
Endeca® Latitude
Developer's Guide

Version 2.1.0 • June 2011

Contents

Copyright and disclaimer..ix
Preface...11
About this guide..11
Who should use this guide..11
Conventions used in this guide...11
Contacting Endeca Customer Support...11

Part I: Introduction..13

Chapter 1: MDEX Engine Interfaces..15
The data flow...15
MDEX Engine overview...16
Basic queries...16
Endeca Web services..17
Latitude Studio components and the MDEX Engine...19
About the MDEX Engine API Reference...20
MDEX Engine configuration items...20

Chapter 2: MDEX Engine Concepts..21
MDEX Engine data model...21
System records..27

Part II: Endeca Web Services...35

Chapter 3: Using the Configuration Web Service..................................37
About the Configuration Web Service..37
Loading an attribute schema...41

Chapter 4: Using the Conversation Web Service...................................45
About the Conversation Web Service..45
Conversation Web Service interface..46

Part III: Record Features..51

Chapter 5: Working with Endeca Records..53
Displaying Endeca records with Latitude Studio..53
Implementing export of records in Latitude Studio..54
Displaying Endeca records with the API..55
Displaying attribute values for records in Latitude Studio..60
Displaying attribute values with the API...61
Performance impact when displaying attribute values...62

Chapter 6: Sorting Endeca Records...63
About record sorting..63
Global sort order of records...63
Query-time sort ordering...64
Troubleshooting application sort problems..64

Chapter 7: Record Filters...67

iii

About record filters..67
Record filter syntax..67
Record filter result caching..68
Requesting record filters with the API...69
Record filter performance impact..69

Chapter 8: Using Range Filters...73
About range filters...73
Supported attribute types..73
Implementing range filters in Latitude Studio...74
Troubleshooting range filter problems..74
Performance impact for range filters..74
Implementing range filters with the API...75

Part IV: Attribute Features..83

Chapter 9: Working with Refinements..85
About refinements...85
Displaying refinements in Latitude Studio..85
Configuring managed attributes for query refinement...85
Configuring the global order of refinements..86
Configuring refinement counts...86
About multi-select attributes..86
About externally managed attributes...89
Performance impact for displaying refinements...89
Performance impact of refinement ordering..90
Performance impact of refinement counts...90
Working with refinements using the API..90

Chapter 10: Using Breadcrumbs...105
About breadcrumbs...105
Implementing breadcrumbs in Latitude Studio..106
Implementing breadcrumbs with the API...107

Chapter 11: Using Attribute Groups...115
About attribute groups...115
How attribute groups are used in Latitude Studio..115
About configuring attribute groups...116
Implementing attribute groups with the API...116

Chapter 12: Using Precedence Rules...121
About precedence rules...121
Precedence rule types...122
Configuring precedence rules..123
Precedence rules and implicit attribute value selection...124

Part V: Search Features..125

Chapter 13: Using Record Search...127
Record search overview..127
Configuring attributes for record search..128
Enabling hierarchical record search..128
Implementing record search in Latitude Studio...129
Implementing record search with the API..129
Search query processing order...132
Tips for troubleshooting record search..136
Performance impact of record search..136

Chapter 14: Working with Search Interfaces..137

Endeca® Latitudeiv

About search interfaces...137
Implementing search interfaces...137
Options for allowing cross-field matches...138
Additional search interface options..139
Search interfaces in queries..140
Tips for troubleshooting search interfaces...140

Chapter 15: Using Value Search..141
About value search..141
How value search works..141
When to use value and record search...142
Enabling value search...143
Utilizing value search in Latitude Studio..143
Interaction of value search and wildcard search..143
Performance impact of value search...144
Implementing value search with the API..144

Chapter 16: Using Search Modes...151
List of valid search modes...151
Configuring search modes...153
Query parameters for search modes...154

Chapter 17: Using Phrase Search...155
About phrase search...155
About positional indexing...156
How punctuation is handled in phrase search...156
Example of phrase search...156
Performance impact of phrase search...157

Chapter 18: Using Snippeting in Record Searches.............................159
About snippeting..159
Snippet formatting and size...160
Enabling snippeting...161
Performance impact of snippeting...162
Tips for snippeting...162
Retrieving snippets with the API..162
Enabling snippets per query with the API..163

Chapter 19: Using Wildcard Search..165
About wildcard search...165
Interaction of wildcard search with other features...166
Ways to configure wildcard search..166
MDEX Engine flags for wildcard search..168
Latitude Studio development for wildcard search..168
Performance impact of wildcard search...169

Chapter 20: Search Characters...171
About search characters..171
Implementing search characters..171
Query matching semantics..172
Search query processing...173
MDEX Engine flags for search characters...173

Chapter 21: Working with Spelling Correction and Did You Mean.....175
About Spelling Correction and Did You Mean..175
Logic used for spelling correction..176
updateaspell..177
Spelling mode (Aspell)...177
Retrieving spelling suggestions and DYM in query results..178
Configuring constraints for spelling dictionaries..179

v

Contents

About word-break analysis..180
Troubleshooting Spelling Correction and Did You Mean..180
Performance impact for Spelling Correction and Did You Mean..180

Chapter 22: Using Stemming and Thesaurus......................................183
Overview of stemming and thesaurus...183
About the stemming feature...183
About the Thesaurus feature...184
Dgraph flags for stemming and thesaurus...187
Interactions with other search features..187
Performance impact of stemming and thesaurus..188

Chapter 23: Relevance Ranking..191
About the relevance ranking feature..191
About relevance ranking modules..191
Relevance ranking strategies...202
Implementing relevance ranking..203
Using standalone relevance ranking..204
Relevance ranking sample scenarios..206
Recommended strategies..209
Performance impact of relevance ranking..211

Part VI: Extending Latitude Studio..213

Chapter 24: Extending Latitude Studio...215
Developer tasks in Latitude Studio..215
Licensing requirement for component development..215
Obtaining more information...216

Chapter 25: Security Extensions to Latitude Studio...........................217
Security Manager class summary ..217
Creating a new MDEX Security Manager..218
Implementing a new MDEX Security Manager..218
Using the MDEX Security Manager...218

Chapter 26: Managing Data Source State in Latitude Studio.............221
State Manager class summary..221
Creating a new MDEX State Manager...222
Implementing an MDEX State Manager..222
Using the MDEX State Manager...222

Chapter 27: Installing and Using the Component SDK.......................225
Downloading and configuring the Component SDK..225
Configuring Eclipse for component development..226
Component development overview..226
Modifying Endeca enhancements to the Component SDK...227

Chapter 28: Working with QueryFunction Classes..............................229
Provided QueryFunction classes...229
Creating a custom QueryFunction class..232
Implementing a custom QueryFunction class..232
Deploying a custom QueryFunction class...233
Adding the custom QueryFunction .jar file to your Eclipse build path..233
Obtaining query results..233

Chapter 29: Localizing Latitude Studio..235
Latitude Studio localization scenarios...235

Appendix A: Suggested Stop Words...243

Endeca® Latitudevi

About stop words..243
List of suggested stop words..243

vii

Contents

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

ix

Preface

Endeca® Latitude applications guide people to better decisions by combining the ease of search with
the analytic power of business intelligence. Users get self-service access to the data they need without
needing to specify in advance the queries or views they need. At the same time, the user experience
is data driven, continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an
analytical database and a search engine that makes possible a new kind of Agile BI. It provides guided
exploration, search, and analysis on any kind of information: structured or unstructured, inside the firm
or from external sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes Latitude Studio, a set of tools to configure user experience features
including search, analytics, and visualizations. This enables IT to partner with the business to gather
requirements and rapidly iterate a solution.

About this guide
This guide describes the core features of the Endeca MDEX Engine that you can access via applications
built with Latitude Studio. It covers working with records and attributes, and search configuration. In
addition, this guide describes the Endeca Conversation Web Service APIs that are used by Latitude
Studio for querying the MDEX Engine.

Who should use this guide
This guide is intended for developers who are building applications based on Endeca® Latitude.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Latitude Developer's Guide

| Preface12

http://eden.endeca.com

Part 1

Introduction

• MDEX Engine Interfaces
• MDEX Engine Concepts

Chapter 1

MDEX Engine Interfaces

The MDEX Engine is the backbone of all applications running on top of Endeca Latitude software.The
Endeca Web services provide the interfaces to the Endeca MDEX Engine.You use them through
Latitude Studio components to query the MDEX Engine and manipulate the query results.

The data flow
In a typical Latitude application, the MDEX Engine communicates with the Web application using the
Endeca Web services.

The online portion of a typical Endeca implementation has the following components:

• The MDEX Engine, which receives and processes query requests.
• Latitude Studio components, which you use to query the MDEX Engine and manipulate the query

results.
• A Web application in the form of a set of application modules, which receive client requests and

pass them to the MDEX Engine through Latitude Studio.

The following diagram illustrates the data flow between these components for a typical Endeca-based
application that uses Latitude Studio, Endeca Web services, and the XQuery API:

In this diagram, the following actions take place:

1. A client browser makes a request. The Web application server receives the request and passes it
to Latitude Studio.

2. Latitude Studio components use the Endeca Web services to pass the request to the Endeca MDEX
Engine, utilizing the XQuery API.

3. The MDEX Engine executes the query and returns its results.
4. Endeca Web services retrieve and manipulate the query results and transfer them in XML format

to the Latitude Studio application. The application in Latitude Studio performs formatting of the
query results and returns them to the client browser, via the Web application server.

Note: For security reasons, you should never allow Web browsers to connect directly to your
MDEX Engine. Browsers should always connect to your application through an application server.

MDEX Engine overview
The Endeca MDEX Engine is the indexing and query engine that provides the foundation for all Endeca
solutions.

The MDEX Engine uses proprietary data structures and algorithms that allow it to provide real-time
responses to client requests.The MDEX Engine stores the indices that were created after your source
data is ingested. After the indices are stored, the MDEX Engine receives client requests via the
application tier, queries the indices, and then returns the results.

The MDEX Engine is designed to be stateless. This design requires that a complete query be sent to
the MDEX Engine for each request. The stateless design of the MDEX Engine facilitates the addition
of MDEX Engine servers for high availability, load balancing and redundancy. Because the MDEX
Engine is stateless, any replica of an MDEX Engine on one server can reply to queries independently
of a replica on other MDEX Engine servers.

Consequently, adding replicas of MDEX Engines on additional servers provides redundancy and
improved query response time. That is, if any one particular server goes down, a replica of an MDEX
Engine provides redundancy by allowing other servers in the implementation to continue to reply to
queries. In addition, total response time is improved by using load balancers to distribute queries to a
replica MDEX Engine on any of the additional servers. If a replica of the MDEX Engine is configured
as part of a cluster, this provides high availability of request processing by ensuring that at least one
of the MDEX instances running on one of the nodes in the cluster continues to process queries.

The Dgraph is the name of the process for the MDEX Engine. Because the Dgraph is key to every
Endeca implementation, its performance is critical. A typical Endeca implementation includes one or
more Dgraphs.

Basic queries
While the queries you send to an Endeca MDEX Engine can become quite complex, you should be
familiar with a few basic queries.

Listed below are these queries and the response types they return. Note that the Conversation Web
Service returns all of the query results in a Results type:

Returned typeQuery

NavigationMenuNavigation query

RecordListEndeca record query

ValueSearchvalue search query

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Interfaces | MDEX Engine overview16

Endeca Web services
The MDEX Engine is installed with a set of Web services for loading, configuring, and querying the
data. These Web services provide the API to the MDEX Engine.

List of Web services installed with the MDEX Engine

The Web services installed with the MDEX Engine are:

• Data Ingest Web Service (Documented in the Latitude Data Ingest API Guide)
• Configuration Web Service
• Conversation Web Service (An internal interface that is subject to change, used by Latitude Studio)
• Configuration Web Service (read-only version)
• Administration Web Service (Documented in the Latitude Administrator's Guide)
• MDEX Web Service (For internal use only by the MDEX Engine. It is not used to interact directly

with the MDEX Engine.)

Flow for using the Web services

As you build your application, you use these Web services roughly as follows:

1. Use the Latitude Information Integration Suite to load data into the MDEX Engine. The Latitude
Information Integration Suite contains connectors that use the Data Ingest Web Service to
communicate with the MDEX Engine.

2. Use the Configuration Web Service to configure the record schema and MDEX Engine features.
3. Set up the front-end application using Latitude Studio. Latitude Studio uses the Conversation Web

Service to communicate with the MDEX Engine.
4. Use the Administration Web Service to set up monitoring and backups.

How Web services correspond to Latitude modules

The following diagram lists the Endeca Web services and shows their position in relation to Latitude
modules:

Endeca® Latitude Developer's GuideEndeca Confidential

17MDEX Engine Interfaces | Endeca Web services

How each Web service interacts with the MDEX Engine

Each Endeca Web service can be described in the context of how it interacts with the MDEX Engine.

FunctionWeb service

The Data Ingest Web Service is used to load data into the MDEX Engine. It
serves as the basis for various batch processes.

It is designed for easy integration with ETL tools.

Data Ingest Service

The Configuration Web Service supports the process of refining the records
schema and adjusting your configuration in the development environment.

Configuration Web
Service

Note: The read-only version of the Configuration Web Service is used
for read-only services, such as providing information about the records
schema. This version cannot be used for any updating operations to
the schema or configuration.

The Conversation Web Service is used to query the MDEX Engine and to
provide summarizations.

It is used by Latitude Studio.

Conversation Web
Service

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Interfaces | Endeca Web services18

FunctionWeb service

Unlike the Data Ingest and Configuration Web Services, it is not used to
update the MDEX Engine index.

For example, you can use the Conversation Web Service to search for
records, where you obtain a list of attributes from the MDEX Engine, but you
cannot use the Conversation Service to make changes to an attribute.

The Administration Web Service is used by IT engineers and administrators
to integrate the MDEX Engine server and its reporting with third-party IT
tools.

The Administration Web Service interacts with the MDEX Engine server
outside of the MDEX Engine data layer. The other Endeca Web services
interact with the indexes within the MDEX Engine data layer.

Administration Web
Service

Latitude Studio components and the MDEX Engine
This topic maps each Latitude Studio component supported in this release to the MDEX Engine features
that provide the backbone for the component.

MDEX Engine featuresLatitude Studio component

Working with refinements, value search, working with attribute groupsGuided Navigation

All record search configuration features, such as search interfaces,
making records or attributes searchable, wildcard search, match
modes, record search, value search

Search Box

Working with refinements, record search, DYM (Did You Mean) and
auto-correction

Breadcrumbs

Working with recordsData Explorer

Working with records, working with refinementsResults List

Working with records, working with refinements, snippetingResults Table

Working with records, working with attribute groupsRecord Details

Latitude Query Language in the MDEX EngineChart

Latitude Query Language in the MDEX Engine, working with
refinements

Cross Tab

Latitude Query Language in the MDEX EngineMetrics Bar

Latitude Query Language in the MDEX Engine, working with
refinements

Alerts

Working with records, working with refinementsCompare

Working with refinementsTag Cloud

Endeca® Latitude Developer's GuideEndeca Confidential

19MDEX Engine Interfaces | Latitude Studio components and the MDEX Engine

About the MDEX Engine API Reference
This automatically generated reference provides information about Web services that are packaged
with the MDEX Engine.

The MDEX Engine API Reference is the documentation generated from the two types of files that
describe a Web service:

• A WSDL document
• An XML Schema definition (XSD)

The MDEX Engine API Reference is complemented by the Developer's Guide (this guide).

The MDEX Engine API Reference is located in the doc directory of the MDEX Engine installation.

MDEX Engine configuration items
You can use the Latitude Data Integrator to modify system records and configuration documents.

Using the Latitude Data Integrator, you can modify the following global configuration items:

• Dimension Description Records
• Property Description Records
• Global Configuration Record
• dimsearch_config
• precedence_rules
• recsearch_config
• relrank_strategies
• stop_words
• thesaurus

For information on using the Latitude Data Integrator for schema and configuration changes, and for
information on XML configuration documents, see the Latitude Data Integrator Guide.

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Interfaces | About the MDEX Engine API Reference20

Chapter 2

MDEX Engine Concepts

This section introduces basic concepts associated with the MDEX Engine and how data is structured
and configured in the MDEX Engine data model.

MDEX Engine data model
The data model in the MDEX Engine consists of records and attributes.

• Records are the fundamental units of data.
• Attributes are the fundamental units of the schema. For each attribute, a record may be assigned

one or more attribute values.

Records
Records are the fundamental units of data in the MDEX Engine. Almost all information that is consumed
by the MDEX Engine, including raw data and the data schema, is represented by records.

The MDEX Engine includes the following types of records:

DescriptionRecord type

The data that is input into the Endeca Latitude
application. Latitude supports source records in a
variety of formats.

Source records

In most applications, you are primarily concerned
with data records.

Data records are the business records you want
to explore using your Latitude application.

Data records

Primordial records are created automatically and
used internally by the MDEX Engine.

They represent the most basic infrastructure of an
MDEX Engine.

Primordial records

DescriptionRecord type

System records represent the record schema.They
are created in the MDEX Engine using the schema
from the primordial records.

You use these records for data modeling
—changing these records controls the behavior of

System records

your records schema and thus affects your data
model.

Attributes
An attribute is the basic unit of a record schema. Attributes describe records in the MDEX Engine.

For a data record, an attribute provides information about that record. For example, for a list of books,
the Author attribute contains the author of the book.

For an attribute schema record, an attribute provides configuration information. For example, each
attribute is itself represented by an attribute schema record. Each attribute in that attribute schema
record controls an aspect of the attribute, such as the format of the attribute values and whether the
attribute can be used for searches.

The term attribute collectively refers to both standard attributes and managed attributes.

• Standard attributes are described by system records. The system records that describe standard
attributes are known as Property Description Records (PDRs).

• Managed attributes are also described by system records. The system records that describe
managed attributes are known as Property Description Records (PDRs) and Dimension Description
Records (DDRs).

Each attribute is identified by a unique name.

Related Links
Assignments on standard attributes on page 22

Records are assigned standard attribute values. An assignment indicates that a record has
a value for a standard attribute.

Unique attributes on page 23
A unique attribute is a standard attribute for which each record must have a unique value.

Primary key attributes on page 23
Each set of records must have at least one primary key standard attribute.

Attribute types on page 23
The attribute type identifies the type of data allowed for the standard attribute value (key
value pair).

Assignments on standard attributes

Records are assigned standard attribute values. An assignment indicates that a record has a value
for a standard attribute.

A record typically has assignments for multiple standard attributes. For each assigned attribute, the
record may have one or more values. An assignment on a standard attribute is known as a key value
pair (KVP).

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | MDEX Engine data model22

Not all standard attributes will have an assignment for every record. For example, for a publisher that
sells both books and magazines, the "ISBN number" standard attribute would be assigned for book
records, but not assigned (empty) for magazine records.

Standard attributes may be single-assign or multi-assign:

• A single-assign attribute is an attribute for which each record can only have one value. For example,
for a list of books, the ISBN number would be a single-assign attribute. Each book only has one
ISBN number.

• A multi-assign attribute is an attribute for which a single record can have more than one value. For
the same list of books, because a single book may have multiple authors, the Author attribute
would be a multi-assign attribute.

By default, all standard attributes are single-assign. To make a standard attribute multi-assign, you
must update the attribute configuration.

Unique attributes

A unique attribute is a standard attribute for which each record must have a unique value.

For the MDEX Engine to identify a record to update, the record must have at least one assignment
from a unique attribute.

By default, a standard attribute is not unique. To make a standard attribute unique, you must update
the standard attribute configuration.

A schema can have more than one unique attribute. This allows the MDEX Engine to handle different
record "buckets," each of which can have a meaningful identifying standard attribute.

For example, a store carries multiple types of printed publications such as books, magazines, or
newspapers. The records representing books can have a unique attribute, ISBN. They may also have
another unique attribute, publication-id, that is used for all publication types.You could then identify
a specific book by providing to the MDEX Engine either its ISBN or its publication-id.

Primary key attributes

Each set of records must have at least one primary key standard attribute.

Primary key attributes are used to uniquely identify a record. In order for a standard attribute to be a
primary key attribute:

• The attribute must be unique
• The attribute must be single-assign

You can use more than one attribute in the MDEX Engine as a primary key, as long as each attribute
is both unique and single-assign.

Attribute types

The attribute type identifies the type of data allowed for the standard attribute value (key value pair).

The MDEX Engine supports the following standard attribute types:

DescriptionAttribute type

XML-valid character strings.mdex:string

A 32-bit signed integer.mdex:int values accepted by the MDEX Engine
on all platforms can be up to the value of 2,147,483,647.

mdex:int

Endeca® Latitude Developer's GuideEndeca Confidential

23MDEX Engine Concepts | MDEX Engine data model

DescriptionAttribute type

A 64-bit signed integer. mdex:long values accepted by the MDEX
Engine on all platforms can be up to the value of
9,223,372,036,854,775,807.

mdex:long

A floating point value.mdex:double

A 32-bit unsigned integer that represents the time of day in milliseconds.mdex:time

A 64-bit signed integer that represents the date and time in milliseconds
since the epoch (January 1, 1970).

mdex:dateTime

A 64-bit signed integer that represents a length of time in milliseconds.mdex:duration

A Boolean. Valid Boolean values are true (or 1, which is a synonym
for true) and false (or 0, which is a synonym for false).

mdex:boolean

A latitude and longitude pair. The latitude and longitude are both
double-precision floating-point values.

mdex:geocode

XML representation of records and attributes
In XML, each record is represented as a collection of attribute value assignments (key value pairs).

In all of the MDEX Engine interfaces, a record is represented in XML as a record element. The record
element contains attribute elements (these attributes should not be confused with the term "attribute"
used in the XML standard set of terms). Each attribute element contains the attribute values for the
specified attribute.

If a record does not have a value for an attribute, the attribute is not included for that record.

If a record has multiple values for an attribute, there is a separate attribute element for each value.

The following XML represents a single data record with three standard attributes (Description,
WineID, and WineType):

<Record>
<Description type="mdex:string">Dense and vegetal, with peach and
spice flavors.</Description>
<WineID type="mdex:int">12345</WineID>
<WineType type="mdex:string">white</WineType>
</Record>

Examples of records and standard attributes
The following examples of records demonstrate different configurations of standard attributes and their
values (key value pairs).

About these examples

In the examples, each row in the table represents a single record, in this case, a bottle of wine. The
column headings are standard attributes, and each cell contains a standard attribute value (key value
pair).

Example 1: all records have a single assignment from each attribute

In this example:

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | MDEX Engine data model24

• The Name attribute is both unique and single-assign. Each record has exactly one assignment on
the Name attribute, and the Name attribute is unique across the data set.

• No records have multiple assignments.
• Every record has an assignment for every attribute.

PriceVintageRegionWine
ID

Wine TypeName

$20.002007California4038MerlotRavenswood Merlot 2007

$50.002001France5213ChampagneVeuve Cliquot 2001

$16.992008Oregon8765Pinot Gris2008 Elk Cove Pinot Gris

$6.992008Australia4035ShirazYellow Tail Shiraz 2008

$8.992008Chile3421Cabernet
Sauvignon

Concha y Toro Casillero Del
Diablo Cabernet Sauvignon 2008

The XML representation of the Ravenswood wine record may look similar to the following example:

<Record>
<Name type="mdex:string">Ravenswood Merlot 2007</Description>
<WineID type="mdex:int">4038</WineID>
<WineType type="mdex:string">Merlot</WineType>
<Region type="mdex:string">California</Region>
<Vintage type="mdex:int">2007</Vintage>
<Price type="mdex:string">20.00</Price>
</Record>

All lines in this XML example represent key value pairs.

Also, notice the primary key attribute, which in this case is the WineID. This primary key attribute is
used by the MDEX Engine to uniquely identify this record. At the data loading stage you decide which
of your standard attributes is going to be the primary key attribute.

Example 2: records with no assignments and with multiple assignments on an attribute

This example uses the same data as the previous example, but adds a Review score attribute. For
the Review score attribute, some records have multiple assignments, and some have no assignments.

For example, the Ravenswood record has multiple review scores, and the Yellow Tail record has no
review scores.

PriceVintageReview scoreRegionWine TypeName

$20.00200720, 35, 40CaliforniaMerlotRavenswood Merlot 2007

$50.00200180, 82FranceChampagneVeuve Cliquot 2001

$16.992008OregonPinot Gris2008 Elk Cove Pinot Gris

$6.992008AustraliaShirazYellow Tail Shiraz 2008

$8.992008ChileCabernet
Sauvignon

Concha y Toro Casillero Del
Diablo Cabernet Sauvignon 2008

Endeca® Latitude Developer's GuideEndeca Confidential

25MDEX Engine Concepts | MDEX Engine data model

The XML representation of the Ravenswood and Yellow Tail wines may look similar to the following
example:

<Record>
<Name type="mdex:string">Ravenswood Merlot 2007</Description>
<WineType type="mdex:string">Merlot</WineType>
<Region type="mdex:string">California</Region>
<ReviewScore type="mdex:int">20</ReviewScore>
<ReviewScore type="mdex:int">35</ReviewScore>
<ReviewScore type="mdex:int">40</ReviewScore>
<Vintage type="mdex:int">2007</Vintage>
<Price type="mdex:string">20.00</Price>
</Record>
<Record>
<Name type="mdex:string">Yellow Tail Shiraz 2008</Description>
<WineType type="mdex:string">Shiraz</WineType>
<Region type="mdex:string">Australia</Region>
<Vintage type="mdex:int">2008</Vintage>
<Price type="mdex:string">6.99</Price>
</Record>

The XML for the Ravenswood record contains three ReviewScore elements, one for each score.
Because the Yellow Tail record does not have any review scores, it does not include a ReviewScore
element.

Managed attributes
A managed attribute is a collection of metadata about standard attribute values, most importantly the
hierarchy of those attribute values (key value pairs).

Managed attributes are used to support hierarchical navigation. In other words, associating a managed
attribute with a standard attribute enables hierarchical navigation of records based on the standard
attribute values. For example, you can navigate a collection of books using the Library of Congress
Classification standard attribute and refine by Literature > American > 19th century.

When you create a managed attribute, you load a taxonomy definition that enumerates a hierarchy
where each standard attribute value (in a key value pair for the standard attribute) is a node in the
hierarchy (called a managed attribute value, or mval).

Managed attributes are described by system records — Property Dimension Records and Dimension
Description Records.

Managed attributes:

• Must share a name with existing standard attributes.
• Can be made available for navigation.
• Can be made available for search.
• Have a defined hierarchy. Managed attribute values in this hierarchy are represented by standard

attribute values.

It is important to understand that managed attributes do not exist independently of the standard
attributes whose hierarchy they describe. Managed attributes simply define additional metadata for
those standard attributes.

In other words, you must first define records and their standard attributes to the MDEX Engine. Only
then can you add managed attribute hierarchies for selected standard attributes.Together, the records,
standard attributes, and managed attributes make up your records schema.

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | MDEX Engine data model26

System records
The MDEX Engine uses system records to store configuration information.

You can configure the following system records:

• Property Description Records (PDRs), used to define the format and behavior of standard
attributes.

• Dimension Description Records (DDRs), used to define managed attributes and thus enable
the creation of hierarchical standard attribute values.

• The Global Configuration Record (GCR), used to control various aspects of the global
configuration.

To avoid naming collisions with customer-created records and attributes, the keys for system records
are prefixed with MDEX-specific namespaces, such as mdex-property.

Related Links
Property Description Record (PDR) on page 27

A Property Description Record (PDR) is a system record that defines a record for a standard
attribute in the MDEX Engine.

Dimension Description Record (DDR) on page 30
A Dimension Description Record (DDR) defines a managed attribute, similar to how a PDR
defines a standard attribute.

Global Configuration Record (GCR) on page 31
The Global Configuration Record (GCR) is a single record used to identify and store global
configuration information.

Property Description Record (PDR)
A Property Description Record (PDR) is a system record that defines a record for a standard attribute
in the MDEX Engine.

About PDRs

The MDEX Engine uses a PDR to store metadata about the standard attribute, and must have a PDR
in order to build a schema for your data records.

As records, PDRs themselves have required attributes, and can also have arbitrary, user-defined
attributes.

For each standard attribute, the attributes in the associated PDR define the attribute's features,
including:

• Name and type
• Display name
• Configuration parameters. For example, whether an attribute is searchable.
• Navigability settings. For example, whether to show record counts for available refinements, whether

to enable multi-select, and how to sort refinements.

Creating and updating PDRs

When the MDEX Engine acquires a new record, it stores it and constructs a PDR for any attributes
that it finds in the record. To create a PDR, use the Latitude Data Integrator.

Endeca® Latitude Developer's GuideEndeca Confidential

27MDEX Engine Concepts | System records

Updating a PDR immediately changes the navigation behavior of the MDEX Engine. To change a
PDR, you can use:

• The Latitude Data Integrator. For information, see the Latitude Data Integrator Guide.
• The Data Ingest Web Service.

Required schema attributes of a PDR

PDRs have the following required attributes:

DescriptionTypeSchema attribute

The name of the standard attribute.

The key name must be an NCName.

stringmdex-property_Key

The name of the standard attribute in an
easy-to-understand format.

The display name can use a non-NCName
format.

stringmdex-property_DisplayName

The data type of the standard attribute.

The possible values are string, int, int64,
double, boolean, dateTime, time, dura¬
tion, and geocode.

stringmdex-property_Type

The default is string.

If set to true, each record can have at most
one value for the standard attribute.

If set to false, each record may have more
than one value for the standard attribute.

booleanmdex-property_IsSingleAssign

The default is true.

If set to true, then each record must have a
unique value for the standard attribute.

If set to false, then multiple records can have
the same value.

booleanmdex-property_IsUnique

The default is false.

If set to true, then the standard attribute is
enabled for text search.

If set to false, the standard attribute does not
support text search.

booleanmdex-property_IsTextSearch¬
able

The default is false.

If set to true, then wildcard search is enabled
for this standard attribute.

If set to false, then wildcard search is not
enabled.

booleanmdex-property_TextSearchAl¬
lowsWildcards

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | System records28

DescriptionTypeSchema attribute

If this is set to true, then mdex-proper¬
ty_IsTextSearchable must be set to
false.

The default is false.

If set to true, the standard attribute is enabled
for value search.

If set to false, the attribute is not
value-searchable.

booleanmdex-property_IsPropertyVal¬
ueSearchable

The default is true.

This schema attribute can be changed only for
the standard attributes of type string.

This schema attribute does not apply for
managed attributes, for which value search is
always enabled and cannot be disabled.

Used to configure the multi-select feature for
a standard attribute. The allowed values are:

stringsystem-navigation_Select

• single. Users can select only one
refinement from this attribute.

• multi-and. Users can select multiple
refinements from the attribute. The
returned records must have assignments
from all of the selected refinements (from
A AND B).

• multi-or. Users can select multiple
refinements from this attribute. The
returned records must have assignments
from at least one of the selected
refinements (from A OR B).

The default is single.

The order in which to display refinements in
the navigation menu. The allowed values are:

stringsystem-navigation_Sorting

• lexical sorts refinements alphabetically
or by number.

• record-count sorts refinements in
descending order, by the number of
records available for each refinement.

The default is lexical.

Whether to show record counts for a
refinement.

If set to true, the record counts are shown.

booleansystem-navigation_ShowRecord¬
Counts

Endeca® Latitude Developer's GuideEndeca Confidential

29MDEX Engine Concepts | System records

DescriptionTypeSchema attribute

If set to false, the record counts are not
shown.

The default is true.

The groups to which the attributes belong.stringsystem-property_GroupMember¬
ship

User-defined schema attributes of a PDR

You can use the arbitrary, user-defined schema attributes in a Property Description Record to display
various aspects of how your data records are organized.

Dimension Description Record (DDR)
A Dimension Description Record (DDR) defines a managed attribute, similar to how a PDR defines a
standard attribute.

About DDRs

The Dimension Description Record has the same name as the associated standard attribute. It used
to enable the creation of hierarchical standard attribute values.

Required schema attributes of a DDR

A Dimension Description Record has the following required schema attributes:

DescriptionTypeSchema attributes

The name of the managed
attribute.

stringmdex-dimension_Key

If set to true, then refinements
are displayed.

If set to false, refinements are
not displayed. In other words, the
managed attribute is hidden.

booleanmdex-dimension_EnableRefinements

The default is true.

If set to true, then during value
searches, the search matches

booleanmdex-dimension_IsDimensionSearch¬
Hierarchical

both the assigned values and the
ancestors of those values.

If set to false, then the search
matches only the assigned
values.

The default is false.

If set to true, then during record
searches, the search matches

booleanmdex-dimension_IsRecordSearchHier¬
archical

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | System records30

DescriptionTypeSchema attributes

records with both the assigned
values and the ancestors of
those values.

If set to false, then the search
only matches records with the
assigned values.

The default is false.

Global Configuration Record (GCR)
The Global Configuration Record (GCR) is a single record used to identify and store global configuration
information.

Definition

The Global Configuration Record is created automatically in the MDEX Engine, and can be modified
if needed. This information persists if you restart the MDEX Engine.

The Global Configuration Record controls the following areas of the MDEX Engine configuration:

What you can do...Area of global configuration

Specify whether wildcard search should be enabled or disabled for
value search in the MDEX Engine. By default, it is disabled.

Wildcard search enablement

List which characters you want to identify as search characters to the
MDEX Engine.

Search characters

Optionally, change the policy that the MDEX Engine uses in the
background to merge its index generations.

The default policy – balanced – is recommended, and is optimized
for best performance.

Merge policy

Control which words are eligible for the spelling dictionary.

To do this, for each attribute assignment on a record and for each
managed attribute value, you specify the following parameters:

Spelling correction settings

• Minimum word occurrence
• Minimum word length
• Maximum word length

Note: If you change the spelling settings in the Global
Configuration Record, you must run the admin?op=updatea¬
spell command in order for them to take effect.

Modifying the settings in the Global Configuration Record

To change the Global Configuration Record settings, use the Latitude Data Integrator. For information,
see the Latitude Data Integrator Guide.

Endeca® Latitude Developer's GuideEndeca Confidential

31MDEX Engine Concepts | System records

Required attributes of the GCR

The Global Configuration Record has required attributes, but it cannot have arbitrary, user-defined
attributes.

The required attributes are:

DescriptionTypeAttribute

The only value for this attribute is
global.

This attribute is unique and
single-assign.

Stringmdex-config_Key

If set to true, then wildcard search
is enabled for value search.

If set to false, then wildcard search
is disabled.

Booleanmdex-config_EnableValueSearch¬
Wildcard

The default value is false.

The allowed values are balanced
or aggressive.

The default is balanced.

Stringmdex-config_MergePolicy

The characters to use as search
characters in the MDEX Engine.

The allowed values are strings that
are listed sequentially and are not
separated by commas or spaces.

Stringmdex-config_SearchChars

Each string is a search character.

The version of the system records in
the MDEX Engine.

This attribute is used by the MDEX
Engine and should not be modified.

Stringmdex-config_SystemRecordVer¬
sion

The minimum number of times a
word must occur in a standard

Intmdex-config_SpellingRecordMin¬
WordOccur

attribute value (record assignment
on a standard attribute, in a key value
pair) for it to be indexed for spelling
correction.

The default value is 4.

The minimum number of characters
that a word can contain in a standard

Intmdex-config_SpellingRecordMin¬
WordLength

attribute value for it to be indexed for
spelling correction.

The default value is 3.

Endeca ConfidentialEndeca® Latitude Developer's Guide

MDEX Engine Concepts | System records32

DescriptionTypeAttribute

The maximum number of characters
that a word can contain in a standard

Intmdex-config_SpellingRecordMax¬
WordLength

attribute value for it to be indexed for
spelling correction.

The default value is 16.

The minimum number of times a
word must occur in a managed

Intmdex-config_SpellingDValMinWor¬
dOccur

attribute value for it to be indexed for
spelling correction.

The default value is 1.

The minimum number of characters
that a word must contain in a

Intmdex-config_SpellingDValMin¬
WordLength

managed attribute value for it to be
indexed for spelling correction.

The default value is 3.

The maximum number of characters
that a word may contain in a

Intmdex-config_SpellingDValMax¬
WordLength

managed attribute value for it to be
indexed for spelling correction.

The default value is 16.

Validating the GCR settings

During record updates, the MDEX Engine validation process validates the configuration of the Global
Configuration Record, and returns errors if its requirements are not met.

The requirements are as follows:

• The mdex-config_Key attribute must be unique and single-assign. The value must be global.
• The Global Configuration Record must contain valid allowable values for all of its attributes. None

of its attributes can be omitted.
• The Global Configuration Record cannot have any arbitrary, user-defined attributes.

Endeca® Latitude Developer's GuideEndeca Confidential

33MDEX Engine Concepts | System records

Part 2

Endeca Web Services

• Using the Configuration Web Service
• Using the Conversation Web Service

Chapter 3

Using the Configuration Web Service

This section describes the Configuration Web Service.

About the Configuration Web Service
The Configuration Web Service provides an interface that allows ergonomic interaction with both the
MDEX Engine configuration and record schema.

Overview

The Configuration Web Service is used by the Latitude Data Integrator, and allows you to manipulate
schema and configuration.

Two versions of the Configuration Web Service exist:

• The full-featured Configuration Web Service
• The read-only Configuration Web Service

The full-featured Configuration Web Service is declared in config.wsdl.You can access it at this
URL: http://localhost:<port>/ws/config, similar to other packaged Web services.

The read-only version of the Configuration Web Service is declared in config_read_only.wsdl.
This version is a subset of a full-featured version. The read-only version contains only the operations
that read from the current schema or configuration; it does not contain operations that update the
schema or configuration. This read-only version of the Configuration Web Service is used by Latitude
Studio in cases when a server running Latitude Studio must access the server running the MDEX
Engine in a read-only mode (such configuration is possible when multiple MDEX Engine servers are
running in a cluster. For more information on the cluster of MDEX Engine nodes, see the Latitude
Administrator's Guide).

Note: When the documentation mentions the Configuration Web Service, it refers to the
full-featured version of the service. When the read-only version is mentioned, it is specifically
characterized as the "read-only version of the Configuration Web Service".

The following diagram shows how the Configuration Web Service fits into the larger picture of packaged
Web services that serve the MDEX Engine:

As shown in this diagram, the Configuration Web Service is used by Latitude Studio during the process
of defining the Endeca application.

Function description

A request to the Configuration Web Service consists of a configTransaction element, which
contains a series of operations. Operations can be combined arbitrarily in a single service request;
each of the operations can appear at most once. The operations perform actions on PDRs, DDRs,
groups, the GCR, and on XML configuration documents.

The effect of a full-featured Configuration Web Service request that contains put operations is to add
attributes, XML configuration documents, or the Global Configuration Record to the MDEX Engine:

• If a record with the specified key already exists in the MDEX Engine, it is replaced.
• If a record does not exist, it is created.

Request

The input to the Configuration Web Service depends on the operation used. It can include attribute
schema records (PDRs and DDRs), Global Configuration Record, groups, and a set of XML configuration
documents.

Response

Not all operations in the Configuration Web Service return data.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using the Configuration Web Service | About the Configuration Web Service38

If the operation returns data, the response to the Configuration Web Service is a results element, within
which each of the submitted operations produces an element showing its own results.

If any operation does not succeed, the whole Web service transaction returns a SOAP fault and none
of the operations are applied.

Operations for PDRs

The operations on PDRs are the following:

DescriptionOperation

Return all Property Description Records (PDRs)exportProperties

Return the key of each standard attribute present in the MDEX EnginelistProperties

Return PDRs for the specified attribute keys. Attribute keys are obtained
from listProperties

getProperties

Add the PDRs (specified as an argument) to the MDEX Engine. If an with
the same key exists, it is replaced.

putProperties

Note: This operation is not supported by the read-only version of
the service.

Lets you add or modify specified assignments on the PDR.

As an argument, specify an attribute key associated with an existing PDR
and zero or more assignments.

updateProperties

The operation replaces the assignment on the PDR with a new assignment
if it is provided as an argument.

There is no requirement to specify the entire PDR to this operation; there
is a requirement to specify the standard attribute key.

Note: This operation is not supported by the read-only version of
the service.

Operations for DDRs

The operations on DDRs are the following:

DescriptionOperation

Return all Dimension Description RecordsexportDimensions

Return the key of each managed attribute present in the MDEX EnginelistDimensions

Return DDRs for specified managed attribute keys. Managed attribute keys
are obtained from listDimensions

getDimensions

Add the DDRs (specified as arguments) to the MDEX Engine. If a managed
attribute with the same key exists, it is replaced.

putDimensions

Note: This operation is not supported by the read-only version of
the service.

Endeca® Latitude Developer's GuideEndeca Confidential

39Using the Configuration Web Service | About the Configuration Web Service

DescriptionOperation

Lets you add or modify specified assignments on the DDR.

As an argument, specify a managed attribute key associated with an existing
DDR and zero or more assignments.

updateDimensions

The operation replaces the assignment on the DDR with a new assignment
if it is provided as an argument.

There is no requirement to specify the entire DDR to this operation; there
is a requirement to specify the managed attribute key.

Note: This operation is not supported by the read-only version of
the service.

Group operations

The operations on refinement groups are the following:

DescriptionOperation

Remove any existing groups and add the specified onesimportGroups

Note: This operation is not supported by the read-only version of
the service.

Return the full representation of each groupexportGroups

Return a summary of each grouplistGroups

Return the specified groups.

This operation returns groups in the order in which you specify the keys
for each group. This operation creates a summary of each existing group

getGroups

which includes the group key, the display name (if it exists), and the
cardinality of the group.

This operation returns attributes for all user-specified groups and attributes
that do not belong to any user-specified groups. To request all attributes
that do not belong to any user-specified groups, specify the key system-
navigation_InternalGroup.

Add or replace each of the specified groupsputGroups

Note: This operation is not supported by the read-only version of
the service.

Delete each of the specified groupsdeleteGroups

Note: This operation is not supported by the read-only version of
the service.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using the Configuration Web Service | About the Configuration Web Service40

Operations for Global Configuration Record

The operations for Global Configuration Record are the following:

DescriptionOperation

Obtain the Global Configuration Record from the MDEX EnginegetGlobalConfigRecord

Add the Global Configuration Record in the MDEX Engine. If the GCR
already exists, it is replaced.

putGlobalConfigRecord

Note: This operation is not supported by the read-only version
of the service.

Operations for XML configuration documents

The operations for managing the XML configuration documents are the following:

DescriptionOperation

Return the name of each XML configuration documentlistConfigDocuments

Return the requested XML configuration documentsgetConfigDocuments

Add or replace each of the specified XML configuration documentsputConfigDocuments

Note: This operation is not supported by the read-only version
of the service.

Global operations

The Configuration Web Service has the following global operations:

DescriptionOperation

Export all attributes, groups, configuration documents, and the Global
Configuration Record

export

Import all attributes, groups, configuration documents, and the Global
Configuration Record

import

Note: This operation is not supported by the read-only version of the
service.

Loading an attribute schema
You can use the Configuration Web Service to load the schema for your standard and managed
attributes.

If you load your attribute schema before loading your source records, you can modify the resulting
PDRs and DDRs as needed. After they have been configured as desired, you can then use the Data
Ingest Web Service to load your source records.

Endeca® Latitude Developer's GuideEndeca Confidential

41Using the Configuration Web Service | Loading an attribute schema

• The putProperties element loads the standard attributes schema.
• The putDimensions element loads the managed attributes schema.

To illustrate the use of this operation, this configTransaction simple example will be used:

<config:configTransaction xmlns:config="http://www.endeca.com/MDEX/config/ser¬
vices/config/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <config:putDimensions>
 <mdex:record>
 <mdex-dimension_EnableRefinements type="mdex:int">1</mdex-dimension_En¬
ableRefinements>
 <mdex-dimension_IsDimensionSearchHierarchical type="mdex:int">1</mdex-
dimension_IsDimensionSearchHierarchical>
 <mdex-dimension_IsRecordSearchHierarchical type="mdex:int">1</mdex-
dimension_IsRecordSearchHierarchical>
 <mdex-dimension_Key type="mdex:string">WineType</mdex-dimension_Key>

 </mdex:record>
 </config:putDimensions>
 <config:putProperties>
 <mdex:record>
 <mdex-property_IsSingleAssign type="mdex:int">1</mdex-property_IsSin¬
gleAssign>
 <mdex-property_IsTextSearchable type="mdex:int">0</mdex-property_Is¬
TextSearchable>
 <mdex-property_IsUnique type="mdex:int">1</mdex-property_IsUnique>
 <mdex-property_Key type="mdex:string">WineID</mdex-property_Key>
 <mdex-property_TextSearchAllowsWildcards type="mdex:int">0</mdex-
property_TextSearchAllowsWildcards>
 <mdex-property_Type type="mdex:string">mdex:int</mdex-property_Type>

 </mdex:record>
 <mdex:record>
 <mdex-property_IsSingleAssign type="mdex:int">0</mdex-property_IsSin¬
gleAssign>
 <mdex-property_IsTextSearchable type="mdex:int">1</mdex-property_Is¬
TextSearchable>
 <mdex-property_IsUnique type="mdex:int">0</mdex-property_IsUnique>
 <mdex-property_Key type="mdex:string">Description</mdex-property_Key>

 <mdex-property_TextSearchAllowsWildcards type="mdex:int">1</mdex-
property_TextSearchAllowsWildcards>
 <mdex-property_Type type="mdex:string">mdex:string</mdex-property_Type>

 </mdex:record>
 <mdex:record>
 <mdex-property_IsSingleAssign type="mdex:int">0</mdex-property_IsSin¬
gleAssign>
 <mdex-property_IsTextSearchable type="mdex:int">1</mdex-property_Is¬
TextSearchable>
 <mdex-property_IsUnique type="mdex:int">0</mdex-property_IsUnique>
 <mdex-property_Key type="mdex:string">WineType</mdex-property_Key>
 <mdex-property_TextSearchAllowsWildcards type="mdex:int">1</mdex-
property_TextSearchAllowsWildcards>
 <mdex-property_Type type="mdex:string">mdex:string</mdex-property_Type>

 </mdex:record>
 </config:putProperties>
</config:configTransaction>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using the Configuration Web Service | Loading an attribute schema42

The example creates three standard attributes (WineID, WineType, and Description) and one managed
attribute (WineType). The WineID attribute is configured as a single-assign, unique attribute, so that
it can be used as an attribute key for source records. The WineType attribute is the standard attribute
record used for the creation of the WineType managed attribute.

