
Endeca® MDEX Engine
Basic Development Guide

Contents

Preface...11
About this guide..11
Who should use this guide..11
Conventions used in this guide...11
Contacting Oracle Support...12

Part I: Presentation API Basics...13

Chapter 1: Endeca Presentation API Overview......................................15
List of Endeca APIs...15
Architecture of the Presentation API...15
One query, one page...18
About query result objects returned by the MDEX Engine..18

Chapter 2: Working with the Endeca Presentation API.........................23
Core classes of the Presentation API..23
Using the core objects to query the MDEX Engine...26
List of query exceptions...27
Four basic queries...28
Getting started with your own Web application..33

Chapter 3: Using the UI Reference Implementation..............................35
UI reference implementation overview..35
The UI reference implementation screenshots..35
The purpose of the UI reference implementation..37
Four primary modules..38
About JavaScript files..39
Module maps...39
Module descriptions...44
Tips on using the UI reference implementation modules...47
Non-MDEX Engine URL parameters...47

Chapter 4: About the Endeca MDEX Engine..49
MDEX Engine overview...49
About the Information Transformation Layer..50

Part II: Record Features...51

Chapter 5: Working with Endeca Records..53
Displaying Endeca records..53
Displaying record properties..55
Displaying dimension values for Endeca records..58
Paging through a record set..60

Chapter 6: Sorting Endeca Records...63
About record sorting..63
Configuring precomputed sort...63
Changing the sort order with Dgidx flags...65
Agraph default sort order and displayed record lists...65
URL parameters for sorting...66
Sort API methods..66
Troubleshooting application sort problems..67
Performance impact for sorting..68

iii

Using geospatial sorting..69

Chapter 7: Using Range Filters...73
About range filters...73
Configuring properties and dimensions for range filtering...73
URL parameters for range filters...74
Using multiple range filters..76
Examples of range filter parameters..76
Rendering the range filter results..77
Troubleshooting range filter problems..78
Performance impact for range filters..78

Chapter 8: Record Boost and Bury...79
About the record boost and bury feature...79
Enabling properties for filtering..80
The stratify relevance ranking module...80
Record boost/bury queries..82
Boost/bury sorting for Endeca records..82

Chapter 9: Creating Aggregated Records..85
About aggregated records...85
Enabling record aggregation..85
Generating and displaying aggregated records...86
Aggregated record behavior..93
Refinement ranking of aggregated records...93

Part III: Dimension and Property Features..95

Chapter 10: Property Types...97
Formats used for property types..97
Temporal properties...98

Chapter 11: Working with Dimensions...101
Displaying dimension groups...101
Displaying refinements..104
Displaying disabled refinements..112
Implementing dynamic refinement ranking..118
Displaying descriptors..124
Displaying refinement statistics...129
Displaying multiselect dimensions...133
Using hidden dimensions..136
Using inert dimension values...138
Displaying dimension value properties..140
Working with external dimensions...143

Chapter 12: Dimension Value Boost and Bury.....................................145
About the dimension value boost and bury feature...145
Nrcs parameter..146
Stratification API methods...147
Retrieving the DGraph.Strata property..148
Interaction with disabled refinements..148

Chapter 13: Using Derived Properties..151
About derived properties...151
Configuring derived properties..151
Displaying derived properties..152

Part IV: Basic Search Features..155

Endeca® MDEX Engineiv

Chapter 14: About Record Search...157
Record search overview..157
Making properties or dimension searchable..158
Enabling hierarchical record search..158
Features for controlling record search...159
Search query processing order...162
Tips for troubleshooting record search..166
Performance impact of record search..167

Chapter 15: Working with Search Interfaces..169
About search interfaces...169
About implementing search interfaces...169
Options for allowing cross-field matches...170
Additional search interfaces options..171
Search interfaces and URL query parameters (Ntk)..171
Java examples of search interface methods..172
.NET examples of search interface properties...172
Tips for troubleshooting search interfaces...173

Chapter 16: Using Dimension Search...175
About dimension search..175
Default dimension search..175
Compound dimension search..176
Enabling dimensions for dimension search...176
Ordering of dimension search results..177
Advanced dimension search parameters..179
Dgidx flags for dimension search...180
URL query parameters and dimension search..181
Methods for accessing dimension search results..186
When to use dimension and record search...188
Performance impact of dimension search...189

Chapter 17: Record and Dimension Search Reports..........................191
Implementing search reports...191
Methods for search reports..191
Troubleshooting search reports...194

Chapter 18: About Search Modes...195
List of valid search modes...195
Configuring search modes...198
URL query parameters for search modes..198
Search mode methods..199

Chapter 19: Using Boolean Search...201
About Boolean search...201
Example of Boolean query syntax...202
Examples of using the key restrict operator...203
About proximity search..203
Proximity operators and nested subexpressions...204
Boolean query semantics..205
Operator precedence...206
Interaction of Boolean search with other features...206
Error messages for Boolean search..207
Implementing Boolean search...208
URL query parameters for Boolean search...208
Methods for Boolean search..209
Troubleshooting Boolean search...210
Performance impact of Boolean search...210

v

Contents

Chapter 20: Using Phrase Search...211
About phrase search...211
About positional indexing...212
How punctuation is handled in phrase search...212
URL query parameters for phrase search...212
Performance impact of phrase search...213

Chapter 21: Using Snippeting in Record Searches.............................215
About snippeting..215
Snippet formatting and size...216
Snippet property names..217
Snippets are dynamically generated properties..217
About enabling and configuring snippeting..217
URL query parameters for snippeting..217
Reformatting a snippet for display in your Web application...218
Performance impact of snippeting...218
Tips and troubleshooting for snippeting...219

Chapter 22: Using Wildcard Search..221
About wildcard search...221
Interaction of wildcard search with other features...221
Ways to configure wildcard search..222
MDEX Engine flags for wildcard search..224
Presentation API development for wildcard search...225
Performance impact of wildcard search...225

Chapter 23: Search Characters...227
Using search characters..227
Query matching semantics..227
Categories of characters in indexed text..227
Search query processing...228
Implementing search characters..229
Dgidx flags for search characters..229
Presentation API development for search characters..230
MDEX Engine flags for search characters...230

Chapter 24: Examples of Query Matching Interaction........................231
Record search without search characters enabled..231
Record search with search characters enabled...232
Record search with wildcard search enabled but without search characters....................................233
Record search with both wildcard search and search characters enabled..233

Appendix A: Endeca URL Parameter Reference..................................235
About the Endeca URL query syntax..235
N (Navigation)...236
Nao (Aggregated Record Offset)..236
Ndr (Disabled Refinements)..237
Ne (Exposed Refinements)...238
Nf (Range Filter)...238
Nmpt (Merchandising Preview Time)..239
Nmrf (Merchandising Rule Filter)..240
No (Record Offset)..240
Np (Records per Aggregated Record)..241
Nr (Record Filter)..241
Nrc (Dynamic Refinement Ranking)...242
Nrcs (Dimension Value Stratification)..243
Nrk (Relevance Ranking Key)...243
Nrm (Relevance Ranking Match Mode)..244
Nrr (Relevance Ranking Strategy)..245
Nrs (Endeca Query Language Filter)..245

Endeca® MDEX Enginevi

Nrt (Relevance Ranking Terms)..246
Ns (Sort Key)..247
Nso (Sort Order)...247
Ntk (Record Search Key)..248
Ntpc (Compute Phrasings)..249
Ntpr (Rewrite Query with an Alternative Phrasing)...249
Ntt (Record Search Terms)...250
Ntx (Record Search Mode)...250
Nty (Did You Mean)...251
Nu (Rollup Key)...252
R (Record)..252
A (Aggregated Record)...253
Af (Aggregated Record Range Filter)...253
An (Aggregated Record Descriptors)..254
Ar (Aggregated Record Filter)...254
Ars (Aggregated EQL Filter)...255
As (Aggregated Record Sort Key)..255
Au (Aggregated Record Rollup Key)...256
D (Dimension Search)..256
Df (Dimension Search Range Filter)...257
Di (Search Dimension)..257
Dk (Dimension Search Rank)...258
Dn (Dimension Search Scope)...259
Do (Search Result Offset)...260
Dp (Dimension Value Count)...260
Dr (Dimension Search Filter)..261
Drs (Dimension Search EQL Filter)..261
Dx (Dimension Search Options)...262

Appendix B: Dgidx Character Mapping..263
Diacritical Character to ASCII Character Mapping..263

vii

Contents

Copyright and Disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, European Patent EP1459206B1, and other patents pending.

Endeca Basic Development Guide • December 2010 • Revision B

Version 6.1.4

ix

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes the basic tasks involved in developing an Endeca application.

It assumes that you have read the Endeca Concepts Guide and the Endeca Getting Started Guide
and are familiar with the Endeca terminology and basic concepts.

Who should use this guide
This guide is intended for developers who are building applications using the Endeca Information
Access Platform.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

| Preface12

https://support.oracle.com

Part 1

Presentation API Basics

• Endeca Presentation API Overview
• Working with the Endeca Presentation API
• Using the UI Reference Implementation
• About the Endeca MDEX Engine

Chapter 1

Endeca Presentation API Overview

The Endeca Presentation API provides the interface to the Endeca MDEX Engine.You use the API
to query the MDEX Engine and manipulate the query results.

List of Endeca APIs
Depending on the packages you installed, your Endeca installation may include one or more sets of
Endeca APIs. This topic lists APIs and provides a brief overview of each API set.

The Endeca software packages contain the following API sets:

• The Endeca Presentation API.You can use this API to communicate with the MDEX Engine.

Note: In addition to the Presentation API, the MDEX Engine also provides a Web service
interface that is designed to communicate with standards-compliant Web service clients,
using standard protocols and syntax such as HTTP and XML. For more information, see the
Web Services and XQuery Developer's Guide.You can use both Presentation API and Web
services features in the same application.

• The Logging API that is used by the Endeca Logging and Reporting System. For information, see
the Log Server and Report Generator Guide.

• Security-related methods that are used to implement secure Endeca implementations. For
information, see the Security Guide.

Architecture of the Presentation API
In a typical Endeca-based application that uses the Presentation API, the MDEX Engine communicates
with the web application using the Presentation API.

The online portion of a typical Endeca implementation has the following components:

• The MDEX Engine, which receives and processes query requests.
• The Endeca Presentation API, which you use to query the MDEX Engine and manipulate the query

results.
• A Web application in the form of a set of application modules, which receive client requests and

pass them to the MDEX Engine through the Presentation API.

The following diagram illustrates the data flow between these components for a typical Endeca-based
application that uses the Endeca Presentation API:

In this diagram, the following actions take place:

1. A client browser makes a request.
2. The Web application server receives the request and passes it to the application modules.
3. The application modules pass the request to the Endeca MDEX Engine, via the Presentation API.
4. The MDEX Engine executes the query and returns its results.
5. The application modules use Presentation API method calls to retrieve and manipulate the query

results.
6. The application modules format the query results and return them to the client browser, via the

Web application server.

Note: For security reasons, you should never allow Web browsers to connect directly to your
MDEX Engine. Browsers should always connect to your application through an application server.

About Web application modules
The Web application modules are responsible for receiving client requests, and passing those requests
to the MDEX Engine, via the Endeca Presentation API.

You build custom application modules for each Endeca application. This step is a key part of building
an Endeca implementation. These modules can take many forms, depending on your application’s
requirements.

The Endeca distribution includes a set of sample UI reference implementations that you can refer to
when building your own application modules.

Regardless of how you choose to build them, the application modules should perform the following
functions:

• Receive requests from client browsers from the Web application server.
• Pass the client request to the MDEX Engine via the Endeca Presentation API.
• Retrieve the MDEX Engine query results via he Presentation API.
• Format the query results and return them to the client browser.

Methods for transforming requests into queries

A diagram in this topic illustrates how application modules transform a client browser request into an
MDEX Engine query.

Before the Web application modules can send a client browser request to the MDEX Engine, the
request must be transformed into an MDEX Engine query.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca Presentation API Overview | Architecture of the Presentation API16

Typically, to make this transformation, the application modules extract the MDEX Engine-specific
parameters from the original client request. In some cases, the modules may also edit the extracted
parameters or add additional parameters, as necessary.

The following diagram illustrates the logic of transforming a client browser request into an MDEX
Engine query:

Methods for passing request parameters

Several methods exist for passing the query request parameters from the client browser request to
the application modules.

You can use one of the following methods:

• Embed parameters in the URL that the client browser sends.
• Send parameters in a cookie along with the client request.
• Include parameters in a server-side session object.

For example, in the UI reference implementations that are included with the Endeca Platform Services
package, client request parameters are embedded directly in the URL.This method eases development
and ensures load balancing, redundancy and statelessness.

Related Links
Creating the query with UrlENEQuery on page 24

You use the UrlENEQuery class to parse MDEX Engine-specific parameters from the browser
request query string into MDEX Engine query parameters.

The Endeca Presentation API for Java and .NET
The Endeca Presentation API exists in the form of Java classes or .NET objects.

The Endeca Presentation API is managed by a Web application server of your choice. Depending on
the environment you are working in, the Presentation API can take several different forms:

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

17Endeca Presentation API Overview | Architecture of the Presentation API

• For Java, the Presentation API is a collection of Java classes in a single .jar file.
• For .NET, the Presentation API is a set of .NET objects in a single assembly.

One query, one page
The data that the MDEX Engine returns in response to a query includes all of the information that the
application modules would need to build an entire page for a typical application.

The MDEX Engine returns the following objects in response to a query request:

• Endeca records
• Follow-on query information
• Supplemental information, such as merchandising information, or information that enables the “Did

You Mean” functionality

This enables the MDEX Engine to reduce the number of queries required to build an entire page,
thereby improving performance.The performance improvement is gained by leveraging the processing
for one section of a page to build the rest of the page.

For example, separate requests for record search information and navigation control information can
be redundant. (Of course, you can make as many queries to the MDEX Engine as you want to build
your pages, if the application design warrants it.)

About query result objects returned by the MDEX Engine
The MDEX Engine returns its results for all query types—navigation, record search, dimension search,
and so on—in the form of a top-level object that is contained in an ENEQueryResults object. These
top-level objects are complex objects that contain additional member objects.

The following diagram illustrates the relationship between an ENEQueryResultsobject, top-level
object, and members of the top-level object:

Related Links
ENEQueryResults on page 26

An ENEQueryResults object contains the results returned by the MDEX Engine.

About top-level object types
The parameters in the MDEX Engine query determine the type of top-level object that is returned for
the query.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca Presentation API Overview | One query, one page18

You use Endeca Presentation API method calls to retrieve and manipulate data from a top-level object,
and any of its members.

Top-level object types include the following:

• Navigation objects contain information about the user’s current location in the dimension hierarchy,
and the records that are associated with that location. Navigation objects also contain the information
required to build any follow-on queries.

Note: Both navigation queries and record search queries return Navigation objects.

• Endeca record objects contain full information about individual Endeca records in the data set.
This information includes the record’s Endeca properties, as well as its tagged dimension values.

• Aggregated Endeca record objects contain information about aggregated Endeca records. An
aggregated Endeca record is a collection of individual records that have been rolled up based on
a rollup key (an Endeca property or dimension name).

• Dimension search objects contain the results of a dimension search.

Example of a top-level object
To better understand an Endeca record object returned by the MDEX Engine, we can look at a diagram.

The following diagram shows the structure of a generic Endeca record object:

This diagram illustrates that Endeca record objects contain all the information associated with an
Endeca record, including:

• A list of the dimensions that contain dimension values that have been tagged to the record.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

19Endeca Presentation API Overview | About query result objects returned by the MDEX Engine

• Information about each individual dimension, including:

• Dimension root.
• Tagged dimension value(s).
• Ancestors for the tagged dimension value(s), if any exist.

Note: The combination of a tagged dimension value and its ancestors is called a
dimension location.

You can use the dimension hierarchy information in an Endeca record object to build follow-on navigation
queries. For example, you can incorporate Find Similar functionality into your application by building
a navigation query from the tagged dimension values for the current record.

Example of an Endeca record object for the wine data
To better understand an Endeca record object returned by the MDEX Engine, we can look at an
example of an Endeca record object for Bottle A from a wine store.

In this example, our wine store data consists of two dimensions, one for Wine Type and another for
Flavor.

The logical representation of the wine data can be presented as follows:

The physical representation of the wine data can be presented as follows:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca Presentation API Overview | About query result objects returned by the MDEX Engine20

In this example, you can see that Bottle A has been tagged with two dimension values from the Flavor
dimension. This means that Bottle A has two dimension locations within the Flavor dimension.

The following illustration shows the Endeca record object for Bottle A:

Obtaining additional object information
Understanding the contents of Endeca’s top-level objects is crucial to using and manipulating the
MDEX Engine query results.

Refer to one of the following, depending on your platform, for detailed information on the top-level
objects, and all of their members:

• Endeca API Javadocs

• Endeca API Guide for .NET

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

21Endeca Presentation API Overview | About query result objects returned by the MDEX Engine

Chapter 2

Working with the Endeca Presentation API

This section provides information on working with the Endeca Presentation API classes.

Core classes of the Presentation API
To query the MDEX Engine and access the resulting data, you use three core classes of the Endeca
Presentation API together— HttpENEConnection, ENEQuery, and ENEQueryResults.

The Endeca Presentation API is based on three core classes:

• The HttpENEConnection class enables connections with the MDEX Engine.
• The ENEQuery class builds the query to be sent to the MDEX Engine.
• The ENEQueryResults class contains the results of the MDEX Engine query.

This diagram illustrates the relationship between three core classes:

HttpENEConnection
The HttpENEConnection class functions as a repository for the hostname and port configuration
for the MDEX Engine you want to query.

The signature for an HttpENEConnection constructor looks like this:

//Create an ENEConnection
ENEConnection nec = new HttpENEConnection(eneHost, enePort);

HttpENEConnection is one of two implementations of the ENEConnection interface for Java and
IENEConnection for .NET. This interface defines a query() method in Java, and a Query()
method in .NET for all implementing classes.

Note: The other implementation of this interface is AuthHttpENEConnection.

In Java, you call the query() method on an ENEConnection object to establish a connection with
an MDEX Engine and send it a query.

In .NET, you call the Query() method on an HttpENEConnection object to establish a connection
with an MDEX Engine and send it a query.

Note: The instantiation of an HttpENEConnection object does not open a persistent connection
to the MDEX Engine, nor does it initiate an HTTP socket connection. Instead, each issuance of
the HttpENEConnection object's query() method in Java or Query() method in .NET
opens an HTTP socket connection. This connection is closed after the query results have been
returned. For some queries, multiple connections are opened for multiple MDEX Engine requests.

Changing the timeout setting for HttpENEConnection

If a connection to the MDEX Engine experiences a timeout, the default timeout period is 90 seconds.
You can change the timeout setting for the HttpWebRequest objects (used by HttpENEConnection)
to return.

By default, it takes 90 seconds for the HttpWebRequest objects (used by HttpENEConnection)
to return, after an MDEX Engine connection timeout.

To change this default timeout for all HttpWebRequest objects inside web.config:

Modify the httpRuntime section as shown in the following example:

<system.web>
 <httpRuntime executionTimeout="00:00:30"/>
</system.web>

This change sets up a timeout of 30 seconds for a query request to time out.

ENEQuery and UrlENEQuery
You use the ENEQuery class, or its subclass UrlENEQuery, to create an MDEX Engine query.

Creating the query with UrlENEQuery

You use the UrlENEQuery class to parse MDEX Engine-specific parameters from the browser request
query string into MDEX Engine query parameters.

The code to accomplish this task looks like the following:

• Java:

//Create a query from the browser request query string
 ENEQuery nequery = new UrlENEQuery(request.getQueryString(), “UTF-8”);

The browser request query string resides in the HTTPServletRequest object from the
javax.servlet.http package.

• .NET:

//Create a query from the browser request query string
 ENEQuery nequery = new UrlENEQuery(Request.QueryString.ToString(), “UTF-
8”);

Note: The browser request query string resides in the HttpRequest object from the
System.Web namespace in ASP.NET. ASP .NET exposes the HttpRequest object as the
intrinsic request object.

The UrlENEQuery class ignores non-MDEX Engine-specific parameters, so this class is still safe to
use when additional application-specific parameters are needed (as long as they don’t conflict with
the MDEX Engine URL parameter namespace).

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Core classes of the Presentation API24

Creating an empty ENEQuery object and populating it

Alternatively, you can use the ENEQuery class to instantiate an empty ENEQuery object, and then
populate it with MDEX Engine query parameters using a variety of setter methods in Java, or
ENEQuery properties in .NET.

The code to accomplish this task is similar to the example below:

• Java:

//Create an empty ENEQuery object and populate it using setter methods
ENEQuery nequery = new ENEQuery();
nequery.setNavDescriptors(dimensionValueIDs);
nequery.setERec(recordID);
...

• .NET:

//Create an empty ENEQuery object and populate it using properties
ENEQuery nequery = new ENEQuery();
nequery.NavDescriptors = dimensionValueIDs
nequery.ERec = recordID
...

Creating MDEX Engine queries from state information

You can use the ENEQuery class to construct a query from any source of state information, including
non-Endeca URL parameters, cookies, server-side session objects, and so forth. These are all
application design decisions and have no impact on the final MDEX Engine query or its results.

The following are all valid ways of creating an MDEX Engine query:

• Java:

ENEQuery nequery = new UrlENEQuery(“N=123”, “UTF-8”);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList("123");
nequery.setNavDescriptors(descriptors);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors =
 new DimValIdList((String)session.getAttribute("<variableName>");
nequery.setNavDescriptors(descriptors);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList(request.getParameter("N"));
nequery.setNavDescriptors(descriptors);

• .NET:

ENEQuery nequery = new UrlENEQuery(“N=123”, “UTF-8”);

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList("123");
nequery.NavDescriptors = descriptors;

ENEQuery nequery = new ENEQuery();
DimValIdList descriptors = new DimValIdList(Request.QueryString["N"]);
nequery.NavDescriptors = descriptors;

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

25Working with the Endeca Presentation API | Core classes of the Presentation API

Executing MDEX Engine queries

The ENEConnection query() method in Java, and the HttpENEConnection Query() method
in .NET use an ENEQuery object as its argument when they query the MDEX Engine.

The code to execute an MDEX Engine query looks like this:

Java Example

//Execute the MDEX Engine query
ENEQueryResults qr = eneConnectionObject.query(eneQueryObject);

.NET Example

//Execute the Navigation Engine query
ENEQueryResults qr = eneConnectionObject.Query(eneQueryObject);

ENEQueryResults
An ENEQueryResults object contains the results returned by the MDEX Engine.

An ENEQueryResults object can contain any type of object returned by the MDEX Engine.The type
of object that is returned corresponds to the type of query that was sent to the MDEX Engine. See
“Four basic queries” for more information.

Related Links
Four basic queries on page 28

While the queries you send to an Endeca MDEX Engine can become quite complex, there
are four basic queries that you should be familiar with.

Using the core objects to query the MDEX Engine
To build an MDEX Engine query and execute it, you use the three core classes of the Endeca
Presentation API. Code examples in this topic show you how to build and execute a query.

The code to build and execute a query would look similar to the following:

Java Example

//Create an ENEConnection
ENEConnection nec = new HttpENEConnection(eneHost, enePort);

//Create a query from the browser request query string
ENEQuery nequery = new UrlENEQuery(request.getQueryString(),
 “UTF-8”);

//Execute the MDEX Engine query
ENEQueryResults results = nec.query(nequery);

//Additional Presentation API calls to retrieve query results
...

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Using the core objects to query the MDEX Engine26

.NET Example

//Create an ENEConnection
HttpENEConnection nec = new HttpENEConnection(eneHost, enePort);

//Create a query from the browser request query string
ENEQuery nequery = new
UrlENEQuery(Request.QueryString.ToString(), “UTF-8”);

//Execute the Navigation Engine query
ENEQueryResults results = nec.Query(nequery);

//Additional Presentation API calls to retrieve query results
...

List of query exceptions
The ENEConnection query() method in Java and the HttpENEConnection Query() method in .NET
throw an exception if they encounter an error while attempting to query the MDEX Engine.

The following table describes the exceptions that can be thrown:

DescriptionException

Indicates an exception from the MDEX Engine.
This means that ENEConnection was able to

ENEException

contact the MDEX Engine but the MDEX Engine
responded with an error.

Indicates an authentication exception from the
MDEX Engine.This means that ENEConnection

ENEAuthenticationException

was able to contact the MDEX Engine but the
MDEX Engine responded with an authentication
error.

Indicates any connection problems in this method.
ENEQueryException

Indicates a communication error in the
ENEConnection with the MDEX Engine.

ENEConnectionException

Indicates that the query() method in Java, and
the Query() method in .NET were called using

EmptyENEQueryException

an empty ENEQuery object.This exception occurs
because the ENEQuery object did not express any
requests to the MDEX Engine.

Indicates that the ENEQuery object does not
contain all the necessary query parameters.

PartialENEQueryException

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

27Working with the Endeca Presentation API | List of query exceptions

DescriptionException

Indicates an error while parsing a browser request
query string into individual MDEX Engine query
parameters.

UrlENEQueryParseException

Indicates the presence of incompatible modules
in the Endeca application (discovered while

VersionMismatchException

attempting to process a query). Most often this
exception signals a version mismatch between the
Presentation API and the MDEX Engine itself.

Four basic queries
While the queries you send to an Endeca MDEX Engine can become quite complex, there are four
basic queries that you should be familiar with.

These queries, and the type of objects they return, are listed below. Keep in mind that all of the returned
objects are contained in the ENEQueryResults object:

Returned object (type)Basic query

NavigationNavigation query

ERecEndeca record query

DimensionSearchResultDimension search query

AggrERecAggregated Endeca record query

You create the four basic queries using both UrlENEQuery and ENEQuery classes.

Building a basic query with the UrlENEQuery class
In order to create an MDEX Engine query based on a client browser request, the request URL must
contain MDEX Engine-specific query parameters. While the number of parameters that the
UrlENEQuery class can interpret is large, only a few of these parameters are required for the four
basic queries.

The parameters that the UrlENEQuery class needs for the four basic queries are listed in this table:

Note: Controller.jsp or Controller.aspx in the examples below refer to the point of
entry into the UI reference implementation.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Four basic queries28

URL query string exampleParameter definitionURL
param

Basic query
type

Java: controller.jsp?N=0 con¬
troller.jsp?N=123+456

The IDs of the dimension
values to be used for a
navigation query, or N=0 for
the root navigation request.

NNavigation

.NET: controller.aspx?N=0 con¬
troller.aspx?N=123+456

Java: controller.jsp?R=12345The specifier (string-based ID)
of the Endeca record to be
returned.

REndeca
record

.NET: controller.aspx?R=12345

Java: controller.jsp?D=red+wineThe dimension search terms.DDimension
search

.NET: controller.aspx?D=red+wine

Java: con¬
troller.jsp?A=123&An=456+789&Au=Name

A: The specifier (string-based
ID) of the aggregated Endeca
record to be returned.

A,An ,AuAggregated
Endeca
record

.NET: controller.aspx?A=123&
An=456+789&Au=NameAn: The navigation

descriptors that describe the
record set from which the
aggregated record is created.

Au: The rollup key used to
create the aggregated Endeca
record.

You can combine the four basic queries in one URL, with the restriction that each type of query can
appear only once per URL. Each basic query, however, has no impact on the other queries. Combining
queries in the URL is used exclusively for performance improvement because it reduces the number
of independent queries that are queued up waiting for the MDEX Engine.

Building a basic query with the ENEQuery class
To create a query manually, you instantiate an empty ENEQuery object and then use the ENEQuery
setter methods (Java), or properties (.NET) to specify query parameters.

The number of setter methods (Java), or properties (.NET) available is large, but only a few are
required to create a basic query with ENEQuery.

The methods and properties required for ENEQueryare listed in the table below:

Required methods (Java) or properties (.NET)Basic query type

Java: setNavDescriptors(DimValIdList descriptors)Navigation

.NET: NavDescriptors

Java: setERecSpec(String recordSpec)Endeca record

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

29Working with the Endeca Presentation API | Four basic queries

Required methods (Java) or properties (.NET)Basic query type

.NET: ERecSpec

Note: A recordSpec, or record specifier, is a string-based identifier.

Java: setDimSearchTerms(String terms)Dimension search

.NET: DimSearchTerms

Java:Aggregated
Endeca record

setAggrERecSpec(String aggregatedRecordSpec), setAggrERecNavDe¬
scriptors(DimValIdList descriptors), setAggrERecRollup¬
Key(String key)

.NET: AggrERecSpec, AggrERecNavDescriptors, AggrERecRollupKey

ENEQuery naming convention
Each ENEQuery setter and getter method in Java, and property in .NET follow a naming convention
that provides a quick way to determine the type of results the ENEQuery object will yield.

For example, setNavRecordFilter() in Java and NavRecordFilter in .NET are modifiers for
a navigation request, and navigation requests return Navigation objects.

The table describes methods an properties, their corresponding returned object types and examples
of usage in Java and .NET.

Note: See the Endeca API Javadocs and Endeca API Guide for .NET for complete information
on all Presentation API classes, method (Java), and properties (.NET).

ExamplesReturned object (type)Method (Java) or property
(.NET) convention

Java: setERecs(), setERecSpec()ERecJava: setERec...()

.NET: ERec... .NET: ERecs, ERecSpec

Java: setNavNumERecs()NavigationJava: setNav...()

.NET: Nav... .NET: NavNumERecs

Java: setDimSearchTerms()DimensionSearchRe¬
sult

Java: setDimSearch...()

.NET: DimSearch... .NET: DimSearchTerms

Note: This object
has been
deprecated.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Four basic queries30

ExamplesReturned object (type)Method (Java) or property
(.NET) convention

Java: setAggrERecRollupKey()AggrERecJava: setAggrERec...()

.NET: AggrERec... .NET: AggrERecRollupKey

Methods of accessing data in basic query results
To access data in query results, you can use ENEQueryResults methods in Java and properties in
.NET.

