
Endeca® Latitude
Data Integrator Guide

Version 2.1.0 • June 2011

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...9
Contacting Endeca Customer Support...10

Chapter 1: Introduction..11
Overview of Latitude Data Integrator..11

Latitude connectors...12
Latitude Data Integrator Designer..13
Latitude Data Integrator Server...14

Supported data types..15
Default values for new attributes...15
Additional documentation...16

Chapter 2: Full Index Loads of Records..19
Overview of full index load operations..19
Creating a project...20
Source data format...20

Adding the source data to the project..22
Creating a graph...22
Adding Reader and Writer components..23
Configuring the components...24

Configuring the Reader component...25
Configuring metadata for the Edge..25
Configuring the Bulk Add/Replace Records connector...27

Running the graph to load records..28

Chapter 3: Incremental Updates..31
Overview of incremental updates..31
Adding components to the incremental updates graph...32
Configuring the Reader and the Edge for incremental updates..33
Configuring the Add/Update Records connector..33
Running the incremental updates graph...35

Chapter 4: Loading the Attribute Schema..37
About attribute schema files...37
Loading PDRs...37

Format of the PDR input file..38
Configuring the Reader for the PDR input file...38
Configuring the Add/Update Records connector for PDR output..39
Configuring PDR metadata..40

Loading DDRs..41
Format of the DDR input file..41
Configuring the Reader and the Edge for DDRs...42
Configuring the Add/Update Records connector for DDR loads..42

Chapter 5: Loading Configuration Files...45
Types of MDEX Engine configuration documents...45

Global Configuration Record...46
dimsearch_config document..47
precedence_rules document...48
recsearch_config document..49
relrank_strategies document...50
stop_words document..51

iii

thesaurus document..51
Loading the configuration documents...52

Creating a graph..53
Adding components to the graph...53
Configuring the Reader for the configuration document..54
Configuring metadata for configuration documents...55
Configuring the WebServiceClient component..57

Loading the GCR..60

Chapter 6: Adding Key-Value Pairs...63
About key-value pair data...63
Format of the KVP input file..63
Configuring the Reader for the KVP input file...64
Configuring the Add KVPs connector...65
Configuring KVP metadata...66
Running the KVPs graph..67

Chapter 7: Loading Taxonomies..69
Overview of loading a taxonomy...69
Format of the taxonomy input file..69
Creating a graph for the taxonomy...70
Adding components to the taxonomy graph...71
Configuring the Reader for the taxonomy input file...71
Configuring the Add Managed Values connector..72
Configuring taxonomy metadata...73
Running the taxonomy graph..74

Chapter 8: Deleting Data..77
Format of the delete input file...77
Adding components to the delete data graph...78
Configuring the Reader for the delete input file..79
Configuring the metadata for data deletes..79
Configuring the Delete Data connector...80
Running the delete data graph..81

Chapter 9: Latitude Connector Reference..83
Bulk Add/Replace Records connector..83
Add/Update Records connector..85
Add KVPs connector...88
Add Managed Values connector...90
Delete Data connector..92
Visual and Common configuration properties...94

Chapter 10: Configuration Tips and Troubleshooting...........................97
Configuration tips..97

Recommended order of loading data..97
Creating mdexType Custom properties...98

Troubleshooting problems...101
Avoiding OutOfMemory errors...101
Avoiding BufferOverflow errors..102
Connection errors..104
Multi-assign delimiter error..104

Appendix A: MDEX Engine Configuration XML Reference.................105
XML elements...105

COMMENT..105
DIMNAME..105
PROP...106
PROPNAME..107
PVAL..107

Dimsearch_config elements...107

Endeca® Latitudeiv

DIMSEARCH_CONFIG...108
Precedence_rules elements...108

PRECEDENCE_RULE..109
PRECEDENCE_RULES..110

Recsearch_config elements...111
RECSEARCH_CONFIG..111

Relrank_strategies elements..112
RELRANK_APPROXPHRASE..112
RELRANK_EXACT..113
RELRANK_FIELD...113
RELRANK_FIRST...114
RELRANK_FREQ..114
RELRANK_GLOM...115
RELRANK_INTERP..115
RELRANK_MAXFIELD..116
RELRANK_MODULE..116
RELRANK_NTERMS..117
RELRANK_NUMFIELDS...118
RELRANK_PHRASE...118
RELRANK_PROXIMITY..119
RELRANK_SPELL..120
RELRANK_STATIC..120
RELRANK_STRATEGIES...121
RELRANK_STRATEGY...122
RELRANK_WFREQ..124

Search_interface elements...124
MEMBER_NAME..124
PARTIAL_MATCH..125
SEARCH_INTERFACE..126

Stop_words elements...128
STOP_WORD..128
STOP_WORDS...128

Thesaurus elements...129
THESAURUS...129
THESAURUS_ENTRY...130
THESAURUS_ENTRY_ONEWAY...131
THESAURUS_FORM..132
THESAURUS_FORM_FROM..132
THESAURUS_FORM_TO...133

v

Contents

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

vii

Preface

Endeca® Latitude applications guide people to better decisions by combining the ease of search with
the analytic power of business intelligence. Users get self-service access to the data they need without
needing to specify in advance the queries or views they need. At the same time, the user experience
is data driven, continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an
analytical database and a search engine that makes possible a new kind of Agile BI. It provides guided
exploration, search, and analysis on any kind of information: structured or unstructured, inside the firm
or from external sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes Latitude Studio, a set of tools to configure user experience features
including search, analytics, and visualizations. This enables IT to partner with the business to gather
requirements and rapidly iterate a solution.

About this guide
This guide describes the Endeca Latitude Integrator, which loads records and taxonomies into the
MDEX Engine.

The guide assumes that you are familiar with Endeca concepts and Endeca application development,
as well as the interface of the Data Ingest Web Service.

Who should use this guide
This guide is intended for developers who are responsible for loading source data into the MDEX
Engine.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

| Preface10

http://eden.endeca.com

Chapter 1

Introduction

The chapter provides an overview of the Latitude Data Integrator and the Latitude connectors.

Overview of Latitude Data Integrator
From a high level, Latitude Data Integrator (LDI) consists of the LDI Designer, the Endeca Latitude
connectors, and (optionally) an LDI Server.

This diagram shows how the LDI fits into the larger picture of the Latitude architecture:

Latitude Data Integrator is a high-performance data integration platform that extracts source records
from a variety of source types (from flat files to databases) and sends that data to the MDEX Engine
via the Data Ingest Web Service or the Bulk Load Interface, as shown in the diagram.

Latitude connectors
The Endeca Latitude connectors are used to load data into the MDEX Engine.

The Endeca-developed Latitude connectors have been specifically engineered to work with the MDEX
Engine's Data Ingest Web Service and Bulk Load Interface. The connectors are incorporated into the
Designer Palette so that you can easily drag them into your graphs:

The Bulk Add/Replace Records and Add/Update Records connectors both add new records to a
running MDEX Engine. The records can be added to an empty MDEX Engine (this operation is called
a full index initial load) or to one that already has records. The Add/Update Records connector can
also be used to load the application's record schema, by loading the PDRs (Property Description
Records) and DDRs (Dimension Description Records). One convenient feature of both connectors
that if an Endeca standard attribute to be added does not exist, it is created automatically.

The Add KVPs connector can update existing records by adding new key-value pair (KVP) assignments
to those records.The connector can also create new records for the key-value pairs, as well as creating
new standard attributes for KVP assignments for non-existent standard attributes.

The Add Managed Values connector adds a taxonomy (managed values) to a running MDEX Engine.
If the managed values belong to a managed attribute that is currently not in the MDEX Engine, the
managed attribute will be created automatically.

While the above four connectors add data to the MDEX Engine, the Delete Data connector can remove
KVP assignments from records in the MDEX Engine or delete entire records.

All five connectors support SSL connections to an SSL-enabled MDEX Engine. They are configured
via the Designer's Writer Edit components, as shown in this example for the Bulk Add/Replace
Records connector:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Introduction | Overview of Latitude Data Integrator12

Chapter 9 ("Latitude Connector Reference") provides a comprehensive reference of the connectors
and their configuration properties. Other chapters in this guide describe how to build LDI Designer
graphs with the connectors.

Latitude Data Integrator Designer
The Designer is where you create the graphs for loading your data.

A graph is essentially a pipeline of components that processes the data. The simplest graph has one
Reader component to read in the source data and one of the Endeca components to write (send) the
data to the MDEX Engine. More complex graphs will use additional components, such as Transformer
and Joiner components.

The Designer, with its powerful graphical interface, provides an easy way to graphically lay out even
complex graphs.You drag and drop the components from the Palette and then configure them by
clicking on the component icon.

The Designer perspective consists of four panes and the Palette tool, as shown in this example:

Endeca® Latitude Data Integrator GuideEndeca Confidential

13Introduction | Overview of Latitude Data Integrator

These panes are:

• The Navigator pane lists your projects, their folders (including the graph folders), and files.
• The Outline pane lists all the components of the selected graph.
• The Tab pane consists of a series of tabs (such as the Properties tab and the Console tab) that

provide information about the components and the results of graph executions. The illustration
shows the Log tab listing the output of a successful record loading operation.

• The Graph Editor pane is where you create a graph and configure its components.
• The Palette tool is where you select a component and drag it to the Graph Editor.

For more information on the Designer user interface, see the online help.

Latitude Data Integrator Server
The Server provides a runtime environment for the graphs.

The Latitude Data Integrator Server is not required in order to load data into the MDEX Engine. In
other words, the Data Integrator Designer clients can run independently, and do not require the Server
in order to do their work.

You use the Server only if you are running graphs in an enterprise-wide environment. In this
environment, different users and user groups can access and run the graphs. In addition, you can
schedule the graphs to run at designated times, and monitor their execution progress.

The Server runs on an enterprise application server, such as Apache Tomcat or IBM Websphere.

Because the Server is not a mandatory component for loading data into the MDEX Engine, it is not
documented in this guide. For information on the setup and use of the Latitude Data Integrator Server,
see the CloverETL Server Reference Manual.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Introduction | Overview of Latitude Data Integrator14

Supported data types
This topic lists the Designer native data types that are supported in the MDEX Engine.

The table also shows how the Designer supported data types are mapped to MDEX Engine data types
during an ingest operation.You will see the data types when you create the Metadata definition for
the Edge component connector.

Maps to MDEX Data TypeDesigner Data Types in Metadata

mdex:booleanboolean

Not supportedbyte

Not supportedcbyte

mdex:dateTimedate

mdex:doubledecimal

mdex:intinteger

mdex:longlong

mdex:doublenumber

mdex:stringstring

mdex:durationstring with an mdexType Custom
property set to mdex:duration

mdex:geocodestring with an mdexType Custom
property set to mdex:geocode

As the table notes, you can create an mdexType Custom property type for the input property's metadata
and the MDEX Engine will use that type when creating the standard attribute's PDR. For details, see
the "Creating mdexType Custom properties" topic in Chapter 10 of this guide.

Default values for new attributes
New standard and managed attributes created during an ingest are given a set of default values.

During any data ingest operation, if a non-existent Endeca standard attribute is specified for a record,
the specified attribute is automatically created by the MDEX Engine. Likewise, non-existent Endeca
managed attributes specified for a record are also automatically created. Note that you cannot disable
this automatic creation of these attributes.

Standard attribute default values

The PDR for a standard attribute that is automatically created will use the system default settings,
which (unless they have been changed by the data developer) are:

Default settingPDR property

Set to the standard attribute name specified in the
request.

mdex-property_Key

Endeca® Latitude Data Integrator GuideEndeca Confidential

15Introduction | Supported data types

Default settingPDR property

Set to the standard attribute type specified in the
request. If no type was specified, defaults to the
mdex:string type.

mdex-property_Type

true (the standard attribute will be enabled for
value search)

mdex-property_IsPropertyValueSearchable

false (a record may have multiple value
assignments for the standard attribute)

mdex-property_IsSingleAssign

false (the standard attribute will be disabled for
record search)

mdex-property_IsTextSearchable

false (more than one record may have the same
value of this standard attribute)

mdex-property_IsUnique

false (wildcard search is disabled for this standard
attribute)

mdex-property_TextSearchAllowsWildcards

single (allows selecting only one refinement from
this standard attribute)

system-navigation_Select

true (record counts will be shown for a refinement)system-navigation_ShowRecordCounts

record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

system-navigation_Sorting

Managed attribute default values

A managed attribute that is automatically created will have both a PDR and a DDR created by the
MDEX Engine. The default values for the PDR are the same as listed in the table above, except that
mdex-property_IsPropertyValueSearchable will be false (i.e., the managed attribute will
be disabled for value search).

The DDR will use the system default settings, which (unless they have been changed by the data
developer) are:

Default settingDDR property

Set to the managed attribute name specified in the
request.

mdex-dimension_Key

true (refinements will be displayed)mdex-dimension_EnableRefinements

false (hierarchical search is disabled during value
searches)

mdex-dimension_IsDimensionSearchHierarchical

false (hierarchical search is disabled during
record searches)

mdex-dimension_IsRecordSearchHierarchical

Additional documentation
Additional Designer and Server documentation is available online and on the Web.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Introduction | Additional documentation16

Documentation online

You can access online documentation from within the Designer by clicking Help Contents from the
Help menu. Doing so brings up three documents:

• CloverETL Designer User's Guide – a comprehensive user's guide for the Designer.
• Workbench User Guide – describes the Eclipse Workbench development environment.
• Java Development User Guide – describes how to use the Java development tools.

Documentation on the Web

An extensive set of Designer and Server documentation is available at this URL:
http://www.cloveretl.com/resources

From that Web site, you can access the Quickstart Guide, the Designer User's Guide (which is the
same as the online version listed above), and the Server Reference Manual.

Other resources, such as a users forum, can also be accessed from this Web page.

Endeca® Latitude Data Integrator GuideEndeca Confidential

17Introduction | Additional documentation

http://www.cloveretl.com/resources

Chapter 2

Full Index Loads of Records

This chapter describes how to create a Data Integrator project and a graph that will perform a full index
load of records into the MDEX Engine.

Overview of full index load operations
This chapter will walk you through the various tasks involved in creating a graph that can load source
records into the MDEX Engine.

The task that this chapter covers is how to perform a full index load of your source records into the
MDEX Engine. As the source records are ingested, they are converted into Endeca records and are
indexed by the MDEX Engine.

This operation assumes that you have already loaded your attribute schema (PDRs and DDRs) into
the MDEX Engine with the Add/Update Records connector.The load-schema procedure is documented
in Chapter 4 ("Loading the Attribute Schema") of this guide. Also, the procedure assumes that the
MDEX Engine is otherwise empty of user source data.

Note: Keep in mind that you can ingest your data without first loading your attribute schema.
However, if you do so, you will not have control over the default values for the standard attributes
that are created. For this reason, it is recommended that you first load your attribute schema
data before loading your user source data.

Although a graph can contain many transformation components, the graph in this chapter is a simple
one that has only two components:

• The UniversalDataReader component, which will read in records from your source data file.
• The Bulk Add/Replace Records connector.This Endeca Latitude connector will send the records

to the Bulk Load Interface of the MDEX Engine. For details on this connector and some use cases
for it, see Chapter 9 ("Latitude Connector Reference") in this guide.

The source data is assumed to be in a flat file, with each source record having multiple columns that
are delimited by the pipe character. The format of the source data is explained in a following topic.
You can, of course, use other source formats, including reading from a database. These other input
formats may require other types of readers, such as the DBInputTable reader.

Creating a project
You must create an LDI project in which you will build your graph.

If you already have a project, you can re-use it for your graph. In other words, a project can have
multiple graphs configured in it.

To create a new LDI project:

1. From the File menu, select New > CloverETL Project.

2. In the New CloverETL project dialog, enter a name for the project in the Project name field.

You can leave the Use default location box checked.

3. Click Next and then click Finish.

Your new project is displayed in the Navigator pane, as in this example that shows the Endeca1 project
in an expanded format:

Note that the Outline pane is empty, as is the Graph Editor.

Source data format
You can load source data from a variety of formats.

Your Endeca applications will most often read data directly from one or more database systems, or
from database extracts. Input components load records in a variety of formats including delimited,
JDBC, and XML. Each input component has its own set of configuration properties. One of the most
commonly used type of input component loads data stored in delimited format.

The format used as an example in this chapter is a two-dimensional format similar to the tables found
in database management systems. Database tables are organized into rows of records, with columns
that represent the source properties and property values for each record. (This type of format is often
called a rectangular data format.) The illustration below shows a simple example of source data in a
two-dimensional format.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Full Index Loads of Records | Creating a project20

You specify the location and format of the source data to be loaded in the LDI reader component in
the graph. The reader component passes the data to the Endeca connector, which is configured to
connect to either the Data Ingest Web Service (DIWS) or the Bulk Load Interface, both of which reside
on the MDEX Engine.The records are then loaded into the MDEX Engine in batches of a pre-configured
size. During the ingest operation, each source row is transformed into an Endeca record with a key-value
pair for each non-null source column. The MDEX Engine then indexes the records for use during
search queries.

Primary key attribute

You will be using one of the Endeca standard attributes as the primary-key attribute for the records.
(The primary-key property is also known as the record spec property.) The primary-key property must
be a unique, single-assign property. For more information on primary keys, see the Data Ingest API
Guide.

Although the MDEX property type of the primary key can be any supported type, in our sample data
set, we will use the WineID property, which is an integer. The name of the primary-key attribute will
be specified in the Metadata definition for the Edge component.

Use of hyphens in input property names

Although the MDEX Engine will accept attribute names with hyphens (because hyphens are valid
NCName characters), the Designer will not accept source property names with hyphens as metadata.
Therefore, if you have a source property name such as "Wine-Type", make sure you remove the
hyphen from the name.

Using multi-assign data

Your source data may have multi-assign properties, that is, a property that has more than one value.
For example, instead of having two properties (say, Flavor1 and Flavor2) in which each property has
only one value, you can instead have one property (say, Flavor) with multiple values, as in this simple
example:

WineID|WineType|Country|Flavor|Body
123|Chardonnay|USA|Oak;Apple|Crisp
456|Chardonnay|France|Oak;Pear|Fresh
789|Merlot|Chile|Berry;Spice|Elegant

Endeca® Latitude Data Integrator GuideEndeca Confidential

21Full Index Loads of Records | Source data format

In the example, the pipe character (|) is the delimiter between the properties, while the semi-colon (;)
is the delimiter between multiple values in a given property. Therefore, the Flavor property for record
123 has values of "Oak" and "Apple".

When configuring the Writer component, you can then specify (in the Writer Edit Component dialog)
that the semi-colon is to be used as the delimiter for multi-assign properties.

Keep in mind that an Endeca property that is multi-assign must have the
mdex-property_IsSingleAssign property set to false in its PDR. The default value of the
property is false, which means the property is enabled for multi-assign by default.

Adding the source data to the project
The easiest way to add your source data is to copy it into the project's data-in directory.

This procedure assumes that you are copying a text file named wine_data.txt, which is a flat file
containing delimited records.The pipe character (|) is the delimiter.You can use other input file formats,
such as a CSV (comma-separated value) file.

To add the source data file to your Data Integrator project:

1. Locate the project's data-in directory.

To find its location, right-click on data-in (in the Navigator pane) and select Properties.

2. Copy the source file into the data-in directory.

You use the Designer GUI to paste the file into the data-in folder in the Navigation pane.

3. In the Navigator pane, right-click on data-in and select Refresh.

After refreshing the Navigator pane, it should look like this example:

As the example shows, the wine_data.txt is now available to the project's graphs.

Creating a graph
This task describes how to create an empty graph.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Full Index Loads of Records | Creating a graph22

An empty graph is one that does not have any transformation components. The only prerequisite for
this task is that you must have created a Data Integrator Designer project. A project can have multiple
graphs, but only one graph will be created for the project in this chapter.

To create an empty graph:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.
The Create new graph dialog is displayed.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadWineRecords.
b) Optionally, type in a description.
c) You can leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

After this step, the Create new graph dialog should look like this example:

4. In the Output dialog, click Finish.

As a result of creating the graph, the following changes appear in the perspective:

• The Graph window will have an empty graph, with the graph name as the name of the window.
• The Properties window (below the Graph window) will show the graph properties.
• The Outline pane will show a list of items (most of them are empty).
• The Palette pane will list the available graph components, including the Endeca components.

The next task is to add reader and writer components to the graph.