To load an attribute schema into the MDEX Engine:

1. Make sure that the MDEX Engine and its Configuration Service are running.

2. Make a SOAP request to the Configuration Service with the schema.

If the request is successful, the response will look like this example:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header/>
 <soapenv:Body>
 <config-service:results xmlns:config-service="http://www.ende¬
ca.com/MDEX/config/services/config/2010">
 <config-service:successPutDimensions/>
 <config-service:successPutProperties/>
 </config-service:results>
 </soapenv:Body>
</soapenv:Envelope>

Endeca® Latitude Developer's GuideEndeca Confidential

43Using the Configuration Web Service | Loading an attribute schema

Chapter 4

Using the Conversation Web Service

This section describes the role of the Conversation Web Service in the MDEX Engine.

About the Conversation Web Service
The Conversation Web Service provides the primary means of querying data in the MDEX Engine.

Overview

The Conversation Web Service is used by Latitude Studio components to send queries (such as
navigation or search queries) to the MDEX Engine.The service is a WS-I compliant SOAP/HTTP Web
service.

Important: The Conversation Web Service is an internal interface that is subject to change.
Since the Conversation Web Service is used by Latitude Studio components, Endeca recommends
using Latitude Studio as the primary interface to the MDEX Engine and not using the Conversation
Web Service directly.

The Conversation Web Service is declared in conversation.wsdl.The service uses several library
helper modules (such as queryBuilder.xq) that are located in the lib directory.

The following diagram shows how the Conversation Web Service fits into the larger picture of Endeca
Web Services that serve the MDEX Engine.

The Conversation Web Service has an easy-to-program interface that insulates application-tier
developers from the low-level XQuery APIs.

The service supports fundamental MDEX Engine behavior, such as:

• Guided Navigation
• Record and value searches
• Communication between the front-end application client and the MDEX Engine
• Support for a range of summarizations
• Management of the conversation state

Conversation Web Service interface
The Conversation Web Service interface provides an operation that queries the MDEX Engine. The
information in this topic is provided for reference purposes only, since you use Latitude Studio
components, (which utilize the Conversation Service) as a means of querying the MDEX Engine.

This topic provides a brief overview of the Conversation Web Service interface. For information on
schema elements, see the MDEX Engine API Reference.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using the Conversation Web Service | Conversation Web Service interface46

Function description

The Conversation Web Service supports the query operation:

<operation name= "query">
 <input name="request" message="cs:ConversationRequest"/>
 <output name="response" message="cs:ConversationResponse"/>
 <fault name="fault" message="cs:ConversationFault"/>
</operation>

At a high level, the Conversation Web Service facilitates a dialog with users about data. The
Conversation Web Service manages filter state, content elements, and operators:

• The filter state reflects the currently selected records and the selections that were used to reach
them.

• Content elements provide information about the currently selected records and the selections.
• The operators represent requests to change the filter state or reconfigure content elements, typically

as a result of user actions. Operators can be specified for refinements, breadcrumbs, and other
aspects of the front-end application available for navigation.

The sequence of actions in the Conversation Web Service "dialog" is as follows:

1. A user issues a query using the front-end application.

This query is used to construct an initial filter state (typically, empty, or containing a simple record
filter), and a number of content elements. This filter state and content element configurations are
sent in a Conversation Web Service request.

2. The request returns the filter state and the resulting content elements.

The content elements contain a number of operators, each representing a user action that might
occur from this state. For instance, a record list content element contains operators to re-sort the
records, or to view different pages; a navigation menu content element contains an operator for
each refinement.

3. When the user chooses a particular action, the application can submit a new request through the
Conversation Web Service, returning the old filter state and passing in the operators corresponding
to the user actions.

4. The response returns a transformed query along with new filter state and new content element
contents (response data).

To summarize, this is the "conversation" underlying this Web service: The Conversation Web Service
offers a list of content elements and a number of operators, the front-end application selects some
operators, and the Conversation Web Service offers new content elements and new operators.

Request

The query operation takes a request as its input. The schema for the Request is:

<complexType name="Request">
 <sequence>
 <element name="FilterState" type="cs:FilterState"/>
 <element name="Operator" type="cs:Operator" minOccurs="0" maxOccurs="un¬
bounded"/>
 <element name="ContentElementConfig" type="cs:ContentElementConfig"
minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="PassThrough" type="cs:CatchAll" minOccurs="0"/>
 </sequence>
</complexType>

Endeca® Latitude Developer's GuideEndeca Confidential

47Using the Conversation Web Service | Conversation Web Service interface

A request consists of a filter state and a list of "content elements" to compute. Each request specifies:

• A filter state, which contains inputs that affect the set of records to operate on. Currently it contains
selected refinements, search terms, and record filters.

• A configuration for user interaction elements (called content elements). The configuration is an
object that encapsulates some description or summarization of a filter state or the data therein.
For example, a set of breadcrumbs, a navigation menu, or the data for a grid or chart. The content
element is conceptually a "memo" to the MDEX Engine asking it to provide certain information
relative to a certain filter state.

• A sequence of operators to apply that will transform the filter state and configuration.
• A pass-through, which is used to allow unrestricted schema in several places where user-defined

XML is valuable.

Response

The query operation outputs a Results response. The response contains the Request element
that generated it, as well as any components that were requested. Each component is returned only
if its corresponding configuration was supplied in the request.

In other words, a response from the Conversation Web Service contains operators for refinements,
breadcrumbs, and other aspects of the front-end application available for navigation.

The schema for the Results response is:

<complexType name="Results">
 <sequence>
 <element name="Request" type="cs:Request"/>
 <element name="ContentElement" type="cs:ContentElement" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="PassThrough" type="cs:CatchAll" minOccurs="0"/>
 </sequence>
</complexType>

Error example

On failure, the SOAP fault is thrown.

Its faultstring element contains information about the request that caused the error, and the detail
element includes pointers to the location of errors in the request, as in the following example of the
SOAP fault:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header/>
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>soapenv:Client</faultcode>
 <faultstring>Contents of body must be a single request.</fault¬
string>
 <detail>
 <cs:Fault xmlns:cs="http://www.endeca.com/MDEX/conversa¬
tion/2010">
 <stack-trace:span uri="conversation.xq" xmlns:stack-
trace="http://www.endeca.com/XQuery/stacktrace/2009">
 <stack-trace:start line="31" column="3"/>
 <stack-trace:end line="31" column="76"/>
 </stack-trace:span>
 </cs:Fault>
 </detail>
 </soapenv:Fault>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using the Conversation Web Service | Conversation Web Service interface48

 </soapenv:Body>
</soapenv:Envelope>

Endeca® Latitude Developer's GuideEndeca Confidential

49Using the Conversation Web Service | Conversation Web Service interface

Part 3

Record Features

• Working with Endeca Records
• Sorting Endeca Records
• Record Filters
• Using Range Filters

Chapter 5

Working with Endeca Records

This section provides information on handling Endeca records in your Web application.

Displaying Endeca records with Latitude Studio
The Results Table component provides displaying records in a tabular format. The Results List
component displays records in a format similar to regular Web search results. The Data Explorer
component displays each record as a set of key value pairs.

The Results Table component can show results from Analytics and non-Analytics queries.The records
are displayed with selected attributes and attribute values.

The component provides a list of records in table form, and allows users to view a record's details.
Users can page through, sort, and scroll across large tables, switch between column sets, and drill
down on selected attributes. Locked columns help users keep track of the data they are viewing.

The following is an example of a Results Table component displaying a record list:

The Results List component displays a list of records in a format similar to regular search results. It
displays a selected set of attributes for each record. It does not support Analytics. From the Results
List component, users can navigate through the list, display record details, and drill down on attributes.

The Data Explorer component displays each record as a complete set of key value pairs. It also allows
users to display the details for a record. It does not support Analytics, and is most useful for verifying
newly added or updated data.

For details on adding and configuring a Results Table, Results List, or Data Explorer component
in your Latitude Studio application, see the Latitude Studio Power User's Guide.

Implementing export of records in Latitude Studio
Once the records are returned by the Conversation Web Service, you can export them to a file from
Latitude Studio components.

For information on configuration options, including setting the number of records to export, see the
Power User's Guide.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Endeca Records | Implementing export of records in Latitude Studio54

Displaying Endeca records with the API
This section describes how to display a record list using the Conversation Service API.

For more information on the Conversation Service interface, see the MDEX Engine API Reference.

Related Links
Record list configuration on page 55

The RecordListConfig type defines the configuration for the returned record list.

RecordList result on page 56
The records returned from the query are contained in the RecordList element.

Paging through a record set on page 57
A paging UI control is helpful if many records are returned.

Retrieving large numbers of records on page 59
To obtain a large number of records that can later be exported, you request them as part of
the RecordListConfig element in the Conversation Web Service.

Performance impact of requesting large numbers of records on page 60
Requesting a large number of records at once can reduce memory usage in your front-end
application if the response is handled by a streaming parser, as it is in Latitude Studio.

Record list configuration
The RecordListConfig type defines the configuration for the returned record list.

Record search queries include a RecordListConfig component that lets you configure aspects of
the list of records that is returned from the MDEX Engine. For example, you can figure the sort order
and which attributes should be returned.

The format of the RecordListConfig type is shown in this example:

<ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 MaxPages="40">
 <Column>WineType</Column>
 <Column>Price</Column>
 <RecordsPerPage>5</RecordsPerPage>
 <Page>6</Page>
 <Sort Key="Num" Direction="Ascending" />
</ContentElementConfig>

The meanings of the RecordListConfig elements and attributes are as follows:

MeaningElement/Attribute

Specifies the RecordListHandler handler function for this
ContentElementConfig. Required.

HandlerFunction

Specifies the namespace for the handler function. Required.HandlerNamespace

An arbitrary identifier for this ContentElementConfig. Required.Id

Endeca® Latitude Developer's GuideEndeca Confidential

55Working with Endeca Records | Displaying Endeca records with the API

MeaningElement/Attribute

Optionally specifies an integer that is the maximum number of record
pages to be returned. If this attribute is omitted, a default value of 20 is
used for the query.

MaxPages

Optionally specifies an attribute that should be returned with the record.
You can specify multiple instances of the Column element. Note that you

Column

do not have to specify the primary key, because it is automatically
returned. If no Column elements are specified, then all the record's
attributes are returned.

Optionally specifies an integer that is the maximum number of records
(Record elements) to be displayed in the ContentElement of the result.
If this element is omitted, a default value of 10 is used.

RecordsPerPage

Optionally specifies an integer that is the page to be displayed (that is, it
provides an offset into the overall list of pages).The offset is a zero-based

Page

index, which means that 0 (zero) specifies the first page. This element
allows users to page through a long result set, either directly or step by
step. If an offset is greater than the total number of pages, then the record
list returned will not include records. If this element is omitted, a default
value of 0 is used.

Optionally specifies a sort order for the record list. Key specifies the
attribute used for the sort. Direction specifies an Ascending (the
default) or Descending sort order.

Sort Key Direction

RecordList result
The records returned from the query are contained in the RecordList element.

A list of records is returned with every MDEX Engine query result.The list of records is a RecordList
type that is returned in a Results response by the Conversation Web Service. Each record is returned
in a Record element.

The following sample snippet shows a RecordList with one record, one pagination control, and one
column:

<cs:ContentElement xsi:type="cs:RecordList"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <cs:NumRecords>19</cs:NumRecords>
 <cs:TotalPages>4</cs:TotalPages>
 <cs:RecordRange First="1" Last="5"/>
 <cs:RecordListEntry>
 <cs:Record>
 <Description type="mdex:string">Dense and vegetal, with peach and
 spice flavors.</Description>
 <Flavors type="mdex:string">nine</English>
 <WineID type="mdex:int">101</WineID>
 <WineType type="mdex:string">white</WineType>
 </cs:Record>
 <cs:ComputedProperties/>
 </cs:RecordListEntry>
 ...
 <cs:PaginationControl Label="First" Active="false">
 <cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Endeca Records | Displaying Endeca records with the API56

 </cs:PaginationControl>
 ...
 <cs:Column ColumnKey="WineID" DisplayName="Wine ID" SpecColumn="true">
 <cs:SortControl Key="WineID" Direction="Ascending" Active="true"
xsi:type="cs:SortControl">
 <cs:Operator OwnerId="RecordList" xsi:type="cs:SortOperator"
Key="WineID" Direction="Ascending"/>
 </cs:SortControl>
 <cs:SortControl Key="WineID" Direction="Descending" Active="false"
xsi:type="cs:SortControl">
 <cs:Operator OwnerId="RecordList" xsi:type="cs:SortOperator"
Key="WineID" Direction="Descending"/>
 </cs:SortControl>
 </cs:Column>
 ...
</cs:ContentElement>

The elements in the RecordList contain the following information:

• NumRecords specifies the total number of records (Record elements) that were returned from
the query.

• TotalPages lists the total number of pages of records.
• RecordRange lists the starting and ending records for this page set.
• Each RecordListEntry contains a specific record in a Record element and a
ComputedProperties element that has any computed attributes (such as geocode distance or
snippets) for that record.

• PaginationControl is a control (a PageOperator) for a specific record page.

In addition, the attributes on the Column element contain the following information for a specific attribute
on a record:

• Key identifies the name (in an NCName format) of the attribute.
• DisplayName specifies the name of the attribute in an easy-to-understand format.
• SpecColumn identifies whether the standard attribute is the primary key for the records. If set to

true identifies this attribute as the primary key attribute for the records.
• SortControl identifies the sort order (Ascending or Descending) of the attributes.

The SpecColumn allows you to select a record for viewing its record details.

Paging through a record set
A paging UI control is helpful if many records are returned.

An MDEX Engine query may return more records than can be displayed all at once. A common user
interface mechanism for overcoming this is to create pages of results, where each page displays a
subset of the entire result set.

The RecordList in the Results response includes pagination controls (the PaginationControl
type) that you can use for paging.

The following is an example of a RecordList with a total of seven record pages and three records
per page:

<cs:ContentElement xsi:type="cs:RecordList" Id="RecordList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cs:NumRecords>19</cs:NumRecords>
 <cs:TotalPages>7</cs:TotalPages>

Endeca® Latitude Developer's GuideEndeca Confidential

57Working with Endeca Records | Displaying Endeca records with the API

 <cs:RecordRange First="1" Last="3"/>
 <cs:RecordListEntry>
 ...
 </cs:RecordListEntry>
 <cs:PaginationControl Label="First" Active="false">
 <cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 <cs:PaginationControl Label="Previous" Active="false">
 <cs:Operator OwnerId="RecordList" Page="-1" xsi:type="cs:PageOpera¬
tor"/>
 </cs:PaginationControl>
 <cs:PaginationControl Label="1" Active="false">
 <cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 <cs:PaginationControl Label="2" Active="true">
 <cs:Operator OwnerId="RecordList" Page="1" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 <cs:PaginationControl Label="3" Active="true">
 <cs:Operator OwnerId="RecordList" Page="2" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 <cs:PaginationControl Label="Next" Active="true">
 <cs:Operator OwnerId="RecordList" Page="1" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 <cs:PaginationControl Label="Last" Active="true">
 <cs:Operator OwnerId="RecordList" Page="6" xsi:type="cs:PageOperator"/>

 </cs:PaginationControl>
 ...
</cs:ContentElement>

The RecordList is the initial access point for providing the paging controls for the entire record set.
By default, the query returns a maximum of ten records for display. To override this setting, use the
RecordsPerPage element in the RecordListConfig type, as in this example that sets five records
for display:

<ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <RecordsPerPage>5</RecordsPerPage>
</ContentElementConfig>

The NumRecords element in the RecordList lists the total number of records being returned by
the query:

<cs:NumRecords>20</cs:NumRecords>

The default page offset for a record set is zero, meaning that the first ten records are displayed. The
default offset can be overridden with the PageOperator type, as in this example that sets the offset
to the third page of records:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="PageOperator" OwnerId="RecordList" Page="3"/>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Endeca Records | Displaying Endeca records with the API58

If the number of total pages is 1:

<cs:TotalPages>1</cs:TotalPages>

then no paging controls are needed.

If the number of total pages is 2 or greater, you can use the PaginationControl elements in the
RecordList to go to the appropriate page, as indicated in the following table.

ResultPage Label

Goes to the first record page (which is page 0).First

Goes to the previous record page.Previous

Goes to the next record page.Next

Goes to the last record page.Last

Goes to the first record page (which is page 0).1

Goes to the Nth record page.2 or greater

Note that the Active attribute in a PaginationControl element indicates whether that paging
control is relevant within the context of the current state. For example, if you are on the last record
page, then neither the Next or Last paging controls will be active.

Retrieving large numbers of records
To obtain a large number of records that can later be exported, you request them as part of the
RecordListConfig element in the Conversation Web Service.

A query that requests a large number of records that could later be exported is the same as any valid
navigation query requesting a list of records.This topic contains examples of Conversation Web Service
request and response formats for such a query. No configuration is necessary to request a large
number of records. Any record that is returned as part of the RecordListConfig request, is available
to be exported.

When creating the navigation query for a list of records that will be exported, you do not need to specify
the number of Endeca records that should be returned.The Conversation Web Service returns records
in the record list as it would for any other request for records. The settings that limit the number of
records for export are configured in Latitude Studio. For information on configuring these settings, see
the Latitude Studio Power User's Guide.

Example request

To request a record list with a Conversation Web Service request, use ContentElementConfig of
type RecordListConfig.

There is no requirement to specify any new parameters in the RecordListConfig. Simply set the
RecordsPerPage to the number of records desired for export, and Page to 0."

In this abbreviated example, you can see the format for RecordListConfig:

<ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 MaxPages="40">

Endeca® Latitude Developer's GuideEndeca Confidential

59Working with Endeca Records | Displaying Endeca records with the API

 <Column>WineType</Column>
 <Column>Price</Column>
 <RecordsPerPage>20</RecordsPerPage>
 <Page>0</Page>
 <Sort Key="Num" Direction="Ascending" />
</ContentElementConfig>

Example response

The following abbreviated example shows a returned list:

<cs:ContentElement xsi:type="cs:RecordList"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <cs:NumRecords>19</cs:NumRecords>
 <cs:TotalPages>40</cs:TotalPages>
 <cs:RecordRange First="1" Last="19"/>
 <cs:RecordListEntry>
 <cs:Record>
 <Description type="mdex:string">Dense and vegetal, with peach and
 spice flavors.</Description>
 <Flavors type="mdex:string">nine</English>
 <WineID type="mdex:int">101</WineID>
 <WineType type="mdex:string">white</WineType>
 </cs:Record>
 <cs:ComputedProperties/>
 </cs:RecordListEntry>

 ...
</cs:ContentElement>

Performance impact of requesting large numbers of records
Requesting a large number of records at once can reduce memory usage in your front-end application
if the response is handled by a streaming parser, as it is in Latitude Studio.

Without this approach, application developers who want to export large amounts of data are required
to split up the task and deal with a few records at a time to avoid running out of memory in the application
server’s threads. This division of exports adds query processing overhead to the MDEX Engine which
reduces system throughput and slows down the export process.

Displaying attribute values for records in Latitude Studio
Latitude Studio includes components that can display attribute values for records.

The Results Table, Results List, and Data Explorer components each contain a list of records with
their attributes and attribute values.

The Record Details component displays the attribute values for a specific selected record.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Endeca Records | Displaying attribute values for records in Latitude Studio60

Displaying attribute values with the API
Attribute values on records can be retrieved via the Conversation Service API.

Records are returned in Record elements. Each managed attribute value on a record is returned in
a format like this example:

<WineType cs:ValueName="Red" type="mdex:string">/3</WineType>

where:

• WineType is the name of the managed attribute.
• Red is the name of the managed attribute value.
• /3 is the managed attribute value specifier.

This example shows a record with five managed attribute values:

<cs:Record>
 <Decimal cs:ValueName="53" type="mdex:string">/1-100/51-60/53</Decimal>

 <English type="mdex:string">five three</English>
 <FirstDigit cs:ValueName="5" type="mdex:string">/5</FirstDigit>
 <Hex cs:ValueName="0035" type="mdex:string">/0001-0100/0031-
0040/0035</Hex>
 <LastDigit cs:ValueName="3" type="mdex:string">/3</LastDigit>
 <Num type="mdex:int">53</Num>
 <NumberOfDigits cs:ValueName="2" type="mdex:string">/2</NumberOfDigits>

 <Spanish type="mdex:string">cinco tres</Spanish>
</cs:Record>

Endeca® Latitude Developer's GuideEndeca Confidential

61Working with Endeca Records | Displaying attribute values with the API

Your application front end can iterate through the record, extract the attribute values for the record,
and display a table containing the results.

Performance impact when displaying attribute values
Displaying too many attribute values can cause a performance hit.

The main purpose of attribute values is to enable navigation through the records. Passing attribute
values through the system consumes resources. Therefore, the default behavior of the MDEX Engine
is to return attribute values on records only when a record query request has been made (not for
navigation query requests). As mentioned above, this behavior can be changed. However, the developer
should exercise caution when passing attribute values through to the record list, because doing this
with too many attributes can cause a performance hit.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Endeca Records | Performance impact when displaying attribute values62

Chapter 6

Sorting Endeca Records

The sorting functionality allows the user to define the order of Endeca records returned with each
navigation query.

About record sorting
When making a basic navigation request, the user may define a series of attributes and order (Ascending
or Descending) pairs.

If the user does not specify sort order as part of the query, the MDEX Engine returns query results in
a Descending order on the primary key for returned records (i.e., the standard attribute listed in the
SpecColumn element in the RecordList).You cannot change the default record sort order for the
system; you can only specify a different sort order on a per-query basis.

All of the records corresponding to a particular navigation state are considered for sorting, not just the
records visible in the current request. For example, if a navigation state applies to 100 bottles of wine,
all 100 bottles are considered when sorting, even though only the first ten bottles may be returned
with the current request.

Record sorting only affects the order of records. It does not affect the ordering of attributes or attribute
values that are returned for query refinement.

Note that all attributes are automatically enabled for record sorting when they are created. Therefore,
no attribute configuration is required for sorting.

Global sort order of records
This topic discusses the global sort order of records.

Once the records have been added to the MDEX Engine, the MDEX Engine maintains the index of
records in memory. The following rules apply to how the records are sorted in the results returned by
the Conversation Web Service in response to queries:

• Records are sorted according to the sort order that you specified, if any.
• Even if you specified a sort order, it may not have uniquely determined the resulting order of records

— this usually happens when some records only differ in attributes that were not included in the
sort specification. In such cases, the MDEX tie-breaks the sorting results at random.

• Subsequent requests with the same query will result in the same order (the tie-break is consistent)
unless you have modified the records in any way between requests. For example, the order will

change if you delete any of the records and add them to the MDEX Engine again, even if they are
identical.

Note that when a sorted record result list is requested, string values will be sorted case-insensitively,
with ties broken with a case-sensitive comparison (upper-cased words will rank above lower-cased
words). For example, for the six records A, B, C, a, b, and c, the resulting sort order will be:

A
a
B
b
C
c

Query-time sort ordering
On a per-query basis, you can specify a key on which to sort the records and a sort direction.

You can add a Sort type to a RecordList configuration that lets you specify a key to sort on and
the sort direction. The Sort format is:

<Sort Key="keyName" Direction="dirOrder"/>

where:

• keyName is the name of an attribute on which to sort.
• dirOrder is either Ascending for an ascending order or Descending for a descending order.

Note that case is sensitive for both the attribute name and the sort order.

The following example shows an Ascending sort order based on the WineID attribute:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <FilterState/>
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
 <Search Mode="AllPartial" Key="All">red</Search>
 </Operator>
 <ContentElementConfig xsi:type="RecordListConfig" HandlerFunc¬
tion="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <Sort Key="WineID" Direction="Ascending"/>
 <RecordsPerPage>10</RecordsPerPage>
 </ContentElementConfig>
 </Request>
 </soap:Body>
</soap:Envelope>

Troubleshooting application sort problems
This topic presents some approaches to solving sorting problems.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Sorting Endeca Records | Query-time sort ordering64

If the returned records do not seem to respect the sort key parameter, there are some potential
problems:

• Was the attribute specified as a numeric when it is actually alphanumeric? Or vice versa? In this
case, the MDEX Engine returns a valid response, but the sorting may be incorrect.

• If a record has multiple attribute values for a single attribute, the MDEX Engine sorts the records
based on the first value associated with the key. If the application is displaying the last value, the
records will not appear to be sorted correctly. In general, attributes that are used for sorting should
only have one value assigned per record.

• If certain records in a record set lack a sort-key value, they will always appear last in a result set.
Therefore, if you reverse a sort order on a record set containing such records, the order of the
entire record set will not be reversed—the records without a sort-key value always sort at the end
of the set.

Endeca® Latitude Developer's GuideEndeca Confidential

65Sorting Endeca Records | Troubleshooting application sort problems

Chapter 7

Record Filters

This section describes how to implement record filters in your Endeca application.

About record filters
Record filters allow an Endeca application to define arbitrary subsets of the total record set and
dynamically restrict search and navigation results to these subsets.

For example, the catalog might be filtered to a subset of records appropriate to the specific end user
or user role. The records might be restricted to contain only those visible to the current user based on
security policies. Or, an application might allow end users to define their own custom record lists (that
is, the set of parts related to a specific project) and then restrict search and navigation based on a
selected list. Record filters enable these and many other application features that depend on applying
Endeca search and navigation to dynamically defined and selected subsets of the data.

If you specify a record filter, whether for security, custom catalogs, or any other reason, it is applied
before any search processing. The result is that the search query is performed as if the data set only
contained records allowed by the record filter.

Record filters support Boolean syntax using attribute values as base predicates and standard Boolean
operators (AND, OR, and NOT) to compose complex expressions. For example, a filter can consist
of a list of part number attribute values joined in a multi-way OR expression. Or, a filter might consist
of a complex nested expression of ANDs, ORs, and NOTs on managed attribute IDs and attribute
values.

Filter expressions are passed directly as part of an MDEX Engine query. When a filter is selected, the
set of visible records is restricted to those matching the filter expression. For example, record search
queries will not return records outside the selected subset, and refinement values are restricted to
lead only to records contained within the subset.

Note that all attribute values are automatically enabled for use in record filter expressions.

Finally, it is important to keep in mind that record filters are case-sensitive.

Record filter syntax
Record filters are specified with query-based expressions.

Record filters are specified directly within an MDEX Engine query. The query-level syntax supports
prefix-oriented Boolean functions (AND, OR, and NOT), colon-separated paths for standard attribute
values, and forward-slash-separated paths for managed attribute values.

The following BNF grammar describes the syntax for query-level filter expressions:

<filter> ::= <and-expr>
 | <or-expr>
 | <not-expr>
 | <filter-expr>
 | <literal>
<and-expr> ::= AND(<filter-list>)
<or-expr> ::= OR(<filter-list>)
<not-expr> ::= NOT(<filter>)
<filter-list> ::= <filter>
 | <filter>,<filter-list>
<literal> ::= <pval>
 | <dval-path>
<pval> ::= <prop-key>:<prop-value>
<prop-key> ::= <string>
<prop-value> ::= <string>
<dval-path> ::= <string>
 | <string>/<dval-path>
<string> ::= any character string

The following six special reserved characters must be prepended with an escape character (\) for
inclusion in a string:

() , : \ /

Example of a query-level filter expression

The following example illustrates a basic filter expression that uses nested Boolean operations:

OR(AND(Manufacturer:Sony,1001),
 AND(Manufacturer:Aiwa,NOT(1002)), Manufacturer:Denon)

This expression will match the set of records satisfying any of the following statements:

• Value for the Manufacturer attribute is Sony and record assigned managed attribute value is 1001.
• Value for Manufacturer is Aiwa and record is not assigned managed attribute value 1002.
• Value for Manufacturer attribute is Denon.

Using Boolean attributes

Filtering by Boolean attribute assignments is supported.You can specify the Boolean value as true
(or its synonym of 1), or as false (or its synonym of 1). For example, assuming isOdd is a Boolean
attribute, both isOdd:1 and isOdd:true will parse properly and yield the same results.

Record filter result caching
The MDEX Engine caches the results of record filter evaluations for re-use.

The cached results are used on subsequent MDEX Engine queries as part of the global dynamic
cache. The cache replacement policy is to discard least recently-used (LRU) entries.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Record Filters | Record filter result caching68

Requesting record filters with the API
The RecordFilterOperator complex type adds a record filter component to the filter state.

When making a query to the Conversation Web Service, you can use a RecordFilterOperator
to limit the set of returned records, as in this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <FilterState />
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RecordFilterOperator">
 <RecordFilter Name="WineTypes">OR(OR(WineType:white),OR(Wine¬
Type:sparkling))</RecordFilter>
 </Operator>
 <ContentElementConfig xsi:type="RecordListConfig" HandlerFunc¬
tion="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="RecordList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RecordsPerPage>5</RecordsPerPage>
 </ContentElementConfig>
 </Request>
 </soap:Body>
</soap:Envelope>

The example sets a record filter for records that have a WineType standard attribute with a value of
"white" or "sparkling".

Managed attribute value examples

You can use a record filter to perform a record query search so that only results tagged with a specified
managed attribute value are returned. For example, say you have a managed attributes tree that looks
like this, where Sku is the root managed attribute and 123, 456, and 789 are leaf managed attribute
values:

Sku
 123
 456
 789
 ...

To perform a record query search so that results tagged with any of these values is returned, use the
following:

OR(sku/123,OR(sku/456),OR(sku/789))

To perform a record query search so that only results tagged with the value 123 are returned, use the
following:

sku/123

Note that the / (forward slash) is used as the delimiter for value paths.

Record filter performance impact
Record filters can have an impact in some areas.

Endeca® Latitude Developer's GuideEndeca Confidential

69Record Filters | Requesting record filters with the API

The evaluation of record filter expressions is based on the same indexing technology that supports
navigation queries in the MDEX Engine. Because of this, there is no additional memory or indexing
cost associated with using navigation attribute values in record filters.

Because expression evaluation is based on composition of indexed information, most expressions of
moderate size (that is, tens of terms/operators) do not add significantly to request processing time.

Furthermore, because the MDEX Engine caches the results of record filter operations on an LRU (least
recently used) basis, the costs of expression evaluation are typically only incurred on the first use of
a record filter during a navigation session. However, some expected uses of record filters have known
performance bounds, which are described below.

Record filters can impact the following areas:

• Spelling auto-correction and spelling Did You Mean
• Expression evaluation

Interaction with spelling auto-correction and spelling DYM
Record filters impose an extra cost on spelling auto-correction and spelling Did You Mean.

Expression evaluation
Expression evaluation of large OR filters and large scale negation can impose a performance impact
on the system.

Because expression evaluation is based on composition of indexed information, most expressions of
moderate size (that is, tens of terms and operators) do not add significantly to request processing
time. Furthermore, because the Dgraph caches the results of record filter operations, the costs of
expression evaluation are typically only incurred on the first use of a filter during a navigation session.
However, some expected uses of record filters have known performance bounds, which are described
in the following two sections.

Large OR filters

One common use of record filters is the specification of lists of individual records to identify data subsets
(for example, custom part lists for individual customers, culled from a superset of parts for all customers).

The total cost of processing records can be broken down into two main parts: the parsing cost and
the evaluation cost. For large expressions such as these, XML parsing performance dominates total
processing cost.

XML parsing cost is linear in the size of the filter expression, but incurs a much higher unit cost than
actual expression evaluation. Though lightweight, expression evaluation exhibits non-linear slowdown
as the size of the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for
large result sets. While the expression evaluation cost is reasonable into the low millions of records
for large OR expressions, parsing costs relative to total query execution time can become too large,
even for smaller numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable
performance (10 seconds or more load time, depending on hardware platform). Lists with over one
million records can take a minute or more to load, depending on hardware. Because results are cached,
load time is generally only an issue on the first use of a filter during a session. However, long load
times can cause other Dgraph requests to be delayed and should generally be avoided.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Record Filters | Record filter performance impact70

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions
(that is, AND with a positive attribute value), the cost of negation does not add significantly to the cost
of expression evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant.
For example, while still sub-second, top-level negation filtering (such as "NOT availability=FALSE")
of a record set in the millions does not allow high throughput (generally less than 10 operations per
second).

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions.
For example, in the case where you want to list only available products, the expression
"availability=TRUE" will yield better performance than "NOT availability=FALSE".

Endeca® Latitude Developer's GuideEndeca Confidential

71Record Filters | Record filter performance impact

Chapter 8

Using Range Filters

You can use range filters for navigation queries.

About range filters
Range filters allow a user, at request time, to specify an arbitrary, dynamic range of values that are
then used to limit the records returned for a navigation query.

The remaining refinement values for the records in the result set are also returned. For example, a
range filter would be used if a user were querying for wines within a price range, say between $10 and
$20.

It is important to remember that, similar to record search, range filters are simply modifiers for a
navigation query. The range filter acts in the same manner as an attribute value, even though it is not
a specific system-defined attribute value.

Only records returned by the basic navigation request are considered when evaluating the range filter.
You can use a range filter in a query on any of the record attributes.

Supported attribute types
Range filters can be applied to either standard attributes or managed attributes of the following
supported types.

• Standard attributes of type Numeric (Integer, Long, Double, dateTime), type Geocode, or type
Boolean

• Managed attributes of type Numeric that contain only Integer or Floating point values

For values of attributes of type Double, you can specify values using both decimal (0.00...68), and
scientific notation (6.8e-10).

For standard attributes of type Boolean, false is interpreted to be less than true. If isOdd is a
Boolean attribute, a query of "isOdd|LTEQ false" will return all records with assignments of false on
attribute isOdd. Likewise, "isOdd|BTWN false true" will return all records with any assignment on isOdd.

No MDEX Engine configuration flags are necessary to enable range filters. All numeric standard
attributes and managed attributes and all geocode standard attributes are automatically enabled for
use in range filters.

Implementing range filters in Latitude Studio
To use range filters in a Latitude Studio application, you must add a Range Filters component and
configure at least one attribute.

After adding the Range Filters component, you can configure the component to select the attributes
to be used for range filter queries. For detailed information, see the Latitude Studio Power User's
Guide.

Troubleshooting range filter problems
This topic presents some approaches to solving range filter problems.

Similar to record search, the user-specified interaction of this feature allows a user to request a range
that does not match any records (as opposed to the system-controlled interaction of Guided Navigation
in which the MDEX Engine controls the refinement values presented to the user). Therefore, it is
possible for a user to make a dead-end request when using a range filter. Applications implementing
range filters need to account for this.

If a range filter request specifies an attribute that does not exist in the MDEX Engine, the query throws
a SOAP fault and an error message is written to the MDEX Engine error log:

ERROR DGRAPH {dgraph}
Range filter does not specify a legal attribute name- "PropName".

If a range filter request does not specify numeric range values, the query also throws an
InvalidDatatypeValueException in the application. The MDEX Engine error log will output a
message similar to this example:

Message: Value 'five' does not match any member types (of the union)

If the specified attribute exists but is not configured as numeric or geocode, the query will not throw
an exception, but the following message will be written to the MDEX Engine error log:

ERROR DGRAPH {dgraph} Tried to range filter on unsupported type

It is likely that no records will be correctly evaluated against the query and therefore no results will be
returned.

You should also be careful of dollar signs or other similar characters in attribute values that would
prevent an attribute from being defined as numeric.

Performance impact for range filters
Range filters impact the MDEX Engine response times, but not memory usage.

Because range filters are not indexed, this feature does not impact the amount of memory needed by
the MDEX Engine. However, because the feature is evaluated entirely at request time, the MDEX
Engine response times are directly related to the number of records being evaluated for a given range
filter request.You should test your application to ensure that the resulting performance is compatible
with the requirements of the deployment.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Range Filters | Implementing range filters in Latitude Studio74

Implementing range filters with the API
This section describes how to issue range filter queries using the Conversation Service API. For
additional information on the Conversation Web Service interface, see the MDEX API Reference.

Operator for range filters
A range filter search requires a RangeFilterOperator with a Search type.

The syntax for a RangeFilterOperator is shown in this example for a geocode range filter:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Location">
 <cs:LowerBound Inclusive="false">10</LowerBound>
 <cs:UpperBound Inclusive="false">20</UpperBound>
 <cs:GeocodeReferencePoint Latitude="+42.365615"
 Longitude="-71.075647"/>
 </cs:RangeFilter>
</cs:Operator>

The meanings of the RangeFilter elements and attributes are as follows:

MeaningRangeFilter Attribute

The name of a numeric standard attribute, geocode standard
attribute, or numeric managed attribute on which range filtering will

AttributeName

be performed. Only a single attribute (standard or managed) can
be specified per range filter.

A numeric value that is the lower value of the range to search.LowerBound

A numeric value that is the upper value of the range. This value
must be equal to or greater than the lower value.

UpperBound

A Boolean that determines whether the values for the lower and/or
upper bounds are excluded (false) or included (true) in the
range. Note that geocode filters support only exclusive bounds.

Inclusive

Specifies latitude and longitude values for a geocode range filter.GeocodeReferencePoint

The following topics provide details for the various types of range filters.

Note: Multiple range filters can be applied to the same attribute. The results will include the
intersection of the result sets of each range filter.

Less-than range filter format
The UpperBound element lets you make less-than range filter queries.

To make a less-than query, use only the UpperBound element. Because you are specifying only the
upper bound of the range, all returned records will fall below this bound (i.e., be less than the upper
bound).

In addition, the Inclusive attribute determines whether the specified value is included in the range:

Endeca® Latitude Developer's GuideEndeca Confidential

75Using Range Filters | Implementing range filters with the API

• If Inclusive is set to false, the value for the UpperBound element is exclusive. That is, the
specified value for the UpperBound element is not included in the range.

• If Inclusive is set to true, the value for the UpperBound element is inclusive.

The default for the Inclusive attribute is false (that is, if you omit the attribute, the query will work
as if you had specified false for this attribute).

Less-than example

The following is an example of an inclusive less-than query:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <cs:State/>
 <cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Price">
 <cs:UpperBound Inclusive="true">10</cs:UpperBound>
 </cs:RangeFilter>
 </cs:Operator>
 <cs:ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
</cs:Request>

This example returns all items whose price is up to, and including, $10.

In the example, if Inclusive had been set to false, the query would return all items whose price
is up to, but not including, $10.

Greater-than range filter format
The LowerBound element lets you make greater-than range filter queries.

To make a greater-than query, use only the LowerBound element. Because you are specifying only
the lower bound of the range, all returned records will be above this bound (i.e., be greater than the
lower bound).

In addition, the Inclusive attribute determines whether the specified value is included in the range:

• If Inclusive is set to false, the value for the LowerBound element is exclusive. That is, the
specified value for the UpperBound element is not included in the range.

• If Inclusive is set to true, the value for the LowerBound element is inclusive.

The default for the Inclusive attribute is false (that is, if you omit the attribute, the query will work
as if you had specified false for this attribute).

Greater-than example

The following is an example of an inclusive greater-than query against a wine data set:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <cs:State/>
 <cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Score">
 <cs:LowerBound Inclusive="true">90</cs:LowerBound>
 </cs:RangeFilter>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Range Filters | Implementing range filters with the API76

 </cs:Operator>
 <cs:ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
</cs:Request>

This example returns all wines whose rating score is 90 and above, including wines with a score of
90.

In the example, if Inclusive had been set to false, the query would all wines whose rating score
is greater than 90, but wound not include wines with a score of 90.

Between range filter format
Use both UpperBound and LowerBound elements to construct between range filter queries.

A between range filter query returns records with a numeric attribute value that falls between a lower
bound (the LowerBound element) and an upper bound (the UpperBound element).

Between range filters must be inclusive. Therefore, the Inclusive attribute for both bound elements
must be set to true, as shown in the example below.

Between example

The following is an example of a between range filter query:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <cs:State/>
 <cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Price">
 <cs:LowerBound Inclusive="true">10</cs:LowerBound>
 <cs:UpperBound Inclusive="true">20</cs:UpperBound>
 </cs:RangeFilter>
 </cs:Operator>
 <cs:ContentElementConfig xsi:type="RecordListConfig"
 HandlerFunction="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
</cs:Request>

This example returns all wines whose price is between $10 and $20. Because both bound elements
are inclusive, the returned records include wines that cost $10 and $20.

Geocode range filter format
When used with a geocode standard attribute, the GeocodeReferencePoint element indicates a
range filter based on the distance of that geocode standard attribute from a given reference point.

The syntax for a geocode range filter is shown in this snippet sample from the request:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Location">

Endeca® Latitude Developer's GuideEndeca Confidential

77Using Range Filters | Implementing range filters with the API

 <cs:LowerBound>0</cs:LowerBound>
 <cs:UpperBound>20</cs:UpperBound>
 <cs:GeocodeReferencePoint Latitude="+42.365615"
 Longitude="-71.075647"/>
 </cs:RangeFilter>
 </cs:Operator>
 ...
</cs:Request>

The meanings of the RangeFilter elements and attributes are described in the following table:

MeaningRangeFilter Geocode
Attribute

The name of a geocode standard attribute. Only one geocode standard
attribute can be specified per range filter.

AttributeName

Used to specify a greater-than distance (in kilometers) from the geocode
standard attribute to the reference point.

LowerBound

Used to specify a less-than distance (in kilometers) from the geocode
standard attribute to the reference point. Note that the range filter must
contain at least one of the boundary elements.

UpperBound

Uses the Latitude and Longitude attributes to specify a reference
point for range filtering of geocode attributes.

GeocodeReference¬
Point

The latitude of the location in whole and fractional degrees (positive
values indicate north latitude and negative values indicate south latitude).

Latitude

The longitude of the location in whole and fractional degrees (positive
values indicate east longitude and negative values indicate west
longitude).

Longitude

Note the following about geocode range filters:

• Distance limits (specified via the LowerBound and UpperBound elements) are exclusive. This
means that you cannot use the Inclusive attribute set to true for these two elements. Because
the Inclusive default is false, you can omit this attribute for geocode range filters.

• Geocode range filters must contain at least one of the bound elements.
• Distance limits in range filters are always expressed in kilometers.

The records are filtered by the distance from the filter key to the latitude/longitude pair.

Between geocode range filters

Use both UpperBound and LowerBound elements to indicate that the distance from the geocode
standard attribute to the reference point is between the two bounds. The example at the beginning of
this topic returns only records whose location (in the Location standard attribute) is between 0 and 20
miles from the reference point.

Less-than geocode range filters

If only the UpperBound element is used, the distance from the geocode standard attribute to the
reference point will be less than the given amount. For example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <RangeFilter AttributeName="Location">
 <UpperBound>20</UpperBound>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Range Filters | Implementing range filters with the API78

 <GeocodeReferencePoint Latitude="+42.365615"
 Longitude="-71.075647"/>
 </RangeFilter>
 </Operator>

This sample query returns all records whose location is less than 20 miles from the reference point.

Greater-than geocode range filters

If only the LowerBound element is used, the distance from the geocode standard attribute to the
reference point will be greater than the given amount. For example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <RangeFilter AttributeName="Location">
 <LowerBound>20</LowerBound>
 <GeocodeReferencePoint Latitude="+42.365615"
 Longitude="-71.075647"/>
 </RangeFilter>
</Operator>

This sample query returns all records whose location is greater than 20 miles from the reference point.

Removing range filter operators
The PopRangeFilterOperator removes a range filter component from the state.

The syntax of this operator is:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="PopRangeFilterOperator">
 <RangeFilter AttributeName="Price" />
</Operator>

The AttributeName attribute is the name of the numeric or geocode attribute for which a range filter
component had been used.

If the call is successful, the following Results component is returned:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <cs:State/>
 </cs:Request>
</cs:Results>

The empty State element shows that the range filter component was successfully removed.

Rendering the range filter results
The results of a range filter request can be rendered in the UI like any navigation request.

Because a range filter request is simply a variation of a basic navigation request, rendering the results
of a range filter request is identical to rendering the results of a navigation request.

Note, however, that there are no API components to access a list of valid range filter standard or
managed attributes. This is because the attributes do not need to be explicitly identified as valid for
range filters in the same way that they need to be explicitly identified as valid for record search.
Therefore, specific standard or managed attributes that a user is allowed to filter against must be
correctly identified as numeric or geocode in the instance configuration.

Endeca® Latitude Developer's GuideEndeca Confidential

79Using Range Filters | Implementing range filters with the API

Examples of range filter parameters
This topic shows some valid examples of range filter queries.