There is a distinct correlation between the MDEX Engine parameters passed in the URL (or the setter
methods (Java) and ENEQuery properties (.NET) used), and the methods or properties you can use
to access data in the ENEQueryResults object.

For example, by including an N parameter in your query, a Navigation object is returned as part of
the ENEQueryResults, and you use the getNavigation() method in Java on the
ENEQueryResults object, or the ENEQueryResults object’s Navigation property in .NET to
access that Navigation object.

You can use these ENEQueryResults methods or properties:
If you used this to create your
query:

Java: getNavigation()N or

.NET: NavigationJava: setNavDescriptors()

.NET: NavDescriptors

Java: getERecSpec()R or

.NET: ERecSpecJava: setERecSpec()

.NET: ERecSpec

Java: getDimensionSearch()D or

.NET: DimensionSearchJava: setDimSearchTerms()

.NET: DimSearchTerms

Java: getAggrERecSpec()A, An, Au or

.NET: AggrERecSpecJava:

setAggrERecSpec()

setAggrERecNavDescriptors()

setAggrERecRollupKey()

.NET:

AggrERecSpec

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

31Working with the Endeca Presentation API | Four basic queries

You can use these ENEQueryResults methods or properties:
If you used this to create your
query:

AggrERecNavDescriptors

AggrERecRollupKey

Methods of determining types of queries passed to the MDEX Engine
To determine what type of query is being passed or has been passed to the MDEX Engine, you can
use contains methods on both the ENEQuery and ENEQueryResults objects.

Your query uses:If these methods evaluate to true:

N orJava:

ENEQuery object:containsNavQuery() Java: setNavDescriptors()

ENEQueryResults object:containsNav¬
igation()

.NET: NavDescriptors

.NET:

ENEQuery object:containsNavQuery()

ENEQueryResults object:ENEQueryRe¬
sults object:ContainsNaviga¬
tion()

R orJava:

ENEQuery object: containsERec¬
Query()

Java: setERecSpec()

.NET: ERecSpec
ENEQueryResults object: contain¬
sERec()

.NET:

ENEQuery object: ContainsERec¬
Query()

ENEQueryResults object: Contain¬
sERec()

D orJava:

ENEQuery object: ENEQuery ob¬
ject:containsDimSearchQuery()

Java: setDimSearchTerms()

.NET: DimSearchTerms
ENEQueryResults object:ENEQueryRe¬
sults object:containsDimension¬
Search()

.NET:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Four basic queries32

Your query uses:If these methods evaluate to true:

ENEQuery object: ENEQuery ob¬
ject:ContainsDimSearchQuery()

ENEQueryResults object:ENEQueryRe¬
sults object:ContainsDimension¬
Search()

A, An, Au orJava:

ENEQuery object:containsAggrERec¬
Query()

Java:

setAggrERecSpec()
ENEQueryResults object: containsAg¬
grERec()

.NET:

setAggrERecNavDescriptors()

setAggrERecRollupKey()

.NET:
ENEQuery object:ContainsAggrERec¬
Query() AggrERecSpec

AggrERecNavDescriptorsENEQueryResults object:ContainsAg¬
grERec()

AggrERecRollupKey

Getting started with your own Web application
Now that you have a deeper understanding of the Endeca Presentation API, you can begin building
your own Endeca application. This topic gives you some pointers on how to approach building your
first application.

This section refers to the UI reference implementation, which is a sample Web application included
with the Endeca Platform Services package.

To start building your own application:

1. Define your architecture.

Without relying on the UI reference implementation, define what your application’s architecture
requirements are.

In Java, if you need to create JavaBeans or command classes, have a good definition of those
requirements independent of the current structure and architecture of the reference implementation.

2. Determine your page and page element definitions.

Again, this should be done without relying on the UI reference implementation. Most applications
have a navigation page and a record page, but each application has its own requirements. A typical
navigation page includes some sort of results section and query controls section, but this is also
entirely dependent on the application design. Whatever the resulting design is, produce a list of all
required elements and the pages they are associated with.

3. Evaluate each page element and decide which UI reference implementation module, if any, is the
closest match to the functionality required.
For example, if you have a dimension search results section, the misc_dimsearch_results
module may be a good starting point. Keep in mind that the UI reference implementation does not
use all of the Presentation API objects.You may need a component that has no closely

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

33Working with the Endeca Presentation API | Getting started with your own Web application

corresponding reference module. In this case, you need to develop this component from scratch
or based on significant adjustments to an existing module. See the appropriate Endeca API Guide
for complete information on the Presentation API.

4. Create a new application framework (that is, an “empty” application) and begin building each
required element.

Refer to the corresponding UI reference implementation modules as necessary. If a new element
is very similar to an existing module, you may be able to start from that module’s framework and
simply add supporting HTML. If the new element is significantly different, however, you may want
to use the existing module as a guide only and construct the new code from scratch.

Related Links
Using the UI Reference Implementation on page 35

This section describes the UI reference implementation, its components, and information you
should know when using it.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with the Endeca Presentation API | Getting started with your own Web application34

Chapter 3

Using the UI Reference Implementation

This section describes the UI reference implementation, its components, and information you should
know when using it.

UI reference implementation overview
The Endeca distribution includes a UI reference implementation that provides skeleton examples of
typical navigation, record, and aggregated record pages and the components that make up these
pages.

The UI reference implementation provides examples of modules, such as navigation controls, navigation
descriptors, and a record set. It is intended as a guide for creating MDEX Engine queries and building
pages from the query results. As such, you should feel free to use modules that are appropriate for
your application’s requirements and ignore those that aren’t.

Each UI reference implementation module has a banner with the module name located prominently
at the top.

In Java, the banner is orange.

In .NET, the banner is red.

All modules that have dependencies are named in such a way as to indicate the dependency. For
example, the nav_records_header module is dependent on the nav_records module, which is
dependent on the nav module.

Dependencies exist only between modules that have a parent-child relationship. Modules that have
no parent-child relationship have no dependencies on each other and you can remove or modify them
independently of each other. See “Module maps” for a visual representation of the parent-child
dependencies.

Related Links
Module maps on page 39

The following diagrams show the relationship between the various UI reference implementation
modules. The diagrams are broken into the four primary modules for Java and .NET.

The UI reference implementation screenshots
The diagrams in this topic show the UI reference implementation’s primary page.

Java example

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | The UI reference implementation screenshots36

.NET example

The purpose of the UI reference implementation
In order to use the UI reference implementation appropriately, it is important to understand what the
reference implementation is and is not.

The UI reference implementation is:

• A good code base for copying snippets of Presentation API calls.
• An excellent data inspection and data debugging application.
• A good template from which to build a rapid Endeca prototype.

The Java version

The Java version of the UI reference implementation is not:

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

37Using the UI Reference Implementation | The purpose of the UI reference implementation

• A good web application architecture example.
• A good place for copying snippets of HTML.

The UI reference implementation is built using a significantly different architecture than that you would
use for a production-ready implementation. It does not use Java beans or classes, it has a heavy
amount of in-line Java, and a relatively small amount of HTML. We chose this architecture in an effort
to help you better visualize the ENEQueryResults object and its nested member objects. By merging
in the Java code normally reserved for classes and using a small amount of HTML in each module,
we hoped to create a streamlined, easier-to-read example of how the ENEQueryResults object is
manipulated.

The .NET version
The .NET version of the UI reference implementation is not:

• A good web application architecture example.
• A good place for copying snippets of HTML.

The .NET version of the UI reference implementation is built using the ASP .NET architecture.

Four primary modules
The UI reference implementation has four primary modules.

These modules are:

• controller

• nav

• rec

• agg_rec

The controller module

The controller.jsp (Java) and controller.aspx(.NET) module is the entry point into the UI
reference implementation. It receives the browser request from the application server, formulates the
MDEX Engine query, establishes a connection with the MDEX Engine and sends the query. Based
on the contents of the query results, the controller module determines whether the request was
a navigation, a record, or an aggregated record request. For navigation requests, controller forwards
the request to the nav module.

The nav module

The nav.jsp (Java) and nav.aspx (.NET) module, using other included nav modules, renders the
main navigation page, including the navigation controls, navigation descriptors, and a record set.

The rec module

For record requests, controller forwards the request to the rec.jsp (Java) and rec.aspx (.NET)
module which, along with its child rec_* modules, is responsible for rendering a record page for a
single record.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Four primary modules38

The agg_rec module

For aggregated record requests, controller forwards the request to the agg_rec.jsp (Java) and
agg_rec.aspx (.NET) module which, again, along with its child agg_rec_* modules, renders a
page for an aggregated Endeca record.

About JavaScript files
The UI reference implementation includes several JavaScript files to support modules that use forms.

These JavaScript files contain functions that combine the URL from the current browser request with
form data to create the new browser requests. The JavaScript was written to avoid the use of
complicated forms that use hidden elements to maintain the MDEX Engine parameters from the current
browser request.

The two modules that use JavaScript are:

• Java: misc_ene_switch.jsp

.NET:misc_ene_switch.aspx

• Java: misc_searchbox.jsp

.NET: misc_searchbox.aspx

The JavaScript files that support these modules are misc_ene_switch.js and
misc_searchbox.js, respectively.

In addition, both JavaScript files use standard functions contained in a utility JavaScript file called
util.js.

The use of JavaScript is completely optional. Using the ENEQuery alternatives, you can create a
form-posting solution that avoids the use of JavaScript altogether.You must remember, however, that
if you create your query using one of these alternatives, you are potentially left in a state where the
browser request URL no longer reflects the ENEQuery. In this instance, the JavaScript returned with
the page will not be useful, because it references a browser request that has since been modified.
Given this caveat, Endeca recommends that you only use the JavaScript files when:

• You use the UrlENEQuery class to build your query.
• You use redirect calls in the controller module to redirect the modified request back to the
controller module using the new parameters. See comments in the controller.jsp (Java),
and controller.aspx (.NET) files for more details.

Module maps
The following diagrams show the relationship between the various UI reference implementation
modules. The diagrams are broken into the four primary modules for Java and .NET.

Java module maps

The controller.jsp (Java) module is the entry point into the UI reference implementation. It
receives the browser request from the application server, formulates the MDEX Engine query,
establishes a connection with the MDEX Engine and sends the query. Based on the contents of the
query results, the controller module determines whether the request was a navigation, a record,

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

39Using the UI Reference Implementation | About JavaScript files

or an aggregated record request. For navigation requests, controller forwards the request to the
nav module.

The following diagram shows the controller module map:

The nav.jsp (Java), using other included nav modules, renders the main navigation page, including
the navigation controls, navigation descriptors, and a record set.

The following diagram shows the nav module map:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Module maps40

For record requests, controller forwards the request to the rec.jsp (Java) module which, along with
its child rec_* modules, is responsible for rendering a record page for a single record.

The following diagram shows the rec module map:

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

41Using the UI Reference Implementation | Module maps

For aggregated record requests, controller forwards the request to the agg_rec.jsp (Java)
module which, again, along with its child agg_rec_* modules, renders a page for an aggregated
Endeca record.

The following diagram shows the agg_rec module map:

.NET module maps

The following diagram shows the controller module map:

The following diagram shows the nav module map:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Module maps42

The following diagram shows the rec module map:

The following diagram shows the agg_rec module map:

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

43Using the UI Reference Implementation | Module maps

Module descriptions
The table in this topic provides brief descriptions of the UI reference implementation modules.

Refer to the comments in the individual module files for more detailed information. Reference
implementation module files are located in:

• Java:

• $ENDECA_REFERENCE_DIR/endeca_jspref on UNIX
• %ENDECA_REFERENCE_DIR%\endeca_jspref on Windows

• .NET:

ENDECA_REFERENCE_DIR\endeca_ASP.NETref

Note: In the following table, the module names do not contain file extensions. Unless otherwise
noted, it is assumed that the modules are present in both Java and .NET environments, and that
the file extensions are .jsp for Java and .aspx for .NET. Some modules have specific file
extensions; this in indicated in the module name. Similarly, some modules are specific to Java
or .NET environments only; this is indicated in the module description.

DescriptionModule

Initiates the primary MDEX Engine query and determines which
type of page to render (navigation, record, or aggregated record).

controller

In Java only: Functions as a repository for variables that do not
change across requests.

constants.jsp

Functions as a repository for special event handlers that are run
automatically when certain ASP events occur.

global.asax

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Module descriptions44

DescriptionModule

Handles error conditions.
error

A general-use page header used by all page types (navigation,
record, aggregated record, and error).

misc_header

A general-use page footer used by all page types (navigation,
record, aggregated record, and error).

misc_footer

A collection of utility routines used by various JavaScript functions
to create new queries from browser request URLs.

util.js

Adds logging and reporting capability to your application. This
module contains the key/value pairs required by each Endeca
report element.

logging_functions

Render the MDEX Engine switching widget that allows you to
dynamically change the MDEX Engine hostname and port.

misc_ene_switch and

misc_ene_switch.js

Creates the main navigation page, including navigation controls,
navigation descriptors, and a record set.

nav

Displays autocorrection for the user’s search terms.
nav_autocorrect

Displays alternative suggestions for the user’s search terms.
nav_didyoumean

Displays basic navigation controls. This module should be used in
conjunction with nav_breadcrumbs_stack

nav_controls

Renders a set of controls that allow you to filter record results
according to a specified range.Works with numeric properties only.

nav_range_controls and
nav_range_controls.js

Display the navigation descriptors for the current query.
nav_breadcrumbs_stack

Displays merchandising-specific supplemental objects, if any exist,
that accompany the results of a navigation query.

nav_merch

Displays supplemental objects, if any exist, that accompany the
results of a navigation query.

nav_supplemental

Renders the record set results for the current query in a
non-formatted display.

nav_records

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

45Using the UI Reference Implementation | Module descriptions

DescriptionModule

Displays a record count and other controls to handle the record
set display. Also displays an aggregated record count when records
have been aggregated.

nav_records_header

Displays controls for paging through the record set, when
applicable.

nav_records_paging

Renders a list of records that have been aggregated based on a
rollup key.

nav_agg_records

Displays a record count and other controls to handle the record
set display along with an aggregated record count.

nav_agg_records_header

Displays controls for paging through a list of aggregated records,
when applicable.

nav_agg_records_paging

Render a basic searchbox widget.misc_searchbox and

misc_searchbox.js

Displays the results of a dimension search.
misc_dimsearch_results

Displays a record page for an individual record.
rec

Displays the dimension values that have been tagged to the current
record.

rec_dimvals_trees

Displays the properties for the current record.
rec_properties

Displays an aggregated record page for one aggregated record.
agg_rec

Displays the properties associated with an aggregated record’s
representative record. Displays properties derived from performing
calculations on the aggregated record’s constituent records.

agg_rec_properties

Displays the constituent records associated with the current
aggregated record.

agg_rec_records

Implements integration of the Coremetrics Online Analytics product.
coremetrics

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Module descriptions46

Tips on using the UI reference implementation modules
This topic contains notes to keep in mind as you are working with the reference modules.

Consider the following characteristics:

• The page components produced by each module are wrapped in <table> tags.
• Some of the child modules have dependencies on their parents (for example, the nav_records

module relies on the nav module to retrieve a Navigation object).The module maps provide visual
representation of module dependencies.

• There are no dependencies across unrelated features (for example, there are no dependencies
between the nav_controls and nav_records modules).

• All modules reside in the same directory.
• JavaScript routines are provided on a per module basis for those modules with form elements

(misc_ene_switch, misc_searchbox, and nav_range_controls).
• There are no cascading stylesheets.

Related Links
Module maps on page 39

The following diagrams show the relationship between the various UI reference implementation
modules. The diagrams are broken into the four primary modules for Java and .NET.

Non-MDEX Engine URL parameters
Although we have attempted to keep the UI reference implementation as “pure” as possible, it is still
necessary to use some non-MDEX Engine URL parameters to maintain application state independent
of the MDEX Engine query.

It is important, when building your own application, that you remove these parameters (unless they
are required by your application). For example, if the MDEX Engine location is specified in a
configuration file, it is no longer necessary to maintain or support the eneHost and enePort
parameters.

The non-MDEX Engine URL parameters that are used in the UI reference implementation are described
in the following table:

DescriptionParameter

Used by the misc_ene_switch module to
dynamically set the MDEX Engine hostname with
each request.

eneHost

This parameter is particularly useful during
development, but should be removed from a
production deployment.

Used by the misc_ene_switch module to
dynamically set the MDEX Engine port with each
request.

enePort

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

47Using the UI Reference Implementation | Tips on using the UI reference implementation modules

DescriptionParameter

As with eneHost, this parameter is particularly
useful during development, but should be removed
from a production deployment.

Used by nav_records and nav_supplemental
to identify the property key that should be used to
represent the name of a record.

displayKey

This parameter is useful for data inspection where
different data sets may require different property
keys to name the records.

You should remove the displayKey parameter
from a production deployment as the record names
should never change.

Provides a simple means of hiding properties for
each record in the nav_records module.

hideProps

Provides a simple means of hiding the data that is
returned with each supplemental object in the
nav_supplemental module.

hideSups

Provides a simple means of hiding the data that is
returned with each supplemental merchandising
object in the nav_merch module.

hideMerch

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using the UI Reference Implementation | Non-MDEX Engine URL parameters48

Chapter 4

About the Endeca MDEX Engine

Before you begin building your Endeca implementation, it is useful to understand some basics about
the Endeca MDEX Engine. This section provides an overview of the MDEX Engine, what it is, and
how you work with it.

MDEX Engine overview
The Endeca MDEX Engine is the indexing and query engine that provides the backbone for all Endeca
solutions.

The MDEX Engine uses proprietary data structures and algorithms that allow it to provide real-time
responses to client requests. The MDEX Engine stores the indices that were created by the Endeca
Information Transformation Layer (ITL). After the indices are stored, the MDEX Engine receives client
requests via the application tier, queries the indices, and then returns the results.

The MDEX Engine is designed to be stateless. This design requires that a complete query be sent to
the MDEX Engine for each request. The stateless design of the MDEX Engine facilitates the addition
of MDEX Engine servers for load balancing and redundancy. Because the MDEX Engine is stateless,
any replica of an MDEX Engine on one server can reply to queries independently of a replica on other
MDEX Engine servers.

Consequently, adding replicas of MDEX Engines on additional servers provides redundancy and
improved query response time. That is, if any one particular server goes down, a replica of an MDEX
Engine provides redundancy by allowing other servers in the implementation to continue to reply to
queries. In addition, total response time is improved by using load balancers to distribute queries to a
replica MDEX Engine on any of the additional servers.

The MDEX Engine package contains the following components:

DescriptionMDEX Engine Component

The Dgraph is the name of the process for the MDEX Engine.
Dgraph

A typical Endeca implementation includes one or more Dgraphs.
Optionally, it can include an Agraph that manages a number of
Dgraphs.

DescriptionMDEX Engine Component

The Agraph is the name of the program that runs in a distributed
configuration in addition to the Dgraph. The Agraph typically
resides on a separate machine.

Agraph

The Agraph program is responsible for receiving requests from
clients, forwarding the requests to the distributed Dgraphs, and
coordinating the results. From the perspective of the Endeca
Presentation API, the Agraph program behaves similarly to the
Dgraph program.

Agraph-based implementations allow parallelization of query
processing. The implementation of this parallelization results
from partitioning the set of records into two or more disjoint
subsets of records and then assigning each subset to its own
Dgraph.

Note: Starting with the MDEX Engine version 6.0, (namely,
with installations on the 64-bit platforms) a more powerful
Dgraph can accommodate much larger data sets without
the need to implement an Agraph.

Dgidx is the indexing program that reads the tagged Endeca
records that were prepared by Forge and creates the proprietary
indices for the Endeca MDEX Engine.

Dgidx

Agidx is the program that creates a set of Agidx indices which
support the Agraph program in a distributed environment.

Agidx

The dgwordlist utility is used to manually compile the
text-based worddat dictionary into the binary spelldat

dgwordlist

dictionary. This enables use of the Aspell dictionary module in
the MDEX Engine.

The Endeca enecerts utility creates the SSL certificates.
enecerts

About the Information Transformation Layer
The Endeca Information Transformation Layer transforms your source data into indices for the Endeca
MDEX Engine.

This transformation process does not change the content of your source data, only its representation
within your Endeca implementation.

The Information Transformation Layer is an off-line process that performs two distinct functions: data
processing and indexing.You run the Information Transformation Layer components at intervals that
are appropriate for your business requirements.

Full information about the Information Transformation Layer can be found in the Endeca Forge Guide.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About the Endeca MDEX Engine | About the Information Transformation Layer50

Part 2

Record Features

• Working with Endeca Records
• Sorting Endeca Records
• Using Range Filters
• Record Boost and Bury
• Creating Aggregated Records

Chapter 5

Working with Endeca Records

This section provides information on handling Endeca records in your Web application.

Displaying Endeca records
This section describes how to display Endeca records, including their properties and dimension values.

Endeca records are the individual items (such as CDs, books, or mutual funds) through which a user
is trying to navigate. Note that detailed information on implementing this feature can also be found in
the Developer Studio online help.

Displaying a list of Endeca records
Displaying a list of Endeca records is a common task in any Endeca implementation.

A typical implementation will display a summarized list of matching records for the user’s current
navigation state, together with controls for selecting further refinements.

The record list is often displayed as a table, with each row corresponding to a specific record. Each
row displays some identifying information about that specific record, such as a name, title, or
identification number.

A list of records is returned with every MDEX Engine query result. The Presentation API can iterate
through this list, extract the identifying information for each record, and display a table containing the
results.

Displaying each record in the ERecList object

The list of records is returned from an MDEX Engine query as an ERecList (Endeca records) or
AggrERecList (aggregated Endeca records) object.

You use one of these methods to retrieve the records from the Navigation object:

• To obtain an ERecList object, use the Navigation.getERecs() method (Java) or the
Navigation.ERecs property (.NET).

• To obtain an AggrERecList object, use the Navigation.getAggrERecs() method (Java) or
the Navigation.AggrERecs property (.NET).

Note that the Java versions of ERecList and AggrERecList inherit from
java.util.AbstractList, so all the iterator and indexing methods are available.

Examples of displaying records

The following code samples show how to obtain a record list, iterate through the list, and print out each
record’s Name property.

The number of records that are returned is controlled by:

• Java: the ENEQuery.setNavNumERecs() method
• .NET: the ENEQuery.NavNumERecs property

The default number of returned records is 10.These calls must be made before the query() method.

For aggregated Endeca records, use:

• Java: the ENEQuery.setNavNumAggrERecs() method
• .NET: the ENEQuery.NavNumAggrERecs property

The subset of records that are returned is determined by the combination of the offset specified in the
setNavERecsOffset() method (Java) or the NavERecsOffset property (.NET) and the number
of records specified in the setNavNumERecs() method (Java) or NavNumERecs property (.NET).
For example, if the offset is set to 50 and the setNavNumERecs() method is called with an argument
of 35, the MDEX Engine will return records 50 through 85.

Java example

// Make MDEX Engine request. usq contains user query
// string and nec is an ENEConnection object.
ENEQueryResults qr = nec.query(usq);
// Get navigation object result
Navigation nav = qr.getNavigation();
// Get record list
ERecList records = nav.getERecs();
// Loop through record list
ListIterator i = records.listIterator();
while (i.hasNext()) {
 ERec record = (ERec)i.next();
 PropertyMap recordProperties = record.getProperties();
 String propName = "";
 // If property has a value
 if (!((String)recordProperties.get("Name")).equals("")) {
 propName = (String)recordProperties.get("Name");
 out.print(propName);
 }
}

.NET example

// Make Navigation Engine request
ENEQueryResults qr = nec.Query(usq);
// Get Navigation object result
Navigation nav = qr.Navigation;
// Get records
ERecList recs = nav.ERecs;
// Loop over record list
for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for representative record
 PropertyMap propsMap = rec.Properties;
 // Get and print Name property
 String propName = "";

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Endeca Records | Displaying Endeca records54

 if (((String)propmap["Name"]) != "") {
 propName = (String)propmap["Name"];
 Response.Write propName;
 }
}

Performance impact when listing records

The number of records that are returned from the MDEX Engine will affect performance.

The larger the number of requested records, the longer it will take the MDEX Engine to process them.
Therefore, you should carefully use the setNavNumERecs() method (Java) or the NavNumERecs
property (.NET) and the offset specified in the setNavERecsOffset() method (Java) or the
NavERecsOffset property (.NET). These calls should return only the subset of records that you are
interested in displaying to the end user.

Displaying record properties
The properties tagged on an Endeca record can be displayed with the record.

Properties are key/value pairs associated with Endeca records that are intended for display once the
user has searched or navigated to a record list or an individual record. Properties generally contain
more detail about a record than the higher-level dimension values used for navigation.

Common examples of properties for an e-commerce application might be Price, Product Description,
and Part Number. As navigable dimensions, these concepts would not be very helpful to the user,
because they are so specific. In this case, a dimension of Price Range would be more useful for
navigation, with the exact price of each product being a property that is displayed to the user once the
record has been located.

Note: There is often overlap between information used for navigation and the entire set of data
displayed for each record. Properties are the key/value pairs from the raw data that have not
been included for navigation but which are displayed.Thus, each record, when displayed, includes
a combined set of navigable data (dimensions) and non-navigable data (properties).

Mapping and indexing record properties
How record properties are displayed depends on how they are mapped and indexed.

Mapping record properties

The property mapper component treats all properties that appear in the raw data files read by the
pipeline. Depending on property mapper settings, you can handle each source data property as follows:

• Map the source data property to an existing Endeca dimension or a newly-created Endeca
dimension.

• Map the source data property to an existing Endeca property or a newly-created Endeca property.
• Ignore the source data property.

To map record properties so they can be displayed, you configure the property mapper and then
specify how the property should be displayed. Both of these steps take place in Developer Studio and
are described in the online help.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

55Working with Endeca Records | Displaying record properties

For details on adding and configuring an Endeca property, see the Endeca Forge Guide.

Indexing all properties with Dgidx

By default, the Dgidx indexing program ignores any record property that does not have a corresponding
property mapper and does not include it in the MDEX Engine indices. If you use the Dgidx --nostric¬
tattrs flag, every property found on a record will be indexed.

The MDEX Engine Dgraph program does not have configuration flags to control the behavior of
displaying properties.

Accessing properties from records
Properties can be accessed from any Endeca record returned from a navigation query (N parameter)
or a record query (R parameter).

To access a property directly on an ERec or AggrERec object, use the PropertyMap.getValues()
method (Java) or the PropertyMap.GetValues() method (.NET).These methods return a collection
of all the values in a record for a particular property.

The following examples show how to access record properties.

Java example

if (eneResults.containsNavigation()) {
 Navigation nav = eneResults.getNavigation();
 ERecList erl = nav.getERecs();
 for (int i=0; i < erl.size(); i++) {
 ERec erec = (ERec) erl.get(i);
 // Retrieve all properties from the record
 PropertyMap pmap = erec.getProperties();
 // Retrieve all values for the property named Colors
 Collection colors = pmap.getValues("Colors");
 Iterator it = colors.iterator();
 while (it.hasNext()) {
 String colorValue = (String)it.next();
 // Insert code to use the colorValue variable
 }
 }
}

.NET example

if (eneResults.ContainsNavigation()) {
 Navigation nav = eneResults.Navigation;
 ERecList recs = nav.ERecs;
 // Loop over record list
 for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 System.Collections.IList colors = propsMap.GetValues("Colors");
 // Retrieve all values for the Colors property
 for (int j =0; j < colors.Count; j++) {
 String colorValue = (String)colors[j];
 // Insert code to use the colorValue variable
 }

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Endeca Records | Displaying record properties56

 }
}

Properties returned by the MDEX Engine
This topic describes which mapped properties are returned in response to queries.

The MDEX Engine typically returns additional information with a user query request. This information
depends on the nature of the query.

Recall that for properties, you can specify two options in the Property Editor of Developer Studio, Show
with Record and Show with Record List.

When you specify Show with Record List, the corresponding RENDER_CONFIG.XML file is updated.
This indicates to the MDEX Engine which properties it must return as supplemental objects with the
list of records.

In the case of mapped record properties, the MDEX Engine behaves as follows:

• It returns only those properties for which you specify Show with Record List in Developer Studio.

• It returns these properties consistently in record lists returned as a response to regular user queries,
and in record lists returned by the dynamic business rules. (Dynamic business rules enable
merchandizing and content spotlighting.)

Note: In terms of XML configuration settings, rule results from the MDEX Engine use the
RENDER_PROD_LIST setting from the RENDER_CONFIG.XML file.

Displaying all properties on all records
You can loop through all properties on all records and display their values.

Once a Property object is obtained, its name and value can be accessed with these calls:

• For Java, use the Property.getKey() and Property.getValue() methods.
• For .NET, use the Property.Key and Property.Value properties.