Adding Reader and Writer components
You need to add components to the empty graph in order for it to process the input source data and
output it to the MDEX Engine.

Endeca® Latitude Data Integrator GuideEndeca Confidential

23Full Index Loads of Records | Adding Reader and Writer components

The two components to be added are a Reader and a Writer:

• A Reader is a graph component that reads in source data. In our example, the
UniversalDataReader component is used because it can read in data from flat files.

• A Writer is a graph component that is responsible for outputting data from the Transformation. The
Bulk Add/Replace Records connector is used because we are doing a bulk load of your data.

In addition, an Edge component will be added to connect the Reader and Writer components. The
configurations for all three components are covered in this chapter.

To add components to the graph:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Bulk Add/Replace Records component
into the Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

After connecting the components, you can get out of Edge selection mode by hitting Escape on
your keyboard or clicking on Select in the Palette.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

The next tasks are to configure these components for the source data and for a connection to the
MDEX Engine.

Configuring the components
This section describes how to configure the UniversalDataReader, Bulk Add/Replace Records, and
Edge components.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Full Index Loads of Records | Configuring the components24

Configuring the Reader component
This task describes how to configure the Reader component to read in the source data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the data source file to the project's data-in folder.

The Reader Edit Component dialog is where you configure the Reader as to how it should handle the
source data:

To configure the Reader component:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the source data file and click OK.

3. Check the Quoted strings box so that its value changes to true.

If set to true, delimiter characters inside the quoted strings are ignored (not treated as delimiters)
and the quotes are removed.

4. Leave the Number of skipped records field as 0.

5. Click OK to apply your configuration changes to the Reader component.

6. Save the graph.

Configuring metadata for the Edge
The Edge component has to be associated with a Metadata definition so it knows what fields of data
are being passed from the Reader component to the Writer component.

Endeca® Latitude Data Integrator GuideEndeca Confidential

25Full Index Loads of Records | Configuring the components

By setting the Metadata definition, you are actually defining the properties that will be tagged on the
records.

Most of the metadata configuration will be done in the Metadata editor:

You will be using this editor in step 6 of this procedure.

To configure the Metadata definition for the Edge component:

1. In the Outline pane, right-click on Metadata.

2. Select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

4. In the URL Dialog, double-click the data-in folder, select the source data file, and click OK.
As a result, the Flat File dialog is populated with source data from the data file.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.
The Metadata Editor is displayed, as in the example above.

6. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

7. In the Record pane of the Metadata editor, make these changes:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Full Index Loads of Records | Configuring the components26

Click the Record:recordName1 Name field and change the recordName1 default value to a
name that is appropriate for your data, such as Wine for the wine data set. In this example,
Record:Wine will be the resulting Name value.

a)

b) Make sure that the Type field of the primary-key property is set to the correct type. In our wine
data, we change the WineID property to type long.

c) If the source data has date properties, you should their type to date (the type may be set to
string by the Designer). In our example, change the DateReviewed property to a date type and
then enter mm/dd/yy in the Format field in the Field pane on the right.

d) Verify that the other properties have their property type set correctly.
e) Verify that all properties have the correct delimiter character set (which is the pipe character for

the wine source data). The final property should have a new-line as the delimiter (\n on Linux
and \r\n on Windows).

f) When you have input all your changes, click Finish.

8. In the Graph Editor window, right-click on the Edge between the UniversalDataReader component
and the Bulk Add/Replace Records connector. Choose Select Metadata and the metadata you
have just configured, for example, Wine (id:Metadata0).

9. Save the graph.

The Metadata definition for the Edge component is now set.

Configuring the Bulk Add/Replace Records connector
This topic describes how to configure the Bulk Add/Replace Records connector for the bulk loading
of records.

This procedure assumes that you have created a graph and added the Bulk Add/Replace Records
connector.

Note: When using the Bulk Add/Replace Records connector, it is a good idea to use the
Dgraph --bulk_load_port flag when starting the MDEX Engine.

The Writer Edit Component dialog is where you configure the Bulk Add/Replace Records connector:

Endeca® Latitude Data Integrator GuideEndeca Confidential

27Full Index Loads of Records | Configuring the components

To configure the Bulk Add/Replace Records connector:

1. In the Graph window, double-click the Bulk Add/Replace Records component.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

• MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.
• MDEX Bulk Load Port: Enter the bulk load port on which the MDEX Engine is listening. Note

that the MDEX Engine opens a bulk load port on 5556 by default. However, you can change
the port number with the Dgraph --bulk_load_port flag.

• Spec Attribute: Enter the name of the standard attribute that is the primary key (record spec)
for the records.

• SSL Enabled: Toggle this field to true only if the MDEX Engine is SSL enabled.
• Stop after this many errors: Optionally, you can specify the maximum number of ingest errors

that can occur before the load operation is terminated.
• Multi-assign delimiter: Optionally, you can specify the character that separates multi-assign

values in an input property. Keep in mind that this delimiter is different from the delimiter that
separates properties.

3. When you have input all your changes, click OK.

4. Save the graph.

Running the graph to load records
After creating the graph and configuring the components, you can run the graph to send the records
to the MDEX Engine.

You can run a graph in one of three ways:

• You can select Run > Run As > CloverETL graph from the main menu.
• You can right-click in the Graph editor and select Run As > CloverETL graph from the context

menu.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Full Index Loads of Records | Running the graph to load records28

• You can click the green circle with white triangle icon in the Tool bar:

To run the graph:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Bulk Add/Replace Records connector.

2. Run the graph using of the methods listed above.

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example:

INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 03/06/11 17:32:45
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:0.31 Out:0 57076
 44707 570 447
INFO [WatchDog] - Bulk Add/Replace RecordENDECA_BULK_ADD_OR_REPLACE_RECORDS1
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 57076
 44707 570 447
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 100
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 100
 43793
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 100
(sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records that were sent to the MDEX Engine by
the Bulk Add/Replace Records connector.

Endeca® Latitude Data Integrator GuideEndeca Confidential

29Full Index Loads of Records | Running the graph to load records

Chapter 3

Incremental Updates

This chapter describes how to create a Data Integrator graph that will perform an incremental update
of records into the MDEX Engine.

Overview of incremental updates
You can incrementally update the data set in the MDEX Engine, including adding new records.

Using the Add/Update Records connector, you can perform these types of incremental updates:

• Add a brand-new record to the data set in the MDEX Engine.
• Update an existing record by adding key-value pairs.

Note that the Add/Update Records connector cannot load managed attribute values, nor can it delete
records or record data.

Format of the incremental source input file

Because the assumption is that you are adding (or updating) records that are similar in format to what
is already in the MDEX Engine, the format of the input will be very similar to the format of the input file
for the full index load. For more information, see the topic titled "Source data format" in Chapter 2
("Full Index Loads of Records") of this guide.

How updates are applied

The records to be added are considered totally additive. That is, if a record with the same primary key
already exists in the MDEX Engine, the key-value pairs list of the added record will be merged into
the existing record.

If an Endeca attribute with the same name already exists (but has a different assigned value), then
the added key-value pair will be an additional value for the same property (multi-assign). For example,
if the existing record has one standard attribute named Color with a value of "red" and the request
adds a Color property with a value of "blue", then the resulting record will have two Color key-value
pair assignments.

Keep in mind, however, that you cannot add a second value to a single-assign attribute. (That is, an
attribute whose PDR has the mdex-property_IsSingleAssign set to true.) In the Color example,
if Color were a single-assign attribute and the record already had one Color assignment, then an
attempt to add a second Color assignment would fail.

When adding standard attributes, the operation works as follows for the new attribute:

• If the new attribute already exists in the MDEX Engine but with a different type, an error is thrown
and the new attribute is not added.

• If the new attribute already exists in the MDEX Engine and is of the same type, no error is thrown
and nothing is done.

• If the new attribute is supposed to be a primary-key attribute but a managed attribute already exists
with the same name, an error is thrown and the new standard attribute is not added.

Note that updating a record can cause it to change place in the default order. That is, if you have
records ordered A, B, C, D, and you update record B, records A, C, and D remain ordered. However,
record B may move as a result of the update, which means the resulting order might end up as B,A,C,D
or A,C,B,D or another order.

Adding components to the incremental updates graph
The graph for performing incremental updates requires a reader and the Add/Update Records
connector.

This procedure assumes that you have created an empty graph.

To add components to a graph for incremental updates:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Add/Update Records connector into
the Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Incremental Updates | Adding components to the incremental updates graph32

The next tasks are to configure all three components.

Configuring the Reader and the Edge for incremental
updates

The configuration of the incremental updates reader and edge components is almost identical to that
of fresh index load graph.

This procedure assumes that you have added the incremental updates source file to the project's
data-in folder.

To configure the UniversalDataReader and Edge components for incremental updates:

1. To configure the UniversalDataReader component for the incremental updates input file, use the
same procedure as described in the topic titled "Configuring the Reader component" in Chapter 2
("Full Index Loads of Records") of this guide.

The only difference is that you will be using your incremental updates file as the input file.

2. To configure the Edge component, use the same procedure as described in the topic titled
"Configuring metadata for the Edge" in Chapter 2 ("Full Index Loads of Records") of this guide.

3. When you have finished your configuration, save the graph.

Configuring the Add/Update Records connector
You must configure the Add/Update Records connector with the location and port of the MDEX
Engine, as well as the primary key for the records.

Endeca® Latitude Data Integrator GuideEndeca Confidential

33Incremental Updates | Configuring the Reader and the Edge for incremental updates

This procedure assumes that you have created a graph and added the Add/Update Records connector.

The Writer Edit Component dialog is where you configure the Add/Update Records connector:

To configure the Add/Update Records connector:

1. In the Graph window, double-click the Add/Update Records component.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these mandatory settings in the Basic section:

• MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.
• MDEX Port: Enter the port on which the MDEX Engine is listening for requests.
• Spec Attribute: Enter the name of the property that is the primary key (record spec) for the

records.

3. Still in the Writer Edit Component dialog, you can make these optional settings in the Advanced
section:

• SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
• Batch Size (Bytes) : To change the default batch size (which is in bytes), enter a positive

integer. Specifying 0 or a negative number will disable batching.
• Multi-assign delimiter: Specify the character that separates multi-assign values in an input

property. Keep in mind that this delimiter is different from the delimiter that separates properties.
• Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the ingest operation is ended. Entering 0 allows no failed batches.

4. When you have input all your changes, click OK.

5. Save the graph.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Incremental Updates | Configuring the Add/Update Records connector34

Running the incremental updates graph
After creating the graph and configuring the components, you can run the graph to load the incremental
update records into the MDEX Engine.

To run the graph to load incremental updates:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add/Update Records connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example of adding five new records:

INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 06/06/11 10:53:21
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 5
 3 5 3
INFO [WatchDog] - Incrementals ENDECA_ADD_OR_UPDATE_RECORDS0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 5
 3 5 3
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 4927
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records (5 in this example) that were sent to
the MDEX Engine by the Add/Update Records connector.

Endeca® Latitude Data Integrator GuideEndeca Confidential

35Incremental Updates | Running the incremental updates graph

Chapter 4

Loading the Attribute Schema

This chapter describes how to load your PDR and DDR configuration files into the MDEX Engine.

About attribute schema files
The attribute schema for your application is defined by the PDR and DDR files in the MDEX Engine.

Each Endeca standard attribute is defined by its PDR (Property Description Record). Each Endeca
managed attribute is defined by its own PDR and also by a DDR (Dimension Description Record).

If you are loading your source records without first loading your attribute schema, the MDEX Engine
will automatically create the PDRs for your standard attributes, using the system default settings. The
values of these default settings are described in Chapter 1 of this guide.

However, it is recommended that you create your own PDR and DDR input records and then use the
Latitude Data Integrator Designer to load that schema into the MDEX Engine. This process uses the
UniversalDataReader component to read in the schema files and the Add/Update Records connector
to load them into the MDEX Engine.

Loading PDRs
This topic provides an overview of the PDR load process.

From a high-level view, the steps you will follow to load your PDR schema into the MDEX Engine are:

1. Create the PDR input file. (Described in this chapter in the "Creating the PDR input file" topic.)
2. Either create a new project or re-use an existing one. (Not described in this chapter, as we will use

the same project that was created in the "Creating a project" topic in Chapter 2.)
3. Create a graph and add the UniversalDataReader component and the Add/Update Records

connector. (Not described in this chapter, as this procedure is the same as described in the "Adding
Reader and Writer components" topic in Chapter 2.)

4. Configure the components. (Described in this chapter.)
5. Run the graph. (Not described in this chapter, as this procedure is the same as described in the

"Running the graph" topic in Chapter 2.)

Keep in mind that if you are also loading DDR records, you should first load the PDRs that will be
associated with the DDRs (unless the appropriate PDRs have already been loaded into the MDEX
Engine).

Format of the PDR input file
The PDR input file defines one or more Endeca standard attributes, with the specific settings of some
PDR properties.

The format of the PDR input file is:

• The first line of the file must be a delimited list of PDR properties that are to be set. Except for the
mdex-property_Key, any PDR property that is not specified is set to its system default.

• The second and following lines are delimited lists of values for the PDR properties.

Note that although the real PDR properties use hyphens in their names, those in the input file cannot
have hyphens. For example, the real mdex-property_Key property must be listed as
mdexproperty_Key. The hyphens in the names are added by the Add/Update Records connector
before the names are sent to the MDEX Engine.

Besides the mdex-property_ prefix, the other property prefixes that cannot use hyphens in PDR or
DDR input files are:

• mdex-dimension_

• mdex-config_

• system-navigation_

In addition, property names also cannot use hyphens in their names. Although the MDEX Engine will
accept property names with hyphens, the Designer will not. Therefore, if you have a property name
such as "Wine-Type", make sure you remove the hyphen from the name.

The following is an example of a PDR input file:

mdexproperty_Key|mdexproperty_DisplayName|mdexproperty_Type|mdexproper¬
ty_IsUnique|mdexproperty_IsSingleAssign|systemnavigation_ShowRecordCounts
WineID|Wine ID|mdex:int|true|true|true
WineName|Wine Name|mdex:string|false|false|true
WineType|Wine Type|mdex:string|false|false|true
Year|Year Grown|mdex:int|false|false|true
Flavors|Flavors|mdex:string|false|false|true
Price|Price|mdex:double|false|false|true
Designation|Designation|mdex:string|false|false|true

The example creates seven PDRs (such as WineID and WineType) and specifically sets the values
of five of their PDR properties. As mentioned, the mdexproperty_Key is mandatory in order to set
the name of the new PDRs. The mdexproperty_Type is used because the property type would
otherwise default to mdex:string, and three of the new properties are numeric.

See Chapter 1 of this guide for the system default values used by the MDEX Engine when creating
attributes.

Configuring the Reader for the PDR input file
This task describes how to configure the UniversalDataReader component to read in the PDR source
data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the PDR source file to the project's data-in folder.

To configure the Reader component for the PDR input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading the Attribute Schema | Loading PDRs38

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the source data file and click OK.

3. Check the Quoted strings box so that its value changes to true.

4. Leave the Number of skipped records field set to the default of 0.

The reason is that we want the first row (the PDR property names) to be read in and sent to the
Writer component.

5. Click OK to apply your configuration changes to the Reader component.

6. Save the graph.

Configuring the Add/Update Records connector for PDR output
This topic describes how to configure the Add/Update Records connector for loading PDR data.

This procedure assumes that you have created a graph and added the Add/Update Records
component.

To configure the Add/Update Records connector for PDR output:

1. In the Graph window, double-click the Add/Update Records component.

2. In the Writer Edit Component dialog, enter these settings:

• MDEX Host: The host name of the machine on which the MDEX Engine is running.
• MDEX Port: The port on which the MDEX Engine is listening for requests.
• Spec Attribute: Set this value to mdexproperty_Key (this will be primary key for the PDR

records).
• You can leave the other settings at their default values.

At this point, the Basic and Advanced sections of the dialog should look like this example:

Endeca® Latitude Data Integrator GuideEndeca Confidential

39Loading the Attribute Schema | Loading PDRs

3. When you have input all your changes, click OK.

4. Save the project.

The next task is to configure the Edge component in the graph.

Configuring PDR metadata
The Edge component must be configured with a Metadata definition.

This Metadata definition task will use the Metadata Editor. In the procedure, the column names will
be extracted from the input file via a reparsing operation.

To configure the Metadata definition for the PDR Edge:

1. In the Outline pane, right-click on Metadata.

2. Select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, browse for the PDR input file, select it, and click OK.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

The PDR data is loaded into the Metadata Editor, with the properties named Field1, Field2, and so
forth. For example, the middle pane of the Metadata Editor should look like this:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading the Attribute Schema | Loading PDRs40

5. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

The correct property names are now displayed in the upper and middle panes of the Metadata
Editor.

6. In the upper pane of the Metadata Editor:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
name such as PDR.

b) Make sure that the Type field of all the properties is set to type string.
c) Verify that all properties have the correct delimiter character set (which is the pipe character for

our example). The final property should have a new-line as the delimiter (\n on Linux and \r\n
on Windows).

d) When you have input all your changes, click Finish.

7. In the Graph Editor window, right-click on the Edge between the UniversalDataReader and
Add/Update Records components. Choose Select Metadata and the metadata you have just
configured, for example, PDR (id:Metadata0).

8. Save the graph.

After creating the graph and configuring the components, you can run the graph to send the PDR data
to the MDEX Engine.You can run the graph by clicking the green circle with white triangle icon in the

Tool bar:

Loading DDRs
This topic provides an overview of the DDR load process.

From a high-level view, the steps you take to load your DDR schema into the MDEX Engine are as
follows:

1. Create the DDR input file. (Described in this chapter in the "Creating the DDR input file" topic.)
2. Either create a new project or re-use an existing one. (Not described in this chapter, as we will use

the same project that was created in the "Creating a project" topic in Chapter 2.)
3. Create a graph and add the UniversalDataReader component and the Add/Update Records

connector. (Not described in this chapter, as this procedure is the same as described in the "Adding
Reader and Writer components" topic in Chapter 2.)

4. Configure the components. (Described in this chapter.)
5. Run the graph. (Not described in this chapter, as this procedure is the same as described in the

"Running the graph" topic in Chapter 2.)

Keep in mind that before loading DDR records, you should first load the PDR records that are associated
with the DDRs (unless the appropriate PDRs have already been loaded into the MDEX Engine).

Format of the DDR input file
The DDR input file defines the Endeca managed attributes, with the specific settings of some DDR
properties.

Similar to a PDR input file, the format of the DDR input file is:

Endeca® Latitude Data Integrator GuideEndeca Confidential

41Loading the Attribute Schema | Loading DDRs

• The first line must be a delimited list of DDR properties that are to be set. Except for the
mdex-dimension_Key, any DDR property that is not specified is set to its system default.

• The second and following lines are delimited lists of values for the DDR properties. Each value
must correspond to a DDR property.

Note that although the real DDR properties use hyphens in their names, those in the input file cannot
have hyphens. For example, the real mdex-dimension_Key property must be listed as
mdexdimension_Key.The hyphens in the names are added by the Add/Update Records connector
before the names are sent to the MDEX Engine.

The following is an example of a DDR input file:

mdexdimension_Key|mdexdimension_EnableRefinements|mdexdimension_IsDimension¬
SearchHierarchical|mdexdimension_IsRecordSearchHierarchical
WineType|true|false|false
Designation|true|false|false

The example creates two DDRs (WineType and Designation) and sets the values of its DDR properties.
As mentioned, the mdexdimension_Key is mandatory in order to set the name of the new DDRs.

Configuring the Reader and the Edge for DDRs
These two configurations are very similar to those for PDR loads.

This procedure assumes that you have created a graph and added the UniversalDataReader
component and the Add/Update Records connector. It also assumes that you have added an Edge
and also added the DDR source file to the project's data-in folder.

To configure the UniversalDataReader and Edge components:

1. To configure the UniversalDataReader component for the DDR input file, use the same procedure
as described in the topic titled "Configuring the Reader for the PDR input file" in this chapter.

The only difference is that you will be using your DDR file as the input file.

2. To configure the Edge component, use the same procedure as described in the topic titled
"Configuring PDR metadata" in this chapter.

Be sure to use the Extract names and Reparse options on the Metadata Editor.

3. When you have finished your configuration, save the graph.

Configuring the Add/Update Records connector for DDR loads
This topic describes how to configure the Add/Update Records connector for loading DDR data.