Consider the following examples that use these four records:

Description attributePrice attributeWineType managed
attribute

Record

Dark ruby in color, with extremely ripe…10Red (Dim Value 101)1

Dense, rich and complex describes this '96
California…

12Red (Dim Value 101)2

Dense and vegetal, with celery, pear, and
spice flavors…

19White (Dim Value 102)3

Big, ripe and generous, layered with honey…20Other (Dim Value 103)4

Example 1

Assume that the following query is created:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Price">
 <cs:LowerBound Inclusive="false">15</cs:LowerBound>
 </cs:RangeFilter>
</cs:Operator>

This request has a range filter specifying the Price standard attribute should be greater than 15 (with
no managed attribute values specified). The following objects are returned:

• 2 records (records 3 and 4)
• 2 refinements represented by the attribute values (White and Other)

Example 2

This example uses the following query:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Red">
 <cs:UpperBound Inclusive="false">11</cs:UpperBound>
 </cs:RangeFilter>
</cs:Operator>

This request specifies the Red managed attribute value and a range filter specifying a price less than
11. The following objects are returned:

• 1 record (record 1)
• (No additional refinements)

Example 3

This query:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RangeFilterOperator">
 <cs:RangeFilter AttributeName="Price">
 <cs:LowerBound Inclusive="false">9</cs:LowerBound>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Range Filters | Implementing range filters with the API80

 <cs:UpperBound Inclusive="false">13</cs:UpperBound>
 </cs:RangeFilter>
</cs:Operator>

would return records 1 and 2 from the sample record set.

Endeca® Latitude Developer's GuideEndeca Confidential

81Using Range Filters | Implementing range filters with the API

Part 4

Attribute Features

• Working with Refinements
• Using Breadcrumbs
• Using Attribute Groups
• Using Precedence Rules

Chapter 9

Working with Refinements

This section provides information on handling and displaying refinements in your Web application.

About refinements
Endeca standard and managed attributes are referred to as refinements. They become refinements
once the user utilizes them to refine the result set. Refinements can be used for navigation and search.

Endeca standard and managed attributes are similar in that they both:

• Support navigation.
• Are usually generated from a record’s source attributes.
• Consist of key/value pairs (standard attribute name/standard attribute value, managed attribute

name/managed attribute value).
• Can be searched and displayed using their display names.
• Can have a multi-level hierarchy.

Displaying refinements in Latitude Studio
Each component that is affected by the Guided Navigation component uses refinements and
information received from refinements computation, such as the order of refinements or a number of
refinements for a given attribute.

For additional information on configuring Latitude Studio components that use refinement information,
including the Guided Navigation component, see the Latitude Studio Power User's Guide.

Configuring managed attributes for query refinement
You must configure a managed attribute for query refinement.

In the managed attribute's DDR (Dimension Description Record), the mdex-dimension_EnableRe¬
finements attribute must be set to true, so that refinements will be displayed. If the configuration
attribute is set to false, refinements will not be displayed (i.e., the managed attribute will be hidden).

If a managed attribute is created and used to classify records, but no records are classified with any
corresponding values, that managed attribute will not be available as a refinement, because it is not
related to the resulting record set in any way.

Notes

No configuration is needed for Endeca standard attributes. Assuming that the standard attribute is
used to classify records, the corresponding refinement values will be available to create or refine a
query.

There are no MDEX Engine configuration flags necessary to enable the basic displaying of refinements.

Configuring the global order of refinements
You configure the global order for the values of a refinement in the Latitude Data Integrator.

The system-navigation_Sorting attribute in the PDR for the selected attribute controls the global
order of values in a refinement. This attribute can have the following values:

• lexical sorts refinement values by natural order.
• record-count sorts refinement values in descending order, by the number of records available for

each refinement. This is the default.

For information on how to configure the global order of refinements, see the Latitude Data Integrator
Guide.

Configuring refinement counts
You configure whether to show record counts for an attribute by changing the value in the system-
navigation_ShowRecordCounts attribute in the PDR, using the Latitude Data Integrator.

The system-navigation_ShowRecordCounts attribute in the PDR specifies whether to show
record counts for a refinement. The valid settings for this attribute are:

• true means that record counts are enabled and will display. This is the default.
• false means that record counts are disabled and will not be displayed.

To configure refinement counts for any attribute, see the Latitude Data Integrator Guide.

About multi-select attributes
A multi-select attribute is an attribute that can be present on records multiple times, with different
values, in a single navigation state.

There are two forms of multi-select attributes:

• if the navigation state contains multiple values from a multi-select-and attribute, then all of the
records in that state contain all of the selected values for that attribute.

• If the navigation state contains multiple values from a multi-select-or attribute, then all of the records
in that state contain at least one of the selected values.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Configuring the global order of refinements86

This has consequences for the refinements that the MDEX Engine generates as well as the navigation
state: the MDEX Engine allows you to select additional values for a multi-select attribute.

In the MDEX Engine, you can configure an attribute as multi-select by changing the values of the
system-navigation_Select attribute on the Property Description Record for this attribute.

The multi-select feature is only fully supported for those attributes (standard or managed) that do not
contain a hierarchy.

Related Links
Configuring multi-select attributes on page 87

You configure whether an attribute is multi-select by changing the value in the system-
navigation_Select attribute of a PDR, using the Latitude Data Integrator.

Handling multi-select attributes in an application on page 87
The behavior of multi-select attributes may require changes in the UI.

Configuring multi-select attributes
You configure whether an attribute is multi-select by changing the value in the system-naviga¬
tion_Select attribute of a PDR, using the Latitude Data Integrator.

The system-navigation_Select attribute of a PDR can have the following settings:

• multi-and configures the attribute as a multi-select AND attribute. This means that a current
navigation state represents the intersection of the records returned from the multiple selections of
values on that attribute.

• multi-or configures the attribute as a multi-select OR attribute.This means that a current navigation
state represents the union of the records returned from the multiple selections of values on that
attribute.

• single configures the attribute as a single-select attribute. This means that only one value can be
selected for an attribute at a time. This is the default.

To configure a multi-select attribute, see the Latitude Data Integrator Guide.

Handling multi-select attributes in an application
The behavior of multi-select attributes may require changes in the UI.

The fact that an attribute is tagged as multi-select should be transparent to the application developer.
There is no special development required to enable multi-select attributes, and there are no query
parameters that are specific to multi-select attributes.

However, the semantics of how the MDEX Engine interprets navigation queries and returns available
refinements changes once an attribute is tagged as multi-select. After tagging an attribute as multi-select,
the MDEX Engine will then allow multiple attribute values from the same attribute to be added to the
navigation state.

The MDEX Engine behaves differently for the two types of multi-select managed attributes:

• Multi-select AND managed attributes. The MDEX Engine treats the list of attribute values selected
from a multi-and attribute as a Boolean AND operation. That is, the MDEX Engine will return
all records that satisfy the Boolean AND of all the attribute values selected from a multi-and
attribute (that is, all records that have been tagged with "Apple" AND "Apricot").The MDEX Engine
will also continue to return refinements for a multi-and attribute.The list of available refinements

Endeca® Latitude Developer's GuideEndeca Confidential

87Working with Refinements | About multi-select attributes

will be the set of attribute values that have not been chosen, and are still valid refinements for the
results.

• Multi-select OR managed attributes. A multi-or managed attribute is analogous to a multi-
and attribute, except that a Boolean OR operation is performed instead (that is, all records that
have been tagged with "Apple" OR "Apricot"). The MDEX Engine will always return all attribute
values for a multi-or attribute that have not already been selected – the set of refinements does
not correlate to the set of remaining records. Also note that as more multi-or attribute values
are added to the navigation state, the set of record results gets larger instead of smaller, because
adding more terms to an OR expands the set of results that satisfy the query.

Avoiding dead-end query results

Be careful when rendering the selected managed attribute values of multi-or managed attributes.
It is possible to create an interface that might result in dead-ends when removing selected attribute
values.

Consider this example: Managed attribute Alpha has been flagged as multi-or, and contains values
1 and 2. Attribute Beta contains value 3.

Assume the user’s current query contains all three values. The user’s current navigation state would
represent the query:

"Return all records tagged with (1 or 2) and 3"

If the user then removes one of the values from Attribute Alpha, a dead end could be reached. For
example, if the user removes value 1, the new query becomes:

"Return all records tagged with 2 and 3"

This could result in a dead end if no records are tagged with both value 2 and 3.

Due to this behavior, it is recommended that the UI be designed so that the user must be forced to
remove all values from a multi-or managed attribute when making changes to the list of selected
attribute values.

Performance impact for multi-select managed attributes

Tagging an attribute as multi-select does not affect performance. However, when making decisions
about when to tag an attribute as multi-select, keep the following in mind: Users will take longer to
refine the list of results, because each selection from a multi-select managed attribute still allows for
further refinements within that attribute. Also, refinements for multi-or attribute are more expensive.

Refinement counts for multi-or refinements

Refinement counts on a refinement that is multi-or indicate how many records in the result set will be
tagged with the refinement if you select it. When there are no selections made yet, the refinement
count equals the total number of records in the result set if that refinement were selected. However,
for subsequent refinements, the refinement count may differ from the total results set.

Consider the following example which illustrates this use case. A cuisine refinement is configured
as multi-or. In the data set, there are 2 records that have assignments only to a Chinese attribute,
and 3 records that have assignments only to a Japanese attribute. There is also 1record that has
assignments on both of these attributes.

When the user requests Chinese or Japanese as refinements during navigation, the resulting record
list includes all 6 records, out of which 2 have only Chinese attribute, 3 have only Japanese attribute,
and 1 has both:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | About multi-select attributes88

Assignment on a Japanese attributeAssignment on a Chinese attributeRecords

x1

x2

xx3

x4

x5

x6

If the user first selects only Chinese, the navigation state shows that there is one remaining follow-on
refinement (Japanese) with the refinement count of 4 records (3 with only Japanese assignment on
a attribute and 1that has both Chinese and Japanese attribute assignments on them). When the
user navigates on that refinement, the resulting record list includes all 6 records. This illustrates that
a record count for a Japanese refinement shows the number of records (4) tagged with that refinement,
within the entire record set (6).

About externally managed attributes
Endeca applications can use managed attributes created with a taxonomy management tool.

You can also import or otherwise access externally managed attributes. For details on loading these
attributes, see the "Loading Records with the Data Ingest Web Service" chapter in the Latitude Data
Ingest API Guide.

Performance impact for displaying refinements
Run-time performance of the MDEX Engine is directly related to the number of refinement values being
computed for display.

Only request refinement values if you are planning to display them in the front-end application. If any
refinement values are being computed by the MDEX Engine but not being displayed by the application,
this negatively affects performance. Attributes containing large numbers of refinements also affect
performance.

The following aspects affect the display of refinements:

• The Expose attribute in the RefinementConfig element. This attribute is optional and defaults
to false. Setting this attribute to true for a refinement may make a query more expensive to compute
(if the refinement has a large number of values).

Note: The elements for which you specify these attributes belong to the
NavigationMenuConfig element.

• The ExposeAllRefinements in the ContentElementConfig element.This attribute is optional
and defaults to false.

The worst-case scenario for run-time performance is having a data set with a large number of
refinements, each containing a large number of refinement values, and setting the ExposeAllRe¬

Endeca® Latitude Developer's GuideEndeca Confidential

89Working with Refinements | About externally managed attributes

finements attribute to true.This would create a page with an overwhelming number of refinement
choices for the user.

Performance impact of refinement ordering
You can use the --esampmin option with the Dgraph, to specify the minimum number of records to
sample during refinement computation.

This option is useful because sampling the entire navigation state during the refinement computation
can be one of the more performance intensive operations for the MDEX Engine.

For most applications, larger values for --esampmin reduce performance without improving the quality
of refinement ordering. For some applications with extremely large, non-hierarchical attributes (if they
cannot be avoided), larger values can meaningfully improve refinement ordering quality with minor
performance cost.

Performance impact of refinement counts
Dynamic statistics on records are expensive computations for the MDEX Engine.

You should only enable a managed attribute for dynamic statistics if you intend to use the statistics in
your Endeca-enabled Web application. Because the Dgraph does additional computation for additional
statistics, there is a performance cost for those that you are not using.

Working with refinements using the API
This section provides examples of Conversation Web Service requests and responses that let you
retrieve various aspects of the refinement configuration — refinements themselves, their order, counts,
and special types of refinements, such as those that are multi-select.

Related Links
Retrieving refinements with the API on page 91

Displaying attribute values for your refinements is the core concept behind Guided Navigation.

Refinements configuration format on page 91
Use the RefinementConfig element of the Conversation Web Service request to expose
attribute values for refinements.

Retrieving attributes that have refinements on page 94
The first step in displaying refinements is to retrieve the attributes that potentially have
refinements.

Creating a new query from refinement attribute values on page 95
Once refinement attribute values have been retrieved, these attribute values typically are
used to create additional refinement Navigation queries.

Limiting the number of refinements to be displayed on page 97
If there are too many refinements to be returned per refinement, you can limit the number of
displayed refinements.

Retrieving the full path of hierarchical refinements on page 98

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Performance impact of refinement ordering90

For attributes that contain hierarchy, you can request hierarchy information about a refinement
with the ReturnFullPath attribute.

Retrieving the order of refinements with the API on page 101
A core capability of the MDEX Engine is the ability to dynamically order and present the most
popular refinement values to the user.

Using query-time control of refinement ordering on page 101
You can configure refinement ordering on a per-query basis.

Enabling the refinement order at query time on page 102
The OrderByRecordCount attribute sets the refinement order at query time.

Retrieving refinement counts with the API on page 102
The application UI can display the number of records returned for refinements.

Retrieving refinement counts for records on page 103
Record counts are returned in a Count attribute.

Retrieving multi-select refinements with the API on page 103
The MDEX Engine supports two types of multi-select attributes.

Retrieving refinements with the API
Displaying attribute values for your refinements is the core concept behind Guided Navigation.

After a user creates a query using record and/or value search, only valid remaining refinement values
are provided to the user to refine that query. This allows the user to reduce the number of matching
records without creating an invalid query.

To display refinements, they need to be requested, that is, included in the Conversation Web Service
request that describes the navigation menu. If the refinements belong to a group, this group needs to
be requested. The following example shows the request in which a group of refinements is requested.
This example assumes that the group "Wine Characteristics" exists and includes the refinements
WineType, Year and Scope:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true"/>
 </ContentElementConfig>
</Request>

The refinements WineType, Year and Scope will be returned along with the group "Wine
Characteristics" in which they are included.

If you would like to retrieve refinements that are not explicitly included in any user-configured groups,
you can request a group system-navigation_InternalGroup. This group exists in the MDEX
Engine and includes all refinements that are not members of any other groups.

Refinements configuration format

Use the RefinementConfig element of the Conversation Web Service request to expose attribute
values for refinements.

Endeca® Latitude Developer's GuideEndeca Confidential

91Working with Refinements | Working with refinements using the API

The RefinementConfig element of the Conversation Web Service request specifies which attribute,
out of all valid attributes returned with a Navigation query, should return actual refinement values. Note
that only the top-level refinement values are returned.

For managed attributes, if a managed attribute value is a parent, you can also use the
RefinementConfig element with that attribute value and return its child attribute values (again, only
the top-level child attribute values are returned).

The RefinementConfig element is included in the RefinementGroupConfig.This parent element
returns refinements for groups.

RefinementConfig format

The basic RefinementConfig format is shown in this example:

<RefinementConfig
 Name="WineType"
 Spec="/"
 Expose="true"
 OrderByRecordCount="true"
 MaximumCount="100">
</RefinementConfig>

The descriptions of the attributes are:

DescriptionAttribute

Required. The name of the attribute value. Specifying a root
managed attribute value name is the same as specifying a name
of the managed attribute.

Name

Optional. The attribute value spec. For a hierarchical managed
attribute, refinements will be returned for any child values of this
spec.

Spec

Optional. Specify true to expose refinements (the default) or
false to just show the root refinement.

Expose

Optional. Specify true to use dynamic ranking to order by record
count or false to use the default order from the MDEX Engine.

OrderByRecordCount

Optional. An integer that specifies a maximum limit on the number
of refinements returned per attribute.

If this setting is not specified, the number of refinements returned
per attribute in the Conversation Web Service response is dictated

MaximumCount

by a value specified in the MaximumRefinementCount attribute
in the NavigationMenuConfig element in the Conversation Web
Service request. Further, if that value is not specified, the default
is 10.

The RefinementConfig element is used in a NavigationMenuConfig element, as in this example.
It exposes refinement values for the WineType attribute that is part of the group "Wine Characteristics":

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API92

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true" MaximumCount="100"
/>
 </RefinementGroupConfig>
 </ContentElementConfig>
</Request>

Note that you can use multiple RefinementConfig elements in a RefinementGroupConfig, as
in this example that for the WineType and Designation managed attributes:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true" MaximumCount="20" />

 <RefinementConfig Name="Designation" Expose="true" MaximumCount="20"
/>
 <RefinementGroupConfig>
 </ContentElementConfig>
</Request>

Notes on RefinementConfig

Keep in mind that the RefinementConfig element is an optional query parameter. However, attributes
for which RefinementConfig is not included will not return refinements. The Expose attribute is
also optional and defaults to false. Expose="false" helps improve performance.

For example, in a simple data set with three managed attributes WineType, Year and Score and a
user-defined group "Wine Characteristics", the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true"/>
 </ContentElementConfig>
 </ContentElementConfig>
</Request>

will return all attributes in the group but no refinement attribute values. This is faster for the MDEX
Engine to compute, and returns only root managed attribute values.

However, this query for the WineType managed attribute:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"

Endeca® Latitude Developer's GuideEndeca Confidential

93Working with Refinements | Working with refinements using the API

 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true"/>
 <RefinementConfig Name="WineType" Expose="true" />
 </ContentElementConfig>
</Request>

will return all three managed attributes (since they are included in the "Wine Characteristics" group),
as well as the top-level refinement values for the WineType managed attribute (such as Red, White,
and Other). This is slightly more expensive for the MDEX Engine to compute, and returns the three
root managed attribute values (WineType, Year, and Score) as well as the top-level refinement
attribute values for WineType, but is necessary for selecting a valid refinement.

A more advanced query option returns all the top-level managed attribute value refinements for all
attributes requested (instead of a single attribute).This option involves setting the ExposeAllRefine¬
ments attribute to true. If an application sets this attribute to true, the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="NavigationMenu"
 ExposeAllRefinements="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true"/>
 </ContentElementConfig>
</Request>

will return three managed attributes (WineType, Year, and Score) as well as all valid top-level
refinement attribute values for each of these managed attributes (Red, White, Other for Wine Type;
1999, 2001, 2003 for Year; and 70-80, 80-90, 90-100 for Score).

This is the equivalent of the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true" />
 <RefinementConfig Name="Year" Expose="true" />
 <RefinementConfig Name="Score" Expose="true" />
 </RefinementGroupConfig>
 </ContentElementConfig>
</Request>

This is the most expensive type of query for the MDEX Engine to compute, and returns three root
managed attribute values as well as the nine top-level refinement managed attribute values, creating
a larger network and page size strain.This method, however, is effective for creating custom navigation
solutions that require all possible refinement attribute values to be displayed at all times.

Retrieving attributes that have refinements

The first step in displaying refinements is to retrieve the attributes that potentially have refinements.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API94

Types of refinements

Refinement attributes contain refinement attribute values for the current record set, including both
standard refinements and implicit refinements.

• Standard refinements refine the record set when selected.
• Implicit refinements are those attribute values that are assigned to all records in the current result

set and whose selection, therefore, does not narrow the results. The attribute values can be from
standard attributes or managed attributes.

Retrieving standard and implicit refinements

Refinements (both standard and implicit) are returned in a NavigationMenu content element, that
in turn contains aNavigationMenuItemGroup element with NavigationMenuItem elements for
each managed attribute that has refinements.

This example shows the NavigationMenuItem element for the WineType attribute:

<cs:NavigationMenuItem
 Name="WineType"
 Display Name="Wine Type"
 MultiSelect="Or" HasMore="false">
 <cs:ExposureControl Exposed="true">
 <cs:Operator
 OwnerId="NavMenu" xsi:type="cs:RefinementHideOperator"
 Name="Perfect"
 Spec="/"
 Group="Wine Characteristics"/>
 </cs:ExposureControl>
 <cs:Refinement Name="Red" Spec="/Red" Label="Red" Count="40">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>

 </cs:Refinement>
 <cs:Refinement Name="White" Spec="/White" Label="White" Count="50">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="White"
Spec="/White"/>
 </cs:Refinement>
 <cs:RootDimensionValue DimensionName="Sparkling" Spec="/"/>
</cs:NavigationMenuItem>

Each refinement is returned in a Refinement element, as shown in this example for the Red managed
attribute value:

<cs:Refinement Name="Red" Spec="/Red" Label="Red" Count="18">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>
</cs:Refinement>

The Count element indicates that eighteen records would be in the result set if you were to refine on
this attribute value.

Creating a new query from refinement attribute values

Once refinement attribute values have been retrieved, these attribute values typically are used to
create additional refinement Navigation queries.

First, consider this request in which the WineType refinement is requested and exposed:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"

Endeca® Latitude Developer's GuideEndeca Confidential

95Working with Refinements | Working with refinements using the API

 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
</Request>

It returns the following query results. Notice that the query results show the WineType refinement and
the refinement values on it — White and Sparkling.

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <State xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <ContentElementConfig xsi:type="NavigationMenuConfig" Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler" HandlerNamespace="http://www.ende¬
ca.com/MDEX/conversation/handlers/2010" xmlns="http://www.endeca.com/MDEX/con¬
versation/2010" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true"
xmlns:ns="http://www.endeca.com/MDEX/conversation/2010"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
 </cs:Request>
 <cs:ContentElement xsi:type="cs:NavigationMenu" Id="NavigationMenu"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cs:NavigationMenuItemGroup Name="Wine Characteristics" HasRefinablePRop¬
erties="true">
 <cs:NavigationMenuItem Name="WineType" DisplayName="WineType" MultiSe¬
lect="Or" HasMore="false">
 <cs:ExposureControl Exposed="true">
 <cs:Operator OwnerId="NavigationMenu" xsi:type="cs:RefinementHide¬
Operator"
 Name="WineType" S
 Spec="/"
 Group="Wine Characteristics"/>
 </cs:ExposureControl>
 <cs:Refinement Name="WineType" Spec="/Red" Label="Red" Count="18">

 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red"/>
 </cs:Refinement>
 <cs:Refinement Name="WineType" Spec="/White" Label="White"
Count="40">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red"/>
 </cs:Refinement>
 <cs:Refinement Name="WineType" Spec="/Sparkling" Label="Sparkling"
 Count="50">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red"/>
 </cs:Refinement>
 <cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
 </cs:NavigationMenuItem>
 </cs:NavigationMenuItemGroup>
 </cs:ContentElement>
</cs:Results>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API96

Based on this result, a follow-on request creates an additional refinement Navigation query. It uses
the refinement operator to request Red, to let you further refine to WineType Red.

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig" Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler" HandlerNamespace="http://www.ende¬
ca.com/MDEX/conversation/handlers/2010">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
 <Operator xsi:type="RefinementOperator" Name="WineType" Spec="/Red"/>
</Request>

Limiting the number of refinements to be displayed

If there are too many refinements to be returned per refinement, you can limit the number of displayed
refinements.

Generally, when the request from the Conversation Web Service asks for attributes to return in response
to a query, it asks for all of them that were requested with a RefinementGroupConfig element.

To provide a meaningful navigation experience, the MDEX Engine returns only those attributes that
have refinements on them and that are not filtered by precedence rules. In other words, those attributes
are returned are based on the navigation state.

If there are too many refinements to be returned per attribute, you can limit the number of them that
are displayed in the navigation menu of the Conversation Web Service request
(NavigationMenuConfig).

You can do this in a global setting or per each refinement value. The following statements describe
the logic used by the Conversation Web Service to identify the number of refinements to be displayed:

• Per attribute configuration.You can specify a number of refinements to display per attribute. For
each, you can optionally specify the number in the attribute MaximumCount in the
RefinementConfig element.

• Global configuration, for all attributes in a particular Navigation Menu. If the number for each
attribute is not specified, the Conversation Web Service response uses the global setting that you
can specify in the MaximumRefinementCount attribute of RefinementConfig in
ContentElementConfig. The setting is per content element, not per query.

• Further, if neither of the settings is specified, the number defaults to 10.

For example, in this configuration for the navigation menu, MaximumRefinementCount is set to 15.
In addition, for the WineType refinement value, MaximumCount is set to 40. MaximumCount is not
set in each of the other refinement values.

<ContentElementConfig xsi:type="NavigationMenuConfig"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
 Id="NavigationMenu"
 MaximumRefinementCount="15"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" MaximumCount="40"/>
 <RefinementConfig Name="Year"/>
 <RefinementConfig Name="Score"/>
 </RefinementGroupConfig>
</ContentElementConfig>

Endeca® Latitude Developer's GuideEndeca Confidential

97Working with Refinements | Working with refinements using the API

This request returns up to 40 refinement values for WineType. It returns 15 refinement values for
each of the other two refinement values (Year and Score).

The attribute HasMore (with possible boolean values true or false) in the response specifies whether
the total refinement count exceeds the value returned with the MaximumRefinementCount. The
value from this attribute can be utilized in the settings for Latitude Studio components designed to
show refinement counts.

The following example shows a response where HasMore attribute is set to true in the
NavigationMenuItem type of the Conversation Web Service response:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <FilterState xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <ContentElementConfig xsi:type="NavigationMenuConfig" Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler" HandlerNamespace="http://www.ende¬
ca.com/MDEX/conversation/handlers/2010" xmlns="http://www.endeca.com/MDEX/con¬
versation/2010" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" MaximumCount="1" Expose="true"
xmlns:ns="http://www.endeca.com/MDEX/conversation/2010"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
 </cs:Request>
 <cs:ContentElement xsi:type="cs:NavigationMenu" Id="NavigationMenu"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cs:NavigationMenuItemGroup Name="Wine Characteristics" HasRefinablePRop¬
erties="true">
 <cs:NavigationMenuItem Name="WineType" DisplayName="WineType" MultiSe¬
lect="Or" HasMore="true">
 <cs:ExposureControl Exposed="true">
 <cs:Operator OwnerId="NavigationMenu"
 xsi:type="cs:RefinementHideOperator"
 Name="WineType" Spec="/"
 Group="Wine Characteristics"/>
 </cs:ExposureControl>
 <cs:Refinement Name="WineType" Spec="/Red" Label="Red" Count="18">

 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red"/>
 </cs:Refinement>
 <cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
 </cs:NavigationMenuItem>
 </NavigationMenuItemGroup>
 </cs:ContentElement>
</cs:Results>

Retrieving the full path of hierarchical refinements

For attributes that contain hierarchy, you can request hierarchy information about a refinement with
the ReturnFullPath attribute.

For example, if a Wineries managed attribute contains four levels of hierarchy (Country, State, Region,
Winery) and the current query is at the region level (Sonoma Valley), the full path of hierarchical
refinements can be represented by the following list:

Wineries > United States > California > Sonoma Valley

Refinement values, in this case specific wineries, may still exist for the Sonoma Valley refinement
to refine the query even further.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API98

To request the full path of hierarchical refinements, use the ReturnFullPath attribute on
NavigationMenuConfig. The ReturnFullPath has the following values:

Specifies whether to return the full path of
hierarchical refinements with the response. This

ReturnFullPath

setting is relevant in navigation queries for
refinements and breadcrumbs.

If set to true, the returned refinement contains
the full path to its parent refinement values, as in
Wine > Red > Merlot.

If set to false, returns only the refinement, without
the path to its ancestors. The default is false.

The format of the NavigationMenuConfig is shown in this example. It uses the ReturnFullPath
attribute set to true:

 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ReturnFullPath="true">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true" MaximumCount="3"/>
 </RefinementGroupConfig>
 </ContentElementConfig>

For a flat managed attribute with no hierarchy, the refinement parent will always be the attribute root,
because there would be no further refinements if a value had already been selected for the attribute.

Refinements for a given managed attribute can only be returned from the MDEX Engine on the same
level within the attribute. For example, the MDEX Engine could never return a list of refinement choices
that included a mix of countries, states, and regions. In all cases where hierarchy is explicitly defined
for a managed attribute, only refinements on an equal level of hierarchy will be returned for a given
query.

Example request

The following example request in the Conversation Web Service illustrates how to retrieve a full path
of hierarchical refinements for an attribute:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State>
 <SelectedRefinementFilter Name="WineType" Spec="/Red"/>
 </State>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ReturnFullPath="true">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig Name="WineType" Expose="true" MaximumCount="3"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
</Request>

Endeca® Latitude Developer's GuideEndeca Confidential

99Working with Refinements | Working with refinements using the API

Example response

The following response returns a list of hierarchical refinements:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <State xmlns="http://www.endeca.com/MDEX/conversation/2010"
xmlns:ns="http://www.endeca.com/MDEX/conversation/2010">
 <SelectedRefinementFilter Name="WineType" Spec="/Red"/>
 </State>
 <ContentElementConfig xsi:type="NavigationMenuConfig" Id="Navigation¬
Menu" HandlerFunction="NavigationMenuHandler" HandlerNamespace="http://www.en¬
deca.com/MDEX/conversation/handlers/2010" ReturnFullPath="true"
xmlns="http://www.endeca.com/MDEX/conversation/2010"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">

 <RefinementConfig Name="WineType" Expose="true" MaximumCount="3"
xmlns:ns="http://www.endeca.com/MDEX/conversation/2010"/>
 </RefinementGroupConfig>
 </ContentElementConfig>
 </cs:Request>
<cs:ContentElement xsi:type="cs:NavigationMenu" Id="NavigationMenu"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cs:NavigationMenuItemGroup Name="Wine Characteristics" HasRefinablePRop¬
erties="true">
 <cs:NavigationMenuItem Name="WineType" DisplayName="WineType" MultiSe¬
lect="None" HasMore="false">
 <cs:ExposureControl Exposed="true">
 <cs:Operator OwnerId="NavigationMenu"
 xsi:type="cs:RefinementHideOperator"
 Name="WineType" Spec="/"
 Group="Wine Characteristics"/>
 </cs:ExposureControl>
 <cs:Refinement Name="WineType" Spec="/Red/Merlot" Label="Merlot"
Count="19">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red/Merlot"/>
 </cs:Refinement>
 <cs:Refinement Name="WineType" Spec="/Red/Shiraz" Label="Shiraz"
Count="15">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red/Shiraz"/>
 </cs:Refinement>
 <cs:Refinement Name="WineType" Spec="/Red/PinotNoir" Label="Pinot
 noir" Count="8">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
Spec="/Red/PinotNoir"/>
 </cs:Refinement>
 <cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
 <cs:FullPath>
 <cs:DimensionValue>
 <cs:DimensionValue DimensionName="WineType" Spec="/">Wine¬
Type</cs:DimensionValue>
 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
 Spec="/"/>
 </cs:DimensionValue>
 <cs:DimensionValue>
 <cs:DimensionValue DimensionName="WineType"
Spec="/Red">Red</cs:DimensionValue>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API100

 <cs:Operator xsi:type="cs:RefinementOperator" Name="WineType"
 Spec="/Red"/>
 </cs:DimensionValue>
 </cs:FullPath>
 </cs:NavigationMenuItem>
 </cs:NavigationMenuItemGroup>
 </cs:ContentElement>
</cs:Results>

Retrieving the order of refinements with the API
A core capability of the MDEX Engine is the ability to dynamically order and present the most popular
refinement values to the user.

There are two ways in which you can configure the display order of refinements in the Conversation
Web Service:

• By specifying the value for system-navigation_Sorting in the PDR, for an attribute.
• By using query-time control of the display order specified in the OrderByRecordCount attribute

in the RefinementConfig element of the Conversation Web Service request. Note that by using
this method, you can override the system-navigation_Sorting settings for a given attribute.

Using query-time control of refinement ordering

You can configure refinement ordering on a per-query basis.

The MDEX Engine lets you switch refinement ordering on and off on a per-query basis.

A use case for this refinement ordering would be an application that renders refinements as a tag
cloud. Such an application may adjust the size of the tag cloud at query time, depending on user
preferences or from which page the query originates.

You set the refinement ordering at the refinement value level that you want to control. For managed
attributes, ordering will be applied to that attribute value and all its children. For example, assume that
you have an attribute named WineType that has three child attribute values (named Red, White, and
Sparkling), which in turn have two child attribute values each. The managed attribute hierarchy would
look like this:

You would set the ordering depending on which level of the hierarchy you want to order and present,
for example:

• If you set the ordering on the root attribute value (which has the same name and ID as the attribute
itself), the refinements in the Red, White, and Sparkling attribute values will be returned.

• If there are multiple child attribute values, you can set an order on only one sibling. In this case,
the refinements from the other siblings will not be exposed. For example, if you set an order on
the Red attribute value, only the refinements of the Merlot and Chianti attribute values will be
returned. The refinements from the White and Sparkling attribute values will be not be shown,
even if you explicitly set orders for them.

Endeca® Latitude Developer's GuideEndeca Confidential

101Working with Refinements | Working with refinements using the API

The settings of the per query ordering of refinements are not persistent.That is, each query must have
its own configuration, because it is not carried over from the previous query. Keep the following items
in mind when using this feature:

Enabling the refinement order at query time

The OrderByRecordCount attribute sets the refinement order at query time.

Setting the OrderByRecordCount attribute to true in the RefinementConfig element sets the
order in which refinements will be displayed, at query time, as in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="NavigationMenuConfig"
 Id="NavigationMenu"
 HandlerFunction="NavigationMenuHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RefinementGroupConfig Name="Wine Characteristics" Expose="true">
 <RefinementConfig
 Name="WineType"
 Expose="true"
 OrderByRecordCount="true"
 MaximumCount="100" />
 </RefinementGroupConfig>
 </ContentElementConfig>
 </Request>

This setting overrides the setting for refinement order that you can specify in the system-naviga¬
tion_Sorting in the PDR for a refinement.

For details on the RefinementConfig element, see the "Refinements configuration format" topic in
this chapter.

Retrieving refinement counts with the API
The application UI can display the number of records returned for refinements.

Refinement counts represent the number of records (in the current navigation state) available beneath
a given refinement value. These counts are dynamically computed at run-time by the MDEX Engine
and can be displayed in the user interface.

By providing the user with an indication of the number of records that will be returned for each
refinement, refinement counts can enhance the Endeca application’s navigation controls by providing
more context at each point in the Endeca application.

A refinement count is the number of records that would be in the result set if you were to refine on an
attribute value.

By default, all types of attributes (standard and managed) are enabled for refinement counts.Therefore,
no further configuration is needed to display record counts. So long as there are attribute values
returned for a given request, refinement value statistics will be returned as an attribute attached to
each attribute value.

You can, however, disable refinement statistics for attributes in the system-navigation_ShowRecord¬
Counts attribute on the PDR.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Refinements | Working with refinements using the API102

Retrieving refinement counts for records

Record counts are returned in a Count attribute.

Each refinement is returned in a Refinement element, as shown in this example:

<cs:Refinement Name="Red" Spec="/Red" Label="2" Count="18">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>
</cs:Refinement>

In the example, a record count of 18 is returned for the Red attribute value.

Retrieving multi-select refinements with the API
The MDEX Engine supports two types of multi-select attributes.

The default behavior of the MDEX Engine permits only a single value from an attribute to be added
to the navigation state. By default, after a user selects a leaf refinement from any attribute, that attribute
is removed from the list of refinements available for future refinement in the query results. For example,
after selecting "Apple" from the Flavors attribute, the Flavors attribute is removed from the navigation
controls.

However, sometimes it is useful at navigation time to allow the user to select more than one value
from an attribute. For example, you can give a user the ability to show wines that have a flavor of
"Apple" and "Apricot".

The MDEX Engine provides support for two types of multi-select attributes that apply Boolean logic
to the values selected:

• multi-and
• multi-or

You can tag the attribute as multi-and, multi-or, or single by configuring the values of the system-
navigation_Select attribute of a PDR.

Endeca® Latitude Developer's GuideEndeca Confidential

103Working with Refinements | Working with refinements using the API

Chapter 10

Using Breadcrumbs

The section discusses how to implement breadcrumbs.

About breadcrumbs
Breadcrumbs let you summarize any Guided Navigation selections, keyword searches, or range filters
specified by the end user.

Breadcrumbs represent the following information that was passed to the navigation state by the
Conversation Web Service response:

• Selected refinement values that were used to query for the current record set.
• Keyword searches that were used to query for the current record set.
• Range filters that have been selected for the query.

Any standard or managed attribute value available in the MDEX Engine can be selected as a
breadcrumb.

Breadcrumbs honor record filters (such as security filters), but do not display them.

Breadcrumbs can reflect spelling correction and DYM information returned by the MDEX Engine in
response to keyword search queries.

In Latitude Studio, the Breadcrumbs component lets you display breadcrumbs made with navigation
queries (when users select refinement values or range filters for navigation), and keyword search
queries.

For example, here is how user selections made in the Guided Navigation component are reflected
in the Breadcrumbs component:

• Once the user selects a refinement in the Guided Navigation component, it is reflected as a
breadcrumb in the Breadcrumbs component.

• The user can select an additional breadcrumb in the Guided Navigation component, thereby
narrowing down the scope of the record set for the query.

• Alternatively, the user can remove a refinement value from the Breadcrumbs component, which
increases the scope of the record set for the query.

Implementing breadcrumbs in Latitude Studio
This section describes how to configure and use breadcrumbs in a Latitude Studio application.

Related Links
Configuring breadcrumbs on page 106

To use breadcrumbs in Latitude Studio, you add a Breadcrumbs component. Note that any
component that supports refinement works in conjunction with the Breadcrumbs component
when displaying results.

Configuring breadcrumbs
To use breadcrumbs in Latitude Studio, you add a Breadcrumbs component. Note that any component
that supports refinement works in conjunction with the Breadcrumbs component when displaying
results.

The Breadcrumbs component requires a backing data source. There also must be a component that
can be used to refine the data, such as the Guided Navigation component or Search Box.

Latitude Studio power users can add and configure a Breadcrumbs component.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Breadcrumbs | Implementing breadcrumbs in Latitude Studio106

To add the Breadcrumbs component and set the preferences on it in the Latitude Studio application:

1. In Latitude Studio, point the cursor at the Dock in the upper-right corner of the page.

2. From the drop-down menu, select Add Component.
The Add Component dialog box opens.

3. In the Add Component dialog box, expand the Latitude category.
A list of the available Latitude components appears.

4. Drag the Breadcrumbs component into the main page layout.
The Breadcrumbs component is added with the message "No refinements have been
selected."

5. To display the edit view for the component, click the button. In the drop-down menu, click
Preferences.

6. To bind a different data source to the component, select the data source from the drop-down list,
then click Update data source.

7. In the Multi-select collapse/expand threshold field, set the number of selected attribute values
after which the list can be collapsed.

When end users select multiple values for an attribute, if they select more than this number, then
on the Breadcrumbs component, the list of selected values is initially collapsed.

End users can then display or hide the full list.

8. To save the changes to the configuration, click Save Preferences.

9. To exit the edit view, click Return to Full Page.

Implementing breadcrumbs with the API
This section describes how to issue queries requesting breadcrumbs using the Conversation Web
Service API.

The Conversation Web Service returns breadcrumb results for these types of queries:

• Navigation
• Search
• Range filters

For more information on the Conversation Web Service interface, see the MDEX Engine API Reference.

Related Links
Retrieving breadcrumbs in a navigation query on page 108

An initial Conversation Service request that is made in response to a user-initiated navigation
query (in which no selections have been made in the navigation state) does not yet return
breadcrumbs. However, a subsequent request (in which the user made selections within the
available attribute values) returns breadcrumbs.

Retrieving breadcrumbs in a search query on page 110
Breadcrumbs returned by the Conversation Web Service in response to a search query can
reflect spelling correction and DYM (Did You Mean) information.

Endeca® Latitude Developer's GuideEndeca Confidential

107Using Breadcrumbs | Implementing breadcrumbs with the API

Retrieving breadcrumbs in a navigation query
An initial Conversation Service request that is made in response to a user-initiated navigation query
(in which no selections have been made in the navigation state) does not yet return breadcrumbs.
However, a subsequent request (in which the user made selections within the available attribute values)
returns breadcrumbs.

The request for breadcrumbs is implemented with the ContentElementConfig element with the
BreadcrumbHandler:

<ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig"
ReturnFullPath="false"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
Id="Breadcrumbs" />

This element includes:

Specifies whether to return the full path of hierarchical
refinements with the response. This setting is relevant

ReturnFullPath

only in navigation queries that request breadcrumbs; it is
ignored in search or range filter queries requesting
breadcrumbs.

If set to true, the returned breadcrumb contains the full
path to its parent refinement values, as in Wine > Red
> Merlot.

If set to false, returns only the refinement, without the
path to its ancestors. The default is false.

Is the function that facilitates breadcrumb generation in
the response. This function is required to return
breadcrumbs.

BreadcrumbHandler

If spelling is enabled in the MDEX Engine, and in addition to breadcrumbs, you want the Conversation
Web Service response to contain supplemental information about spelling suggestions and DYM, a
second ContentElementConfig withSearchAdjustmentHandler is required. If this element is
included, spelling correction or DYM suggestions are returned with the breadcrumbs in the response.

Note: If spelling is enabled, spelling correction occurs for breadcrumb results even if
ContentElementConfig with SearchAdjustmentHandler is not included; however, while
spelling correction takes place, the spelling correction and DYM suggestions are not returned
in the response.

In the response, breadcrumbs are returned in the order in which they were added (requested).

To request breadcrumbs for a navigation query:

In the Conversation Web Service request, specify the following:

• The selection for a specific refinement.
• The ContentElementConfig element for BreadcrumbHandler.
• (Optional). The ContentElementConfig element for SearchAdjustments.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Breadcrumbs | Implementing breadcrumbs with the API108

In this example, the navigation state includes a selection of the NumberOfDigits refinement, and
two ContentElementConfig elements, one for BreadcrumbHandler and one for
SearchAdjustmentHandler:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="RefinementOperator" Spec="/2"
 Name="NumberOfDigits"/>
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig"
 ReturnFullPath="true" HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="Breadcrumbs"/>
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="SearchAdjustments"/>
 <PassThrough> ...</PassThrough>
</Request>

The Conversation Web Service result includes the original request with operators for
BreadcrumbHandler and SearchAdjustmentHandler applied, followed by the
ContentElementConfig element that lists attribute values identified as breadcrumbs, based on the
user-selected navigation state.

Note: The result also includes the GeneralizationOperator. It enables the removal of the
refinement (and thus the breadcrumb) in the user interface of Latitude Studio, if the user chooses
to remove the previously selected refinement from the breadcrumb list.

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <cs:State>
 <cs:SelectedRefinementFilter Name="NumberOfDigits" Spec="/2"/>
 </cs:State>
 <ContentElementConfig xmlns="http://www.endeca.com/MDEX/
 conversation/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig" ReturnFullPath="true"
 HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="Breadcrumbs"/>
 <ContentElementConfig xmlns="http://www.endeca.com/MDEX/conversa¬
tion/2010" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig" HandlerFunction="SearchAdjustmentHandler"

 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="SearchAdjustments"/>
 <PassThrough>... </PassThrough>
 </cs:Request>
 <cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">
 <cs:RefinementBreadcrumb Name="NumberOfDigits"
 DisplayName="Number Of Digits" Spec="/2">

Endeca® Latitude Developer's GuideEndeca Confidential

109Using Breadcrumbs | Implementing breadcrumbs with the API

 <cs:DimensionValue>
 <cs:DimensionValue DimensionName="NumberOfDigits" Spec="/">
 NumberOfDigits
 </cs:DimensionValue>
 <cs:Operator xsi:type="cs:GeneralizationOperator" Name="" Spec="/"/>
 </cs:DimensionValue>
 <cs:DimensionValue>
 <cs:DimensionValue DimensionName="NumberOfDigits" Spec="/2">2
 </cs:DimensionValue>
 <cs:Operator xsi:type="cs:GeneralizationOperator" Name="" Spec="/2"/>
 </cs:DimensionValue>
 <cs:Operator xsi:type="cs:GeneralizationOperator"
 Name="NumberOfDigits" Spec="/2"/>
 </cs:RefinementBreadcrumb>
 </cs:ContentElement>
 <cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:SearchAdjustments" Id="SearchAdjustments"/>
</cs:Results>

Retrieving breadcrumbs in a search query
Breadcrumbs returned by the Conversation Web Service in response to a search query can reflect
spelling correction and DYM (Did You Mean) information.

The following requirements must be met to implement breadcrumbs that also return spelling correction
and DYM information in response to a search query:

• The spelling must be enabled in the MDEX Engine. To enable spelling, after you install the MDEX
Engine and run mkmdex, run the admin?op=updateaspell command.

• The request must include the ContentElementConfig element for the BreadcrumbHandler.
This ensures that breadcrumbs are returned:

<ContentElementConfig xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance"
xsi:type="BreadcrumbConfig"
ReturnFullPath="false"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
Id="Breadcrumbs" />

• If you would like to return DYM and spelling correction results with breadcrumbs, the request must
include the ContentElementConfig element for the SearchAdjustmentHandler:

<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/2010"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
Id="SearchAdjustments" />

In the response, breadcrumbs are returned in the order in which they were added.

Request and response with spelling correction
Breadcrumbs information returned by the Conversation Web Service can reflect spelling correction.
The following example illustrates this case.

To request breadcrumbs in a search query that returns spelling correction:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Breadcrumbs | Implementing breadcrumbs with the API110

In the request, specify the search keyword, and the ContentElementConfig elements for
BreadcrumbHandler and SearchAdjustmentsHandler, as in the following abbreviated
example.