Java example

if (eneResults.containsNavigation()) {
 Navigation nav = eneResults.getNavigation();
 ERecList erl = nav.getERecs();
 for (int i=0; i < erl.size(); i++) {
 // Get an individual record
 ERec rec = (ERec) erl.get(i);
 // Get property map for record
 PropertyMap propsMap = rec.getProperties();
 // Get property iterator for record
 Iterator props = propsMap.entrySet().iterator();
 // Loop over properties iterator
 while (props.hasNext()) {
 // Get individual record property
 Property prop = (Property)props.next();
 // Display property name and value
 %><tr>
 <td><%= prop.getKey() %>: </td>

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

57Working with Endeca Records | Displaying record properties

 <td><%= prop.getValue() %></td>
 </tr><%
 }
 }
}

.NET example

Navigation nav = eneResults.Navigation;
ERecList recs = nav.ERecs;
// Loop over record list
for (int i=0; i<recs.Count; i++) {
 // Get individual record
 ERec rec = (ERec)recs[i];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 System.Collections.IList props = propmap.EntrySet;
 // Loop over properties iterator
 for (int j =0; j < props.Count; j++) {
 Property prop = (Property)props[j];
 // Display property name and value
 %><tr>
 <td><%= prop.Key %>: </td>
 <td><%= prop.Value %></td>
 </tr><%
 }
}

Displaying dimension values for Endeca records
The dimension values tagged on an Endeca record can be displayed with the record.

Dimensions are the hierarchical, navigable concepts applied to Endeca records. Dimension values
are the specific terms within a given dimension that describe a record or set of records.

Each record’s dimension values can be displayed when the record appears in a record list or on an
individual record page. The latter case is the more common use of this feature, because record
properties are also available for display and are less expensive to use for this purpose.

A common purpose for displaying an individual record’s dimension values is to allow the end user to
pivot to a new record set based on a subset of dimension values displayed for the current record. For
example, an apparel application might have a record page for shirt ABC that displays the shirt’s
dimension values:

Sleeve=short
fabric=100% cotton
Style=Oxford
Size=L

Each value has a checkbox next to it. The end user can then check the boxes for dimension values:

Sleeve=short
Style=Oxford
Size=L

The requested dimension values will arrive at a record set that includes shirt ABC along with all other
Large, short-sleeve, Oxford shirts (regardless of whether the shirt fabric is 100% cotton).

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Endeca Records | Displaying dimension values for Endeca records58

Configuring how dimensions are displayed
You use Developer Studio to create and configure dimensions.

Dimensions and their hierarchy of values are created in Developer Studio Dimensions view, and are
referenced in a dimension adapter component. See the Endeca Forge Guide for more information on
creating dimensions.

By default, dimension values are displayable for a record query result but not for a navigation query
result. This behavior can be changed in Developer Studio.

Dimension values are ranked in either Developer Studio or the dval_rank.xml file. Note that in
either case, if dimension values are assigned ranks with values greater than 16,000,000, unpredictable
ranking behavior may result.

No Dgidx or Dgraph flags are necessary to enable displaying dimension values.

Accessing dimensions from records
Dimension values can be accessed from any Endeca record returned from a record query (R parameter).

If dimensions have been configured as in the previous section, they can also be accessed from records
returned from a navigation query (N parameter).

To access a dimension value directly on an ERec object, use:

• Java: the ERec.getDimValues() method
• .NET: the ERec.DimValues property

These return an AssocDimLocationsList object that contains all the values in a record for a
particular dimension.

The following code snippets show how to retrieve the dimension values from a list of records.

Java example

ERecList recs = eneResults.getERecs();
// Loop over record list to get the dimension values
for (int i=0; i < recs.size(); i++) {
 ERec rec = (ERec)recs.get(i);
 // Get list of tagged dimension location groups for record
 AssocDimLocationsList dims = (AssocDimLocationsList)rec.getDimValues();
 for (int j=0; j < dims.size(); j++) {
 // Get individual dimension and loop over its values
 AssocDimLocations dim = (AssocDimLocations)dims.get(j);
 for (int k=0; k < dim.size(); k++) {
 // Get attributes from a specific dim val
 DimLocation dimLoc = (DimLocation)dim.get(k);
 DimVal dval = dimLoc.getDimValue();
 String dimensionName = dval.getDimensionName();
 long dimensionId = dval.getDimensionId();
 String dimValName = dval.getName();
 long dimValId = dval.getId();
 // Enter code to display the dimension name and
 // dimension value name. The Dimension ID and
 // dimension value ID may be needed for URLs.
 }
 }
}

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

59Working with Endeca Records | Displaying dimension values for Endeca records

.NET example

ERecList recs = eneResults.ERecs;
for (int i=0; i < recs.Count; i++) {
 ERec rec = (ERec)recs[i];
 // Get list of tagged dimension location groups for record
 AssocDimLocationsList dims = rec.DimValues;
 // Loop through dimensions
 for (int j=0; j < dims.Count; j++) {
 // Get individual dimension
 AssocDimLocations dim = (AssocDimLocations) dims[j];
 // Loop through each dim val in the dimension group
 for (int k=0; k < dim.Count; k++) {
 // Get specific dimension value and path
 DimLocation dimLoc = (DimLocation) dim[k];
 // Get dimension value
 DimVal dval = dimLoc.DimValue;
 String dimensionName = dval.DimensionName;
 Long dimensionId = dval.DimensionId;
 String dimValName = dval.Name;
 Long dimValId = dval.Id;
 // Enter code to display the dimension name and
 // dimension value name. The Dimension ID and
 // dimension value ID may be needed for URLs.
 }
 }
}

Performance impact when displaying dimensions
Displaying too many dimensions can cause a performance hit.

The main purpose of dimension values is to enable navigation through the records. Passing dimension
values through the system consumes more resources than passing properties. Therefore, the default
behavior of the MDEX Engine is to return dimension values on records only when a record query
request has been made (not for navigation query requests).

As mentioned above, this behavior can be changed. However, the developer should exercise caution
when passing dimension values through to the record list, because doing this with too many dimensions
can cause a performance hit.

Paging through a record set
A paging UI control is helpful if many records are returned.

An MDEX Engine query may return more records than can be displayed all at once. A common user
interface mechanism for overcoming this is to create pages of results, where each page displays a
subset of the entire result set.

In the following example of a user interface control for paging, Page 2 of 27 pages is currently being
displayed:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Endeca Records | Paging through a record set60

Using the No parameter in queries
The No parameter can be used for paging.

Paging is implemented by using the No parameter in an MDEX Engine query, using the following
syntax:

No=<number_of_records_offset>

The No parameter specifies the offset for the first record that is returned in the query result.The default
offset is zero if the No parameter is not specified. For example, if you want an MDEX Engine query to
return a list of records that starts at the 20th record, you would use this in the query:

No=20

It is important to note the ERecList object is one-based and the offset parameter is zero-based. For
example, if there are ten records displayed in the record list and parameter No=10 is in the navigation
state, the ERecList object returned will have records 11-20.

The paging functionality does not require any Developer Studio configuration, and no Dgidx or Dgraph
flags are necessary.

Using paging control methods
The Presentation API includes several methods that you can use for paging.

The ENEQuery object is the initial access point for providing the paging controls for the entire record
set. By default, the navigation query returns a maximum of ten records to the Navigation object for
display. To override this setting, use:

• Java: the ENEQuery.setNavNumERecs() method
• .NET: the ENEQuery.NavNumERecs property

The default offset for a record set is zero, meaning that the first ten records are displayed. The default
offset can be overridden in one of two ways:

• Generate a URL with an explicit No parameter.
• For Java, use the ENEQuery.setNavERecsOffset() method. For .NET, use the
ENEQuery.NavERecsOffset property

To find out the offset used in the current navigation state, use the ENEQuery.getNavERecsOffset()
method (Java) or the ENEQuery.NavERecsOffset property (.NET). By adding one to the offset
parameter, the application can calculate the number of the first record on display.

To ascertain the total number of records being returned by the navigation query, use the
Navigation.getTotalNumERecs() method (Java) or the Navigation.TotalNumERecs property.
If the number of records returned is less than the number of records returned by the
ENEQuery.setNavNumERecs() method (Java) or the ENEQuery.NavNumERecs property (.NET),
then no paging controls are needed.

The following table provides guidance about the paging logic necessary in your Web application to
calculate the previous, next, and last pages.

>|

Last

>

Next

<

Previous

|<

First

totNum - remainder (if remainder < 0)

totNum - navNum (if remainder = 0)

offset + navNumoffset - navNumset No = 0

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

61Working with Endeca Records | Paging through a record set

where:

• offset = Navigation.getERecsOffset() method (Java) or the Navigation.ERecsOffset
property (.NET)

• navNum = ENEQuery.getNavNumERecs() method (Java) or the ENEQuery.NavNumERecs
property (.NET)

• totNum = Navigation.getTotalNumERecs() method (Java) or the
Navigation.TotalNumERecs property (.NET)

• remainder = totNum / navNum

Note: When using paging controls, consider how paging should interact with other aspects of
the application. For example, if the user is paging through the record set and then decides to
sort on a property, should the No parameter be reset? The answer depends on the desired
functionality of the application.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Endeca Records | Paging through a record set62

Chapter 6

Sorting Endeca Records

The sorting functionality allows the user to define the order of Endeca records returned with each
navigation query.

About record sorting
When making a basic navigation request, the user may define a series of property/dimension and
order (ascending or descending) pairs.

If the user does not specify sort order as part of the query, the MDEX Engine returns query results in
the same order that Dgidx stores the records in the index file. Most of the time, this is the same order
in which Forge processed the records. For information on changing the order in which Dgidx stores
records, see the "Changing the sort order with Dgidx flags" topic later in this section.

All of the records corresponding to a particular navigation state are considered for sorting, not just the
records visible in the current request. For example, if a navigation state applies to 100 bottles of wine,
all 100 bottles are considered when sorting, even though only the first ten bottles may be returned
with the current request.

Record sorting only affects the order of records. It does not affect the ordering of dimensions or
dimension values that are returned for query refinement.

Note: Additional information on implementing this feature can be found in the Developer Studio
online help.

Related Links
Changing the sort order with Dgidx flags on page 65

You can use an optional Dgidx flag to change the sort order.

Configuring precomputed sort
You can optimize a sort key for a precomputed sort.

Although users can sort on any record at any time, it is also possible to optimize a property or dimension
for sort in Developer Studio.This mainly controls the generation of a precomputed sort, and secondarily
enables the field to be returned in the API sort keys function. The sort key is an Endeca property or

dimension that exists in the data set. It can be numeric, alphabetical, or geospatial, and determines
the type of sort that occurs.

Configuring precomputed sort on a property

To configure precomputed sort on a property, check "Prepare sort offline" in the Property editor.

In addition, the property’s Type attribute, which you also set in the Property editor, affects sorting in
the following ways:

Records are sorted:If Type is set to this:

In alphabetical order.Alpha

In numeric order.Integer or Floating Point

In geospatial order (that is, according to the distance between the
specified geocode property and a given reference point).

Geocode

Deprecated. Do not use this type.File Path

Configuring precomputed sort on a dimension

To configure a precomputed sort on a dimension, check "Prepare sort offline" in the Dimension editor.

In addition, the dimension’s Refinements Sort Order setting, which you also set in the Dimension editor,
affects sorting in the following ways:

Records are sorted:If Refinements Sort Order is set to
this:

In alphabetical order.Alpha

In numeric order.Integer or Floating Point

Numeric sort on semi-numeric and non-numeric dimension values

When numeric sorting is enabled for a dimension, all of the dimension values are assumed to consist
of a numeric (double) part, followed by an optional non-numeric part. That is to say, 3 is evaluated as
<3.0, "">. The non-numeric part is used as a secondary sort key when two or more numeric parts are
equal. The non-numeric parts are sorted so that an empty non-numeric part comes first in the sort
order.

In some cases, a set of primarily numeric dimension values may contain semi-numeric values, such
as 1.3A (evaluated as <1.3, "A">, or non-numeric values, such as Other (evaluated as <0.0, "Other">.
Numeric sort on such dimension values works as follows:

• For semi-numeric dimension values, dimension values with non-numeric parts are sorted after
matching dimension values without non-numeric parts. For example, 1.3A appears after 1.3 when
sorted.

• For non-numeric dimension values, the missing numeric part is treated as 0.0. In a data set
containing the word Other and the number 0, the system would compare 0 and Other as <0.0, "">
and <0.0, "Other"> and sort 0 before Other.

Putting all of this together, a data set consisting of Other, 1.3A, 0, 3, and 1.3 would sort as follows:

0
Other
1.3
1.3A
3

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Sorting Endeca Records | Configuring precomputed sort64

Sorting behavior for records without a sort-key value

If an Endeca record does not include a value for the specified sort key, that record is sorted to the
bottom of the list, regardless of the sort order.This behavior occurs in both the Dgraph and the Agraph.

For example, the following record set is sorted by P_Year ascending. Note that Record 4 has no
P_Year property value.

Record 1 (P_Year 1998)
Record 2 (P_Year 2000)
Record 3 (P_Year 2003)
Record 4 (no P_Year property value)

If the sort order is reversed to P_Year descending, the new result set would appear in the following
order:

Record 3 (P_Year 2003)
Record 2 (P_Year 2000)
Record 1 (P_Year 1998)
Record 4 (no P_Year property value)

Record 4, because it has no P_Year property value, will always appear last.

Changing the sort order with Dgidx flags
You can use an optional Dgidx flag to change the sort order.

No Dgidx flags are necessary to enable record sorting. If a property or dimension is properly enabled
for sorting, it is automatically indexed for sorting.

To change the order in which Dgidx stores records, you can specify a sort order and sort direction
(ascending or descending) by using the --sort flag with the following syntax:

--sort "key|dir"

where key is the name of a property or dimension on which to sort and dir is either asc for an ascending
order or desc for descending (if not specified, the order will be ascending).

You can also specify multiple sort keys in the format:

--sort "key_1|dir_1||key_2|dir_2||...||key_n|dir_n"

If you specify multiple sort keys, the records are sorted by the first sort key, with ties being resolved
by the second sort key, whose ties are resolved by the third sort key, and so on.

Note that if you are using the Endeca Application Controller (EAC) to control your environment, you
must omit the quotation marks from the --sort flag. Instead, use the following syntax:

--sort key_1|dir_1||key_2|dir_2||...||key_n|dir_n

There are no Dgraph sort flags. If a property or dimension is properly enabled for sorting when indexed,
it is available for sorting when those index files are loaded into the MDEX Engine.

Agraph default sort order and displayed record lists
For Agraph deployments, the sort property should be displayed with record lists.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

65Sorting Endeca Records | Changing the sort order with Dgidx flags

If a default record sort order is specified in Dgidx based on a property which is not set to show in the
record list, an Agraph managing the resulting Dgraphs will not consistently display records in the default
sort order.

Each child Dgraph displays its own records in the correct order, but the Agraph does not reliably
preserve this order when integrating its child record sets. The resulting record order will be close
to—but not the same as—the actual specified default sort order.

To prevent this problem, use Developer Studio’s Property editor to enable the "Show with record list"
setting for the sort property. This ensures that the Agraph will determine the correct record display
order.

URL parameters for sorting
The Ns parameter is used for record sorting.

In order to sort records returned for a navigation query, you must append a sort key parameter (Ns)
to the query, using the following syntax:

Ns=sort-key-names[(geocode)][|order][||…]

The Ns parameter specifies a list of properties or dimensions by which to sort the records, and an
optional list of directions in which to sort. The records are sorted by the first sort key, with ties being
resolved by the second sort key, whose ties are resolved by the third sort key, and so on.

The optional order parameter specifies the order in which the property is sorted (0 indicates ascending,
1 indicates descending). The default sort order for a property is ascending. Whether the values for
the sort key are sorted alphabetically, numerically, or geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument to the sort key parameter
(noting that the sort key parameter must be a geocode property). Records are sorted by the distance
from the geocode reference point to the geocode point indicated by the property key.

Sorting can only be performed when accompanying a navigation query. Therefore, the sort key (Ns)
parameter must accompany a basic navigation value parameter (N).

Valid Ns examples

N=0&Ns=Price
N=101&Ns=Price|1||Color
N=101&Ns=Price|1||Location(43,73)

Related Links
Record Features on page 51

This part contains the following sections:

Sort API methods
The Presentation API includes several methods that you can use for record sorting.

Because a record sort request is simply a variation of a basic navigation request, rendering the results
of a record sort request is identical to rendering the results of a navigation request.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Sorting Endeca Records | URL parameters for sorting66

However, there are specific objects and method calls that can be accessed from a Navigation object
that return a list of valid record sort properties, as shown in the examples below. (This data is only
available from navigation and record search requests.)

The ERecSortKeyList object is an array containing ERecSortKey objects. Use these calls to get
the ERecSortKey sort keys in use for this navigation:

• Java: Navigation.getSortKeys() method
• .NET: Navigation.SortKeys property

Each ERecSortKey object contains the name of a property or dimension that has been enabled for
record sorting, as well as a Boolean flag indicating whether the current request is being sorted by the
given sort key, and an integer indicating the direction of the current sort, if any (ASCENDING, DESCEND¬
ING, or NOT_ACTIVE).

The Navigation object also has a method which provides an ERecSortKeyList containing only
the sort keys used in the returned results:

• Java: getActiveSortKeys()
• .NET: GetActiveSortKeys()

Note that in order to get an active sort key that is not precomputed for sort, you must use:

• Java: the ENEQuery.getNavActiveSortKeys() method
• .NET: the ENEQuery.GetNavActiveSortKeys() method

Java example of methods that return sort properties

ERecSortKeyList keylist = nav.getSortKeys();
for (int i=0; i < keylist.size(); i++) {
 ERecSortKey key = keylist.getKey(i);
 String name = key.getName();
 int direction = key.getOrder();
}

.NET example of methods that return sort properties

ERecSortKeyList keylist = nav.SortKeys;
for (int i=0; i < keylist.Count; i++) {
 ERecSortKey key = keylist[i];
 String name = key.Name;
 int direction = key.GetOrder();
}

Related Links
Record Features on page 51

This part contains the following sections:

Troubleshooting application sort problems
This topic presents some approaches to solving sorting problems.

Although you can implement sorting without using the ERecSortKey objects and methods to retrieve
a list of valid keys, this approach does require that the application have its parameters coordinated
with the data set.The application must have the Ns parameters hard-coded, and will rely on the MDEX

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

67Sorting Endeca Records | Troubleshooting application sort problems

Engine having corresponding parameters enabled. If a navigation request is made with an invalid Ns
parameter, the MDEX Engine returns an error.

If the records returned with a navigation request do not seem to respect the sort key parameter, there
are some potential problems:

• Was the property/dimension specified as a numeric when it is actually alphanumeric? Or vice
versa? In this case, the MDEX Engine returns a valid response, but the sorting may be incorrect.

• Was the specified property a derived property? Derived properties cannot be used for sorting
records.

• If a record has multiple property values or dimension values for a single property or dimension,
the MDEX Engine sorts the records based on the first value associated with the key. If the application
is displaying the last value, the records will not appear to be sorted correctly. In general, properties
and dimensions that are enabled for sorting should only have one value assigned per record.

• If an application has properties and dimensions with the same name and a sort is requested by
that name, the MDEX Engine arbitrarily picks either the property or dimension for sorting. In general,
using the same name for a properties and dimensions should be avoided.

• If certain records in a record set lack a sort-key value, they will always appear last in a result set.
Therefore, if you reverse a sort order on a record set containing such records, the order of the
entire record set will not be reversed—the records without a sort-key value always sort at the end
of the set.

Related Links
Record Features on page 51

This part contains the following sections:

Performance impact for sorting
Sorting records has an impact on performance.

Keep the following factors in mind when attempting to assess the performance impact of the sorting
feature:

• Record sorting is a cached feature.That means that each dimension or property enabled for sorting
increases the size of the Dgraph process.The specific size of the increase is related to the number
of records included in the data set. Therefore, only dimensions or properties that are specifically
needed by an application for sorting should be configured as such. Sorting gets slower as paging
gets deeper.

• Because sorting is an indexed feature, each property enabled for sorting increases the size of both
Dgidx process as well as the MDEX Engine process. (The specific size of the increase is related
to the number of records included in the data set.) Therefore only properties that are specifically
needed by an application for sorting should be configured as such.

• In cases where the precomputed sort is rarely or never used (such as when the number of search
results is typically small), the memory can be saved.

Related Links
Record Features on page 51

This part contains the following sections:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Sorting Endeca Records | Performance impact for sorting68

Using geospatial sorting
You implement geospatial sorting by using geocode properties as sort keys.

Geocode properties represent latitude and longitude pairs to Endeca records.

Result sets that have geocode properties can be sorted by the distance of the values of the geocode
properties to a given reference point. They can also be filtered (using the Nf parameter) by these
same values.

For example, if the records of a particular data set represent individual books that a large vendor has
for sale at a variety of locations, each book could be tagged with a geocode property (named Location)
that holds the store location information for that particular book. Users could then filter result sets to
see only books that are located within a given distance, and then sort those books so that the closest
books display first.

A geocode property on an Endeca record may have more than one value. In this case, the MDEX
Engine compares the query’s reference point to all geocode values on the record and returns the
record with the closest distance to the reference point.

Configuring geospatial sorting
You can configure a geocode property and add a Perl manipulator to the pipeline if necessary.

Configuring a geocode property as the sort key

Use Developer Studio’s Property editor to configure a geocode property for record sort. In the Property
editor, the "Prepare sort offline" checkbox enables record sorting on the property.

Configuring the pipeline for a geocode property

Dgidx accepts geocode data in the form:

latvalue,lonvalue

where each is a double-precision floating-point value:

• latvalue is the latitude of the location in whole and fractional degrees. Positive values indicate north
latitude and negative values indicate south latitude.

• lonvalue is the longitude of the location in whole and fractional degrees. Positive values indicate
east longitude, and negative values indicate west longitude.

For example, Endeca’s main office is located at 42.365615 north latitude, 71.075647 west longitude.
This geocode should be supplied to Dgidx as:

42.365615,-71.075647

If the input data is not available in this format, it can be assembled from separate properties with a
Perl manipulator created in Developer Studio. The Method Override editor would have the following
Perl code:

#Get the next record from the first record source.
my $rec = $this->record_sources(0)->next_record;
return undef unless $rec;
#Return an array of property values from the record.
my @pvals = @{$rec->pvals};
#Return the value of the Latitude property.
my @lat = grep {$_->name eq "Latitude"} @{$rec->pvals};

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

69Sorting Endeca Records | Using geospatial sorting

#Return the value of the Longitude property.
my @long = grep {$_->name eq "Longitude"} @{$rec->pvals};
#Exit if there is more than one Latitude property.
if (scalar (@lat) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Latitude property.");
}
#Exit if there is more than one Longitude property.
if (scalar (@long) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Longitude property.");
}
#Concatenate Latitude and Longitude into Location.
my $loc = $lat[0]->value . "," . $long[0]->value;
#Add new Location property to record.
my $pval = new EDF::PVal("Location", $loc);
$rec->add_pvals($pval);

return $rec;

URL parameters for geospatial sorting
The Ns parameter can specify a geocode property for record sorting.

As with general record sort, use the Ns parameter to specify a record sort based on the distance of a
geocode property from a given reference point. The Ns syntax for a geocode sort is:

Ns=geocode-property-name(geocode-reference-point)

The geocode-reference-point is expressed as a latitude and longitude pair in exactly the same
comma-separated format described in the previous topic. For example, if you want to sort on the
distance from the value of the geocode property Location to the location of Endeca’s main office, add
the following sort specification to the query URL:

Ns=Location(42.365615,-71.075647)

Geocode properties cannot be sorted except in relation to their distance to a reference point. So, for
example, the following specification is invalid and generates an error message:

Ns=Location

Geospatial sort API methods
The Presentation API includes methods that you can use for geospatial sorting.

The ERecSortKey class is used to specify all sort keys, including geocode sort keys.

To create a geocode sort key, use the four-parameter constructor:

ERecSortKey(String propertyName,
 boolean isAscending,
 double latitude,
 double longitude);

An ERecSortKey has accessor methods for the latitude and longitude of the reference location:

• Java: getReferenceLatitude() and getReferenceLongitude()
• .NET: GetReferenceLatitude() and GetReferenceLongitude()

Note that calling these methods on a non-geocode sort key causes an error.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Sorting Endeca Records | Using geospatial sorting70

The type of sort key (GEOCODE_SORT_KEY or ALPHA_NUM_SORT_KEY) can be determined using the
getType() method (Java) or the Type property (.NET).

The code samples below show the use of the accessor methods.

Although you can implement sorting without first retrieving a list of valid sorting keys from the result
object, this approach requires that the application have its parameters coordinated properly with the
MDEX Engine. The application will have the Ns parameters hard-coded, and will rely on the MDEX
Engine to have corresponding parameters. If a navigation request is made with an invalid Ns parameter,
that request returns an error from the MDEX Engine.

Java example of geocode API methods

ERecSortKey sk = new ERecSortKey("Location", true, 43.0, -73.0);
// get sortKeyName == "Location"
String sortKeyName = sk.getName();
// get latitude == 43.0
double latitude = sk.getReferenceLatitude();
// get longitude == -73.0
double longitude = sk.getReferenceLongitude();
// get keyType == com.endeca.navigation.ERecSortKey.GEOCODE_SORT_KEY
int keyType = sk.getType();
// get sortOrder == com.endeca.navigation.ERecSortKey.ASCENDING
int sortOrder = sk.getOrder();

.NET example of geocode API methods

ERecSortKey sk = new ERecSortKey("Location", true, 43.0, -73.0);
// get sortKeyName == "Location"
string sortKeyName = sk.Name;
// get latitude == 43.0
double latitude = sk.GetReferenceLatitude();
// get longitude == -73.0
double longitude = sk.GetReferenceLongitude();
// get keyType == Endeca.Navigation.ERecSortKey.GEOCODE_SORT_KEY
int keyType = sk.Type;
// get sortOrder == com.endeca.navigation.ERecSortKey.ASCENDING
int sortOrder = sk.GetOrder();

Dynamic properties created by geocode sorts
When a geospatial sort is applied to a navigation query, the MDEX Engine creates a pair of dynamic
properties for each record returned.

The dynamic properties showing the distance (in kilometers and miles, respectively) between the
record's geocode address and that specified in the sort key.

The names of these properties use the format:

kilometers_to_key(latvalue,lonvalue)

miles_to_key(latvalue,lonvalue)

where key is the name of the geocode property, and latvalue and lonvalue are the values specified
for the sort.

For example, if Location is the name of a geocode property, this Ns sort parameter:

Ns=Location(38.9,77)

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

71Sorting Endeca Records | Using geospatial sorting

will create these properties for the record that is tagged with the geocode value of 42.3,71:

kilometers_to_Location(38.900000,77.000000): 338.138890
miles_to_Location(38.900000,77.000000): 210.109700

These properties are not persistent and are informational only. There is no configuration associated
with the properties and they cannot be disabled. Note that applying both a geocode sort and a geocode
range filter in the same query causes both sets of dynamic properties to be generated.

Performance impact for geospatial sorting
Geospatial sorting affects query-time performance.

Geospatial sorting and filtering is a query-time operation. The computation time it requires increases
as larger sets of records are sorted and filtered. For best performance, it is preferable to apply these
operations once the set of records has been reduced by normal refinement or search.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Sorting Endeca Records | Using geospatial sorting72

Chapter 7

Using Range Filters

You can use range filters for navigation queries.

About range filters
Range filter functionality allows a user, at request time, to specify an arbitrary, dynamic range of values
that are then used to limit the records returned for a navigation query.

The remaining refinement dimension values for the records in the result set are also returned. For
example, a range filter would be used if a user were querying for wines within a price range, say
between $10 and $20.

It is important to remember that, similar to record search, range filters are simply modifiers for a
navigation query. The range filter acts in the same manner as a dimension value, even though it is
not a specific system-defined dimension value.

You can use a range filter in a query on record properties and on dimensions.

Configuring properties and dimensions for range filtering
Using range filters does not require Dgidx or Dgraph configuration flags.

Range filters can be applied to either properties or dimensions of the following types:

• Properties of type Numeric (Integer, Floating point, DateTime) or type Geocode
• Dimensions of type Numeric that contain only Integer or Floating point values.

Note: Although dimensions do not have type, configuring a dimension's refinement sort
order to be numeric causes the dimension to be treated as numeric in range filters, so long
as all values can be parsed as integral or floating point values.

For values of properties and dimensions of type Floating point, you can specify values using both
decimal (0.00...68), and scientific notation (6.8e-10).

Use Developer Studio to configure the appropriate property type. For example, the following property
is configured to be of type Floating point:

Running queries with range filtering on dimensions is done with the same Nf parameter that is used
for queries with range filtering on properties.

For example, this is a query with a range filter on a dimension. In this example, the name of the
dimension is ContainsDigit and the records are numbers:

N=0&Nf=ContainsDigit|GT+8

This query returns all numbers that contain values greater than 8. As the example shows, running a
query with a range filter on a dimension makes sense only for dimensions with values of type Integer
or Floating Point.

No Dgidx flags are necessary to enable range filters. All range filter computational work is done at
request-time.

Likewise, no MDEX Engine configuration flags are necessary to enable range filters. All numeric
properties and dimensions and all geocode properties are automatically enabled for use in range filters.

URL parameters for range filters
The Nf parameter denotes a range filter request.

A range filter request requires an Nf parameter. However, because a range filter is actually a modifier
for a basic navigation request, it must be accompanied by a standard N navigation request (even if
that basic navigation request is empty).

Only records returned by the basic navigation request (N) are considered when evaluating the range
filter. (Range filters and navigation dimension values together form a Boolean AND request.)

The Nf parameter has the following syntax:

Nf=filter-key|function[+geo-ref]+value[+value]

The single range filter parameter specifies three separate components of a complete range filter:

• filter-key
• function
• value

filter-key is the name of a numeric property, geocode property, or numeric dimension. Only a single
property key can be specified per range filter.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Range Filters | URL parameters for range filters74

function is one of the following:

• LT (less than)
• LTEQ (less than or equal to)
• GT (greater than)
• GTEQ (greater than or equal to)
• BTWN (between)
• GCLT (less than, for geocode properties)
• GCGT (greater than, for geocode properties)
• GCBWTN (between, for geocode properties)

value is one or more numeric fields defining the actual range. The LT, LTEQ, GT, and GTEQ functions
require only a single value.The BTWN function requires two value settings, with the smaller value listed
first and the larger value listed next, separated by a plus sign (+) delimiter.

geo-ref is a geocode reference point that must be specified if one of the geocode functions has been
specified (GCLT, GCGT, GCBTWN). This is the only case where a geocode reference point may be
specified. When a geocode filter is specified, the records are filtered by the distance from the filter key
(a geocode property) to geo-ref (the geocode reference point).