This procedure assumes that you have created a graph and added the Add/Update Records connector.

To configure the Add/Update Records connector for DDR output:

1. In the Graph window, double-click the Add/Update Records component.

2. In the Writer Edit Component dialog, enter these settings:

• MDEX Host: The host name of the machine on which the MDEX Engine is running.
• MDEX Port: The port on which the MDEX Engine is listening for requests.
• Spec Attribute: Set this value to mdexdimension_Key (this will be primary key for the DDR

records).
• You can leave the other settings at their default values.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading the Attribute Schema | Loading DDRs42

At this point, the Basic section of the dialog should look like this example:

3. When you have input all your changes, click OK.

4. Save the project.

After creating the graph and configuring the components, you can run the graph to send the DDR data
to the MDEX Engine.You can run the graph by clicking the green circle with white triangle icon in the

Tool bar:

Endeca® Latitude Data Integrator GuideEndeca Confidential

43Loading the Attribute Schema | Loading DDRs

Chapter 5

Loading Configuration Files

This chapter describes how to load the Global Configuration Record and the index configuration
documents for the MDEX Engine.

Types of MDEX Engine configuration documents
The MDEX Engine offers a rich set of index configuration documents that allow you to customize your
Endeca implementation.

The index configuration is the mechanism for implementing a number of Endeca features such as
search and ranking. The index configuration documents are created automatically by the mkmdex
utility with a set of defaults that are described in the following topics.The index configuration documents
are stored in the MDEX indexes database and loaded into the MDEX Engine at startup.

The documents are as follows:

PurposeIndex Configuration Document

Configures attributes (both Standard Attributes and Managed
Attributes) for value search.

dimsearch_config

Sets precedence rules, which provide a way to delay the display
of attributes until they offer a useful refinement of the navigation

precedence_rules

state. Precedence rules allow your Endeca implementation to
delay the display of a refinement until the user triggers it,
making navigation through the data easier and avoiding
information overload.

Configures record search, including search interfaces which
control record search behavior for groups of attributes. Some

recsearch_config

of the features that can be specified for a search interface
include relevance ranking, matching across multiple attributes,
and partial matching.

Sets relevance ranking, which is used to control the order of
results that are returned in response to a record search.

relrank_strategies

Sets stop words, which are words that are set to be ignored by
the MDEX Engine.

stop_words

The thesaurus allows the system to return matches for related
concepts to words or phrases contained in user queries.

thesaurus

Recommended order for loading the index configuration

The recommended order of loading is:

1. Load the record schema (PDRs and DDRs) first. It does not matter if the actual data records are
loaded, but the PDRs and DDRs are important because they create the properties that should be
referenced by the configuration files.

2. relrank_strategies document (necessary if a relevance ranking strategy is referenced by the
next two documents)

3. recsearch_config document
4. dimsearch_config document
5. precedence_rules document
6. stop_words document
7. thesaurus document

Global Configuration Record
The Global Configuration Record (GCR) stores global configuration settings for the MDEX Engine.

The GCR sets the configuration for wildcard search enablement, search characters, merge policy, and
spelling correction settings. A full description of its properties and their default values is available in
the Latitude Developer's Guide.

When loading your changes for the GCR , keep these requirements in mind:

• The mdex-config_Key property must be unique and single-assign. The value must be global
for the property.

• The GCR must contain valid values for all of its properties. None of its properties can be omitted.
• The GCR cannot have any arbitrary, user-defined properties.

If you change any of the spelling settings, make sure you rebuild the aspell dictionary by running the
admin?op=updateaspell administrative operation.

Sample GCR input file

The following is a sample GCR:

<mdex:record>
 <mdex-config_Key>global</mdex-config_Key>
 <mdex-config_EnableValueSearchWildcard>true</mdex-config_EnableValueSearch¬
Wildcard>
 <mdex-config_MergePolicy>aggressive</mdex-config_MergePolicy>
 <mdex-config_SearchChars>+_</mdex-config_SearchChars>
 <mdex-config_SpellingRecordMinWordOccur>2</mdex-config_SpellingRecordMin¬
WordOccur>
 <mdex-config_SpellingRecordMinWordLength>4</mdex-config_SpellingRecordMin¬
WordLength>
 <mdex-config_SpellingRecordMaxWordLength>24</mdex-config_SpellingRecord¬
MaxWordLength>
 <mdex-config_SpellingDValMinWordOccur>5</mdex-config_SpellingDValMinWor¬
dOccur>
 <mdex-config_SpellingDValMinWordLength>3</mdex-config_SpellingDValMin¬
WordLength>
 <mdex-config_SpellingDValMaxWordLength>20</mdex-config_SpellingDValMax¬
WordLength>
</mdex:record>

This GCR:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Types of MDEX Engine configuration documents46

• Enables wildcard search by setting the mdex-config_EnableValueSearchWildcard property
to true.

• Sets the merge policy to aggressive via the mdex-config_MergePolicy property.
• Adds the plus (+) and underscore (_) characters as search characters for value search and record

search operations.

You can create the file in a text editor.

dimsearch_config document
This document sets the configuration for value search.

The default dimsearch_config document contains an empty configuration:

<DIMSEARCH_CONFIG/>

In the configuration document, you can use the RELRANK_STRATEGY attribute to specify a relevance
ranking strategy to use on the results. If you do so, you must first use the relrank_strategies
document to configure the relevance ranking strategy in the MDEX Engine.

Sample dimsearch_config document

To configure value search, you need to create a text input file similar to this example:

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="WineRel¬
Rank"/>

As mentioned above, the WineRelRank strategy must have been configured previously with the rel¬
rank_strategies document.

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="dimsearch_config">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

The name="dimsearch_config" attribute references the dimsearch_config document.

Run-time error

If the RELRANK_STRATEGY attribute in the document references a non-existent relevance ranking
strategy, the load operation will fail with an error similar to this example:

ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT3 finished with
status: ERROR caused by: Error applying updates:
Invalid Relevance ranking strategy "WineRelRank" in DIMSEARCH_CONFIG element.
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT3 error details:
org.apache.axis2.AxisFault: Error applying updates: Invalid Relevance
ranking strategy
"WineRelRank" in DIMSEARCH_CONFIG element.

Endeca® Latitude Data Integrator GuideEndeca Confidential

47Loading Configuration Files | Types of MDEX Engine configuration documents

To correct this error, first use the relrank_strategies document to create the relevance ranking
strategy in the MDEX Engine before you attempt to load your dimsearch_config document.

precedence_rules document
This document sets your application's precedence rules, which provide a way to delay the display of
attributes until they offer a useful refinement of the navigation state.

Precedence rules allow your Endeca implementation to delay the display of a refinement until the user
triggers it, making navigation through the data easier and avoiding information overload.

The default precedence_rules document does not define any rules:

<PRECEDENCE_RULES/>

The attributes referenced in the precedence_rules document do not have to exist in the MDEX
Engine at ingest time. That is, no error checking is done for the existence of the attributes (this allows
the rules to be created even before the data they reference is loaded). For this reason, you must make
sure that the attributes are spelled correctly in the input file and will exist in the MDEX Engine.

Note that if the source attribute in a precedence rule does not exist but its destination attribute does
exist, then the precedence rule will never be triggered. This behavior effectively hides the destination
attribute from refinements.To correct this behavior, either remove the rule or create the source attribute
in the MDEX Engine.

Note also that the type of the source attribute value should be specified correctly. That is, if a source
attribute value for the precedence rule is from a standard attribute, PROPERTY must be specified for
the type. If a source attribute value is from a managed attribute, STANDARD or LEAF must be specified
for the type.

Sample precedence_rules document

To define precedence rules, you need to create a text input file similar to this example which shows
a STANDARD-type precedence rule.

<PRECEDENCE_RULES>
 <PRECEDENCE_RULE
 DEST_DIMENSION="Winery" DEST_DVAL_SPEC="/"
 SRC_DIMENSION="Region" SRC_DVAL_SPEC="/" TYPE="STANDARD"/>
</PRECEDENCE_RULES>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="precedence_rules">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

The name="precedence_rules" attribute references the precedence_rules document.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Types of MDEX Engine configuration documents48

recsearch_config document
This document configures record search, including search interfaces which control record search
behavior for groups of attributes.

Some of the features that can be specified for a search interface include relevance ranking, matching
across multiple Endeca attributes, partial matching, and enabling snippeting for one or more Endeca
attributes.

The default recsearch_config document contains an empty configuration:

<RECSEARCH_CONFIG/>

In the configuration document, you can use the RELRANK_STRATEGY attribute to specify a relevance
ranking strategy to use on the results. If you do so, you must first use the relrank_strategies
document to configure the relevance ranking strategy in the MDEX Engine.

Sample recsearch_config document

To configure record search, you need to create a text input file similar to this example:

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER" CROSS_FIELD_RELE¬
VANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="WineRelRank" NAME="WineSearch">
 <MEMBER_NAME RELEVANCE_RANK="4">WineType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">Wine</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">Winery</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 <MEMBER_NAME SNIPPET_SIZE=10>Description</MEMBER_NAME>
 <PARTIAL_MATCH MAX_WORDS_OMITTED="1" MIN_WORDS_INCLUDED="2"/>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

The example creates a search interface named WineSearch that uses the WineRelRank strategy as
its default relevance ranking strategy. The example also configures partial matching and enables
snippeting for the Description attribute.

As mentioned above, the WineRelRank strategy must have been configured previously with the rel¬
rank_strategies document, and the four referenced Endeca attributes must exist in the MDEX
Engine.

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="recsearch_config">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

The name="recsearch_config" attribute references the recsearch_config document.

Endeca® Latitude Data Integrator GuideEndeca Confidential

49Loading Configuration Files | Types of MDEX Engine configuration documents

Run-time errors

If the RELRANK_STRATEGY attribute in the document references a non-existent relevance ranking
strategy, the load operation will fail with an error similar to this example:

ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT0 finished with
status: ERROR caused by: Error applying updates:
Invalid Relevance Ranking Strategy "WineRelRank" referenced
in SEARCH_INTERFACE "WineSearch"
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT0 error details:
org.apache.axis2.AxisFault: Error applying updates: Invalid
Relevance Ranking Strategy "WineRelRank" referenced
in SEARCH_INTERFACE "WineSearch"

To correct this error, first use the relrank_strategies document to create the relevance ranking
strategy in the MDEX Engine before you attempt to load your recsearch_config document.

In addition, the Endeca attributes referenced in the search interface must also exist in the MDEX
Engine. Otherwise, the load operation will fail with an error similar to this example:

Error applying updates: No property with the name "WineType" exists for
search interface "WineSearch"

To correct this error, first load your PDRs before loading the configuration documents.

relrank_strategies document
This document configures the relevance ranking strategies for a Latitude application.

Relevance ranking is used to control the order of results that are returned in response to a record
search. An individual relevance ranking strategy is expressed in a RELRANK_STRATEGY element,
which in turn is made of individual relevance ranking modules such as RELRANK_EXACT,
RELRANK_FIELD, and so on.

The default relrank_strategies document does not define any relevance ranking strategies:

<RELRANK_STRATEGIES/>

Sample relrank_strategies document

This example creates a relevance ranking strategy named WineRelRank that consists of the
RELRANK_INTERP and RELRANK_FIELD relevance ranking modules.

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="WineRelRank">
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="relrank_strategies">
$XMLString

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Types of MDEX Engine configuration documents50

</mdex:configDocument>
</config-service:putConfigDocuments>

The name="relrank_strategies" attribute references the relrank_strategies document.

stop_words document
This document sets the stop words for queries.

Stop words are words that should be eliminated from a query before it is processed by the MDEX
Engine.

The default stop_words document does not define any stop words:

<STOP_WORDS/>

Sample stop_words document

This example sets the stop words for a wine application.

<STOP_WORDS>
 <STOP_WORD>wine</STOP_WORD>
 <STOP_WORD>bottle</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>
 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="stop_words">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

The name="stop_words" attribute references the stop_words document.

thesaurus document
This document configures the thesaurus for your application.

The thesaurus allows the system to return matches for related concepts to words or phrases contained
in user queries.

The default thesaurus document does not define any stop words:

<THESAURUS/>

Sample thesaurus document

This example sets the thesaurus entries for a wine application.

<THESAURUS>
 <THESAURUS_ENTRY>

Endeca® Latitude Data Integrator GuideEndeca Confidential

51Loading Configuration Files | Types of MDEX Engine configuration documents

 <THESAURUS_FORM>italy</THESAURUS_FORM>
 <THESAURUS_FORM>italian</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>zin</THESAURUS_FORM>
 <THESAURUS_FORM>zinfandel</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>cab</THESAURUS_FORM>
 <THESAURUS_FORM>cabernet</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="thesaurus">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

The name="thesaurus" attribute references the thesaurus document.

Loading the configuration documents
This section describes how to create and configure a graph for loading the index configuration
documents.

The procedure is basically the same for all the index configuration documents. The only exceptions
are the format of the input file and the document name used in this element in the Edit request
structure dialog:

<mdex:configDocument name="relrank_strategies">

The individual topics for the configuration documents in this chapter describe these exceptions.

Graph components

The graphs use the UniversalDataReader component to read in the configuration document. The
strategy is to configure the reader to read the entire flat file as one field of string data type. The string
(named XMLString) is then passed to the writer component.

The WebServiceClient writer component uses the Configuration Web Service's
config-service:putConfigDocuments operation to send the configuration document to the
MDEX Engine.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Loading the configuration documents52

Creating a graph
This task describes how to create an empty graph for loading a configuration document.

The only prerequisite for this task is that you must have created a Data Integrator Designer project.
Keep in mind that a project can have multiple graphs, which means that you can create this graph in
an existing project.

To create an empty graph for your configuration documents:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadConfig.
b) Optionally, type in a description.
c) You can leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

4. In the Output dialog, click Finish.

Adding components to the graph
This tasks describes how to add the UniversalDataReader and WebServiceClient components to
the graph.

In addition, an Edge component will be added to connect the two components.

To add components to the graph:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Others section and drag the WebServiceClient component into the
Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

Endeca® Latitude Data Integrator GuideEndeca Confidential

53Loading Configuration Files | Loading the configuration documents

The next tasks are to configure these components.

Configuring the Reader for the configuration document
This task describes how to configure the UniversalDataReader component to read in the configuration
document.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the configuration document source file to the project's
data-in folder.

Important: The procedure also assumes that you have loaded your attribute schema (PDRs
and DDRs) into the MDEX Engine. This is because if the configuration document specifies an
attribute to use, that attribute should already exist in the MDEX Engine; if it does not exist, the
MDEX Engine may reject the configuration document and LDI will display a load error.

To configure the UniversalDataReader component for the configuration input document:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the source data file and click OK.

3. Leave the Quoted strings box to its default value of false and the Number of skipped records
field to its default of 0.

You can also leave the other settings to their default values.

4. Click OK to apply your configuration changes to the UniversalDataReader component.

5. Save the graph.

After step 3, the Reader Edit Component dialog should look like this example:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Loading the configuration documents54

The next task is to configure the Edge.

Configuring metadata for configuration documents
The Edge component must be configured with a Metadata definition for loading a configuration
document.

The prerequisite for this task is that an Edge component must exist in the graph.

Note: This procedure will configure metadata for loading the precedence_rules configuration
document. The procedure for loading the other configuration documents is identical, with the
exception that at Step 3 you select the name of the appropriate file.

Most of the metadata configuration will be done in the Metadata Editor.This example shows the editor
just after the source precedence_rules document was input.

Endeca® Latitude Data Integrator GuideEndeca Confidential

55Loading Configuration Files | Loading the configuration documents

To configure the Metadata definition for configuration documents:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. In the URL Dialog, double-click the data-in folder, select the source data file, and click OK.
As a result, the Flat File dialog is populated with source data from the input file.

4. In the Flat File dialog, click Next.
The Metadata Editor is displayed, looking like the example above.

5. In the Record pane, make these changes to the Record:recordName1 entity:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Loading the configuration documents56

Click the Record:recordName1 Name field and change the recordName1 default value to a
name that is appropriate for your data, such as PrecRules for the precedence_rules
configuration document.

a)

b) Leave the Type field set to delimited.
c) Leave the Delimiter field as-is for now. (You will delete it in Step 9.)

6. In the Record pane, delete all record fields except for the Field1 record field (that is, delete Field2,
Field3, and so on.)

7. In the Record pane, make these changes to the Field1 record field:

a) Although optional, you should change the Field1 default name to a more descriptive name,
such as XMLString.

b) Leave the Type field set to String.
c) In the Field Details pane, set the EOF as delimiter property to true, as in this example:

8. When you have input all your changes in the Metadata Editor, click Finish. (For now, ignore the
red (invalid metadata) warning messages.)

9. Now you must remove the record delimiter from the metadata. To do so:

a) In the graph, click the Source icon (which is next to the Graph icon).
b) In the Record element (which is a child of the Metadata element), find the fieldDelimiter and

recordDelimiter attributes. For example, on Windows, these attributes look like this:

<Metadata id="Metadata0"
 previewAttachment="${DATAIN_DIR}/precedence_rules.txt"
 previewAttachmentCharset="ISO-8859-1">
<Record fieldDelimiter="<" name="PrecRules"
 previewAttachment="${DATAIN_DIR}/precedence_rules.txt"
 previewAttachmentCharset="ISO-8859-1"

recordDelimiter="\r\n" skipSourceRows="0" type="delimited">
<Field eofAsDelimiter="true" name="XMLString" type="string"/>
</Record>
</Metadata>

c) Delete the fieldDelimiter and recordDelimiter attributes.
d) While still within the Source view, right-click and select Save to save the graph.

Configuring the WebServiceClient component
You must configure the WebServiceClient component to communicate with the Endeca Configuration
Web service.

This procedure will configure metadata for loading the precedence_rules configuration document,
and therefore assumes that you have added the configuration document source file to the project's
data-in folder.The procedure for loading the other configuration documents with the WebServiceClient

Endeca® Latitude Data Integrator GuideEndeca Confidential

57Loading Configuration Files | Loading the configuration documents

component is identical, with the exception that at Step 7 you specify the name of the appropriate
configuration document in the mdex:configDocument element:

<mdex:configDocument name="precedence_rules">

The Writer Edit Component dialog is where you configure the WebServiceClient component:

To configure the WebServiceClient component:

1. Make sure that the MDEX Engine is running and the Configuration Web service is available by
issuing this URL command from your browser (be sure to use the correct port number for your
MDEX Engine):

http://localhost:5555/ws/config?wsdl

The URL command show return the WSDL of the Web service.

2. In the Graph window, double-click the WebServiceClient component.
The Writer Edit Component dialog is displayed.

3. In the WSDL URL field, enter the same URL as in Step 1.

4. In the Operation name field, click the ... browse button, which displays the Choose WS operation
dialog:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Loading the configuration documents58

5. In the Choose WS operation dialog, select DoConfigTransaction and then click OK.
The name of the Web service operation is entered in the Operation name field.

6. Click inside the Request structure field, which causes the ... browse button to be displayed. Then
click the browse button to display the Edit request structure dialog:

7. Add this text to the Generate request field:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="precedence_rules">
$XMLString
</mdex:configDocument>
</config-service:putConfigDocuments>

At this point, the Edit request structure dialog should look like this example:

8. After adding the request text in the Edit request structure dialog, click OK.

9. When you have input all your changes in the Edit Component dialog, click OK.

10. Save the graph.

Endeca® Latitude Data Integrator GuideEndeca Confidential

59Loading Configuration Files | Loading the configuration documents

After creating the graph and configuring the components, you can run the graph to send the configuration
data to the MDEX Engine.You can run the graph by clicking the green circle with white triangle icon

in the Tool bar:

Loading the GCR
This topic provides an overview of how to load the GCR into the MDEX Engine.

Loading the Global Configuration Record (GCR) into the MDEX Engine is very similar to loading the
index configuration documents. The only difference is the format of the request text that you add to
the Edit request structure dialog. This GCR-specific request text is shown in Step 6 below.

To load the GCR:

1. Create a graph, as described in the "Creating a graph" topic in this chapter.

2. Add your GCR input file to the project's data-in folder.

3. Add the UniversalDataReader and WebServiceClient components to the graph, as described in
the "Adding components to the graph" topic in this chapter.

4. Configure the UniversalDataReader component, as described in the "Configuring the Reader for
the configuration document" topic in this chapter.

