescriptor objects. Each
ComponentInstanceDescriptor object represents a single component (that is, a Record Store
instance) and is made up of the following:

• TypeId object.This is the component type. For example, in this release, it is always RecordStore.
• InstanceId object. This is the user-specified name of an instance.
• InstanceStatus object. This is the status of a Record Store instance. This value can be one of

the following constants: RUNNING, FAILED, or STOPPED.

To list component instances:

1. Create a ComponentInstanceManagerLocator by calling create() and specify the host and
port of the server running the Component Instance Manager. For example:

ComponentInstanceManagerLocator locator =
 ComponentInstanceManagerLocator.create("localhost", 8500);

2. Create a ComponentInstanceManager object and call getService() to establish a connection
to the server and the Component Instance Manager service itself. For example:

ComponentInstanceManager cim = locator.getService();

Endeca Content Acquisition System API GuideEndeca Confidential

51Component Instance Manager API | Component Instance Manager core operations

3. Call listComponentInstances() and then create a for loop to loop over all component
instances. Inside the loop, get the TypeId, InstanceId, and InstanceStatus and print them
to system out (or elsewhere). For example:

for (ComponentInstanceDescriptor desc : cim.listComponentInstances()) {
 System.out.println(desc.getInstanceId() + " of type " + desc.getTypeId()
 + " has status " + desc.getInstanceStatus());
}

Listing component types
Call the ComponentInstanceManager.listComponentTypes() method to list all component
types in the CAS Service. In this release, there are only components of type RecordStore.

The syntax of the method is:

ComponentInstanceManager.listComponentTypes()

The method returns a list of ComponentTypeDescriptor objects. Each
ComponentTypeDescriptor object is made up of a TypeId object and an InstallPath object.

Each TypeId has the component type, for example, RecordStore. Each InstallPath is a string
representing the absolute path to the WAR file implementing the component itself, for example,
C:\Endeca\CAS\version\components\RecordStore.war.

To list component types:

1. Create a ComponentInstanceManagerLocator by calling create() and specify the host and
port of the server running the Component Instance Manager. For example:

ComponentInstanceManagerLocator locator =
 ComponentInstanceManagerLocator.create("localhost", 8500);

2. Create a ComponentInstanceManager object and call getService() to establish a connection
to the server and the Component Instance Manager service itself. For example:

ComponentInstanceManager cim = locator.getService();

3. Call listComponentTypes() and then create a for loop to loop over all component types in
the system. Inside the loop, get the TypeId and InstallPath and print them to system out (or
elsewhere). For example:

for (ComponentTypeDescriptor desc : cim.listComponentTypes()) {
 System.out.println(desc.getTypeId() + " installed at " + desc.getInstall¬
Path());
}

Endeca ConfidentialEndeca Content Acquisition System API Guide

Component Instance Manager API | Component Instance Manager core operations52

Chapter 4

Record Store API

This section documents the Record Store API.

Record Store client utility classes
The Record Store API provides client utility classes for the manipulation of objects.

The Record Store API includes a set of client utility classes that are useful for working with objects,
such as the creation of record collections. Java versions of these classes are included in the
recordstore-api-3.0.2.jar library.

A brief overview of these classes is given below. For details on the signatures and arguments, refer
to the Javadoc.

RecordStoreLocator class

The main purpose of the RecordStoreLocator class is to create a connection to a Record Store
server. The steps for obtaining a connection are:

1. Use the create() method to create a RecordStoreLocator object with the hostname, port,
name of the Record Store instance:

RecordStoreLocator locator = RecordStoreLocator.create("localhost", 8500,
 "MyCrawl");

2. Call the ServiceLocator.getService() method to make a connection to the Record Store
service on that server:

RecordStore rs = locator.getService();

The class also has other getter and setter methods for configuring communication with a Record Store
instance.

RecordStoreWriter class

The RecordStoreWriter class provides methods for writing records to a Record Store instance.

The class has two write() methods that allow you to write one record at a time or a list of records
all at once.

You can create a baseline writer with this method:

RecordStoreWriter writer = RecordStoreWriter.createWriter(
 recordStore, tId, 100);

RecordStoreReader class

The RecordStoreReader class provides methods for reading baseline and delta records from a
Record Store instance.

The RecordStoreReader class does not have a reader for reading individual records by their ID.
To perform this type of read, use the RecordStore.readRecordsById() method from the WSDL
(core operations).