URL parameters for geocode filters
When used with a geocode property, the Nf parameter specifies a range filter based on the distance
of that geocode property from a given reference point.

The Nf syntax for a geocode range filter is:

Nf=filter-key|function+lat,lon+value[+value]

filter-key is the name of a geocode property and function is the name of a geocode function.

lat and lon are a comma-separated latitude and longitude pair: latv is the latitude of the location in
whole and fractional degrees (positive values indicate north latitude and negative values indicate south
latitude). lon is the longitude of the location in whole and fractional degrees (positive values indicate
east longitude and negative values indicate west longitude). The records are filtered by the distance
from the filter key to the latitude/longitude pair.

The available geocode functions are:

• GCLT – The distance from the geocode property to the reference point is less than the given
amount.

• GCGT – The distance from the geocode property to the reference point is greater than the given
amount.

• GCBTWN – The distance from the geocode property to the reference point is between the two given
amounts.

Distance limits in range filters are always expressed in kilometers.

For example, assume that the following parameter is added to the URL:

Nf=Location|GCLT+42.365615,-71.075647+10

The query will return only those records whose location (in the Location property) is less than 10
kilometers from Endeca’s main office.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

75Using Range Filters | URL parameters for range filters

Dynamic properties created by geocode filters
When a geocode filter is applied to a navigation query, the MDEX Engine creates a pair of dynamic
properties for each record returned.

These dynamic properties are similar to those created from geocode sorts.

The properties show the distance (in kilometers and miles, respectively) between the record's geocode
address and that specified in the filter.

The property names are composed using the name of the geocode property or dimension and the
values specified in the geocode filter.

For example, if Location is the name of a geocode property, this Nf parameter:

Nf=Location|GCLT+38.9,77+500

will create these properties for the record that is tagged with the geocode value of 42.3,71:

kilometers_to_Location|GCLT 38.900000,77.000000 500.000000: 338.138890
miles_to_Location|GCLT 38.900000,77.000000 500.000000: 210.109700

The properties are not persistent and are informational only (that is, they indicate how far the record’s
geocode value is from the given reference point).There is no configuration associated with the properties
and they cannot be disabled. Note that applying both a geocode sort and a geocode range filter in the
same query causes both sets of dynamic properties to be generated.

Using multiple range filters
A query can contain multiple range filters.

In a more advanced application, users may want to filter against multiple range filters, each with a
different filter key and function. Such a request is implemented with the following query parameter
syntax:

Nf=filter-key1|function1+value[+value]|filter-key2|function2+value[+value]

In this case, each range filter is evaluated separately, and only records that pass both filters (and
match any navigation parameters specified) are returned. For example, the following query is valid:

N=0&Nf=Price|BTWN+9+13|Score|GT+80

The user is searching for bottles of wine between $9 and $13 with a score rating greater than 80.

Examples of range filter parameters
This topic shows some valid and invalid examples of using the Nf parameter in queries.

Consider the following examples that use these four records:

Description propertyPrice propertyWine Type dimension
value

Record

Dark ruby in color, with extremely ripe…10Red (Dim Value 101)1

Dense, rich and complex describes this '96
California…

12Red (Dim Value 101)2

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Range Filters | Using multiple range filters76

Description propertyPrice propertyWine Type dimension
value

Record

Dense and vegetal, with celery, pear, and
spice flavors…

19White (Dim Value 102)3

Big, ripe and generous, layered with honey…20Other (Dim Value 103)4

Example 1

Assume that the following query is created:

N=0&Nf=Price|GT+15

This navigation request has a range filter specifying the Price property should be greater than 15 (with
no dimension values specified). The following Navigation object is returned:

2 records (records 3 and 4)
2 refinement dimension values (White and Other)

Example 2

This example uses the following query:

N=101&Nf=Price|LT+11

This navigation request specifies the Red dimension value (dimension value 101) and a range filter
specifying a price less than 11. The following Navigation object is returned:

1 record (record 1)
(No additional refinements)

Example 3

This query:

N=0&Nf=Price|BTWN+9+13

would return records 1 and 2 from the sample record set. Notice that the smaller value, 9, is listed
before the larger value, 13.

Invalid examples

The following query is invalid because it is missing the Navigation parameter (N):

Nf=Price|LT+9

This following query is incorrect because of an invalid dimension (the Food dimension is misspelled
as Foo):

N=0&Nf=Foo|LT+11

The following query, which has an incorrect number of values for the GT function, is also incorrect:

N=0&Nf=Price|GT+20+30

Rendering the range filter results
The results of a range filter request can be rendered in the UI like any navigation request.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

77Using Range Filters | Rendering the range filter results

Because a range filter request is simply a variation of a basic navigation request, rendering the results
of a range filter request is identical to rendering the results of a navigation request.

Unlike the record search feature, however, there are no methods to access a list of valid range filter
properties or dimensions. This is because the properties and dimensions do not need to be explicitly
identified as valid for range filters in the same way that they need to be explicitly identified as valid for
record search. Therefore, specific properties and dimensions that a user is allowed to filter against
must be correctly identified as numeric or geocode in the instance configuration.

Troubleshooting range filter problems
This topic presents some approaches to solving range filter problems.

Similar to record search, the user-specified interaction of this feature allows a user to request a range
that does not match any records (as opposed to the system-controlled interaction of Guided Navigation
in which the MDEX Engine controls the refinement values presented to the user). Therefore, it is
possible for a user to make a dead-end request when using a range filter. Applications implementing
range filters need to account for this.

If a range filter request specifies a property or dimension that does not exist in the MDEX Engine, the
query throws an ENEConnectionException in the application. The MDEX Engine error log will
output the following message:

[Sun Dec 21 16:03:17 2008] [Error]
(PredicateFilter.cc::47) - Range filter does not specify a legal dimension

or property name.

If a range filter request does not specify numeric range values, the query also throws an
ENEConnectionException in the application. The MDEX Engine error log will output the following
message:

[Sun Dec 21 17:09:27 2008] [Error]
(ValuePredicate.cc::128) - Error parsing numeric argument
<argument> in predicate filter.

If the specified property or dimension exists but is not configured as numeric or geocode, the query
will not throw an exception. But it is likely that no records will be correctly evaluated against the query
and therefore no results will be returned.

You should also be careful of dollar signs or other similar characters in property or dimension values
that would prevent a property or dimension from being defined as numeric.

Performance impact for range filters
Range filters impact the Dgraph response times, but not memory usage.

Because range filters are not indexed, this feature does not impact the amount of memory needed by
the Dgraph. However, because the feature is evaluated entirely at request time, the Dgraph response
times are directly related to the number of records being evaluated for a given range filter request.
You should test your application to ensure that the resulting performance is compatible with the
requirements of the deployment.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Range Filters | Troubleshooting range filter problems78

Chapter 8

Record Boost and Bury

This chapter describes the Record Boost and Bury feature.

About the record boost and bury feature
Record boost and bury is a mechanism by which the ranking of certain specific records is made much
higher or lower than other records.

Record boost is a mechanism by which certain specific records are ranked highly relative to others.
Record bury is the opposite, that is, certain specific records are ranked much lower relative to others.
This mechanism therefore lets you manipulate ranking of results in order to push certain types of
records to the top or bottom of the results list.

The feature depends on the use of the stratify relevance ranking module.

Note: The record boost and bury feature and the stratify relevance ranking module are not
supported by the Aggregated MDEX Engine (Agraph).

Feature assumptions and limitations

The following applies to the record boost and bury feature:

• EQL (Endeca Query Language) is the language to use for defining which records are to be boosted
or buried.

• Using an EQL statement, you can specify a set of records to be returned at the top of the results
list.

• Using an EQL statement, you can specify a set of records to be returned at the bottom of the
results list.

• Record boost and bury functionality is available even when no record search is performed.
• Record boost and bury is not supported by the Agraph.
• Record boost and bury is supported by the Java and .NET versions of the Presentation API, as

well as the MDEX API through XQuery (MAX).

Some use-case assumptions are:

• This feature is expected to be used predominately with the Endeca Workbench and Page Builder
products.

• A common usage pattern will be to specify the records to be boosted/buried dynamically (per-query).
Typically, this will be done through Merchandising Workbench/Publishing Workbench and Page
Builder, where a second query will be performed when boost/bury is used.

• Typical expectation is that only a handful of records will be boosted, that is, less than a page worth.
• The number of records buried may be higher, but ordering within this group is less important.
• If implemented for aggregated records, it is the base record ordering which will be affected by

boost/bury.
• A record will be stratified in the highest strata it matches, so boosting will have priority over burying.

Enabling properties for filtering
Endeca properties must be explicitly enabled for use in record boost/bury filters.

Note that all dimension values are automatically enabled for use in record filter expressions.

To enable a property for use with record boost/bury filters:

1. In Developer Studio, open the Properties view.

2. Double-click on the Endeca property that you want to configure.
The property is opened in the Property editor.

3. Check the Enable for record filters option, as in the following example.

4. Click OK to save your changes.

The stratify relevance ranking module
The stratify relevance ranking module is used to boost or bury records in the result set.

The stratify relevance ranking module ranks records by stratifying them into groups defined by
EQL expressions. The module can be used:

• in record search options, via the Ntx URL query parameter or the ERecSearch class.
• as a component of a sort specification given as the default sort or in the API via the Ns URL query

parameter or the ENEQuery.setNavActiveSortKeys() method.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Record Boost and Bury | Enabling properties for filtering80

The stratify module takes an ordered list of one or more EQL expressions that are used for
boosting/burying records. The following example shows one EQL expression for the module:

N=0&Ntx=mode+matchall+rel+stratify(collection()/record[Score>95],*)&Ntk=Wine¬
Type&Ntt=merlot

This record search example queries for the term merlot in WineType values. Any record that has a
Score value of greater than 95 will be boosted in relation to other records.

Note: When used for sort operations, you must prepend the Endeca prefix to the stratify
module name for use in the sort specification (i.e., use Endeca.stratify as the name).

EQL expressions and record strata

Each EQL expression used in the stratify statement corresponds to a stratum, as does the set of
records which do not match any expression, producing k + 1 strata (where k is the number of EQL
expressions). Records are placed in the stratum associated with the first EQL expression they match.
The first stratum is the highest ranked, the next stratum is next-highest ranked, and so forth. Note a
record will be stratified in the highest strata it matches, so boosting will have priority over burying.

If a record matches none of the specified EQL expressions, it is assigned to the unmatched stratum.
By default, the unmatched stratum is ranked below all strata. However, you can change the rank of
the unmatched stratum by specifying an asterisk (*) in the list of EQL expressions. In this case, the
asterisk stands for the unmatched stratum.

The rules for using an asterisk to specify the unmatched stratum are:

• If an asterisk is specified instead of an EQL expression, unmatched records are placed in the
stratum that corresponds to the asterisk.

• If no asterisk is specified, unmatched records are placed in a stratum lower than any expression's
stratum.

• Only one asterisk can be used. If more than one asterisk is specified, the first one will be used and
the rest ignored.

This Ntx snippet shows the use of an asterisk in the query:

N=0&Ntx=rel+stratify(collection()/record[Score>90],*,collec¬
tion()/record[Score<50])

The query will produce three strata of records:

• The highest-ranked stratum will be records whose Score value is greater than 90.
• The lowest-ranked stratum will be records whose Score value is less than 50.
• All other records will be placed in the unmatched stratum (indicated by the asterisk), which is the

middle-ranked stratum.

Note that the EQL expressions must be URL-encoded. For example, this query:

collection()/record[status = 4]

should be issued in this URL-encoded format:

collection%28%29/record%5Bstatus%20%3D%204%5D

However, the examples in this chapter are not URL-encoded, in order to make them easier to
understand.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

81Record Boost and Bury | The stratify relevance ranking module

Record boost/bury queries
Record queries can use the stratify relevance ranking module for boosting or burying records.

The stratify relevance ranking module can be specified in record search options, via the Ntx URL
query parameter or the ERecSearch class.

Using the Ntx URL parameter

For record searches, the format for using the Ntx URL parameter with the rel option to specify the
stratify relevance ranking module is:

Ntx=rel+stratify(EQLexpressions)

where EQLexpressions is one or more of the EQL expressions documented in the "Using the Endeca
Query Language" in the Advanced Development Guide.

This example uses an EQL property value query with the and operator:

N=0&Ntx=mode+matchall+rel+stratify(collection()/record[P_Region="Tuscany"
and P_Score>98],*)
&Ntk=P_WineType&Ntt=red

The results will boost red wine records that are from Tuscany and have a rating score of 98 or greater.
These records are placed in the highest stratum and all other records are placed in the unmatched
stratum.

Using the ERecSearch class

You can use the three-argument version of the ERecSearch constructor to create a record search
query. The third argument can specify the use of the stratify module. The ERecSearch class is
available in both the Java and .NET versions of the Presentation API.

The following example illustrates how to construct such a query using Java:

// Create query
ENEQuery usq = new UrlENEQuery(request.getQueryString(), "UTF-8");

// Create a record search query for red wines in the P_WineType property
// and boost records from the Tuscany region
String key = "P_WineType";
String term = "red";
String opt = "Ntx=rel+stratify(collection()/record[P_Region="Tuscany"],*)";
// Use the 3-argument version of the ERecSearch constructor
ERecSearch eSearch = new ERecSearch(key, term, opt);
// Add the search to the ENEQuery
ERecSearchList eList = new ERecSearchList();

eList.add(0, eSearch);
usq.setNavERecSearches(eList);
...
// Make ENE request
ENEQueryResults qr = nec.query(usq);

Boost/bury sorting for Endeca records
The record boost and bury feature can used to sort record results for queries.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Record Boost and Bury | Record boost/bury queries82

The Endeca.stratify relevance ranking module can be specified in record search options, via the
Ns URL query parameter or the API methods.

Note: When used for sorting, you must prepend the Endeca prefix to the stratify module
name.

Using the Ns URL parameter

The format for using the Ns URL parameter with the rel option to specify the stratify relevance
ranking module is:

Ns=Endeca.stratify(EQLexpressions)

where EQLexpressions is one or more of the EQL expressions documented in the "Using the Endeca
Query Language" in the Advanced Development Guide. Note that you must prepend the Endeca
prefix to the module name.

For example, assume you wanted to promote Spanish wines. This N=0 root node query returns all the
records, with the Spanish wines boosted into the first stratum (i.e., they are displayed first to the user):

N=0&Ns=Endeca.stratify(collection()/record[P_Region="Spain"],*)

And if you wanted to boost your highly-rated Spanish wines, the query would look like this:

N=0&Ns=Endeca.stratify(collection()/record[P_Region="Spain" and
P_Score>90],*)

The query results will boost Spanish wines that have a rating score of 91 or greater. These records
are placed in the highest stratum and all other records are placed in the unmatched stratum.

Using API methods

You can use the single-argument version of the ERecSortKey constructor to create a new relevance
rank key that specifies the Endeca.stratify module. After adding the ERecSortKey object to an
ERecSortKeyList, you can set it in the query with the Java ENEQuery.setNavActiveSortKeys()
and the .NET ENEQuery.SetNavActiveSortKeys methods in the Presentation API.

The following Java sample code shows now to use these methods:

String stratKey = "Endeca.stratify(collection()/record[P_Region="Spain"],*)";
ERecSortKey stratSort = new ERecSortKey(stratKey);
ERecSortKeyList stratList = new ERecSortKeyList();
stratList.add(0, stratSort);
usq.setNavActiveSortKeys(stratList);

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

83Record Boost and Bury | Boost/bury sorting for Endeca records

Chapter 9

Creating Aggregated Records

This section discusses the creation and use of aggregated records.

About aggregated records
The Endeca aggregated records feature allows the end user to group records by dimension or property
values.

By configuring aggregated records, you enable the MDEX Engine to handle a group of multiple records
as though it were a single record, based on the value of the rollup key. A rollup key can be any property
or dimension that has its rollup attribute enabled.

Aggregated records are typically used to eliminate duplicate display entries. For example, an album
by the same title may exist in several formats, with different prices. Each title is represented in the
MDEX Engine as a distinct Endeca record. When querying the MDEX Engine, you may want to treat
these instances as a single record. This is accomplished by creating an Endeca aggregated record.

From a performance perspective, aggregated Endeca records are not an expensive feature. However,
they should only be used when necessary, because they add organization and implementation
complexity to the application (particularly if the rollup key is different from the display information).

Enabling record aggregation
You enable aggregate Endeca record creation by allowing record rollups based on properties and
dimensions.

Proper configuration of this feature requires that the rollup key is a single assign value. That is, each
record should have at most one value from this dimension or property. If the value is not single assign,
the first (arbitrarily-chosen) value is used to create the aggregated record. This can cause the results
to vary arbitrarily, depending upon the navigation state of the user. In addition, features such as sort
can change the grouping of aggregated records that are assigned multiple values of the rollup key.

To enable a property or dimension for record rollup:

1. In Developer Studio, open the target property or dimension.

2. Enable the rollup feature as follows:

• For properties, check the Rollup checkbox in the General tab.
• For dimensions, check the Enable for rollup checkbox in the Advanced tab.

3. Click OK to save the change.

Generating and displaying aggregated records
This section provides detailed information on creating and displaying aggregated records.

The general procedure of generating and displaying aggregated records is as follows:

1. Determine which rollup keys are available to be used for an aggregated record navigation query.
2. Create an aggregated record navigation query by using one of the available rollup keys.This rollup

key is called the active rollup key, while all the other rollup keys are inactive.
3. Retrieve the list of aggregated records from the Navigation object and display their attributes.

These steps are discussed in detail in the following topics.

Determining the available rollup keys
The Presentation API has methods and properties to retrieve rollup keys.

Assuming that you have a navigation state, the following objects and calls are used to determine the
available rollup keys. These rollup keys can be used in subsequent queries to generate aggregated
records:

• The Navigation.getRollupKeys() method (Java) and Navigation.RollupKeys property
(.NET) get the rollup keys applicable for this navigation query. The rollup keys are returned as an
ERecRollupKeyList object.

• The ERecRollupKeyList.size() method (Java) and ERecRollupKeyList.Count property
(.NET) get the number of rollup keys in the ERecRollupKeyList object.

• The ERecRollupKeyList.getKey() method (Java) and ERecRollupKeyList.Item property
(.NET) get the rollup key from the ERecRollupKeyList object, using a zero-based index. The
rollup key is returned as an ERecRollupKey object.

• The ERecRollupKey.getName() method (Java) and ERecRollupKey.Name property get the
name of the rollup key.

• The ERecRollupKey.isActive() method (Java) and the ERecRollupKey.IsActive()
method (.NET) return true if this rollup key was applied in the navigation query or false if it was
not.

The rollup keys are retrieved from the Navigation object in an ERecRollupKeyList object. Each
ERecRollupKey in this list contains the name and active status of the rollup key:

• The name is used to specify the rollup key in a subsequent navigation or aggregated record query.
• The active status indicates whether the rollup key was applied to the current query.

The following code fragments show how to retrieve a list of rollup keys, iterate over them, and display
the names of keys that are active in the current navigation state.

Java example for getting rollup keys

// Get rollup keys from the Navigation object
ERecRollupKeyList rllupKeys = nav.getRollupKeys();
// Loop through rollup keys
for (int i=0; i< rllupKeys.size(); i++) {
 // Get a rollup key from the list
 ERecRollupKey rllupKey = rllupKeys.getKey(i);
 // Display the key name if the key is active.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Creating Aggregated Records | Generating and displaying aggregated records86

 if (rllupKey.isActive()) {
 %>Active rollup key: <%= rllupKey.getName() %><%
 }
}

.NET example for getting rollup keys

// Get rollup keys from the Navigation object
ERecRollupKeyList rllupKeys = nav.RollupKeys;
// Loop through rollup keys
for (int i=0; i< rllupKeys.Count; i++) {
 // Get a rollup key from the list
 ERecRollupKey rllupKey = (ERecRollupKey)rllupKeys[i];
 // Display the key name if the key is active.
 if (rllupKey.IsActive()) {
 %>Active rollup key: <%= rllupKey.Name %><%
 }
}

Creating aggregated record navigation queries
You can generate aggregated records with URL query parameters or with Presentation API methods.

Note that regardless of how many properties or dimensions you have enabled as rollup keys, you can
specify a maximum of one rollup key per navigation query.

Specifying the rollup key for the navigation query

To generate aggregated Endeca records, the query must be appended with an Nu parameter. The
value of the Nu parameter specifies a rollup key for the returned aggregated records, using the following
syntax:

Nu=rollupkey

For example:

N=0&Nu=Winery

The records associated with the navigation query are grouped with respect to the rollup key prior to
computing the subset specified by the Nao parameter (that is, if Nu is specified, Nao applies to the
aggregated records rather than individual records). Aggregated records only apply to a navigation
query. Therefore, the Nu query parameter is only valid with an N parameter.

The equivalent API method to the Nu parameter is:

• Java: the ENEQuery.setNavRollupKey() method
• .NET: the ENEQuery.NavRollupKey property

Examples of these calls are:

// Java version
usq.setNavRollupKey("Winery");

// .NET version
usq.NavRollupKey("Winery");

When the aggregated record navigation query is made, the returned Navigation object which will
contain an AggrERecList object.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

87Creating Aggregated Records | Generating and displaying aggregated records

Setting the maximum number of returned records

You can use the Np parameter to control the maximum number of Endeca records returned in any
aggregated record. Set the parameter to 0 (zero) for no records, 1 for one record, or 2 for all records.
For example:

N=0&Np=2&Nu=Winery

The equivalent API method to the Np parameter is:

• Java: the ENEQuery.setNavERecsPerAggrERec() method
• .NET: the ENEQuery.NavERecsPerAggrERec property

Creating aggregated record queries
You can create aggregated record queries with URL query parameters or with Presentation API
methods.

An aggregated record request is similar to an ordinary record request with these exceptions:

• If you are using URL query parameters, the A parameter is specified (instead of R). The value of
the A parameter is the record specifier of the aggregated record.

• If you are using the API, use the ENEQuery.setAggrERecSpec() method (Java) or the
ENEQuery.AggrERecSpec property (.NET) to specify the aggregated record to be queried for.

• The element returned is an aggregated record (not a record).

You can use the As parameter to specify a sort that determines the order of the representative records.
You can specify one or more sort keys with the As parameter. A sort key is a dimension or property
name enabled for sorting on the data set. Optionally, each sort key can specify a sort order of 0
(ascending sort, the default) or 1 (descending sort). The As parameter is especially useful if you want
to use the record boost and bury feature with aggregated records.

Similar to an ordinary record, An (instead of N) is the user’s navigation state. Only records that satisfy
this navigation state are included in the aggregated record. In addition, the Au parameter must be
used to specify the aggregated record rollup key.

The following are two examples of queries using the An parameter:

An=0&A=32905&Au=Winery&As=Score

A=7&An=123&Au=ssn

For the API, the examples below show how the UrlGen class constructs the URL query string. Note
the following in the examples:

• The ENEQuery.setAggrERecSpec() method (Java) and the ENEQuery.AggrERecSpec
property (.NET) provide the aggregated record specifier to the A parameter.

• The ENEQuery.getNavDescriptors() method (Java) and the ENEQuery.NavDescriptors
property (.NET) get the navigation values for the An parameter.

• The ENEQuery.getNavRollupKey() method (Java) and the ENEQuery.NavRollupKey
property (.NET) get the name of the rollup key for the Au parameter.

Java example

// Create aggregated record request (start from empty request)
UrlGen urlg = new UrlGen("", "UTF-8");
urlg.addParam("A",aggrec.getSpec());
urlg.addParam("An",usq.getNavDescriptors().toString());
urlg.addParam("Au",usq.getNavRollupKey());
urlg.addParam("eneHost",(String)request.getAttribute("eneHost"));

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Creating Aggregated Records | Generating and displaying aggregated records88

urlg.addParam("enePort",(String)request.getAttribute("enePort"));
urlg.addParam("displayKey",String)request.getParameter("displayKey"));
urlg.addParam("sid",(String)request.getAttribute("sid"));
String url = CONTROLLER+"?"+urlg;
%><a href="<%= url %>">%>

.NET example

// Create aggregated record request (start from empty request)
urlg = new UrlGen("", "UTF-8");
urlg.AddParam("A", aggrec.Spec);
urlg.AddParam("An",usq.NavDescriptors.ToString());
urlg.AddParam("Au",usq.NavRollupKey);
urlg.AddParam("eneHost",(String)Request.QueryString["eneHost"]);
urlg.AddParam("enePort",(String)Request.QueryString["enePort"]);
urlg.AddParam("displayKey",(String)Request.QueryString["displayKey"]);
urlg.RemoveParam("sid");
urlg.AddParam("sid",(String)Request.QueryString["sid"]);
url = (String) Application["CONTROLLER"] + "?" + urlg.ToString();
%><a href="<%= url %>">%>

Getting aggregated records from record requests

The ENEQueryResults class has methods to retrieve aggregated record objects.

On an aggregated record request, the aggregated record is returned as an AggrERec object in the
ENEQueryResults object. Use these calls:

• The ENEQueryResults.containsAggrERec() method (Java) and the
ENEQueryResults.ContainsAggrERec() method (.NET) return true if the ENEQueryResults
object contains an aggregated record.

• The ENEQueryResults.getAggrERec() method (Java) and the ENEQueryResults.AggrERec
property (.NET) retrieve the AggrERec object from the ENEQueryResults object.

Java example

// Make MDEX Engine request
ENEQueryResults qr = nec.query(usq);
// Check for an AggrERec object in ENEQueryResults
if (qr.containsAggrERec()) {
 AggrERec aggRec = (AggrERec)qr.getAggrERec();
 ...
}

.NET example

// Make MDEX Engine request
ENEQueryResults qr = nec.Query(usq);
// Check for an AggrERec object in ENEQueryResults
if (qr.ContainsAggrERec()) {
 AggrERec aggRec = (AggrERec)qr.AggrERec;
 ...
}

Retrieving aggregated record lists from Navigation objects

The Navigation class calls can retrieve aggregated records.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

89Creating Aggregated Records | Generating and displaying aggregated records

On an aggregated record navigation query, a list of aggregated records (an AggrERecList object)
is returned in the Navigation object.

To retrieve a list of aggregated records returned by the navigation query, as an AggrERecList object,
use:

• Java: the Navigation.getAggrERecs() method
• .NET: the Navigation.AggrERecs property

To get the number of aggregated records that matched the navigation query, use:

• Java: the Navigation.getTotalNumAggrERecs() method
• .NET: the Navigation.TotalNumAggrERecs property

Note that by default, the MDEX Engine returns a maximum of 10 aggregated records. To change this
number, use:

• Java: the ENEQuery.setNavNumAggrERecs() method
• .NET: the ENEQuery.NavNumAggrERecs property

Displaying aggregated record attributes

The AggrERec class calls can retrieve attributes of aggregated records.

After you retrieve an aggregated record, you can use the following AggrERec class calls:

• The getERecs() method (Java) and ERecs property (.NET) gets the Endeca records (ERec
objects) that are in this aggregated record.

• The getProperties() method (Java) and Properties property (.NET) return the properties
(as a PropertyMap object) of the aggregated record.

• The getRepresentative() method (Java) and Representative property (.NET) get the
Endeca record (ERec object) that is the representative record of this aggregated record.

• The getSpec() method (Java) and Spec property (.NET) get the specifier of the aggregated
record to be queried for.

• The getTotalNumERecs() method (Java) and TotalNumERecs property (.NET) return the
number of Endeca records (ERec objects) that are in this aggregated record.

The following code snippets illustrate these calls.

Java example

Navigation nav = qr.getNavigation();
// Get total number of aggregated records that matched the query
long nAggrRecs = nav.getTotalNumAggrERecs();
// Get the aggregated records from the Navigation object
AggrERecList aggrecs = nav.getAggrERecs();
// Loop over the aggregated record list
for (int i=0; i<aggrecs.size(); i++) {
 // Get individual aggregate record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get number of records in this aggregated record
 long recCount = aggrec.getTotalNumERecs();
 // Get the aggregated record's attributes
 String aggrSpec = aggrec.getSpec();
 PropertyMap propMap = aggrec.getProperties();
 ERecList recs = aggrec.getERecs();
 ERec repRec = aggrec.getRepresentative();
}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Creating Aggregated Records | Generating and displaying aggregated records90

.NET example

Navigation nav = qr.Navigation;
// Get total number of aggregated records that matched the query
long nAggrRecs = nav.TotalNumAggrERecs;
// Get the aggregated records from the Navigation object
AggrERecList aggrecs = nav.AggrERecs;
// Loop over the aggregated record list
for (int i=0; i<aggrecs.Count; i++) {
 // Get individual aggregate record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get number of records in this aggregated record
 long recCount = aggrec.TotalNumERecs;
 // Get the aggregated record's attributes
 String aggrSpec = aggrec.Spec;
 PropertyMap propMap = aggrec.Properties;
 ERecList recs = aggRec.ERecs;
 ERec repRec = aggrec.Representative;
}

Displaying refinement counts for aggregated records

The Dgraph.AggrBins property contains aggregated record statistics.

To enable dynamic statistics (aggregated record counts beneath a given refinement), use the --stat-
abins flag with the Dgraph.