5. Configure the metadata, as described in the "Configuring metadata for configuration documents"
topic in this chapter.

6. Configure the WebServiceClient component, as described in the "Configuring the WebServiceClient
component" topic in this chapter. The only difference is that you add this text to the Generate
request field:

<config-service:putGlobalConfigRecord
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
$XMLString
</config-service:putGlobalConfigRecord>

At this point, the Edit request structure dialog should look like this example:

7. Make sure you save the graph.

You can run the graph by clicking the green circle with white triangle icon in the Tool bar:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Configuration Files | Loading the GCR60

Note that if you changed the spelling settings, you should rebuild the aspell dictionary by running the
admin?op=updateaspell administrative operation.

Endeca® Latitude Data Integrator GuideEndeca Confidential

61Loading Configuration Files | Loading the GCR

Chapter 6

Adding Key-Value Pairs

This chapter describes how to add key-value pairs to Endeca records.

About key-value pair data
The Add KVPs connector can add key-value pair data to MDEX Engine records.

The two main use cases for the Add KVPs connector are:

• To ingest source data that is stored in a key-value pair format instead of the more traditional
rectangular data model.

• When you do not what the schema is ahead of time.

With either case, you have the option of loading data in rows (with the Add/Update Records connector)
that will be faster than loading the same data as key-value pairs.

Format of the KVP input file
The metadata schema of the Add KVPs connector is fixed and uses a specific ordering.

The first row of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue|mdexType

The meanings of these schema properties are as follows:

MeaningSchema property

The name of the primary key (record spec) of the record to which the
key-value pair will be added.

specKey

The value of the record's primary key.specValue

The name (key) of the Endeca standard attribute to be added to the
record. If the standard attribute does not exist in the MDEX Engine, it is
automatically created by DIWS with system default values.

kvpKey

The value of the standard attribute to be added to the record.kvpValue

Specifies the mdex type (such as mdex:int or mdex:dateTime) for
the kvpKey standard attribute. This parameter is intended for use when

mdexType

MeaningSchema property

you want to create a new standard attribute and want to specify its
property type. If a new PDR for the standard attribute is created and
mdexType is not specified, then the type of the new standard attribute
will be mdex:string. If the standard attribute already exists, you can
specify an empty value for mdexType.

The following is a simple example of an input file for the Add KVPs connector:

specKey|specValue|kvpKey|kvpValue|mdexType
WineID|51841|Designation|Best buy|
WineID|48191|Flavors|Cherry|
WineID|48191|Flavors|Blueberry|
WineID|48197|Drinkability|Drink now|
WineID|48197|Location|42.365615 -71.075647|mdex:geocode

The example adds a Designation assignment to Record 51841, two Flavors assignments to Record
48191 (Flavors is a multi-assign attribute), and a Drinkability assignment to Record 48197. In addition,
a new geocode standard attribute named Location is created in the MDEX Engine and added to Record
48197.

Configuring the Reader for the KVP input file
This task describes how to configure the UniversalDataReader component to read in the KVP data.

This procedure assumes that you have created a graph for the KVP components and that you have
copied the input file into the data-in folder in the Navigation pane of the project. The procedure also
assumes that you will be using the UniversalDataReader component to read in the KVP input data.

To configure the UniversalDataReader component for the KVP input file:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the KVP input file and click OK.

4. Check the Quoted strings box so that its value changes to true.

5. Leave the Number of skipped records field set to the default of 0.

6. Click OK to apply your configuration changes to the UniversalDataReader component.

7. Save the graph.

After the component is configured, the Reader Edit Component dialog should look like this example:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Adding Key-Value Pairs | Configuring the Reader for the KVP input file64

Configuring the Add KVPs connector
You must configure the Add KVPs connector to properly connect to your MDEX Engine.

This procedure assumes that you have created a graph for the Add KVPs connector.

To configure the Add KVPs connector:

1. In the Palette pane, open the Latitude section and drag the Add KVPs connector into the Graph
Editor.

2. In the Graph window, double-click the Add KVPs connector.
The Writer Edit Component dialog is displayed.

3. In the Writer Edit Component dialog, enter these settings:

a) MDEX Host: The host name of the machine on which the MDEX Engine is running.
b) MDEX Port: The port on which the MDEX Engine is listening for requests.
c) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
d) Batch Size (Bytes): To change the default batch size, enter a positive integer. Specifying 0 or

a negative number will disable batching.
e) Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the ingest operation is ended. Entering 0 allows no failed batches.

4. When you have input all your changes, click OK.

5. Save the graph.

After configuration, the Writer Edit Component dialog should look like this example:

Endeca® Latitude Data Integrator GuideEndeca Confidential

65Adding Key-Value Pairs | Configuring the Add KVPs connector

Configuring KVP metadata
The Edge component must be configured with a Metadata definition for loading the key-value pair
data.

This procedure assumes that you have created a graph and added a reader component and the Add
KVPs connector to it. It also assumes that you have added the key-value pair source file to the project's
data-in folder.

To configure the Metadata definition for the KVP Edge:

1. In the Palette pane, click Edge and use it to connect the reader and the Add KVPs connector.

2. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

4. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the data delete input file and click OK.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

6. In the upper pane of the Metadata Editor:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
name such as KVPs.

b) Make sure that the Type field of all properties is set to type string. For example if the
specKey property is set to integer, change it to string.

c) Verify that all properties have the correct delimiter character set (which is the pipe character in
our example). The final property should have a new-line as the delimiter (\n on Linux and \r\n
on Windows).

At this point, the pane should look like this example:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Adding Key-Value Pairs | Configuring KVP metadata66

d) When you have input all your changes, click Finish.

7. In the Graph Editor window, right-click on the Edge and choose Select Metadata and the metadata
you have just configured, for example, KVPs (id:Metadata0).

8. Save the graph.

The Metadata definition for the Edge component is now set.

Running the KVPs graph
After creating the graph and configuring the components, you can run the graph to add the key-value
pair record assignments to the MDEX Engine.

To run the graph to add key-value pairs to the MDEX Engine:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add KVPs connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example that adds five key-value pair
assignments to the MDEX Engine:

INFO [WatchDog] - Successfully started all nodes in phase!
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
INFO [WatchDog] - [Clover] Post-execute phase finalization: 0
INFO [WatchDog] - [Clover] phase: 0 post-execute finalization successfully.
INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 08/06/11 14:30:39
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

Endeca® Latitude Data Integrator GuideEndeca Confidential

67Adding Key-Value Pairs | Running the KVPs graph

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 5
 0 5 0
INFO [WatchDog] - Add KVPs ENDECA_ADD_KVPS0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 5
 0 5 0
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 7146
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

The example also shows four occurrences of this benign message:

Unrecognized assignment type "". Using "mdex:string" instead.

The message is simply informing you that the fifth input schema field (the mdexType field) is empty
on four of the KVP entries and that the connector will use the mdex:string property type when
ingesting the data.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Adding Key-Value Pairs | Running the KVPs graph68

Chapter 7

Loading Taxonomies

This chapter describes how to load an externally managed taxonomy (EMT) into the MDEX Engine.

Overview of loading a taxonomy
This chapter will walk you through the various tasks in creating a graph that can load a taxonomy into
the MDEX Engine.

The Add Managed Values connector allows you to load an externally managed taxonomy (EMT) into
the MDEX Engine. When loaded, externally managed taxonomies are added as managed values to
a managed attribute.You must create a graph and add the Add Managed Values connector and the
UniversalDataReader component to it.

Keep the following two items in mind when adding a taxonomy:

• Managed values can be added to only one managed attribute in a taxonomy load operation. That
is, you can specify the name of only one managed attribute in the Add Managed Values connector.
This means that all the managed values in the taxonomy input file will be added to the same
managed attribute.

• If the managed attribute (to which the taxonomy is being added) does not exist in the MDEX Engine,
it will be created automatically by the Data Ingest Web Service. That is, the appropriate PDR and
DDR for the managed attribute will be created with system default values. For these default values,
see Chapter 1 in this guide.

For the procedure documented in this chapter, the definitions of the managed values to be added are
in a flat file. However, the definitions can use other formats that are supported by the LDI reader
components. The format of the source data is explained in a following topic.

Format of the taxonomy input file
The input must contain four mandatory configuration properties and a corresponding set of managed
value data.

The first line of a taxonomy input file must have these managed value header properties, and in this
order:

spec|displayname|parent|synonym

The meanings of these header properties are as follows:

PurposeProperty

A unique string identifier for the managed value. This is the managed
value spec.

spec

The name for the managed value.displayname

Specifies the parent ID for this managed value, If this is a root managed
value, use a forward slash (/) as the ID. If this is a child managed value,
specify the unique ID of the parent managed value.

parent

Optionally defines the name of a synonym.You can add synonyms to a
managed value so that users can search for other text strings and still

synonym

get the same records as a search for the original managed value name.
Synonyms can be added to both root and child managed values. If you
add multiple synonyms for a managed value, the synonyms are separated
by a delimiter that you specify in the configuration of the Add Managed
Values connector.

The second and following lines contain managed value data for the managed value properties, as
illustrated by this sample file:

spec|parent|displayname|synonym
White|White Wines|/|Blanc,Blanco,Weisse
Red|Red Wines|/|Rouge,Tinto,Rotwein
Merlot|Merlot Wines|Red

In this simple example, the Red managed value (with a display name of "Red Wines") and the White
managed value (with a display name of "White Wines") are at the root of the WineType managed
attribute, while the Merlot managed value is a child of the Red managed value.

After creating the input file, you can copy it into the data-in folder in the Navigation pane of the project.

Creating a graph for the taxonomy
This task describes how to create an empty graph for loading a taxonomy.

The only prerequisite for this task is that you must have created a Data Integrator Designer project.
Keep in mind that a project can have multiple graphs, which means that you can create this graph in
an existing project.

To create an empty graph for your taxonomy:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.
The Create new graph dialog is displayed.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadTaxonomy.
b) Optionally, type in a description.
c) You can leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

4. In the Output dialog, click Finish.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Taxonomies | Creating a graph for the taxonomy70

Adding components to the taxonomy graph
The process requires that you add the UniversalDataReader component and the Add Managed
Values connector to the graph.

In addition, an Edge component will be added to connect the two components.

To add components to the graph:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Add Managed Values connector into
the Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

The next tasks are to configure these components.

Configuring the Reader for the taxonomy input file
This task describes how to configure the UniversalDataReader component to read in the taxonomy
data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the taxonomy source file to the project's data-in
folder.

Endeca® Latitude Data Integrator GuideEndeca Confidential

71Loading Taxonomies | Adding components to the taxonomy graph

To configure the UniversalDataReader component for the taxonomy input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the taxonomy input file and click OK.

3. Check the Quoted strings box so that its value changes to true.

4. Leave the Number of skipped records field set to the default of 0.

5. Click OK to apply your configuration changes to the UniversalDataReader component.

6. Save the graph.

After the component is configured, the Reader Edit Component dialog should look like this example:

The next task is to configure the Add Managed Values connector.

Configuring the Add Managed Values connector
You must configure the Add Managed Values component with the location and port of the MDEX
Engine, as well as the managed attribute name.

This procedure assumes that you have created a graph and added the Add Managed Values connector.

To configure the Add Managed Values connector:

1. In the Graph window, double-click the Add Managed Values connector.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Taxonomies | Configuring the Add Managed Values connector72

MDEX Host: The host name of the machine on which the MDEX Engine is running.a)
b) MDEX Port: The port on which the MDEX Engine is listening for requests.
c) Managed Attribute Name: The name of the dimension to which the dimension values will be

added.
d) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
e) Synonym Delimiter: Optionally, you can specify the character that separates multiple synonyms

for a managed value. Keep in mind that this delimiter is different from the delimiter that separates
the property fields.

3. When you have input all your changes, click OK.

4. Save the graph.

After configuration, the Writer Edit Component dialog should look like this example:

In this sample Add Managed Values connector, the managed values will be added to the WineType
managed attribute.

Configuring taxonomy metadata
The Edge component must be configured with a Metadata definition for loading the taxonomy.

The prerequisite for this task is that an Edge component must exist in the graph.

To configure the Metadata definition for the taxonomy Edge:

1. In the Outline pane, right-click on Metadata.

2. Select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

4. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.

Endeca® Latitude Data Integrator GuideEndeca Confidential

73Loading Taxonomies | Configuring taxonomy metadata

d) Select the taxonomy source file and click OK.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.
The taxonomy data is loaded into the Metadata Editor.

6. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

7. In the upper pane of the Metadata Editor:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
name such as Mvals.

b) Make sure that the Type field of all the properties is set to type string. For example if the spec
property is set to long, change it to string.

c) Verify that all properties have the correct delimiter character set (which is the pipe character in
our example). The final property should have a new-line as the delimiter (\n on Linux and \r\n
on Windows).

d) When you have input all your changes, click Finish.

8. In the Graph Editor window, right-click on the Edge between the UniversalDataReader component
and the Add Managed Values connector. Choose Select Metadata and the metadata you have
just configured, for example, Mvals (id:Metadata0).

9. Save the graph.

The Metadata definition for the Edge component is now set.

Running the taxonomy graph
After creating the graph and configuring the components, you can run the graph to send the taxonomy
to the MDEX Engine.

To run the graph to load a taxonomy:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add Managed Values connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example of adding the three managed
values:

INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 24/05/11 17:58:57
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 69
 3 69 3
INFO [WatchDog] - Add Managed Values ENDECA_ADD_MVALS0

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Loading Taxonomies | Running the taxonomy graph74

 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 69
 3 69 3
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 6126
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records (managed values) that were sent to the
MDEX Engine by the Add Managed Values connector.

Endeca® Latitude Data Integrator GuideEndeca Confidential

75Loading Taxonomies | Running the taxonomy graph

Chapter 8

Deleting Data

This chapter describes how to delete records from the MDEX Engine data set. It also describes how
to key/value pairs from individual records.

Format of the delete input file
The format of the delete input file uses a fixed schema and a specific ordering of the input fields.

The Delete Data connector can perform the following deletions of data in the MDEX Engine:

• Delete a full record.
• Delete a specific key/value pair from a record. All other key/value pairs on the record are not

affected.
• Delete all key/value pairs (from the same standard attribute) from a record.This is a wildcard delete

of the values from a specific standard attribute on the record. All other key/value pairs (on the
record) from other standard attributes are not affected.

You can specify all three types of delete operations in the same input file.

The two restrictions of this connector are:

• It cannot delete managed values on the record.
• When deleting records, it cannot do wildcard deletes (for example, delete Records 50*) and it

cannot delete ranges of records (for example, delete Records 5000 to 5100).You must specify
each record explicitly by its primary key.

The format of the input file is fixed and uses a specific ordering:

• The first row of the input file is the record header row and must use a fixed schema.
• The second and following lines specify information about the records and/or record data to be

deleted.

The schema of the record header row is:

specKey|specValue|kvpKey|kvpValue

where:

• specKey is the primary key (record spec) of the record.
• specValue is the primary key value.
• kvpKey is the name (key) of the Endeca standard attribute to which the assignment belongs. If

both kvpKey and kvpValue are blank, the entire record is deleted.

• kvpValue is the assigned value to be removed. If this field is blank but kvpKey is not, then all
assignments of kvpKey are deleted.

An example of a text input file for the Delete Data connector is:

specKey|specValue|kvpKey|kvpValue
WineID|3000|Flavors|peach
WineID|4000|Drinkability|
WineID|5000||

When the connector is run with this input file:

• The assignment "peach" from the Flavors standard attribute is removed from Record 3000.
• All assignments from the Drinkability standard attribute are removed from Record 4000.
• Record 5000 is deleted from the MDEX Engine.

After creating the input file, you should add it to the project's data-in folder.

Adding components to the delete data graph
Building a graph to delete data requires that you add the Delete Data connector to the graph.

This procedure assumes that you have added the delete input file to the data-in folder of the project
and have also created an empty graph.

To add components to a graph for deleting records:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Delete Data connector into the Graph
Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Deleting Data | Adding components to the delete data graph78

The next tasks are to configure the components.

Configuring the Reader for the delete input file
This task describes how to configure the UniversalDataReader component to read in the file that
specifies what record data to delete.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the delete input file to the project's data-in folder.

To configure the UniversalDataReader component for the data delete input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the data delete input file and click OK.

3. Check the Quoted strings box so that its value changes to true.

4. Leave the Number of skipped records field set to the default of 0.

5. Click OK to apply your configuration changes to the UniversalDataReader component.

6. Save the graph.

Configuring the metadata for data deletes
The Edge component must be configured with a Metadata definition.

The prerequisite for this task is that an Edge component must exist in the graph.

To configure the Metadata definition for the data delete Edge:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the data delete input file and click OK.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

5. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

6. In the upper pane of the Metadata Editor:

Endeca® Latitude Data Integrator GuideEndeca Confidential

79Deleting Data | Configuring the Reader for the delete input file

Click the Record:recordName1 Name field and change the recordName1 default value to a
name such as DeleteRecs.

a)

b) Make sure that the Type field of all properties is set to type string. For example if the
specKey property is set to integer, change it to string.

c) Verify that all properties have the correct delimiter character set (which is the pipe character in
our example). The final property should have a new-line as the delimiter (\n on Linux and \r\n
on Windows).

At this point, the pane should look like this example:

d) When you have input all your changes, click Finish.

7. Save the graph.

The Metadata definition for the Edge component is now set.

Configuring the Delete Data connector
You must configure the Delete Data component with the location and port of the MDEX Engine.

This procedure assumes that you have created a graph and added the Delete Data connector.

To configure the Delete Data connector:

1. In the Graph window, double-click the Delete Data component.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

a) MDEX Host: The host name of the machine on which the MDEX Engine is running.
b) MDEX Port: The port on which the MDEX Engine is listening for requests.
c) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
d) Batch Size (Bytes) : Enter an integer greater than 0 to set the batch size in bytes. Specifying

0 or a negative number will disable batching.
e) Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the operation is ended. Entering 0 allows no failed batches.

3. When you have input all your changes, click OK.

4. Save the graph.

After configuration, the Writer Edit Component dialog should look like this example:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Deleting Data | Configuring the Delete Data connector80

Running the delete data graph
After creating the graph and configuring the components, you can run the graph to delete the specified
records and/or record assignments from the MDEX Engine.

To run the graph to delete data from the MDEX Engine:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Delete Data connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example of deleting three records
and/or record assignments:

INFO [WatchDog] - Starting up all nodes in phase [0]
INFO [WatchDog] - Successfully started all nodes in phase!
INFO [ENDECA_DELETE_DATA0_0] - Sending in the last batch of deletes
INFO [WatchDog] - [Clover] Post-execute phase finalization: 0
INFO [WatchDog] - [Clover] phase: 0 post-execute finalization successfully.
INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 27/05/11 10:17:39
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 3
 0 3 0
INFO [WatchDog] - Delete Data ENDECA_DELETE_DATA0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 3

Endeca® Latitude Data Integrator GuideEndeca Confidential

81Deleting Data | Running the delete data graph

 0 3 0
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 6119
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records that were sent to the MDEX Engine by
the Delete Data connector.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Deleting Data | Running the delete data graph82

Chapter 9

Latitude Connector Reference

This chapter provides a reference for the Endeca Latitude connectors available in the LDI Designer
palette.

Bulk Add/Replace Records connector
This connector adds new records or replaces existing records in the MDEX Engine.

The Bulk Add/Replace Records connector adds or replaces records via the MDEX Engine's bulk
ingest interface (that is, it does not use the Data Ingest Web Service).

The characteristics of this connector are:

• The connector can load data source records only.
• Existing records in the MDEX Engine are replaced, not updated. That is, the replace operation is

not additive. Therefore, the key/value pair list of the incoming record will completely replace the
key/value pair list of the existing record.

• The connector cannot load PDRs, DDRs, managed attribute values, the GCR, nor the MDEX
Engine index configuration files.

• A primary-key attribute (also called the record spec) is required for each record to be added or
replaced.

• If an assignment is for a standard attribute (property) that does not exist in the MDEX Engine, the
new standard attribute is automatically created with system default values for the PDR (see Chapter
1 in this guide for a list of these values).

• No client-side batching is used and there is only a single, streaming connection to the MDEX
Engine.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema for the Bulk Add/Replace Records connector is not fixed. Therefore, each
LDI field represents a property on an MDEX record.

The metadata type of the LDI field (as shown in the LDI Metadata Editor) translates to the mdex
property type. For example, the LDI integer data type translates to the mdex:int data type. Note

that this behavior can be overridden to support LDI non-native types (such as mdex:duration,
mdex:time, and mdex:geocode).