This request example specifies a navigation state that includes a search for a user-entered word
fife. It illustrates a search request with a breadcrumb that needs to be corrected for spelling:

<Request
xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchOperator" Within="false">
 <SearchFilter Mode="All" Key="English">
 fife
 </SearchFilter>
 </Operator>
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig" ReturnFullPath="true"
 HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="Breadcrumbs"/>
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="SearchAdjustments"/>
 <PassThrough>...</PassThrough>
</Request>

The response from the Conversation Web Service contains the original request with search filter
operators applied, the original (not yet spelling-corrected) term fife, and the PopSearchOperator
needed for removing the refinement (if the user decides to remove this breadcrumb). Finally, the
response also includes the automatically corrected term five in the ContentElement for
AppliedAdjustment .

<cs:Results
xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <cs:State>
 <SearchFilter
 xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 Mode="All"
 Key="English">
 fife
 </SearchFilter>
 </cs:State>
 <ContentElementConfig
 xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig" ReturnFullPath="true"
 HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="Breadcrumbs"/>

Endeca® Latitude Developer's GuideEndeca Confidential

111Using Breadcrumbs | Implementing breadcrumbs with the API

 <ContentElementConfig
 xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010" Id="SearchAdjustments"/>
 <PassThrough> ... </PassThrough>
 </cs:Request>
 <cs:ContentElement
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">
 <cs:SearchBreadcrumb DisplayName="English">
 <cs:SearchFilter Key="English" Mode="All">
 fife
 </cs:SearchFilter>
 <cs:Operator xsi:type="cs:PopSearchOperator">
 <cs:SearchFilter Key="English" Mode="All">
 fife
 </cs:SearchFilter>
 </cs:Operator>
 </cs:SearchBreadcrumb>
 </cs:ContentElement>
 <cs:ContentElement
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">
 <cs:AppliedAdjustment>
 <cs:SearchFilter Key="English" Mode="All">
 fife
 </cs:SearchFilter>
 <cs:AdjustedTerms>
 five
 </cs:AdjustedTerms>
 </cs:AppliedAdjustment>
 </cs:ContentElement>
</cs:Results>

Request and response with DYM
Breadcrumbs information returned by the Conversation Web Service can reflect DYM suggestions.
The following example illustrates this case.

To request breadcrumbs in a search query that returns DYM suggestions:

Specify the keyword search entry, the ContentElementConfig elements for
BreadcrumbHandler and SearchAdjustmentHandler. The following abbreviated example
contains a keyword search jane:

<Request
xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State />
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchOperator" Within="false">
 <SearchFilter Mode="All" Key="Essay">
 jane
 </SearchFilter>
 </Operator>
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig" ReturnFullPath="true"
 HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Breadcrumbs | Implementing breadcrumbs with the API112

 Id="Breadcrumbs" />
 <ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="SearchAdjustments" />
 <PassThrough> ... </PassThrough>
</Request>

The response reflects DYM results. In this example, the response includes the request with operators
applied, followed by a DYM suggested term, can and by the ApplySpellingSuggestionOperator
that actually replaces the keyword with the term suggested with DYM:

<cs:Results
xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <cs:State>
 <SearchFilter xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 Mode="All" Key="Essay">
 jane
 </SearchFilter>
 </cs:State>
 <ContentElementConfig
 xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="BreadcrumbConfig" ReturnFullPath="true"
 HandlerFunction="BreadcrumbHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="Breadcrumbs" />
 <ContentElementConfig
 xmlns="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="SearchAdjustments" />
 <PassThrough> ... </PassThrough>
 </cs:Request>
<cs:ContentElement
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">
 <cs:SearchBreadcrumb DisplayName="Essay">
 <cs:SearchFilter Key="Essay" Mode="All">
 jane
 </cs:SearchFilter>
 <cs:Operator xsi:type="cs:PopSearchOperator">
 <cs:SearchFilter Key="Essay" Mode="All">
 jane
 </cs:SearchFilter>
 </cs:Operator>
 </cs:SearchBreadcrumb>
 </cs:ContentElement>

Endeca® Latitude Developer's GuideEndeca Confidential

113Using Breadcrumbs | Implementing breadcrumbs with the API

 <cs:ContentElement
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">
 <cs:SuggestedAdjustment RecordCountIfApplied="15">
 <cs:SearchFilter Key="Essay" Mode="All">
 jane
 </cs:SearchFilter>
 <cs:SuggestedTerms>
 can
 </cs:SuggestedTerms>
 <cs:Operator xsi:type="cs:ApplySpellingSuggestionOperator">
 <cs:SearchFilter Key="Essay" Mode="All">
 jane
 </cs:SearchFilter>
 <cs:Replacement>
 can
 </cs:Replacement>
 </cs:Operator>
 </cs:SuggestedAdjustment>
 </cs:ContentElement>
</cs:Results>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Breadcrumbs | Implementing breadcrumbs with the API114

Chapter 11

Using Attribute Groups

This chapter discusses how to implement attribute groups in the MDEX Engine.

About attribute groups
Attribute groups are ordered collections of attributes.They are stored in the MDEX Engine as records.

Attribute groups are useful for organizing a large number of attributes on the user interface of your
Latitude Studio application.You can define a set of attribute groups to be displayed, assign attributes
to each group, and determine the display order of the groups and attributes.

Because you define the attribute groups, you can group the attributes in any way that makes sense
for your data.

You can assign an attribute to more than one of your attribute groups. There is also a default Other
attribute group containing all of the attributes that you have not assigned to a group.

How attribute groups are used in Latitude Studio
In Latitude Studio, lists of attributes are displayed in attribute groups.

This includes:

• For power users, when configuring Latitude Studio components
• For end users, when viewing components such as the Guided Navigation component:

For information on using and configuring components in Latitude Studio, see the Latitude Studio Power
User's Guide.

About configuring attribute groups
The Latitude Studio Control Panel includes an Attribute Settings component, which is used to
configure attribute groups for each data source.

From the Attribute Settings component, power users can:

• Create and delete attribute groups
• Add and remove the attributes in each attribute group
• Set the default display order of the attribute groups and their attributes

For information on using the Attribute Settings component to configure attribute groups, see the
Latitude Studio Power User's Guide.

Implementing attribute groups with the API
This section describes how to issue queries requesting attribute groups or lists of attribute groups
using the Conversation Web Service API.

The Conversation Web Service returns attribute groups for those types of queries that return refinements
(attributes). Any attributes that are returned from the Conversation Web Service as refinements are
returned as part of attribute groups.

For more information on the Conversation Web Service interface, see the MDEX Engine API Reference.

Related Links

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Attribute Groups | About configuring attribute groups116

Retrieving attribute groups on page 117
Any request that asks for refinements is also requesting groups, if the attributes that are going
to be returned are configured as part of groups.

Retrieving lists of attribute groups on page 119
To retrieve a lists of groups, use a request with ContentElementConfig of type Proper¬
tyGroupListConfig, which uses the PropertyGroupListHandler.

Retrieving attribute groups
Any request that asks for refinements is also requesting groups, if the attributes that are going to be
returned are configured as part of groups.

The request for groups is implemented with the RefinementGroupConfig element of the Conversation
Web Service request. This element contains one or more RefinementConfig elements that list
which attributes, out of all valid attributes returned with a Navigation query, should return actual
refinement values. Note that only the top-level refinement values are returned.

The complex type RefinementGroupConfig has the following format:

<complexType name="RefinementGroupConfig">
 <sequence>
 <element name="RefinementConfig" type="cs:RefinementConfig" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="Name" type="cs:NonEmptyString" use="required"/>
 <attribute name="Expose" type="boolean" use="required"/>
 <attribute name="ExposeAllPropertyRefinements" type="boolean"/>
 </complexType>

The meanings of the attributes are:

DescriptionAttribute

Required. The name of the group.Name

Required. Specify true to expose all top-level
attributes in the group (the default) or false to just
show the head of the refinement group.

Expose

Note: If an attribute is a managed attribute, it
contains a hierarchy of attributes under its root.
Whether these nested attributes are exposed is
not controlled by this element, and is instead
controlled by the Expose attribute on the Re¬
finementConfig element for each standard
attribute within a managed attribute.

Optional. If set to true, specifies whether to expose
all attribute refinements underneath each managed

ExposeAllPropertyRefinements

attribute that has them. The default is false (if this
attribute is not specified).

This setting supersedes the Expose attribute on the
RefinementConfig element for each attribute
refinement.

Endeca® Latitude Developer's GuideEndeca Confidential

117Using Attribute Groups | Implementing attribute groups with the API

Groups are returned in a NavigationMenuItemGroup element that contains one or more
NavigationMenu elements, each of which returns refinements in the NavigationMenuItem. Here
is the format for the NavigationMenuItemGroup:

<complexType name="NavigationMenuItemGroup">
 <annotation>
 <documentation>
 A group of NavigationMenuItems, collected by property group.
 </documentation>
 </annotation>
 <sequence>
 <element name="NavigationMenuItem" type="cs:NavigationMenuItem"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="HasRefineableProperties" type="boolean" />
 <attribute name="Name" type="string" use="required" />
 </complexType>

The required attribute HasRefineableProperties specifies whether a group has attributes that
could be refined further.

Note: From the perspective of controlling the groups behavior in the front-end application,
another attribute may be useful. It is the ExposureControl attribute of type boolean, on the
NavigationMenuItem. If set to false (the default), it does not expose refinements contained
within NavigationMenuItem. If set to true exposes the collection of refinements.

To request groups:

In the Conversation Web Service request, for each group, specify its name and whether to expose
all top-level attributes in the group by specifying the value of Expose attribute on the Refinement¬
GroupConfig element. Optionally, you can also use this attribute on the refinements within the
group.

In this example, two groups are requested, FlavorGroup and ProvenanceGroup, but exposing
top-level attributes is requested for FlavorGroup only:

 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:type="NavigationMenuConfig" MaximumRefinementCount="10"
ReturnFullPath="true" ExposeAllRefinements="false" HandlerFunction="Nav¬
igationMenuHandler" HandlerNamespace="http://www.endeca.com/MDEX/conver¬
sation/handlers/2010" Id="Navigation">
 <RefinementGroupConfig Name="FlavorGroup" Expose="true">
 <RefinementConfig Name="Flavors" Expose="true" MaximumCount="2"/>

 </RefinementGroupConfig>
 <RefinementGroupConfig Name="ProvenanceGroup" Expose="false"/>
 </ContentElementConfig>
 </Request>

The Conversation Web Service result includes results for one group, FlavorGroup, for which
refinements were requested to be exposed:

 <cs:ContentElement xsi:type="cs:NavigationMenu" Id="Navigation">
 <cs:NavigationMenuItemGroup Name="FlavorGroup" HasRefineableProper¬
ties="true">
 <cs:NavigationMenuItem Name="Flavors" DisplayName="Flavors" MultiS¬
elect="And" HasMore="true">
 <cs:ExposureControl Exposed="true">

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Attribute Groups | Implementing attribute groups with the API118

 <cs:Operator OwnerId="Navigation" xsi:type="cs:RefinementHide¬
Operator" Name="Flavors" Group="FlavorGroup" Spec="/"/>
 </cs:ExposureControl>
 <cs:Refinement Name="Flavors" Spec="Currant" Label="Currant">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="Flavors"
Spec="Currant"/>
 </cs:Refinement>
 <cs:Refinement Name="Flavors" Spec="Oak" Label="Oak">
 <cs:Operator xsi:type="cs:RefinementOperator" Name="Flavors"
Spec="Oak"/>
 </cs:Refinement>
 <cs:RootDimensionValue DimensionName="Flavors" Spec="/"/>
 <cs:FullPath><!-- path information omitted in this example--
></cs:FullPath>
 </cs:NavigationMenuItem>
 <cs:NavigationMenuItem Name="Drinkability" DisplayName="Drinkabil¬
ity" MultiSelect="None" HasMore="true">
 <cs:ExposureControl Exposed="false">
 <cs:Operator OwnerId="Navigation" xsi:type="cs:RefinementEx¬
poseOperator" Name="Drinkability" Group="FlavorGroup" Spec="/"/>
 </cs:ExposureControl>
 <cs:RootDimensionValue DimensionName="Drinkability" Spec="/"/>
 <cs:FullPath><!-- path information omitted in this example --
></cs:FullPath>
 </cs:NavigationMenuItem>
 </cs:NavigationMenuItemGroup>
 <cs:NavigationMenuItemGroup Name="ProvenanceGroup" HasRefineableProp¬
erties="true"/>
 </cs:ContentElement>

Retrieving lists of attribute groups
To retrieve a lists of groups, use a request with ContentElementConfig of type PropertyGrou¬
pListConfig, which uses the PropertyGroupListHandler.

To retrieve a list of groups:

Use the request similar to the following example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-in¬
stance"
 xsi:type="PropertyGroupListConfig" HandlerFunction="PropertyGrou¬
pListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
 Id="groups"/>
</Request>

The Conversation Web Service request contains a list of groups that are currently defined, specifying
a group's display name and a number of attributes within each group:

<cs:ContentElement xsi:type="cs:PropertyGroupList" Id="groups">
 <cs:PropertyGroup Key="TypeGroup"
 NumberOfProperties="2" DisplayName="Wine Types and Varieties"/>
 <cs:PropertyGroup Key="FlavorGroup"
 NumberOfProperties="4" DisplayName="Flavors and Drinkability"/>
 <cs:PropertyGroup Key="ProvenanceGroup"
 NumberOfProperties="3" DisplayName="Terroire and Wineries"/>

Endeca® Latitude Developer's GuideEndeca Confidential

119Using Attribute Groups | Implementing attribute groups with the API

 <cs:PropertyGroup Key="RatingsGroup" NumberOfProperties="3"
 DisplayName="Ratings and Evaluations"/>
 <cs:PropertyGroup Key="system-navigation_InternalGroup" NumberOfProper¬
ties="48"/>
</cs:ContentElement>

Note: You may notice a group system-navigation_InternalGroup which contains all of
the attributes that are not members of any other groups.This group is used by the MDEX Engine
and is not intended to be used in any other way in your application.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Attribute Groups | Implementing attribute groups with the API120

Chapter 12

Using Precedence Rules

This chapter describes how to configure and use precedence rules.

About precedence rules
Precedence rules provide a way to delay the display of Endeca attributes until they offer a useful
refinement of the navigation state.

Precedence rules are defined in terms of a trigger attribute and a target attribute, where a user's
selection of the trigger reveals the previously unavailable target attribute to the user.That is, precedence
rules are triggered by implicit or explicit selections of either managed attribute values or standard
attribute values. These triggers are able to cause either managed attributes or standard attributes to
be included as available refinements.

Precedence rule triggers can be expressed as:

• Managed attribute value (mval): triggered when a particular mval is selected.This can be configured
to control whether the mval itself must be selected, or whether any child of the mval will trigger the
rule. Using a root mval for a managed attribute effectively causes any selection within that managed
attribute to trigger the rule.

• Standard attribute value (sval): triggered when a particular sval is selected.
• Standard attribute: triggered when any value in a particular standard attribute is selected

The precedence rule target can be a managed attribute or a standard attribute.

Note that either attribute type can trigger the other type. That is, a managed attribute value configured
as a trigger can display a standard attribute, while a standard attribute (or standard attribute value)
can be a trigger for a managed attribute target.

To illustrate the concept of precedence rules, assume that one might not want both the Country and
State managed attributes to appear simultaneously in a geographical data set. A precedence rule
could be defined so that the State managed attribute would appear only after a managed attribute
value from the Country managed attribute is selected. This simplifies the user's navigation choices
and avoids information overload by hiding the State managed attribute until it is relevant to the navigation
state.

Treatment of target attributes associated with multiple precedence rules

A target managed or standard attribute associated with more than one precedence rule is exposed
when at least one associated trigger is selected.

For example, assume we have three managed attributes: Author, Region, and Language. We have
two precedence rules:

Region > Author
Language > Author

In this case, the Author managed attribute is displayed after a managed attribute value from either the
Region or Author managed attribute is selected.

Precedence rules with non-existent sources

If the source attribute in a precedence rule does not exist in the MDEX Engine but its destination
attribute does exist, then the precedence rule will never be triggered. This behavior effectively hides
the destination attribute from refinements. To correct this behavior, either remove the rule or create
the source attribute in the MDEX Engine.

Precedence rules versus hierarchical managed attributes

The creation of managed attributes can be facilitated with precedence rules. Consider the task of
creating a Geography managed attribute as a hierarchy of country, state, and city.The hierarchy would
need to be created manually, with Country as the root managed value. Each country managed value
would have its corresponding states as children and each state its corresponding cities. In this scenario,
the onus is on the knowledge worker to create and maintain this potentially enormous hierarchy.

Precedence rules offer a much simpler solution. The knowledge worker can produce the same results
by creating three individual managed (or standard) attributes (Country, State, and City) and configuring
precedence rules such that the State attribute is not presented until a country has been chosen and
the City attribute is not presented until a state has been chosen. Because each attribute is flat, this
solution involves much less initial and maintenance effort. Clearly, creating a managed attribute
hierarchy by hand is a much more difficult task than creating the three flat attributes, configuring
precedence rules, and letting contraction do the work to give the application the desired behavior (that
is, to mimic the hierarchy).

Precedence rule types
Precedence rules are Standard, Leaf, or Property types.

During configuration, you specify a rule type for the trigger. Managed value triggers are either Standard
or Leaf, while standard attribute triggers are Property.

Standard versus Leaf precedence rules
Standard precedence rules display the target attribute if the trigger managed value or its descendants
are in the navigation state. Leaf precedence rules display the target attribute only after descendants
of the trigger managed value have been selected.

The two types differ in how the trigger dimension value is interpreted:

• For the Standard type, if the managed value specified as the trigger, or any of its descendants,
are in the navigation state, then the target attribute is displayed.

• For the Leaf type, only leaf managed values (managed values with no children) that are descendants
of the specified trigger managed value cause the target attribute to be displayed. The presence
of the specified trigger managed value in the navigation state does not cause the target attribute
to appear. Hence, a leaf precedence rule requires that the trigger managed value have children.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Precedence Rules | Precedence rule types122

Standard rule example

In this Standard rule example, we have a Color dimension with a child managed value named blue.
We can construct a Standard precedence rule with blue as the trigger managed value and the managed
attribute ShadesOfBlue as the target.

When the user drills into Color and selects blue, the target managed attribute ShadesOfBlue is
displayed in the user interface.

Leaf rule example

For Leaf type rules, we will use a hierarchical managed attribute named Country and a second
managed attribute named State. The Country dimension looks like this:

Country
 - North America
 - Canada
 - Mexico
 - United States
 - Europe
 - England
 - Spain
 - Italy

Logically, a user should choose a country before choosing a state. We can use a Leaf precedence
rule to suppress the display of the State attribute until a leaf value in the Country managed attribute
(an actual country as opposed to a continent) has been selected. To achieve this, a Leaf precedence
rule is constructed with the Country root managed value as the trigger and the State managed attribute
as the target.

If the user drills into Country and selects an intermediate child managed value (North America or
Europe), the target State attribute is not displayed. However, once the user has selected a leaf value
from the Country managed attribute (United States, Canada, Mexico, England, Spain, or Italy) the
State managed attribute appears.

Precedence rule Property type
Standard attribute triggers are designated as Property types.

Standard attributes can be configured as triggers by using the PROPERTY keyword in the PRECE¬
DENCE_RULES index configuration. In other words, when the SRC_PROPERTY keyword is used, then
the PROPERTY keyword must also be used, as in this example:

<PRECEDENCE_RULES>
 <PRECEDENCE_RULE
 SRC_PROPERTY="Region" SRC_PVAL="Italy" TYPE="PROPERTY"
 DEST_DIMENSION="WineType" DEST_DVAL_SPEC="Chianti" />
</PRECEDENCE_RULES>

Note that the use of SRC_PVAL is optional and is used when you want the source to trigger the target
only when the specific standard attribute value ("Italy" in this example) is selected.

Configuring precedence rules
You configure precedence rules in the MDEX Engine via the PRECEDENCE_RULES index configuration
document.

Endeca® Latitude Developer's GuideEndeca Confidential

123Using Precedence Rules | Configuring precedence rules

The PRECEDENCE_RULES document configures precedence rules in the MDEX Engine. The format
for configuring triggers and targets is explained in the MDEX Engine Configuration XML Reference
appendix of the Latitude Data Integrator Guide.

To configure precedence rules:

1. In any text editor, edit the PRECEDENCE_RULES index configuration document.

2. Use the Latitude Data Integrator to send the PRECEDENCE_RULES document to the MDEX Engine.

For information, see the Latitude Data Integrator Guide.

Precedence rules and implicit attribute value selection
When all records in the navigation state are assigned a given attribute value, that attribute value is an
implicit selection.

In addition to being selected explicitly by the application, attribute values (either standard attribute
values or managed attribute values) can be selected implicitly. For example, if all Champagnes are
from France, then the explicit selection of WineType > Champagne causes the implicit selection of
Region > France. Implicit selection is a function of the set of records in the navigation state, regardless
of what combination of search, navigation, and record filters was used to obtain them.

Implicitly-selected attribute values trigger precedence rules in exactly the same way as explicitly-selected
attribute values. This behavior helps ensure a consistent user experience, by providing the same
attributes for refinement of a given result set, regardless of whether that result set was obtained through
search, navigation, or a combination of the two.

For this reason, two navigation paths leading to the same set of records will always have exactly the
same set of navigation selections (differing only in whether the selections are implicit or explicit).
Because of this equivalence, the set of precedence rules fired in both states will be identical.

When precedence rules are overridden

Implicit selection of a precedence rule's trigger attribute value fires the rule. Under some circumstances,
implicit selection of the rule's target managed value also fires it. Specifically, when a precedence rule's
target managed value is implicit in the navigation state, and when refinements are available underneath
that target managed value, the precedence rule fires and the target attribute is displayed. This occurs
even when none of the rule's trigger values have been implicitly or explicitly selected. The MDEX
Engine treats any precedence rules targeting the parent managed attributes of these managed values
as having fired, even though the rules' trigger values have not been selected.

For this reason, precedence rule target attributes may appear when no precedence rule trigger has
been selected.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Precedence Rules | Precedence rules and implicit attribute value selection124

Part 5

Search Features

• Using Record Search
• Working with Search Interfaces
• Using Value Search
• Using Search Modes
• Using Phrase Search
• Using Snippeting in Record Searches
• Using Wildcard Search
• Search Characters
• Working with Spelling Correction and Did You Mean
• Using Stemming and Thesaurus
• Relevance Ranking

Chapter 13

Using Record Search

This section discusses record search, which is an Endeca equivalent of full-text search, and is one of
the fundamental building blocks of Endeca search capabilities.

Record search overview
Record search allows a user to perform a keyword search against specific attribute values assigned
to records.

The resulting records that have matching attribute values are returned, along with any valid refinement
values.

Unlike value search, record search returns a complete Navigation object, the same object that is
returned when a user filters records by selecting a managed attribute value.

Because record search returns a navigation page, it is important to remember that the record search
parameter acts as a record filter in the same way that an attribute value does, even though it is not a
specific value.

Example of record search

For example, consider the following records:

Description of attributeName of attributeAttribute value
(WineType)

Rec ID

Dark ruby in color, with extremely ripe...Antinori Toscana
Solaia

Red (Dim Value 101)1

Dense, rich, and complex...Chateau St. JeanRed (Dim Value 101)2

Dense and vegetal, with celery, pear, and
spice flavors...

Chateau LavilleWhite (Dim Value 103)3

Big, ripe, and generous, layered with
honey...

Jose Maria da
Fonseca

Other (Dim Value 103)4

When the user performs a record search on the Description attribute using the keyword dense, the
following objects are returned:

• 2 records (records 2 and 3)
• 2 refinement attribute values (Red and White)

When performing a record search on the Description attribute using the keyword ripe, these objects
are returned:

• 2 records (records 1 and 4)
• 2 refinement attribute values (Red and Other)

Note: In addition to basic record search, other features affect the behavior of record search,
such as spelling support, relevance ranking of results, wildcard syntax, multiple attribute record
searches, and attribute group record searches. These are discussed in detail in their respective
sections.

Features for controlling record search

The following statements describe various aspects of record search behavior and how you can control
it:

• To configure run-time record search behavior, you must create one or more search interfaces. For
more information, see the chapter on search interfaces.

• There are no MDEX Engine configuration flags necessary to enable record searching. If an attribute
was properly enabled for record searching, it will automatically be available for record searching.

• Multiple MDEX Engine configuration flags are available to manage different controls for record
search, such as spelling support and relevance ranking. See specific feature sections for details.

Configuring attributes for record search
The first step in implementing basic record search is to configure a standard attribute for record
searching using the Latitude Data Integrator.

The mdex-property_IsTextSearchable attribute of a PDR enables the attribute for record
searching. The valid settings for this attribute are:

• If set to true, the attribute is enabled for record search.
• If set to false, the attribute is not enabled for record search. This is the default.

To configure an attribute for record search, see the Latitude Data Integrator Guide.

Enabling hierarchical record search
If you want to consider ancestor managed attribute values when matching a record search query, you
can enable hierarchical record search.

By default, a record search that uses a managed attribute as the search key returns only those records
that are assigned an attribute value whose text matches the search terms. As part of this behavior,
record search does not consider implicit ancestor attribute values.

For example, consider the following managed attributes hierarchy:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Record Search | Configuring attributes for record search128

In this hierarchy, the Red attribute (with an ID of 12) is an ancestor of the Merlot attribute (ID of 13).
A search against the WineType attribute for the keyword merlot matches any records assigned the
attribute value 13. But a search in WineType for red merlot does not match these records, because
record search does not normally consider implicit ancestor attribute value assignments.

In such cases, you may want record search to consider ancestor attribute values when matching a
record search query.You can enable this sort of hierarchical record search by setting the mdex-di¬
mension_IsRecordSearchHierarchical attribute to true in the managed attribute's DDR
(Dimension Description Record).

Adding search synonyms to attribute values
You can add synonyms to a managed attribute value so that users can search for other text strings
and still get the same records as a search for the original attribute value name.

When a managed attribute is used as the record search key, the text strings considered by record
search for matching are the individual names of the attribute values within the attribute. The managed
attribute name is automatically added as a searchable string.

You can add synonyms to an attribute value so that users can search for other text strings and still
get the same records as a search for the original attribute value name. Synonyms can be added only
to child attribute values, not to root attribute values.

You can use the Data Ingest Web Service's ingestDimensionValues operation to add synonyms
when adding attribute values to the MDEX Engine. For details, see the Latitude Data Ingest API Guide.

Implementing record search in Latitude Studio
Record search queries in a Latitude Studio application are made from the Search Box component.

To make record search queries in Latitude Studio, you must add and configure the Search Box
component. For details on this component, see the Latitude Studio Power User's Guide.

Implementing record search with the API
This section describes how to issue record search queries using the Conversation Web Service API.

For more information on the Conversation Web Service interface, see the MDEX Engine API Reference.

Related Links
Obtaining the available search keys on page 130

Endeca® Latitude Developer's GuideEndeca Confidential

129Using Record Search | Implementing record search in Latitude Studio

The AvailableSearchKeys component lets you retrieve a list of the searchable attributes
and search interfaces available in the MDEX Engine.

Record search operator on page 131
A basic record search requires a SearchOperator with a SearchFilter type.

Obtaining the available search keys
The AvailableSearchKeys component lets you retrieve a list of the searchable attributes and
search interfaces available in the MDEX Engine.

The AvailableSearchKeys element contains one or more AvailableSearchKey elements. The
complex type AvailableSearchKey in the Conversation Web Service identifies the items that are
searchable — search interfaces and searchable attributes. This type has the following format:

<complexType name="AvailableSearchKey">
 <annotation>
 <documentation>
 A key used to identify searchable properties and search interfaces.

 </documentation>
 </annotation>
 <sequence>
 <element name="Key" type="string" use="required"/>
 <element name="DisplayName" type="string" use="required"/>
 </sequence>
 <attribute name="Interface" type="boolean" use="required" />
 </complexType>

The Interface attribute distinguishes whether the search key is a searchable attribute or a search
interface. If the search key is a search interface, the attribute is set to true. If the search key is not
a search interface and is a searchable attribute, the attribute is set to false.

Request for available search keys

To make a request for available search keys, use the AvailableSearchKeysConfig component
as illustrated in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig xsi:type="AvailableSearchKeysConfig"
 HandlerFunction="AvailableSearchKeysHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="MySearchKeys" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 />
</Request>

The Id attribute is an identifier for the configuration.

Response for available search keys

The response contains an AvailableSearchKeys component that lists all of the searchable keys
in a single alphabetically ordered list, as shown in this example:

dd
<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <cs:Request>
 <State xmlns="http://www.endeca.com/MDEX/conversation/2010"

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Record Search | Implementing record search with the API130

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"/>
 <ContentElementConfig xsi:type="AvailableSearchKeysConfig"
 HandlerFunction="AvailableSearchKeysHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="MySearchKeys" xmlns="http://www.endeca.com/MDEX/conversa¬
tion/2010"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 </cs:Request>
 <cs:ContentElement xsi:type="cs:AvailableSearchKeys"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cs:AvailableSearchKey Interface="true">
 <cs:Key>AllWineSearch</cs:Key>
 <cs:DisplayName>AllWineSearch</cs:DisplayName>
 </cs:AvailableSearchKey>
 <cs:AvailableSearchKey Interface="false">
 <cs:Key>Description</cs:Key>
 <cs:DisplayName>Wine Description</cs:DisplayName>
 </cs:AvailableSearchKey>
 <cs:AvailableSearchKey Interface="false">
 <cs:Key>WineType</cs:Key>
 <cs:DisplayName>Wine Type</cs:DisplayName>
 </cs:AvailableSearchKey>
 </cs:ContentElement>
</cs:Results>

Each AvailableSearchKey element lists the name of a searchable attribute or search interface
(the Key sub-element) and the display name (which can have a non-NCName format). If the search
key is a search interface, the Interface attribute is set to true. In this sample response, one search
interface, AllWineSearch, and two attributes, Description and WineType, are listed as available
search keys.

Record search operator
A basic record search requires a SearchOperator with a SearchFilter type.

The syntax for a search request is shown in this example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchOperator" Within="false">
 <SearchFilter Mode="AllPartial" RelevanceRankingStrategy="numfields"
 EnableSnippeting="true" SnippetLength="10"
 Key="Description">spice flavors</SearchFilter>
</Operator>

The text content of the SearchFilter element contains the search term(s). In the example, a record
search is being made for the "spice flavors" keywords. The meanings of the SearchOperator and
SearchFilter attributes are as follows:

MeaningSearch attribute

If set to false, then the visible parts of the filter state are cleared first.Within

Specifies which attribute will be evaluated when searching.You specify
an attribute as a value for this parameter. (You can also specify a search
interface as a value.)

Key

Optionally specifies a match mode.Mode

Endeca® Latitude Developer's GuideEndeca Confidential

131Using Record Search | Implementing record search with the API

MeaningSearch attribute

Optionally specifies a relevance ranking strategy.RelevanceRankingStrat¬
egy

Optionally enables snippeting for the query.EnableSnippeting

Optionally specifies the maximum number of words a snippet can
contain.

SnippetLength

Search query processing order
This section summarizes how the MDEX Engine processes record search queries.

While this summary is not exhaustive, it covers the processing steps likely to occur is most application
contexts. The process outlined here assumes that other features (such as spelling correction and
thesaurus) are being used.

The MDEX Engine uses the following high-level steps to process record search queries:

1. Record filtering
2. Endeca Query Language (EQL) filtering
3. Tokenization
4. Auto correction (spelling correction and automatic phrasing)
5. Thesaurus expansion
6. Stemming
7. Primitive term and phrase lookup
8. Did you mean
9. Navigation filtering
10. Analytics
11. Relevance ranking

Note: For Boolean search queries, tokenization, auto correction, and thesaurus expansion are
replaced with a separate parsing phase.

Related Links
Step 1: Record filtering on page 133

If a record filter is specified, whether for security, custom catalogs, or any other reason, the
MDEX Engine applies it before any search processing.

Step 2: Endeca Query Language filters on page 133
The Endeca Query Language (EQL) contains a rich syntax that allows an application to build
dynamic, complex filters that define arbitrary subsets of the total record set and restrict search
and navigation results to those subsets. If used, this feature is applied after record filtering.

Step 3: Tokenization on page 133
Tokenization is the process by which the MDEX Engine analyzes the search query string,
yielding a sequence of distinct query terms.

Step 4: Auto correction (spelling correction and automatic phrasing) on page 134
If spelling correction and automatic phrasing are enabled and triggered, the MDEX Engine
implements them as part of the record search processing.

Step 5: Thesaurus expansion on page 134

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Record Search | Search query processing order132

The tokenized query, as well as each query alternative generated by spelling suggestion, is
expanded by the MDEX Engine based on thesaurus matches. This topic describes the
behavior of the thesaurus expansion feature.

Step 6: Stemming on page 135
Query terms, unless they are delimited with quotation marks to be treated as exact phrases,
are expanded by the MDEX Engine using stemming.

Step 7: Primitive term and phrase lookup on page 135
Primitive term and phrase lookup is the lowest level of search processing performed by the
MDEX Engine.

Step 8: Did You Mean on page 135
The MDEX Engine performs the "Did you mean" processing as part of the record search
processing.

Step 9: Navigation filtering on page 135
The MDEX Engine performs all filtering based on the navigation state after the search
processing. This order is important, because it ensures that the spelling suggestions remain
consistent as the navigation state changes.

Step 10: Analytics on page 135
Endeca Analytics builds on the core capabilities of the MDEX Engine to enable applications
that examine aggregate information such as trends, statistics, analytical visualizations,
comparisons, and so on, all within the Guided Navigation interface. If Analytics is used, it is
applied near the end of processing.

Step 11: Relevance ranking on page 136
Relevance ranking is the last step in the MDEX Engine processing for the record search.
Each of the navigation-filtered search results is assigned a relevance score, and the results
are sorted in descending order of relevance.

Step 1: Record filtering
If a record filter is specified, whether for security, custom catalogs, or any other reason, the MDEX
Engine applies it before any search processing.

The result is that the search query is performed as if the data set only contained records allowed by
the record filter.

Step 2: Endeca Query Language filters
The Endeca Query Language (EQL) contains a rich syntax that allows an application to build dynamic,
complex filters that define arbitrary subsets of the total record set and restrict search and navigation
results to those subsets. If used, this feature is applied after record filtering.

For details on this feature, see the Analytics chapter of the Latitude Studio Power User's Guide.

Step 3:Tokenization
Tokenization is the process by which the MDEX Engine analyzes the search query string, yielding a
sequence of distinct query terms.

Endeca® Latitude Developer's GuideEndeca Confidential

133Using Record Search | Search query processing order

Step 4: Auto correction (spelling correction and automatic phrasing)
If spelling correction and automatic phrasing are enabled and triggered, the MDEX Engine implements
them as part of the record search processing.

If the spelling correction feature is enabled and triggered, the MDEX Engine creates spelling suggestions
by enumerating (for each query term) a set of alternatives, and considering some of the combinations
of term alternatives as whole-query alternatives.

Each of these whole-query alternatives is subject to thesaurus expansion and stemming.

For example, if the tokenized query is employee moral, then employee may generate the set of
alternatives {employer, employee, employed}, while moral may generate the set of alternatives
{moral, morale}.

The two query alternatives generated as spelling suggestions might be employer moral and
employee morale.

For details on the auto-correction feature, see the section about it.

If automatic phrasing is enabled, then the MDEX Engine automatically combines distinct query terms
that match a phrase in the phrase dictionary into a search phrase.

Once distinct terms are grouped as an automatic phrase, the phrase is not subject to additional
thesaurus expansion and stemming.

For example, suppose the phrase dictionary contains two phrases Kenneth Cole and also blue
jeans. If the query is Kenneth Cole blue jeans, the alternative query might be “Kenneth
Cole” “blue jeans”.

For details on automatic phrasing, see the section about it.

Step 5:Thesaurus expansion
The tokenized query, as well as each query alternative generated by spelling suggestion, is expanded
by the MDEX Engine based on thesaurus matches.This topic describes the behavior of the thesaurus
expansion feature.

Thesaurus expansion replaces each expanded query term with an OR of alternatives.

For example, if the thesaurus expands pentium to intel and laptop to notebook, then the query
pentium laptop will be expanded to:

(pentium OR intel) AND (laptop OR notebook)

assuming the match mode is MatchAll.

The other match modes (with the exception of MatchBoolean) behave analogously.

If there is a multiple-word thesaurus match, then OR is used on the query itself to accommodate the
various ways of partitioning the query terms.

For example, if high speed expands to performance, then the query high speed laptop will
be expanded to:

(high AND speed AND (laptop OR notebook)) OR (performance
AND (laptop OR notebook))

Multiple-word thesaurus matches only apply when the words appear in exact sequence in the query.
The queries speed high laptop and high laptop speed do not activate the expansion to
performance.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Record Search | Search query processing order134

For more details on thesaurus expansion, see the section on this feature.

Step 6: Stemming
Query terms, unless they are delimited with quotation marks to be treated as exact phrases, are
expanded by the MDEX Engine using stemming.

The expansion for stemming applies even to terms that are the result of thesaurus expansion. A
stemmed query term is an OR expression of its word forms.

For example, if the query pentium laptop was thesaurus-expanded to:

(pentium OR intel) AND (laptop OR notebook)

it will be stemmed to:

(pentium OR intel) AND (laptop OR laptops OR notebook
OR notebooks)

assuming that only the improper nouns have plurals in the word form dictionary.

For more details on stemming, see the section on this feature.

Step 7: Primitive term and phrase lookup
Primitive term and phrase lookup is the lowest level of search processing performed by the MDEX
Engine.

The MDEX Engine evaluates each search term as is, and matches it to the set of documents containing
that precise word or phrase (given the tokenization rules) in the indexes being searched. Search is
never case-sensitive, even for phrases.

Step 8: Did You Mean
The MDEX Engine performs the "Did you mean" processing as part of the record search processing.

“Did you mean?” processing is analogous to the spelling correction and automatic phrasing processing,
only that the results are not included, but rather the spelling suggestions and automatic phrases
themselves are returned.

For details on the “Did you mean?” feature, see the section about it.

Step 9: Navigation filtering
The MDEX Engine performs all filtering based on the navigation state after the search processing.
This order is important, because it ensures that the spelling suggestions remain consistent as the
navigation state changes.

Step 10: Analytics
Endeca Analytics builds on the core capabilities of the MDEX Engine to enable applications that
examine aggregate information such as trends, statistics, analytical visualizations, comparisons, and
so on, all within the Guided Navigation interface. If Analytics is used, it is applied near the end of
processing.

Endeca® Latitude Developer's GuideEndeca Confidential

135Using Record Search | Search query processing order

For more information about this feature, see the Latitude Power User's Guide.

Step 11: Relevance ranking
Relevance ranking is the last step in the MDEX Engine processing for the record search. Each of the
navigation-filtered search results is assigned a relevance score, and the results are sorted in descending
order of relevance.

For details on this feature, see the section about it.

Tips for troubleshooting record search
This topic includes tips for troubleshooting record search.

Due to the user-specified interaction of this feature (as opposed to the system-controlled interaction
of Guided Navigation in which the MDEX Engine controls the refinement values presented to the user),
a user is allowed to submit a keyword search that does not match any records.Therefore, it is possible
for a user to make a dead-end request with zero results when using record search. Applications utilizing
record search need to account for this.

In production systems, these Endeca attributes are typically hard-coded at the application level, because
the application requires specific search keys to be used for specific functionality.

If an Endeca attribute is not enabled for record searching but an application attempts to perform a
record search against this attribute, the MDEX Engine successfully returns a null result set.The MDEX
Engine error log, however, outputs the following message: In fulltext search: [Wed Sep 3
12:28:02 2010] [Warning] Invalid fulltext search key "Description" requested.

The -v flag to the MDEX Engine causes the MDEX Engine to output detailed information about its
record search configuration. If you are unsure whether the MDEX Engine is recognizing a particular
parameter, start it with the -v flag and check the output.

Finally, while implementing record search by enabling record standard attributes for searching is the
normal approach, managed attribute values can also be enabled for record searching. The managed
attribute name then replaces the standard attribute key as the value for the Search operator in the
MDEX Engine query. The resulting navigation request contains any record that is tagged with a
managed attribute value from the specified managed attribute that matches the search terms.

Performance impact of record search
Because record searching is an indexed feature, each attribute enabled for record searching increases
the size of the MDEX Engine process.

The specific size of the increase is related to the size of the unique word list generated by the specific
attribute in the data set. Therefore, only attributes that are specifically needed by an application for
record searching should be configured as such.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Record Search | Tips for troubleshooting record search136

Chapter 14

Working with Search Interfaces

A search interface is a named collection of standard and managed attributes, each of which is enabled
for record search.

About search interfaces
A search interface allows you to control record search behavior for groups of one or more attributes.

A search interface may also contain:

• A number or attributes, such as name, cross-field information, and so on.
• An ordered collection of one or more ranking strategies.

Some of the features that can be specified for a search interface include:

• Relevance ranking
• Matching across multiple attributes
• Keyword in context results
• Partial match

You can use a search interface to control the behavior of search against a single standard or managed
attribute, or to simultaneously search across multiple attributes.

For example, if a data set contains both an Actor standard attribute and Director managed attribute,
a search interface can provide the user the ability to search for a person’s name in both. A search
interface’s name is used just like a normal attribute when performing record searches. By default, a
record search query on a search interface returns results that match any of the attributes in the interface.

Implementing search interfaces
You implement search interfaces with the Latitude Data Integrator.

Before implementing search interfaces, make sure that all the attributes that are going to be included
in a search interface have already been enabled for record search. In addition, if the search interface
will include a relevance ranking strategy, make sure that the relevance ranking strategy has been
configured.

If you are implementing wildcard search in a search interface, search interfaces can contain a mixture
of wildcard-enabled and non-wildcard-enabled members (although only the former will return
wildcard-expanded results).

You implement a search interface via the RECSEARCH_CONFIG configuration element. The resulting
search interface should look similar to this example of a search interface named AllWine that uses a
relevance ranking strategy named All:

<RECSEARCH_CONFIG xmlns:ns="http://www.endeca.com/MDEX/XQuery/2009/09"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09"
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/con¬
fig/2010"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER" CROSS_FIELD_RELE¬
VANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="All" NAME="AllWine">
 <MEMBER_NAME RELEVANCE_RANK="4">WineType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">WineName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">Winery</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

For information on how to configure a search interface, see the Latitude Data Integrator Guide.

Options for allowing cross-field matches
The CROSS_FIELD_BOUNDARY attribute specifies when the MDEX Engine should try to match search
queries across attribute boundaries.

The three settings for CROSS_FIELD_BOUNDARY are:

DescriptionSetting

The MDEX Engine always looks for matches across attribute boundaries, in addition
to matches within an attribute.

Always

If you choose to use cross-field matching, the Always setting is recommended and is
the default.

For example, in the Sony camera user query, if CROSS_FIELD_BOUNDARY is set
to Always, the MDEX Engine returns all matches with Brand = Sony and Prod¬
uct_Type = camera.

The MDEX Engine does not look across boundaries for matches.
Never

The MDEX Engine only tries to match queries across attribute boundaries if it fails to
find any matches within a single attribute. Note that in most cases, the Always setting
provides better results than the On Failure setting.

On Failure

By default, record search queries using a search interface return the union of the results from the same
record search query performed against each of the interface members.

For example, assume a search interface named MoviePeople that includes actor and director
attributes. Searching for deniro against this interface returns the union of records that results from
searching for deniro against the actor attribute and against the director attribute.

Less frequently, you may wish to allow a match to span multiple attributes. For example, in the same
MoviePeople search interface, a query for clint eastwood returns records where either an actor

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Search Interfaces | Options for allowing cross-field matches138

standard attribute or a director attribute is assigned a value containing the words clint and
eastwood. This behavior is useful for this query, where the search terms all relate to a single concept
(the actor/director Clint Eastwood).

However, in some cases returning a union of the results from the same record search query performed
against each search interface member is unnecessarily limiting. For example, in a home electronics
catalog application, a customer searching for Sony camera might be interested in a broad range of
products, but this record search would only return the few products that have the terms Sony and
camera in the product name.

In such cases, you can use the CROSS_FIELD_BOUNDARY attribute when you create a search interface.
This attribute specifies when the MDEX Engine should try to match search queries across attribute
boundaries, but within the members of the search interface.

How cross-field matches work in multi-assign cases

When a search interface member (that is, a searchable attribute) is multi-assigned on a record, the
multi-assigns are treated by the MDEX Engine as separate matches, just as if they were values from
different attributes. A search that matches two or more terms in separate multi-assign values for the
same attribute is treated as a cross-field match by the MDEX Engine.

For example, assume a record has the following attribute values:

P_Tag: Tom Brady
P_Tag: Jersey

A search against P_Tag for "tom brady jersey" is treated as a cross-field match, even though all results
were found in the same attribute (P_Tag).

Additional search interface options
You can configure other features for the search interface by specifying other match-related attributes
to the SEARCH_INTERFACE element.

The following table lists the attributes (other than the CROSS_FIELD_BOUNDARY attribute) that you
can specify with the SEARCH_INTERFACE element.

PurposeAttribute

For record search, assigns a default relevance scoring function to a
search interface.

DEFAULT_RELRANK_STRATE¬
GY

Specifies the relevance rank score for cross-field matches. The value
should be an unsigned 32-bit integer. The default value for
CROSS_FIELD_RELEVANCE_RANK is 0.