Statistics on aggregated records are returned as a property on each dimension value. For aggregated
records, this property is DGraph.AggrBins. In other words, to retrieve the aggregated record counts
beneath a given refinement, use the DGraph.AggrBins property.

The following code examples show how to retrieve the dynamic statistics for aggregated records.

Java example

DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.AggrBins") != null) {
 dstats = " ("+pmap.get("DGraph.AggrBins")+")";
 }
}

.NET example

DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref1 = (DimVal)dvl[i];
 PropertyMap pmap = ref.Properties;
 // Get dynamic stats
 String dstats = "";
 if (pmap["DGraph.AggrBins"] != null) {
 dstats = " ("+pmap["DGraph.AggrBins"]+")";
 }
}

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

91Creating Aggregated Records | Generating and displaying aggregated records

Displaying the records in the aggregated record

A record in an aggregated record can be displayed like any other Endeca record.

You display the Endeca records (ERec objects) in an aggregated record with the same procedures
described in Chapter 5 ("Working with Endeca Records").

In the following examples, a list of aggregated records is retrieved from the Navigation object and
the properties of each representative record are displayed.

Java example

Get aggregated record list from the Navigation object
AggrERecList aggrecs = nav.getAggrERecs();
// Loop over aggregated record list
for (int i=0; i<aggrecs.size(); i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get representative record of this aggregated record
 ERec repRec = aggrec.getRepresentative();
 // Get property map for representative record
 PropertyMap repPropsMap = repRec.getProperties();
 // Get property iterator to loop over the property map
 Iterator repProps = repPropsMap.entrySet().iterator();
 // Display representative record properties
 while (repProps.hasNext()) {
 // Get a property
 Property prop = (Property)repProps.next();
 // Display name and value of the property
 %>
 <tr>
 <td>Property name: <%= prop.getKey() %></td>
 <td>Property value: <%= prop.getValue() %>
 </tr>
 <%
 }
}

.NET example

/ Get aggregated record list from the Navigation object
AggrERecList aggrecs = nav.AggrERecs;
// Loop over aggregated record list
for (int i=0; i<aggrecs.Count; i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get representative record of this aggregated record
 ERec repRec = aggrec.Representative;
 // Get property map for representative record
 PropertyMap repPropsMap = repRec.Properties;
 // Get property list for representative record
 System.Collections.Ilist repPropsList = repPropsMap.EntrySet;
 // Display representative record properties
 foreach (Property repProp in repPropsList) {
 %>
 <tr>
 <td>Property name: <%= repProp.Key %></td>
 <td>Property value: <%= repProp.Value %>
 </tr>
 <%

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Creating Aggregated Records | Generating and displaying aggregated records92

 }
}

Related Links
Working with Endeca Records on page 53

This section provides information on handling Endeca records in your Web application.

Aggregated record behavior
Aggregated records behave differently than ordinary records.

Programmatically, an ordinary record is an ERec object while an aggregated record is an AggrERec
object.

Two of the major differences between the two types of records are in their representative values and
sorting behavior:

• Representative values – Given a single record, evaluating the record’s information is straightforward.
However, aggregated records consist of many records, which can have different representative
values. Generally for display and other logic requiring record values, a single representative record
from the aggregated record is used. The representative record is the individual record that occurs
first in order of the underlying records in the aggregated record. This order is determined by either
a specified sort key or a relevance ranking strategy.

• Sort – The sort feature is first applied to all records in the data set (prior to aggregating the records).
The record at the top of this set is the record with the highest sort value. Given the sorted set of
records, aggregated records are created by iterating over the set in descending order, aggregating
records with the same rollup key. An aggregated record’s rank is equal to that of the highest ranking
record in that aggregated record set.The result is the same as aggregating all records on the rollup
key, taking the highest value of the sort key for these aggregated records and sorting the set based
on this value.

Note: If you have a defined list of sort keys, the first key is the primary sort criterion, the
second key is the secondary sort criterion, and so on.

The presentation developer has more power over retrieving the representative values. The individual
records are returned with the aggregated record. Therefore, the developer has all the information
necessary to correctly represent aggregated records (at the cost of increased complexity). However,
to achieve the desired sort behavior, the MDEX Engine must be configured correctly, because the
internals of this operation are not exposed to the presentation developer.

Refinement ranking of aggregated records
The MDEX Engine uses the aggregated record counts beneath a given refinement for its refinement
ranking strategy only if they were computed for the query sent to the MDEX Engine.

The MDEX Engine computes refinement ranking based on statistics for the number of records beneath
a given refinement. In the case of aggregated records, refinement ranking depends on whether you
have requested the MDEX Engine to compute statistics for aggregated record counts beneath a given
refinement.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

93Creating Aggregated Records | Aggregated record behavior

The following statements describe the behavior:

• To enable dynamic statistics for aggregated records (aggregated record counts beneath a given
refinement), use the --stat-abins flag with the Dgraph.

• To retrieve the aggregated record counts beneath a given refinement, use the DGraph.AggrBins
property.

• If you specify --stat-abins when starting a Dgraph and issue an aggregated query to the MDEX
Engine, it then computes counts for aggregated records beneath a given refinement, and generates
refinement ranking based on statistics computed for aggregated records.

• If you specify --stat-abins and issue a non-aggregated query to the MDEX Engine, it only
computes counts for regular records (instead of aggregated record counts) beneath a given
refinement, and generates refinement ranking based on statistics computed for regular records.

• If you do not specify --stat-abins and issue an aggregated query to the MDEX Engine, it only
computes counts for regular records (instead of aggregated record counts) beneath a given
refinement, and generates refinement ranking based on statistics computed for regular records.

To summarize, the MDEX Engine uses the aggregated record counts beneath a given refinement for
its refinement ranking strategy only if they were computed. In all other cases, it uses only regular
record counts for refinement ranking.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Creating Aggregated Records | Refinement ranking of aggregated records94

Part 3

Dimension and Property Features

• Property Types
• Working with Dimensions
• Dimension Value Boost and Bury
• Using Derived Properties

Chapter 10

Property Types

You can assign the following types of properties to records in the MDEX Engine: Alpha, Integer, Floating
point, Geocode, DateTime, Duration and Time.You assign property types in Developer Studio.

Formats used for property types
The MDEX Engine supports property types that use the following accepted formats:

DescriptionProperty type

Represents character strings.Alpha

Represents a 32-bit signed integer. Integer values accepted by the MDEX Engine
on all platforms can be up to the value of 2147483647.

Integer

Represents a floating point.Floating point

Represents a latitude and longitude pair used for geospatial filtering and sorting.
Each value is a double-precision floating-point value. The two values are
comma-delimited.

The accepted format is: latvalue,lonvalue, where:

Geocode

• latvalue is the latitude of the location in whole and fractional degrees. Positive
values indicate north latitude and negative values indicate south latitude.

• lonvalue is the longitude of the location in whole and fractional degrees.
Positive values indicate east longitude, and negative values indicate west
longitude.

For example, to indicate the Location geocode property located at 42.365615 north
latitude, 71.075647 west longitude, specify: 42.365615,-71.075647

A 64-bit signed integer that represents the date and time in milliseconds since the
epoch (January 1, 1970).

DateTime

A 64-bit signed integer that represents a length of time in milliseconds.Duration

A 32-bit unsigned integer that represents the time of day in milliseconds.Time

Temporal properties
This section describes temporal property types supported in the MDEX Engine — Time, DateTime
and Duration.

Defining Time and DateTime properties
Time, DateTime and Duration properties are supported in the MDEX Engine.You define them in
Developer Studio.

Note: The DateTime property is available in Developer Studio by default and does not require
additional configuration. However, Time and Duration property types are only enabled if you
configure Developer Studio for their use. For details, see the section “Configuring Developer
Studio for the use of Time and Duration Property Types” in the Endeca Developer Studio
Installation Guide.The use of these property types also requires enabling Endeca Analytics. For
information, see the Enabling Endeca Analytics guide.

The Property editor provides three temporal property types:

• Time values represent a time of the day
• DateTime values represent a time of the day on a given date
• Duration values represent a length of time

In the example below, the Time property has been declared to be of the Time type, the TimeStamp
property has been declared to be of the DateTime type, and the DeliveryDelay property has been
declared to be of the Duration type:

Properties of type Time, DateTime, and Duration can be used for:

• Temporal sorting using the record sort feature of the MDEX Engine
• The ORDER BY operator of the Analytics API
• Time-based filtering using the range filter feature of the MDEX Engine
• The WHERE and HAVING operators in the Analytics API
• As inputs to time-specific operators in the Analytics API (TRUNC and EXTRACT)

For information about temporal properties in Analytics queries, and time-specific operators in the
Analytics API, see the Analytics Guide.

Time properties

Time properties represent the time of day to a resolution of milliseconds.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Property Types | Temporal properties98

A string value in a Time property, both on input to the MDEX Engine and when accessed through the
Analytics API, should contain an integer representing the number of milliseconds since the start of
day, midnight/12:00:00AM. Time properties are stored as 32-bit integers.

For example, 1:00PM or 13:00 would be represented as 46800000 because:

13 hours *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second = 46800000

DateTime properties

DateTime properties represent the date and time to a resolution of milliseconds.

A string value in a DateTime property should contain an integer representing the number of milliseconds
since the epoch (January 1, 1970). Additionally, values must be in Coordinated Universal Time (UTC)
and account for the number of milliseconds since the epoch, in conformance with POSIX standards.
DateTime values are stored as 64-bit integers.

For example, August 26, 2004 1:00PM would be represented as 1093525200000 because:

12656 days *
24 hours / day *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second +
46800000 milliseconds (13 hrs) = 1093525200000

Duration properties

Duration properties represent lengths of time with a resolution of milliseconds.

A string value in a Duration property should contain an integer number of milliseconds. Duration values
are stored as 64-bit integers.

For example, 100 days would be represented as 8640000000 because:

100days *
24 hours / day *
60 minutes / hour *
60 seconds / minute *
1000 milliseconds / second = 8640000000

Working with time and date properties

Like all Endeca property types (Alpha, Floating Point, Integer, and so on), time and date values are
handled during the data ingest process and in UI application code as strings, but are stored and
manipulated as typed data in the Endeca MDEX Engine.

For non-Alpha property types, this raises the question of data manipulation in the Forge pipeline and
appropriate presentation of typed data in the UI.

At data ingest time, inbound temporal data is unlikely to conform to the representations required by
Endeca temporal property types. But time and date classes for performing needed conversions are
readily available in the standard Java library (see java.text.DateFormat). These should be used
(in the context of a JavaManipulator Forge component) to convert inbound data in the data ingest
pipeline.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

99Property Types | Temporal properties

For example, the following code performs simple input conversion on source date strings of the form
“August 26, 2009” to Endeca DateTime property format:

String sourceDate = … // String of form "August 26, 2009"
DateFormat dateFmt = DateFormat.getDateInstance(DateFormat.LONG);
Date date = dateFmt.parse(sourceDate);
Long dateLong = new Long(date.getTime());
String dateDateTimeValue = dateLong.toString();

Similarly, in most cases the integer representation of times and dates supported by the Endeca MDEX
Engine is not suitable for application display. Again, the application should make use of standard library
components (such as java.util.Date and java.util.GregorianCalendar) to convert Endeca
dates for presentation.

For example, the following code performs a simple conversion of a DateTime value to a pretty-printable
string:

String dateStr = … // Initialized to an Endeca DateTime value
long dateLong = Long.parseLong(dateStr);
Date date = new Date(dateLong);
String dateRenderString = date.toString();

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Property Types | Temporal properties100

Chapter 11

Working with Dimensions

This section provides information on handling and displaying Endeca dimensions in your Web
application.

Displaying dimension groups
Dimensions are part of dimension groups and both the group and its dimensions can be displayed.

Dimension groups provide a way to impose relationships on dimensions. By creating a dimension
group, you can organize dimensions for presentation purposes. Each explicit dimension group must
be given a name; a unique ID is generated when the data is indexed.

Each dimension can belong to only a single dimension group. If you do not assign a dimension to an
explicit dimension group, it is placed in an implicit dimension group of its own. These implicit groups
have no name and an ID of zero. For example, if your project has ten dimensions and no explicit group
is set, the project contains ten different groups with no names and with IDs of zero.

You use Developer Studio’s Dimension Group editor to create dimension groups, and its Dimension
editor to assign dimensions to groups. For details on these tasks, see the Developer Studio online
help.

No Dgidx or Dgraph flags are necessary to enable dimension groups. In addition, no MDEX Engine
URL parameters are required to access dimension group information.

Dimension group API methods
The Navigation and DimGroup classes have methods to access information about dimension groups.

The dimensions in a dimension group are encapsulated in a DimGroup object. In turn, a DimGroupList
object contains a list of dimension groups (DimGroup objects).

The next two sections show how to access the Navigation and DimGroupList objects for dimension
group information. The code samples show how to loop over a DimGroupList object, access each
dimension group in the object, and get each group’s name and ID.

Accessing the Navigation object

There are three calls on the Navigation object that access the DimGroupList object. All three
return a DimGroupList object that contains group names, group IDs, and the child dimensions:

PurposeAPI method or property

Gets an object that has information about the dimension
groups for the dimensions with descriptors in the current
navigation state.

Java:
Navigation.getDescriptorDimGroups()

.NET:
Navigation.DescriptorDimGroups

Gets an object that contains the dimensions with refinements
available in the current navigation state.

Java:
Navigation.getRefinementDimGroups()

.NET:
Navigation.RefinementDimGroups

Gets an object that contains all of the information contained
in the above two calls.

Java:
Navigation.getIntegratedDimGroups()

.NET:
Navigation.IntegratedDimGroups

Accessing the DimGroupList object

Once the application has the DimGroupList object, it can render the dimension group information
with these methods and properties:

PurposeAPI method or property

Used on the DimGroupList object to initiate a loop over
all the dimension groups, implicit and explicit. Once this
loop is initiated, a DimGroup object is created.

Java: DimGroupList.size()

.NET: DimGroupList.Count

With these calls, the application is able to assess whether
the current group is implicit (having an ID of zero) or explicit
(having an ID greater than zero).

Java: DimGroup.getId()

.NET: DimGroup.Id

Used to access the name of the current dimension group.
If this returns a null object, then the current dimension group
was implicitly created.

Java: DimGroup.getName()

.NET: DimGroup.Name

Used in initiating a loop in order to access the dimensions
in the group.

Java: DimGroup.size()

.NET: DimGroup.Count

Used to access a specific dimension in the group without
looping. This method requires either a dimension ID or a
dimension name to be passed in.

Java: DimGroup.getDimension()

.NET: DimGroup.GetDimension

Java example of getting a dimension group ID and name

DimGroupList refDimGroups = nav.getRefinementDimGroups();
// Loop over the list of dimension groups
for (int i=0; i<refDimGroups.size(); i++) {
 // Get an individual dimension group
 DimGroup dg = (DimGroup)refDimGroups.get(i);
 long dimGroupId = dg.getId();
 // If ID is zero, group is implicit, otherwise get its name
 if (dimGroupId != 0) {
 String dimGroupName = dg.getName();

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying dimension groups102

 }
 for (int j=0; j<dg.size(); j++) {
 // retrieve refinement dimension values
 ...
 }
}

.NET example of getting a dimension group ID and name

DimGroupList refDimGroups = nav.RefinementDimGroups;
// Loop over the list of dimension groups
for (int i=0; i<refDimGroups.Count; i++) {
 // Get individual dimension group
 DimGroup dg = (DimGroup)refDimGroups[i];
 long dimGroupId = dg.Id;
 // If ID is zero, group is implicit, otherwise get its name
 if (dimGroupId != 0) {
 String dimGroupName = dg.Name;
 }
 for (int j=0; j<dg.Count; j++) {
 // retrieve refinement dimension values
 ...
 }
}

Notes on displaying dimension groups
This section contains information that further explains how dimension group data is displayed.

Dimension groups versus dimension hierarchy

Dimension groups allow the user to select values from each of the dimensions contained in them. If
the relationships made by a dimension group were instead created with hierarchy, once a value had
been selected from one of the branches, then the remaining dimension values would no longer be
valid for refinement.

For example, in mutual funds data, a user may want to navigate on a variety of performance criteria.
A Performance dimension group that contains the YTD Total Returns, 1 Year Total Returns, and Five
Year Total Returns dimensions would allow the user to select criteria from all three dimensions. If the
same relationship had been created using dimension hierarchy, then once a selection had been made
from the 1 Year Total Returns branch, the other two branches would no longer be available for
navigation.

Ranking and dimension groups

The display order of dimension groups is determined by the ranking of the individual dimensions within
the groups. A dimension group inherits the highest rank of its member dimensions. For example, if
the highest-ranked dimension in dimension group A has a rank of 5, and the highest-ranked dimension
in group B has a rank of 7, then group B will be ordered before group A.

Dimension groups are also ranked relative to dimensions not within explicit groups. Continuing the
previous example, an implicit dimension with a rank of 6 would be ordered after dimension group B,
but before group A.

Dimensions with the same rank are ordered by name. It is important to note that dimension name, not
dimension group name, determines the display order in this situation: Dimension groups are ordered

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

103Working with Dimensions | Displaying dimension groups

according to their highest alphanumerically-ranked member dimensions. Therefore, dimension group
Z, which contains dimension H, will be ordered before dimension group A, which contains dimension
I.

For more information on ranking, see the Developer Studio online help.

Performance impact when displaying dimension groups

The use of dimension groups has minimal impact on performance.

Displaying refinements
Displaying dimensions and corresponding dimension values for query refinement is the core concept
behind Guided Navigation.

After a user creates a query using record search and/or dimension values, only valid remaining
dimension values are provided to the user to refine that query. This allows the user to reduce the
number of matching records without creating an invalid query.

Configuring dimensions for query refinement
No dimension configuration is necessary for query refinement.

Assuming that a dimension is created in Developer Studio and that the dimension is used to classify
records, the corresponding dimension values will be available to create or refine a query. The only
exception is if a dimension is flagged as hidden in Developer Studio.

If a dimension is created and used to classify records, but no records are classified with any
corresponding dimension values, that dimension will not be available as a refinement, because it is
not related to the resulting record set in any way.

Dgidx flags for refinement dimensions

There are no Dgidx flags necessary to enable displaying refinement dimensions. If a dimension has
been created and used to classify records, and has not been flagged as hidden, that dimension will
automatically be indexed as a possible refinement dimension.

MDEX Engine flags

There are no MDEX Engine configuration flags necessary to enable the basic displaying of dimension
refinements. However, there are some flags that control how and when these dimension refinements
are displayed. These flags are documented in the appropriate feature sections (such as dynamic
ranking).

URL parameters for dimension refinement values
Use the Ne parameter to expose refinement dimension values.

Refinement dimension values are only returned with a valid navigation query. Therefore the N
(Navigation) parameter is required for any request that will render navigation refinements. The other
parameter required in most cases to render navigation refinements is the Ne (Exposed Refinements)
parameter.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinements104

The Ne parameter specifies which dimension, out of all valid dimensions returned with a Navigation
query, should return actual refinement dimension values. Note that only the top-level refinement
dimension values are returned. If a dimension value is a parent, you can also use the Ne parameter
with that dimension value and return its child dimension values (again, only the top-level child dimension
values are returned).

Keep in mind that the Ne parameter is an optional query parameter. The default query (where Ne is
not used) is intended to improve computational performance of the MDEX Engine, as well as reduce
the resulting object and final rendered page sizes.

For example, in a simple dataset, the query:

N=0

will return three dimensions (Wine Type, Year, and Score) but no refinement dimension values. This
is faster for the MDEX Engine to compute, and returns only three root dimension values.

However, the query:

N=0&Ne=6

(where 6 is the root dimension value ID for the Wine Type dimension) will return all three dimensions,
as well as the top-level refinement dimension values for the Wine Type dimension (such as Red, White,
and Other). This is slightly more expensive for the MDEX Engine to compute, and returns the three
root dimension values (Wine Type, Year, and Score) as well as the top-level refinement dimension
values for Wine Type, but is necessary for selecting a valid refinement.

A more advanced query option does not require the Ne parameter and returns all the top-level dimension
value refinements for all dimensions (instead of a single dimension). This option involves the use of
the ENEQuery.setNavAllRefinements() method (Java) or the ENEQuery.NavAllRefinements
property (.NET). If an application sets this call to true, the query:

N=0

will return three dimensions (Wine Type, Year, and Score) as well as all valid top-level refinement
dimension values for each of these dimensions (Red, White, Other for Wine Type; 1999, 2001, 2003
for Year; and 70-80, 80-90, 90-100 for Score).

This is the equivalent of the query:

N=0&Ne=6+2+9

(where 6, 2, and 9 are the root dimension value IDs for the three dimensions).This is the most expensive
type of query for the MDEX Engine to compute, and returns three root dimension values as well as
the nine top-level refinement dimension values, creating a larger network and page size strain. This
method, however, is effective for creating custom navigation solutions that require all possible refinement
dimension values to be displayed at all times.

Retrieving refinement dimensions
The first step in displaying refinements is to retrieve the dimensions that potentially have refinements.

Types of refinements

Refinement dimensions contain refinement dimension values for the current record set, including both
standard refinements and implicit refinements.

• Standard refinements (also called normal refinements) are refinements which, if selected, will
refine the record set.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

105Working with Dimensions | Displaying refinements

• Implicit refinements are refinements which, if selected, will not alter the navigation state record
set. (The navigation state is the set of all dimension values selected in the current query context;
the navigation state record set consists of the records selected by the navigation state.)

Descriptor dimensions contain the dimension values (or descriptors) that were used to query for the
current record set. Integrated dimensions represent a consolidation of those dimensions that contain
either descriptors or refinement values for the current record set.

Complete dimensions represent a consolidation of all dimensions that have at least one of the following:
a descriptor, a standard refinement, or an implicit refinement.

Retrieving a list of dimensions or dimension groups

Accessing refinement dimension values for a given Navigation query begins with accessing the
Navigation object from the query results object. Once an application has retrieved the Navigation
object, there are a number of methods for accessing dimensions that contain dimension values.

The following calls access dimensions directly:

PurposeAPI method or property

Returns a DimensionList object that has dimensions that
potentially still have refinements available with respect to
this query.

Java:
Navigation.getRefinementDimensions()

.NET:
Navigation.RefinementDimensions

Returns a DimensionList object that has the dimensions
for the descriptors for this navigation.

Java:
Navigation.getDescriptorDimensions()

.NET:
Navigation.DescriptorDimensions

Returns a DimensionList object that has the dimensions
integrated from the refinement dimensions and the descriptor
dimensions.

Java:
Navigation.getIntegratedDimensions()

.NET:
Navigation.IntegratedDimensions

Returns a DimensionList object that has the complete
dimensions integrated from the refinement dimensions, the
descriptor dimensions, and those that are completely implicit.

Java:
Navigation.getCompleteDimensions()

.NET:
Navigation.CompleteDimensions

The following calls access dimension groups directly:

PurposeAPI method or property

Returns a DimGroupList object that contains the
dimensions that potentially have refinements available in
the current navigation state.

Java:
Navigation.getRefinementDimGroups()

.NET:
Navigation.RefinementDimGroups

Returns a DimGroupList object that contains the
dimension groups of the dimensions for the descriptors for
this navigation.

Java:
Navigation.getDescriptorDimGroups()

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinements106

PurposeAPI method or property

.NET:
Navigation.DescriptorDimGroups

Returns a DimGroupList object that contains the
dimension groups of the dimensions integrated from the
refinement and descriptor dimensions.

Java:
Navigation.getIntegratedDimGroups()

.NET:
Navigation.IntegratedDimGroups

Returns a DimGroupList object that contains the
dimension groups of the complete dimensions integrated

Java:
Navigation.getCompleteDimGroups()

.NET:
Navigation.CompleteDimGroups

from the refinement dimensions, the descriptor dimensions,
and those that are completely implicit.

Extracting refinement values
The Presentation API has methods to extract standard and implicit refinements from dimensions.

Extracting standard refinements from a dimension

Once a refinement dimension has been retrieved, these calls can extract various refinement information
from the dimension:

PurposeAPI method or property

Retrieves the dimension name.Java: Dimension.getName()

.NET: Dimension.Name

Retrieves the dimension ID. This ID can then be used with
the Ne query parameter to allow an application to expose
refinements for this dimension.

Java: Dimension.getId()

.NET: Dimension.Id

Retrieves a list of refinement dimension values.This list will
be empty unless the dimension has been specified by the

Java:Dimension.getRefinements()

.NET: Dimension.Refinements
Ne parameter or the
ENEQuery.setNavAllRefinements() method (Java)
or ENEQuery.NavAllRefinements property (.NET) has
been set to true. If the dimension has been specified,
however, and the refinements are exposed, this list will
contain dimension values that can be used to create valid
refined Navigation queries.

The following code samples show how to retrieve refinement dimension values from a navigation
request where a dimension has been identified in the Ne parameter.

Java example of extracting standard refinements

Navigation nav = ENEQueryResults.getNavigation();
DimensionList dl = nav.getRefinementDimensions();
for (int I=0; I < dl.size(); I++) {
 Dimension d = (Dimension)dl.get(I);
 DimValList refs = d.getRefinements();

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

107Working with Dimensions | Displaying refinements

 for (int J=0; J < refs.size(); J++) {
 DimVal ref = (DimVal)refs.get(J);
 String name = ref.getName();
 Long id = ref.getId();
 }
}

.NET example of extracting standard refinements

Navigation nav = ENEQueryResults.Navigation;
DimensionList dl = nav.RefinementDimensions;
for (int I=0; I < dl.Count; I++) {
 Dimension d = (Dimension)dl[I];
 DimValList refs = d.Refinements;
 for (int J=0; J < refs.Count; J++) {
 DimVal ref = (DimVal)refs[J];
 String name = ref.Name;
 Long id = ref.Id;
 }
}

Extracting implicit refinements from a dimension

If a dimension contains implicit refinements, they can be extracted from the dimension with:

• Java: Dimension.getImplicitLocations() method
• .NET: Dimension.ImplicitLocations property

The call returns a DimLocationList object, which (if not empty) encapsulates DimLocation objects
that contain the implicit dimension value (a DimVal object) and all of the dimension location’s ancestors
(also DimVal objects) up to, but not including, the dimension root.

You can also use these methods to test whether a dimension is fully implicit (that is, if the dimension
has no non-implicit refinements and has no descriptors):

• Java: Dimension.isImplicit()
• .NET: Dimension.IsImplicit()

The following code samples show how to test if a dimension is fully implicit and, if so, how to retrieve
the implicit refinement dimension values from that dimension.

Java example of extracting implicit refinements

Navigation nav = ENEQueryResults.getNavigation();
DimensionList compDims = nav.getCompleteDimensions();
for (int j=0; j<compDims.size(); ++j) {
 Dimension dim = (Dimension) compDims.get(j);
 if (dim.isImplicit()) {
 DimLocationList dimLocList = dim.getImplicitLocations();
 for (int i = 0; i < dimLocList.size(); i++) {
 %> Implicit dimension value: <%=
 ((DimLocation)dimLocList.get(i)).getDimValue().getName()
 %><%
 }
 }
}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinements108

.NET example of extracting implicit refinements

Navigation nav = ENEQueryResults.Navigation;
DimensionList compDims = nav.CompleteDimensions;
for (int j=0; j<compDims.Count; ++j) {
 Dimension dim = (Dimension) compDims[j];
 if (dim.IsImplicit()) {
 DimLocationList dimLocList = dim.ImplicitLocations;
 for (int i = 0; i < dimLocList.Count; i++) {
 %> Implicit dimension value: <%=
 ((DimLocation)dimLocList[i]).DimValue.Name %> <%
 }
 }
}

Creating a new query from refinement dimension values
Once refinement dimension values have been retrieved, these dimension values typically are used to
create additional refinement Navigation queries.

As an example of creating a new Navigation query, assume that this Red Wine query:

N=40

returns two refinement dimensions (Year and Score).

The application needs to create a new query from the current query results to expose the refinement
dimension values for the Year dimension. Using the Dimension.getId() method (Java) or the
Dimension.Id property (.NET), the application needs to build a link to a second request:

N=40&Ne=2

Now that we have results with actual refinement values exposed, we need to create a third query that
combines the current query (Red Wine) with the new refinement dimension value (1992). To create
this new value for the Navigation (N) parameter, use the ENEQueryToolkit class. The application
creates a DimValIdList object by using the following method with Navigation and DimVal parameters:

• Java: ENEQueryToolkit.selectRefinement(nav, ref)
• .NET: ENEQueryToolkit.SelectRefinement(nav, ref)

Calling the toString() method (Java) or the ToString() method (.NET) on this object will produce
the proper Navigation (N) parameter for this third query. If the refinement dimension value ID is 66 for
the dimension value 1992, the following query would be created for this refinement:

N=40+66

If you want to render implicit refinements differently than standard refinements, you can use this method
to determine if a refinement is implicit:

• Java: ENEQueryToolkit.isImplicitRefinement()
• .NET: ENEQueryToolkit.IsImplicitRefinement()

You can also use the procedure documented in the previous section, "Extracting implicit refinements
from a dimension."

Java example of creating refinement queries from current query results

DimVal ref = (DimVal)refs.get(J);
DimValIdList nParams =
 Navigation ENEQueryToolkit.selectRefinement(nav, ref);
%>

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

109Working with Dimensions | Displaying refinements

<a href="N=<%= nParams.toString() %>"><%= ref.getName() %>
<%

.NET example of creating refinement queries from current query results

DimVal ref = (DimVal)refs[J];
DimValIdList nParams =
 Navigation ENEQueryToolkit.SelectRefinement(nav,ref);
%>
<a href="N=<%= nParams.ToString() %>"><%= ref.Name %>
<%

Accessing dimensions with hierarchy
For dimensions that contain hierarchy, the refinement dimension object may contain additional
information that is useful when displaying refinement values for that dimension.