You can create a reader with this method:

RecordStoreReader reader = RecordStoreReader.createBaselineReader(
 recordStore, tId, gId, 100);

See the Javadoc for more information on creating readers.

The RecordStoreWriter and RecordStoreReader classes are useful because they handle
batching and un-batching of records.

Record Store core operations
This topic presents an overview of the Record Store API core methods.

The Record Store API has a RecordStore interface, which is used to make calls to a Record Store
instance.

The following Record Store core operations are provided by methods in the RecordStore interface:

• startTransaction() starts a transaction of type READ or READ_WRITE and returns the
transaction ID.

• startBaselineRead() creates a read cursor for reading a baseline generation from a Record
Store instance.

• startDeltaRead() creates a read cursor for an incremental read from a Record Store instance.
• readRecords() performs the actual read operation for a read cursor set up by either the
startBaselineRead() or the startDeltaRead() method.

• endRead() ends a baseline or incremental read operation performed by a readRecords()
method.

• readRecordsById() reads specific records from a Record Store instance, based on a list of
their record IDs.

• writeRecords() writes a set of records to a Record Store instance. The method returns an
integer that indicates how many records were actually written.

• commitTransaction() commits an active (uncommitted) transaction.
• rollbackTransaction() rolls back an active (uncommitted) transaction.
• listActiveTransactions() returns a List of TransactionInfos that contain the ID, type,

status, and generation ID of each active transaction.
• listGenerations() returns a List of GenerationInfos for each record generation currently

in the Record Store.
• getLastCommittedGenerationId() gets the ID of the last-committed record generation.
• getWriteGenerationId() gets the ID of the current generation.

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | Record Store core operations54

• setLastReadGenerationId() sets state for a specific client by setting the ID of the last
generation read by the client.

• getLastReadGenerationId() gets the ID of the last-read generation that was set for a specific
client.

• listClientStates() returns a List of ClientStateInfos for each client. Each
ClientStateInfo object contains a client ID, a transaction ID, a generation ID of the last read
generation, and a Boolean to indicate if the state is committed.

• getConfiguration() returns the configuration settings of a specified Record Store instance.
• setConfiguration() sets the configuration settings of a specified Record Store instance.
• clean() runs the Record Store Cleaner, which removes all records that are no longer necessary.

This method allows cleaning to occur on an external schedule.

The procedures required for typical Record Store usage scenarios are described in subsequent topics.

Note:

• The examples in this guide use client stubs generated with Apache CXF 2.2. However, the
exact syntax of a class member depends on the output of the WSDL tool that you are using.

• For details on method syntax and arguments, refer to the Javadoc.

Getting and setting a Record Store instance configuration
Use the getConfiguration() and setConfiguration() methods to get a Record Store instance
configuration and configure settings for the Record Store instance.

To get and set a Record Store instance configuration:

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Return the config object for the new Record Store instance by calling the getConfiguration()
method:

RecordStoreConfiguration config = recordStore.getConfiguration(false);

4. Enable compression by calling the setRecordCompressionEnabled() method:

config.setRecordCompressionEnabled(true);

5. Set the modified configuration for the Record Store instance by calling the setConfiguration()
method:

recordStore.setConfiguration(config);

Example of getting and setting a Record Store instance configuration

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();

RecordStoreConfiguration config = recordStore.getConfiguration(false);

Endeca Content Acquisition System API GuideEndeca Confidential

55Record Store API | Record Store core operations

config.setRecordCompressionEnabled(true);

recordStore.setConfiguration(config);

Running a baseline read of the last-committed generation
Call the startBaselineRead() method to create a cursor for a baseline read to be consumed by
the readRecords() method.

To run a baseline read of the last-committed generation:

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

4. Return a ReadCursorId object by calling the startBaselineRead() method:

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId,
 null);

5. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

6. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

7. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of running a baseline read

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | Record Store core operations56

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId,
null);

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.commitTransaction(transactionId);

Running a delta read
Call the startDeltaRead() method to create a cursor for a delta (incremental) read to be consumed
by the readRecords() method.

To run a delta read:

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

4. Create a ReadCursorId object by calling the startDeltaRead() method:

ReadCursorId readCursorId = recordStore.startDeltaRead(transactionId,
startGeneration, endGeneration);

5. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

6. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

Endeca Content Acquisition System API GuideEndeca Confidential

57Record Store API | Record Store core operations

7. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of running a delta read

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

ReadCursorId readCursorId = recordStore.startDeltaRead(transactionId,
startGeneration, endGeneration);

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.commitTransaction(transactionId);

Maintaining client read state in the Record Store
Use the getLastCommittedGenerationId() and setLastReadGenerationId() methods to
store the GenerationId that the client last read.