Use cases

The Bulk Add/Replace Records connector is intended to be used with bulk data when delayed update
visibility and compromised concurrent query performance are acceptable.

Some of the use cases for this connector are:

• Full index initial load of records, with no loaded schema. In this scenario, the MDEX Engine has
no data records and also has no user-created schema (such as no existing PDRs). In this case,
all new properties (including the primary-key properties) are created by DIWS with system default
values (see Chapter 1 in this guide for a list of these values).

• Full index initial load of records, with your record schema already loaded.You can load the record
schema (PDRs and DDRs) with the Add/Update Records connector.

• Adding more new records to the MDEX Engine any time after the initial loading of records. As in
the initial load case, new standard attributes that do not exist in the MDEX Engine are automatically
created with default system values.

• Replacing existing records in the MDEX Engine any time after the initial loading of records. In this
case, all the key/value pairs of the existing record are replaced with the key/value pairs of the input
file.

Configuration properties

The configuration for the Bulk Add/Replace Records connector is set via the Designer Edit component:

The Basic and Advanced configuration properties that you can set are listed in the following table.
For the other properties, see the "Visual and Common configuration properties" topic in this chapter.

Valid ValuesPurposeConfiguration
Property

The name or IP address of the
machine. localhost can be used as
the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Bulk Add/Replace Records connector84

Valid ValuesPurposeConfiguration
Property

The bulk load port is determined in one
of two ways:

Identifies the bulk load port on which
the MDEX Engine is listening. Note that
this port is different from the HTTP port
used by the all the other connectors.

MDEX Bulk Load
Port

• The Dgraph --bulk_load_port
flag is used when the MDEX
Engine is started.

• If --bulk_load_port flag is not
used, then the default bulk load
port is the standard Dgraph port
plus one. This means that the bulk
load port is either 5556 (if the
Dgraph --port flag is not used)
or is the value of the --port flag
plus one.

The name of the primary key. If the
primary-key property does not exist in

Sets the primary key (record spec) for
the records to be added or updated.

Spec Attribute

the MDEX Engine, the property is
automatically created with the system
default values.

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX Engine.
In this case, the MDEX Engine
must also be SSL-enabled.

Either 0 (which means no failures are
allowed) or a positive integer.

Sets the maximum number of ingest
errors that can occur. The ingest
operation is ended after this number of
errors is reached.

Stop after this
many errors

A single character that is the
multi-assign delimiter.You do not have

Sets the character that separates
multi-assign values in a property in a

Multi-assign
delimiter

to use this field if your source does not
have multi-assign properties.

source record. Keep in mind that this
delimiter is different from the delimiter
that separates property fields on the
source record.

MDEX Engine status after a failed ingest operation

When a bulk load ingest operation is terminated because of an error, records that were ingested before
the error should be in the MDEX Engine. Although the MDEX Engine may accept queries on the
ingested records, you should consider the MDEX Engine to be in an inconsistent state.

Add/Update Records connector
This connector adds new records or updates existing records in the MDEX Engine.

Endeca® Latitude Data Integrator GuideEndeca Confidential

85Latitude Connector Reference | Add/Update Records connector

The Add/Update Records connector adds or updates records via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector can load data source records, PDRs (Property Description Records), and DDRs
(Dimension Description Records).

• The connector cannot load managed attribute values, the GCR (Global Configuration Record), nor
the MDEX Engine index configuration files (such as the search interface configuration).

• A primary-key attribute (also called the record spec) is required for each record to be added or
updated.

• If an assignment is for a standard attribute that does not exist in the MDEX Engine, the new standard
attribute is automatically created with system default values for the PDR (see Chapter 1 for a list
of these values).

• Updates are batched on the client-side with multiple concurrent connections to the MDEX Engine.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema for the Add/Update Records connector is not fixed. Therefore, each LDI field
represents a property on an MDEX record.

The metadata type of the LDI field (as shown in the LDI Metadata Editor) translates to the mdex
property type. For example, the LDI integer data type translates to the mdex:int property type.
Note that this behavior can be overridden to support LDI non-native types (such as mdex:duration,
mdex:time, and mdex:geocode).

Use cases

The Add/Update Records connector is intended to be used for non-bulk data when immediate update
visibility is desired and/or high concurrent query performance is important.

Some of the use cases for this connector are:

• Full index initial load of records, with no loaded schema. In this scenario, the MDEX Engine has
no data records and also has no user-created schema (such as no existing PDRs). In this case,
all new properties (including the primary-key properties) are created by DIWS with system default
values (see the Chapter 1 in this guide for a list of these values).

• Loading of the record schema before an initial load. In this case, you load your PDR schema
records (and, optionally, your DDR schema) before loading your data records.

• Full index initial load of records, with your record schema already loaded.
• Incremental updates involving the addition of new records to the MDEX Engine any time after the

initial loading of records. As in the initial load case, new standard attributes that do not exist in the
MDEX Engine are automatically created with default system values.

• Incremental updates to existing records, which means adding key-value pairs. If a standard attribute
is configured as multi-assign, a record can have multiple assignments of that attribute.The records
to be updated are considered totally additive. That is, the key-value pair list of the update record
will be merged into the existing record. If attribute values with the same name already exist, then
the new values will be additional values for the same standard attribute (multi-assign). Keep in
mind that this operation can also be performed by the Add KVPs connector.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Add/Update Records connector86

Configuration properties

The configuration for the Add/Update Records connector is set via the Designer Edit component:

The Basic and Advanced configuration properties that you can set are listed in the following table.
For the other properties, see the "Visual and Common configuration properties" topic in this chapter.

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the MDEX
Engine is listening.

MDEX Port

The name of the primary key. If the
primary-key property does not exist in

Sets the primary key (record spec) for
the records to be added or updated.

Spec Attribute

the MDEX Engine, the property is
automatically created with the system
default values.

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case,
the MDEX Engine must also be
SSL-enabled.

Sets the batch size for the ingest
operation. Each record size is

Batch Size (Bytes) • A number equal to or greater than
1 sets the batch size. If the batch

calculated in bytes. A batch consists of
one or more records.

size is too small to fit in a record,
then it is reset to the size to
accommodate that record.

Endeca® Latitude Data Integrator GuideEndeca Confidential

87Latitude Connector Reference | Add/Update Records connector

Valid ValuesPurposeConfiguration
Property

• Specifying 0 (zero) or a negative
number will turn off batching. This
means that all records are placed
into one batch and sent to the
MDEX Engine at the end of the
ingest operation.

A single character that is the
multi-assign delimiter.You do not have

Sets the character that separates
multi-assign values in a property in a

Multi-assign
delimiter

to use this field if your source does not
have multi-assign properties.

source record. Keep in mind that this
delimiter is different from the delimiter
that separates property fields on the
source record.

Either 0 (which allows no failed batches)
or a number greater than 0.

Sets the maximum number of batches
that can fail before the ingest operation
is ended.

Maximum number
of failed batches

Batch size adjustments by the connector

Regardless of the batch size you have specified (assuming it is a non-zero, non-negative number),
the Add/Update Records connector will adjust the batch size on the fly in order to ensure that all the
assignments for a given record will fit in the batch. This ensures that assignments for a given record
are not split between different batches.

Add KVPs connector
This connector updates Endeca records in the MDEX Engine by adding new key-value pairs to the
records.

The Add KVPs connector is intended to update records by adding new key-value pair (KVP)
assignments to those records.The connector updates records via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector can load a new key-value pair for a record.
• Only Endeca standard attribute values can be loaded. Adding managed attribute values is not

supported.
• The key-value pairs can only be added. Existing key-value pairs on records cannot be deleted or

replaced.
• Multi-assign properties cannot be added. To do this, you need to add separate rows in the input

file for multiple assignments of a given property.
• If an assignment is for a standard attribute (property) that does not exist in the MDEX Engine, the

new standard attribute is created by DIWS with system default values for the PDR (see Chapter
1 for a list of these values).You can, however, specify a property type for the new standard attribute.

• The main use case is one where your source data is stored in a key-value pair format, as opposed
to something like a rectangular data model.

When added to a graph, the connector icon looks like this:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Add KVPs connector88

Metadata schema

The metadata schema of the Add KVPs connector is fixed and uses a specific ordering. The first row
of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue|mdexType

where:

• specKey is the primary key (record spec) of the record to which the key-value pair will be added.
• specValue is the value of the record's primary key.
• kvpKey is the name (key) of the Endeca standard attribute to be added to the record. If the standard

attribute does not exist in the MDEX Engine, it is automatically created by DIWS with system default
values.

• kvpValue is the value of the standard attribute to be added.
• mdexType specifies the mdex property type (such as mdex:int or mdex:dateTime). This

parameter is intended for use when you want to create a new standard attribute and want to specify
its property type. If a new PDR for the standard attribute is created and mdexType is not specified,
then the type of the new standard attribute will be mdex:string. If the standard attribute already
exists, you can specify an empty value for mdexType.

Configuration properties

The configuration for the Add KVPs connector is set via the Designer Edit component:

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

Endeca® Latitude Data Integrator GuideEndeca Confidential

89Latitude Connector Reference | Add KVPs connector

Valid ValuesPurposeConfiguration
Property

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Sets the batch size for the ingest
operation. Each record size is

Batch Size (Bytes) • A number equal to or greater than 1
sets the batch size. If the batch size

calculated in bytes. A batch consists
of one or more records.

is too small to fit in a record, then it
is reset to the size to accommodate
that record.

• Specifying 0 (zero) or a negative
number will turn off batching. This
means that all records are placed into
one batch sent to the MDEX Engine
at the end of the ingest operation.

Either 0 (which allows no failed batches)
or a positive integer.

Sets the maximum number of
batches that can fail before the ingest
operation is ended.

Maximum number
of failed batches

Add Managed Values connector
This connector loads a taxonomy into the MDEX Engine's data set.

The Add Managed Values connector is intended to load a taxonomy (Endeca managed attribute
values) into the MDEX Engine. The taxonomy is loaded via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector loads only managed values (mvals). It does not load standard values (svals).
• All the managed values must belong to only one managed attribute.
• If the managed attribute does not exist in the MDEX Engine, the managed attribute is created by

DIWS with system default values for the DDR and (if does not already exist) for the PDR. See
Chapter 1 in this guide for a list of the default values.

• Optionally, synonyms can be created for managed values.

When added to a graph, the connector icon looks like this:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Add Managed Values connector90

Metadata schema

The metadata schema of the Add Managed Values connector is fixed and uses a specific ordering.
The first row of the data source input file is the record header row and must use this schema:

spec|displayname|parent|synonym

where:

• spec is a unique string identifier for the managed value. This is the managed value spec.
• displayname is the name of the managed value.
• parent is the parent ID for this managed value, If this is a root managed value, use a forward slash

(/) as the ID. If this is a child managed value, specify the unique ID of the parent managed value.
• synonym optionally defines the name of a synonym. Synonyms can be added to both root and

child managed values.You can add multiple synonyms to a single managed value, with the
synonyms separated by a delimiter that you specify in the configuration dialog.

Configuration properties

The configuration for the Add Managed Values connector is set via the Designer Edit component:

The configuration properties that you can change in the Edit component are:

Valid ValuesPurposeConfiguration Property

The name or IP address of the
machine. localhost can be used
as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

The name of a managed attribute.The
name must use the NCName format.

Sets the name of the managed
attribute to which the managed
values will be added.

Managed Attribute
Name

If the managed attribute does not exist
in the MDEX Engine, DIWS
automatically creates the managed
attribute with system default values.

Endeca® Latitude Data Integrator GuideEndeca Confidential

91Latitude Connector Reference | Add Managed Values connector

Valid ValuesPurposeConfiguration Property

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX Engine.
In this case, the MDEX Engine
must also be SSL-enabled.

A single character that is the synonym
delimiter.

Sets the delimiter for specifying
multiple synonyms.

Synonym delimiter

Delete Data connector
This connector performs delete operations on Endeca records.

The Delete Data connector performs these delete operations via the Data Ingest Web Service (DIWS):

• Deletes an entire record.
• Deletes a specific value assignment from a specific Endeca standard attribute on a specific record.
• Deletes all value assignments from a specific standard attribute on a specific record.

Note that the connector cannot remove managed values from records.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema of the Delete Data connector is fixed and uses a specific ordering. The first
row of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue

where:

• specKey is the name of the primary key (record spec) of the record on which the delete operation
will be performed.

• specValue is the value of the record's primary key.
• kvpKey is the name (key) of the Endeca standard attribute to which the assignment belongs. If

kvpValue is blank, then all assignments of kvpKey are deleted. If both kvpKey and kvpValue are
blank, then the entire record is deleted.

• kvpValue is the assigned value to be removed.

The following is a simple example of an input file for the Delete Data connector:

specKey|specValue|kvpKey|kvpValue
WineID|3000|Flavors|peach
WineID|4000|Drinkability|
WineID|5000||

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Delete Data connector92

Configuration properties

The configuration for the Delete Data connector is set via the Designer Edit component:

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration Property

The name or IP address of the
machine. localhost can be
used as the name.

Identifies the machine on which
the MDEX Engine is running.

MDEX Host

The port number on which the
MDEX Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX
Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Sets the batch size for the delete
ingest operation. Each record

Batch Size (Bytes) • A number equal to or greater
than 1 sets the batch size. If

size is calculated in bytes. A the batch size is too small to
batch consists of one or more fit in a record, then it is reset
records to be sent to the MDEX
Engine for deletion.

to the size to accommodate
that record.

• Specifying 0 (zero) or a
negative number will turn off
batching. This means that all
records are placed into one
batch sent to the MDEX
Engine at the end of the
ingest operation.

Endeca® Latitude Data Integrator GuideEndeca Confidential

93Latitude Connector Reference | Delete Data connector

Valid ValuesPurposeConfiguration Property

Either 0 (which allows no failed
batches) or a positive integer.

Sets the maximum number of
batches that can fail before the
ingest operation is ended.

Maximum number of failed
batches

Visual and Common configuration properties
This topic describes the meanings of the Visual and Common configuration properties of connectors.

All Latitude connectors have Visual and Common properties in their configuration dialogs. Because
the functionality of these properties is the same across all the connectors, an overview of these
properties can be described in a common topic. For more information on the purpose of these properties,
see the CloverETL Designer User's Guide.

Visual properties

Visual properties can be seen in the graph. The Visual section looks like this in the Edit component:

The Visual configuration properties are:

Valid valuesPurposeVisual property

You can change the default name
(for example, to one that best

Displays the component name when
the component is placed on a graph.

Component name

describes what type of data is being
loaded).

Text describing what this
component does.

Lets you add some descriptive text
that is displayed as a hint when you
mouse over the component in the
graph.

Description

Do not edit this field. Instead, use
your cursor to move the component
in the graph to the desired position.

Describes the location (using an
X-axis and Y-axis) of the component
within the graph.

Location

Do not edit this field.Size

Common properties

Common properties are common to all components. The Common section looks like this in the Edit
component:

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Visual and Common configuration properties94

The Common configuration properties are:

Valid valuesPurposeCommon property

Do not edit this field.Identifies the component among all of
the other components within the same
component type.

ID

Do not edit this field.Describes the type of the component.
By adding a number to this component
type, you can get a component ID.

Component type

Do not edit this field.Describes what this component can
do.

Specification

An integer number of the phase to
which the component belongs.

Sets the phase number for the
component. Because each graph runs
in parallel within the same phase

Phase

number, all components and edges
that have the same phase number run
simultaneously.

Enables or disables the component for
parsing data.

Enabled • enabled (the default) means
the component can parse data.

• disabled means the
component does not parse
data.

• passThrough puts the
component in passThrough
mode, in which data records
will pass through the
component from input to
output ports and the
component will not change
them.

Select the input port from the list
of all input ports.

If the component runs in passThrough
mode, you can specify which input port
should receive the data records.

Pass Through Input Port

Select the output port from the list
of all output ports.

If the component runs in passThrough
mode, you can specify which output
port should send the data records out.

Pass Through Output
Port

Endeca® Latitude Data Integrator GuideEndeca Confidential

95Latitude Connector Reference | Visual and Common configuration properties

Valid valuesPurposeCommon property

If the graph is executed by a Cluster
of LDI Servers, this attribute must be
specified in the graph.

Allocation

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Latitude Connector Reference | Visual and Common configuration properties96

Chapter 10

Configuration Tips and Troubleshooting

This chapter provides some generic configuration tips and also describes solutions to problems you
may encounter when building or running graphs.

Configuration tips
This section provides tips and general information for configuration tasks.

Recommended order of loading data
This topic provides a recommended order for loading your configuration information and source data
into the MDEX Engine.

Assuming that you are starting with an empty MDEX Engine (that is, only mkmdex has been run), the
recommended order of loading your data is the following:

1. Global Configuration Record (GCR), which sets the global configuration settings for the MDEX
Engine.

2. Attribute Schema Configuration, which creates the standard attributes and managed attributes, in
this order:

a. Property Description Records (PDRs)
b. Dimension Description Records (DDRs)
c. Managed attribute values (mvals)

3. Attribute Group Configuration, which consists of creating groups and adding attributes to them
4. Index Configuration, which consists of the index configuration documents in this order:

a. relrank_strategies document (necessary if a relevance ranking strategy is referenced by
the next two documents)

b. recsearch_config document
c. dimsearch_config document
d. precedence_rules document
e. stop_words document
f. thesaurus document

5. Application Source Records, which consists of the data on which user queries will be made.

You may alter the order to fit the needs of your Latitude application. For example, if you are satisfied
with the default settings of the GCR, then there is no need to load the GCR. Or, to use another example,
you do not need to load your attribute group configuration if you intend to create and manage attribute
groups with Latitude Studio's Attribute Settings component.

Creating mdexType Custom properties
LDI Designer allows you to create an mdexType Custom property that you can use to explicitly specify
the MDEX type to which a particular Endeca standard attribute should map.

The Custom Property feature can be used to specify MDEX types (such as mdex:duration,
mdex:time, and mdex:geocode) that are not natively supported in the Designer. In this case, the
ETL developer has to send a string through the Designer, making sure that the string value is formatted
in the way that the MDEX Engine expects. The new mdexType Custom property, in other words,
overrides the Designer native property type when the records are sent to the MDEX Engine.

This functionality is particularly useful for non-String multi-assign properties, because the Designer
natively has to treat the property as a string since it has to include a delimiter. Thus, you can include
delimiters in the multi-assign property (as though it were a String) but send the property to the MDEX
Engine with mdex:int (for example) as the MDEX property type.

Important: Although the property will be designated as Designer type String, you must make
sure that the string value is formatted according to the rules of the MDEX property type to which
it will be mapped. For example, if it will be created as an mdex:duration attribute in the MDEX
Engine, then the String value must use the mdex:duration format.

You add Custom properties by invoking the Custom property editor from the Fields pane in the Metadata
Editor:

The Name field must be mdexType and the Value field must be one of the MDEX property types (such
as mdex:duration). The Name and Value are used by the Latitude connector to specify (to the
MDEX Engine) what MDEX property type should be used for when creating the standard attribute.

The source input file used as an example is a simple one:

WineID|Wine|Duration|Location
95000|Cambridge Chardonnay|P429DT2M3.25S|42.365615 -71.075647

It creates only one record with four standard attributes:

• The WineID attribute is the primary key and is an Integer. Its value is 9500.
• The Wine attribute is a String type with a value of "Cambridge Chardonnay".

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Configuration Tips and Troubleshooting | Configuration tips98

• The Duration attribute will be a String property in the Designer metadata but will use a Custom
property of mdex:duration in order to create a Duration standard attribute. Its value is
"P429DT2M3.25S" (which specifies a duration of 429 days, 2 minutes, and 3.25 seconds).

• The Location attribute will be a String property in the Designer metadata but will use a Custom
property of mdex:geocode in order to create a Geocode standard attribute. Its value is "42.365615
-71.075647" (which specifies a location at 42.365615 north latitude, 71.075647 west longitude).

To create a Custom property:

1. Create a graph with at least one reader, a Latitude connector (such as the Add/Update Records
connector), and an Edge component.

2. Right-click on the Edge and select New metadata > Extract from flat file.

3. In the Flat File dialog, select the input file and then click Next to display the Metadata editor.

4. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

At this point, the Record pane of the Metadata editor should look like this:

5. In the Record pane of the Metadata editor, make these changes:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
more descriptive name.

b) Change the WineID Type to integer.
c) Leave the Wine Type as string.