Ancestors

For ancestors, these calls return a list of dimension values that describe the path from the root of a
dimension to the current selection within the dimension:

• Java: Dimension.getAncestors() method
• .NET: Dimension.Ancestors property

For example, if a Wineries dimension contained four levels of hierarchy (Country, State, Region,
Winery) and the current query was at the region level (Sonoma Valley), the ancestor list would consist
of the dimension value United States first and the dimension value California second:

Wineries (root) > United States (ancestor) >
California (ancestor) > Sonoma Valley (descriptor)

Refinement dimension values, in this case specific wineries, may still exist for this dimension to refine
the query even further. Even though ancestors are normally used to describe selected dimension
values, they can also be used to help qualify a list of refinement dimension values. (The refinements
are not just wineries, they are United States > California > Sonoma Valley wineries.)

Refinement parent

The refinement parent dimension value is accessed with:

• Java: Dimension.getRefinementParent() method
• .NET: Dimension.RefinementParent property

These calls return the single dimension value directly above the list of refinements for a given dimension.
(In the Ancestors example above, the refinement parent would be Sonoma Valley.)

If no dimension values have already been selected for a given dimension, this refinement parent is
the root dimension value (Wineries). If a dimension value has already been selected for a given
dimension with hierarchy, this refinement parent is the descriptor dimension value (Sonoma Valley).
This single call to retrieve either the root or the descriptor makes creating navigation controls simpler.
(There is no need to check whether a hierarchical dimension has already been selected from or not.)

For a flat dimension with no hierarchy, the refinement parent will always be the dimension root, because
there would be no further refinements if a value had already been selected for the dimension.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinements110

Important note about hierarchy

Refinements for a given dimension can only be returned from the MDEX Engine on the same level
within the dimension. For example, the MDEX Engine could never return a list of refinement choices
that included a mix of countries, states, and regions. (The only exception is flat dimensions that are
dynamically organized and/or promoted by the MDEX Engine.)

But in all cases where hierarchy is explicitly defined for a dimension, only refinements on an equal
level of hierarchy will be returned for a given query.

Non-navigable refinements
There is a special type of refinement dimension value, found only in dimensions with either explicitly
defined or dynamically generated hierarchy, that is referred to as a non-navigable refinement dimension
value.

These special values do not actually refine the records returned with a navigation request, but instead
specify a deeper level of hierarchy from which to display normal refinement dimension values.

For example, if the Wineries dimension contained 1000 wineries and there was no geographic
information from which to create meaningful hierarchy (as in the example above), the best option would
be to have the MDEX Engine create dynamic alphabetical hierarchy.

The first set of refinements that would be returned for this dimension would be non-navigable
refinements (such as A, B, C, etc.).When a user selects the refinement dimension value A, the resulting
query would not limit the record set to only bottles of wine whose winery begins with A. It would,
however, return the same record set but with only valid refinement wineries that begin with A. After
selecting a specific winery, the resulting query would then limit the record set to only wines from the
selected winery.

By this definition, it is important to note that refinement dimension value IDs for non-navigable choices
are not valid Navigation (N) parameter values.Therefore, they should not be used with these methods:

• Java: ENEQueryToolkit.selectRefinement()
• .NET: ENEQueryToolkit.SelectRefinement()

(Note that these methods will ignore the request to refine based on a non-navigable refinement.) In
order to expose the next level of refinements, this non-navigable dimension value ID must be used
with the Ne (Exposed Refinements) parameter.

If a non-navigable refinement (or more than one) has been selected for a given dimension, the
non-navigable dimension values can be retrieved from the resulting dimension object with:

• Java: Dimension.getIntermediates()
• .NET: Dimension.Intermediates

Using ENEQueryToolkit.selectRefinement
This ENEQueryToolkit method is necessary for querying hierarchical dimensions.

When generating a new Navigation parameter for a refinement, it is important to use this method:

• Java: ENEQueryToolkit.selectRefinement()
• .NET: ENEQueryToolkit.SelectRefinement()

One reason for using this method is that it actually implements important business logic.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

111Working with Dimensions | Displaying refinements

For example, the query Red Wine:

N=40

returns a refinement dimension value Merlot (ID=41).

Due to the hierarchical nature of the Wine Type dimension, the Merlot refinement is actually in the
same dimension as the dimension value in the current query. The new query that is generated by the
selectRefinement() method (SelectRefinement() in .NET), therefore, is:

N=40

It is not:

N=40+41

This is an important distinction:When querying hierarchical dimensions, only a single dimension value
can be used for each dimension within the Navigation (N) parameter. (Multi-select AND or OR
dimensions can have more than one dimension value in the Navigation parameter, but cannot be
hierarchical.) Therefore, it is important and safer to always use the selectRefinement() method
(SelectRefinement() in .NET) when creating new queries for refinement dimension values.

Related Links
Creating a new query from selected dimension values on page 127

You can use selected dimension values to create additional queries.

Performance impact for displaying refinements
Run-time performance of the MDEX Engine is directly related to the number of refinement dimension
values being computed for display.

If any refinement dimension values are being computed by the MDEX Engine but not being displayed
by the application, stricter use of the Ne parameter is recommended. Obviously, dimensions containing
large numbers of refinements also affect performance.

The worst-case scenario for run-time performance is having a data set with a large number of
dimensions, each dimension containing a large number of refinement dimension values, and setting
the ENEQuery.setNavAllRefinements() method (Java) or ENEQuery.NavAllRefinements
property (.NET) to true.This would create a page with an overwhelming number of refinement choices
for the user.

Displaying disabled refinements
You can display disabled refinements in the user interface of your front-end Endeca application.These
are refinements that are currently disabled in the navigation state but that would have been available
if the users didn't make some of the choices they have made by reaching a particular navigation state.

About disabled refinements
Disabled refinements represent those refinements that end users could reach if they were to remove
some of the top-level filters that have been already selected from their current navigation state.

A core capability of the MDEX Engine is the ability to provide meaningful navigation options to the
users at each step in the guided navigation process. As part of this approach, the MDEX Engine does
not return "dead ends" -- these are refinements under which no records are present. In other words,

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying disabled refinements112

at each step in the guided navigation, the users are presented with a list of refinements that are valid
based on their current navigation state.

In many front-end applications, it is desirable to have a user interface that allows users to see the
impact of their refinement selections. In particular, once the users make their initial selections of
dimensions and refine by one or more of them, it is often useful to see not only the refinements that
are available at each step in the navigation but also the disabled refinements that would have been
available if some of the other selections were made.

Such refinements are typically displayed in the front-end application as grayed out, that is, they are
not valid for clicking in the current state but could be valid if the navigation state were to change.

To configure disabled refinements, you do not need to change the Endeca project configuration XML
files used with Forge, Endeca Workbench, and Developer Studio.You also do not change any settings
in the Endeca Workbench and Developer Studio. No changes are required to existing Forge pipelines.
The index format of the Dgidx output does not change.

You configure the display of the disabled refinements on a per query basis.You can do this using
either of these methods:

• Presentation API methods, or URL parameters. For information, see the topics in this section.
• The MDEX XQuery (MAX) API (if you are using XQuery and Web services for Endeca). For

information, see the XQuery and Web Services Developer's Guide.

Configuring disabled refinements
Front-end application developers who wish to display disabled refinements need to introduce a specific
front-end application code that augments queries with the configuration for disabled refinements.

The MDEX Engine computes the refinements that must be returned based on two navigation states:

• The base navigation state. This is the regular navigation state with some of the top-level filters
removed.

Note: In this context, filters refer to the previously chosen range filters, record filters, EQL
filters, text searches, and dimensions (including multiselect-OR dimensions) that act as filters
for the current navigation state.

• The default navigation state. This is the navigation state against which the MDEX Engine
computes all operations other than those it needs to compute for returning disabled refinements.

The MDEX Engine computes disabled refinements using the following logic:

• It computes refinements as usual, based on the default navigation state.
• For each dimension that has valid refinements in the base navigation state, it computes the

additional disabled refinements that would be reachable from the base navigation state.

About top-level filters used for computing the base navigation state

Typically, the MDEX Engine computes refinements and other portions of the response that define the
current navigation state based on records that have passed various top-level filters. This section
discusses top-level filters, and explains how selections in each of them affect the base navigation
state.

The top-level filters can be one of the following:

• Record filters
• EQL filters

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

113Working with Dimensions | Displaying disabled refinements

• Range filters
• Text searches
• Dimension selections

The following diagram shows these filters:

When the front-end application users make their selections, they can choose items from each of these
filters. To compute results for the base navigation state, the MDEX Engine then decides whether to
include or remove these filters.

Within each of these filters, users can make multiple selections. For example, for a given Dimension
1, users can make one or more selections, such as DS1, DS2, or DS3. Similarly, they can make more
than one selection with text search, or within a specific range filter. It is important to note how the
granularity of these choices affects the base navigation state: All selections (and not some) from a
given dimension are removed from the base navigation state. Similarly, all text searches and all range
filters (and not some) are removed from the base navigation state.

Java class and methods

Use the DisabledRefinementsConfig class to display disabled refinement results. The MDEX
Engine returns disabled refinements together with the query results.

The methods of this class allow you to specify various parts of the base navigation state. (The MDEX
Engine uses the base navigation state to compute disabled refinements.) For example, using the
methods from this class, you can specify the following parts of your current navigation state:

• Navigation selections from the dimension specified by the dimensionId
• EQL filters
• Range filters
• Text searches

In addition, the following two methods of the ENEQuery class are used for disabled refinements:

• ENEQuery.setNavDisabledRefinementsConfig() sets the disabled refinements configuration.
A null in disabled refinements configuration means that no disabled refinements will be returned.

• ENEQuery.getNavDisabledRefinementsConfig() retrieves the disabled refinements
configuration.

Note: If you do not call these methods, the MDEX Engine does not return disabled refinements.

For more information on this class and methods, see the Endeca API Javadocs.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying disabled refinements114

Java example

The following example illustrates the front-end application code required for returning disabled
refinements along with the query results:

ENEQuery query = new ENEQuery();

// ...
// Set up other query parameters appropriately
// ...

DisabledRefinementsConfig drCfg = new DisabledRefinementsConfig();
// Include text searches in base navigation state
drCfg.setTextSearchesInBase(true);
// Include navigation selections from the dimension with ID 100000 in base
 navigation state
drCfg.setDimensionInBase(100000, true);
// Provide the disabled refinements configuration
query.setNavDisabledRefinementsConfig(drCfg);

.NET class and methods
The DisabledRefinementsConfig class lets you configure disabled refinement results which are
returned with the query results.

In addition, use the following property of the ENEQuery class to configure the display of disabled
refinements:ENEQuery.Nav.DisabledRefinementsConfig

For more information on this class and property, see the Endeca API Guide for .NET.

.NET example

The following example illustrates the front-end application code required for returning disabled
refinements along with the query results:

ENEQuery query = new ENEQuery();

// ...
// set up other query parameters appropriately
// ...

DisabledRefinementsConfig drCfg = new DisabledRefinementsConfig();
// Include text searches in base navigation state
drCfg.TextSearchInBase = true;
// Include navigation selections from the dimension with ID 100000 in base
 navigation state
drCfg.setDimensionInBase(100000, true);
// Provide the disabled refinements configuration
query.NavDisabledRefinementsConfig = drCfg;

URL query parameter for displaying disabled refinements
The Ndr parameter of the Endeca Navigation URL query syntax lets you display disabled refinements.

The Ndr parameter links to:

• Java: ENEQuery.setNavDisabledRefinementsConfig() method
• .NET: ENEQuery.NavDisabledRefinementsConfig property

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

115Working with Dimensions | Displaying disabled refinements

The Ndr parameter has a dependency on the N parameter, because a navigation query is being
performed.

Configuration settings for the Ndr parameter include:

• <basedimID> — an ID of a dimension that is to be included in the base navigation state.
• <eqlfilterinbase> — a true or false value indicating whether the EQL filter is part of the base

navigation state.
• <textsearchesinbase> — a true or false value indicating whether text searches are part of

the base navigation state.
• <rangefiltersinbase> — a true or false value indicating whether range filters are part of the

base navigation state.

When the Ndr parameter equals zero, no disabled refinement values are returned for any dimensions
(which improves performance).

Examples of queries with the Ndr parameter

The first example illustrates a query that lets you return disabled refinements. In this example, the
Ndr portion of the UrlENEQuery URL indicates that:

• Text search should be included in the base navigation state.
• The navigation selections from the dimension with ID 100000 should be included in the base

navigation state.

/graph?N=110001+210001&Ne=400000&Ntk=All&Ntt=television&Ndr=textsearchesin¬
base+true+basedimid+100000

In the second example of a query, in addition to text searches, the EQL filters and range filters are
also listed (they are set to false):

N=134711+135689&Ntk=All&Ntt=television&Ndr=basedimid+100000+textsearchesin¬
base+true+eqlfilterinbase+false+rangefiltersinbase+false

Identifying disabled refinements from query output
Disabled refinements are returned in the same way regular refinements are returned. In addition, you
can identify from query output whether a particular dimension value is a disabled refinement.

In the Java API, you can identify the dimension value with the Dgraph.DisabledRefinement
property.You can identify the value of this property by accessing the PropertyMap with the
DimVal.getProperties() method.

For example:

DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Determine whether this DimVal is a disabled refinement
 String disabled = "";
 if (pmap.get("DGraph.DisabledRefinement") != null) {
 disabled = " ("+pmap.get("DGraph.DisabledRefinement")+")";
 }
}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying disabled refinements116

In the .NET API, to determine whether a dimension value is a disabled refinement, use the
Dimval.Properties property to obtain the Dgraph.DisabledRefinement property. For example:

DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Determine whether this DimVal is a disabled refinement
 String disabled = "";
 if (pmap["DGraph.DisabledRefinement"] != null) {
 disabled = " ("+pmap["DGraph.DisabledRefinement"]+")";
 }
}

Interaction of disabled refinements with other navigation features
This feature has several interactions with other navigation features.

• Dimensions with hierarchy. Disabled refinements are not returned for hierarchical dimensions.
• Dynamic ranking. Any dimension that is dynamically ranked does not have disabled refinements

returned for it. In other words, to display disabled refinements, you need to turn off dynamic ranking.
• Implicit refinements. Using the --noimplicit flag to Dgidx disables computation of dimension

values for disabled refinements.

Performance impact of disabled refinements
Performance impact from enabling the display of disabled refinements falls into three categories.They
are discussed in the order of importance.

• The cost of computation involved in determining the base and default navigation states.

The base and default navigation states are computed based on the top-level filters that may belong
to these states. These filters are text searches, range, EQL and record filters and selections from
dimensions. The types and numbers of these top-level filters in the base and default navigation
states affect the MDEX Engine processing involved in computing the default navigation state. The
more filters exist in the current navigation state, the more expensive is the task; some filters, such
as EQL, are more expensive to take into account than others.

• The trade off between using dynamic refinement ranking and disabled refinements.

In general, these two features pursue the opposite goals in the user interface — dynamic ranking
allows you to intelligently return less information to the users based on most popular dimension
values, whereas disabled refinements let you return more information to the users based on those
refinements that are not available in the current navigation state but would have been available if
some of the selections were not made by the users.

Therefore, carefully consider your choices for the user interface of your front-end application and
decide for which of your refinements you would like to have one of these user experiences:

• Dynamically ranked refinements
• Disabled refinements

If, for example, for some dimensions you want to have only the most popular dimension values
returned, you need dynamic ranking for those refinements. For it, you set the sampling size of
records (with --esampin), which directly affects performance: the smaller the sampling, the
quicker the computation. However, for those dimensions, the MDEX Engine then does not compute
(and therefore, does not return) disabled refinements.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

117Working with Dimensions | Displaying disabled refinements

If, on the other hand, in your user experience you would like to show grayed out (disabled)
refinements, and your performance allows it, you can decide to enable them, instead of dynamic
ranking for those dimensions. This means that for those dimensions, you need to disable dynamic
ranking. As a side effect, this involves a performance cost, since computing refinements without
dynamic ranking is more expensive. In addition, with dynamic ranking disabled, the MDEX Engine
will need to compute refinement counts for more dimension values.

• The cost of navigation queries.

Disabled refinements computation slightly increases the navigation portion of your query processing.
This increase is roughly proportional to the number of dimensions for which you request the MDEX
Engine to return disabled refinements.

Implementing dynamic refinement ranking
A core capability of the MDEX Engine is the ability to dynamically order and present the most popular
refinement dimension values to the user.

When the dynamic refinement ranking feature is implemented, the refinement dimension values that
are returned for a query are pruned to those values that occur most frequently in the requested
navigation state; that is, the refinement dimension values that are most popular.

There are two ways that you can configure dynamic refinement ranking for your application:

• By configuring specific dimensions in Developer Studio.
• By using API calls for query-time control of dynamic refinement ranking. Note that by using these

calls, you can override the Developer Studio settings for a given dimension.

The following sections describe how to implement these methods.

Tie breaker for dynamic ranking

Dynamic ranking orders the refinement dimension values by:

1. refinement count (descending), then by
2. static rank assigned (descending), then by
3. dimension value id (descending)

If static ranking is not used, all refinement dimension values will have been assigned a static rank of
1 and the dimension value Id will be the ultimate tie breaker. (Static ranking is also known as manual
dimension value ranking.) Therefore, you can control the dynamic ranking tie breaker by either assigning
a static rank to the dimension value or by controlling the dimension value ID assigned.

Configuring dynamic refinement ranking
Developer Studio allows you to configure dynamic refinement ranking on a per-dimension basis.

Make sure that you have created the dimension for which you want to enable dynamic refinement
ranking.

To configure dynamic refinement ranking:

1. In Developer Studio, open the target dimension in the Dimension editor.

2. Click the Dynamic Ranking tab.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Implementing dynamic refinement ranking118

3. Check Enable dynamic ranking, as in this example.

4. Configure other dimension attributes. The following table lists the meanings of all the fields and
checkboxes.

MeaningField

If checked, enables dynamic refinement ranking for this dimension.Enable dynamic ranking

Sets the number of most popular refinement dimension values to return.Maximum dimension
values to return

Sets the sort method used for the returned refinement dimension values:Sort dimension values

• Alphabetically uses the sort order specified in the "Refinements
sort order" setting on the main part of the Dimension editor.

• Dynamically orders the most popular refinement values according
to their frequency of appearance within a data set. Dimension values
that occur more frequently are returned before those that occur less
frequently.

If checked, when the actual number of refinement options exceeds the
number set in "Maximum dimension values to return", an additional child

Generate "More..."
dimension value

dimension value (called More) is returned for that dimension. If the user
selects the More option, the MDEX Engine returns all of the refinement
options for that dimension. If not checked, only the number of dimension
values defined in "Maximum dimension values to return" is displayed.

5. Click OK.

Related Links
Displaying refinements on page 104

Displaying dimensions and corresponding dimension values for query refinement is the core
concept behind Guided Navigation.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

119Working with Dimensions | Implementing dynamic refinement ranking

Using query-time control of dynamic refinement ranking
You can configure dynamic refinement ranking to be used on a per-query basis.

The Endeca Presentation API lets you configure dynamic refinement ranking to be switched on and
off on a per-query, per-dimension basis, including the number and sort order of refinements to return.
This control includes the ability to override the dynamic ranking settings in Developer Studio for a
given dimension.

A use case for this dynamic refinement configuration feature would be an application that renders
refinements as a tag cloud. Such an application may adjust the size of the tag cloud at query time,
depending on user preferences or from which page the query originates.

You set the dynamic refinement configuration at the dimension value level that you want to control.
That is, dynamic ranking will be applied to that dimension value and all its children. For example,
assume that you have a dimension named Wine_Type that has three child dimension values, Red,
White, and Sparkling, which in turn have two child dimension values each.The dimension hierarchy
would look like this:

You would set the dynamic refinement configurations depending on which level of the hierarchy you
want to order and present, for example:

• If you set the configuration on the root dimension value (which has the same name and ID as the
dimension itself), the refinements in the Red, White, and Sparkling dimension values will be
returned.

• If there are multiple child dimension values, you can set a configuration on only one sibling. In this
case, the refinements from the other siblings will not be exposed. For example, if you set a dynamic
refinement configuration on the Red dimension value, only the refinements of the Merlot and
Chiantidimension values will be returned. The refinements from the White and Sparkling
dimension values will be not be shown, even if you explicitly set dynamic refinement configurations
for them.

Keep the following items in mind when using this feature:

• The settings of the dynamic refinement configuration are not persistent. That is, after the query
has been processed by the MDEX Engine, the dynamic ranking settings for the dimension values
revert to their Developer Studio settings.

• Setting a dynamic refinement configuration will suppress the generation of a "More..." child
dimension value (assuming that the Generate "More..." dimension value” option has been enabled
for the dimension).You can determine whether there are more refinements than the ones shown
by checking the DGraph.More property on the refinements' parent dimension value.

• The behavior of hidden dimensions is not changed by setting a dynamic refinement configuration
on it. That is, the MDEX Engine still will not return the dimension or any of its values as refinement
options.

• This bullet discusses the interaction of dynamic refinement ranking with collapsible dimensions.
By default, the MDEX Engine considers only leaf dimension values for dynamic ranking, removing
all intermediate dimension hierarchy from consideration. With this default behavior, when a
hierarchical dimension's mid-level values (all except the root and leaf values) are configured as
collapsible in Developer Studio, and when the dimension is also set to use dynamic refinement
ranking, the dimension collapses and displays only leaf values for all navigation queries. The

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Implementing dynamic refinement ranking120

mid-level dimension values are never displayed regardless of the number of leaf values present
in the navigation state.

You can use the --dynrank_consider_collapsed flag to force the MDEX Engine to consider
intermediate collapsible dimension values as candidates for dynamic ranking.

URL query parameter for setting dynamic refinement ranking
The Nrc parameter sets the dynamic refinement configuration for the navigation query.

The Nrc parameter links to:

• Java: ENEQuery.setNavRefinementConfigs() method
• .NET: ENEQuery.NavRefinementConfigs property

The Nrc parameter has a dependency on the N parameter, because a navigation query is being
performed.

Note: The Nrc parameter works only if dynamic refinement ranking has been enabled.

Nrc parameter syntax

The Nrc parameter will have one or more sets of dynamic refinement configurations, with each set
being delimited by the pipe character. Each dynamic refinement configuration must begin with the id
setting, followed by up to four additional settings, using this syntax:

id+dimvalid+exposed+bool+dynrank+setenable+dyncount+maxnum+dynorder+sortorder

The meanings of the individual settings are:

• id specifies the ID of the dimension value (the dimvalid argument) for which the configuration will
be set.

• exposed specifies whether to expose the dimension value's refinements. The bool value is either
true (expose the refinements) or false (do not expose the refinements). The default is true.
Note that this setting does not have a corresponding setting in Developer Studio.

• dynrank specifies whether the dimension value has dynamic ranking enabled. The valid values
are enabled, disabled, or default. This setting corresponds to the "Enable dynamic ranking"
setting in Developer Studio.

• dyncount sets the maximum number of refinement dimension values to return. The valid values
are either default or an integer that is equal to or greater than 0. This setting corresponds to the
"Maximum dimension values to return" setting in Developer Studio.

• dynorder sets the sort method for the returned refinements. The valid values are static, dy¬
namic, or default.The static value corresponds to the "Alphabetically" value and the dynamic
value corresponds to the "Dynamically" value in the "Sort dimension values" setting in Developer
Studio.

The omission of a setting (other than id) or specifying the value default results in using the setting
in Developer Studio.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

121Working with Dimensions | Implementing dynamic refinement ranking

Nrc example

The following example sets a dynamic ranking configuration for two dimension values with IDs of
134711 and 132830:

N=0&Nrc=id+134711+exposed+true+dynrank+enabled+dyncount
+default+dynorder+dynamic|id+132830+dyncount+7

Dimension value 134711 will have its refinements exposed, have dynamic ranking enabled, use the
Developer Studio setting for the maximum number of refinement values to return, and use a dynamic
sorting order. Dimension value 132830 will have its refinements exposed (because true is the default),
return a maximum of 7 refinement values, and use the Developer Studio values for the dynrank and
dynorder settings.

Using refinement configuration API calls
You can use API calls to set the dynamic refinement configuration for the navigation query.

An alternative to the Nrc parameter is to use API calls to create and set the dynamic refinement
configuration for the navigation query. The general procedure is:

1. You first create a refinement configuration for each dimension value by using the calls of the
RefinementConfig class. Each refinement configuration will be a RefinementConfig object.

2. You then encapsulate the RefinementConfig objects in a RefinementConfigList object.
3. Finally, you set the refinement configuration list for the query by using the

ENEQuery.setNavRefinementConfigs() method (Java) or the
ENEQuery.NavRefinementConfigs property (.NET).

Creating a refinement configuration for a dimension value

The constructor of the RefinementConfig class takes the ID of a dimension value to create a
RefinementConfig object for that dimension value and its children (if any).You then use various
setter calls to set the specific configuration attributes. Note that these calls correspond to settings of
the Nrc parameter.

Dynamic ranking for the dimension value is set by these RefinementConfig calls (which correspond
to the Nrc dynrank setting):

• Specifically enabled with the Java setDynamicRankingEnabled() method or the .NET
DynamicRanking property with an argument of ENABLED.

• Specifically disabled with the Java setDynamicRankingDisabled() method or the .NET
DynamicRanking property with an argument of DISABLED.

• Set to use the Developer Studio setting with the Java setDynamicRankingDefault() method
or the .NET DynamicRanking property with an argument of DEFAULT.

The RefinementConfig.setExposed() method (Java) or RefinementConfig.Exposed
property (.NET) specify whether to expose the dimension value's refinements.These calls correspond
to the Nrc exposed setting.

The sort method for the returned dimension value is set by these RefinementConfig calls (which
correspond to the Nrc dynorder setting):

• Set a dynamic sort order with the Java setDynamicRankOrderDynamic() method or the .NET
DynamicRankOrder property with an argument of DYNAMIC.

• Set a static sort order with the Java setDynamicRankOrderStatic() method or the .NET
DynamicRankOrder property with an argument of STATIC.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Implementing dynamic refinement ranking122

• Use the Developer Studio settings with the Java setDynamicRankOrderDefault() method or
the .NET DynamicRankOrder property with an argument of DEFAULT)

The maximum number of dimension values to return is set with the
RefinementConfig.setDynamicRefinementCount() method (Java) or the
RefinementConfig.DynamicRefinementCount property (.NET). Use an empty OptionalInt
argument to use the Developer Studio setting. These calls correspond to the Nrc dyncount setting.

The following is a simple Java example of setting a dynamic refinement configuration on the dimension
value with an ID of 7:

// create an empty refinement config list
RefinementConfigList refList = new RefinementConfigList();
// create a refinement config for dimval 7
RefinementConfig refConf = new RefinementConfig(7);
// enable dynamic refinement ranking for this dimval
refConf.setDynamicRankingEnabled();
// set a dynamic sort order
refConf.setDynamicRankOrderDynamic();
// expose the refinements
refConf.setExposed(true);
// set maximum number of returned refinements to 5
OptionalInt refCount = new OptionalInt(5);
refConfsetDynamicRefinementCount(refCount);
// add the refinement config to the list
refList.add(0, refConf);
// set the refinement config list in the query
usq.setNavRefinementConfigs(refList);

Setting the refinement configurations for the query

The constructor of the RefinementConfigList class will create an empty list.You then insert
RefinementConfig objects into the list with:

• Java: the add() method
• .NET: the Add property

You set the refinement configuration list for the query by using:

• Java: the ENEQuery.setNavRefinementConfigs() method
• .NET: the ENEQuery.NavRefinementConfigs property

Displaying the returned refinement values
The refinement dimension values can be displayed like any other dimension values.

Regardless of whether you used the Nrc parameter or the API calls for the dynamic refinement
configuration, you display the returned refinement dimension values in the same way as you display
refinements.

As mentioned earlier, setting a dynamic refinement configuration on a dimension value will suppress
the generation of a "More..." child dimension value.You can determine whether there are more
refinements by checking the DGraph.More property on the refinements' parent dimension value:

• If the value of the DGraph.More property is 0 (zero), there are no more refinements to display.
• If the value of the DGraph.More property is 1 (one), there are more refinements to display.

Related Links
Displaying refinements on page 104

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

123Working with Dimensions | Implementing dynamic refinement ranking

Displaying dimensions and corresponding dimension values for query refinement is the core
concept behind Guided Navigation.

Performance impact of dynamic refinement ranking
You can use the --esampmin option with the Dgraph, to specify the minimum number of records to
sample during refinement computation.

For dynamic refinement ranking, the MDEX Engine first sorts the refinements by the dynamic counts
assigned to them, and then cuts to the value you specify in Developer Studio ("Maximum dimension
values to return" in the Dynamic Ranking tab of the Dimension editor). Those remaining values are
sorted again, alpha- or dynamic-based on your configuration ("Sort dimension values" in the Dynamic
Ranking tab), and then finally a "More" link is appended to the returned refinements.

The actual cut is not done using the actual refinement counts of the refinement, as that would be very
expensive. Instead, the records in your navigation state are sampled to see if they have a given value
or not. After a given number have been sampled, the list is sorted according to the sample counts,
and then cut. This means that even with the dynamic rank sorting, you could have the scenario where
refinements with more records assigned fall below the More link while others with less records assigned
are included above the More link.

The sample size is configurable, but keep in mind that sampling the entire navigation state can be one
of the more performance intensive operations the engine does, so you should be very careful in
tweaking the size.This accomplished with the Dgraph --esampmin option, which allows you to specify
the minimum number of records to sample during refinement computation. The default is 0.