CROSS_FIELD_RELE¬
VANCE_RANK

Specifies that the MDEX Engine should interpret a query strictly when
comparing white space in the query with punctuation in the source

STRICT_PHRASE_MATCH

text. If set to FALSE, partial word tokens connected in the source text
by punctuation can be matched to a phrase query where the partial
tokens are separated by spaces instead of matching punctuation.The
default value of this attribute is TRUE.

You can also use the PARTIAL_MATCH element to specify if partial query matches should be supported
for the SEARCH_INTERFACE that contains this element.

Endeca® Latitude Developer's GuideEndeca Confidential

139Working with Search Interfaces | Additional search interface options

Search interfaces in queries
Use the name of the search interface in the Search element of a Conversation Web Service query.

The search interface can be specified in a query by specifying the name of the interface in the Key
attribute. The following example uses the AllProps search interface:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <FilterState/>
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
 <Search Mode="AllPartial" Key="AllProps">merlot</Search>
 </Operator>
 <ContentElementConfig xsi:type="RecordListConfig" HandlerFunc¬
tion="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <RecordsPerPage>5</RecordsPerPage>
 </ContentElementConfig>
 </Request>
 </soap:Body>
</soap:Envelope>

By default, using a search interface in a search performs a logical OR on the attributes in the interface.
For example, if a data set contains both an Actor standard attribute and Director managed attribute,
a search interface can provide the user the ability to search for a person’s name in both.

Tips for troubleshooting search interfaces
All the tips for troubleshooting basic record search are also useful for troubleshooting record search
that uses search interfaces. To get the most out of the search interfaces feature, make sure to set
your search interfaces to contain the relevant searchable fields.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Search Interfaces | Search interfaces in queries140

Chapter 15

Using Value Search

This section discusses how the MDEX Engine performs value search and how to configure it for your
application.

About value search
Value search allows users to perform keyword searches across attributes for values with matching
names.

End users of applications powered by Endeca can search all types of attribute values, including values
for standard and managed attributes. The front-end application can present these values to the
end-user, allowing the user to select them and create a new navigation request.

Value search is enabled differently for attributes:

• Standard attributes.You can make standard attributes of type string value searchable.To configure
a set of standard attributes of type string whose values will be indexed for search, modify the values
of the IsPropertyValueSearchable attribute on the PDRs.

• Managed attributes. All managed attributes are indexed for value search by default, and you cannot
disable value search for them.

To request value search on any standard attributes that are value searchable, use the Conversation
Web Service complex type ValueSearchConfig. With this type, you can:

• Limit the scope of searches to those values that belong to particular standard attributes using the
RestrictToProperties element.

• Limit the number of values to return per attribute with the MaxPerProperty attribute.

In the Conversation Web Service response, the result of a value search is returned in a ValueSearch
type that contains attribute values. The attribute values are organized by attribute and returned as a
full path of hierarchical refinements.

How value search works
Value search returns single values that match the user’s search terms, organized by attribute.

To be considered a valid result, a value must match all of the search terms that the user provides in
the request to the MDEX Engine.

Example of value search

For example, a value search for red might return:

ValuesAttribute

RedWineType

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

When to use value and record search
Value search is sometimes confused with record search.This topic provides examples of when to use
each type of search.

Understanding the differences between the two basic types of keyword search (record search and
value search) is important before creating a solution for a specific business problem. Use the following
recommendations:

When to useType of keyword
search

In general, data sets with little descriptive text and extensive attribute values
of type string that represent the most frequently searched terms (for example,
autos) are a good fit for value search.

Value search

Keyword searches are usually suitable for such keywords as make, model,
or year. These keywords are also likely candidates for being configured as
managed attributes in your application.

Data sets with descriptive text or names (such as news articles) are better
suited for record search. This is because a reasonable set of attribute values

Record search

for such a data set cannot be expected to cover all the terms required to handle
keyword search.

In such cases, text search allows an application to search directly against
record text (such as the body of an article).

For many applications, a combination of value search and record search is the best solution. In this
case, separate value search and text search queries are executed simultaneously for the same
keywords:

• If a value matches, the user is given the opportunity to select that value in place of the record
search query to produce results.

• If no values match, the user is still left with the matching records for a record search query.

Keep in mind that navigation queries and value search queries are completely independent. In the
scenario described above where both queries are executed simultaneously, neither query affects the
other. Record search is a variation of a navigation query. Record search could return results even
though value search does not, and vice-versa.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Value Search | When to use value and record search142

Enabling value search
You enable a standard attribute for value search by changing the values in the mdex-property-
IsPropertyValueSearchable attribute in the PDR, using the Latitude Data Integrator.

Managed attributes are always enabled for value search in the MDEX Engine. In addition, you can
also enable standard attributes of type string for value search. In this case, these attributes are indexed
and searched by the MDEX Engine. Only the standard attributes of type string can be enabled for
value search.

The mdex-property-IsPropertyValueSearchable attribute in the PDR specifies whether an
attribute in your data set is value searchable. The valid settings for this attribute are:

• true means that the attribute is enabled for value search. This is the default.
• false means that the attribute is not enabled for value search.

If, in addition to enabling value search for specific attributes of type string, you also would like to enable
wildcard search for all value search queries, set the mdex-config_EnableValueSearchWildcard
attribute in the Global Configuration Record (GCR) to true.

For information on how to enable a standard attribute for value search, see the Latitude Data Integrator
Guide.

Related Links
Performance impact of value search on page 144

This topic discusses value search and its impact on MDEX Engine performance.

Utilizing value search in Latitude Studio
Value search supports the refinement search available in the Guided Navigation component, and
the ability to utilize typeahead search in the Search Box component.

For additional information on configuring Latitude Studio components that utilize value search, see
the Latitude Studio Power User's Guide.

Interaction of value search and wildcard search
By default, value search allows wildcards at the end of the search term (such as gua* for the search
term guarantee). To enable wildcards elsewhere in a search term, you need to set the mdex-con¬
fig_EnableValueSearchWildcard attribute in the Global Configuration Record (GCR) to true,
for the standard attribute in your records.

The following examples illustrate how the MDEX Engine treats wildcards in value searches:

• A wildcard search at the end of the search term, such as gua* is conducted by the MDEX Engine
for all standard attributes for which value search is enabled.

• Wildcard searches of type *uara and g*ara are conducted by the MDEX Engine only if the GCR
attribute mdex-config_EnableValueSearchWildcard is set to true for the corresponding
standard attribute on your records. The default value for this attribute is false, meaning that
wildcard search is disabled for value search.

Endeca® Latitude Developer's GuideEndeca Confidential

143Using Value Search | Enabling value search

Performance impact of value search
This topic discusses value search and its impact on MDEX Engine performance.

Limit value search scope and the number of returned results

If you submit a value search query, the query is generally very fast. The runtime performance of value
search directly corresponds to the number of values and the size of the resulting set of matching
values. In general, this feature performs at a much higher number of operations per second than
navigation requests. The most common performance problem is when the resulting set of values is
exceptionally large (greater than 1,000), thus creating a large results page.To avoid it, limit the number
of results per request, using value search parameters.

The query will be faster if you limit the scope and the number or results returned:

• To limit the scope of value search, use the RestrictToProperties element to specify the
specific standard attributes for which you expect matches returned by the MDEX Engine.

• To limit the number of results returned per each value-searchable attribute, use the MaxPerProp¬
erty attribute in your request.

Decide which attributes to make value searchable

All managed attributes are always value searchable (you cannot toggle the value search setting for
them). In addition, standard attributes of type string can be made value searchable. The IsProper¬
tyValueSearchable attribute on the PDR controls whether the attribute in your record set is enabled
for value search.

Before changing a value search setting for an attribute, examine your data to decide which of the
attributes in your record set need to be value searchable. Next, turn off value search for attributes you
will not be using for navigation, such as those standard attributes that contain long chunks of text.

Implementing value search with the API
This section provides examples of Conversation Web Service requests and responses and describes
parameters you can use for value search.

Related Links
Value search query format on page 145

A value search query uses a ValueSearchConfig complex type with a SearchTerm
element.This element specifies search term(s) used by the MDEX Engine for a search against
value-searchable standard attributes.

Constructing a value search query on page 146
You create a value search query by issuing a request that uses the ValueSearchConfig
type.

Restricting value search to specific attributes on page 148
Value search queries could potentially contain many results.You can use RestictToProp¬
erties attribute to limit the number of returned results to a list of one or more specified
attributes.

Limiting the number of results per attribute on page 148
Another way to limit value search results is to specify the number of values to return for each
attribute, using the MaxPerProperty attribute.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Value Search | Performance impact of value search144

Retrieving the number of matching results on page 149
The standard response to any value search request always includes information about the
total number of matched values found, and whether all of them have been returned in this
request.This information is returned in the TotalValuesCount and HasMore attributes on
the PropertyMatches element.

Ordering results on page 150
Value search results consist of values grouped by attribute. Attributes in the result list are
returned in an ascending alphabetical order.

Specifying relevance ranking strategy for results on page 150
To rank the order of results received in response for a value search request, you can use the
RelevanceRankingStrategy attribute.

Value search query format
A value search query uses a ValueSearchConfig complex type with a SearchTerm element. This
element specifies search term(s) used by the MDEX Engine for a search against value-searchable
standard attributes.

The ValueSearchConfig type controls the behavior of a single value search configuration. This
type has the following parameters (some of which are optional):

DescriptionParameter

An identifier for this query configuration. Optional.Id

Specifies a search mode, such as Any, or AllPartial. Optional.
If Mode is not used, the query defaults to using the All search
mode.

Mode

Limits the number of matches returned per attribute. Optional. If
this attribute is omitted, all found matches for the attribute are
returned.

MaxPerProperty

Specifies a relevance ranking strategy to use on the results.
Optional. If this attribute is omitted and you do not specify a

RelevanceRankingStrategy

relevance ranking strategy, the MDEX Engine uses the value for
the strategy provided in the DIMSEARCH_CONFIG XML
configuration document. Further, if the document does not specify
a strategy, the MDEX Engine ranks the results using the following
three strategies in this order (to break ties): interp, exact and
static("nbins",descending).

Contains the search term(s) (also known as keywords) the MDEX
Engine uses to conduct value search. Each entry can be plus- or
space-delimited. Required.

SearchTerm

Specifies one or more standard attribute names within which to
conduct value search. Optional.

RestrictToProperties

If not specified, matches for all attributes are returned which may
affect performance.

If a managed attribute is searched, using this attribute you can
search within a whole attribute and its entire hierarchy of values,

Endeca® Latitude Developer's GuideEndeca Confidential

145Using Value Search | Implementing value search with the API

DescriptionParameter

but you cannot restrict value search to a subtree within a particular
root value in the hierarchy.

Example

The following example illustrates the format of a typical value search request in the Conversation
Web Service. In this request, a search is conducted for terms 1, 2, 3 within the WineRating attribute.
The number of requested results to return per attribute is set to 5:

<ContentElementConfig
 xsi:type="ValueSearchConfig"
 HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
 Id="ValueSearch" Mode="Any"
 MaxPerProperty="5"
 RelevanceRankingStrategy="static(nbins,descending)"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SearchTerm>1 2 3</SearchTerm>
 <RestrictToProperties>
 <Property>WineRating</Property>
 <RestrictToProperties>
</ContentElementConfig>

Constructing a value search query
You create a value search query by issuing a request that uses the ValueSearchConfig type.

Use the parameters for ValueSearchConfig specified in its format.

As a rule of thumb, for any attribute that could contain more than 100 possible results, use <Restrict¬
ToProperties> and MaxPerProperty attributes to help control the results returned from the MDEX
Engine. Without these controls, the size of the resulting response from the Conversation Web Service
could cause slow response times between your front-end application and the MDEX Engine.

To create a value search query:

Create a Conversation Web Service request, similar to the following example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="ValueSearch" MaxPerProperty="3" Mode="All"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Value¬
SearchConfig">
 <SearchTerm>Mer*</SearchTerm>
 <RestrictToProperties>
 <Property>WineType</Property>
 <Property>Name</Property>
 </RestrictToProperties>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Value Search | Implementing value search with the API146

 </ContentElementConfig>
</Request>

In this query, a search term, Mer*, uses wildcards. This implies that the attributes WineType and
Name are enabled for wildcard search during value searches.

This query specifies two attributes that will be searched — WineType and Name; it also limits to 3
the number of values that are requested to be returned from the MDEX Engine, with the MaxPer¬
Property attribute.

The response may look like the following example:

<ContentElement xsi:type="ValueSearch" Id="ValueSearch"
xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <PropertyMatches Name="WineType" DisplayName="Wine Type" TotalVal¬
uesCount="1" HasMore="false">
 <Match>
 <MatchingValue>/Red/Merlot</MatchingValue>
 <FullPath>
 <DimensionValue>
 <DimensionValue DimensionName="WineType" Spec="/">WineType</Di¬
mensionValue>
 <Operator xsi:type="RefinementOperator" Name="Decimal" Spec="/"/>

 </DimensionValue>
 <DimensionValue>
 <DimensionValue DimensionName="WineType" Spec="/Red">Red</Di¬
mensionValue>
 <Operator xsi:type="RefinementOperator" Name="Decimal"
Spec="/Red"/>
 </DimensionValue>
 <DimensionValue>
 <DimensionValue DimensionName="WineType" Spec="/Red/Merlot">Mer¬
lot</DimensionValue>
 <Operator xsi:type="RefinementOperator" Name="Decimal"
Spec="/Red/Merlot"/>
 </DimensionValue>
 </FullPath>
 </Match>
 </PropertyMatches>
 <PropertyMatches Name="Name" DisplayName="Wine Name" TotalValuesCount="4"
 HasMore="true">
 <Match>
 <MatchingValue>Merlot Napa Valley Limited Reserve</MatchingValue>
 </Match>
 <Match>
 <MatchingValue>Biltmore Reserve Merlot</MatchingValue>
 </Match>
 <Match>
 <MatchingValue>Whitehall Lane Merlot</MatchingValue>
 </Match>
 </PropertyMatches>
</ContentElement>

In this response, the following information is returned:

• FullPath specifies the full path of refinements, for returned results.
• TotalValuesCount specifies the number of values returned for each value-searchable

attribute.

Endeca® Latitude Developer's GuideEndeca Confidential

147Using Value Search | Implementing value search with the API

• HasMore specifies whether there exist more attribute matches, beyond those that are returned.
Because the request limited the number of result values to 3, the list of results returned for the
Name attribute contains three values and also indicate that an additional matching value exists
that is not returned: TotalValuesCount="4" and HasMore="true"

Related Links
Value search query format on page 145

A value search query uses a ValueSearchConfig complex type with a SearchTerm
element.This element specifies search term(s) used by the MDEX Engine for a search against
value-searchable standard attributes.

Restricting value search to specific attributes
Value search queries could potentially contain many results.You can use RestictToProperties
attribute to limit the number of returned results to a list of one or more specified attributes.

If an managed attribute is searched, using the RestictToProperties attribute you can search
within a whole managed attribute and its entire hierarchy of values, but you cannot restrict value search
to a subtree within a particular root value in the hierarchy.

To restrict value search to searching specific attributes:

Use the RestictToProperties attribute to specify a list of attributes for which value search is
requested.

For example, the following request limits value search to attributes WineType and Name:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
 Id="ValueSearch"
 MaxPerProperty="3" Mode="All"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Value¬
SearchConfig">
 <SearchTerm>Merlot</SearchTerm>
 <RestrictToProperties>
 <Property>WineType</Property>
 <Property>Name</Property>
 </RestrictToProperties>
 </ContentElementConfig>
</Request>

Related Links
Value search query format on page 145

A value search query uses a ValueSearchConfig complex type with a SearchTerm
element.This element specifies search term(s) used by the MDEX Engine for a search against
value-searchable standard attributes.

Limiting the number of results per attribute
Another way to limit value search results is to specify the number of values to return for each attribute,
using the MaxPerProperty attribute.

To set the number of attribute values to return for each attribute:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Value Search | Implementing value search with the API148

Use the MaxPerProperty attribute with an integer that specifies the number of values to return
per attribute.

For example, the following query:

<ContentElementConfig xsi:type="ValueSearchConfig"
 HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="ValueSearch" Mode="Any" MaxPerProperty="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SearchTerm>red</SearchTerm>
</ContentElementConfig>

returns one result, per each attribute:

ValuesAttributes

RedWineType

Green & RedWineries

Drink with red meatDrinkability

Related Links
Value search query format on page 145

A value search query uses a ValueSearchConfig complex type with a SearchTerm
element.This element specifies search term(s) used by the MDEX Engine for a search against
value-searchable standard attributes.

Retrieving the number of matching results
The standard response to any value search request always includes information about the total number
of matched values found, and whether all of them have been returned in this request.This information
is returned in the TotalValuesCount and HasMore attributes on the PropertyMatches element.

A PropertyMatches element appears in the response only for those attributes in which matches
were found, and contains attribute values for those matches. It contains two attributes that provide
information on the number of values found and returned:

Specifies the total number of matched values found per attribute.TotalValuesCount

Specifies whether any results were cut off because of a limit specified in
the request with MaxPerProperty.

HasMore

The following abbreviated example illustrates how the information about found matches and returned
matches is reflected in the response.

In this example, the MDEX Engine found four matching values within an attribute, which is reflected
by TotalValuesCount="4". However, because MaxPerProperty was set to 3 in the request (not
shown in this topic), the response returns only three of the four found matches. This is indicated by
HasMore="true".

<PropertyMatches Name="Name" DisplayName="Wine Name" TotalValuesCount="4"
HasMore="true">
 <Match>
 <MatchingValue>Merlot Napa Valley Limited Reserve</MatchingValue>
 </Match>

Endeca® Latitude Developer's GuideEndeca Confidential

149Using Value Search | Implementing value search with the API

 <Match>
 <MatchingValue>Biltmore Reserve Merlot</MatchingValue>
 </Match>
 <Match>
 <MatchingValue>Whitehall Lane Merlot</MatchingValue>
 </Match>
 </PropertyMatches>

Ordering results
Value search results consist of values grouped by attribute. Attributes in the result list are returned in
an ascending alphabetical order.

The ordering of values, within each attribute, uses an order described as follows:

• If you specify a relevance ranking strategy to the MDEX Engine, then the order of results is ranked
according to it.

• If you do not specify a relevance ranking strategy, the MDEX Engine uses the value for this strategy
provided in the DIMSEARCH_CONFIG XML configuration document.

• Further, if the document does not provide a strategy, the MDEX Engine ranks the results using
the three strategies in this order to break ties:interp, exact and static(nbins,descending).

Specifying relevance ranking strategy for results
To rank the order of results received in response for a value search request, you can use the Rele¬
vanceRankingStrategy attribute.

If you specify a relevance ranking strategy to the MDEX Engine, then the order of results is ranked
according to it.

To rank the order of results of the value search request:

Specify the value for the RelevanceRankingStrategy attribute in the ValueSearchConfig
type of your Conversation Web Service request.
For example:

<ContentElementConfig xsi:type="ValueSearchConfig"
 HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="ValueSearch" Mode="Any" MaxPerProperty="5"
 RelevanceRankingStrategy="exact,static(nbins,descending)"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SearchTerm>red</SearchTerm>
</ContentElementConfig>

Related Links
Value search query format on page 145

A value search query uses a ValueSearchConfig complex type with a SearchTerm
element.This element specifies search term(s) used by the MDEX Engine for a search against
value-searchable standard attributes.

About relevance ranking modules on page 191
Relevance ranking modules are the building blocks from which you build the relevance ranking
strategies that you actually apply to your search interfaces.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Value Search | Implementing value search with the API150

Chapter 16

Using Search Modes

By default, Endeca search operations return results that contain text matching all user search terms.
In other words, search is conjunctive by default. However, in some cases a less restrictive matching
is desirable, so that results are returned that contain fewer user search terms. This section describes
the available search modes for record search and value search operations.

List of valid search modes
The search mode can be specified independently for each record search operation contained in a
navigation query, as well as for the value search query.

Valid search modes are the following:

DescriptionSearch mode

Match all user search terms (that is, perform a conjunctive search). This is the
default mode.

All

Match some user search terms.Partial

Match at least one user search term.Any

Match all user search terms if possible, otherwise match at least one. The AllAny
search mode is not recommended in cases where queries can exceed two words.

AllAny

For example, a query on womens small brown shoes would return results on
each of these four words and thus be essentially useless. In general, AllPartial
is a better strategy.

Match all user search terms if possible, otherwise match some. Because you can
configure this mode to match at least two or three words in a multi-word query,
AllPartial is generally a better choice than AllAny.

AllPartial

Match a maximal subset of user search terms.PartialMax

All mode
In All mode (the default mode), results must contain text matching each user search query term.

Partial mode
In Partial mode, results must contain text matching at least a certain number of user search query
terms, according to the rules listed in this topic.

In Partial mode, results must contain text matching search query terms, according to the following
rules:

• The MIN_WORDS_INCLUDED setting specifies the minimum number of user query terms that
each result must match. If there are not enough terms in the original query to satisfy this rule, then
the entire query must match.

• The MAX_WORDS_OMITTED setting specifies the maximum number of user query terms that
can be ignored in the user query. If MAX_WORDS_OMITTED value is set to zero, any number of
words can be ignored.

You can specify both of these settings with the PARTIAL_MATCH element in a SEARCH_INTERFACE
configuration.

In Partial mode, result sets always include all of the results that an All query have produced, and
possibly additional results as well.

Interaction of Partial mode and stop words

The presence of a stop word in a query reduces the minimum term count requirement for a document
to match when Partial mode is used. The example in this topic explains the interaction between
stop words and Partial mode.

The MDEX Engine treats stop words in a query as terms that match every document in the entire
document set when counting how many terms must match a given query.

Therefore, the presence of a stop word in a query reduces the minimum term count requirement for
a document to match by one, the presence of two stop words reduces it by two, and so on.

In practical terms, it means the result set may be both larger and more general than expected.

For example, consider a four-term query (such as Medical Society of America) against a search
interface configured to allow Partial modes to require three terms to match. If one of those four
terms (in this case of) is a stop word, only two of the other terms have to match, meaning results such
as Botanical Society of America or Medical Society Reunion would be included in the
set.

AllPartial mode
In AllPartial mode, the MDEX Engine first uses All mode to return results matching all search
terms, if any are available.

If no such All results are available, the MDEX Engine returns the results that Partial would have
produced. This allows a more conservative matching policy than Partial, because high-quality
conjunctive results are returned if they exist and Partial results are used as a fallback on conjunctive
misses.

This behavior, however, can be affected if cross-field matches are applied to the search interface. A
search that matches “any” or “partial” inside of the same-field might be returned before a search that
matches “all” of the terms but has to cross field boundaries to do so.

In addition, spell correction can also alter the results. A search that matches any or partial spell-corrected
in a same field may return before a non-spell-corrected search that matches all terms in different fields.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Search Modes | List of valid search modes152

To the user, this looks like there were no records matching all of the terms, even though there may
be many that match cross-field.

Note: AllPartial is recommended for record search in a typical catalog application. The
default configuration for Partial, which works well, can be adjusted to be more inclusive or
conservative.

Any mode
In Any mode, results need only match a single user search term.

An Any result set always includes all of the results that an All or Partial query have produced,
and possibly additional results as well.

Note: The Any mode is not recommended for use with record search in typical catalog
applications.

AllAny mode
In AllAny mode, the MDEX Engine first uses All mode to return results matching all search terms,
if any are available.

If no such All results are available, the MDEX Engine returns the results that Any would have produced.

Note: The AllAny mode is useful for value search.

PartialMax mode
PartialMax mode is a variant of the AllPartial mode: All results are returned if they exist.

If no such All results exist, then results matching all but one terms are returned; otherwise, results
matching all but two terms are returned; and so forth.

PartialMax mode is subject to the MIN_WORDS_INCLUDED and MAX_WORDS_OMITTED settings
used in the Partial mode. Hence, a PartialMax result set includes results if (and only if) the
corresponding Partial result set includes results, and it contains a subset of the Partial results
(possibly the entire set).

Configuring search modes
This topic summarizes options you can use to implement search modes.

No MDEX Engine configuration flags are necessary to enable search modes.

If you want to configure the minimum number of words for partial match modes and maximum number
of words that may be omitted for partial match modes, you can specify these settings with the PAR¬
TIAL_MATCH element in a SEARCH_INTERFACE configuration.

Endeca® Latitude Developer's GuideEndeca Confidential

153Using Search Modes | Configuring search modes

Query parameters for search modes
You can specify a search mode in the Search element of a Conversation Web Service query.

The search mode can be specified in a query by specifying the search mode in the Mode attribute.

The following example uses the AllPartial search mode:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <FilterState/>
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
 <Search SpellMode="Default" Mode="AllPartial" Key="AllProps">mer¬
lot</Search>
 </Operator>
 <ContentElementConfig xsi:type="RecordListConfig" HandlerFunc¬
tion="RecordListHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/han¬
dlers/2010"
 Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <RecordsPerPage>5</RecordsPerPage>
 </ContentElementConfig>
 </Request>
 </soap:Body>
</soap:Envelope>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Search Modes | Query parameters for search modes154

Chapter 17

Using Phrase Search

Phrase search allows users to specify a literal string to be searched. This section discusses how to
use phrase search.

About phrase search
Phrase search allows users to enter queries for text matching of an ordered sequence of one or more
specific words.

By default, an MDEX Engine search query matches any text containing all of the search terms entered
by the user. Order and location of the search words in the matching text is not considered. For example,
a search for John Smith returns matches against text containing the string John Smith and also
against text containing the string Jane Smith and John Doe.

In some cases, the user may want location and order to be considered when matching searches. If
one were searching for documents written by John Smith, one would want hits containing the text
John Smith in the author field, but not results containing Jane Smith and John Doe.

Phrase search allows the user to put double-quote characters around the search term, thus specifying
a literal string to be searched. Results of a phrase search contain all of the words specified in the
user’s search (not stemming, spelling, or thesaurus equivalents) in the exact order specified.

For example, if the user enters the phrase query “run fast”, the search finds text containing the
string run fast, but not text containing strings such as fast run, run very fast, or running
fast, which might be returned by a normal non-phrase query.

Additionally, phase search queries do not ignore stop words. For example, if the word the is configured
as a stop word, a phrase search for “the car” does not return results containing simply car (not
preceded by the).

Also, phrase search enables stop words to be disabled. For example, if the is a stop word, a phrase
search for “the” can retrieve text containing the word the.

Because phrase searches only consider exact matches for contained words, phrase search also
provides a means to return only true matches for a particular word, avoiding matches due to features
such as stemming, thesaurus, and spelling.

For example, a normal search for the word corkscrew might also return results containing the text
corkscrews or wine opener. Performing a phrase search for the word “corkscrew” only returns
results containing the word corkscrew verbatim.

About positional indexing
To enable faster phrase search performance and faster relevance ranking with the Phrase module,
your project builds index data out of word positions. This process is called positional indexing.

The MDEX Engine creates a positional index for standard and managed attribute values.

Phrase search is automatically enabled in the MDEX Engine at all times. For phrase search query
processing, the MDEX Engine examines potential matching text to verify the presence of the requested
phrase query string. This examination process can be slow in the following cases:

• The amount of text data is large (perhaps containing attribute values representing lengthy
descriptions)

• The text that is being processed is offline (in the case of document text)

The MDEX Engine uses positional index data to improve performance in these scenarios. Positional
indexing improves performance of multi-word phrase search, proximity search, and certain relevance
ranking modules. The thesaurus uses phrase search, so positional indexing improves performance
of multi-word thesaurus expansions as well. Positional indexing is enabled by default for Endeca
attributes.

How punctuation is handled in phrase search
Unless they are included as special characters, all punctuation characters are stripped out, during
both indexing and query processing. When punctuation is stripped out during query processing, the
previously connected terms have to remain in their original order.

Example of phrase search
You can request phrase matching by enclosing a set of one or more search terms in quotation marks.

You can include phrase search queries in either record search or value search operations.You can
combine phrase search with non-phrase search terms or other phrase terms.

Example of phrase search queries

The following example illustrates a phrase search query:

• A record search for a phrase cd player is as follows:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchOperator" Within="false">
 <Search SpellMode="Default" Mode="All" Key="All">"cd play¬
er"</Search>
 </Operator>
 </Request>
 </soap:Body>
</soap:Envelope>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Phrase Search | About positional indexing156

A value search for values containing the phrase Samuel Clemens is as follows:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State/>
 <ContentElementConfig HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="ValueSearch" MaxPerProperty="3" Mode="All"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Value¬
SearchConfig">
 <SearchTerm>"Samuel Clemens"</SearchTerm>
 <RestrictToProperties>
 <Property>Authors</Property>
 </RestrictToProperties>
 </ContentElementConfig>
</Request>

Performance impact of phrase search
Phrase search queries are generally more expensive to process than normal conjunctive search
queries.

In addition to the work associated with a conjunctive query, a phrase search operation must verify the
presence of the exact requested phrase.

The cost of phrase search operations depends mostly on how frequently the query words appear in
the data. Searches for phrases containing relatively infrequent words (such as proper names) are
generally very rapid, because the base conjunctive search narrows the results to a small set of candidate
hits, and within these hits relatively few possible match positions need to be considered.

On the other hand, searches for phrases containing only very common words are more expensive.
For example, consider a search for the phrase “to be or not to be” on a large collection of
documents. Because all of these words are quite common, the base conjunctive search does not
narrow the set of candidate hit documents significantly. Then, within each candidate result document,
numerous possible word positions need to be scanned, because these words tend to be frequently
reused within a single document.

Even very difficult queries (such as “to be or not to be”) are handled by the MDEX Engine
within a few seconds (depending on hardware), and possibly faster on moderate sized data sets. If
such queries are expected to be very common, adequate hardware must be employed to ensure
sufficient throughput. In most applications, phrase searches tend to be used far less frequently than
normal searches. Also, most phrase searches performed tend to contain at least one information-rich,
low-frequency word, allowing results to be returned rapidly (that is, in less than a second).

Endeca® Latitude Developer's GuideEndeca Confidential

157Using Phrase Search | Performance impact of phrase search

Chapter 18

Using Snippeting in Record Searches

This section describes how to use snippeting. Snippeting provides the ability to return an excerpt from
a record in context, as a result of a user query.

About snippeting
The snippeting feature provides the ability to return an excerpt from a record — called a snippet — to
an application user who performs a record search query.

A snippet contains the search terms that the user provided along with a portion of the term’s surrounding
content to provide context. A front-end application powered by the Latitude Studio displays these
snippets on the record list page of a query’s results. With the added context, users can more quickly
choose the individual records they are interested in.

A snippet can be based on the term itself or on any thesaurus or spell-correction equivalents. At least
one instance of a term or equivalent is highlighted per snippet, regardless of the number of times the
term or its equivalents appear in the snippet. A thesaurus or spell-corrected alternative may be
highlighted instead of the term itself, even if both appear within the snippet.

You enable snippeting on individual members (fields) in a search interface that typically have many
lines of content. For example, fields such as Description, Abstract, DocumentBody, and so on are
good candidates to provide snippeting results.You can also enable snippeting on a per-query basis.

The result of a query with snippeting enabled contains at least one snippet in which enough terms are
highlighted to satisfy the user's query. That is, if it is an AND query, the result contains at least one of
each term, and if it is an OR query, it contains at least one of the alternatives.

For example, if a user searches for intense in a wine catalog, the record list for this query has many
records that match intense. A snippet for each matching record displays on a record list page:

Snippet formatting and size
A snippet consists of search terms, surrounding context words, and ellipses.

A snippet can contain any number of search terms bracketed bySnippetTerm tags.The tags call out
search terms and allow you to more easily reformat the terms for display in your front-end application.

The snippet size is the total number of search terms and surrounding context words. Although you
can configure the total number of words in a snippet In order to adhere to the size setting for a snippet,
it is possible that the MDEX Engine may omit some search terms and context words from a snippet.
This situation becomes more likely if an application user provides a large number of search terms and
the maximum snippet size is comparatively small.

A snippet consists of one or more segments. If there are multiple segments, they are delimited by
ellipses in between them. Ellipses (...) indicate that there is text omitted from the snippet occurring
before or after the ellipses.

Example of a snippet

For example, here is a snippet made up of two segments with a maximum size set at 20 words. The
snippet resulted from a search for the search terms, Scotland and British, which are enclosed
within <SnippetTerm> tags.

<SearchSnippet>
 <SnippetText>...in Edinburgh </SnippetText>
 <SnippetTerm>Scotland</SnippetTerm>
 <SnippetText>, and has been employed by Ford for 25 years...He first
joined Ford's
 </SnippetText>
 <SnippetTerm>British</SnippetTerm>
 <SnippetText> operation. Mazda motor...</SnippetText>
</SearchSnippet>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Snippeting in Record Searches | Snippet formatting and size160

Enabling snippeting
You enable snippeting globally for the MDEX Engine via the RECSEARCH_CONFIG index configuration
document.

The MDEX Engine has several index configuration documents that configure some features.You can
edit them using the format specified in the MDEX Engine Configuration XML Reference appendix of
the Latitude Data Integrator Guide. After these documents are edited, you can send them to the MDEX
Engine using the Latitude Data Integrator.

The RECSEARCH_CONFIG document allows inclusion of SEARCH_INTERFACE, which in turn lets you
specify snippet size for each of its members. The following example shows the syntax:

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE NAME="MySearch">
 <MEMBER_NAME SNIPPET_SIZE="12">Description</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

The presence of SNIPPET_SIZE attribute enables snippeting for the MEMBER_NAME attribute, and the
value of SNIPPET_SIZE specifies the maximum number of words a snippet can contain. Omitting this
attribute or setting its value to zero disables snippeting.

Each member of a search interface is enabled and configured separately. In other words, snippeting
results are enabled and configured for each member of a search interface and not for all members of
a single search interface.

Note: A search interface member is an attribute that has been enabled for search and that has
been added to the SEARCH_INTERFACE element.

You can enable and configure any number of individual search interface members. Each member that
you enable produces its own snippet. Enabling a member in one search interface does not affect that
member if it appears in other search interfaces. For example, enabling the Description attribute for
Search Interface A does not affect the Description attribute in Search Interface B.

To enable snippeting:

1. In any text editor, edit the RECSEARCH_CONFIG document, similar to the following example:

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE NAME="MySearch">
 <MEMBER_NAME SNIPPET_SIZE="10">Description</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

In this example, snippet size is set to 10 for an attribute "Description".

2. Use the Latitude Data Integrator to send the RECSEARCH_CONFIG document to the MDEX Engine.

For information, see the Latitude Data Integrator Guide.

Keep in mind that even if snippeting is enabled globally via the RECSEARCH_CONFIG index configuration
document, you can control snippeting on a per-query basis by using the EnableSnippeting query
attribute. For example, you can disable snippeting for a query by either setting EnableSnippeting
to "false" or omitting it in the query.

Endeca® Latitude Developer's GuideEndeca Confidential

161Using Snippeting in Record Searches | Enabling snippeting

Performance impact of snippeting
Enabling snippeting affects query runtime performance.

You can minimize the performance impact on query runtime by limiting the number of words in an
attribute that the MDEX Engine evaluates to identify the snippet. This approach is especially useful in
cases where a snippet-enabled attribute stores large amounts of text.

Provide the --snip_cutoff flag to the Dgraph to restrict the number of words that the MDEX Engine
evaluates in an attribute. For example, --snip_cutoff 300 evaluates the first 300 words of the
attribute to identify the snippet.

If the --snip_cutoff Dgraph flag is not specified, or is specified without a value, the snippeting
feature defaults to a cutoff value of 500 words.

Tips for snippeting
If a snippet is too short and you are not seeing enough context words in it, increase the value for
SNIPPET_SIZE in the index configuration document. See the topic for enabling snippeting for the
detailed format of the index configuration.

Retrieving snippets with the API
To request snippets with the Conversation Web Service, use the SearchFilter with the specified
search interface.The Conversation Web Service returns snippets as part of the <RecordListEntry>
element (which also returns records themselves).

Specifying the name of the search interface in the SearchFilter retrieves snippeting information:

 <SearchFilter Key="MySearch">
</SearchFilter>

where My properties is the name of the search interface for which snippeting is enabled for its
members in the RECSEARCH_CONFIG.

Example request

The following request illustrates how to request a snippet with the Conversation Web Service:

<Request xmlns="http://www.endeca.com/MDEX/conversation/2010">
 <State>
 <SearchFilter Key="MySearch">red</SearchFilter>
 </State>
 <ContentElementConfig
 xsi:type="RecordListConfig"
 Id="RecordList"
 HandlerFunction="RecordListHandler">
 <Column>WineName</Column>
 <Column>WineDescription</Column>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Snippeting in Record Searches | Performance impact of snippeting162

 </ContentElementConfig>
</Request>

Example response
The following response from the Conversation Web Service returns snippeting information as part of
the RecordListEntry:

<Results xmlns="http://www.endeca.com/MDEX/conversation/2010">
 ...
 <ContentElement Id="RecordList" xsi:type="cs:RecordList">
 ...
 <RecordListEntry>
 <Record>
 <WineName type="mdex:string">ARedWine</WineName>
 <WineDescription type="mdex:string">This wonderfully oaky red is
superb.</WineDescription>
 </Record>
 <ComputedProperties>
 <SearchSnippets Key="WineDescription">
 <SearchSnippet>
 <SnippetText>...wonderfully oaky </SnippetText>
 <SnippetTerm>red<SnippetTerm><SnippetText> is superb...</Snip¬
petText>
 </SearchSnippet>
 </SearchSnippets>
 </ComputedProperties>
 </RecordListEntry>
 </ContentElement>
</Results>

Enabling snippets per query with the API
You can enable snippets for a particular attribute on a per-query basis using the SearchFilter
element in the Conversation Web Service.

Setting the EnableSnippeting attribute to true in the SearchFilter enables snippeting per
query, for the specified attribute. The SnippetLength attribute sets the length of the snippet; the
search term specifies the snippet term:

 <SearchFilter Key="WineDescription" EnableSnippeting="true"
SnippetLength="4">red</SearchFilter>

Note: Use these settings only if you need to specify snippeting information for a singular attribute
for which there is no search interface configured. These settings do not override the settings
that globally enable snippeting for members of the search interface in the RECSEARCH_CONFIG
> SEARCH_INTERFACE index configuration document. In other words, if you enable snippeting
at query time, snippets are returned only for Endeca attributes that have snippeting configured
in the MDEX Engine.

Endeca® Latitude Developer's GuideEndeca Confidential

163Using Snippeting in Record Searches | Enabling snippets per query with the API

Chapter 19

Using Wildcard Search

Wildcard search allows users to match query terms to fragments of words in indexed text.This section
discusses how to use wildcard search.

About wildcard search
Wildcard search is the ability to match user query terms to fragments of words in indexed text.

Normally, Endeca search operations (such as record search and value search) match user query
terms to entire words in the indexed text. For example, searching for the word run only returns results
containing the specific word run.Text containing run as a substring of larger words (such as running
or overrun) does not result in matches.

With wildcard search enabled, the user can enter queries containing the special asterisk or star operator
(*). The asterisk operator matches any string of zero or more characters. Users can enter a search
term such as:

run

which will match any text containing the string run, even if it occurs in the middle of a larger word
such as brunt.

Wildcard search is useful for performing text search on data fields such as part numbers, ISBNs, and
SKUs. Unlike cases where search is performed against normal linguistic text, in searches against data
fields it may be convenient or even necessary for the user to enter partial string values. Details on
how data fields that include punctuation characters are processed are provided in this section.

For example, suppose users were searching a database of integrated circuits for Intel 486 CPU chips.
The database might contain records with part numbers such as 80486SX and 80486DX, because
these are the full part numbers specified by the manufacturer. But to end users, these chips are known
by the more generic number 486. In such cases, wildcard search is a natural feature to bridge the gap
between user terminology and the source data.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words that
are shorter than 1024 characters. Words that are longer than 1024 characters are not indexed
for wildcard search.

Interaction of wildcard search with other features
The table in this topic describes whether various features are supported for queries that execute a
wildcard search.

CommentsSupport with
wildcard search

Feature

NoStemming

NoThesaurus matching

Auto-correct and “Did You Mean?” are not supported.NoMisspelling correction

YesRelevance ranking

NoSnippeting

NoPhrase search

YesWhy Did It Match

YesWord interp

Ways to configure wildcard search
You use the Latitude Data Integrator to configure wildcard search in your application, using one of the
following options.

Related Links
Configuring wildcard search in record search on page 166

You make an attribute wildcard searchable in record searches by changing the value of the
mdex-property_TextSearchAllowsWildcards attribute in the PDR, using the Latitude
Data Integrator.

Configuring wildcard search in value search on page 167
You configure wildcard search during value searches in the Global Configuration Record
(GCR), using the Latitude Data Integrator.

Configuring wildcard search for a search Interface on page 167
You can enable wildcard matching for a search interface by adding one or more
wildcard-enabled attributes to the search interface.

Configuring wildcard search in record search
You make an attribute wildcard searchable in record searches by changing the value of the mdex-
property_TextSearchAllowsWildcards attribute in the PDR, using the Latitude Data Integrator.

The mdex-property_TextSearchAllowsWildcards attribute of a PDR enables wildcard searches
in record search against the attribute. The valid settings for this attribute are:

• If set to true, an attribute is wildcard searchable during record searches.
• If set to false, an attribute is not wildcard searchable during record searches. The default is
false.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Wildcard Search | Interaction of wildcard search with other features166

Note that it is an error if mdex-property_TextSearchAllowsWildcards is set to true but mdex-
property_IsTextSearchable is set to false. In other words, an attribute must be record
searchable in order for it to allow wildcard search in record searches.

Note: Before making this change, examine your data to decide which of the attributes in your
record set need to be wildcard searchable. Also, turn off wildcard search in record searches for
those attributes on which it won't be used by the users of your front-end application.

For information on how to configure wildcard search in record search for attributes, see the Latitude
Data Integrator Guide.

Configuring wildcard search in value search
You configure wildcard search during value searches in the Global Configuration Record (GCR), using
the Latitude Data Integrator.

Unlike the option for enabling wildcard search in text search which is performed by editing each attribute
in its PDR (which affects only a single attribute), the GCR globally affects the enablement of wildcard
search in value search for all attributes.

The mdex-config_EnableValueSearchWildcard attribute in the GCR specifies whether wildcard
search should be enabled or disabled for value search across all attributes in the MDEX Engine. The
valid settings for this attribute are:

• If set to true, wildcards are supported for value search.
• If set to false, wildcards are not supported for value search. The default is false.

Wildcard queries at the end of the search term, (for example, gua* for the search term guarantee),
are always enabled even if wildcard search is disabled for value search for the attribute.

For information on how to configure wildcard search for value search, see the Latitude Data Integrator
Guide.

Related Links
Interaction of value search and wildcard search on page 143

By default, value search allows wildcards at the end of the search term (such as gua* for
the search term guarantee). To enable wildcards elsewhere in a search term, you need to
set the mdex-config_EnableValueSearchWildcard attribute in the Global Configuration
Record (GCR) to true, for the standard attribute in your records.

Configuring wildcard search for a search Interface
You can enable wildcard matching for a search interface by adding one or more wildcard-enabled
attributes to the search interface.

First, add the desired attributes. Wildcard search can be partially enabled for a search interface. That
is, some members of the search interface are wildcard-enabled while the others are not.

Searches against a partially wildcard-enabled search interface follow these rules:

• The search results from a given member follow the rules of its configuration. That is, results from
a wildcard-enabled member follow the rules of wildcard search while results from non-wildcard
members follow the rules for non-wildcard searches.

• The final result is a union of the results of all the members (whether or not they are
wildcard-enabled).

Endeca® Latitude Developer's GuideEndeca Confidential

167Using Wildcard Search | Ways to configure wildcard search

You should keep these rules in mind when analyzing search results. For example, assume that in a
partially wildcard-enabled search interface, Property-W is wildcard-enabled while Property-X is
not. In addition, the asterisk (*) is not configured as a search character. A record search issued for
woo* against that search interface may return the following results:

• Property-W returns records with woo, wood, and wool.

• Property-X only returns records with woo, because the query against this attribute treats the
asterisk as a word break. However, it does not return records with wool and wood, even though
records with those words exist.

However, because the returned record set is a union, the user will see all the records. A possible
source of confusion might be that if snippeting is enabled, the records from Property-X will not have
wood and wool highlighted (if they exist), while the records from Property-W will have all the search
terms highlighted.

To enable wildcard search in a search interface:

1. Enable wildcard search in text search for members of the search interface. (This is controlled by
the mdex-property_TextSearchAllowsWildcards attribute on the PDR, for each attribute
member of the search interface).

Wildcard search in text search can be partially enabled for a search interface.That is, some members
of the search interface can be enabled for wildcard search in text search, while the others are not.

2. Add the desired attributes to the search interface in the RECSEARCH_CONFIG document.

3. Use the Latitude Data Integrator to send this document to the MDEX Engine. For information, see
the Latitude Data Integrator Guide.

MDEX Engine flags for wildcard search
There are no MDEX Engine flags required to enable wildcard search. If wildcard is enabled in record
search for an attribute, and is also enabled for value search, the MDEX Engine automatically enables
the use of the asterisk operator (*) in appropriate search queries.

The following considerations apply to wildcard search queries that contain punctuation, such as
abc*.d*f:

The MDEX Engine rejects and does not process queries that contain only wildcard characters and
punctuation or spaces, such as *., * *. Queries with wildcards only are also rejected.

The maximum number of matching terms for a wildcard expression is 100 by default.You can modify
this value with the --wildcard_max flag for the Dgraph.

In case of wildcard search with punctuation, you may want to increase --wildcard_max, if you would
like to increase the number of returned matched results.

Latitude Studio development for wildcard search
No specific Latitude Studio development is required to use wildcard search.