6. To create a Custom property type for the Duration property:

a) In the Record pane, click the Duration property to high-light it.

The Duration property is displayed in the Field pane on the right, as in this example:

b) In the Field pane, click the green + icon to bring up the Custom property editor.
c) Enter mdexType in the Name field and mdex:duration in Value field.

The Custom property editor should look like this:

Endeca® Latitude Data Integrator GuideEndeca Confidential

99Configuration Tips and Troubleshooting | Configuration tips

d) Click OK in the Custom property editor.

As a result, a Custom section (with the new mdexType property) is added to the Duration
property in the Field pane:

7. Repeat Step 6 if you want to create another mdexType Custom property type for another of your
source properties.
For example, for the Location attribute, you would create an mdexType Custom property with
mdex:geocode in the Value field.

8. Click OK to apply your changes and close the Metadata editor.

As mentioned above, when the graph is run to add records, the MDEX Engine will use the mdexType
Custom properties to create the standard attributes.

Keep in mind that you can create mdexType Custom properties for any of the MDEX property types,
by setting the Value field to:

• mdex:boolean for Booleans
• mdex:dateTime to represent the date and time to a resolution of milliseconds since the epoch

(January 1, 1970).
• mdex:double for floating-point values
• mdex:duration to represent a length of time with a resolution of milliseconds.
• mdex:geocode to represent latitude and longitude pairs.
• mdex:int for 32-bit signed integers
• mdex:long for 64-bit signed integers
• mdex:string for XML-valid character strings
• mdex:time for time-of-day values to a resolution of milliseconds

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Configuration Tips and Troubleshooting | Configuration tips100

Troubleshooting problems
This section provides information and solutions to problems you may encounter when working with
connectors and graphs.

Avoiding OutOfMemory errors
If the Java process has insufficient memory allocated, you may get OutOfMemory errors when running
the graph.

In an unsuccessful run, the Console Tab will show an OutOfMemory error similar to this example:

ERROR [DataIngestBatchConsumer-0] - Failed with the following exception:
 java.lang.OutOfMemoryError: Java heap space
Exception in thread "DataIngestBatchConsumer-0" java.lang.OutOfMemoryError:
 Java heap space

You can avoid these errors by increasing the memory allocated to the Java process running the service.
The Edit JRE menu lets you increase the memory size on a global basis.

To avoid OutOfMemory errors:

1. Select Preferences from the Window menu.

2. From the Preferences menu, select Java > Installed JREs.

3. In the Installed JREs menu, click on the checked JRE and then click Edit.
The Edit JRE menu is displayed.

4. In the Default VM Arguments field, specify a Java option to set the heap size, such as -Xmx1024M.
The Edit JRE menu should look like the example above.

5. Click Finish to apply your change and close the Edit JRE menu.

6. Click OK to close the Preferences menu.

Endeca® Latitude Data Integrator GuideEndeca Confidential

101Configuration Tips and Troubleshooting | Troubleshooting problems

Avoiding BufferOverflow errors
If the size of the data buffer is too small, you may get BufferOverflow errors when running the
graph.

In an unsuccessful run, the Console Tab will show a BufferOverflowException error similar to
this example:

ERROR [WatchDog] - Node DATA_READER0 error details:
java.lang.RuntimeException: The size of data buffer is only 12288.
Set appropriate parameter in defautProperties file.
 at org.jetel.data.StringDataField.serialize(StringDataField.java:285)
 at org.jetel.data.DataRecord.serialize(DataRecord.java:466)
 at org.jetel.graph.DirectEdge.writeRecord(DirectEdge.java:234)
 at org.jetel.graph.Edge.writeRecord(Edge.java:371)
 at org.jetel.component.DataReader.execute(DataReader.java:264)
 at org.jetel.graph.Node.run(Node.java:425)
 at java.lang.Thread.run(Thread.java:619)
Caused by: java.nio.BufferOverflowException
 at java.nio.Buffer.nextPutIndex(Buffer.java:501)
 at java.nio.DirectByteBuffer.putChar(DirectByteBuffer.java:465)
 at org.jetel.data.StringDataField.serialize(StringDataField.java:282)
 ... 6 more

You can avoid these errors by increasing the buffer settings in the defaultProperties configuration
file, copying the file into your LDI project, and then specifying the file to be used in the run configuration
of a graph. The defaultProperties configuration file is located in the cloveretl.engine.jar
JAR file, whose default location is:

CloverETL Designer\plugins\com.cloveretl.gui_3.0.1\lib\lib\cloveretl.en¬
gine.jar

To modify the defaultProperties configuration file and add it to your LDI project:

1. Copy the cloveretl.engine.jar JAR file to a temporary location (for example, a temp directory).

2. Extract the file org\jetel\data\defaultProperties from the JAR file into the temp directory.

3. Open the defaultProperties in a text editor.

4. Make these changes to the defaultProperties file:

a) Increase Record.MAX_RECORD_SIZE to a size such as 65535.
b) Increase DataParser.FIELD_BUFFER_LENGTH to a size such as 8192.
c) Set DataFormatter.FIELD_BUFFER_LENGTH to the same size as DataPars¬

er.FIELD_BUFFER_LENGTH.
d) Increase DEFAULT_INTERNAL_IO_BUFFER_SIZE to a size such as 130000.

Note that these are suggested recommendations.Your final settings depend on the characteristics
of your data set, which could mean that you may have to further increase these settings if your
ingest operations are still failing due to memory problems.

5. Place the defaultProperties configuration file in your LDI project folder, by copying it into the
Navigator pane.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Configuration Tips and Troubleshooting | Troubleshooting problems102

6. From the Designer tool bar, choose Run > Run Configurations.

7. From the left pane of the Run Configurations menu, select a graph to edit and then click the
Arguments tab in the run configuration.

If the graph you want to edit is not listed, you can either run the graph (so that its name will be
listed) or create a new configuration for the graph.

8. Enter the following text in the Program arguments field:

-config defaultProperties

At this point, the Arguments tab should look like this example:

9. Click Apply to save your changes.

10. Click either Run (to run the graph with the modified run configuration) or Close (to close the Run
Configurations menu).

Endeca® Latitude Data Integrator GuideEndeca Confidential

103Configuration Tips and Troubleshooting | Troubleshooting problems

Connection errors
This topic illustrates connection errors that may occur between your Endeca connectors and the MDEX
Engine.

If the MDEX Engine is not running, this error will result when an Endeca Latitude connector attempts
to make a connection to the MDEX Engine:

ERROR [ENDECA_ADD_KVPS0_0] - Connection refused: connect Error connecting
to the dgraph.
If applicable, ensure your SSL settings are correct.
ERROR [ENDECA_ADD_KVPS0_0] - Failed with the following exception:
 java.rmi.RemoteException: Connection refused: connect Error connecting to
 the dgraph.
 If applicable, ensure your SSL settings are correct.; nested exception is:

 org.apache.axis2.AxisFault: Connection refused: connect
ERROR [WatchDog] - Graph execution finished with error
...
ERROR [WatchDog] - !!! Phase finished with error - stopping graph run !!!

The error will also occur if the connector is incorrectly configured as to the MDEX Engine's host name
and/or port number, or if a connector that is not enabled for SSL attempts to connect to an SSL-enabled
MDEX Engine.

Multi-assign delimiter error
A multi-assign delimiter must be specified when loading multi-assign data.

When loading multi-assign attribute data with either the Bulk Add/Replace Records connector or the
Add/Update Records connector, you must remember to specify the multi-assign delimiter character
when configuring the connector.

If you do not specify the delimiter (or specify the wrong one), the ingest operation should fail with an
error like the following:

ERROR [SocketReader] - Received error message from server: Attempt to
 add/replace record WineID:34699 with unknown dimension value
 "Red;Merlot" within dimension "WineType"
ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node ENDECA_BULK_ADD_OR_REPLACE_RECORDS0 finished
 with status: ERROR

In this example, the multi-assign source is "Red;Merlot" (with the semi-colon being the delimiter). To
correct the problem, specify the correct multi-assign delimiter in the Multi-assign delimiter field of
the connector's configuration screen.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

Configuration Tips and Troubleshooting | Troubleshooting problems104

Appendix A

MDEX Engine Configuration XML Reference

This reference describes the XML elements in the MDEX Engine configuration documents. The
reference describes each element's format, attributes, and sub-elements, and provides an example
of its usage.

XML elements
These common elements are available for use in multiple Endeca XML files.

COMMENT
The COMMENT element associates a comment with a pipeline component and preserves the comment
when the file is rewritten. This element provides an alternative to using inline XML comments of the
form <!-- ... -->.

Format

<!ELEMENT COMMENT (#PCDATA)>

Attributes

The COMMENT element has no attributes.

Sub-elements

The COMMENT element has no sub-elements.

Example

This example includes an informational comment.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"
 <COMMENT>Displays ancestor managed values.</COMMENT>
/DIMSEARCH_CONFIG>

DIMNAME
The DIMNAME element specifies the name of a managed attribute.

Format

<!ELEMENT DIMNAME (#PCDATA)>

Attributes

The DIMNAME element has no attributes.

Sub-elements

The DIMNAME element has no sub-elements.

Example

This example shows the name of a managed attribute.

<RECORD>
 <DIMNAME="WineType">
 ...
</RECORD>

PROP
The PROP element represents an Endeca standard attribute. it can optionally contain a PVAL element.

Format

<!ELEMENT PROP (PVAL?)>
<!ATTLIST PROP
 NAME CDATA #REQUIRED
>

Attributes

The PROP element has the following attributes.

NAME

Identifies the name of the standard attribute.

Sub-elements

The PROP element can optionally contain a PVAL element (or it can have no PVAL elements).

Example

This example shows a standard attribute name.

<RECORD>
 <PROP NAME="Endeca.Title">
 <PVAL>The Simpsons Archive</PVAL>
 </PROP>
 ...
</RECORD>

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | XML elements106

PROPNAME
The PROPNAME element represents an Endeca standard attribute.

Format

<!ELEMENT PROPNAME (#PCDATA)>

Attributes

The PROPNAME element has no attributes.

Sub-elements

The PROPNAME element has no sub-elements.

Example

This example shows a standard attribute name.

<RECORD>
 <PROPNAME="P_Price">
 ...
</RECORD>

PVAL
The PVAL element represents a standard attribute value.

Format

<!ELEMENT PVAL (#PCDATA)>

Attributes

The PVAL element has no attributes.

Sub-elements

The PVAL element has no sub-elements.

Example

This example shows a standard attribute value.

<PROP NAME="Endeca.Title">
 <PVAL>The Simpsons Archive</PVAL>
</PROP>

Dimsearch_config elements
The Dimsearch_config element controls how value searches behave.

This file configures search matching, spelling correction, filtering, and relevance ranking for value
search. These options are configured in the file's root element DIMSEARCH_CONFIG.

Endeca® Latitude Data Integrator GuideEndeca Confidential

107MDEX Engine Configuration XML Reference | Dimsearch_config elements

DIMSEARCH_CONFIG
A DIMSEARCH_CONFIG element sets up the configuration of standard and managed attributes for
value searches. Value searches search against the text collection that consists of the names of all the
attribute values in the data set.

Format

<!ELEMENT DIMSEARCH_CONFIG (COMMENT?, PARTIAL_MATCH?, AUTO_SUGGEST?)>
<!ATTLIST DIMSEARCH_CONFIG
 FILTER_FOR_ANCESTORS (TRUE | FALSE) "FALSE"
 RELRANK_STRATEGY CDATA #IMPLIED
>

Attributes

The DIMSEARCH_CONFIG element has the following attributes.

FILTER_FOR_ANCESTORS

When set to TRUE, the results of a value search return only the highest ancestor attribute value. This
means that if both red zinfandel and red wine match a search query for "red" and
FILTER_FOR_ANCESTORS is set to true, only the red wine attribute value is returned. When set to
FALSE, then both attribute values are returned. The default value is FALSE.

RELRANK_STRATEGY

Specifies the name of a relevance ranking strategy for value search.

Sub-elements

The following table provides a brief overview of the DIMSEARCH_CONFIG sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Specifies if partial query matches should be supported for the
dimension.

PARTIAL_MATCH

Example

This example shows a configuration that displays ancestor attribute values.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"/>

Precedence_rules elements
The precedence_rules elements contain the precedence rules for your application.

Precedence rules allow your application to delay the display of Endeca standard or managed attributes
the user triggers the display. In other words, precedence rules are triggers that cause attributes that
were not previously displayed to now be available. This makes navigation through the data easier,
and is essential to avoid information overload problems.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Precedence_rules elements108

PRECEDENCE_RULE
The PRECEDENCE_RULE element allows your application to suppress refinements for an Endeca
attribute until some condition is met. This makes navigation through the data easier and is essential
to avoid information overload problems.

For example, suppose the records in an application have separate City and State attributes. It would
make sense to hide the City attribute until the user has narrowed down to a specific State, because it
doesn't make sense to pick a City before a State. (For example, choosing "Portland" would select
records in both Portland, OR and Portland, ME.) To accomplish this, create a precedence rule with
State as the trigger and City as the target.

A precedence rule has a trigger (also known as the source) and a target (also known as the destination).
The trigger can be a managed attribute, managed attribute value, standard attribute, or standard
attribute value. The target can be a managed attribute or a standard attribute - it can't be a value.

Format

<!ELEMENT PRECEDENCE_RULE EMPTY>
<!ATTLIST PRECEDENCE_RULE
 TYPE (STANDARD | LEAF | PROPERTY) #REQUIRED
 SRC_DIMENSION CDATA #IMPLIED
 SRC_DVAL_SPEC CDATA #IMPLIED
 DEST_DIMENSION CDATA #IMPLIED
 DEST_DVAL_SPEC CDATA #IMPLIED

 SRC_PROPERTY CDATA #IMPLIED
 SRC_PVAL CDATA #IMPLIED
 DEST_PROPERTY CDATA #IMPLIED
>

Attributes

The PRECEDENCE_RULE element has the following attributes.

TYPE

The type of source attribute value (either standard attribute value or managed attribute value) or
standard attribute for a PRECEDENCE_RULE. If the trigger is a managed attribute or managed attribute
value, then the TYPE can be either STANDARD (which will fire when any value is selected), or LEAF
(which will only fire if a leaf value is selected). If the trigger is a standard attribute or standard attribute
value, then the TYPE must be PROPERTY (not STANDARD).

To summarize these options:

• PROPERTY. Use this type for specifying a standard attribute. Thus, PROPERTY means that if
the standard attribute value specified as the trigger or any of its descendants are in the navigation
state, then the target is presented (one trigger, one target). The target for the PROPERTY type
can be either a standard attribute or a managed attribute.

• STANDARD or LEAF. Use one of these types for specifying a managed attribute:

• STANDARD means that if the managed value specified as the trigger or any of its descendants
are in the navigation state, then the target is presented (one trigger, one target).

• LEAF means that querying any leaf managed value from the trigger managed attribute will
cause the target managed value to be displayed (many triggers, one target).

The target for STANDARD and LEAF types can be a standard attribute or a managed attribute.

Endeca® Latitude Data Integrator GuideEndeca Confidential

109MDEX Engine Configuration XML Reference | Precedence_rules elements

Note: If, for a managed attribute, you by mistake specify PROPERTY as the type of source
attribute value instead of either STANDARD or LEAF, the precedence rule may not trigger,
if you make a selection from this managed attribute in navigation.

SRC_DIMENSION and SRC_DVAL_SPEC

Specifies the source managed attribute name (SRC_DIMENSION) and source managed attribute
value spec (SRC_DVAL_SPEC) that must be selected before the user can see the destination attribute.

DEST_DIMENSION and DEST_DVAL_SPEC

Specifies the destination managed attribute name (DEST_DIMENSION) and destination managed
value spec (DEST_DVAL_SPEC) that appears after the source attribute value is selected.

SRC_PROPERTY and SRC_PVAL

Specifies the source standard attribute name (SRC_PROPERTY) and that must be selected before
the user can see the destination attribute. Optionally, a source standard attribute value (SRC_PVAL)
can also be specified to further refine the trigger to a specific standard value.

DEST_PROPERTY

Specifies the destination standard attribute name (DEST_PROPERTY) that appears after the source
attribute value is selected.

To summarize the rules for specifying TYPE:

• Specify SRC_DIMENSION and SRC_DVAL_SPEC when the trigger is a managed attribute or
managed attribute value. (SRC_DVAL_SPEC is required, but should be "/" if the trigger is a
managed attribute.)

• Specify SRC_PROPERTY and (optionally SRC_PVAL when the trigger is a standard attribute or
standard attribute value.

• Specify DEST_DIMENSION and DEST_DVAL_SPEC when the target is a managed attribute.
(DEST_DVAL_SPEC is required and *must* be set to "/".)

• Specifiy DEST_PROPERTY when the target is a standard attribute.

Sub-elements

PRECEDENCE_RULE contains no sub-elements.

Example

This example shows a STANDARD-type precedence rule taken from the wine reference.

<PRECEDENCE_RULES>
 <PRECEDENCE_RULE
 DEST_DIMENSION="Winery" DEST_DVAL_SPEC="/"
 SRC_DIMENSION="Region" SRC_DVAL_SPEC="/" TYPE="STANDARD"/>
</PRECEDENCE_RULES>

PRECEDENCE_RULES
A PRECEDENCE_RULES element specifies the individual precedence rules available to your
application.

Each precedence rule is represented by an individual PRECEDENCE_RULE element.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Precedence_rules elements110

Format

<!ELEMENT PRECEDENCE_RULES
 (COMMENT?
 , PRECEDENCE_RULE*
)
>

Attributes

The PRECEDENCE_RULES element has no attributes.

Sub-elements

The following table provides a brief overview of the PRECEDENCE_RULES sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Allows your application to delay dimension display until the user
triggers the display.

PRECEDENCE_RULE

Example

This example shows a STANDARD-type precedence rule.

<PRECEDENCE_RULES>
 <PRECEDENCE_RULE
 DEST_DIMENSION="Winery" DEST_DVAL_SPEC="/"
 SRC_DIMENSION="Region" SRC_DVAL_SPEC="/" TYPE="STANDARD"/>
</PRECEDENCE_RULES>

Recsearch_config elements
The Recsearch_config element configures record search.

RECSEARCH_CONFIG
A RECSEARCH_CONFIG element sets up the configuration of attributes for record searches.

Record searches search against the text collection that consists of the names of all the attribute values
in the data set.

Format

<!ELEMENT RECSEARCH_CONFIG
 (COMMENT?
 , SEARCH_INTERFACE*
)
>
<!ATTLIST RECSEARCH_CONFIG
 WORD_INTERP (TRUE | FALSE) "FALSE"
>

Endeca® Latitude Data Integrator GuideEndeca Confidential

111MDEX Engine Configuration XML Reference | Recsearch_config elements

Attributes

The RECSEARCH_CONFIG element has the following attributes.

WORD_INTERP

Specifies whether to enable word interpretation forms (see-also suggestions) of user query terms
considered by the text search engine while processing record search requests. The default value is
FALSE.

Sub-elements

The following table provides a brief overview of the RECSEARCH_CONFIG sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Represents a named collection of dimensions and/or properties.SEARCH_INTERFACE

Example

This example shows the configuration for a wine implementation.

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="All" NAME="All">
 <MEMBER_NAME RELEVANCE_RANK="4">P_WineType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">P_Name</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">P_Winery</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">P_Description</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Relrank_strategies elements
The Relrank_strategies elements contain the relevance ranking strategies for an application.

The strategies are grouped in the root element RELRANK_STRATEGIES. Each strategy is expressed
in a RELRANK_STRATEGY element, which in turn is made of individual relevance ranking modules
such as RELRANK_EXACT, RELRANK_FIELD, and so on.

For more information about relevance ranking, see the Latitude Developer's Guide.

RELRANK_APPROXPHRASE
The RELRANK_APPROXPHRASE element implements the Approximate Phrase relevance ranking
module.

This module is similar to RELRANK_PHRASE, except that in the higher stratum, only the first instance
of an exact match of the user's phrase is considered, which improves system performance.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements112

Note: The RELRANK_APPROXPHRASE element is no longer supported. Use the
RELRANK_PHRASE element with the APPROXIMATE attribute instead.