To maintain client read state in the Record Store:

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

4. Get the last-committed generation by calling the getLastCommittedGenerationId() method:

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

5. Return a ReadCursorId object by calling the startBaselineRead() method:

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId,
 gid);

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | Record Store core operations58

6. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

7. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

8. Set the last-read generation ID by calling the setLastReadGenerationId() method:

recordStore.setLastReadGenerationId(transactionId, clientId, gid);

9. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

10. At a later point, start a new READ transaction for an incremental read by calling the
startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

11. Get the last-committed generation by calling the getLastCommittedGenerationId() method:

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

12. Create a ReadCursorId object by calling the startDeltaRead() method:

ReadCursorId readCursorId = recordStore.startDeltaRead(transactionId,
startGeneration, endGeneration);

13. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

14. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

15. Set client state by calling the setLastReadGenerationId() method:

recordStore.setLastReadGenerationId(transactionId, clientId, endGenera¬
tionId);

16. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Endeca Content Acquisition System API GuideEndeca Confidential

59Record Store API | Record Store core operations

Example of maintaining client read state in the Record Store

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();
// Run a baseline read

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

ReadCursoreadCursorId readCursorId = recordStore.startBaselineRead(transac¬
tionId, gid);

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.setLastReadGenerationId(transactionId, clientId, gid);

recordStore.commitTransaction(transactionId);

...

// Run a delta read at a later point

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ);

GenerationId startGenerationId = recordStore.getLastReadGenerationId(trans¬
actionId, clientId);

GenerationId endGenerationId = recordStore.getLastCommittedGenera¬
tionId(transactionId);

ReadCursoreadCursorId readCursorId = recordStore.startDeltaRead(transaction¬
Id, startGenerationId, endGenerationId);

List<Record> records;

do {

 records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

 // do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | Record Store core operations60

recordStore.setLastReadGenerationId(transactionId, clientId, endGenera¬
tionId);

recordStore.commitTransaction(transactionId);

Performing an incremental write
Use the writeRecords() method to write an incremental set of records to the Record Store.

To perform an incremental write:

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ_WRITE transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ_WRITE);

4. Write a batch of records by calling the writeRecords() method:

recordStore.writeRecords(recordBatch1);

Repeat this step to write other batches of records to the Record Store.

5. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of performing an incremental write

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ_WRITE);

recordStore.writeRecords(recordBatch1);

recordStore.writeRecords(recordBatch2);

recordStore.commitTransaction(transactionId);

Performing a baseline write
Create a deleteAllRecord, then use the writeRecords() method to write a baseline set of
records to the Record Store.

To perform a baseline write:

Endeca Content Acquisition System API GuideEndeca Confidential

61Record Store API | Record Store core operations

1. Create a connection to a Record Store server by calling the create() method:

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ_WRITE transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ_WRITE);

4. Create a new record called deleteAllRecord with a property value of DELETE:

Record deleteAllRecord = new Record();

deleteAllRecord.addPropertyValue(new PropertyValue("Endeca.Action",
"DELETE"));

5. Add deleteAllRecord as the first record in a record batch:

recordBatch1.addFirst(deleteAllRecord);

6. Write the first batch of records by calling the writeRecords() method:

recordStore.writeRecords(recordBatch1);

Repeat this step to write other batches of records to the Record Store.

7. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of performing a baseline write

RecordStoreLocator locator = RecordStoreLocator.create(host, port, instan¬
ceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(Transaction¬
Type.READ_WRITE);

Record deleteAllRecord = new Record();

deleteAllRecord.addPropertyValue(new PropertyValue("Endeca.Action",
"DELETE"));

recordBatch1.addFirst(deleteAllRecord);

recordStore.writeRecords(recordBatch1);

recordStore.writeRecords(recordBatch2);

recordStore.commitTransaction(transactionId);

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | Record Store core operations62

SampleWriter client example
This sample program shows how to write records to the Record Store.

The SampleWriter.java class is an example of how to use the core and client utility classes to
write records. The sample Java program creates one record and writes it to the Record Store.