If wildcard search is enabled for record search and value search, users can use the Search Box
component to enter search queries containing asterisk operators to request partial matching. If wildcard
search is enabled for value search, type-ahead suggestions can be used in the Search Box.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Wildcard Search | MDEX Engine flags for wildcard search168

Whereas the simplest use of wildcard search requires users to explicitly include asterisk operators in
their search queries, some applications automate the inclusion of asterisk operators as a convenience,
or control the use of asterisk operators using higher-level interface elements.

For example, an application might render a radio button next to the search box with options to select
Whole-word Match or Substring Match. In Substring Match mode, the application might automatically
add asterisk operators onto the ends of all user search terms. Interfaces such as this make wildcard
search more easily accessible to less sophisticated user communities to which use of the asterisk
operator might be unfamiliar.

Performance impact of wildcard search
To optimize performance of wildcard search, use the following recommendations.

• Account for increased time needed for indexing. In general, if wildcard search is enabled in
the MDEX Engine (even if it is not used by the users), it increases the time and disk space required
for indexing. Therefore, consider first the business requirements for your Endeca application to
decide whether you need to use wildcard search.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words
that are shorter than 1024 characters. Words that are longer than 1024 characters are not
indexed for wildcard search.

• Do not use "low information" queries. For optimal performance, Endeca recommends using
wildcard search queries with at least 2-3 non-wildcarded characters in them, such as abc* and
ab*de, and avoiding wildcard searches with one non-wildcarded character, such as a*. Wildcard
queries with extremely low information, such as a*, require a significant amount of time to process.
Queries that contain only wildcards, or only wildcards and punctuation or spaces, such as *. (star
followed by period), or * * (star space star), are rejected by the MDEX Engine.

• Analyze the format of your typical wildcard query cases.This lets you be aware of performance
implications associated with one specific wildcard search pattern.

Do you have queries that contain punctuation syntax in between strings of text, such as
ab*c.def*?

For strings with punctuation, the MDEX Engine generates lists of words that match each of the
punctuation-separated wildcard expressions. Only in this case, the MDEX Engine uses the
--wildcard_max <count> setting to optimize its performance.

Increasing the --wildcard_max <count> improves the completeness of results returned by
wildcard search for strings with punctuation, but negatively affects performance. Thus you may
want to find the number that provides a reasonable trade-off.

Endeca® Latitude Developer's GuideEndeca Confidential

169Using Wildcard Search | Performance impact of wildcard search

Chapter 20

Search Characters

This section describes the semantics of matching search queries to result text.

About search characters
The Endeca MDEX Engine supports configurable handling of punctuation and other non-alphanumeric
characters in search queries.

This section does the following:

• Describes the semantics of matching search queries to result text (that is, records in record search
or attribute values in value search) when either the query or result text contains non-alphanumeric
characters.

• Explains how you can control this behavior using the search characters feature of the Endeca
MDEX Engine.

Implementing search characters
Search indexing distinguishes between alphanumeric characters and non-alphanumeric characters
and supports the ability to mark some non-alphanumeric characters as significant for search operations.

You mark a non-alphanumeric character as a search character in the Global Configuration Record.

Search characters are configured globally for all search operations. For example, adding the plus (+)
character marks it as a search character for value search and record search operations.

To mark a non-alphanumeric character as a search character:

1. Edit the contents of the mdex-config_SearchChars element of the Global Configuration Record
in any text editor, as in the following example.

This example marks "+" and "_" characters as search characters.You can add more than one
character; they are not separated by any delimiters.

<mdex-config_SearchChars>+_</mdex-config_SearchChars>

2. To send the changes to the MDEX Engine, use the Latitude Data Integrator.

For information, see the Latitude Data Integrator Guide.

Query matching semantics
The semantics of matching search queries to text containing special non-alphanumeric characters in
the MDEX Engine is based on indexing various forms of source text containing such characters.

Basically, user query terms are required to match exactly against indexed forms of the words in the
source text to result in matches. Thus, to understand the behavior of query matching in the presence
of non-alphanumeric characters, one must understand the set of forms indexed for source text.

Categories of characters in indexed text
The Endeca system divides characters in indexed text into three categories:

• Alphanumeric characters including ASCII characters as well as non-punctuation characters in
ISO-Latin1.

• Non-alphanumeric search characters (configured using the search characters feature, as described
below).

• Other non-alphanumeric characters (this category is the default for all non-alphanumeric characters
not explicitly configured to be in group 2).

During data processing, each word in the source text (that is, searchable attributes for record search,
attribute values for value search) is indexed based on the alternatives for handling characters from
the three categories, which is described in subsequent topics.

Indexing alphanumeric characters
Alphanumeric characters are included in all forms.

Because Endeca search operations are not case sensitive, alphabetic characters are always included
in lowercase form, a technique commonly referred to as case folding.

Indexing search characters
Search characters are non-alphanumeric characters that are specified as searchable.

Search characters are included as part of the token.

Indexing non-alphanumeric characters
The way non-alphanumeric characters that are not defined as search characters are treated depends
on whether they are considered punctuation characters or symbols.

• Non-alphanumeric characters considered to be punctuation are treated as white space. In a
multi-word search with the words separated by punctuation characters, word order is preserved
as if it were a phrase search. The following characters are considered to be punctuation: ! @ # &
() – [{ }] : ; ', ? / *

• Non-alphanumeric characters that are considered to be symbols are also treated as white space.
However, unlike punctuation characters, they do not preserve word order in a multi-word search.
If a symbol character is adjacent to a punctuation character, the symbol character is ignored. That
is to say, the combination of the symbol character and the punctuation character is treated the
same as the punctuation character alone. For example, a search on ice-cream would return the
same results as a phrase search for “ice cream”, while a search for ice~cream would return the

Endeca ConfidentialEndeca® Latitude Developer's Guide

Search Characters | Query matching semantics172

same results as simply searching for ice cream. A search on ice-~cream would behave the same
way as a search on ice-cream. Symbol characters include the following: ` ~ $ ^ + = < > “

Search query processing
The semantics of matching search query terms to result text containing non-alphanumeric characters
are described in this topic.

• During query processing, each user query term is transformed to replace all non-alphanumeric
characters that are not marked as search characters with delimiters (spaces).

• Non-alphanumeric characters considered to be punctuation (! @ # & () – [{ }] : ; ', ? / *) are
treated as white space and preserve word order. This means that the equivalent of a quoted
phrase search is generated. For that reason, all search features that are incompatible with
quoted phrase search, such as spelling correction, stemming, and thesaurus expansion, are
not activated. (For details, see the chapter "About phrase search.")

• Non-alphanumeric characters that are considered to be symbols (` ~ $ ^ + = < > “) are also
treated as white space. However, unlike punctuation characters, they do not preserve word
order in a multi-word search.

• Alphabetic characters in the user query are replaced with lowercase equivalents, to ensure that
they match against case-folded indexed strings.

• Each query term in the transformed query must exactly match some indexed string from the given
source text for the text to be considered a hit.

As noted above, when parsing user-entered search terms, a query with non-searchable characters is
transformed to replace all non-alphanumeric characters (that are not marked as search characters)
with white space, but the treatment of word order depends on whether the character in question is
considered to be a punctuation character or a symbol. The search behavior preserves the word order
and proximity of the search term only in the case of punctuation characters.

For example, a search query for ice-cream will replace the hyphen (a punctuation character) with white
space and return only records with this text:

• ice-cream
• ice cream

Records with this text are not returned because the word order and word proximity of text does not
match the original query term:

• cream ice
• ice in the cream container

However, assuming the match mode is MatchAll, a search for ice~cream would return non-contiguous
results for [ice AND cream].

MDEX Engine flags for search characters
There are no MDEX Engine flags necessary to enable the search characters feature. The MDEX
Engine automatically detects the additional search characters.

The MDEX Engine supports an important closely related feature: automatic mapping of ISO-Latin1
international characters to ASCII equivalents in text search queries.You can specify this mapping with
the --latin1 flag for the Dgraph.This option allows search queries containing international characters

Endeca® Latitude Developer's GuideEndeca Confidential

173Search Characters | Search query processing

such as Spätlese to match against Anglicized result text such as Spatlese. Using the --latin1 flag
causes the Latin1 mappings to be applied to search queries.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Search Characters | MDEX Engine flags for search characters174

Chapter 21

Working with Spelling Correction and Did
You Mean

This section describes the behavior of the Spelling Correction and Did You Mean features of the
Endeca MDEX Engine.

About Spelling Correction and Did You Mean
The Endeca MDEX Engine supports two complementary forms of Spelling Correction — automatic
spelling correction for record search and value search, and explicit spelling suggestions for record
search ("Did you mean?").

The Automatic Spelling Correction and Did You Mean features of the Endeca MDEX Engine enable
search queries to return expected results when the spelling used in query terms does not match the
spelling used in the result text (that is, when the user misspells search terms).

Either or both features can be used in a single application, and all are supported by the same underlying
spelling engine and Spelling Correction module.

Automatic Spelling Correction operates by computing alternate spellings for user query terms, evaluating
the likelihood that these alternate spellings are the best interpretation, and then using the best alternate
spell-corrected query forms to return extra search results. For example, a user might search for records
containing the text Abrham Lincoln. With spelling correction enabled, the Endeca MDEX Engine will
return the expected results: those containing the text Abraham Lincoln.

Did You Mean (DYM) functionality allows an application to provide the user with explicit alternative
suggestions for a keyword search. For example, if a user searches for valle in the sample wine data,
he or she will get six results. The terms valley and vale, however, are much more prevalent (2,414
results and 20 results respectively.) When this feature is enabled, the MDEX Engine will respond with
the six results for valle, but will also suggest that valley or vale may be what the end-user actually
intended. If multiple suggestions are returned, they will be sorted and presented according to the
closeness of the match.

The behavior of Endeca spelling correction features is application-aware, because the spelling dictionary
for a given data set is derived directly from the indexed source text, populated with the words found
in all searchable values and attributes.The MDEX Engine returns spelling-corrected results as normal
search results, for both value search and record search operations.

For example, in a set of records containing computer equipment, a search for graphi might spell-correct
to graphics. In a different data set for sporting equipment, the same search might spell-correct to
graphite.

Logic used for spelling correction
At a high level, the spelling engine in the MDEX Engine performs the following steps related to spelling
correction for a given search query.

1. If the search terms generate more than a certain number of hits without any correction, then the
spelling engine does not generate any corrections or suggestions.

For the automatic correction, the threshold for the number of hits is 1. For the Did You Mean feature,
the threshold for the number of hits is 20.

2. For each term in the query, the spelling engine finds the 32 corrections with the lowest spelling
scores. A low spelling score signifies that the correction is similar to the search term.

For the Aspell mode that the MDEX Engine uses, the spelling score is based on phonetic distance.
The 32 corrections are pruned to corrections with a spelling score below a certain threshold. For
the automatic correction, the spelling threshold is 125, for Did You Mean, the spelling threshold is
175.

3. The spelling engine tests each correction in place of the original search term it corrects. Only those
corrections which increase the number of hits (relative to the original query) without reducing the
number of terms matched are eligible to be returned.

4. The spelling engine selects the best correction based on which of the eligible corrections has the
highest number of hits. For record search, this is the number of records matched. For value search,
this is the number of records associated with the set of values matched.

Note: For more information about the difference in the treatment of results between record
search and value search, see the section “How Value Search Treats Number of Results.”

To change the MDEX Engine configuration for Automatic Spelling Correction and DYM, you can rebuild
the spelling dictionary with the admin?op=updateaspell command at any time. During the data
ingest process, you can periodically run this command to update the spelling dictionary in the MDEX
Engine.

Suggestions for automatic correction are not exposed by the MDEX Engine, that is, you cannot update
the dictionary manually in the installed MDEX Engine.

In the Global Configuration Record, you can configure the Aspell indexing parameters such as minimum
word occurrences, maximum and minimum word length.These parameters let you set the boundaries
indicating to the MDEX Engine which words should be included in the spelling dictionary.

How value search treats number of results
Value search results may vary if spelling correction is performed.

An important note applies to the options and behavior associated with value search spelling correction:
in situations where the number of results is evaluated by an option or in the scoring of words or queries
performed by the spelling engine, value search uses an alternate definition of number of results. Instead
of using the simple number of hits returned to the user as this value (which is perfectly reasonable in
the case of record search), value search instead uses the number of records associated with the set
of value search results computed for a given query.

In other words, value search follows an additional level of indirection to weight the value results
computed by spelling suggestion queries according to the number of records than these values would
lead to if selected in a navigation query.This alternate definition of number or results allows consistent

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Spelling Correction and Did You Mean | Logic used for spelling correction176

behavior between spelling corrections computed for value and record search operations when given
the same query terms.

updateaspell
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus while continuing to issue queries and updates to the MDEX
Engine and without stopping and restarting it.

Run this command after you have added data records to the MDEX Engine, to enable spelling correction
in the MDEX Engine.

During the data ingest process, you can run the admin?op=updateaspellcommand periodically to
update the spelling dictionary used by the MDEX Engine for Automatic Spelling Correction and DYM.

The admin?op=updateaspell operation performs the following actions:

• Crawls the text search index for all terms which meet the constraint settings.

The constraint settings include minimum word occurrences and maximum and minimum number
of characters, for records and attribute values.The MDEX Engine uses these constraints to update
the spelling dictionary.You can change them in the Global Configuration Record.

• Compiles a temporary text version of the aspell word list, <db_prefix>.worddat.
• Converts this word list to the binary format required by aspell
• Writes the generated binary file into the current index representation in the MDEX Engine.
• Makes the updated aspell spelling dictionary available in the MDEX Engine for processing of all

queries arriving after this index update. The MDEX Engine uses this updated dictionary when
processing all future queries.

Note: Because of the nature of continuous query, once the MDEX Engine processes this
administrative request, it will start using the updated spelling dictionary after a certain point
in its processing, and all newly incoming queries will be answered against the updated spelling
dictionary. However, it is not possible to identify after which particular partial update or after
which query the MDEX Engine will start using the newly updated spelling dictionary.

The Dgraph applies the updated settings while continuing to run queries and without needing to restart.

Only one admin?op=updateaspell operation can be processed at a time.

The admin?op=updateaspell operation returns output similar to the following in the Dgraph error
log:

...
spellengine aspell ran successfully.

If you start the Dgraph with the -v flag, the output also contains a line similar to the following:

Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

Spelling mode (Aspell)
Endeca spelling features compute contextual suggestions at the full query level.

Endeca® Latitude Developer's GuideEndeca Confidential

177Working with Spelling Correction and Did You Mean | updateaspell

That is, suggestions may include one or more corrected query terms, which can depend on context
such as other words used in the query. To determine these full query suggestions, the MDEX Engine
relies on the low-level Aspell spelling module to compute single-word suggestions, that is, words similar
to a given user query term and contained within the application-specific dictionary.

Aspell spelling module

The MDEX Engine supports one internal spelling module, Aspell. It supports sound-alike corrections
(using English phonetic rules). It does not support corrections to non-alphabetic/non-ASCII terms (such
as café, 1234, or A&M).

Retrieving spelling suggestions and DYM in query results
You can retrieve spelling suggestion and did you mean (DYM) information in a query using the
SearchAdjustmentHandler in the ContentElementConfig element of your Conversation Web
Service request.

If spelling is enabled in the MDEX Engine, and, in addition to breadcrumbs, you want the Conversation
Web Service response to contain supplemental information about spelling suggestions and DYM, a
second SearchAdjustmentHandler ContentElementConfig is required. If it is included, spelling
correction or DYM suggestions are returned as part of the response for SearchAdjustmentHandler.
It is important to realize that if spelling is enabled, spelling auto-correction occurs even if the additional
ContentElementConfig with SearchAdjustmentHandler is not included; however, while spelling
correction takes place, the spelling correction and DYM suggestions are not returned in the response.

For example, the following abbreviated section of a query request contains ContentElementConfig
for SearchAdjustmentHandler, to ensure that spelling correction and DYM suggestions are returned
in the response:

<ContentElementConfig
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
 HandlerFunction="SearchAdjustmentHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"

 Id="SearchAdjustments"/>

The response would then be similar to the following. It contains suggested terms for DYM:

<cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">
<cs:SuggestedAdjustment RecordCountIfApplied="15">
 <cs:SearchFilter Key="Essay" Mode="All">jane</cs:SearchFilter>
 <cs:SuggestedTerms>can</cs:SuggestedTerms>
 <cs:Operator xsi:type="cs:ApplySpellingSuggestionOperator">
 <cs:SearchFilter Key="Essay" Mode="All">jane</cs:SearchFilter>
 <cs:Replacement>can</cs:Replacement>
 </cs:Operator>

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Spelling Correction and Did You Mean | Retrieving spelling suggestions and DYM in query
results

178

 </cs:SuggestedAdjustment>
 </cs:ContentElement>

Configuring constraints for spelling dictionaries
The MDEX Engine selects words for the spelling dictionary based on predefined constraints. Modifying
these constraints can be useful for improving performance of spell-corrected searches.

The constraint settings are available in the Global Configuration Record.

You can use these configuration settings to tune and improve the types of spelling corrections produced
by the MDEX Engine. For example, setting the minimum number of word occurrences can direct the
attention of the spelling correction algorithm away from infrequent terms and towards more popular
(frequently occurring) terms, which might be deemed more likely to correspond to intended user search
terms.

To configure the settings which the MDEX Engine uses to generate spelling dictionary entries:

1. In the editor of your choice, edit the constraints in the GCR the MDEX Engine should use for adding
words to the spelling dictionary.

You can separately edit settings for entries in the dictionary for record search and value search. In
other words, for each attribute assignment on a record, and for each attribute value, you could
specify the following settings in the Global Configuration Record:

DescriptionTypeAttribute

Specifies the minimum number of times a word
must occur in a standard attribute value (record

Intmdex-config_SpellingRecordMin¬
WordOccur

assignment on an attribute) for it to be indexed for
spelling correction. The default value is 4.

Specifies the minimum number of characters that
a word must contain in a standard attribute value

Intmdex-config_SpellingRecordMin¬
WordLength

(record assignment on an attribute) for it to be
indexed for spelling correction. The default value
is 3.

Specifies the maximum number of characters that
a word may contain for it to be indexed for spelling
correction. The default value is 16.

Intmdex-config_SpellingRecordMax¬
WordLength

Specifies the minimum number of times a word
must occur in a managed attribute value for it to

Intmdex-config_SpellingDValMinWor¬
dOccur

be indexed for spelling correction. The default
value is 1.

Specifies the minimum number of characters that
a word must contain in a managed attribute value

Intmdex-config_SpellingDValMin¬
WordLength

for it to be indexed for spelling correction. The
default value is 3.

Specifies the maximum number of characters that
a word may contain for it to be indexed for spelling
correction. The default value is 16.

Intmdex-config_SpellingDValMax¬
WordLength

Endeca® Latitude Developer's GuideEndeca Confidential

179Working with Spelling Correction and Did You Mean | Configuring constraints for spelling dictionaries

2. To send the updated GCR to the MDEX Engine, use the Latitude Data Integrator. For information,
see the Latitude Data Integrator Guide.

3. Run the admin?op=updateaspell command on the MDEX Engine in order for these changes
to take effect.

About word-break analysis
Word-break analysis allows the Spelling Correction feature to consider alternate queries computed
by changing the word divisions in the user’s query.

For example, if the query is Back Street Boys, word-break analysis could instruct the MDEX Engine
to consider the alternate Backstreet Boys.

The following statements describe how word-break analysis works in the MDEX Engine:

• It is enabled by default.
• As part of the word-break analysis, the MDEX Engine removes breaks from the original term, or

adds breaks to the original term if needed.
• The maximum number of word breaks that the MDEX Engine adds to or removes from a query is

one.
• The minimum length for a new term created by word-break analysis is two characters. The MDEX

Engine does not correct words that are smaller than 2 characters. For example, it does not correct
anear to a near. It could correct to an ear if there are actual terms in the data corpus that
match both an and ear.

• When word-break analysis is applied to a query, it requires that the substrings that the term is
broken up into appear in the data in succession. For example, starting with the query box17,
word-break analysis would find box 17, as well as box-17, assuming that the hyphen (-) has not
been specified as a search character. However, it would not find 17 old boxes, because the target
terms do not appear in order.

Troubleshooting Spelling Correction and Did You Mean
If spell-corrected results are not returned for words with expected spell-corrected options in the data,
use these suggestions for troubleshooting.

• When debugging spelling behavior, pay close attention to the errors of the Dgraph on startup, at
which point problems in spelling configuration are typically reported.

• Did You Mean can in some cases correct a word to one on the stop words list.

Performance impact for Spelling Correction and Did You
Mean

Spelling correction performance is impacted by the size of the dictionary in use.

Spell-corrected keyword searches with many words, in systems with very large dictionaries, can take
a disproportionately long time to process relative to other MDEX Engine requests. Those searches
can cause requests that immediately follow such a search to wait while the spelling recommendations
are being sought and considered.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with Spelling Correction and Did You Mean | About word-break analysis180

It is important to carefully analyze the performance of the system together with application requirements
prior to production application deployment.

Endeca® Latitude Developer's GuideEndeca Confidential

181Working with Spelling Correction and Did You Mean | Performance impact for Spelling Correction and
Did You Mean

Chapter 22

Using Stemming and Thesaurus

This section describes the tasks involved in implementing the Stemming and Thesaurus features of
the Endeca MDEX Engine.

Overview of stemming and thesaurus
The MDEX Engine supports stemming and thesaurus features that allow keyword search queries to
match text containing alternate forms of the query terms or phrases.

The definitions of these features are as follows:

• The stemming feature allows the system to consider alternate forms of individual words as equivalent
for the purpose of search query matching. For example, it is often desirable for singular nouns to
match their plural equivalents in the searchable text, and vice versa.

• The thesaurus feature allows the system to return matches for related concepts to words or phrases
contained in user queries. For example, a thesaurus entry may allow searches for Mark Twain to
match text containing the phrase Samuel Clemens.

Both the thesaurus and stemming features rely on defining equivalent textual forms that are used to
match user queries to searchable text data. Because these features are based on similar concepts,
and because they are typically configured to operate in conjunction to achieve desired query matching
effects, both features and their interactions are discussed in one section.

About the stemming feature
The stemming feature broadens search results to include word roots and word derivations.

Stemming is enabled in the MDEX Engine by default and is available only for English.The configuration
for stemming becomes known to the MDEX Engine once you run mkmdex.

Stemming is intended to allow words with a common root form (such as the singular and plural forms
of nouns) to be considered interchangeable in search operations. For example, search results for the
word shirt will include the derivation shirts, while a search for shirts will also include its word root shirt.

Stemming equivalences are defined among single words. For example, stemming is used to produce
an equivalence between the words automobile and automobiles (because the first word is the stem
form of the second), but not to define an equivalence between the words vehicle and automobile (this
type of concept-level mapping is done via the thesaurus feature).

Stemming equivalences are strictly two-way (that is, all-to-all). For example, if there is a stemming
entry for the word truck, then searches for truck will always return matches for both the singular form
(truck) and its plural form (trucks), and searches for trucks will also return matches for truck. In contrast,
the thesaurus feature supports one-way mappings in addition to two-way mappings.

Note: The Endeca stemming implementation does not include decompounding. Decompounding
is the ability to decompose a compound word (such as kindergarten) into its single word
components (kinder and garten) and then find occurrences based on the smaller words.

Types of stemming matches and sort order
Stemming can produce one of three match types.

If stemming is enabled, a search on a given term (T) will produce one or more of these results:

• Literal matches: Any occurrence of T will always produce a match.
• Stem form matches: Matches will occur on the stem form of T (assuming that T is not a stem form).

For example, if T is children, then child (the stem form) will also match.
• Inflected form matches: Matches will occur on all inflected forms of the stem form of T. For example,

if T is the verb ran (as in Jane ran in the Boston Marathon), then matches will include the stem
form (run) and inflected forms (such as runs and running). (Note that although this example is in
English, stemming for inflected verb forms is not supported for English; see below for support
details).

The order of the returned results depends on the sorting configuration:

• If relevance ranking is enabled and the Interpreted (interp) module is used, literal matches will
always have higher priority than stem form and inflected form matches.

• If relevance ranking is not enabled but you have set a record sort order, the results will come back
in that sort order.

• If relevance ranking is not enabled and there is no record sort order, the order of the results is
completely arbitrary.

About the Thesaurus feature
The thesaurus feature allows you to configure rules for matching queries to text containing equivalent
words or concepts.

The thesaurus is intended for specifying concept-level mappings between words and phrases. Even
a modest number of well-thought-out thesaurus entries can greatly improve your users’ search
experience.

The thesaurus feature is a higher level than the stemming feature, because thesaurus matching and
query expansion respects stemming equivalences, whereas the stemming module is unaware of
thesaurus equivalences.

For example, if you define a thesaurus entry mapping the words automobile and car, and there is a
stemming equivalence between car and cars, then a search for automobile will return matches for
automobile, car, and cars. The same results will also be returned for the queries car and cars.

The thesaurus supports specifying multi-word equivalences. For example, an equivalence might specify
that the phrase Mark Twain is interchangeable with the phrase Samuel Clemens. It is also possible
to mix the number of words in the phrase-forms for a single equivalence. For example, you can specify
that wine opener is equivalent to corkscrew.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Stemming and Thesaurus | About the Thesaurus feature184

Multi-word equivalences are matched on a phrase basis. For example, if a thesaurus equivalence
between wine opener and corkscrew is defined, then a search for corkscrew will match the text stainless
steel wine opener, but will not match the text an effective opener for wine casks.

Thesaurus equivalences can be either one-way or two-way:

• One-way mapping specifies only one direction of equivalence.That is, one "From" term is mapped
to one or more "To" terms, but none of the "To" terms are mapped to the "From" term. Only one
"From" term can be specified.

For example, assume you define a one-way mapping from the phrase red wine to the phrases
merlot and cabernet sauvignon. This one-way mapping ensures that a search for red wine also
returns any matches containing the more specific terms merlot or cabernet sauvignon. But you
avoid returning matches for the more general phrase red wine when the user specifically searches
for either merlot or cabernet sauvignon.

• Two-way (or all-to-all) mapping means that the direction of a word mapping is equivalent between
the words. For example, a two-way mapping between stove, range, and oven means that a search
for one of these words will return all results matching any of these words (that is, the mapping
marks the forms as strictly interchangeable).

When you define a two-way mapping, you do not specify a "From" term. Instead, you specify two
or more "To" terms.

Unlike the stemming module, the thesaurus feature lets you define multiple equivalences for a single
word or phrase. These multiple equivalences are considered independent and non-transitive.

For example, we might define one equivalence between football and NFL, and another between football
and soccer. With these two equivalences, a search for NFL will return hits for NFL and hits for football,
a search for soccer will return hits for soccer and football, and a search for football will return all of the
hits for football, NFL, and soccer. However, searches for NFL will not return hits for soccer (and vice
versa).

This non-transitive nature of the thesaurus is useful for defining equivalences containing ambiguous
terms such as football. The word football is sometimes used interchangeably with soccer, but in other
cases football refers to American football, which is played professionally in the NFL. In other words,
the term football is ambiguous.

When you define equivalences for ambiguous terms, you do not want their specific meanings to overlap
into one another. People searching for soccer do not want hits for NFL, but they may want at least
some of the hits associated with the more general term football.

Thesaurus entries are essentially used to produce alternate forms of the user query, which in turn are
used to produce additional query results. As a rule, the MDEX Engine will expand the user query into
the maximum possible set of alternate queries based on the available thesaurus entries.

This behavior is particularly important in the presence of overlapping thesaurus forms. For example,
suppose that you define an equivalence between red wine and vino rosso, and a second equivalence
between wine opener and corkscrew. The query red wine opener might match the thesaurus entries
in two different ways: red wine could be mapped to vino rosso based on the first entry; or wine opener
could be mapped to corkscrew based on the second entry.

Using the maximal-expansion rule, this issue is resolved by expanding to all possible queries. In other
words, the MDEX Engine returns hits for all of the queries: red wine opener, vino rosso opener, and
red corkscrew.

Endeca® Latitude Developer's GuideEndeca Confidential

185Using Stemming and Thesaurus | About the Thesaurus feature

Adding, modifying, or deleting thesaurus entries
Thesaurus entries are added in the THESAURUS XML document.

All XML configuration documents are present in the MDEX Engine.You can edit them using the format
specified in the XML Configuration Reference, found in the Latitude Data Integrator Guide. After these
documents are edited, you can send them to the MDEX Engine using the Latitude Data Integrator,
thus specifying the configuration your want.

To add a one-way or two-way thesaurus entry, or modify and delete existing thesaurus entries:

1. In any editor, edit the contents of the THESAURUS XML document.

2. Use the Latitude Data Integrator to send the THESAURUS document to the MDEX Engine.

For information, see the Latitude Data Integrator Guide.

Troubleshooting the thesaurus
The following thesaurus clean-up rules should be observed to avoid performance problems related to
expensive and non-useful thesaurus search query expansions.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki
can refer to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki
= pants, then a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such
as:

top = shirt = sweater = vest

This increases the number of results the user has to go through while reducing the overall accuracy
of the items returned. In this instance, better results are attained by creating individual one-way
thesaurus entries between the general term top and each of the more-specific terms.

• A thesaurus entry should never include a term that is a substring of another term in the entry.

For example, consider the two-way equivalency:

Adam and Eve = Eve

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would
have gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam
and Eve) or Eve, causing the Adam and part of the query to be ignored.

• Stop words such as and or the should not be used in single-word thesaurus forms. For example,
if the has been configured as a stop word, an equivalency between thee and the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are
handled as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

• Avoid multi-word thesaurus forms where single-word forms are appropriate. In particular, avoid
multi-word forms that are not phrases that users are likely to type, or to which phrase expansion
is likely to provide relevant additional results.

For example, the two-way thesaurus entry:

Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D.
939)

should be replaced with the single-word form:

Aethelstan = Athelstan

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Stemming and Thesaurus | About the Thesaurus feature186

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus
entry:

Pikes Peak -> Pike’s Peak

should be used only if the apostrophe (') is enabled as a search character.

Dgraph flags for stemming and thesaurus
Stemming and thesaurus data that has been configured is automatically enabled for use during text
indexing and search query processing. In addition, there is no MDEX Engine configuration necessary
to configure thesaurus and stemming information.

The Dgraph --thesaurus_cutoff flag can be used to tune performance associated with thesaurus
expansion. By default, the value of this flag is set to 3, meaning that if a search query contains more
terms that match thesaurus entries than the number set by this flag, none of the terms are thesaurus
expanded.

Interactions with other search features
As core features of the MDEX Engine search subsystem, stemming and the thesaurus have interactions
with other search features.

The following sections describe the types of interactions between the various search features.

Search characters

The search character set configured for the application dictates the set of available characters for
stemming and thesaurus entries. By default, only alphanumeric ASCII characters may be used in
stemming and thesaurus entries. Additional punctuation and other special characters may be enabled
for use in stemming and thesaurus entries by adding these characters to the search character set.

The MDEX Engine matches user query terms to thesaurus forms using the following rule: all
alphanumeric and search characters must match against the stemming and thesaurus forms exactly;
other characters in the user search query are treated as word delimiters. For details on search
characters, see the chapter in this guide.

Spelling

Spelling correction is a closely-related feature to stemming and thesaurus functionality, because
spelling auto-correction essentially provides an additional mechanism for computing alternate versions
of the user query. In the MDEX Engine, spelling is handled as a higher-level feature than stemming
and thesaurus.That is, spelling correction considers only the raw form of the user query when producing
alternate query forms.

Alternate spell-corrected queries are then subject to all of the normal stemming and thesaurus
processing. For example, if the user enters the query telvision and this query is spell-corrected to
television, the results will also include results for the alternate forms televisions, tv, and tvs.

Note that in some cases, the thesaurus feature is used as a replacement or in addition to the system's
standard spelling correction features. In general, this technique is discouraged. The vast majority of
actual misspelled user queries can be handled correctly by the spelling correction subsystem. But in
some rare cases, the spelling correction feature cannot correct a particular misspelled query of interest;

Endeca® Latitude Developer's GuideEndeca Confidential

187Using Stemming and Thesaurus | Dgraph flags for stemming and thesaurus

in these cases it is common to add a thesaurus entry to handle the correction. If at all possible, such
entries should be avoided as they can lead to undesirable feature interactions.

Stop words

Stop words are words configured to be ignored by the MDEX Engine search query engine. A stop
word list typically includes words that occur too frequently in the data to be useful (for example, the
word bottle in a wine data set), as well as words that are too general (such as clothing in an apparel-only
data set).

If the is marked as a stop word, then a query for the computer will match to text containing the word
computer, but possibly missing the word the.

Stop words are not currently expanded by the stemming and thesaurus equivalence set. For example,
suppose you mark item as a stop word and also include a thesaurus equivalence between the words
item and items. This will not automatically mark the word items as a stop word; such expansions must
be applied manually.

Stop words are respected when matching thesaurus entries to user queries. For example, suppose
you define an equivalence between Muhammad Ali and Cassius Clay and also mark M as a stop word
(it is not uncommon to mark all or most single letter words as stop words). In this case, a query for
Cassius M. Clay would match the thesaurus entry and return results for Muhammad Ali as expected.

Phrase search

A phrase search is a search query that contains one or more multi-word phrases enclosed in quotation
marks. The words inside phrase-query terms are interpreted strictly literally and are not subject to
stemming or thesaurus processing. For example, if you define a thesaurus equivalence between
Jennifer Lopez and JLo, normal (unquoted) searches for Jennifer Lopez will also return results for JLo,
but a quoted phrase search for "Jennifer Lopez" will not return the additional JLo results.

Relevance ranking

It is typically desirable to return results for the actual user query ahead of results for stemming and/or
thesaurus transformed versions of the query.This type of result ordering is supported by the Relevance
Ranking modules. In particular, the module that is affected by thesaurus expansion and stemming is
Interp. The module that is not affected by thesaurus and stemming is Freq.

Performance impact of stemming and thesaurus
Stemming and thesaurus equivalences generally add little or no time to data processing and indexing,
and introduce little space overhead (beyond the space required to store the raw string forms of the
equivalences).

In terms of online processing, both features will expand the set of results for typical user queries.While
this generally slows search performance (search operations require an amount of time that grows
linearly with the number of results), typically these additional results are a required part of the application
behavior and cannot be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low,
but could slow performance in cases where a large thesaurus (tens of thousands of entries) is asked
to process long search queries (dozens of terms). Typical applications exhibit neither extremely large
thesauri nor very long user search queries.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Using Stemming and Thesaurus | Performance impact of stemming and thesaurus188

Because matching for stemming entries is performed on a single-word basis, the cost for
stemming-oriented query expansion does not grow with the size of the stemming database or with the
length of the query.

Endeca® Latitude Developer's GuideEndeca Confidential

189Using Stemming and Thesaurus | Performance impact of stemming and thesaurus

Chapter 23

Relevance Ranking

This section describes the tasks involved in implementing the Relevance Ranking feature of the MDEX
Engine.

About the relevance ranking feature
Relevance ranking lets you control the order in which search results are displayed to the end user of
an Endeca application.

Typically, the relevance ranking feature is used to ensure that the most important search results are
displayed earliest to the user, because users of search-oriented information retrieval systems are often
unwilling to page through large result sets.

Relevance ranking can be used to independently control the result ordering for both record search
and value search queries.You can establish a system-default relevance ranking for both record search
and value search. In addition, you can assign relevance ranking on a per-query basis for both search
types.

The importance of a search result is generally an application-specific concept. Thus, the relevance
ranking feature provides a flexible, configurable set of result ranking modules. These modules can be
used in combinations (called relevance ranking strategies) to produce a wide range of relevance
ranking effects. Results are scored according to the order of ranking modules within the strategy.

Note: Because relevance ranking is a complex and powerful feature, Endeca provides
recommended strategies that you can use as a point of departure for further development. For
details, see the "Recommended strategies" topic in this chapter.

About relevance ranking modules
Relevance ranking modules are the building blocks from which you build the relevance ranking strategies
that you actually apply to your search interfaces.

This section describes the available set of relevance ranking modules and their scoring behaviors.

Exact
The Exact module provides a finer grained (but more computationally expensive) alternative to the
Phrase module.

The Exact module groups results into three strata based on how well they match the query string:

• The highest stratum contains results whose complete text matches the user’s query exactly.
• The middle stratum contains results that contain the user’s query as a subphrase.
• The lowest stratum contains other hits (such as normal conjunctive matches). Any match that

would not be a match without query expansion lands in the lowest stratum. Also in this stratum
are records that do not contain relevance ranking terms.

The Exact module is computationally expensive, especially on large text fields. It is intended for use
only on small text fields (such as managed attribute values or small managed attribute values like part
IDs). This module should not be used with large or offline documents. Use of this module in these
cases will result in very poor performance and/or application failures due to request timeouts. The
Phrase module, with and without approximation turned on, does similar but less sophisticated ranking
that can be used as a higher performance substitute.

Field
The Field module ranks documents based on the search interface field with the highest priority in which
it matched.

Only the best field in which a match occurs is considered.The Field module is often used in relevance
ranking strategies for catalog applications, because the category or product name is typically a good
match. Field assigns a score to each result based on the static rank of the standard or managed
attribute member (or members) of the search interface that caused the document to match the query.
Static field ranks are assigned based on the order in which members of a search interface are listed
in the search interface configuration. The first member has the highest rank.

By default, matches caused by cross-field matching are assigned a score of zero. The score for
cross-field matches can be set explicitly in the CROSS_FIELD_RELEVANCE_RANK attribute of the
SEARCH_INTERFACE element. This element is used only for search interfaces that have the Field
module and are configured to support cross-field matches. All non-zero ranks must be non-equal and
only their order matters.

For example, a search interface might contain both Title and DocumentContent standard attributes,
where hits on Title are considered more important than hits on DocumentContent (which in turn are
considered more important than cross-field matches). Such a ranking is implemented by assigning
the highest rank to Title, the next highest rank to DocumentContent, and setting the
CROSS_FIELD_RELEVANCE_RANK attribute to a low integer such as 0 or 1.

The Field module is only valid for record search operations. This module assigns a score of zero to
all results for other types of search requests. In addition, Field treats all matches the same, whether
or not they are due to query expansion.

First
Designed primarily for use with unstructured data, the First module ranks documents by how close
the query terms are to the beginning of the document.

The First module groups its results into variably-sized strata.The strata are not the same size, because
while the first word is probably more relevant than the tenth word, the 301st is probably not so much

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | About relevance ranking modules192

more relevant than the 310th word. This module takes advantage of the fact that the closer something
is to the beginning of a document, the more likely it is to be relevant.

The First module works as follows:

• When the query has a single term, First’s behavior is straight-forward: it retrieves the first absolute
position of the word in the document, then calculates which stratum contains that position. The
score for this document is based upon that stratum; earlier strata are better than later strata.

• When the query has multiple terms, First behaves as follows: The first absolute position for each
of the query terms is determined, and then the median position of these positions is calculated.
This median is treated as the position of this query in the document and can be used with
stratification as described in the single word case.

• With query expansion (using stemming, spelling correction, or the thesaurus), the First module
treats expanded terms as if they occurred in the source query. For example, the phrase glucose
intolerence would be corrected to glucose intolerance (with intolerence spell-corrected to
intolerance). First then continues as it does in the non-expansion case. The first position of each
term is computed and the median of these is taken.

• In a partially matched query, where only some of the query terms cause a document to match,
First behaves as if the intersection of terms that occur in the document and terms that occur in the
original query were the entire query. For example, if the query cat bird dog is partially matched to
a document on the terms cat and bird, then the document is scored as if the query were cat bird.
If no terms match, then the document is scored in the lowest strata.

Note: The First module does not work with Boolean searches, cross-field matching, or wildcard
search. It assigns all such matches a score of zero.

Frequency
The Frequency (freq) module provides result scoring based on the frequency (number of occurrences)
of the user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the Frequency module for a result record is the sum of the frequencies of all
user search terms in all fields (standard or managed attributes in the search interface in question) that
match a sufficient number of terms. The number of terms depends on the match mode, such as all
terms in a MatchAll query, a sufficient number of terms in a MatchPartial query, and so on. Cross-field
match records are assigned a score of zero. Total scores are capped at 1024; in other words, if the
sum of frequencies of the user search terms in all matching fields is greater than or equal to 1024, the
record gets a score of 1024 from the Freq module.

For example, suppose we have the following record:

{Title="test record", Abstract="this is a test", Text="one test this is"}

A MatchAll search for test this would cause Frequency to assign a score of 4, since this and test occur
a total of 4 times in the fields that match all search terms (Abstract and Text, in this case).The number
of phrase occurrences (just one in the Text field) doesn't matter, only the sum of the individual word
occurrences. Also note that the occurrence of test in the Title field does not contribute to the score,
since that field did not match all of the terms.

A MatchAll search for one record would hit this record, assuming that cross field matching was enabled.
But the record would get a score of zero from Freq, because no single field matches all of the terms.
Freq ignores matches due to query expansion (that is, such matches are given a rank of 0).

Endeca® Latitude Developer's GuideEndeca Confidential

193Relevance Ranking | About relevance ranking modules

Note: Due to performance issues, Endeca does not recommend using the Frequency module
with standalone relevance ranking (that is, per-query relevance ranking).

Glom
The Glom module ranks single-field matches ahead of cross-field matches and also ahead of
non-matches (records that do not contain the search term).

The Glom module serves as a useful tie-breaker function in combination with the Maximum Field
module. It is only useful in conjunction with record search operations. If you want a strategy that ranks
single-field matches first, cross-field matches second, and no matches third, then use the Glom module
followed by the Number of Terms (Nterms) module.

Glom treats all matches the same, whether or not they are due to query expansion.

Glom interaction with search modes

The Glom module considers a single-field match to be one in which a single field has enough terms
to satisfy the conditions of the match mode. For this reason, in MatchAny search mode, cross-field
matches are impossible, because a single term is sufficient to create a match. Every match is considered
to be a single-field match, even if there were several search terms.

For MatchPartial search mode, if the required number of matches is two, the Glom module considers
a record to be a single-field match if it has at least one field that contains two or more or the search
terms.You cannot rank results based on how many terms match within a single field.

For more information about search modes, see the "Using Search Modes" chapter of this guide.

Interpreted
Interpreted (interp) is a general-purpose module that assigns a score to each result record based on
the query processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute matching, spelling correction,
thesaurus, and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches. For more information, see the
"Using Search Modes" chapter in this guide.

2. Within the above strata, all single-field matches are ranked ahead of all cross-field matches. For
more information, see the "Working with Search Interfaces" chapter in this guide.

3. Within the above strata, all non-spelling-corrected matches are ranked above all spelling-corrected
matches. See the "Implementing Spelling Correction and Did You Mean" chapter in this guide for
more information.

4. Within the above strata, all thesaurus matches are ranked below all non-thesaurus matches. See
the "Using Stemming and Thesaurus" chapter in this guide for more information.

5. Within the above strata, all stemming matches are ranked below all non-stemming matches. See
the "Using Stemming and Thesaurus" chapter for more information.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | About relevance ranking modules194

Maximum Field
The Maximum Field (maxfield) module behaves identically to the Field module, except in how it scores
cross-field matches.

Unlike Field, which assigns a static score to cross-field matches, Maximum Field selects the score of
the highest-ranked field that contributed to the match.

Note the following:

• Because Maximum Field defines the score for cross-field matches dynamically, it does not make
use of the cross-field setting in the search interface.

• Maximum Field is only valid for record search operations. This module assigns a score of zero to
all results for other types of search requests.

• Maximum Field treats all matches the same, whether or not they are due to query expansion.

Number of Fields
The Number of Fields (Numfields) module ranks results based on the number of fields in the associated
search interface in which a match occurs.

Note that we are counting whole-field rather than cross-field matches.Therefore, a result that matches
two fields matches each field completely, while a cross-field match typically does not match any field
completely.

Note: Numfields treats all matches the same, whether or not they are due to query expansion.
The Numfields module is only useful in conjunction with record search operations.

Number of Terms
The Number of Terms (or Nterms) module ranks matches according to how many query terms they
match.

For example, in a three-word query, results that match all three words will be ranked above results
that match only two, which will be ranked above results that match only one, which will be ranked
above results that had no matches.

Note the following:

• The Nterms module is only applicable to search modes where results can vary in how many query
terms they match. These include MatchAny, MatchPartial, MatchAllAny, and MatchAllPartial. For
details on these search modes, see the "Using Search Modes" chapter in this guide.

• Nterms treats all matches the same, whether or not they are due to query expansion.

Phrase
The Phrase module states that results containing the user’s query as an exact phrase, or a subset of
the exact phrase, should be considered more relevant than matches simply containing the user’s
search terms scattered throughout the text.

Records that have the phrase are ranked higher than records which do not contain the phrase.

Endeca® Latitude Developer's GuideEndeca Confidential

195Relevance Ranking | About relevance ranking modules

Configuring the Phrase module

The Phrase module is configured by editing theRELRANK_PHRASE XML element.

You add a Phrase module with the RELRANK_PHRASE element, which is a sub-element of the REL¬
RANK_STRATEGY element.

The following example shows a relevance ranking strategy named PhraseMatch with a Phrase module:

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="PhraseMatch">
 <RELRANK_PHRASE APPROXIMATE="TRUE" QUERY_EXPANSION="FALSE" SUB¬
PHRASE="TRUE"/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

To configure the Phrase module:

1. In any editor, edit the contents of the RELRANK_STRATEGIES configuration document to add or
modify the RELRANK_PHRASE element.

For details on these elements, see the appendix in the Latitude Data Integrator Guide.The resulting
contents should look similar to the example above.