Format

<!ELEMENT RELRANK_APPROXPHRASE EMPTY>

Attributes

The RELRANK_APPROXPHRASE element has no attributes.

Sub-elements

The RELRANK_APPROXPHRASE element has no sub-elements.

RELRANK_EXACT
The RELRANK_EXACT element implements the Exact relevance ranking module.

This module groups results into strata based on how well they match a query string, with the highest
stratum containing results that match the user's query exactly. For details, see the Latitude Developer's
Guide.

Format

<!ELEMENT RELRANK_EXACT EMPTY>

Attributes

The RELRANK_EXACT element has no attributes.

Sub-elements

The RELRANK_EXACT element has no sub-elements.

Example

In this example, the ranking strategy MyStrategy includes the RELRANK_EXACT element.

<RELRANK_STRATEGY NAME=”MyStrategy”>
 <RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
 <RELRANK_EXACT/>
 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>

RELRANK_FIELD
The RELRANK_FIELD element implements the Field relevance ranking module.

This module assigns a score to each result based on the static rank of the standard attribute or managed
attribute member of the search interface that caused the document to match the query. For details,
see the Latitude Developer's Guide.

Endeca® Latitude Data Integrator GuideEndeca Confidential

113MDEX Engine Configuration XML Reference | Relrank_strategies elements

Format

<!ELEMENT RELRANK_FIELD EMPTY>

Attributes

The RELRANK_FIELD element has no attributes.

Sub-elements

The RELRANK_FIELD element has no sub-elements.

Example

In this example, the field module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_FIRST
The RELRANK_FIRST element implements the First relevance ranking module.

This module ranks documents by how close the query terms are to the beginning of the document.
This module takes advantage of the fact that the closer something is to the beginning of a document,
the more likely it is to be relevant. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FIRST EMPTY>

Attributes

The RELRANK_FIRST element has no attributes.

Sub-elements

The RELRANK_FIRST element has no sub-elements.

Example

In this example, the ranking strategy All includes the First relevance ranking module.

<RELRANK_STRATEGY NAME="All">
 <RELRANK_FIRST/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_FREQ
The RELRANK_FREQ element implements the Frequency relevance ranking module.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements114

This module provides result scoring based on the frequency (number of occurrences) of the user's
query terms in the result text. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FREQ EMPTY>

Attributes

The RELRANK_FREQ element has no attributes.

Sub-elements

The RELRANK_FREQ element has no sub-elements.

Example

This example implements a strategy called Frequency.

<RELRANK_STRATEGY NAME="Frequency">
 <RELRANK_FREQ/>
</RELRANK_STRATEGY>

RELRANK_GLOM
The RELRANK_GLOM element implements the Glom relevance ranking module.

This module ranks single-field matches ahead of cross-field matches. For details, see the Latitude
Developer's Guide.

Format

<!ELEMENT RELRANK_GLOM EMPTY>

Attributes

The RELRANK_GLOM element has no attributes.

Sub-elements

The RELRANK_GLOM element has no sub-elements.

Example

This example implements a strategy called Single_Field.

<RELRANK_STRATEGY NAME="Single_Field">
 <RELRANK_GLOM/>
</RELRANK_STRATEGY>

RELRANK_INTERP
The RELRANK_INTERP element implements the Interpreted (Interp) relevance ranking module.

This module provides a general-purpose strategy that assigns a score to each result document based
on the query processing techniques used to obtain the match. Matching techniques considered include

Endeca® Latitude Data Integrator GuideEndeca Confidential

115MDEX Engine Configuration XML Reference | Relrank_strategies elements

partial matching, cross-attribute matching, spelling correction, thesaurus, and stemming matching.
For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_INTERP EMPTY>

Attributes

The RELRANK_INTERP element has no attributes.

Sub-elements

The RELRANK_INTERP element has no sub-elements.

Example

In this example, the Interpreted module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_MAXFIELD
The RELRANK_MAXFIELD element implements the Maximum Field (Maxfield) relevance ranking
module.

This module is similar to the Field strategy module, except it selects the static field-specific score of
the highest-ranked field that contributed to the match. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_MAXFIELD EMPTY>

Attributes

The RELRANK_MAXFIELD element has no attributes.

Sub-elements

The RELRANK_MAXFIELD element has no sub-elements.

Example

This example implements a strategy called High_Rank.

<RELRANK_STRATEGY NAME="High_Rank">
 <RELRANK_MAXFIELD/>
</RELRANK_STRATEGY>

RELRANK_MODULE
The RELRANK_MODULE element is used to refer to and compose other relevance ranking modules
into strategies.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements116

Format

<!ELEMENT RELRANK_MODULE (RELRANK_MODULE_PARAM*)>
<!ATTLIST RELRANK_MODULE
 NAME CDATA #REQUIRED
>

Attributes

The RELRANK_MODULE element has the following attribute.

NAME

NAME refers to another defined relevance ranking module.

Sub-elements

The RELRANK_MODULE element has no supported sub-elements. RELRANK_MODULE_PARAM
is not supported.

Example

In this example, a strategy called Best Price is defined. Later, this strategy is included in another
strategy definition using the RELRANK_MODULE element.

<RELRANK_STRATEGY NAME=”Best Price”>
 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME=”MyStrategy”>
 <RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
 <RELRANK_EXACT/>
 <RELRANK_MODULE NAME=”Best Price”/>
</RELRANK_STRATEGY>

RELRANK_NTERMS
The RELRANK_NTERMS element implements the Number of Terms (Nterms) relevance ranking
module.

This module assigns a score to each result record based on the number of query terms that the result
record matches. For example, in a three-word query, results that match all three words are ranked
above results that match only two words, which are ranked above results that match only one word.
For details, see the Latitude Developer's Guide.

This module applies only to search modes where the number of results can vary in how many query
terms they match. These search modes include matchpartial, matchany, matchallpartial, and
matchallany. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_NTERMS EMPTY>

Attributes

The RELRANK_NTERMS element has no attributes.

Sub-elements

The RELRANK_NTERMS element has no sub-elements.

Endeca® Latitude Data Integrator GuideEndeca Confidential

117MDEX Engine Configuration XML Reference | Relrank_strategies elements

Example

In this example, the Nterms module is included in a strategy called NumberOfTerms.

<RELRANK_STRATEGY NAME="NumberOfTerms">
 <RELRANK_NTERMS/>
</RELRANK_STRATEGY>

RELRANK_NUMFIELDS
The RELRANK_NUMFIELDS element implements the Number of Fields (Numfields) relevance ranking
module.

This module ranks results based on the number of fields in the associated search interface in which
a match occurs. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_NUMFIELDS EMPTY>

Attributes

The RELRANK_NUMFIELDS element has no attributes.

Sub-elements

The RELRANK_NUMFIELDS element has no sub-elements.

Example

This example implements the Numfields relevance ranking module.

<RELRANK_STRATEGY NAME="NumFields">
 <RELRANK_NUMFIELDS/>
</RELRANK_STRATEGY>

RELRANK_PHRASE
The RELRANK_PHRASE element implements the Phrase relevance ranking module.

This module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms
scattered throughout the text. Note that records that have the phrase are ranked higher than records
which do not contain the phrase. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_PHRASE EMPTY>
<!ATTLIST RELRANK_PHRASE
 SUBPHRASE (TRUE | FALSE) "FALSE"
 APPROXIMATE (TRUE | FALSE) "FALSE"
 QUERY_EXPANSION (TRUE | FALSE) "FALSE"
>

Attributes

The RELRANK_PHRASE element has the following attributes.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements118

SUBPHRASE

If set to TRUE, enables subphrasing, which ranks results based on the length of their subphrase
matches.

If set to FALSE (the default), subphrasing is not enabled, which means that results are ranked into
two strata: those that matched the entire phrase and those that did not.

APPROXIMATE

If set to TRUE, approximate matching is enabled. In this case, the Phrase module looks at a limited
number of positions in each result that a phrase match could possibly exist, rather than all the positions.
Only this limited number of possible occurrences is considered, regardless of whether there are later
occurrences that are better, more relevant matches.

QUERY_EXPANSION

If set to TRUE, enables query expansion, in which spelling correction, thesaurus, and stemming
adjustments are applied to the original phrase. With query expansion enabled, the Phrase module
ranks results that match a phrase’s expanded forms in the same stratum as results that match the
original phrase.

Sub-elements

The RELRANK_PHRASE element has no sub-elements.

Example

This example of the Phrase module enables approximate matching and query expansion, and disables
subphrasing.

<RELRANK_STRATEGY NAME="PhraseMatch">
 <RELRANK_PHRASE APPROXIMATE="TRUE"
 QUERY_EXPANSION="TRUE" SUBPHRASE="FALSE"/>
</RELRANK_STRATEGY>

RELRANK_PROXIMITY
The RELRANK_PROXIMITY element implements the Proximity relevance ranking module.

This module ranks how close the query terms are to each other in a document by counting the number
of intervening words. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_PROXIMITY EMPTY>

Attributes

The RELRANK_PROXIMITY element has no attributes.

Sub-elements

The RELRANK_PROXIMITY element has no sub-elements.

Endeca® Latitude Data Integrator GuideEndeca Confidential

119MDEX Engine Configuration XML Reference | Relrank_strategies elements

Example

This example implements a strategy called All that includes the Proximity module.

<RELRANK_STRATEGY NAME="All">
 <RELRANK_PROXIMITY/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_SPELL
The RELRANK_SPELL element implements the Spell relevance ranking module.

This module ranks matches that do not require spelling correction ahead of spelling-corrected matches.
For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_SPELL EMPTY>

Attributes

The RELRANK_SPELL element has no attributes.

Sub-elements

The RELRANK_SPELL element has no sub-elements.

Example

This example implements a strategy called TrueMatch.

<RELRANK_STRATEGY NAME="TrueMatch">
 <RELRANK_SPELL/>
</RELRANK_STRATEGY>

RELRANK_STATIC
The RELRANK_STATIC element implements the Static relevance ranking module.

This module assigns a constant score to each result, depending on the type of search operation
performed. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FREQ EMPTY>
<!ATTLIST RELRANK_STATIC
 NAME CDATA #REQUIRED
 ORDER (ASCENDING|DESCENDING) #REQUIRED
>

Attributes

The RELRANK_STATIC element has the following attributes.

NAME

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements120

Specifies the name of a standard or managed attribute that is used for static relevance ranking.

ORDER

Specifies how records should be sorted with respect to the specified standard or managed attribute.

Sub-elements

The RELRANK_STATIC element has no sub-elements.

Example

In this example, the BestPrice strategy consists of the Price managed attribute sorted from lowest to
highest.

<RELRANK_STRATEGY NAME=”BestPrice”>
 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>

RELRANK_STRATEGIES
A RELRANK_STRATEGIES element contains any number of relevance ranking strategies for an
application.

Each strategy is specified in a RELRANK_STRATEGY element.

Format

<!ELEMENT RELRANK_STRATEGIES
 (COMMENT?
 , RELRANK_STRATEGY*
)
>

Attributes

The RELRANK_STRATEGIES element has no attributes.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGIES sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Contains a list of relevance ranking strategies that affect the order
in which search results are returned to a user.

RELRANK_STRATEGY

Example

This example shows several strategies grouped under the root element RELRANK_STRATEGIES.

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="Bestseller Strategy">
 <RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
 </RELRANK_STRATEGY>

Endeca® Latitude Data Integrator GuideEndeca Confidential

121MDEX Engine Configuration XML Reference | Relrank_strategies elements

 <RELRANK_STRATEGY NAME="Electronics Strategy">
 <RELRANK_FIELD/>
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
 <RELRANK_STATIC NAME="Product_Name" ORDER="ASCENDING"/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

RELRANK_STRATEGY
The RELRANK_STRATEGY element contains a list of relevance ranking strategies that affect the
order in which search results are returned to a user.

Each sub-element of RELRANK_STRATEGY represents a specific type of strategy. If you want several
relevance ranking strategies to affect search result, then the order of the sub-elements, which represent
the strategies, is significant. The order of the sub-elements defines the order in which the strategies
are applied to the search results. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_STRATEGY (
 RELRANK_STATIC
 | RELRANK_EXACT
 | RELRANK_PHRASE
 | RELRANK_APPROXPHRASE
 | RELRANK_GLOM
 | RELRANK_SPELL
 | RELRANK_FIELD
 | RELRANK_MAXFIELD
 | RELRANK_INTERP
 | RELRANK_FREQ
 | RELRANK_WFREQ
 | RELRANK_NTERMS
 | RELRANK_PROXIMITY
 | RELRANK_FIRST
 | RELRANK_NUMFIELDS
 | RELRANK_MODULE
)+>
<!ATTLIST RELRANK_STRATEGY
 NAME CDATA #REQUIRED
>

Attributes

The RELRANK_STRATEGY element has the following attribute.

NAME

Specifies the name of the strategy.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGY sub-elements.

Brief descriptionSub-element

Assigns a constant score to each result, depending on the type of
search operation perform.

RELRANK_STATIC

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Relrank_strategies elements122

Brief descriptionSub-element

Groups results into strata based on how well they match the query
string, with the highest stratum containing results that match the
user's query exactly.

RELRANK_EXACT

Considers results containing the user’s query as an exact phrase, or
a subset of the exact phrase, to be more relevant than matches

RELRANK_PHRASE

simply containing the user’s search terms scattered throughout the
text.

Not supported.RELRANK_APPROXPHRASE

Ranks single-field matches ahead of cross-field matches.RELRANK_GLOM

Ranks true matches ahead of spelling-corrected matches.RELRANK_SPELL

Assigns a score to each result based on the static rank of the
dimension or property member of the search interface that caused
the document to match the query.

RELRANK_FIELD

Similar to the Field strategy, except it selects the static field-specific
score of the highest-ranked field that contributed to the match.

RELRANK_MAXFIELD

A general-purpose strategy that assigns a score to each result
document based on the query processing techniques used to obtain

RELRANK_INTERP

the match. Matching techniques considered include partial matching,
cross-attribute matching, spelling correction, thesaurus, and stemming
matching.

Provides result scoring based on the frequency (number of
occurrences) of the user's query terms in the result text.

RELRANK_FREQ

Scores results based on the frequency of user query terms in the
result, while weighing the individual query term frequencies for each

RELRANK_WFREQ

result by the information content (overall frequency in the complete
data set) of each query term.

Assigns a score to each result record based on the number of query
terms that the result record matches.

RELRANK_NTERMS

Ranks how close the query terms are to each other in a document
by counting the number of intervening words.

RELRANK_PROXIMITY

Ranks documents by how close the query terms are to the beginning
of the document.

RELRANK_FIRST

Ranks results based on the number of fields in the associated search
interface in which a match occurs.

RELRANK_NUMFIELDS

Used to refer to other RELRANK elements and compose them into
cohesive strategies.

RELRANK_MODULE

Example

This example presents a ranking strategy called Product_Search_Rank, which itself is composed of
multiple strategies.

<RELRANK_STRATEGY NAME="Product_Search_Rank">
 <RELRANK_MODULE NAME="IsAvailable"/>
 <RELRANK_FIELD/>

Endeca® Latitude Data Integrator GuideEndeca Confidential

123MDEX Engine Configuration XML Reference | Relrank_strategies elements

 <RELRANK_PHRASE/>
 <RELRANK_MODULE NAME="BestPrice"/>
</RELRANK_STRATEGY>

RELRANK_WFREQ
The RELRANK_WFREQ element implements the Weighted Frequency (Wfreq) relevance ranking
module.

This module scores results based on the frequency of user query terms in the result, while weighing
the individual query term frequencies for each result by the information content (overall frequency in
the complete data set) of each query term. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_WFREQ EMPTY>

Attributes

The RELRANK_WFREQ element has no attributes.

Sub-elements

The RELRANK_WFREQ element has no sub-elements.

Example

This example implements a strategy called Term_Freq.

<RELRANK_STRATEGY NAME="Term_Freq">
 <RELRANK_WFREQ/>
</RELRANK_STRATEGY>

Search_interface elements
The Search_interface elements are used to build and configure search interfaces.

The file's root element is SEARCH_INTERFACE. Search interfaces control record search behavior
for groups of standard and managed attributes.

MEMBER_NAME
The MEMBER_NAME element specifies the name of an Endeca standard or managed attribute that
is part of a SEARCH_INTERFACE.

For information on search interfaces, see the Latitude Developer's Guide.

Format

<!ELEMENT MEMBER_NAME (#PCDATA)>
<!ATTLIST MEMBER_NAME
 RELEVANCE_RANK CDATA #IMPLIED
 SNIPPET_SIZE CDATA "0"
>

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Search_interface elements124

Attributes

The MEMBER_NAME element has the following attributes.

RELEVANCE_RANK

RELEVANCE_RANK is an unsigned integer that specifies the relevance rank of a match on the
specified Endeca standard or managed attribute.

SNIPPET_SIZE

The presence of SNIPPET_SIZE enables snippeting for a MEMBER_NAME and the value of
SNIPPET_SIZE specifies maximum number of words a snippet can contain. Omitting this attribute or
setting its value equal to zero disables snippeting. For more information, see "Using Snippeting in
Record Searches" in the Latitude Developer's Guide.

Sub-elements

The MEMBER_NAME element has no sub-elements.

Example

In the following example for a search interface named WineSearch, four Endeca attributes are listed
in MEMBER_NAME elements, each with its own relevance rank. A fifth MEMBER_NAME element
enables snippeting for the Description attribute.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="WineRelRank" NAME="WineSearch">
 <MEMBER_NAME RELEVANCE_RANK="4">WineType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">Winery</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 <MEMBER_NAME SNIPPET_SIZE="10">Description</MEMBER_NAME>
</SEARCH_INTERFACE>

PARTIAL_MATCH
The PARTIAL_MATCH element specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

For details about searching and search modes, see the Latitude Developer's Guide.

Format

<!ELEMENT PARTIAL_MATCH EMPTY>
<!ATTLIST PARTIAL_MATCH
 MIN_WORDS_INCLUDED CDATA #IMPLIED
 MAX_WORDS_OMITTED CDATA #IMPLIED
>

Attributes

The PARTIAL_MATCH element has the following attributes.

MIN_WORDS_INCLUDED

Specifies that search results match at least this number of terms in the search query. This value must
be an integer greater than zero. The default value of this attribute is one.

Endeca® Latitude Data Integrator GuideEndeca Confidential

125MDEX Engine Configuration XML Reference | Search_interface elements

MAX_WORDS_OMITTED

Specifies the maximum number of query terms that may be ignored in the search query. This value
must be a non-negative integer. If set to zero or left unspecified, any number of words may be omitted
(i.e., there is no maximum). The default value of this attribute is two.

Sub-elements

The PARTIAL_MATCH element has no sub-elements.

Example

In this example, the search interface is subject to partial matching in which at least two of the words
in the search query are included, and no more than one is omitted.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="WineRelRank" NAME="WinePartSearch">
 <MEMBER_NAME RELEVANCE_RANK="2">Body</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 <PARTIAL_MATCH MAX_WORDS_OMITTED="1" MIN_WORDS_INCLUDED="2"/>
</SEARCH_INTERFACE>

SEARCH_INTERFACE
The SEARCH_INTERFACE element is a named collection of Endeca standard attributes and/or
managed attributes.

Both standard attributes and managed attributes can co-exist in a SEARCH_INTERFACE.The Endeca
attributes in the group are specified in MEMBER_NAME elements.

If a standard attribute or managed attribute is not included in any SEARCH_INTERFACE element,
then an implicit SEARCH_INTERFACE element is created with the same name as the standard attribute
or managed attribute and that single standard attribute or managed attribute as its only member. The
value for the CROSS_FIELD_RELEVANCE_RANK is set to 0.

Format

<!ELEMENT SEARCH_INTERFACE
 (MEMBER_NAME+
 , PARTIAL_MATCH?
 , AUTO_SUGGEST?
 , DID_YOU_MEAN?
)
>
<!ATTLIST SEARCH_INTERFACE
 NAME CDATA #REQUIRED
 DEFAULT_RELRANK_STRATEGY CDATA #IMPLIED
 CROSS_FIELD_RELEVANCE_RANK CDATA #IMPLIED
 CROSS_FIELD_BOUNDARY (ALWAYS
 |ON_FAILURE
 |NEVER) "NEVER"
 STRICT_PHRASE_MATCH (TRUE|FALSE) #IMPLIED
>

Attributes

The SEARCH_INTERFACE element has the following attributes.

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Search_interface elements126

NAME

A unique name for this search interface.