The code works as follows:

1. The PROPERTY_ID variable uses the setting of the Record Store instance idPropertyName
configuration property, which is used to identify the records.

public static final String PROPERTY_ID = "Endeca.FileSystem.Path";

2. A sample record is created with the Record class and added to the records Collection.

Collection<Record> records = new LinkedList<Record>();
 Record record = new Record();
 record.addPropertyValue(new PropertyValue(PROPERTY_ID, "id1"));
 record.addPropertyValue(new PropertyValue("property.name", "property.val¬
ue"));
 records.add(record);

3. Using the RecordStoreLocator utility class, a connection is made to the Record Store Server.

 RecordStoreLocator locator = RecordStoreLocator.create(casHost, casPort,
 "rs1");
 RecordStore recordStore = locator.getService();

4. In a try block, a READ_WRITE transaction was created by the
RecordStore.startTransaction() core method and the
RecordStoreWriter.createWriter() method is used to create a writer. This example writer
writes a maximum of 100 records per transfer.

try {
 System.out.println("Setting record store configuration ...");
 recordStore.setConfiguration(config);

 System.out.println("Starting a new transaction ...");
 tId = recordStore.startTransaction(TransactionType.READ_WRITE);

 RecordStoreWriter writer = RecordStoreWriter.createWriter(recordStore,
 tId,
 100);
...

5. The writer first writes a "Delete All" record, then writes the sample record, and finally closes the
writer. Note that the record is written twice (the first time as part of a collection and the second as
an individual record), in order to demonstrate both methods.

System.out.println("Writing records ...");
 writer.deleteAll();
 writer.write(records);
 writer.close();

6. The client program uses the RecordStore.commitTransaction() core method to commit the
write transaction.

System.out.println("Committing transaction ...");
 recordStore.commitTransaction(tId);

 System.out.println("DONE");

Endeca Content Acquisition System API GuideEndeca Confidential

63Record Store API | SampleWriter client example

After the transaction is committed, the Record Store will have a new record generation.

SampleWriter.java

package com.endeca.itl.recordstore.sample;

import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedList;

import com.endeca.itl.record.PropertyValue;
import com.endeca.itl.record.Record;
import com.endeca.itl.recordstore.RecordStore;
import com.endeca.itl.recordstore.RecordStoreConfiguration;
import com.endeca.itl.recordstore.RecordStoreException;
import com.endeca.itl.recordstore.RecordStoreLocator;
import com.endeca.itl.recordstore.RecordStoreWriter;
import com.endeca.itl.recordstore.TransactionId;
import com.endeca.itl.recordstore.TransactionType;

/**
 * SampleWriter is an example of how to use the Record Store core and
 * client utility classes to write records. It creates one record and
 * writes it to the Record Store.
 */
public class SampleWriter {
 // This should match the idPropertyName in your record store configuration.

 public static final String PROPERTY_ID = "Endeca.FileSystem.Path";

 public static void main(String[] args) {
 if (args.length!=2) {
 System.out.println("usage: <cas host> <cas port>");
 System.exit(-1);
 }

 String casHost = args[0];
 int casPort = Integer.parseInt(args[1]);

 Collection<Record> records = new LinkedList<Record>();
 Record record = new Record();
 record.addPropertyValue(new PropertyValue(PROPERTY_ID, "id1"));
 record.addPropertyValue(new PropertyValue("property.name", "property.val¬
ue"));
 records.add(record);

 RecordStoreLocator locator = RecordStoreLocator.create(casHost, casPort,
 "rs1");
 RecordStore recordStore = locator.getService();

 RecordStoreConfiguration config = new RecordStoreConfiguration();
 config.setIdPropertyName("Endeca.FileSystem.Path");
 config.setChangePropertyNames(new ArrayList<String>());

 TransactionId tId = null;
 try {
 System.out.println("Setting record store configuration ...");
 recordStore.setConfiguration(config);

 System.out.println("Starting a new transaction ...");
 tId = recordStore.startTransaction(TransactionType.READ_WRITE);

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | SampleWriter client example64

 RecordStoreWriter writer = RecordStoreWriter.createWriter(recordStore,
 tId,
 100);

 System.out.println("Writing records ...");
 writer.deleteAll();
 writer.write(records);
 writer.close();

 System.out.println("Committing transaction ...");
 recordStore.commitTransaction(tId);

 System.out.println("DONE");
 } catch (RecordStoreException exception) {
 exception.printStackTrace();
 if (tId != null) {
 try {
 recordStore.rollbackTransaction(tId);
 } catch (RecordStoreException anotherException) {
 System.out.println("Failed to roll back transaction.");
 anotherException.printStackTrace();
 }
 }
 }
 }
}

SampleReader client example
This sample program shows how to read records from the Record Store.