For most applications, larger values for --esampmin reduce performance without improving dynamic
refinement ranking quality. For some applications with extremely large, non-hierarchical dimensions
(if they cannot be avoided), larger values can meaningfully improve dynamic refinement ranking quality
with minor performance cost.

Displaying descriptors
Displaying descriptors is the ability to display a summary of the navigation refinements that have been
made within the current navigation query.

Descriptors (also called selected dimension values) are the dimension values that were used to query
for the current record set. The display of these values can take various forms, dependent upon the
application. They could be displayed in a linear, navigation history format, or through a stacked list of
values. With these values displayed to the user, the user can also be given the ability to remove
individual refinement values from their navigation query, thereby increasing the scope of their search.

No Dgidx or Dgraph flags are necessary to enable displaying descriptors. Any dimension value that
has been selected is available to be displayed.

URL parameters for descriptors
Selected dimension values are only returned with a valid navigation query.

Because descriptors (selected dimension values) are only returned with a valid navigation query, the
Navigation parameter (N) is required for any request that will render navigation selections:

N=dimension-value-id1+dimension-value-id2[+...]

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying descriptors124

The Navigation parameter is used to indicate the selections made to the MDEX Engine via this set of
dimension-value-ids. These selected dimension value IDs are the descriptors of the Navigation query.
That is, the descriptors are what describe a navigation query. The descriptors are what a user has
already selected.

The only exception to this is the URL query:

N=0

where the descriptors consist of a single ID of zero that does not correspond to any dimension value.
Instead a dimension value ID of 0 indicates the absence of any descriptors. It indicates that no dimension
values have been selected. When a navigation query is issued with a descriptor of 0, there will be no
selected dimension values to render.

Note that the MDEX Engine combines selections from the same dimension into similar dimension
objects. This consolidation is why ancestors and descriptors exist, because they were independent
selections, but then combined into one dimension object that relates them by the dimension's hierarchy.

Performance impact for descriptors

Performance is rarely impacted by rendering the selected dimension values, because rendering
selected dimension values is merely a product of displaying what has already been computed. Like
other features related to navigation, performance of the system as a whole is dependent on the
complexity and specifics of the data and the dimension structure itself.

Retrieving descriptor dimension values
The Navigation and Dimension classes have methods for getting descriptor dimensions and their
dimension values.

To retrieve descriptor dimension values:

1. Access the Navigation object from the query results object.

2. After the application has retrieved the Navigation object, retrieve a list of dimensions (a
DimensionList object) that contain descriptors with:

DescriptionOption

Navigation.getDescriptorDimensions() methodJava

Navigation.DescriptorDimensions property.NET

These calls return descriptor dimension values.

An alternative way is to use:

DescriptionOption

Navigation.getDescriptorDimGroups() methodJava

Navigation.DescriptorDimGroups property.NET

These calls return a list of dimension groups (a DimGroupList object) instead of a list of
dimensions. Each dimension group then contains a list of one or more dimensions with descriptors.

If one of the descriptors is a hierarchical ancestor of another, the MDEX Engine consolidates
descriptors into single dimensions. The only exception to this is when a dimension is marked for
multi-select. When a dimension is marked for multi-select and or multi-select or,
the consolidation is not made and each descriptor gets its own dimension object.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

125Working with Dimensions | Displaying descriptors

3. Once a descriptor dimension has been retrieved, use these calls to extract various selected
dimension value information from the dimension:

DescriptionOption

Retrieve the dimension value that has been selected from
this dimension.

Dimension.getDescriptor()
method (Java) and
Dimension.Descriptor property
(.NET)

Retrieve a list of the ancestors of the descriptor of this
dimension.

Each member of this list is also a selected dimension value
from the same dimension as the descriptor. The distinction

Dimension.getAncestors()
method (Java) and
Dimension.Ancestors property
(.NET)

between each member of this list and the descriptor is that
each ancestor is a hierarchical ancestor to the descriptor
by the dimension structure. These ancestors are ordered
from parent to child.

Examples: retrieving and rendering descriptors

Java example of retrieving descriptors:

Navigation nav = ENEQueryResults.getNavigation();
// Get list of the dimensions with descriptors
DimensionList dl = nav.getDescriptorDimensions();
// Loop through the list
for (int I=0; I < dl.size(); I++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl.get(I);
 // Get the descriptor and then its name and ID
 DimVal desc = d.getDescriptor();
 String descName = desc.getName();
 long descId = desc.getId();
 // Get list of descriptor’s ancestors and their info
 DimValList ancs = d.getAncestors();
 for (int J=0; J < ancs.size(); J++) {
 DimVal anc = (DimVal)ancs.get(J);
 String ancName = anc.getName();
 long ancId = anc.getId();
 }
}

.NET example of retrieving descriptors:

Navigation nav = ENEQueryResults.Navigation;
// Get list of the dimensions with descriptors
DimensionList dl = nav.DescriptorDimensions;
// Loop through the list
for (int I=0; I < dl.Count; I++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl[I];
 // Get the descriptor and then its name and ID
 DimVal desc = d.Descriptor;
 string descName = desc.getName();
 long descId = desc.Id;
 // Get list of descriptor’s ancestors and their info
 DimValList ancs = d.Ancestors;
 for (int J=0; J < ancs.Count; J++) {

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying descriptors126

 DimVal anc = (DimVal)ancs[J];
 String ancName = anc.Name;
 long ancId = anc.Id;
 }
}

Java example of rendering descriptors:

<table>
<%
Navigation nav = ENEQueryResults.getNavigation();
DimensionList dl = nav.getDescriptorDimensions();
for (int I=0; I < dl.size(); I++) {
 Dimension d = (Dimension)dl.get(I);
 %> <tr>
 <%
 DimValList ancs = d.getAncestors();
 for (int J=0; J < ancs.size(); J++) {
 DimVal anc = (DimVal)ancs.get(J);
 %> <td><%= anc.getName() %>
<%
 }
 DimVal desc = d.getDescriptor();
 %> <td><%= desc.getName() %></td></tr>
 <%
}
%>
</table>

.NET example of rendering descriptors:

<table>
<%
Navigation nav = ENEQueryResults.Navigation;
DimensionList dl = nav.DescriptorDimensions;
for (int I=0; I < dl.Count; I++) {
 Dimension d = (Dimension)dl[I];
 %> <tr>
 <%
 DimValList ancs = d.Ancestors;
 for (int J=0; J < ancs.Count; J++) {
 DimVal anc = (DimVal)ancs[J];
 %> <td><%= anc.Name %>
<%
 }
 DimVal desc = d.Descriptor;
 %> <td><%= desc.Name %></td></tr>
 <%
}
%>
</table>

Creating a new query from selected dimension values
You can use selected dimension values to create additional queries.

The following two sections show how you can use the selected refinements to generate queries that
remove selected dimension values as well as select ancestors of the selected descriptors.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

127Working with Dimensions | Displaying descriptors

Removing descriptors from the navigation state

Once you have the selected dimension values, additional queries can be generated for the action of
removing a selection. A descriptor is a specific type of selected dimension value. The descriptor is the
hierarchically lowest selected dimension value for a dimension.

One query that can be generated from the descriptor is the query where a descriptor is removed.You
can use the ENEQueryToolkit to generate the query where the descriptor is removed from the
current query.You pass in the Navigation object and the descriptor to generate the navigation
query, as in these examples:

// Java version
DimValIdList removed = ENEQueryToolkit.removeDescriptor(nav, desc);

// .NET version
DimValIdList removed = ENEQueryToolkit.RemoveDescriptor(nav, desc);

The Java removeDescriptor() and .NET RemoveDescriptor() methods generate a
DimValIdList object. The object can be used as the Navigation (N) parameter for the additional
query by calling the Java toString() or .NET ToString() method of this object.

The following code snippets show how to create queries that remove descriptors.

Java example of creating queries that remove descriptors

// Get the descriptor from the dimension
DimVal desc = dim.getDescriptor();
// Remove the descriptor from the navigation
DimValIdList dParams = ENEQueryToolkit.removeDescriptor(nav,desc);
%>
<a href="/controller.jsp?N=<%= dParams.toString() %>">

<%

.NET example of creating queries that remove descriptors

// Get the descriptor from the dimension
DimVal desc = dim.Descriptor;
// Remove the descriptor from the navigation
DimValIdList dParams = ENEQueryToolkit.RemoveDescriptor(nav,desc);
%>
<a href="/controller.aspx?N=<%= dParams.ToString() %>">

<%

Selecting ancestors

Another query that you could generate from selected dimension values would be a query for selecting
an ancestor. An ancestor is any hierarchical ancestor of a dimension’s current descriptor.The resulting
query from selecting an ancestor is the existing navigation state with the current descriptor removed,
and the ancestor that is selected as the new descriptor. As with removing a descriptor, you would use
the ENEQueryToolkit class:

// Java version
DimValIdList selected = ENEQueryToolkit.selectAncestor(nav,anc,desc);

// .NET version
DimValIdList selected = ENEQueryToolkit.SelectAncestor(nav,anc,desc);

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying descriptors128

The Java selectAncestor() and .NET SelectAncestor() methods take the Navigation
object, the ancestor to select, and the descriptor as parameters.

Java example of selecting an ancestor as the new descriptor

// Get the ancestor
DimVal anc = (DimVal)ancestors.get(i);
// Use the ancestor in the navigation
DimValIdList sParams = ENEQueryToolkit.selectAncestor(nav,anc,desc);
%>
<a href="/controller.jsp?N=<%= sParams.toString() %>">
<%= anc.getName() %>
<%

.NET example of selecting an ancestor as the new descriptor

// Get the ancestor
DimVal anc = (DimVal)ancestors[i];
// Use the ancestor in the navigation
DimValIdList sParams = ENEQueryToolkit.SelectAncestor(nav,anc,desc);
%>
<a href="/controller.aspx?N=<%= sParams.ToString() %>">
<%= anc.Name %>
<%

Displaying refinement statistics
The application UI can display the number of records returned for refinements.

Dimension value statistics count the number of records (in the current navigation state) or aggregated
records beneath a given dimension value. These statistics are dynamically computed at run-time by
the Endeca MDEX Engine and are displayed in the user interface.

By providing the user with an indication of the number of records (or aggregated records) that will be
returned for each refinement, dimension value statistics can enhance the Endeca application’s navigation
controls by providing more context at each point in the Endeca application.

A refinement count is the number of records that would be in the result set if you were to refine on a
dimension value.

Note that there is no special URL query parameter to request dimension value statistics. So long as
there are dimension values returned for a given request, dimension value statistics will be returned
as a property attached to each dimension value.

Enabling refinement statistics for dimensions
You configure refinement statistics for regular (non-aggregated) records in Developer Studio.

To configure dimensions for refinement statistics:

1. In Developer Studio, open the target dimension in the Dimension editor.

2. Click the Advanced tab.

3. Check Compute refinement statistics, as in this example.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

129Working with Dimensions | Displaying refinement statistics

4. Click OK.

Only the configured dimensions will be considered for computation of dynamic dimension value statistics
by the Endeca MDEX Engine.

To enable refinement statistics for aggregated records (that is, those records that are rolled up into a
single record for display purposes), use the --stat-abins flag with the Dgraph.You cannot enable
refinement statistics for aggregated records using Developer Studio.

Retrieving refinement counts for records
Record counts are returned in two Dgraph properties.

To retrieve the counts for regular (non-aggregated) or aggregated records beneath a given refinement
(dimension value), use these Dgraph properties:

• Counts for regular (non-aggregated) records on refinements are returned as a property on each
dimension value. For regular records, this property is DGraph.Bins.

• Counts for aggregated records are also returned as a property on each dimension value. For
aggregated records, this property is DGraph.AggrBins.

For a given Navigation object, request all refinements within each dimension with:

• Java: Dimension.getRefinements() method
• .NET: Dimension.Refinements property

The refinements are returned in a DimValList object.

For each refinement, the dimension value (DimVal object) that is a refinement beneath the dimension
can be returned with:

• Java: DimValList.getDimValue() method
• .NET: DimValList.Item property

To get a list of properties (PropertyMap object) associated with the dimension value, use:

• Java: DimVal.getProperties() method

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinement statistics130

• .NET: DimVal.Properties property

Calling the PropertyMap.get() method (Java) or PropertyMap object (.NET) at this point, with
the DGraph.Bins or DGraph.AggrBins argument will return a list of values associated with that
property.This list should contain a single element, which is the count of non-aggregated or aggregated
records beneath the given dimension value.

The following code samples show how to retrieve the number of records beneath a given dimension
value. The examples retrieve the number of regular (non-aggregated) records, because they use the
DGraph.Bins argument for the calls. To retrieve the number of aggregated records, use the same
code, but instead use the DGraph.AggrBins argument.

Java example of getting the record counts beneath a refinement

DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = " ("+pmap.get("DGraph.Bins")+")";
 }
}

.NET example of getting the record counts beneath a refinement

DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Get dynamic stats
 String dstats = "";
 if (pmap["DGraph.Bins"] != null) {
 dstats = " ("+pmap["DGraph.Bins"]+")";
 }
}

Retrieving refinement counts for records that match descriptors
For each dimension that has been enabled to return refinement counts, the MDEX Engine returns
refinement counts for records that match descriptors. Descriptors are selected dimension values in
this navigation state.

The refinement counts that the Dgraph returns for descriptors are returned with the DGraph.Bins or
DGraph.AggrBins property on the descriptor DimVal object returned through the Endeca navigation
API.

The count represents the number of records (or aggregate records, in the case of DGraph.AggrBins)
that match this dimension value in the current navigation state.

• For a multi-AND or a single-select dimension, this number is the same as the number of matching
records.

• For a multi-OR dimension, this number is smaller than the total number of matching records if
there are multiple selections from that dimension.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

131Working with Dimensions | Displaying refinement statistics

This capability of retrieving refinement counts for descriptors is the default behavior of the MDEX
Engine. No additional configuration (for example, Dgraph command line options) is needed to enable
this capability.

To access the refinement counts for descriptors:

• Retrieve the list of dimensions with descriptors. To do this use the
Navigation.getDescriptorDimensions() method (Java), or the
Navigation.DescriptorDimensions property (.NET).

• For each dimension, retrieve the dimension value that has been selected from this dimension (the
descriptor). To do this, use the Dimension.getDescriptor() method (Java) or
Dimension.Descriptor property (.NET).

• Retrieve the PropertyMap object which represents the properties of the dimension value. To do
this, use the DimVal.getProperties() method (Java) or the DimVal.Properties property
(.NET) on that dimension value.

• Obtain a list of values associated with that property. Use the PropertyMap.get() method (Java)
or PropertyMap object (.NET) with the DGraph.Bins or DGraph.AggrBins argument.

This list should contain a single element which is the number of records (or aggregate records)
that match this dimension value in the current navigation state.

Java example of getting refinement counts for a descriptor

Navigation nav = ENEQueryResults.getNavigation();
// Get the list of dimensions with descriptors
DimensionList dl = nav.getDescriptorDimensions();
// Loop through the list
for (int i = 0; i < dl.size(); i++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl.get(i);
 // Get the descriptor and then its count(s)
 DimVal desc = d.getDescriptor();
 // Get the map of properties for the descriptor
 PropertyMap pmap = desc.getProperties();
 // Get the record count
 String recordCount = "";
 if (pmap.containsKey("DGraph.Bins")) {
 recordCount = " (" + pmap.get("DGraph.Bins") + ")";
 }
 // Get the aggregate record count
 String aggregateRecordCount = "";
 if (pmap.containsKey("DGraph.AggrBins")) {
 aggregateRecordCount = " (" + pmap.get("DGraph.AggrBins") + ")";
 }
}

.NET example of getting refinement counts for a descriptor

Navigation nav = ENEQueryResults.Navigation;
// Get the list of dimensions with descriptors
DimensionList dl = nav.DescriptorDimensions;
// Loop through the list
for(int i = 0; i < dl.Count; i++) {
 // Get a dimension from the list
 Dimension d = (Dimension)dl[i];
 // Get the descriptor and then its count(s)
 DimVal desc = d.Descriptor;
 // Get the map of properties for the descriptor
 PropertyMap pmap = desc.Properties;

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying refinement statistics132

 // Get the record count
 String recordCount = "";
 if (pmap["DGraph.Bins"] != null) {
 recordCount = " (" + pmap["DGraph.Bins"] + ")";
 }
 // Get the aggregate record count
 String aggregateRecordCount = "";
 if (pmap["DGraph.AggrBins"] != null) {
 aggregateRecordCount = " (" + pmap["DGraph.Bins"] + ")";
 }
}

Related Links
Retrieving descriptor dimension values on page 125

The Navigation and Dimension classes have methods for getting descriptor dimensions and
their dimension values.

Performance impact of refinement counts
Dynamic statistics on regular and aggregated records are expensive computations for the Endeca
MDEX Engine.

You should only enable a dimension for dynamic statistics if you intend to use the statistics in your
Endeca-enabled front-end application. Similarly, you should only use the --stat-abins flag with
the Dgraph to calculate aggregated record counts if you intend to use the statistics in your
Endeca-enabled front-end application. Because the Dgraph does additional computation for additional
statistics, there is a performance cost for those that you are not using.

In applications where record counts or aggregated record counts are not used, these lookups are
unnecessary. The MDEX Engine takes more time to return navigation objects for which the number
of dimension values per record is high.

Note that Dgidx performance is not affected by dimension value statistics.

Displaying multiselect dimensions
The MDEX Engine supports two types of multiselect dimensions.

The default behavior of the Endeca MDEX Engine permits only a single dimension value from a
dimension to be added to the navigation state. This type of dimension is called a single-select
dimension.

By default, after a user selects a leaf refinement from any single-select dimension, that dimension is
removed from the list of dimensions available for refinement in the query results. For example, after
selecting "Apple" from the Flavors dimension, the Flavors dimension is removed from the navigation
controls.

However, sometimes it is useful to allow the user to select more than one dimension value from a
dimension. For example, you can give a user the ability to show wines that have a flavor of "Apple"
and "Apricot". This function is accomplished by tagging the dimension as a multiselect dimension.
The MDEX Engine provides support for two types of multiselect dimensions that apply Boolean logic
to the dimension values selected:

• multiselect-AND

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

133Working with Dimensions | Displaying multiselect dimensions

• multiselect-OR

The multiselect feature is only fully supported for flat dimensions (that is, dimensions that do not contain
hierarchy). In other words, multiselect-OR queries are restricted to leaf dimension values. In a flat
dimension, all possible refinements are leaf dimension values, so no extra configuration is necessary.
In a hierarchical dimension, you must configure all non-leaf dimension values to be inert (non-navigable)
to prevent them from appearing in the navigation query.

Configuring multiselect dimensions
You use Developer Studio to configure the multiselect feature for a dimension.

To configure a multiselect dimension:

1. In Developer Studio, open the target dimension in the Dimension editor.

2. Click the Advanced tab.

3. In the Multiselect frame, select either Or or And, as in this example which configures a
Multiselect-OR dimension.

4. Click OK.

After you re-run Forge and Dgidx, the dimension will be enabled for multiselect queries.

Handling multiselect dimensions
The behavior of multiselect dimensions may require changes in the UI.

The fact that a dimension is tagged as multiselect should be transparent to the Presentation API
developer.There is no special Presentation API development required to enable multiselect dimensions.
There are no URL Query Parameters or API objects that are specific to multiselect dimensions.

However, the semantics of how the MDEX Engine interprets navigation queries and returns available
refinements changes once a dimension is tagged as multiselect. After tagging a dimension as

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying multiselect dimensions134

multiselect, the MDEX Engine will then allow multiple dimension values from the same dimension to
be added to the navigation state.

The MDEX Engine behaves differently for the two types of multiselect dimensions:

• Multiselect-AND – The MDEX Engine treats the list of dimension values selected from a
multiselect-AND dimension as a Boolean AND operation. That is, the MDEX Engine will return all
records that satisfy the Boolean AND of all the dimension values selected from a multiselect-AND
dimension (for example, all records that have been tagged with "Apple" AND "Apricot").The MDEX
Engine will also continue to return refinements for a multiselect-AND dimension.The list of available
refinements will be the set of dimension values that have not been chosen, and are still valid
refinements for the results.

• Multiselect-OR – A multiselect-OR dimension is analogous to a multiselect-AND dimension, except
that a Boolean OR operation is performed instead (that is, all records that have been tagged with
"Apple" OR "Apricot"). Keep in mind that selections from the multiselect-OR dimension do not
affect what is returned. Though the result record set is determined using all selections in the
navigation state, the MDEX Engine chooses the set of multiselect-OR refinements by looking at
the set of records and ignoring existing selections from that multiselect-OR dimension. Also note
that as more multiselect-OR dimension values are added to the navigation state, the set of record
results gets larger instead of smaller, because adding more terms to an OR expands the set of
results that satisfy the query.

Comparing single-select and multiselect-OR dimensions

A comparison of single-select and multiselect-OR dimensions shows the difference in the generation
of standard and implicit refinements. The table shows these differences using a simplified case with
only one selected dimension value:

Multiselect-OR dimensionSingle-select dimension

Children of the selected dimension value are not
potential refinements, because selecting one would

Children of the current dimension value are
potential refinements because selecting one could

not expand the record set. Therefore, they are the
implicit selections.

reduce your record set. Those that would change
your record set if selected are standard
refinements, while those that would not change
your record set if selected are implicit refinements.

Ancestors of the selected dimension value are
potential refinements, because selecting one could

Ancestors of the dimension value are not potential
refinements, because selecting one would not

expand your record set. Those that would changereduce the record set. They are the implicit
selections. your record set if selected are standard

refinements, while those that would not change
your record set if selected are implicit refinements.

Dimension values in the subtrees rooted at the
siblings of the selected dimension value and its

Dimension values in the subtrees rooted at the
siblings of the selected dimension value and its

ancestors are also potential refinements, becauseancestors are also not potential refinements,
selecting one could expand your record set.Thosebecause they correspond to record sets which are
that would change your record set if selected aredisjoint (or at least uninteresting to the user, based
standard refinements, while those that would noton their selected dimension value.) Note that these
change your record set if selected are implicit
refinements.

dimension values are not available as refinements
in single-select dimensions, but are accessible in
multiselect-AND dimensions.

The process of navigation in a single-select dimension can be conceptualized as walking up and down
the dimension value tree. Multiselect-OR dimensions, in constrast, are inverted with respect to

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

135Working with Dimensions | Displaying multiselect dimensions

refinement generation: dimension values in the subtrees rooted at selections are implicit refinements,
while all other dimension values are potential refinements.

Avoiding dead-end query results

Be careful when rendering the selected dimension values of multiselect-OR dimensions. It is possible
to create an interface that might result in dead-ends when removing selected dimension values.

Consider this example: Dimension Alpha has been flagged as multiselect-OR, and contains dimension
values 1 and 2. Dimension Beta contains dimension value 3.

Assume the user’s current query contains all three dimension values. The user’s current navigation
state would represent the query:

"Return all records tagged with (1 or 2) and 3"

If the user then removes one of the dimension values from Dimension Alpha, a dead end could be
reached. For example, if the user removes dimension value 1, the new query becomes:

"Return all records tagged with 2 and 3"

This could result in a dead end if no records are tagged with both dimension value 2 and 3.

Due to this behavior, it is recommended that the UI be designed so that the user must be forced to
remove all dimension values from a multiselect-OR dimension when making changes to the list of
selected dimension values.

Refinement counts for multiselect-OR dimensions

In the case of multiselect-OR dimensions, for the selection of a second or later dimension value,
refinement counts do not reflect the records count that would result in the selection of an additional
dimension value.

For example, assume you have a food dimension called cuisine. If the user selects:

American OR Indian

and there were no records tagged with American, Indian, AND Mexican, the Mexican refinement
count would reflect the number of records tagged with MexicanMexican that will be in the result
set if Mexican were selected as well.

Performance impact for multiselect dimensions

Refinements for multiselect-OR dimensions are more expensive than refinements from single-select
dimensions.

When making decisions about when to tag a dimension as multiselect, keep the following in mind:
Users will take longer to refine the list of results, because each selection from a multiselect dimension
still allows for further refinements within that dimension.

Using hidden dimensions
Hidden dimensions are not returned as refinement options.

A hidden dimension is like a regular dimension in that it is composed of dimension values that allow
the user to refine a set of records. It differs from a non-hidden dimension in its accessibility in the user
interface.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Using hidden dimensions136

If a dimension is marked as hidden, the MDEX Engine will not return the dimension or any of its values
as a refinement option in the navigation menu. However, if a given record is tagged with a value from
a hidden dimension, the MDEX Engine returns this value with a record query, assuming the dimension
is configured to render on the product page.

Although hidden dimensions are not rendered in UI navigation, records are still indexed with relevant
values from these dimensions. Therefore, a user is able to search for records based on values within
hidden dimensions.

Configuring hidden dimensions
You use Developer Studio to configure a dimension as hidden.

To configure a hidden dimension:

1. In Developer Studio, open the target dimension in the Dimension editor.

2. In the General tab, check Hidden, as in this example.

3. Click OK.

There are no Dgidx or Dgraph flags necessary to enable hidden dimensions. If a dimension was
properly specified as hidden in Developer Studio, it will automatically be indexed as a hidden dimension.

Handling hidden dimensions in an application
The UI can add hidden dimensions to the navigation state.

As a rule, the Endeca MDEX Engine only returns hidden dimensions and their values for single record
requests and not for navigation requests. Hidden dimensions, when returned, are accessed in the
same manner as regular (non-hidden) dimensions.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

137Working with Dimensions | Using hidden dimensions

Example of using a hidden dimension

Marking a dimension as hidden is useful in cases where the dimension is composed of numerous
values and returning these values as navigation options does not add useful navigation information.
Consider, for example, an Authors dimension in a bookstore. Scanning thousands of authors for a
specific name is less useful than simply using keyword search to find the desired author.

In this case, you would specify that the Authors dimension be hidden. The user will be able to perform
a keyword search on a particular author, but will not be able to browse on author names in order to
find books by the author. Also, once the user has located a desired book (either by keyword search
or by navigating within other dimensions), she may be interested in other books by the same author.

While the user would have been unable to refine her navigation by choosing an author, after finding
a particular book she can include that author in her navigation state, in effect creating a store of books
by that author. (The activity of adding or removing dimension values to or from the navigation state is
known as pivoting.)

Performance impact of hidden dimensions

In cases where certain dimensions in an application are composed of many values (see the Authors
dimension example above), marking such dimensions as hidden will improve Endeca Presentation
API and Endeca MDEX Engine performance to the extent that queries on large dimensions will be
limited, reducing the processing cycles and amount of data the engine must return.

When a dimension is hidden, the precompute phase of indexing will be shortened because refinements
from hidden dimensions need not be computed.

Using inert dimension values
You can create and use inert dimension values, which are dimension values that are not navigable.

Marking a dimension value as inert makes it non-navigable. That is, the dimension value should not
be included in the navigation state.

From an end user perspective, the behavior of an inert dimension value is similar to the behavior of a
dimension within a dimension group: With dimension groups, the dimension group behaves like a
dimension and the dimension itself behaves like an inert child dimension value.When the user selects
the dimension, the navigation state is not changed, but instead the user is presented with the child
dimension values. Similarly, when a user selects an inert dimension value, the navigation state is not
changed, but the children of the dimension value are displayed for selection.

Whether or not a dimension value should be inert is a subjective design decision about the navigation
flow within a dimension.Two examples of when you might use inert dimension values are the following:

• You want the "More..." option to be displayed at the bottom of an otherwise long list. To do this,
use Developer Studio’s Dimension editor to enable dynamic ranking for the dimension and generate
a "More…" dimension value.

• You want to define other dimension values that provide additional information to users, but for
which it is not meaningful to filter items.

Configuring inert dimension values
You use Developer Studio to configure dimension values as inert (non-navigable).

To configure dimension values as inert:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Using inert dimension values138

1. In the Project tab of Developer Studio, double-click Dimensions to open the Dimensions view.

2. Select a dimension and click Edit. The Dimension editor is displayed.

3. Select a dimension and click Values. In the Dimension Values view, the Inert column indicates
which dimension values have been marked as inert.

4. Select a dimension value and click Edit. The Dimension Value editor is displayed.

5. Check Inert, as in this example.

6. Click OK. The Dimensions view is redisplayed, with a Yes indicator in the Inert column for the
changed dimension.

There are no Dgidx or Dgraph flags necessary to mark a dimension value as inert. Once a dimension
has been marked as inert in Developer Studio, the Presentation API will be aware of its status.

Handling inert dimension values in an application
If you are using inert dimension values, the UI should check whether the DimVal object is navigable.

When sending the new navigation state to the MDEX Engine, the Endeca application should check
the value of the Java isNavigable() or .NET IsNavigable() method on each DimVal object.
Only dimension values that are navigable (that is, not inert) should be sent to the MDEX Engine, for
example, via the Java ENEQuery.setNavDescriptors() method or the
ENEQuery.NavDescriptors property.

Setting the Inert attribute for a dimension value indicates to the Presentation API that the dimension
value should be inert. However, it is up to the front-end application to check for inert dimension values
and handle them in an appropriate manner.

The following code snippets show how a DimVal object is checked to determine if it is a navigable or
inert dimension value. In the example, the N parameter is added to the navigation request only if the
dimension value is navigable (not inert).