DEFAULT_RELRANK_STRATEGY

For record search, a default relevance scoring function assigned to a SEARCH_INTERFACE. For
example, if your search interface is called Flavors, the DEFAULT_RELRANK_STRATEGY attribute
has the value "Flavors_strategy".

CROSS_FIELD_RELEVANCE_RANK

Specifies the relevance rank score for cross-field matches. The value should be an unsigned 32-bit
integer. The default value for CROSS_FIELD_RELEVANCE_RANK is 0.

CROSS_FIELD_BOUNDARY

Specifies when the search engine should try to match search queries across standard attribute/managed
attribute boundaries, but within the members of the SEARCH_INTERFACE. If its value is set to
ON_FAILURE, then the search engine will only try to match queries across standard attribute/managed
attribute boundaries if it fails to find any match within a single standard attribute/managed attribute. If
its value is set to ALWAYS, then the engine will always look for matches across standard
attribute/managed attribute boundaries, in addition to matches within a standard attribute/managed
attribute.

By default, the MDEX Engine will not look across boundaries for matches.

STRICT_PHRASE_MATCH

Specifies that the MDEX Engine should interpret a query strictly when comparing white space in the
query with punctuation in the source text. If set to FALSE, partial word tokens connected in the source
text by punctuation can be matched to a phrase query where the partial tokens are separated by
spaces instead of matching punctuation. The default value of this attribute is TRUE.

Sub-elements

The following table provides a brief overview of the SEARCH_INTERFACE sub-elements.

Brief descriptionSub-element

Specifies the name of a property or dimension that is part of a
SEARCH_INTERFACE.

MEMBER_NAME

Specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

PARTIAL_MATCH

Specifies how to configure automatic spelling correction for either
record searches or value searches.

AUTO_SUGGEST

Specifies how to configure explicit alternatives for search terms as
a part of spelling correction.

DID_YOU_MEAN

Example

This example establishes a search interface called AllFields, which contains four members.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">
 <MEMBER_NAME RELEVANCE_RANK="4">WineType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">WineName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">Winery</MEMBER_NAME>

Endeca® Latitude Data Integrator GuideEndeca Confidential

127MDEX Engine Configuration XML Reference | Search_interface elements

 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
</SEARCH_INTERFACE>

Stop_words elements
The Stop_words elements contain words that should be eliminated from a query before it is processed
by the MDEX Engine.

Each stop is specified in a STOP_WORD element.

STOP_WORD
The STOP_WORD element identifies words that should be eliminated from a query before it is
processed.

Examples of common stop words include the words "the" and "of".

Format

<!ELEMENT STOP_WORD (#PCDATA)>

Attributes

The STOP_WORD element has no attributes.

Sub-elements

The STOP_WORD element has no sub-elements.

Example

This example shows a common set of stop words.

<STOP_WORDS>
 <STOP_WORD>a</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>
 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

STOP_WORDS
A STOP_WORDS element specifies the stop words enabled in your application.

Each stop word is represented by a STOP_WORD element.

Format

<!ELEMENT STOP_WORDS
 (COMMENT?
 , STOP_WORD*
)
>

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Stop_words elements128

Attributes

The STOP_WORDS element has no attributes.

Sub-elements

The following table provides a brief overview of the STOP_WORDS sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Identifies words that should be eliminated from a query before it is
processed.

STOP_WORD

Example

This example shows a common set of stop words.

<STOP_WORDS>
 <STOP_WORD>a</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>
 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

Thesaurus elements
The Thesaurus elements contain thesaurus entries for your application.

Thesaurus entries provide a means to account for alternate forms of a user's query. These entries
provide concept-level mappings between words and phrases. For details, see the Latitude Developer's
Guide.

THESAURUS
A THESAURUS element contains the term equivalence mappings for an application.

THESAURUS is the root element for all thesaurus entries.

Note that the order of sub-elements within THESAURUS is significant.You should add sub-elements
in the order in which they are listed in the format section.

For example, THESAURUS_ENTRY sub-elements appear before THESAURUS_ENTRY_ONEWAY.
See the example below.

Format

<!ELEMENT THESAURUS
 (COMMENT?
 , THESAURUS_ENTRY*
 , THESAURUS_ENTRY_ONEWAY*
)
>

Endeca® Latitude Data Integrator GuideEndeca Confidential

129MDEX Engine Configuration XML Reference | Thesaurus elements

Attributes

The THESAURUS element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Indicates a set of word forms (contained in THESAURUS_FORM
elements) that are equivalent.

THESAURUS_ENTRY

Specifies single-direction equivalency mappings.THESAURUS_ENTRY_ONEWAY

Example

This example shows the thesaurus entries for an application.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>Red wine</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>Merlot</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Shiraz</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Bordeaux</THESAURUS_FORM_TO>
 </THESAURUS_ENTRY_ONEWAY>
</THESAURUS>

THESAURUS_ENTRY
The THESAURUS_ENTRY element indicates a set of word forms that are equivalent.

The word forms are contained in THESAURUS_FORM elements. A search for any of these forms
(including stemming-matched versions) returns hits for all of the forms.

Format

<!ELEMENT THESAURUS_ENTRY (THESAURUS_FORM+)>

Attributes

The THESAURUS_ENTRY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY sub-element.

Brief descriptionSub-element

Indicates a set of word forms that are equivalent.THESAURUS_ENTRY

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Thesaurus elements130

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_ENTRY_ONEWAY
A THESAURUS_ENTRY_ONEWAY element specifies a single-direction mapping.

Searches for any of the "from" forms (THESAURUS_FORM_FROM elements) also return hits for all
of the "to" forms (THESAURUS_FORM_TO elements). The other direction is not enabled; that is,
searches for the "to" forms do not return results for either the "from" forms or the other "to" forms.

Format

<!ELEMENT THESAURUS_ENTRY_ONEWAY
 (THESAURUS_FORM_FROM
 , THESAURUS_FORM_TO+
)
>

Attributes

The THESAURUS_ENTRY_ONEWAY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY_ONEWAY sub-elements.

Brief descriptionSub-element

Specifies the "from" form in a one-way word mapping.THESAURUS_FORM_FROM

Specifies the "to" form in a one-way word mapping.THESAURUS_FORM_TO

Example

In this example, searches for Red wine would return hits for Red wine as well as for Merlot,
Shiraz, and Bordeaux. Since the equivalence is one-way, more specific searches such as Shiraz
or Bordeaux would not return results for the more general concept Red wine.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>Red wine</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>Merlot</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Shiraz</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Bordeaux</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

Endeca® Latitude Data Integrator GuideEndeca Confidential

131MDEX Engine Configuration XML Reference | Thesaurus elements

THESAURUS_FORM
The THESAURUS_FORM element contains a word form that is used by the THESAURUS_ENTRY
element to set an equivalence.

Format

<!ELEMENT THESAURUS_FORM (#PCDATA)>

Attributes

The THESAURUS_FORM element has no attributes.

Sub-elements

The THESAURUS_FORM element has no sub-elements.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_FORM_FROM
The THESAURUS_FORM_FROM element provides the "from" form within a
THESAURUS_ENTRY_ONEWAY element.

Format

<!ELEMENT THESAURUS_FORM_FROM (#PCDATA)>

Attributes

The THESAURUS_FORM_FROM element has no attributes.

Sub-elements

The THESAURUS_FORM_FROM element has no sub-elements.

Example

In this example, searches for home theater would return hits for home theater as well as for
stereo and television. Because the equivalence is one-way, more specific searches such as
stereo or television would not return results for the more general concept home theater.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>home theater</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>stereo</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>television</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

Endeca ConfidentialEndeca® Latitude Data Integrator Guide

MDEX Engine Configuration XML Reference | Thesaurus elements132

THESAURUS_FORM_TO
The THESAURUS_FORM_TO element provides the "to" form within a THESAURUS_ENTRY_ONEWAY
element.

Format

<!ELEMENT THESAURUS_FORM_TO (#PCDATA)>

Attributes

The THESAURUS_FORM_TO element has no attributes.

Sub-elements

The THESAURUS_FORM_TO element has no sub-elements.

Example

In this example, searches for home theater would return hits for home theater as well as for
stereo and television. Because the equivalence is one-way, more specific searches such as
stereo or television would not return results for the more general concept home theater.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>home theater</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>stereo</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>television</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

Endeca® Latitude Data Integrator GuideEndeca Confidential

133MDEX Engine Configuration XML Reference | Thesaurus elements

Index

A

Add KVPs connector
configuration properties 89
configuring for key-value pair loads 65
enabling SSL 90
reference details 88

Add Managed Values connector
adding to graph 71
configuration properties 91
configuring for taxonomy loads 72
enabling SSL 92
reference details 90

Add/Update Records connector
adding to graph 32
configuration properties 87
configuring for DDR load 42
configuring for incremental updates 34
configuring for PDR output 39
enabling SSL 87
reference details 86

attribute schema load
about 37
loading DDRs 41
loading PDRs 37

B

baseline update, See full index load
BufferOverflow errors, avoiding 102
Bulk Add/Replace Records connector

adding to graph 24
configuration properites 84
configuring for full index load 27
enabling SSL 85
reference details 83

C

COMMENT element 105
Common configuration properties for Latitude connectors
94
configuration document loads, See index configuration
loads
Custom properties, creating 98

D

data types, supported 15
DDRs, loading, See loading DDRs
Delete Data connector

adding to graph 78
configuration properties 93

Delete Data connector (continued)
configuring for delete operation 80
enabling SSL 93
reference details 92
types of delete operations 77

deleting data
adding components to graph 78
configuring Delete Data connector 80
configuring metadata 79
configuring Reader component 79
running the graph 81
source data format 77

Designer GUI overview, LDI 13
DIMNAME element 106
Dimsearch_config

about 107
DIMSEARCH_CONFIG element 108

DIMSEARCH_CONFIG element 108

E

Edge component
configuring for deleting data 79
configuring for full index load 26
configuring for loading index configuration 55
configuring for loading PDRs 40
configuring for loading taxonomy 73

Enabled configuration property for Latitude connectors
95
externally managed taxonomies, loading 69

F

full index load
configuring Bulk Add/Replace Records connector
27
configuring Edge component 26
configuring Reader component 25
creating graph 23
overview 19
running graph 29
source data format 20

G

Global Configuration Record, loading 60
graph

adding Add Managed Values connector 71
adding Add/Update Records connector 32
adding Bulk Add/Replace Records connector 24
adding Delete Data connector 78
adding UniversalDataReader component 24
adding WebServiceClient component 53

graph (continued)
creating empty 23
running for full index load 29
running to add key-value pairs 67
running to delete data 81
running to load incremental updates 35
running to load taxonomy 74

I

incremental updates
overview 31
running graph 35
using the Add/Update Records connector 34

index configuration loads
about 52
adding components to graph 53
configuring Reader component 54
configuring the Edge component 55
creating graph 53
using WebServiceClient component 58

J

Java heap space errors, avoiding 101

K

key-value pair loads
about 63
configuring Add KVPs connector 65
configuring Edge metadata for graph 66
configuring Reader for graph 64
input format 63
running graph 67

KVP loads, See key-value pair loads

L

Latitude connectors
Add KVPs 88
Add Managed Values 90
Add/Update Records 86
Bulk Add/Replace Records 83
Delete Data 92
overview 12
Visual and Common configuration properties 94

Latitude Data Integrator
about the Server 14
additional documentation 17
creating empty graph 23
creating projects 20
overview of Designer 13
product overview 11

LDI, See Latitude Data Integrator
loading DDRs

configuring Add/Update Records connector 42
configuring Reader and Edge components 42

loading DDRs (continued)
input file 42
overview 41

loading PDRs
configuring Add/Update Records connector 39
configuring Edge component 40
configuring Reader component 38
input file 38
overview 37

M

managed attribute name for taxonomy, specifying 73
managed attributes, default values for 16
managed values, loading 69
mdexType Custom properties, creating 98
MEMBER_NAME element 124
metadata

configuring for deleting data 79
configuring for full index load 26
configuring for loading index configuration 55
configuring for loading PDRs 40
configuring for loading taxonomy 73
supported data types 15

multi-assign data
about 22
configuring for Add/Update Records connector 34
configuring for Bulk Add/Replace Records connector
28
errors from misconfiguration 104

O

order of loading data 97
OutOfMemory errors, avoiding 101

P

PARTIAL_MATCH element 125
PDRs, loading 37
Phase configuration property for Latitude connectors 95
PRECEDENCE_RULE element 109
Precedence_rules

about 108
PRECEDENCE_RULE element 109
PRECEDENCE_RULES element 110

PRECEDENCE_RULES element 110
primary key

about 21
configuring for Add/Update Records connector 34
configuring for Bulk Add/Replace Records connector
28

project, creating 20
PROP element 106
PROPNAME element 107
PVAL element 107

Endeca® Latitude136

Index

R

record schema load, See attribute schema load
record spec property, See primary key
Recsearch_config

about 111
RECSEARCH_CONFIG element 111

RECSEARCH_CONFIG element 111
RELRANK_APPROXPHRASE element 112
RELRANK_EXACT element 113
RELRANK_FIELD element 113
RELRANK_FIRST element 114
RELRANK_FREQ element 115
RELRANK_GLOM element 115
RELRANK_INTERP element 115
RELRANK_MAXFIELD element 116
RELRANK_MODULE element 117
RELRANK_NTERMS element 117
RELRANK_NUMFIELDS element 118
RELRANK_PHRASE element 118
RELRANK_PROXIMITY element 119
RELRANK_SPELL element 120
RELRANK_STATIC element 120
Relrank_strategies

about 112
RELRANK_APPROXPHRASE element 112
RELRANK_EXACT element 113
RELRANK_FIELD element 113
RELRANK_FIRST element 114
RELRANK_FREQ element 115
RELRANK_GLOM element 115
RELRANK_INTERP element 115
RELRANK_MAXFIELD element 116
RELRANK_MODULE element 117
RELRANK_NTERMS element 117
RELRANK_NUMFIELDS element 118
RELRANK_PHRASE element 118
RELRANK_PROXIMITY element 119
RELRANK_SPELL element 120
RELRANK_STATIC element 120
RELRANK_STRATEGIES element 121
RELRANK_STRATEGY element 122
RELRANK_WFREQ element 124

RELRANK_STRATEGIES element 121
RELRANK_STRATEGY element 122
RELRANK_WFREQ element 124

S

Search_interface
about 124
MEMBER_NAME element 124
PARTIAL_MATCH element 125
SEARCH_INTERFACE element 126

SEARCH_INTERFACE element 126
Server, overview of Latitude Data Integrator 14
source data format

deleting data 77
full index load 20

source data format (continued)
incremental updates 31
key-value pair loads 63
loading DDRs 42
loading PDRs 38
taxonomy loads 69

SSL enablement
Add KVPs connector 90
Add Managed Values connector 92
Add/Update Records connector 87
Bulk Add/Replace Records connector 85
Delete Data connector 93

standard attributes, default values for 15
STOP_WORD element 128
Stop_words

about 128
STOP_WORD element 128
STOP_WORDS element 128

STOP_WORDS element 128

T

taxonomy loads
configuring Add Managed Values connector 72
configuring Reader component 71
creating graph 70
metadata configuration 73
overview 69
running graph 74
source input file 69
specifying managed attribute name 73

Thesaurus
about 129
THESAURUS element 129
THESAURUS_ENTRY element 130
THESAURUS_ENTRY_ONEWAY element 131
THESAURUS_FORM element 132
THESAURUS_FORM_FROM element 132
THESAURUS_FORM_TO element 133

THESAURUS element 129
THESAURUS_ENTRY element 130
THESAURUS_ENTRY_ONEWAY element 131
THESAURUS_FORM element 132
THESAURUS_FORM_FROM element 132
THESAURUS_FORM_TO element 133

U

UniversalDataReader component
adding to full index load graph 24
configuring for DDR input 42
configuring for deleting data 79
configuring for full index load 25
configuring for index configuration input 54
configuring for PDR input 38
configuring for taxonomy loads 71

137

Index

V

Visual configuration properties for Latitude connectors
94

W

WebServiceClient component
adding to graph 53
using for index configuration loads 58

X

XML elements
COMMENT 105
DIMNAME 106
PROP 106
PROPNAME 107
PVAL 107

Endeca® Latitude138

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction
	Overview of Latitude Data Integrator
	Latitude connectors
	Latitude Data Integrator Designer
	Latitude Data Integrator Server

	Supported data types
	Default values for new attributes
	Additional documentation

	Full Index Loads of Records
	Overview of full index load operations
	Creating a project
	Source data format
	Adding the source data to the project

	Creating a graph
	Adding Reader and Writer components
	Configuring the components
	Configuring the Reader component
	Configuring metadata for the Edge
	Configuring the Bulk Add/Replace Records connector

	Running the graph to load records

	Incremental Updates
	Overview of incremental updates
	Adding components to the incremental updates graph
	Configuring the Reader and the Edge for incremental updates
	Configuring the Add/Update Records connector
	Running the incremental updates graph

	Loading the Attribute Schema
	About attribute schema files
	Loading PDRs
	Format of the PDR input file
	Configuring the Reader for the PDR input file
	Configuring the Add/Update Records connector for PDR output
	Configuring PDR metadata

	Loading DDRs
	Format of the DDR input file
	Configuring the Reader and the Edge for DDRs
	Configuring the Add/Update Records connector for DDR loads

	Loading Configuration Files
	Types of MDEX Engine configuration documents
	Global Configuration Record
	dimsearch_config document
	precedence_rules document
	recsearch_config document
	relrank_strategies document
	stop_words document
	thesaurus document

	Loading the configuration documents
	Creating a graph
	Adding components to the graph
	Configuring the Reader for the configuration document
	Configuring metadata for configuration documents
	Configuring the WebServiceClient component

	Loading the GCR

	Adding Key-Value Pairs
	About key-value pair data
	Format of the KVP input file
	Configuring the Reader for the KVP input file
	Configuring the Add KVPs connector
	Configuring KVP metadata
	Running the KVPs graph

	Loading Taxonomies
	Overview of loading a taxonomy
	Format of the taxonomy input file
	Creating a graph for the taxonomy
	Adding components to the taxonomy graph
	Configuring the Reader for the taxonomy input file
	Configuring the Add Managed Values connector
	Configuring taxonomy metadata
	Running the taxonomy graph

	Deleting Data
	Format of the delete input file
	Adding components to the delete data graph
	Configuring the Reader for the delete input file
	Configuring the metadata for data deletes
	Configuring the Delete Data connector
	Running the delete data graph

	Latitude Connector Reference
	Bulk Add/Replace Records connector
	Add/Update Records connector
	Add KVPs connector
	Add Managed Values connector
	Delete Data connector
	Visual and Common configuration properties

	Configuration Tips and Troubleshooting
	Configuration tips
	Recommended order of loading data
	Creating mdexType Custom properties

	Troubleshooting problems
	Avoiding OutOfMemory errors
	Avoiding BufferOverflow errors
	Connection errors
	Multi-assign delimiter error

	MDEX Engine Configuration XML Reference
	XML elements
	COMMENT
	DIMNAME
	PROP
	PROPNAME
	PVAL

	Dimsearch_config elements
	DIMSEARCH_CONFIG

	Precedence_rules elements
	PRECEDENCE_RULE
	PRECEDENCE_RULES

	Recsearch_config elements
	RECSEARCH_CONFIG

	Relrank_strategies elements
	RELRANK_APPROXPHRASE
	RELRANK_EXACT
	RELRANK_FIELD
	RELRANK_FIRST
	RELRANK_FREQ
	RELRANK_GLOM
	RELRANK_INTERP
	RELRANK_MAXFIELD
	RELRANK_MODULE
	RELRANK_NTERMS
	RELRANK_NUMFIELDS
	RELRANK_PHRASE
	RELRANK_PROXIMITY
	RELRANK_SPELL
	RELRANK_STATIC
	RELRANK_STRATEGIES
	RELRANK_STRATEGY
	RELRANK_WFREQ

	Search_interface elements
	MEMBER_NAME
	PARTIAL_MATCH
	SEARCH_INTERFACE

	Stop_words elements
	STOP_WORD
	STOP_WORDS

	Thesaurus elements
	THESAURUS
	THESAURUS_ENTRY
	THESAURUS_ENTRY_ONEWAY
	THESAURUS_FORM
	THESAURUS_FORM_FROM
	THESAURUS_FORM_TO

	Index