The SampleReader.java class is an example of how to use the core and client utility classes to
read records. The sample program gets the ID of the last-committed generation and reads its records
from the Record Store.

The code works as follows:

1. Using the RecordStoreLocator utility class, a connection is made to the Record Store Server.

RecordStoreLocator locator = RecordStoreLocator.create(casHost, casPort,
 "rs1");
 RecordStore recordStore = locator.getService();

2. In a try block, the RecordStore.startTransaction() core method creates a READ
transaction and then the RecordStore.getLastCommittedGenerationId() core method
gets the ID of the last generation that was committed to the Record Store.

TransactionId tId = null;
 try {
 System.out.println("Starting a new transaction ...");
 tId = recordStore.startTransaction(TransactionType.READ);

 System.out.println("Getting the last committed generation ...");
 GenerationId gId = recordStore.getLastCommittedGenerationId(tId);

Endeca Content Acquisition System API GuideEndeca Confidential

65Record Store API | SampleReader client example

3. The RecordStoreReader.createBaselineReader() utility method is used to create a baseline
reader. The reader transfers a maximum of 100 records per transfer.

System.out.println("Reading records ...");
 RecordStoreReader reader = RecordStoreReader.createBaselineReader(record¬
Store, tId,
 gId, 100);
 int count = 0;

4. In a while loop, the hasNext() method tests whether the reader has another record to read. If
true, the next() method retrieves the record, the record is written out, and the record-read count
is increased by one. When there are no more records to read, the close() method closes the
reader, and the number of records is printed out.

while (reader.hasNext()) {
 Record record = reader.next();
 System.out.println(" RECORD: " + record);
 count++;
 }
 reader.close();
 System.out.println(count + " record(s) read");

5. The client program uses the RecordStore.commitTransaction() core method to commit the
read transaction. .

 System.out.println("Committing transaction ...");
 recordStore.commitTransaction(tId);

 System.out.println("DONE");

SampleReader.java

package com.endeca.itl.recordstore.sample;

import com.endeca.itl.record.Record;
import com.endeca.itl.recordstore.GenerationId;
import com.endeca.itl.recordstore.RecordStore;
import com.endeca.itl.recordstore.RecordStoreException;
import com.endeca.itl.recordstore.RecordStoreLocator;
import com.endeca.itl.recordstore.RecordStoreReader;
import com.endeca.itl.recordstore.TransactionId;
import com.endeca.itl.recordstore.TransactionType;

/**
 * SampleReader is an example of how to use the Record Store core and
 * client utility classes to read records. It gets the ID of the
 * last-committed generation and reads its records from the Record Store.
 */
public class SampleReader {

 public static void main(String[] args) {
 if (args.length!=2) {
 System.out.println("usage: <cas host> <cas port>");
 System.exit(-1);
 }

 String casHost = args[0];
 int casPort = Integer.parseInt(args[1]);

 RecordStoreLocator locator = RecordStoreLocator.create(casHost, casPort,
 "rs1");

Endeca ConfidentialEndeca Content Acquisition System API Guide

Record Store API | SampleReader client example66

 RecordStore recordStore = locator.getService();

 TransactionId tId = null;
 try {
 System.out.println("Starting a new transaction ...");
 tId = recordStore.startTransaction(TransactionType.READ);

 System.out.println("Getting the last committed generation ...");
 GenerationId gId = recordStore.getLastCommittedGenerationId(tId);

 System.out.println("Reading records ...");
 RecordStoreReader reader = RecordStoreReader.createBaselineReader(record¬
Store, tId,
 gId, 100);
 int count = 0;
 while (reader.hasNext()) {
 Record record = reader.next();
 System.out.println(" RECORD: " + record);
 count++;
 }
 reader.close();
 System.out.println(count + " record(s) read");

 System.out.println("Committing transaction ...");
 recordStore.commitTransaction(tId);

 System.out.println("DONE");
 } catch (RecordStoreException exception) {
 exception.printStackTrace();
 if (tId != null) {
 try {
 recordStore.rollbackTransaction(tId);
 } catch (RecordStoreException anotherException) {
 System.out.println("Failed to roll back transaction.");
 anotherException.printStackTrace();
 }
 }
 }
 }
}