2. Send the changes to the MDEX Engine using the Latitude Data Integrator. For information, see
the Latitude Data Integrator Guide.

Details on the three options are explained in the following topic.

Phrase module options
The Phrase module has a variety of options that you use to customize its behavior.

The Phrase module has three options, which are configured via Boolean attributes:

• The APPROXIMATE attribute sets the use of approximate subphrase/phrase matching.
• The QUERY_EXPANSION attribute determines whether to apply query expansion (spell correction,

thesaurus, and stemming).
• The SUBPHRASE attribute enables ranking based on length of subphrases.

These attributes belong to the RELRANK_PHRASE element.

Approximate matching

Approximate matching provides higher-performance matching, as compared to the standard Phrase
module, with somewhat less exact results.

With approximate matching enabled, the Phrase module looks at a limited number of positions in each
result that a phrase match could possibly exist, rather than all the positions. Only this limited number
of possible occurrences is considered, regardless of whether there are later occurrences that are
better, more relevant matches.

The approximate setting is appropriate in cases where the runtime performance of the standard Phrase
module is inadequate because of large result contents and/or high site load.

Query expansion

Applying spelling correction, thesaurus, and stemming adjustments to the original phrase is generically
known as query expansion. With query expansion enabled, the Phrase module ranks results that
match a phrase’s expanded forms in the same stratum as results that match the original phrase.

Consider the following example:

• A thesaurus entry exists that expands "US" to "United States".

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | About relevance ranking modules196

• The user queries for "US government".

The query "US government" is expanded to "United States government" for matching purposes, but
the Phrase module gives a score of two to any results matching "United States government" because
the original, unexpanded version of the query, "US government", only had two terms.

Subphrasing

Subphrasing ranks results based on the length of their subphrase matches. In other words, results
that match three terms are considered more relevant than results that match two terms, and so on.

A subphrase is defined as a contiguous subset of the query terms the user entered, in the order that
he or she entered them. For example, the query "fax cover sheets" contains the subphrases "fax",
"cover", "sheets", "fax cover", "cover sheets", and "fax cover sheets", but not "fax sheets".

Content contained inside nested quotes in a phrase is treated as one term. For example, consider the
following phrase:

the question is "to be or not to be"

The quoted text ("to be or not to be") is treated as one query term, so this example consists of four
query terms even though it has a total of nine words.

When subphrasing is not enabled, results are ranked into two strata: those that matched the entire
phrase and those that did not.

Summary of Phrase option interactions
The three configuration settings for the Phrase module can be used in a variety of combinations for
different effects.

The following matrix describes the behavior of each combination.

DescriptionExpansionApproximateSubphrase

Default. Ranks results into two strata: those that match the
user’s query as a whole phrase, and those that do not.

OffOffOff

Ranks results into two strata: those that match the original, or
an extended version, of the query as a whole phrase, and those
that do not.

OnOffOff

Ranks results into two strata: those that match the original
query as a whole phrase, and those that do not. Look only at
the first possible phrase match within each record.

OffOnOff

Ranks results into two strata: those that match the original, or
an extended version, of the query as a whole phrase, and those

OnOnOff

that do not. Look only at the first possible phrase match within
each record.

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched
subphrase.

OffOffOn

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OnOffOn

subphrase. Extend subphrases to facilitate matching but rank
based on the length of the original subphrase (before
extension). Note that this combination can have a negative
performance impact on query throughput.

Endeca® Latitude Developer's GuideEndeca Confidential

197Relevance Ranking | About relevance ranking modules

DescriptionExpansionApproximateSubphrase

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OffOnOn

subphrase. Look only at the first possible phrase match within
each record.

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OnOnOn

subphrase. Expand the query to facilitate matching but rank
based on the length of the original subphrase (before
extension). Look only at the first possible phrase match within
each record.

Note: You should only use one Phrase module in any given search interface and set all of your
options in it.

Phrase module behavior

This topic describes some aspects of the behavior of the Phrase module with other features of the
MDEX Engine.

Effect of search modes

Endeca provides a variety of search modes to facilitate matching during search (MatchAny, MatchAll,
MatchPartial, and so on). These modes only determine which results match a user’s query, they have
no effect on how the results are ranked after the matches have been found. Therefore, the Phrase
module works as described in this section, regardless of search mode. The one exception to this rule
is MatchBoolean. Phrase, like the other relevance ranking modules, is never applied to the results of
MatchBoolean queries.

Results with multiple matches

If a single result has multiple subphrase matches, either within the same field or in several different
fields, the result is slotted into a stratum based on the length of the longest subphrase match.

Stop words

When using the Phrase module, stop words are always treated like non-stop word terms and stratified
accordingly.

For example, the query “raining cats and dogs” will result in a rank of two for a result containing “fat
cats and hungry dogs” and a rank of three for a result containing “fat cats and dogs” (this example
assumes subphrase is enabled).

Cross-field matches

An entire phrase, or subphrase, must appear in a single field in order for it to be considered a match.
In other words, matches created by concatenating fields are not considered by the Phrase module.

Notes about the Phrase module

Keep the following points in mind when using the Phrase module:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | About relevance ranking modules198

• If a query contains only one word, then that word constitutes the entire phrase and all of the
matching results will be put into one stratum (score = 1). However, the module can rank the results
into two strata: one for records that contain the phrase and a lower-ranking stratum for records
that do not contain the phrase.

• Because of the way hyphenated words are positionally indexed, Endeca recommends that you
enable subphrase if your results contain hyphenated words.

Treatment of wildcards with the Phrase module

The Phrase module translates each wildcard in a query into a generic placeholder for a single term.

For example, the query “sparkling w* wine” becomes “sparkling * wine” during phrase relevance ranking,
where “*” indicates a single term. This generic wildcard replacement causes slightly different behavior
depending on whether subphrasing is enabled.

When subphrasing is not enabled, all results that match the generic version of the wildcard phrase
exactly are still placed into the first stratum. It is important, however, to understand what constitutes
a matching result from the Phrase module’s point of view.

Consider the search query “sparkling w* wine” with the MatchAny mode enabled. In MatchAny mode,
search results only need to contain one of the requested terms to be valid, so a list of search results
for this query could contain phrases that look like this:

sparkling white wine
sparkling refreshing wine
sparkling wet wine
sparkling soda
wine cooler

When phrase relevance ranking is applied to these search results, the Phrase module looks for matches
to “sparkling * wine” not “sparkling w* wine.” Therefore, there are three results—”sparkling white wine,”
“sparkling refreshing wine,” and “sparkling wet wine”—that are considered phrase matches for the
purposes of ranking. These results are placed in the first stratum. The other two results are placed in
the second stratum.

When subphrasing is enabled, the behavior becomes a bit more complex. Again, we have to remember
that wildcards become generic placeholders and match any single term in a result. This means that
any subphrase that is adjacent to a wildcard will, by definition, match at least one additional term (the
wildcard). Because of this behavior, subphrases break down differently. The subphrases for “cold
sparkling w* wine” break down into the following (note that w* changes to *):

cold
sparkling *
* wine
cold sparkling *
sparkling * wine
cold sparkling * wine

Notice that the subphrases “sparkling,” “wine,” and “cold sparkling” are not included in this list. Because
these subphrases are adjacent to the wildcard, we know that the subphrases will match at least one
additional term. Therefore, these subphrases are subsumed by the “sparkling *”, “* wine”, and “cold
sparkling *” subphrases.

Like regular subphrase, stratification is based on the number of terms in the subphrase, and the
wildcard placeholders are counted toward the length of the subphrase.To continue the example above,
results that contain “cold” get a score of one, results that contain “sparkling *” get a score of two, and
so on. Again, this is the case even if the matching result phrases are different, for example, “sparkling
white” and “sparkling soda.”

Endeca® Latitude Developer's GuideEndeca Confidential

199Relevance Ranking | About relevance ranking modules

Finally, it is important to note that, while the wildcard can be replaced by any term, a term must still
exist. In other words, search results that contain the phrase “sparkling wine” are not acceptable matches
for the phrase “sparkling * wine” because there is no term to substitute for the wildcard. Conversely,
the phrase “sparkling cold white wine” is also not a match because each wildcard can be replaced by
one, and only one, term. Even when wildcards are present, results must contain the correct number
of terms, in the correct order, for them to be considered phrase matches by the Phrase module.

Proximity
Designed primarily for use with unstructured data, the Proximity module ranks how close the query
terms are to each other in a document by counting the number of intervening words.

Like the First module, this module groups its results into variable sized strata, because the difference
in significance of an interval of one word and one of two words is usually greater than the difference
in significance of an interval of 21 words and 22. If no terms match, the document is placed in the
lowest stratum.

Single words and phrases get assigned to the best stratum because there are no intervening words.
When the query has multiple terms, Proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.
2. The smallest range that includes at least one instance of each of the query terms is calculated.

This range’s length is given in number of words. The score for each document is the strata that
contains the difference of the range’s length and the number of terms in the query; smaller differences
are better than larger differences.

Under query expansion (that is, stemming, spelling correction, and the thesaurus), the expanded terms
are treated as if they were in the query, so the proximity metric is computed using the locations of the
expanded terms in the matching document.

For example, if a user searches for big cats and a document contains the sentence, "Big Bird likes his
cat" (stemming takes cats to cat), then the proximity metric is computed just as if the sentence were,
"Big Bird likes his cats."

Proximity scores partially matched queries as if the query only contained the matching terms. For
example, if a user searches for cat dog fish and a document is partially matched that contains only
cat and fish, then the document is scored as if the query cat fish had been entered.

Note: Proximity does not work with Boolean searches, cross-field matching, or wildcard search.
It assigns all such matches a score of zero.

Spell
The Spell module ranks spelling-corrected matches below other kinds of matches.

Spell assigns a rank of 0 to matches from spelling correction, and a rank of 1 from all other sources.
That is, it ignores all other sorts of query expansion.

Static
The Static module assigns a static or constant data-specific value to each search result, depending
on the type of search operation performed and depending on optional parameters that can be passed
to the module.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | About relevance ranking modules200

For record search operations, the first parameter to the module specifies an Endeca attribute, which
will define the sort order assigned by the module.The second parameter can be specified as ascending
or descending to indicate the sort order to use for the specified Endeca attribute.

For example, using the module Static(Availability,descending) would sort result records
in descending order with respect to their assignments from the Availability standard attribute. Using
the module Static(Title,ascending) would sort result records in ascending order by their Title
standard attribute assignments.

In a catalog application, setting the static module by Price, descending leads to more expensive
products being displayed first.

For value search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result values by the number of associated
records in the full data set.

• Specifying depth causes the static module to sort result values by their depth in the managed
attributes hierarchy.

• Specifying rank causes values to be sorted by the ranks assigned to them for the application.

Stem
The Stem module ranks matches due to stemming below other kinds of matches.

Stem assigns a rank of 0 to matches from stemming, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Thesaurus
The Thesaurus module ranks matches due to thesaurus entries below other sorts of matches.

Thesaurus assigns a rank of 0 to matches from the thesaurus, and a rank of 1 from all other sources.
That is, it ignores all other sorts of query expansion.

Weighted Frequency
Like the Frequency module, the Weighted Frequency (wfreq) module scores results based on the
frequency of user query terms in the result.

Additionally, the Weighted Frequency module weights the individual query term frequencies for each
result by the information content (overall frequency in the complete data set) of each query term. Less
frequent query terms (that is, terms that would result in fewer search results) are weighted more heavily
than more frequently occurring terms.

The Weighted Frequency module ignores matches due to query expansion (that is, such matches are
given a rank of 0).

Note: Due to performance issues, Endeca does not recommend using the Weighted Frequency
module with standalone relevance ranking (that is, per-query relevance ranking).

Endeca® Latitude Developer's GuideEndeca Confidential

201Relevance Ranking | About relevance ranking modules

Relevance ranking strategies
Relevance ranking modules define the primitive search result ordering functions provided by the MDEX
Engine. These primitive modules can be combined to compose more complex ordering behaviors
called relevance ranking strategies.

You may also define and apply a strategy that consists of a single module, rather than a group of
modules.

You can specify a relevance ranking strategy either in the request issued by the Conversation Web
Service, and/or in the configuration XML document.

The scores assigned by a strategy are composed from the scores assigned by its constituent modules.
This composite score is constructed so that records are first ordered by the first module. After that,
ties are broken by the subsequent modules in order. If any ties remain after all modules have been
consulted, they are resolved by the default sort. If after that any ties still remain, the order of records
is determined by the system.

Relevance ranking strategies are used in two main contexts in the MDEX Engine:

• You can configure relevance ranking to a search interface in the RECSEARCH_CONFIG configuration
document, and send this document to the MDEX Engine using the Latitude Data Integrator.

• You can specify a relevance ranking strategy for a particular attribute to override the strategy
specified for the selected search interface. This allows relevance ranking behavior to be fully
customized on a per-query basis. For details, see the "Using standalone relevance ranking at the
query level" topic.

Creating relevance ranking strategies
You create relevance ranking strategies by modifying theRELRANK_STRATEGIES index configuration
document.

All index configuration documents are present in the MDEX Engine.You can edit them using the format
specified in the XML Configuration Reference appendix of the Latitude Data Integrator Guide. After
these documents are edited, you can send them to the MDEX Engine using the Latitude Data Integrator,
thus specifying the configuration your want.

You create a relevance ranking strategy by adding one or more RELRANK_STRATEGY elements to the
root RELRANK_STRATEGIES document.

Each RELRANK_STRATEGY element, in turn, contains one or more relevance ranking module elements,
such as the RELRANK_INTERP and RELRANK_FIELD module elements in this WineMatch example:

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="WineMatch">
 <RELRANK_INTERP/>
 <RELRANK_STATIC NAME="Flavors" ORDER="ASCENDING"/>
 <RELRANK_FIELD/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Keep in mind that the order of the module sub-elements defines the order in which the strategies are
applied to the search results.

To create a relevance ranking strategy:

1. Edit the contents of the RELRANK_STRATEGIES document to add or modify the RELRANK_STRAT¬
EGY elements.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | Relevance ranking strategies202

For details on these elements, see the appendix in the Latitude Data Integrator Guide.The resulting
contents of the edited document should look similar to the example above.

2. Send the RELRANK_STRATEGIES document to the MDEX Engine using the Latitude Data Integrator.

For information, see the Latitude Data Integrator Guide.

The new relevance ranking strategy can now be added to a search interface.

Implementing relevance ranking
You can create and control relevance ranking for both record search and value search at a
system-default level.

You can apply record search relevance ranking as you are creating a search interface, or afterwards.
A search interface is a named group of at least one attribute.You create search interfaces so you can
apply behavior like relevance ranking across a group.You set the search interface for record search
by modifying the RECSEARCH_CONFIG index configuration document and sending it to the MDEX
Engine with the Latitude Data Integrator. For information about configuring relevance ranking in search
interfaces, see the "Working with Search Interfaces" chapter in this guide.

For value search, the "Implementing relevance ranking for value search" topic in this chapter describes
the configuration procedure.

Adding a Static module
Keep the following in mind when you add a Static module to the ranking strategy.

The Static module is the only one that you can add multiple times. When you add a Static module, be
sure to set the two Static attributes:

• The NAME attribute sets the name of a Endeca attribute that is used for static relevance ranking.
• The ORDER attribute specifies how records should be sorted with respect to the specified Endeca

attribute sets. The two values are ASCENDING and DESCENDING.

Ranking order for Field and Maximum Field modules
The Field and Maximum Field modules ranks results based on which Endeca attribute member of the
selected search interface caused the match.

Higher relevance-ranked values correspond to greater importance.This behavior means that the Field
and Maximum Field modules will score results caused by higher-ranked Endeca attributes ahead of
those caused by lower-ranked Endeca attributes.

To change the relevance ranking behavior for these modules, you would move the search interface
members to the appropriate position in the search interface (that is, move the MEMBER_NAME attributes
up or down within the SEARCH_INTERFACE element).

How relevance ranking score ties between search interfaces are resolved
In the case of multiple search interfaces and relevance ranking score ties, ties are broken based on
the relevance ranking sort strategy of the search interface with the highest relevance ranking score
for a given record.

Endeca® Latitude Developer's GuideEndeca Confidential

203Relevance Ranking | Implementing relevance ranking

If two different records belong to different search interfaces, the record from the search interface
specified earlier in the query comes first.

Implementing relevance ranking for value search
You can define a system-default relevance ranking strategy for value search operations.

To define a system-default relevance ranking strategy for value search operations, modify the REL¬
RANK_STRATEGY attribute of the DIMSEARCH_CONFIG index configuration document.To do so, create
a text file with the configuration document and send it to the MDEX Engine, using the Latitude Data
Integrator. For information, see the Latitude Data Integrator Guide.

The RELRANK_STRATEGY attribute specifies the name of a relevance ranking strategy for value search.
The content of this attribute should be a relevance ranking string, as in this example:

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="exact,stat¬
ic(rank,descending)"/>

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="interp,ex¬
act"/>

For details on the format of the relevance ranking string, see the "Using standalone relevance ranking"
topic.

The default ranking strategy for value search operations, which is applied if you do not make any
changes to it, is:

interp,exact,static

Regardless of the DIMSEARCH_CONFIG setting for relevance ranking, you can specify a per-query
relevance ranking strategy that overrides the DIMSEARCH_CONFIG setting. This procedure is
documented in the "Using standalone relevance ranking" topic in this chapter.

Using standalone relevance ranking
At the MDEX Engine query level, relevance ranking strategies can be selected to override the default
specified for the selected search interface. This is known as standalone relevance ranking.

Standalone relevance ranking allows relevance ranking behavior to be fully customized on a per-query
basis. The RelevanceRankingStrategy attribute (of the SearchFilter element) must specify
either the name of an existing relevance ranking strategy or the names of relevance ranking modules.

Relevance ranking module names can be any of these pre-defined modules:

• exact

• field (useful for record search only)
• first

• freq (not recommended for use with standalone relevance ranking, due to its performance impact)
• glom (useful for record search only)
• interp

• maxfield (useful for record search only)
• nterms

• numfields (useful for record search only)
• phrase

• proximity

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | Using standalone relevance ranking204

• spell

• stem

• thesaurus

• static

• wfreq (not recommended for use with standalone relevance ranking, due to its performance
impact)

Module names are delimited by comma (,) characters. No other stray characters (such as spaces) are
allowed. Module names are listed in descending order of priority. In addition, module names are
case-sensitive, so they must be specified in lower case.

Phrase module parameters

The phrase module can take from zero to three parameters to indicate whether subphrase matching,
approximate matching, or query expansion should be enabled.The presence of a parameter indicates
that the feature should be enabled, and the parameters can be in any order. For example:

phrase(subphrase,approximate,query_expansion)

Static module details

The static module takes two parameters. For record search, the first parameter is an Endeca attribute
to use for assigning static scores (based on sort order) and the second is the sort order: ascending
(ascend is an accepted abbreviation) or descending (or descend).The default is ascending. The
parameters must be a comma-separated list enclosed in parentheses. For example:

static(Price,ascending)

For value search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result values by the number of associated
records in the full data set.

• Specifying depth causes the static module to sort result values by their depth in the attributes
hierarchy.

• Specifying rank causes values to be sorted by the ranks assigned to them for the application. In
cases when there are ties, (for example, if you specify nbins and the number of associated records
is the same), the system ranks value search results based on the value IDs.

Valid relevance ranking strings

The following are examples of valid relevance ranking strategy strings:

• exact

• field,phrase,interp

• static(Price,ascending)

• static(Availability,descending),exact,static(Price,ascending)

• field,MyStrategy,exact (assuming that MyStrategy is the name of a valid search interface
with a relevance ranking strategy)

• phrase(approximate,subphrase)

Specifying relevance ranking for queries
You can specify a relevance ranking strategy for both record search queries and value search queries.

Both types of queries let you specify either an existing relevance ranking strategy or the names of the
relevance ranking modules.

Endeca® Latitude Developer's GuideEndeca Confidential

205Relevance Ranking | Using standalone relevance ranking

Record search

For record search, the RelevanceRankingStrategy attribute of the Search element lets you
specify a relevance ranking strategy for the query, as in this example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="SearchOperator" Within="false">
 <Search Mode="AllPartial" RelevanceRankingStrategy="exact"
 Key="Description">peach</Search>
</Operator>

For more information on the record search operator, see the "Using Record Search" chapter in this
guide.

Value search

For value search, the RelevanceRankingStrategy attribute of the ValueSearchConfig type
lets you specify a relevance ranking strategy for the query, as in this example:

<ContentElementConfig xsi:type="ValueSearchConfig"
 HandlerFunction="ValueSearchHandler"
 HandlerNamespace="http://www.endeca.com/MDEX/conversation/handlers/2010"
 Id="ValueSearch" Mode="Any" MaxPerProperty="5"
 RelevanceRankingStrategy="exact,static(nbins,descending)"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SearchTerm>red</SearchTerm>
</ContentElementConfig>

For more information on the ValueSearchConfig type, see the "Using Value Search" chapter in
this guide.

Relevance ranking sample scenarios
This section contains two examples of relevance ranking behavior to further illustrate the capabilities
of this feature.

In the first example, we first look at the effects of various relevance ranking strategies on a small
sample data set that supports record search, examining the range of possible result orderings possible
using only a limited set of ranking modules.

In the second example, we look at how adding a simple relevance ranking strategy can affect user
results in the reference implementation.

Note: These extremely simple scenarios are provided for illustrative purposes only. For more
realistic examples, see the "Recommended strategies" topic.

Example 1: Using a small data set
This scenario shows the effects of various relevance ranking strategies on a small data set.

This example illustrates the richness of relevance ranking tuning possible with the modular Endeca
relevance ranking system: using two modules on a data set of three records, we found that all four
possible combinations of the modules into strategies resulted in different orderings, all of which were
different from the default ordering.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | Relevance ranking sample scenarios206

The example uses the following example record set:

Author attributeTitle attributeRecord

Mark Twain and other authorsGreat Short Stories1

William Lyon PhelpsMark Twain2

Mark TwainTom Sawyer3

Creating the search interface

In a text editor, we have defined a search interface named Books that contains both Title and Author
standard attributes. The relevance rank is determined by the order in which the Endeca attributes
appear in the members list.

Assume that we have not defined an explicit default sort order for the records, in which case their
default order is determined by the system.

Without relevance ranking

Suppose that the user enters a record search query against the Books search interface for Mark Twain.
Clearly all three of the records are hits, because each record has at least one searchable attribute
value containing at least one occurrence of both the words Mark and Twain. But in what order should
the results be presented to the user? Without relevance ranking enabled, the results will be returned
in their default order: 1, 2, 3.

If relevance ranking were enabled, the order depends on the relevance ranking strategy selected.

With an Exact ranking strategy

Suppose we have selected the Exact relevance ranking strategy, either by assigning this as the default
strategy for the Books search interface or by using query-level search options.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other
matches. Because records 2 and 3 have attributes whose complete values exactly match the user
query Mark Twain, these results would be returned ahead of record 1, with the tie being broken by the
default sort set by the system (remember that we have not defined a default sort).

With a Field ranking strategy

Now, assume that we have selected the Field relevance ranking strategy.

The order of results would be based only on which Endeca attribute caused the match, with Author
matches being prioritized over Title matches. Because records 1 and 3 match on Author, these are
returned ahead of record 2 (again, with ties broken by the default sort imposed by the system).

With a Field,Exact ranking strategy

Now, consider using a combination of these two strategies: Field,Exact.

In this case, the primary sort is determined by the first module, Field, which again dictates that records
1 and 3 should be returned ahead of record 2. But in this case, the Field tie between records 1 and 3
is resolved by the Exact module, which prioritizes record 3 ahead of record 1.Thus, the order of results
returned is: 3, 1, 2.

With an Exact,Field ranking strategy

Finally, consider combining the same two modules but in a different priority order: Exact,Field.

Endeca® Latitude Developer's GuideEndeca Confidential

207Relevance Ranking | Relevance ranking sample scenarios

In this case, the primary sort is determined by the Exact module, which again prioritizes records 2 and
3 ahead of record 1. In this case, the Exact tie between records 2 and 3 is resolved by the Field module,
which orders record 3 ahead of record 2 because record 3 is an Author match. Thus, the order of
results returned is: 3, 2, 1.

Example 2: UI reference implementation
This scenario shows how adding a relevance ranking module can change the order of the returned
records.

This example, which is somewhat more realistically scaled, uses a wine data set. It demonstrates how
relevance ranking can affect the results displayed to your users.

In this scenario, we use the thesaurus and relevance ranking features to enable end users’ access to
Flavor results similar to the one they searched on, while still seeing exact matches first.

First, we establish the following two-way thesaurus entries:

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>cab</THESAURUS_FORM>
 <THESAURUS_FORM>cabernet</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>cinnamon</THESAURUS_FORM>
 <THESAURUS_FORM>spice</THESAURUS_FORM>
 <THESAURUS_FORM>nutmeg</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>tangy</THESAURUS_FORM>
 <THESAURUS_FORM>tart</THESAURUS_FORM>
 <THESAURUS_FORM>sour</THESAURUS_FORM>
 <THESAURUS_FORM>vinegary</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>dusty</THESAURUS_FORM>
 <THESAURUS_FORM>earthy</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

Before applying these thesaurus equivalencies, if we search on the Dusty flavor, 83 records are
returned, and if we search on the Earthy flavor, 3,814 records are returned.

After applying these thesaurus equivalencies, if we search on the Dusty attribute, results for both Dusty
and Earthy are returned. (Because some records are flagged with both the Dusty and Earthy descriptors,
the number of records is not an exact total of the two.)

Relevant attributeWine (by order returned)

EarthyA Tribute Sonoma Mountain

EarthyAgainst the Wall California

DustyAglianico Irpinia Rubrato

EarthyAglianico Sannio

Because the application is sorting on Name in ascending order, the Dusty and Earthy results are
intermingled. That is, the first two results are for Earthy and the third is for Dusty, even though we

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | Relevance ranking sample scenarios208

searched on Dusty, because the two Earthy records came before the Dusty one when the records
were sorted in alphabetical order.

Now, suppose that while we want our users to see the synonymous entries, we want records that
exactly match the search term Dusty to be returned first. We therefore would use the Interpreted
ranking module to ensure that outcome.

Relevant attributeWine (by order returned)

DustyAglianico Irpinia Rubrato

DustyBandol Cuvee Speciale La Miguoa

DustyBeaujolais-Villages Reserve du Chateau de
Montmelas

DustyBeauzeaux Winemaker’s Collection Napa Valley

With the Interpreted ranking strategy, the results are different. When we search on Dusty, we see the
records that matched for Dusty sorted in alphabetical order, followed by those that matched for Earthy.
The wine Aglianico Irpinia Rubrato, which was returned third in the previous example, is now returned
first.

Recommended strategies
This section provides some recommended strategies that depend on the implementation type.

Relevance ranking behavior is complex and powerful and requires careful, iterative development.
Typically, selection of the ideal relevance ranking strategy for a given application depends on extensive
experimentation during application development. The set of possible result ranking strategies is
extremely rich, and because setting ranking strategies is highly dependent on the quantity and type
of data you are working with, a strategy that works well in one situation could be unsatisfactory in
another.

For this reason, Endeca provides recommended strategies for different types of implementations and
suggests that you use them as a point of departure in creating your own strategies. The following
sections describe recommended general strategies for each product in detail.

Note: These recommendations are not meant to overrule custom strategies developed for your
application by Endeca Professional Services.

Testing your strategies

When testing your own strategies, it is a good idea to try searching on diverse examples: single word
terms, multi-word terms that you know are an exact match for records in your data, and multi-word
terms that contain additional words as well as the ones in your data. In this way you will see the full
range of relevance ranking effects.

Recommended strategy for retail catalog data
This topic describes a good starting strategy to try if you are a retailer working with a catalog data set.

The strategy assumes the following:

Endeca® Latitude Developer's GuideEndeca Confidential

209Relevance Ranking | Recommended strategies

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return
a two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

• The strategy is based on a search interface with members such as Category, Name, and Description,
in that order. The order is significant because a match on the first member ranks more highly than
a cross-field match or match on the second or third member. (For details, see the "Working with
Search Interfaces" chapter in this guide.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Exact

• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. MaxField puts cross-field matches as high in priority as possible, to the point where they could

tie with non-cross-field matches.
3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting

from MaxField. Together, MaxField and Glom provide the proper ordering, depending upon
what matched.

4. Applying the Exact module means that an exact match in a highly-ranked member of the search
interface is placed higher than a partial or cross-field match.

5. Optionally, the Static module can be used to sort remaining ties by criteria such as Price or
SalesRank.

Recommended strategy for document repositories
This topic describes a good starting strategy to try if you are working with a document repository.

The strategy assumes the following:

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return
a two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

• The strategy is based on a search interface with members such as Title, Summary, and
DocumentText, in that order. The order is significant because a match on the first member ranks
more highly than a cross-field match or match on the second or third member.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Phrase (with or without approximate matching enabled)
• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. MaxField puts cross-field matches as high in priority as possible, to the point where they could

tie with non-cross-field matches.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Relevance Ranking | Recommended strategies210

3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting
from MaxField. Together, MaxField and Glom provide the proper ordering, depending upon
what matched.

4. Applying the Phrase module ensures that results containing the user’s query as an exact phrase
are given a higher priority than matching containing the user’s search terms sprinkled throughout
the text.

5. Optionally, the Static module can be used to sort the remaining ties by criteria such as
ReleaseDate or Popularity.

Performance impact of relevance ranking
Relevance ranking can impose a significant computational cost in the context of affected search
operations (that is, operations where relevance ranking is actually enabled).

You can minimize the performance impact of relevance ranking in your implementation by making
module substitutions when appropriate, and by ordering the modules you do select sensibly within
your relevance ranking strategy.

Making module substitutions

Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance
ranking depends heavily on the set of ranking modules used. In general, modules that do not perform
text evaluation introduce significantly lower computational costs than text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and
the number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.
• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all

high-cost modules, presented in the order of decreasing cost.
• WFreq can also be costly in some situations.
• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms,
Interp, Numfields, Maxfield, and Field) are generally relatively cheap.

In order to maximize the performance of your relevance ranking strategy, consider a less expensive
way to get similar results. For example, replacing Exact with Phrase may improve performance in
some cases with relatively little impact on results.

Note: Choose the set of modules used for relevance ranking most carefully when the data set
is large or contains large/offline file content that is used for search operations.

Ordering modules sensibly

Relevance ranking modules are only evaluated as needed. When higher-priority ranking modules
determine the order of records, lower-priority modules do not need to be calculated. This can have a
dramatic impact on performance when higher-cost modules have a lower priority than a lower-cost
module.

While you have the freedom to order modules as you like, for best performance, make sure that the
cheaper modules are placed before the more expensive ones in your strategy.

Endeca® Latitude Developer's GuideEndeca Confidential

211Relevance Ranking | Performance impact of relevance ranking

Part 6

Extending Latitude Studio

• Extending Latitude Studio
• Security Extensions to Latitude Studio
• Managing Data Source State in Latitude Studio
• Installing and Using the Component SDK
• Working with QueryFunction Classes
• Localizing Latitude Studio

Chapter 24

Extending Latitude Studio

Out of the box, Endeca Latitude Studio includes numerous components that you can use to quickly
develop an enterprise-quality search application. In addition, Latitude Studio provides a number of
extension points for managing query and portlet operations, along with default implementations of the
various interfaces that you can modify.

Developer tasks in Latitude Studio
Data source configuration tasks include:

• Modifying data sources.
• Adjusting security.
• Customizing how data sources interact with each other.

Component customization tasks include:

• Adding or modifying portlet components based on the EndecaPortlet class, using the Latitude
Studio Component SDK.

• Localizing components.

This guide covers all of these developer tasks.

Note: Before modifying data source, make sure to read the data sources chapter of the Latitude
Studio Power User's Guide.This chapter describes the default interaction model between related
data sources.

Licensing requirement for component development
Latitude Studio component development may require the purchase of a third party license.

Latitude Studio uses Ext JS in its components and in the default components created by its SDK. An
Endeca license does not bundle licensing for ExtJS. Therefore, customers developing components
with ExtJS must either purchase their own development licenses from ExtJS, or remove ExtJS and
develop components without the use of that Javascript framework.

http://www.extjs.com/products/js/

Obtaining more information
Because Latitude Studio is built upon the Liferay Portal, you can access Liferay's documentation for
more information about how to perform administrative and developer tasks.

Specifically, the Liferay Portal Administrator's Guide provides extensive information about installing,
configuring, and maintaining a portal. To access a free PDF download of this guide, go to
http://www.liferay.com and navigate to Documentation.

Liferay developer resources

This guide only covers Endeca extensions to the Liferay Portal. For additional developer support,
Liferay provides blogs, wikis, and forums. To access this, go to http://www.liferay.com and navigate
to Community.

The Endeca Developer Network (EDeN)

You can obtain more information about Latitude Studio and other Endeca products at the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Additional Endeca documentation

The complete Latitude documentation set can be accessed from the EDeN knowledge base.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Extending Latitude Studio | Obtaining more information216

http://www.liferay.com
http://www.liferay.com
http://eden.endeca.com

Chapter 25

Security Extensions to Latitude Studio

You may require more than the default data source role-based security discussed in the Latitude Studio
Power User's Guide. If so, you can customize the automated filtering of data from the MDEX Engine
(based on user profile details such as the user's role or group association) by creating a custom MDEX
Security Manager.

Security Manager class summary
This topic summarizes the Security Manager class.

An MDEX Security Manager is any concrete class that implements the
com.endeca.portal.data.security.MDEXSecurityManager.

com.endeca.portal.data.security.MDEXSecurityManagerAbstract base class

com.endeca.portal.data.DefaultMDEXSecurityManagerDefault implementation class

Handles pre-execution query modification based on the user, role,
or group-based security configuration of filters.

Description

The default Security Manager implementation makes use of
the securityEnabled, securityFilters, rolePermissions,
inheritSecurity, and parentDataSource properties.

These properties are defined in data source configurations in order
to apply role-based security filters to every query issued to the
MDEX Engine backing a given data source.

Default implementation
behavior

Users are assigned to Liferay roles in the Control Panel, and the
related associations are made available to every portlet through
the user's session. The Security Manager is responsible for
maintaining an internal map of security filters for each data source
that should always be applied to queries issued for that user's
session.

Note: Record filters are the only supported type of
securityFilter.

Note: securityEnabled defaults to false if the value is
not present.

Note: inheritSecurity defaults to true if the data
source has a parent, and defaults to false if not.

Creating a new MDEX Security Manager
This topic describes the steps required to create an MDEX Security Manager.

To create a new MDEX Security Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:

• On Windows:.\create-mdexsecuritymanager.bat <your-security-manager-name>
• On Linux: ./create-mdexsecuritymanager.sh <your-security-manager-name>

This command creates a your-security-manager-name directory under endeca-extensions.
This directory is an Eclipse project that can be imported directly into Eclipse if you use that as your
IDE.

Note: This directory also contains a sample implementation, which is essentially identical
to the default implementation of the Security Manager used by Latitude Studio.You can
use this sample implementation to help you understand how the Security Manager can
be used.

Implementing a new MDEX Security Manager
Your Security Manager must implement the applySecurity method described in this topic.

There are two versions of the applySecurity method, one of which your Security Manager must
implement:

public void applySecurity(PortletRequest request, MDEXState mdexState, Query
 query) throws MDEXSecurityException;

The Query class in this signature is com.endeca.portal.data.Query.This class provides a simple
wrapper around an ENEQuery.

Using the MDEX Security Manager
In order to use your MDEX Security Manager, you must specify a new class for Latitude Studio to
pick up and use in place of the default Security Manager implementation.

The your-security-manager-name directory you created contains an ant build file. The ant
deploy task places a .jar file containing your State Manager into the
portal/tomcat-<version>/lib/ext directory.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Security Extensions to Latitude Studio | Creating a new MDEX Security Manager218

To specify your new class to Latitude Studio:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Latitude section of the Control Panel navigation panel, select Framework Settings.

4. Change the df.mdexSecurityManager property to the full name of your class, similar to following
example:

df.mdexSecurityManager = com.endeca.portal.extensions.YourSecurityManager¬
Class

5. Click Update Settings.

6. Restart Latitude Studio so the change can take effect.You may also need to clear any cached user
sessions.

Endeca® Latitude Developer's GuideEndeca Confidential

219Security Extensions to Latitude Studio | Using the MDEX Security Manager

Chapter 26

Managing Data Source State in Latitude
Studio

Latitude Studio provides an extension point that allows you to define your own interaction model by
creating a custom MDEX State Manager. In addition, in the Latitude Studio Power User's Guide,
the data sources chapter describes the default interaction model between related data sources.

State Manager class summary
This topic summarizes the State Manager class.

An MDEX State Manager is any concrete class that extends from
com.endeca.portal.data.AbstractMDEXStateManager. This class serves as a data source
state manager that can be used to customize how data sources interact with each other during updates
and query construction.

com.endeca.portal.data.AbstractMDEXStateManagerAbstract base class

com.endeca.portal.data.DefaultMDEXStateManagerDefault implementation class

Handles data source state updates and pre-execution query
modification, based on data source relationships and configuration.

Description

The default state manager implementation makes use of the
ParentDataSource property defined in data source configurations

Default implementation
behavior

in order to propagate state changes throughout a hierarchy of data
source relationships.

When a portlet modifies the query state of its data source, that
modification is applied to its parent data source and is also applied
to all children of that parent. It is recursive in that it will apply all the
way up and back down an ancestor tree. This allows application
developers to create more advanced interfaces, such as tabbed
result sets where a single Guided Navigation component should
control the query state for Results Table components in individual
tabs, by establishing a relationship hierarchy in data source
configurations.

Creating a new MDEX State Manager
This topic describes the steps required to create an MDEX State Manager.

To create a new MDEX State Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:

• On Windows: .\create-mdexstatemanager.bat <your-state-manager-name>
• On Linux: ./create-mdexstatemanager.sh <your-state-manager-name>

This command creates a your-state-manager-name directory under endeca-extensions.
This directory is an Eclipse project that can be imported directly into Eclipse if you use that as your
IDE.

Note: This directory also contains a sample implementation, which is essentially identical
to the default implementation of the State Manager used by Latitude Studio.You can use
this sample implementation to help you understand how the State Manager can be used.

Implementing an MDEX State Manager
Your State Manager must implement the two methods described in this topic.

public void handleStateUpdate(PortletRequest request, MDEXState mdexState,
 QueryState newQueryState) throws QueryStateException;

public QueryState handleStateMerge(PortletRequest request, MDEXState
mdexState) throws QueryStateException;

• handleStateUpdate() is called when a portlet calls DataSource.setQueryState(qs).
This method should eventually call mdexState.setQueryState(). (However, if it determines
that, for whatever reason, the MDEXState's QueryState should not change, it is not required
to make this call.) handleStateUpdate() is also responsible for marking any data sources
impacted by the update (which could depend upon your implementation of handleStateMerge())
so that portlets that listen to them on the page will properly update. For this reason, the
addEventTrigger(PortletRequest request, MDEXState ds) method is provided for
you to call, with the passed in request object and any MDEXState objects that are considered
changed.

• handleStateMerge() is called when a portlet calls DataSource.getQueryState().You
are expected to return the QueryState that the portlet should get access to for the data source
represented by the mdexState, taking into account any data source relationships or other aspects
of your State Manager that might impact query state.

Using the MDEX State Manager
In order to use your MDEX State Manager, you must specify a new class for Latitude Studio to pick
up and use in place of the default State Manager implementation.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Managing Data Source State in Latitude Studio | Creating a new MDEX State Manager222

The your-state-manager-name directory you created contains an ant build file.The ant deploy
task places a .jar file containing your State Manager into the
portal/tomcat-<version>/lib/ext directory.

To specify your new class to Latitude Studio:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Latitude section of the Control Panel navigation panel, select Framework Settings.

4. Change the df.mdexStateManager property to the full name of your class, similar to following
example:

df.mdexStateManager = com.endeca.portal.extensions.YourStateManagerClass

5. Click Update Settings.

6. Restart Latitude Studio so the change can take effect.You may also need to clear any cached user
sessions.

Endeca® Latitude Developer's GuideEndeca Confidential

223Managing Data Source State in Latitude Studio | Using the MDEX State Manager

Chapter 27

Installing and Using the Component SDK

You can customize Latitude Studio even further by creating your own components.The Latitude Studio
Component SDK is a packaged development environment that you can use to add or modify portlets,
themes, and layout templates. The Component SDK is a modified version of the Liferay Plugins SDK.
The Endeca version includes enhancements such as the EndecaPortlet core class.

Downloading and configuring the Component SDK
You can download the Latitude Studio Component SDK from the Downloads section of the Endeca
Developer Network (EDeN).

Before installing the Component SDK, download and unzip
Latitude_<version>_endeca-portal.zip, as described in the portion of the Latitude Installation
Guide for installing Latitude Studio. This is the base Latitude Studio code, upon which the Component
SDK depends.You do not have to start Latitude Studio.

Note: Do not install the Component SDK in a directory path that contains spaces.

Note: On Windows, for steps b and d below, backslashes in paths must be escaped. That is,
use a path similar to the following:

portal.base.dir=C:\\my_folder\\Latitude_endeca-portal

instead of:

portal.base.dir=C:\my_folder\Latitude_endeca-portal

To install the Component SDK:

1. Download and unzip Latitude_<version>_components-sdk.zip to a separate directory.
This is the Component SDK itself.

2. Perform the following steps within the Component SDK:

a) Create a file components/build.<user>.properties

where <user> is the user name with which you logged on to this machine.

b) Within that properties file, add a single property
portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
Latitude_<version>_endeca-portal.zip.

c) Create a shared.properties file in the shared/ directory.
d) Edit shared/shared.properties and set the single property

portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
Latitude_<version>_endeca-portal.zip.

Configuring Eclipse for component development
Before developing Latitude Studio components in Eclipse using the Component SDK, two Eclipse
classpath variables need to be created.

Note: Depending on your version of Eclipse, the steps below may vary slightly.

To configure the Eclipse classpath variables for Latitude Studio component development:

In Eclipse, go to Window > Preferences > Java > Build Path > Classpath Variables and create
two new variables:

ExamplePathName

C:/endeca-portal/tomcat-<version>/¬

/lib

Path to the
application server
global library.

DF_GLOBAL_LIB

C:/endeca-portal/tomcat-<version>/¬

webapps/ROOT/WEB-INF/lib

Path to the Liferay
ROOT Web
application library.

DF_PORTAL_LIB

Once these variables have been created, the components generated by the Component SDK are
ready to be imported into Eclipse.

Component development overview
This topic provides a high-level overview of the component development process. Subsequent topics
explain each step given here in greater detail.

To develop a new Latitude Studio component:

1. Create the component.

2. Import the project in Eclipse.

3. Build and test the new component.

Creating a new component
New Latitude Studio components are extensions of the EndecaPortlet class.

To create a new component:

Endeca ConfidentialEndeca® Latitude Developer's Guide

Installing and Using the Component SDK | Configuring Eclipse for component development226

1. At a command prompt, navigate to the Component SDK directory, and from there to
components/portlets.

2. Run the command create.bat a-portlet-name-without-spaces "A Friendly Portlet
Name" where:

• The first argument must not have spaces. The string -portlet is automatically appended to
the name.

• The second argument is intended to be a more human-friendly name. Spaces are allowed, but
if the name has spaces, it must be enclosed in quotation marks.

An example command would be create.bat johns-test "John's Test Portlet"

Importing the project in Eclipse
Before beginning component development, you have to import the component project you just created
into Eclipse.

To import the Latitude Studio Component SDK project you just created into Eclipse:

1. Within Eclipse, choose File > Import > General > Existing Projects into Workspace.

2. As the root directory from which to import, select the directory where you installed the Component
SDK.You should see multiple projects to import.

3. Import the portlets you need to work with. If your portlets depend on shared library projects located
within the /shared directory, import those as well.

Note: It takes some time for projects to build after they are imported.

Building and testing your new component
Next, you can build your new component in Eclipse and ensure that it appears in Latitude Studio.

To build your new component in Eclipse:

1. In your new project, open the build.xml file at the top level.

2. In the outline view, right-click the deploy task and select Run as... > Ant Build.

Note: This step is only necessary if you do not have Build Automatically checked in the
Eclipse Project menu.

3. If Latitude Studio is not already running, log on to Latitude Studio and sign in.

4. Look at Latitude Studio logs to confirm that the component was picked up successfully.

5. Test your new component within Latitude Studio by choosing Add Component and looking in the
Sample category. Add the new component to your page by dragging and dropping it.

Modifying Endeca enhancements to the Component SDK
The build.xml file in the root directory of each component created by the Component SDK contains
three lines that control Endeca's build enhancements.

Endeca® Latitude Developer's GuideEndeca Confidential

227Installing and Using the Component SDK | Modifying Endeca enhancements to the Component SDK

By default, these three lines are:

<property name="shared.libs" value="endeca-common-resources,endeca-discovery-
taglib" />
 <property name="endeca-common-resources.includes" value="**/*" />
 <property name="endeca-common-resources.excludes" value="" />

The properties control the behavior described below:

• The shared.libs property controls which of the projects in the shared/ directory are included
in your component. These shared projects are compiled and included as .jar files where
appropriate.

• The endeca-common-resources include and exclude properties control which files in the
shared/endeca-common-resources project are copied into your component. By default, all
endeca-common-resources files are included, giving your component the Endeca AJAX
enhancements (preRender.jspf and postRender.jspf) and the ability to switch between
data sources in your component's preferences (dataSourceSelector.jspf). If your component
needs to override any of these files, you must exclude them via these build properties or your code
will be overwritten.