Endeca Content Acquisition System API GuideEndeca Confidential

67Record Store API | SampleReader client example

Index

A

archives, enabling expansion of 16, 18

B

baseline records
reading with API 56

C

CAS Component Instance Manager API
generating client stubs 10

CAS Record Store API
generating client stubs 10

CAS Server
connecting to 13
creating crawls 14
deleting crawls 41
getting crawl configuration 43
getting crawl metrics 44
getting crawl status 45
listing crawls 38
retrieving version information Server 46
starting a crawl 39
stopping a crawl 40
updating crawl configuration 43

CAS Server API
generating client stubs 10
overview 9

CIM
deleting Record Store 50
listing components 51

client utility classes of the API 53
CMS crawls

expanding archives 18
CMS crawls, module properties for 18, 22
Component Instance Manager API

supported operations 50
components

listing existing 51
content sources

CMS 18, 22
custom 22
listing 42
module IDs for 15

core operations of the API 49, 54
crawls

connecting to CAS Server 13
creating 14
date filters 31
deleting 41
getting metrics 44

crawls (continued)
getting status 45
listing existing 38
long filters 32
module properties for crawls 15, 34
regex filters 30
retrieving configuration 43
setting text extraction options 27
starting 39
stopping 40
updating configuration 43
wildcard filters 29

D

date filters, adding 31
deleting crawls 41, 50
domain name for CMS crawls 18

E

exclude filters, adding 28
expanding archives, enabling 16, 18

F

file system crawls
expanding archives 16
gathering native file properties 16

filters
date 31
long 32
overview 28
regular expression 30
wildcard 29

H

helper classes, API 53

I

include filters, adding 28

L

listing
content sources 42
existing crawls 38
manipulators 42

long filters, adding 32

M

manipulators
listing 42

manipulators, module properties for 24, 25
methods

createCrawl() 14
deleteComponentInstance() 50
deleteCrawl() 41
getCrawlConfig() 43
getMetrics() 44
getServerInfo() 46
getStatus() 45
listCrawls() 38
listModules() 42
overview of available 13
startCrawl() 39
stopCrawl() 40
updateCrawl() 43

metrics for crawls, getting 44
module ID, getting available 42
module properties for crawls 15, 34

N

native file properties, gathering 16

O

output types
module IDs for 34

P

password for CMS crawl
retrieving 43

R

Record Store API
client utility classes 53
core operations 49, 54
getting configuration 55
setting configuration 55
supported operations 55

Record Stores
deleting 50

regular expression filters, adding 30
retrieving crawl configurationI 43

S

starting a crawl 39
status of crawls, getting 45
stopping a crawl 40

T

text extraction options, setting 27

U

updating crawl configurations 43
utility classes, client 53

V

version of CAS Server, displaying 46

W

wildcard filters, adding 29
WSDL file

generating client stubs 10
location of 9

Endeca Content Acquisition System70

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Contacting Oracle Endeca Customer Support
	Conventions used in this guide

	Introduction to the CAS APIs
	The CAS APIs
	Generating client stubs for the CAS Web Services

	CAS Server API
	CAS Server core operations
	Connecting to the CAS Server
	Creating crawls
	About the source properties for crawls
	File system source properties and example
	CMS source properties and example
	Record Store Merger source properties and example
	Source properties for a custom data source
	Source properties for a manipulator
	Setting text extraction options

	Adding file and folder filters
	Adding wildcard filters
	Adding regular expression filters
	Adding date filters
	Adding long filters

	About the output properties for crawls
	Record Store output properties and example
	MDEX compatible output properties and example
	File system output properties and example

	Listing crawls
	Starting a crawl
	Stopping a crawl
	Deleting crawls
	Listing modules available to a crawl
	Retrieving crawl configurations
	Updating crawl configurations
	Getting crawl metrics
	Getting the status of a crawl
	Retrieving CAS Server information

	Component Instance Manager API
	Component Instance Manager client utility classes
	Component Instance Manager core operations
	Creating a component
	Deleting a component
	Listing component instances
	Listing component types

	Record Store API
	Record Store client utility classes
	Record Store core operations
	Getting and setting a Record Store instance configuration
	Running a baseline read of the last-committed generation
	Running a delta read
	Maintaining client read state in the Record Store
	Performing an incremental write
	Performing a baseline write

	SampleWriter client example
	SampleReader client example

	Index