These include and exclude properties can be specified for any shared library, as shown in the
following example:

<property name="endeca-discovery-taglib.includes" value="**/*" />
 <property name="endeca-discovery-taglib.excludes" value="" />

When unspecified, includes default to "**/*" and excludes default to "".

Endeca ConfidentialEndeca® Latitude Developer's Guide

Installing and Using the Component SDK | Modifying Endeca enhancements to the Component SDK228

Chapter 28

Working with QueryFunction Classes

Latitude provides a set of QueryFunction classes to allow you to filter and query data.You can also
create and implement your own QueryFunction classes.

Provided QueryFunction classes
Latitude provides the following QueryFunction classes.

Note that the MDEX Engine for Latitude 2.1 does not support the following filters:

• EQLFilter

• RecordAggregator

Filters

Filters can be used for component development, as well as to filter the data included in a data source.
For details on configuring data sources, see the Latitude Studio Power User's Guide.

NotesConfiguration PropertiesFunction Class

attributeValue: String
NegativeRefinement¬
Filter

attributeKey: String

ancestors: String[]

attributeKey: String

rangeOperator:

RangeFilter

(LT|LTEQ|GT|GTEQ¬

|BTWN|GCLT|GCGT|GCBTWN)

value1: numeric

value2: numeric (optional)

value3: numeric (optional)

recordFilter: StringRecordFilter

attributeValue: long
RefinementFilter

NotesConfiguration PropertiesFunction Class

attributeKey: long

multiSelect:

(AND|OR|NONE) (optional)

navigable:

(true|false) (optional)

searchInterface
can be either a

searchInterface: String
SearchFilter

search interface orterms: String
an attribute enabled
for text search.

enableSnippeting
is false by default.

matchMode:

(ALL|PARTIAL|ANY|

ALLANY|ALLPARTIAL|

To enable
snippeting, set

PARTIALMAX|BOOLEAN)

enableSnippeting: boolean (optional;
default is false)

enableSnippeting
to true, and
provide a value for
snippetLength.

snippetLength: int (required if
enableSnippeting is true)

Configuration functions

Configuration functions are more advanced functions for component development.

NotesConfiguration PropertiesFunction Class

analyticsQuery: StringAnalyticsQueryConfig

searchWithIn is a list
of attributes against

searchTerm: String
AttributeValueSearchConfig

which to search;maxValuesToReturn: int (optional)
attribute is

attribute: String (optional)
automatically included in
this list.searchWithIn: List<String>

(optional - list of attributes)

matchMode:

(ALL|PARTIAL|ANY|

ALLANY|ALLPARTIAL|

PARTIALMAX|BOOLEAN) (optional)

relevanceRankingStrategy:
String (optional)

returnFullPath: boolean
(optional)

BreadcrumbsConfig

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with QueryFunction Classes | Provided QueryFunction classes230

NotesConfiguration PropertiesFunction Class

At least one of
dimValId or

dimValId: String

dimensionId: String

ExposeRefinement

dimensionIdis
required. ownerIdcanownerId: String (optional)
be the ID of a NavConfig
instance.

dimExposed: boolean (optional)

exposeAll: boolean (optional)
dimExposed indicates
whether the attribute is
exposed.

maxRefinements: int (optional;
default is 100)

exposeAll indicates
whether the attribute is

groupKey: String (required)

groupExposed: boolean (optional;
default is true)

fully exposed (that is,
the "More..." link is
selected).

groupExposed
exposes or closes an
entire group.

If no
RefinementGroupConfigs

exposeAllRefinements: boolean
NavConfig

are specified, noList<RefinementGroupConfigs>:
list of refinement group configs attribute groups or

attributes will be
returned with the query.

Each new
RecordDetailsConfig

recordSpecs: Object (key-value
pair)

RecordDetailsConfig

is appended to the
previous
RecordDetailsConfig

recordsPerPage: long
ResultsConfig

offset: long (optional)

columns: String[] (optional)

numBulkRecords: int (optional)

Specifies that results
summarization should

ResultsSummaryConfig

be included in returned
results, but does not
preclude other results.

SearchKeysConfig

property: String
SortConfig

ascending: boolean

SearchAdjustmentConfig

Endeca® Latitude Developer's GuideEndeca Confidential

231Working with QueryFunction Classes | Provided QueryFunction classes

Creating a custom QueryFunction class
This topic describes the steps required to create a new QueryFunction class.

The steps below create a QueryFilter class, but the steps are analogous for creating a QueryConfig
class.

Note: In order to create QueryFunction classes, you must install the Component SDK, which
is a separate download.

To create a new QueryFilter class:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:

• On Windows: .\create-queryfilter.bat your-query-filter-name

• On Linux: ./create-queryfilter.sh your-query-filter-name

This command creates a <your-query-filter-name>-filter directory under
endeca-extensions.This directory is an Eclipse project that can be imported directly into Eclipse
if that is your IDE.

The endeca-extensions directory also contains an empty sample implementation of either a
QueryFilter or a QueryConfig, depending on which batch script you ran. This has no effect on
QueryState in its original form.

The skeleton implementation creates source files that do the following:

• Extends either QueryFilter or QueryConfig.
• Creates stubs for the abstract methods you need to implement:
applyToDiscoveryServiceQuery, and toString.

• Creates default implementations for getSetters and getGetters. These use static setters
and getters member properties that use reflection to extract the appropriate methods from the
class.

• Creates a no-argument, protected, empty constructor. (The protected access modifier is optional,
but recommended.)

• Creates a private member variable for logging.

Implementing a custom QueryFunction class
This topic describes the steps needed to implement your new QueryFunction class.

To implement your new QueryFunction, you must:

• Add private filter or configuration properties.
• Create getters and setters for any filter properties you add.
• For any property that is not a String, create a setter property that takes a String and does conversion.
• Define a no-argument constructor (protected access modifier optional, but recommended).
• Implement the abstract methods getSetters, getGetters, applyToDiscoveryServiceQuery,

and toString.You can use the getSetters and getGetters methods from the sample
QueryFunction.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with QueryFunction Classes | Creating a custom QueryFunction class232

Note: Because .toString() is used in .equals(), you should make sure that two
QueryFunction objects that are the same return the same value. Specifically,
.toJSON().toString() does not guarantee ordering of JSON properties, so two
QueryFunction objects with the same member values may not return the same value if
.toString() was implemented using .toJSON().toString.

Deploying a custom QueryFunction class
In order to use your new QueryFunction, you must deploy it to Latitude Studio.

The your-query-filter-name-filter|config directory that you created contains an ant build
file.

The ant deploy task places a .jar file containing the custom QueryFunction into the
endeca-portal/tomcat-<version>/lib/ext directory.

Note: If you are not using the default portal bundle, put the new QueryFunction.jar into the
container's global classpath.

Restart Latitude Studio so that the portal picks up the new class file.

Once you have deployed your custom QueryFunction, you can use it in any component.

Adding the custom QueryFunction .jar file to your Eclipse
build path

If you are using Eclipse as your IDE, you need to add the new .jar file to your build path of your
custom component.

To add the new .jar file to your Eclipse build path:

1. Right-click on the project, and select Build Path > Configure Build Path.

2. Click the Libraries tab.

3. Click Add Variable, select DF_GLOBAL_LIB (which you should have added while setting up the
SDK), and then click Extend.

4. Open the ext/ directory and select the .jar file containing your custom QueryFunction.

5. Click OK.

After adding the .jar file to the build path, you can import the class, and use your custom
QueryFunction or QueryConfig to modify your QueryState.

Obtaining query results
The Results class is used to represent results of queries.

Endeca® Latitude Developer's GuideEndeca Confidential

233Working with QueryFunction Classes | Deploying a custom QueryFunction class

Components are always encouraged to add the relevant QueryConfig to specify what types of results
they need. Calls to DataSource.execute(), without any arguments, will continue to work on ENE
Presentation API data sources, but are deprecated.

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new NavConfig());
QueryResults results = getDataSource(request).execute(query);

You can then get the underlying API results and do whatever manipulation is required by your
component.

Results discoveryResults = results.getDiscoveryServiceResults();

Before executing, you can also make other local modifications to your query state by adding filters or
configurations to your query:

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new ResultsConfig());
query.addFunction(new RecordFilter("Region:Midwest"));
QueryResults results = getDataSource(request).execute(query);

When you need to update a data source's state so that all associated components are updated, you
must use QueryState instances.

DataSource ds = getDataSource(request);
QueryState query = ds.getQueryState();
query.addOperation(new RecordFilter("Region:Midwest"));
ds.setQueryState(query);

Endeca ConfidentialEndeca® Latitude Developer's Guide

Working with QueryFunction Classes | Obtaining query results234

Chapter 29

Localizing Latitude Studio

Latitude Studio is an internationalized application that can be adapted for use in different locales.This
section describes how to localize your Latitude Studio components.

Latitude Studio localization scenarios
Latitude Studio localization refers to two sets of tasks.

The first case is translating a component that has already been localized. In this scenario, you are
applying the translation to components whose message strings have already been externalized to a
resource bundle. Details on modifying and deploying a translated component appear in the next section.

The second, more involved case is developing or updating a component so that it supports localization.
For details, see the section beginning with the topic "Setting up a component for localization."

Important: Latitude Studio supports only English data.

About adding a translation to a released component
This section discusses translating a component that has already been localized.

In this scenario, the component's English-language message strings have been externalized into the
portlet WAR file's resource bundle. These strings can be translated to the target language and then
made available to Latitude Studio.

Note: If you are working with a double-byte, extended character set language, consult the
section "Working with non-Unicode characters" that appears later in this chapter before following
the procedure below.

Adding a translation to a released component

This procedure can be followed whether you want to translate the content yourself or obtain the
translation from a third party.

To add translated message strings to a released component:

1. Unzip the .war file of the localized component you want to modify.

2. Edit its portlet.xml file to enable the additional locale you want to support. For example, to add
French, include <supported-locale>fr</supported-locale>.

3. In WEB-INF/classes/com/endeca/ (or other location, based on your component's class
structure), generate a Resource_[locale].properties file for the new language. This file
should contain target-language values of the properties used in the component.To see the supported
properties, refer to the WEB-INF/classes/com/endeca/Resource_en.properties file
already in the component.Your file should contain a version of each of those messages in your
target language.

4. Re-zip the .war file of the component and place it in the endeca-portal/deploy directory.
Liferay hot-deploys the component.

5. Repeat steps 1 through 4 for each component you want to enable for your target language.

6. Start Latitude Studio and add your components, as well as the Language component, to the page.

7. In the Language component, click the flag associated with your target language.
Latitude Studio displays the component messages from your resource bundle in your target language.
In addition, because the portal itself is also localized, menus and other portal controls also appear
in your target language.

8. In the Language component, click the United States flag to switch back to English.

Setting up a component for localization
This topic describes the steps needed to develop or update a component so that it supports localization.

To set up a portlet for localization:

1. Update the portlet.xml file to specify the locales this portlet will support.

The following example enables English and German:

<supported-locale>en</supported-locale>
<supported-locale>de</supported-locale>

2. Update portlet.xml to specify the location of the portlet's resource bundle. (The resource bundle
is the mechanism the Liferay Portal uses to add localized content to a portlet.)

Continuing our example, we will include resource files Resource_en.properties and
Resource_de.properties in the sample portlet's com/endeca/portlet/sample/ directory:

<resource-bundle>com.endeca.portlet.sample.Resource</resource-bundle>

3. Create resource bundles for your supported languages in
WEB-INF/src/[path/to/resource/bundle]_[locale].properties (for example, the
bundle for English for an Endeca component would be
WEB-INF/src/com/endeca/portlet/sample/Resource_en.properties). For the most
part, this is a simple properties file with key/value pairs for message IDs and their locale-specific
messages.

4. Update your portlet's implementation to use the LanguageUtils class to retrieve messages from
the resource bundle, rather than hard-coding message strings.This should be done for all messages
displayed to the user, including form labels, portlet titles (and other metadata), warning and error
messages, preferences pages, help text, and so on. See below for details on how to use the
LanguageUtils class.

Note: See the sections below for details about portlet-specific messages and messages with
tokens.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Localizing Latitude Studio | Latitude Studio localization scenarios236

Note: You may note that the resource-bundle attribute is different from the file path you edit
messages in.This is because the portlet build process combines common message strings from
shared libraries with your portlet-specific messages to create the final
com/endeca/Resource_[locale].properties file in the compiled portlet WAR. For more
information, see the topic below on build process interaction with localization.

Build process interaction with localization

You should edit localization messages in a different resource file from the one you configure the portlet
to read messages from.

The build process combines resource files into a single resource file that the component reads messages
from.The build combines the component's com/endeca/PluginResource_[locale].properties
file and any file found in a shared library's directory matching
com/endeca/*Resource_[locale].properties into a single
com/endeca/Resource_[locale].properties file. The messages from your component's
PluginResource_[locale].properties appear at the top of the final
Resource_[locale].properties, so you can easily override any messages from shared libraries.
However, if your component includes more than one shared library, no guarantee can be made about
the order in which the resource files from shared libraries will be appended.

Localizing your own shared libraries

If you have included localized messages in your shared libraries, make sure you choose a prefix other
than Plugin for the resource file com/endeca/[prefix]Resource_[locale].properties. If
you do not, this file will override your component's
com/endeca/PluginResource_[locale].properties file during the build, and your final
com/endeca/Resource_[locale].properties will be incorrect. Endeca recommends that you
choose a prefix for your library's resource file that is distinct and similar to your library's name to avoid
file name conflicts with components or other shared libraries.

Switching the locale of a component

Latitude Studio includes resources that you can use to switch a component's locale.

The Language component, described in the next topic, can be used to change the locale of a portlet.

There are also controls available in the Display Settings section of Liferay's Control Panel (as well
as configuration properties in the portal.properties file) for setting the default container locale
and the available locales.

For full details on using these Liferay features, see the Liferay Portal documentation.

Adding the Language component

To change the locale of the server, Endeca recommends using the Language component to select
an alternate language.

The Language component is included in the default Add Component menu.

To add the Language component:

1. Point the cursor at the Dock in the upper-right corner of the page. The Dock is labeled "Welcome
<user name>!"

2. In the drop-down menu, select Add Component.

Endeca® Latitude Developer's GuideEndeca Confidential

237Localizing Latitude Studio | Latitude Studio localization scenarios

http://www.liferay.com/documentation/liferay-portal/5.2/getting-started

The Add Component dialog box opens.

3. In the Add Component dialog box, expand the Tools category.
A list of the available Tools components appears.

4. Click Add, or drag the Languages component to your portal page.

5. Click the flag representing the language you want to use. The portal will switch to that language,
replacing English with the target language.

For example, after clicking the Spanish flag, the Dock drop-down menu looks like this:

Including common externalized strings

All Latitude Studio components tend to include common messages, like those associated with the
data source selector and those associated with saving preferences.The default localizations for these
messages are automatically included in your compiled component.

The messages below are the default values.You can change or override these by including the same
keys in your PluginResource_[locale].properties file.

Common messages

df.portlet-does-not-support-datasource-api=Portlet does not support the API
 used by this data source.

Data source selector messages
df.select-a-datasource=Select a data source
df.update-datasource=Update data source

df.no-data-source-selected=No data source selected for this portlet. Go to

Endeca ConfidentialEndeca® Latitude Developer's Guide

Localizing Latitude Studio | Latitude Studio localization scenarios238

 Preferences and select a data source.
df.no-data-source-specified=Error updating data source binding. No data
source was specified in the request.
df.data-source-binding-unchanged=Data source binding was not changed from
\"{0}\".
df.data-source-binding-unsupported-api=Data source binding was not changed
 from \"{0}\". Portlet does not support the API used by the data source
\"{1}\".
df.data-source-binding-changed-successfully=Data source binding successfully
 changed to data source \"{0}\".
df.data-source-binding-error=Error updating data source binding with new
data source name \"{0}\"; please notify your system administrator.

Save preferences messages
df.save-prefs-success=Preferences updated successfully.
df.save-prefs-error=There was an error saving your preferences.
df.save-analytics-prefs-success=Analytics preferences updated successfully.
df.save-analytics-prefs-error=There was an error saving your analytics
preferences.

Note: Latitude Studio retrieves these localized messages with their English defaults. If the
messages are not included in a portlet's resource bundle, Latitude Studio uses the hard-coded
English defaults without displaying an error.

Including component-specific messages

Resource bundles should include a handful of component-specific messages that allow Latitude Studio
to localize the name, description, keywords, and category of the component.

To localize the component's metadata, include the following messages:

javax.portlet.title=Sample Endeca Portlet
javax.portlet.short-title=Sample Endeca Portlet
javax.portlet.keywords=Sample, Endeca, Portlet

Additionally, if your component is displayed in the Add Component menu as part of a custom category
(or sub-category), you may need to localize the name of the category. Take the following categories
as an example:

<display>
 <category name="my.new.category">
 <category name="my.new.sub-category">
 <portlet id="portlet_A" />
 </category>
 </category>
</display>

To localize the category names, have your component's resource bundle include the following
messages:

my.new.category=My Category
my.new.sub-category=My Sub-Category

If multiple components declare the same categories, they should all include these messages, since
the component container uses the localized messages from the first component that specifies them.

Using tokens in message strings

Message strings can include tokens that are substituted at run-time.

Endeca® Latitude Developer's GuideEndeca Confidential

239Localizing Latitude Studio | Latitude Studio localization scenarios

For example, a search breadcrumb may need to display a spelling correction message like "No matches
found for 'bearign'; showing results for 'bearing'". This message would appear in a .properties file
with tokens for the two terms, as in the following example:

autocorrect-msg=No matches found for \'{0}\'; showing results for \'{1}\'

When including this message in your portlet with the LanguageUtils utility, you pass in a list of
parameters to substitute for these tokens. This substitution uses the class
java.text.MessageFormat. Refer to the javadoc for that class for the options available with token
substitution. Tokens may also do advanced substitution, such as date substitution formatted
appropriately for the locale.

Using the Latitude Studio LanguageUtils class

The core class provided by Latitude Studio to access localized messages is
com.endeca.portlet.util.LanguageUtils. There are several ways to use this class.
Calling static methods from Java
You can access LanguageUtils by calling static methods from your Java class.

The following example shows the static use of the getMessage methods to retrieve messages (with
token substitution in the third line).

LanguageUtils.getMessage(request, "reset");
LanguageUtils.getMessage(request, "num-records");
LanguageUtils.getMessage(request, "search-for", new String[]{ "American"
});

A number of convenience method signatures are provided, allowing the user to specify the portlet
request and message ID, and optionally to include parameters for token substitution and a default
string. The default string may be useful for shared localized messages, allowing portlets to function
with a default (un-localized) message if the localized message is not retrieved from the resource
bundle.

All method signatures require specifying the PortletRequest.

Using the Discovery taglib in JSP
The Discovery taglib provides a tag for retrieving localized messages. This is the recommended
way to retrieve localized messages in JSPs.

The following is an example using the taglib:

<%@ taglib uri='http://endeca.com/discovery' prefix="edisc"%>
<edisc:getMessage messageName="no-matching-values"/>

<edisc:getMessage messageName="message-with-params">
 <edisc:param value="test" />
</edisc:getMessage>

Using the LanguageUtils class from JSP
You can access LanguageUtils to retrieve localized messages in JSP pages.

This is similar to accessing LanguageUtils from Java.

<%@ page import="com.endeca.portlet.util.LanguageUtils" />
<portlet:defineObjects />
<%= LanguageUtils.getMessage(renderRequest, "reset") %>

Instantiating the object and call instance methods from Java/JSP
You can instantiate the LanguageUtils object and call methods from Java/JSP.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Localizing Latitude Studio | Latitude Studio localization scenarios240

This approach provides the same convenience methods as the static approach, but simplifies the
method signatures by removing the need to specify the request on every call. This may be useful for
developers who make many calls for localized strings and would prefer to instantiate the object once
and simplify the subsequent method calls.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%
LanguageUtils lang = new LanguageUtils(renderRequest);
%>
<%= lang.getMessage("reset") %>
<%= lang.getMessage("num-records", "Num records:") %>
<%= lang.getMessage("search-for", "Search for \"{0}\"", new String[]{
"American" }) %>

Retrieving all messages from the resource bundle in one call from Java/JSP
You can retrieve all messages at once, in a single call from Java/JSP.

This approach may improve performance in portlets that require frequent access to the resource bundle
and want to consolidate the message retrieval to a single call.The rest of the page then makes lookups
into the loaded map.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%@ page import="java.util.Map" %>
<%
Map<String, String> messages = LanguageUtils.getAllPortletMessages(render¬
Request);
%>
<%= messages.get("reset") %>
<%= messages.get("num-records") %>
<%= LanguageUtils.replaceMessageTokens(messages.get("search-for"), new
String[]{ "American" }) %>

Working with non-Unicode characters

This section describes how to work with non-Unicode characters in Latitude Studio.

Because Latitude Studio is Java-based, it can only read Unicode or Latin-1 characters. In the case of
other characters, you can work around this limitation by converting the native file to ASCII, using a
converter such as native2ascii, which is freely available as part of the JDK.

Keep in mind the following guidelines:

1. Use UTF-8 as your encoding. Lesser encodings cannot properly represent Japanese characters.
2. Pick a valid character set, such as Shift-JIS or UTF-8/Unicode, and stick with it.You cannot change

character sets midstream—if you change character sets, you must re-enter your values.
3. Make sure the character set in your text editor matches the character set in native2ascii.

More information about working with non-Unicode characters can be found on the Liferay Portal
Website.

Localizing a component to a non-Unicode language
The following example demonstrates how to localize a component to a double-byte, extended character
language.

If you want to use this example as a learning exercise but do not have non-Unicode text of your own
to deploy, you can machine-translate your English-language file and use that text in step 5 below.

To localize your portlet to a non-Unicode language (such as Japanese):

Endeca® Latitude Developer's GuideEndeca Confidential

241Localizing Latitude Studio | Latitude Studio localization scenarios

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html

1. Within your portlet, create a file PluginResource_<locale-code>.properties.native at
the appropriate location. For example, if you are working with Japanese, the file name would be
PluginResource_ja.properties.native.

2. Commit both the .native and .properties file to your portlet. The .properties file is used
by the portlet, but because that file uses escaped Unicode notation, it is extremely hard for humans
to read. It is easier to make any necessary changes in the .native file.

3. Open the .native file in an encoding- and character-set-aware text editor such as Notepad++.
Make sure the .native file uses UTF-8 as its encoding and Shift-JIS as its character set.

4. Copy the contents of the English resource bundle into the .native file.

5. Within your text editor, using your translation service, replace the English values with the Japanese
values.

6. Save the file.

7. From the command line, run Java's native2ascii converter. This tool is typically included in the
JDK. In the encoding argument, specify Shift_JIS as the character set, your .native file as the
input, and your final .properties file as the output.

native2ascii -encoding Shift_JIS PluginResource_ja.properties.native
PluginResource_ja.properties

8. Commit both the .native and .properties file to your portlet. The .properties file is used
by the portlet, but uses escaped Unicode notation, which is hard to read.The .native file is easier
to modify.

Obtaining more information about portal localization

This topic provides links to additional information about localization provided by Liferay.

For information about editing Liferay’s Language_<langcode>.properties file, which Liferay uses
to localize the portal's strings, see the section "Languages and Time Zones" in the Liferay Portal
Administrator's Guide.You can use this information to modify Liferay's translations as necessary.

For extensive documentation on Liferay language display customization, see this wiki page.

Endeca ConfidentialEndeca® Latitude Developer's Guide

Localizing Latitude Studio | Latitude Studio localization scenarios242

http://www.liferay.com/documentation/liferay-portal/5.2/administration
http://www.liferay.com/documentation/liferay-portal/5.2/administration
http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Languagedisplay+customization

Appendix A

Suggested Stop Words

Stop words are words that are set to be ignored by the Endeca MDEX Engine.

About stop words
Typically, common words (like "the") are included in the stop word list. In addition, the stop word list
can include the extraneous words contained in a typical question, allowing the query to focus on what
the user is really searching for.

Stop words are counted in any search mode that calculates results based on number of matching
terms. However, the Endeca MDEX Engine reduces the minimum term match and maximum word
omit requirement by the number of stop words contained in the query.

Note: Did You Mean can in some cases correct a word to one on the stop words list.

List of suggested stop words
The following table provides a list of words that are commonly added to the stop word list; you may
find it useful as a point of departure when you configure a list for your application.

In addition to some or all of the words listed below, you might want to add terms that are prevalent in
your data set. For example, if your data consists of lists of books, you might want to add the word book
itself to the stop word list, since a search on that word would return an impracticably large set of
records.

You can add stop words using the Latitude Data Integrator.

whenmedoa

wherenotfindabout

whyorforabove

withoverfroman

youshowhaveand

yourthehowany

underIare

whatiscan

Endeca ConfidentialEndeca® Latitude Developer's Guide

Suggested Stop Words | List of suggested stop words244

Index

A

admin operations
updateaspell 177

All search mode 152
AllAny search mode 153
AllPartial search mode 152
alphanumeric characters, indexing 172
Any search mode 153
API Reference 20
Aspell dictionary

about 178
assignments 22
attribute groups

about 115
configuring 116
requesting a list 119
retrieving in Conversation Service 117

attributes 22
configuring as record searchable 128
multi-select 87, 103
performance impact when displaying 62
RefinementConfig element 92
standard and managed 85
unique 23

automatic phrasing 134
available search keys, retrieving 130

B

basic queries
Endeca record 16
navigation 16
value search 16

between range filter queries 77
boolean

attribute type 23
Boolean syntax for record filters 67
breadcrumbs 105

configuring in Latitude Studio 106
returning in Conversation Service 108

build process and localization 237
building and testing a new component 227
bulk export of records

performance impact 60

C

caching for record filters 68
categories of characters in indexed text 172
characters

indexing alphanumeric 172
indexing non-alphanumeric 172

characters (continued)
indexing search 172

class summary
Security Manager 217
State Manager 221

common externalized strings 238
Component SDK

about 225
configuring 225
configuring Eclipse for 226
downloading 225
modifying Endeca enhancements to 228

components
adding localized message strings to 235
and localization 237
creating 226
development overview 226
mapping to MDEX Engine features 19
switching locales 237

configuring
classpath variables for the Component SDK 226
snippeting 161
value search 143

Conversation Web Service 46
retrieving refinement information 90

counts
value search 149

creating
custom QueryFunction classes 232
MDEX Security Manager 218
MDEX State Manager 222
query for value search 146

cross-field matching 138

D

data model
MDEX Engine data model 21

data source state
managing 221

data sources
obtaining results 234

DDR 30
dead-end query results, avoiding 88
deploying custom QueryFunction classes 233
did you mean 135
Did You Mean feature, See Spelling Correction and DYM
Dimension Description Record 30
Discovery taglib 240
downloading the Component SDK 225
duration

attribute type 23

E

Eclipse
adding jars for custom QueryFunctions 233
configuring classpath variables 226

enabling hierarchical record search for managed
attributes 128
Endeca enhancements to the Component SDK 228
Endeca records

displaying in Latitude Studio 53
paging through a record set 57
sorting 63

example
localizing a non-Unicode portlet 241

exporting a large number of records
retrieving records with the API 59

expression evaluation of record filters 70
Ext JS

licensing requirement 215
externally managed attributes 89

G

geocode range filter 77
Global Configuration Record 31
global order of refinements

configuring 86
greater-than range filter queries 76

H

hierarchical record search 128
hierarchy

requesting for refinements 98

I

implementing
custom QueryFunction classes 232
MDEX Security Manager 218
MDEX State Manager 222
Phrase relevance ranking 196
phrase search 155
search characters 171
search interfaces 137
search modes 153
wildcard search 165
wildcard search for a search interface 167
wildcard search in record search 166

implicit refinements
about 95

importing a project into Eclipse 227
indexing

non-alphanumeric characters 172
search characters 172

integer
attribute type 23

introduction to extending Latitude Studio 215

L

Language component
adding 237

LanguageUtils
calling static methods from the JSP 240
instantiating from Java/JSP 241
retrieving all messages at once 241
using from JSP 240

large OR filter performance impact 70
Latitude Studio

configuring breadcrumbs 106
configuring range filters 74
extending 215
implementing record search 129
mapping components to MDEX Engine features 19
obtaining more information 216

Leaf precedence rules 123
less-than range filter queries 76
licensing Ext JS 215
Liferay portal

accessing documentation for 216
localization

adding a translation to a component 235
adding the Language component 237
build process 237
including common externalized strings 238
non-Unicode example 241
of shared libraries 237
portlet-specific messages 239
setting portlets up for 236
switching locales 237
tasks 235
using tokens in message strings 240

M

managed attributes 26
enabling for refinements 85
working with external 89

managing data source state 221
MDEX Engine

basic queries 16
flags for search characters 173
overview 16
record search query processing order 132

MDEX Security Manager
about 217
creating 218
implementing 218
using 218

MDEX State Manager
creating 222
implementing 222
using 223

modifying
Endeca enhancements to the Component SDK 228

multi-assign attributes 22
multi-select AND 87

Endeca® Latitude246

Index

multi-select attributes
configuring 87
displaying 103
handling in an application 87
performance impact 88
refinements 86

multi-select managed attributes
avoiding dead-end query results 88

multi-select OR
about 88
refinement counts 88

N

navigation filtering 135
non-alphanumeric characters, indexing 172
non-Unicode characters, working with 241
NumRecords element 58

O

obtaining additional information 216
obtaining data source results 234
one-way thesaurus entries 185
OrderByRecordCount attribute for refinement order 102
ordering

value search results 150
overview

MDEX Engine 16
overview of component development 226

P

PageOperator type 58
PaginationControl element 59
paging

through a record set 57
Partial mode and stop words 152
Partial search mode 152
PartialMax mode 153
PDR 27
performance impact

displaying attributes 62
displaying refinements 89
multi-select attributes 88
phrase search 157
range filters 74
record search 136
refinement statistics 90
snippeting 162
value search 144
wildcard search 169

Phrase relevance ranking module, configuring 196
phrase search

examples of queries 156
implementing 155
performance impact 157

PopRangeFilterOperator 79

portal localization
obtaining more information 242

portlets
providing portlet-specific messages 239
setting up for localization 236
switching locales 237

positional indexing, about 156
precedence rules

about 121
configuring 124
implicit attribute value selection 124
Leaf type 123
standard attribute 123
Standard type 123
targets 121
triggers 121

primary-key standard attributes 23
primitive term and phrase lookup 135
primordial records 21
processing order for record search queries 132
Property Description Record 27

Q

query expansion in Phrase module, configuring 196
query matching semantics 172
QueryFunction classes

adding jars to the Eclipse build path 233
creating custom 232
deploying custom 233
implementing custom 232
provided 229

R

range filters
between query format 77
configuring in Latitude Studio 74
geocode 77
greater-than query format 76
less-than query format 76
overview 73
performance impact 74
query examples 80
RangeFilterOperator 75
removing range filter components 79
rendering results 79
supported attribute types 73
troubleshooting 74

RangeFilterOperator 75
ranking results for value search 150
record filtering during record searches 133
record filters

about 67
caching in MDEX Engine 68
expression evaluation 70
large scale negation 71
performance impact 70
RecordFilterOperator 69

247

Index

record filters (continued)
syntax 68
using Boolean attributes 68

record search
about 127
auto correction 134
available search keys 130
examples 127
features for controlling it 128
hierarchical record search 128
making an attribute record searchable 128
MDEX Engine processing logic 132
performance impact 136
SearchOperator 131
specifying relevance ranking strategies 206
stemming 135
thesaurus expansion 134
tokenization 134
troubleshooting 136
using in Latitude Studio 129
when to use 142

RecordListConfig element 55
records

definition of 21
examples 24
types of 21
XML representation 24

records schema
about 26

RecordsPerPage element 58
refinement counts

configuring whether to return 86
for multi-select OR refinements 88

refinement order
OrderByRecordCount attribute 102
query-time control 101

refinement statistics
disabling 86
displaying 102
performance impact 90
retrieving 95, 103

RefinementConfig element 92
refinements

accessing hierarchy 98
configuring global order 86
displaying 91
displaying counts 102
displaying in Latitude Studio 85
limiting the number 97
performance impact of 89
query-time control of ordering 101
retrieving with Conversation Service API 90
sorting 86

relevance ranking
Exact module 192
Field module 192
First module 193
Frequency module 193
Glom module 194
Interpreted module 194

relevance ranking (continued)
list of modules 191
Maximum Field module 195
Number of Fields module 195
Number of Terms module 195
overview 191
performance impact 211
Phrase module 195
Proximity module 200
recommended strategies 209
resolving tied scores 204
sample scenarios 206
specifying for queries 205
Spell module 200
standalone 204
Static module 201
Stem module 201
Thesaurus module 201
Weighted Frequency module 201

requesting
record filters 69
search interfaces 140

S

search characters
categories of characters 172
implementing 171
indexing alphanumeric 172
indexing specified search characters 172
MDEX Engine flags for 173
query matching semantics 172
using 171

search interfaces
about 137
configuring wildcard search for 167
cross-field matching 138
implementing 137
requesting with the API 140
troubleshooting 140

search modes
All 152
AllAny 153
AllPartial 152
Any 153
implementing 153
list of, valid 151
Partial mode 152
PartialMax mode 153
query parameters 154

search query processing 173
search query processing order 132
SearchOperator 131
security extensions to Latitude Studio 217
Security Manager

class summary 217
shared libraries

localizing 237
single-assign attributes 22

Endeca® Latitude248

Index

snippeting
about 159
configuring 161
enabling per query 163
performance impact 162
retrieving with the Conversation Web Service 162
tips 162

sorting
refinements 86

sorting records
changing sort order for queries 64
global sort order 63
overview 63
troubleshooting problems 65

spelling
enabling 177

spelling correction 134
Spelling Correction and DYM

about 175
Aspell module 178
configuring 179
performance impact 180
retrieving with Conversation Web Service 178
troubleshooting 180
using word-break analysis 180

standard attributes
assignments 22
examples 24
multi-assign 22
primary key 23
single-assign 22
types 23
XML representation 24

standard attributes vs managed attributes 26
Standard precedence rules 123
State Manager

class summary 221
stemming 135
stemming and thesaurus

about 183
about the thesaurus 184
adding thesaurus entries 186
interaction with other features 187
performance impact 188
sort order of stemmed results 184
troubleshooting the thesaurus 186

stop words
about 243
and Did You Mean 180
list of suggested 243

stop words and Partial mode 152
string

attribute type 23
synonyms used for search 129
syntax

record filters 68
system records 27

Dimension Description Record 30
Global Configuration Record 31
Property Description Record 27

T

taglib
use in localization 240

targets for precedence rules 121
taxonomies, external 89
thesaurus, See stemming and thesaurus
thesaurus expansion 134
tokenization in record search 134
tokens

using in message strings 240
translation

adding to a released component 235
triggers for precedence rules 121
troubleshooting record search 136
two-way thesaurus entries 185

U

unique attributes 23
updateaspell admin operation 177
using

MDEX Security Manager 218
MDEX State Manager 223

V

value search
about 141
and wildcard search interaction 143
Conversation Web Service API 144
creating a query 146
enabling standard attributes for it 143
limiting results per attribute 148
number of matched results 149
ordering results 150
performance impact 144
query format 145
ranking results 150
restricting to specified attributes 148
results from spelling corrections 176
specifying relevance ranking strategies 206
troubleshooting 142
using in Latitude Studio 143
when to use 142

ValueSearchConfig type 145

W

Web services API
architecture 15

wildcard search
about 165
configuring for a search interface 167
configuring in text search 166
configuring in value search 167
false positive matches and performance 168
front-end application tips 168
implementing 165

249

Index

wildcard search (continued)
in value searches 143
interaction with other features 166
performance impact 169
retrieving error messages 168

word-break analysis
about 180

working with non-Unicode characters 241
WSDL documentation 20

Endeca® Latitude250

Index

	Contents
	Copyright and disclaimer
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction
	MDEX Engine Interfaces
	The data flow
	MDEX Engine overview
	Basic queries
	Endeca Web services
	Latitude Studio components and the MDEX Engine
	About the MDEX Engine API Reference
	MDEX Engine configuration items

	MDEX Engine Concepts
	MDEX Engine data model
	Records
	Attributes
	Assignments on standard attributes
	Unique attributes
	Primary key attributes
	Attribute types

	XML representation of records and attributes
	Examples of records and standard attributes
	Managed attributes

	System records
	Property Description Record (PDR)
	Dimension Description Record (DDR)
	Global Configuration Record (GCR)

	Endeca Web Services
	Using the Configuration Web Service
	About the Configuration Web Service
	Loading an attribute schema

	Using the Conversation Web Service
	About the Conversation Web Service
	Conversation Web Service interface

	Record Features
	Working with Endeca Records
	Displaying Endeca records with Latitude Studio
	Implementing export of records in Latitude Studio
	Displaying Endeca records with the API
	Record list configuration
	RecordList result
	Paging through a record set
	Retrieving large numbers of records
	Performance impact of requesting large numbers of records

	Displaying attribute values for records in Latitude Studio
	Displaying attribute values with the API
	Performance impact when displaying attribute values

	Sorting Endeca Records
	About record sorting
	Global sort order of records
	Query-time sort ordering
	Troubleshooting application sort problems

	Record Filters
	About record filters
	Record filter syntax
	Record filter result caching
	Requesting record filters with the API
	Record filter performance impact
	Interaction with spelling auto-correction and spelling DYM
	Expression evaluation

	Using Range Filters
	About range filters
	Supported attribute types
	Implementing range filters in Latitude Studio
	Troubleshooting range filter problems
	Performance impact for range filters
	Implementing range filters with the API
	Operator for range filters
	Less-than range filter format
	Greater-than range filter format
	Between range filter format
	Geocode range filter format
	Removing range filter operators
	Rendering the range filter results
	Examples of range filter parameters

	Attribute Features
	Working with Refinements
	About refinements
	Displaying refinements in Latitude Studio
	Configuring managed attributes for query refinement
	Configuring the global order of refinements
	Configuring refinement counts
	About multi-select attributes
	Configuring multi-select attributes
	Handling multi-select attributes in an application

	About externally managed attributes
	Performance impact for displaying refinements
	Performance impact of refinement ordering
	Performance impact of refinement counts
	Working with refinements using the API
	Retrieving refinements with the API
	Refinements configuration format
	Retrieving attributes that have refinements
	Creating a new query from refinement attribute values
	Limiting the number of refinements to be displayed
	Retrieving the full path of hierarchical refinements

	Retrieving the order of refinements with the API
	Using query-time control of refinement ordering
	Enabling the refinement order at query time

	Retrieving refinement counts with the API
	Retrieving refinement counts for records

	Retrieving multi-select refinements with the API

	Using Breadcrumbs
	About breadcrumbs
	Implementing breadcrumbs in Latitude Studio
	Configuring breadcrumbs

	Implementing breadcrumbs with the API
	Retrieving breadcrumbs in a navigation query
	Retrieving breadcrumbs in a search query
	Request and response with spelling correction
	Request and response with DYM

	Using Attribute Groups
	About attribute groups
	How attribute groups are used in Latitude Studio
	About configuring attribute groups
	Implementing attribute groups with the API
	Retrieving attribute groups
	Retrieving lists of attribute groups

	Using Precedence Rules
	About precedence rules
	Precedence rule types
	Standard versus Leaf precedence rules
	Precedence rule Property type

	Configuring precedence rules
	Precedence rules and implicit attribute value selection

	Search Features
	Using Record Search
	Record search overview
	Configuring attributes for record search
	Enabling hierarchical record search
	Adding search synonyms to attribute values

	Implementing record search in Latitude Studio
	Implementing record search with the API
	Obtaining the available search keys
	Record search operator

	Search query processing order
	Step 1: Record filtering
	Step 2: Endeca Query Language filters
	Step 3: Tokenization
	Step 4: Auto correction (spelling correction and automatic phrasing)
	Step 5: Thesaurus expansion
	Step 6: Stemming
	Step 7: Primitive term and phrase lookup
	Step 8: Did You Mean
	Step 9: Navigation filtering
	Step 10: Analytics
	Step 11: Relevance ranking

	Tips for troubleshooting record search
	Performance impact of record search

	Working with Search Interfaces
	About search interfaces
	Implementing search interfaces
	Options for allowing cross-field matches
	Additional search interface options
	Search interfaces in queries
	Tips for troubleshooting search interfaces

	Using Value Search
	About value search
	How value search works
	When to use value and record search
	Enabling value search
	Utilizing value search in Latitude Studio
	Interaction of value search and wildcard search
	Performance impact of value search
	Implementing value search with the API
	Value search query format
	Constructing a value search query
	Restricting value search to specific attributes
	Limiting the number of results per attribute
	Retrieving the number of matching results
	Ordering results
	Specifying relevance ranking strategy for results

	Using Search Modes
	List of valid search modes
	All mode
	Partial mode
	Interaction of Partial mode and stop words

	AllPartial mode
	Any mode
	AllAny mode
	PartialMax mode

	Configuring search modes
	Query parameters for search modes

	Using Phrase Search
	About phrase search
	About positional indexing
	How punctuation is handled in phrase search
	Example of phrase search
	Performance impact of phrase search

	Using Snippeting in Record Searches
	About snippeting
	Snippet formatting and size
	Enabling snippeting
	Performance impact of snippeting
	Tips for snippeting
	Retrieving snippets with the API
	Enabling snippets per query with the API

	Using Wildcard Search
	About wildcard search
	Interaction of wildcard search with other features
	Ways to configure wildcard search
	Configuring wildcard search in record search
	Configuring wildcard search in value search
	Configuring wildcard search for a search Interface

	MDEX Engine flags for wildcard search
	Latitude Studio development for wildcard search
	Performance impact of wildcard search

	Search Characters
	About search characters
	Implementing search characters
	Query matching semantics
	Categories of characters in indexed text
	Indexing alphanumeric characters
	Indexing search characters
	Indexing non-alphanumeric characters

	Search query processing
	MDEX Engine flags for search characters

	Working with Spelling Correction and Did You Mean
	About Spelling Correction and Did You Mean
	Logic used for spelling correction
	How value search treats number of results

	updateaspell
	Spelling mode (Aspell)
	Retrieving spelling suggestions and DYM in query results
	Configuring constraints for spelling dictionaries
	About word-break analysis
	Troubleshooting Spelling Correction and Did You Mean
	Performance impact for Spelling Correction and Did You Mean

	Using Stemming and Thesaurus
	Overview of stemming and thesaurus
	About the stemming feature
	Types of stemming matches and sort order

	About the Thesaurus feature
	Adding, modifying, or deleting thesaurus entries
	Troubleshooting the thesaurus

	Dgraph flags for stemming and thesaurus
	Interactions with other search features
	Performance impact of stemming and thesaurus

	Relevance Ranking
	About the relevance ranking feature
	About relevance ranking modules
	Exact
	Field
	First
	Frequency
	Glom
	Interpreted
	Maximum Field
	Number of Fields
	Number of Terms
	Phrase
	Configuring the Phrase module
	Phrase module options
	Summary of Phrase option interactions

	Phrase module behavior
	Treatment of wildcards with the Phrase module

	Proximity
	Spell
	Static
	Stem
	Thesaurus
	Weighted Frequency

	Relevance ranking strategies
	Creating relevance ranking strategies

	Implementing relevance ranking
	Adding a Static module
	Ranking order for Field and Maximum Field modules
	How relevance ranking score ties between search interfaces are resolved
	Implementing relevance ranking for value search

	Using standalone relevance ranking
	Specifying relevance ranking for queries

	Relevance ranking sample scenarios
	Example 1: Using a small data set
	Example 2: UI reference implementation

	Recommended strategies
	Recommended strategy for retail catalog data
	Recommended strategy for document repositories

	Performance impact of relevance ranking

	Extending Latitude Studio
	Extending Latitude Studio
	Developer tasks in Latitude Studio
	Licensing requirement for component development
	Obtaining more information

	Security Extensions to Latitude Studio
	Security Manager class summary
	Creating a new MDEX Security Manager
	Implementing a new MDEX Security Manager
	Using the MDEX Security Manager

	Managing Data Source State in Latitude Studio
	State Manager class summary
	Creating a new MDEX State Manager
	Implementing an MDEX State Manager
	Using the MDEX State Manager

	Installing and Using the Component SDK
	Downloading and configuring the Component SDK
	Configuring Eclipse for component development
	Component development overview
	Creating a new component
	Importing the project in Eclipse
	Building and testing your new component

	Modifying Endeca enhancements to the Component SDK

	Working with QueryFunction Classes
	Provided QueryFunction classes
	Creating a custom QueryFunction class
	Implementing a custom QueryFunction class
	Deploying a custom QueryFunction class
	Adding the custom QueryFunction .jar file to your Eclipse build path
	Obtaining query results

	Localizing Latitude Studio
	Latitude Studio localization scenarios
	About adding a translation to a released component
	Adding a translation to a released component

	Setting up a component for localization
	Build process interaction with localization
	Switching the locale of a component
	Adding the Language component
	Including common externalized strings
	Including component-specific messages
	Using tokens in message strings
	Using the Latitude Studio LanguageUtils class
	Calling static methods from Java
	Using the Discovery taglib in JSP
	Using the LanguageUtils class from JSP
	Instantiating the object and call instance methods from Java/JSP
	Retrieving all messages from the resource bundle in one call from Java/JSP

	Working with non-Unicode characters
	Localizing a component to a non-Unicode language

	Obtaining more information about portal localization

	Suggested Stop Words
	About stop words
	List of suggested stop words

	Index