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

139Working with Dimensions | Using inert dimension values

Java example of handling inert dimension values

// Get refinement list for a Dimension object
DimValList refs = dim.getRefinements();
// Loop over refinement list
for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal dimref = refs.getDimValue(k);//
 // Create request to select refinement value
 urlg = new UrlGen(request.getQueryString(), "UTF-8");
 // If refinement is navigable, change the Navigation parameter
 if (dimref.isNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.selectRefinement(nav,dimref)).toString());
 urlg.addParam("Ne",Long.toString(rootId));
 }
 // If refinement is non-navigable, change only the exposed
 // dimension parameter (leave the Navigation parameter as is)
 else {
 urlg.addParam("Ne",Long.toString(dimref.getId()));
 }
}

.NET example of handling inert dimension values

// Get refinement list for a Dimension object
DimValList refs = dim.Refinements;
// Loop over refinement list
for (int k=0; k < refs.Count; k++) {
 // Get refinement dimension value
 DimVal dimref = (DimVal)refs[k];
 // Create request to select refinement value
 urlg = new UrlGen(Request.Url.Query.Substring(1), "UTF-8");
 // If refinement is navigable, change the Navigation parameter
 if (dimref.IsNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.SelectRefinement(nav,dimref)).ToString());
 urlg.AddParam("Ne",rootId.ToString());
 }
 // If refinement is non-navigable, change only the exposed
 // dimension parameter (Leave the Navigation parameter as is)
 else {
 urlg.AddParam("Ne",dimref.Id.ToString());
 }
}

Displaying dimension value properties
Dimension value properties provide descriptive information about a given dimension value and can
be used for display purposes.

Dimension value properties are used to pass data about dimension values through the system for
interpretation by the Presentation API. The data stored in the properties is typically ignored by Forge
and the MDEX Engine. Instead, the Presentation API uses the information to support display features.
For example, a property could contain the URL of an icon that should be displayed next to the dimension
value.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying dimension value properties140

Configuring dimension value properties
You use Developer Studio to configure properties for dimension values.

To configure dimension value properties:

1. In the Project tab of Developer Studio, double-click Dimensions to open the Dimensions view.

2. Select a dimension and click Edit. The Dimension editor is displayed.

3. Select a dimension and click Values. In the Dimension Values view, the Properties column indicates
which dimension values have properties.

4. Select a dimension value to which you want to add a property and click Edit. The Dimension Value
editor is displayed.

5. Click Properties. The Properties editor is displayed.

6. Enter the name of the property in the Property field, the property's value in the Value field, and click
Add to add the property. The Property editor should look like this example.

7. You can add multiple properties. When you have finished adding properties, click OK.You are
returned to the Dimension Value editor.

8. In the Dimension Value editor, click OK.The Dimensions view is redisplayed, with the new property
listed in the Properties column for the changed dimension.

Note that no Dgidx or Dgraph flags are necessary to enable the use of dimension value properties.

Accessing dimension value properties
The application can access the dimension value properties via PropertyMap objects.

After a dimension value (DimVal object) has been retrieved, the application can access the dimension
value properties by calling:

• Java: the DimVal.getProperties() method
• .NET: the DimVal.Properties property

Working with dimension value properties is similar to working with record properties. In both cases,
the same PropertyMap object is returned.

The following code fragments which show how to iterate through all properties of a dimension value.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

141Working with Dimensions | Displaying dimension value properties

Java example of accessing dimension value properties

// Loop over refinement list
// refs is a DimValList object
for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal ref = refs.getDimValue(k);
 // Get properties for refinement value
 PropertyMap pmap = ref.getProperties();
 // Get all property names and their values
 Iterator props = pmap.entrySet().iterator();
 while (props.hasNext()) {
 Property prop = (Property)props.next();
 String pkey = prop.getKey();
 String pval = prop.getValue();
 // Perform operation on pkey and/or pval
 }
}

.NET example of accessing dimension value properties

// Loop over refinement list
// refs is a DimValList object
for (int k=0; k < refs.Count; k++) {
 // Get refinement dimension value
 DimVal ref = refs[k];
 // Get properties for refinement value
 PropertyMap pmap = ref.Properties;
 // Get all property names and their values
 System.Collections.IList props = pmap.EntrySet;
 foreach (Property prop in props) {
 String pkey = prop.Key;
 String pval = prop.Value;
 // Perform operation on pkey and/or pval
 }
}

Getting specific properties by name

Note that instead of iterating through all properties for a given dimension value, you can also get
specific properties by name from the PropertyMap object, as shown in these examples.

Java example of getting a specific property

<%
// Get properties for refinement value
PropertyMap pmap = ref.getProperties();
// Get the desired property
String propVal = "";
if (pmap.get("DisplayColor") != null) {
 propVal = pmap.get("DisplayColor");
%>
 <FONT COLOR="<%= propVal %>">Best Buy
<%
}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Dimensions | Displaying dimension value properties142

.NET example of getting a specific property

<%
// Get properties for refinement value
PropertyMap pmap = ref.Properties;
// Get the desired property
String propVal = "";
// If property has a value
if ((String)pmap["DisplayColor"] != "")
 propVal = (String)pmap["DisplayColor"];
%>
 <FONT COLOR="<%= propVal %>">Best Buy
<%
}

Performance impact for displaying dimension value properties
Dimension value properties could slightly increase the processing and/or querying time because
additional data is moved through the system, but this effect will generally be minimal.

If your Endeca application does complex formatting on the properties, this could slow down page-loads,
but ideally the information will be used to add formatting HTML or perform other trivial operations,
which will have minimal impact on performance.

Working with external dimensions
Endeca applications can use dimensions created outside of Developer Studio.

You can also import or otherwise access dimensions created or managed outside of Endeca Developer
Studio. For details, see the Endeca Forge Guide.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

143Working with Dimensions | Working with external dimensions

Chapter 12

Dimension Value Boost and Bury

This chapter describes the Dimension Value Boost and Bury feature.

About the dimension value boost and bury feature
Dimension value boost and bury is a mechanism by which the ranking of certain specific dimension
values is made much higher or lower than others.

Dimension value boost and bury is a feature that allows users to re-order returned dimension values.
With dimension value boost , you can assign specific dimension values to ranked strata, with those
in the highest stratum being shown first, those in the second-ranked stratum shown next, and so on.
With dimension value bury , you can specify that specific dimension values should be ranked much
lower relative to others. This boost/bury mechanism therefore lets you manipulate ranking of returned
dimension values in order to promote or push certain types of records to the top or bottom of the results
list.

The feature depends on the use of the Nrcs URL parameter or the related Presentation API methods.
The feature also works with the use of static refinement ranking as well as dynamic refinement ranking.

Note: The dimension value boost and bury feature and the Nrcs parameter are not supported
by the Aggregated MDEX Engine (Agraph).

Use cases

This feature is especially suited for eCommerce sites, in which it can be used for two distinct use
cases:

• Site promotion of a house brand (i.e., globally boost a dimension value over all pages). For example,
a site may have a private label that they would like to ensure always shows up as a refinement
everywhere on the site for business reasons.

• Landing page promotion of a single dimension value or refinement that is important to that category.
Assume, for example, a site that sells CDs. Willie Nelson has produced many records, some of
which are categorized as both country and rock. The site wants to promote (boost) Willie Nelson
in the Country category rather than in the Rock category.

Immediate consumers of this feature are sites using Endeca Merchandising Workbench. Using
Merchandising Workbench and Page Builder, a merchandiser defines a set of rules to fire and to boost
or bury individual dimension values based on an end user's navigation state.

Nrcs parameter
The Nrcs parameter sets the list of stratified dimension values for use during refinement ranking by
the MDEX Engine.

The Nrcs parameter groups specified dimension values into strata. The stratified dimension values
specified in the parameter are delimited by semi-colons (;) and each stratified dimension value is in
the format:

stratumInt,dimvalID

where dimvalID is the ID of the dimension value and stratumInt is a signed integer that signifies the
stratum into which the dimension value will be placed.

The Nrcs parameter thus provides a mapping of dimension values to strata in the query:

• Boosted dimension values will use a strata of 1 or greater (> 0).
• Buried dimension values will use a strata of less than 0 (< 0).
• Dimension values that are not specified will be assigned the strata of 0.

You can define as many strata as you wish, but keep the following in mind:

• For boosted strata (i.e., strata defined with a positive >0 integer), numerically-higher strata are
boosted above numerically-lower strata. For example, dimension values in strata 2 are boosted
above dimension values in strata 1.

• Dimension values within a specific stratum are returned in an indeterminate manner. For example,
if the dimension values with IDs of 5000 and 6000 are assigned to a stratum, it is indeterminate
as to which dimension value (5000 or 6000) will be returned first from a query.

• Ties will be broken with whichever type of dynamic refinement ranking is in use (alphabetically or
dynamically).

Note that a dimension value will be stratified in the highest strata it matches, so boosting will have
priority over burying.

Nrcs example

In this example, three strata are defined (strata 2, strata 1, and strata -1):

Nrcs=2,3001;2,3002;1,4001;1,4002;1,4003;-1,5001;-1,5002

When the query is processed, the dimension values are returned in this order:

1. Dimension values 3001 and 3002 are boosted above all others (i.e., are in the highest-ranked
stratum).

2. Dimension values 4001 and 4002 are returned next (i.e., are in the second-ranked stratum).
3. All non-assigned dimension values are returned as part of stratum 0 (i.e., are in the third-ranked

stratum).
4. Finally, dimension values 5001 and 5002 are buried (i.e., are in the lowest-ranked stratum).

This example shows how you can construct a hierarchy for the returned dimension values, and control
the strata in which they are placed.

Nrcs setter methods

The Nrcs parameter is linked to these methods in the Presentation API:

• The ENEQuery.setNavStratifiedDimVals() method in the Java version of the API.
• The ENEQuery.NavStratifiedDimVals property in the .NET version of the API.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Dimension Value Boost and Bury | Nrcs parameter146

Stratification API methods
The Presentation API has methods that can programmatically set the dimension boost and bury
configuration in the query.

ENEQuery class

The ENEQuery class has these stratification calls:

• The Java setNavStratifiedDimVals() method and .NET NavStratifiedDimVals setter
property set the list of stratified dimension values in the query for use during refinement ranking
by the MDEX Engine. These calls link to the Nrcs URL query parameter.

• The Java getNavStratifiedDimVals() method and .NET NavStratifiedDimVals getter
property retrieves the list of stratified dimension values.

StratifiedDimVal and StratifiedDimValList classes

A StratifiedDimVal object represents the assignment of a dimension value to a specific stratum
for sorting. The object thus contains:

• A long that specifies the ID of the dimension value.
• An integer that represents the stratum to which the dimension value is assigned. A positive integer

indicates that the dimension value will be boosted, while a negative integer indicates that the
dimension value will be buried.

A StratifiedDimValList object encapsulates a collection of StratifiedDimVal objects. The
StratifiedDimValList object is set in the ENEQuery object by the
setNavStratifiedDimVals() Java method and the NavStratifiedDimVals .NET property.

Example of using the API methods

The following Java example illustrates how to use these methods to send the dimension value boost
and bury configuration to the MDEX Engine:

// Create a query
ENEQuery usq = new ENEQuery();
// Create an empty stratified dimval list
StratifiedDimValList stratList = new StratifiedDimValList();
// Set dimval 3001 to be boosted and add it to stratList
StratifiedDimVal stratDval1 = new StratifiedDimVal();
stratDval1.setDimValId(3001);
stratDval1.setStratum(1);
stratList.add(0,stratDval1);
// Set dimval 5001 to be buried and add it to stratList
StratifiedDimVal stratDval2 = new StratifiedDimVal();
stratDval2.setDimValId(5001);
stratDval2.setStratum(-1);
stratList.add(1,stratDval2);
// Set the stratified dval list in the query object
usq.setNavStratifiedDimVals(stratList);
// Set other ENEQuery parameters
...

The example sets the dimension value with an ID of 3001 to be boosted and dimension value ID 5001
to be buried. The .NET of this example

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

147Dimension Value Boost and Bury | Stratification API methods

Retrieving the DGraph.Strata property
Dimension values that are stratified have the DGraph.Strata property set to include the strata value
used for sorting.

You can identify from query output whether a particular dimension value has been stratified by checking
whether the DGraph.Strata property exists and, if it exists, the stratum value. If the stratum value
was specified as "0" or not specified at all, then the property is not returned. Note that navigation
descriptors that were stratified will also have the DGraph.Strata property set.

In Java, you can identify the value of this property by accessing the dimension value's PropertyMap
with the DimVal.getProperties() method, as in this example:

DimValList dvl = dimension.getRefinements();
for (int i=0; i < dvl.size(); i++) {
 DimVal ref = dvl.getDimValue(i);
 PropertyMap pmap = ref.getProperties();
 // Determine whether this DimVal is stratified
 String isStrat = "";
 if (pmap.get("DGraph.Strata") != null) {
 isStrat = " ("+pmap.get("Dgraph.Strata")+")";
 }
}

The .NET version of the Presentation API uses the Dimval.Properties property:

DimValList dvl = dimension.Refinements;
for (int i=0; i < dvl.Count; i++) {
 DimVal ref = dvl[i];
 PropertyMap pmap = ref.Properties;
 // Determine whether this DimVal is stratified
 String isStrat = "";
 if (pmap["DGraph.Strata"] != null) {
 isStrat = " ("+pmap["DGraph.Strata"]+")";
 }
}

Interaction with disabled refinements
The dimension value boost and bury feature works correctly with disabled refinements.

To illustrate the interaction of both features, assume that your query (with disabled refinements being
enabled) returns the following:

Dimension X:
 A (disabled)
 B
 C
 D (disabled)
 E
 F (disabled)

You then use the dimension value boost and bury feature.You decide to bury A and boost E and D.
The same disabled refinements query would now return:

Dimension X:
 D (disabled)
 E
 B

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Dimension Value Boost and Bury | Retrieving the DGraph.Strata property148

 C
 F (disabled)
 A (disabled)

When using these features in concert, you must be very careful to provide a consistent user experience
in your UI. It is very easy to create a situation where implicitly selecting a dimension value will cause
a rule to fire which may decide to boost or bury some dimension values. It is very important for the
disabled refinements features that the order of dimension values on the page remain the same in order
to present a good user experience. Changing the order (by using the boost and bury feature) may
confuse the user. Therefore, in general you should try to make sure your set of boosted and buried
dimension values is the same in your default and base navigation queries.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

149Dimension Value Boost and Bury | Interaction with disabled refinements

Chapter 13

Using Derived Properties

This section describes derived properties and their behavior.

About derived properties
A derived property is a property that is calculated by applying a function to properties or dimension
values from each member record of an aggregated record.

Derived properties are created by Forge, based on the configuration settings in the
Derived_props.xml file. After a derived property is created, the resultant derived property is assigned
to the aggregated record.

Aggregated records are a prerequisite to derived properties. If you are not already familiar with specifying
a rollup key and creating aggregated records, see the "Creating Aggregated Records" chapter in this
guide.

To illustrate how derived properties work, consider a book application for which only unique titles are
to be displayed. The books are available in several formats (various covers, special editions, and so
on) and the price varies by format. Specifying Title as the rollup key aggregates books of the same
title, regardless of format.To control the aggregated record’s representative price (for display purposes),
use a derived property.

For example, the representative price can be the price of the aggregated record’s lowest priced member
record. The derived property used to obtain the price in this example would be configured to apply a
minimum function to the Price property.

Note: Derived properties cannot be used for record sorting.

Derived property performance impact

Some overhead is introduced to calculate derived properties. In most cases this should be negligible.
However, large numbers of derived properties and more importantly, aggregated records with many
member records may degrade performance.

Configuring derived properties
The DERIVED_PROP element in the Derived_props.xml file specifies a derived property.

The attributes of the DERIVED_PROP element are:

• DERIVE_FROM specifies the property or dimension from which the derived property will be calculated.
• FCN specifies the function to be applied to the DERIVE_FROM properties of the aggregated record.

Valid functions are MIN, MAX, AVG, or SUM. Any dimension or property type can be used with the
MIN or MAX functions. Only INTEGER or FLOAT properties may be used in AVG and SUM functions.

• NAME specifies the name of the derived property.This name can be the same as the DERIVE_FROM
attribute.

The following is an example of the XML element that defines the derived property described in the
book example above:

<DERIVED_PROP
 DERIVE_FROM="PRICE"
 FCN="MIN"
 NAME="LOW_PRICE"
/>

Similarly, a derived property can derive from dimension values, if the dimension name is specified in
the DERIVE_FROM attribute. In addition, the function attribute (FCN) can be MAX, AVG, or SUM, depending
on the desired behavior.

Note: Developer Studio currently does not support configuring derived properties. The
workaround is to hand-edit the Derived_props.xml file to add the DERIVED_PROP element.

Troubleshooting derived properties

A derived property can derive from either a property or a dimension. The DERIVE_FROM attribute
specifies the property name or dimension name, respectively. Avoid name collisions between properties
and dimensions, as this is likely to be confusing.

Displaying derived properties
Displaying derived properties in the UI is similar to displaying regular properties.

The Presentation API’s semantics for a derived property are similar to those of regular properties,
though there are a few differences. Derived properties apply only to aggregated Endeca records.
Therefore, the MDEX Engine query must be properly formulated to include a rollup key.

Use the following calls to work with the aggregated record (an AggERec object):

PurposeAPI method or property

Returns a PropertyMap object that has the derived
properties of the aggregated record.

Java: AggERec.getProperties()

.NET: AggERec.Properties

Returns an ERec object that is the representative record of
the aggregated record.

Java:
AggERec.getRepresentative()

.NET: AggERec.Representative

The following code examples demonstrate how to display the names and values of an aggregated
record’s derived properties.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Derived Properties | Displaying derived properties152

Java example of displaying derived properties

// Get aggregated record list
AggrERecList aggrecs = nav.getAggrERecs();
for (int i=0; i<aggrecs.size(); i++) {
 // Get individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs.get(i);
 // Get all derived properties.
 PropertyMap derivedProps = aggrRec.getProperties();
 Iterator derivedPropIter = derivedProps.entrySet().iterator();
 // Loop over each derived property,
 // handle as an ordinary property.
 while (derivedPropIter.hasNext()) {
 Property prop = (Property) derivedPropIter.next();
 // Display property
 %>
 <tr>
 <td>Derived property name: <%= prop.getKey() %></td>
 <td>Derived property value: <%= prop.getValue() %></td>
 </tr>
 <%
 }
}

.NET example of displaying derived properties

Get aggregated record list
AggrERecList aggrecs = nav.AggrERecs;
// Loop over aggregated record list
 for (int i=0; i<aggrecs.Count; i++) {
 // Get an individual aggregated record
 AggrERec aggrec = (AggrERec)aggrecs[i];
 // Get all derived properties.
 PropertyMap derivedPropsMap = aggrec.Properties;
 // Get property list for agg record
 System.Collections.IList derivedPropsList = derivedPropsMap.EntrySet;
 // Loop over each derived property,
 // handle as an ordinary property.
 foreach (Property derivedProp in derivedPropsList) {
 // Display property
 %>
 <tr><td>Derived property name: <%= derivedProp.Key %></td>
 <td>Derived property value: <%= derivedProp.Value %></td></tr>
 <%
 }
}

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

153Using Derived Properties | Displaying derived properties

Part 4

Basic Search Features

• About Record Search
• Working with Search Interfaces
• Using Dimension Search
• Record and Dimension Search Reports
• About Search Modes
• Using Boolean Search
• Using Phrase Search
• Using Snippeting in Record Searches
• Using Wildcard Search
• Search Characters
• Examples of Query Matching Interaction

Chapter 14

About Record Search

This section discusses record search, which is an Endeca equivalent of full-text search, and is one of
the fundamental building blocks of Endeca search capabilities.

Record search overview
Record search allows a user to perform a keyword search against specific properties or dimension
values assigned to records.

The resulting records that have matching properties or dimension values are returned, along with any
valid refinement dimension values.

Unlike dimension search, record search returns a complete Navigation object, the same object that
is returned when a user filters records by selecting a dimension value.

Because record search returns a navigation page, it is important to remember that the record search
parameter acts as a record filter in the same way that a dimension value does, even though it is not
a specific dimension value.

Example of record search

For example, consider the following records:

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with
extremely ripe...

Antinori Toscana SolaiaRed (Dim Value 101)
1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)
2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)
3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)
4

When the user performs a record search on the Description property using the keyword dense, the
following Navigation object is returned:

• 2 records (records 2 and 3)
• 2 refinement dimension values (Red and White)

When performing a record search on the Description property using the keyword ripe, this
Navigation object is returned:

• 2 records (records 1 and 4)
• 2 refinement dimension values (Red and Other)

Note: In addition to basic record search, other features affect the behavior of record search,
such as spelling support, relevance ranking of results, wildcard syntax, multiple property record
searches, and property group record searches.These are discussed in detail in their respective
sections.

Making properties or dimension searchable
The first step in implementing basic record search is to use Developer Studio to configure a property
or dimension for record searching.

Enabling hierarchical record search
If you want to consider ancestor dimension values when matching a record search query, you can
enable hierarchical record search in Developer Studio.

By default, a record search that uses a dimension as the search key returns only those records that
are assigned a dimension value whose text matches the search terms. As part of this behavior, record
search does not consider ancestors which are not directly assigned.

For example, consider the following dimensions hierarchy:

In this hierarchy, the Red dimension (with an ID of 12) is an ancestor of the Merlot dimension (ID of
13). A search against the WineType dimension for the keyword merlot matches any records assigned
the dimension value 13. But a search in WineType for red merlot does not match these records,
because record search does not normally consider ancestors which are not directly assigned.

In such cases, you may want record search to consider ancestor dimension values when matching a
record search query.You can enable this sort of hierarchical record search in Developer Studio.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Record Search | Making properties or dimension searchable158

Adding search synonyms to dimension values
You can add synonyms to a dimension value so that users can search for other text strings and still
get the same records as a search for the original dimension value name.

When a dimension is used as the record search key, the text strings considered by record search for
matching are the individual names of the dimension values within the dimension.The dimension name
is automatically added as a searchable string.

You can add synonyms to a dimension value so that users can search for other text strings and still
get the same records as a search for the original dimension value name. Synonyms can be added
only to child dimension values, not to root dimension values.

Features for controlling record search
You can control the various features related to record search either at indexing time or at run-time.
This topic lists ways in which you can control record search behavior.

The following statements describe various aspects of record search behavior and how you can control
it:

• To control indexing behavior, you can use phrase search, wildcard search or other advanced
features of record search. For more information, see sections about phrase search, wildcard search
and sections about the advanced search capabilities.

• To configure run-time record search behavior, you must create one or more search interfaces. For
more information, see the section about search interfaces.

• There are no Dgidx flags necessary to enable record search. If a property or dimension was properly
enabled for record search, it will automatically be indexed for searching.

• There are no MDEX Engine configuration flags necessary to enable record searching. If a property
or dimension was properly enabled for record searching when indexing, it will automatically be
available for record searching when index files are loaded into the MDEX Engine.

• Multiple MDEX Engine configuration flags are available to manage different controls for record
search, such as spelling support and relevance ranking. See specific feature sections for details.

Related Links
Using Phrase Search on page 211

Phrase search allows users to specify a literal string to be searched. This section discusses
how to use phrase search.

Using Wildcard Search on page 221
Wildcard search allows users to match query terms to fragments of words in indexed text.
This section discusses how to use wildcard search.

Working with Search Interfaces on page 169
A search interface is a named collection of properties and dimensions, each of which is
enabled for record search in Developer Studio.

URL query parameters for record search
A basic record search requires two separate request parameters, Ntk and Ntt. This topic describes
them and contains examples of valid record search queries that use Ntk and Ntt .

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

159About Record Search | Features for controlling record search

The search key parameters are described as follows:

• Ntk=<search_key>. The search key parameter, Ntk, specifies which property or dimension is
going be evaluated when searching.You specify a property or dimension as a value for this
parameter. (You can also specify a search interface as a value for the Ntk parameter.)

• Ntt=<search_term>. The keyword parameter, Ntt, specifies the actual search terms that are
submitted.

The URL query parameters for record search have the following characteristics:

• Record search parameters must accompany a standard navigation request, even if that basic
navigation request is empty. This is because a record search actually acts as a custom filter on a
basic navigation request.

For example, a request is considered invalid if only the property key (Ntk), and keyword (Ntt) are
specified, without specifying a Navigation value (N).

• Likewise, only records currently returned by the basic navigation request (N) are considered when
performing a record search.

• Record search terms and navigation dimension values together form an AND Boolean request.

Examples of queries with Ntt and Ntk

For example, consider the following records:

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with
extremely ripe...

Antinori Toscana SolaiaRed (Dim Value 101)
1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)
2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)
3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)
4

In this example, the following query:

<application>?N=0&Ntk=Description&Ntt=Ripe

returns records 1 and 4, because the navigation request is empty (N=0).

However, the following query:

<application>?N=101&Ntk=Description&Ntt=Ripe

returns only record 1, because the navigation request (N=101) is already filtering the record set to
records 1 and 2.

The following query, which is missing a navigation request (N), is invalid:

<application>?Ntk=Description&Ntt=Ripe

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Record Search | Features for controlling record search160

Methods for using multiple search keys and terms
In a more advanced application, users can search against multiple properties with multiple terms. To
do this, Ntk and Ntt are used together.

You can implement searching multiple properties using AND Boolean logic with Ntk and Ntt with the
following query:

Ntk=<property_key1>|<property_key2>
Ntt=<search_term1>|<search_term2>

In this query, each term is evaluated against the corresponding property. The returned record set
represents an intersection of the multiple searches.

Examples of searching multiple terms

For example, assume that a search for the term cherry returns 5,000 records while a search for
peach returns 2,000 records.

However, a multiple search for both terms:

<application>?N=0&Ntk=Description|Description&Ntt=cherry|peach

returns only 10 records if those 10 records are the only records in which both terms exist in the
Description property.

You can use any number of property keys, as long as it matches the number of search terms.

For example, consider the following records:

Description propertyName propertyDimension value (Wine
Type)

Rec ID

Dark ruby in color, with
extremely ripe...

Antinori Toscana SolaiaRed (Dim Value 101)
1

Dense, rich, and complex
describes this California...

Chateau St. JeanRed (Dim Value 101)
2

Dense and vegetal, with celery,
pear, and spice flavors...

Chateau LavilleWhite (Dim Value 103)
3

Big, ripe, and generous, layered
with honey...

Jose Maria da FonsecaOther (Dim Value 103)
4

In this example, the following query:

<application>?N=0&Ntk=Description|Name&Ntt=Ripe|Solaia

returns only record 1.

The following query:

<application>?N=0&Ntk=Description|Name&Ntt=Ripe

is invalid, because the number of record search keys does not match the number of record search
terms.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

161About Record Search | Features for controlling record search

You can also use search interfaces to perform searches against multiple properties. For more
information, see the section about search interfaces. For information on performing more complex
Boolean queries, see topics about using Boolean search.

Related Links
Search interfaces and URL query parameters (Ntk) on page 171

Use the name of the search interface as the value for the Ntk parameter, just as you would
use a normal property or dimension.

Methods for rendering results of record search requests
Rendering the results of a record search request is identical to rendering the results of a navigation
request. This is because a record search request is a variation of a basic navigation request.

Specific objects and method calls exist that can be accessed from a Navigation object and return
a list of valid record search keys. (This data is only available from a navigation request, not from a
record or dimension search request.)

Java example

A Java code example for rendering results of record search is shown below:

ERecSearchKeyList keylist = nav.getERecSearchKeys();
for (int i=0; i < keylist.size(); i++) {
 ERecSearchKey key = keylist.getKey(i);
 String name = key.getName();
 boolean active = key.isActive();
}

The ERecSearchKeyList object is a vector containing ERecSearchKey objects. Each
ERecSearchKey object contains the name of a property that has been enabled for record search,
as well as a Boolean flag indicating whether that property is currently being used as a search key.

.NET example

A .NET code example for rendering results of record search is shown below:

ERecSearchKeyList keylist = nav.ERecSearchKeys;
for (int i=0; i < keylist.Count; i++) {
 ERecSearchKey key = (ERecSearchKey)keylist[i];
 String name = key.Name;
 Boolean active = key.IsActive();
}

The ERecSearchKeyList object is a vector containing ERecSearchKey objects. Each
ERecSearchKey object contains the name of a property that has been enabled for record search,
as well as a Boolean flag indicating whether that property is currently being used as a search key.

Search query processing order
This section summarizes how the MDEX Engine processes record search queries.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Record Search | Search query processing order162

While this summary is not exhaustive, it covers the processing steps likely to occur is most application
contexts. The process outlined here assumes that other features (such as spelling correction and
thesaurus) are being used.

The MDEX Engine uses the following high-level steps to process record search queries:

1. Record filtering
2. Endeca Query Language (EQL) filtering
3. Tokenization
4. Auto correction (spelling correction and automatic phrasing)
5. Thesaurus expansion
6. Stemming
7. Primitive term and phrase lookup
8. Did you mean
9. Range filtering
10. Navigation filtering
11. Business rules and keyword redirects
12. Analytics
13. Relevance ranking

Note: For Boolean search queries, tokenization, auto correction, and thesaurus expansion are
replaced with a separate parsing phase.

Step 1: Record filtering
If a record filter is specified, whether for security, custom catalogs, or any other reason, the MDEX
Engine applies it before any search processing.

The result is that the search query is performed as if the data set only contained records allowed by
the record filter.

For more information about record filters, see the Advanced Development Guide.

Step 2: Endeca Query Language filters
The Endeca Query Language (EQL) contains a rich syntax that allows an application to build dynamic,
complex filters that define arbitrary subsets of the total record set and restrict search and navigation
results to those subsets. If used, this feature is applied after record filtering.

For details on this feature, see the Advanced Development Guide.

Step 3:Tokenization
Tokenization is the process by which the MDEX Engine analyzes the search query string, yielding a
sequence of distinct query terms.

Step 4: Auto correction (spelling correction and automatic phrasing)
If spelling correction and automatic phrasing are enabled and triggered, the MDEX Engine implements
them as part of the record search processing.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

163About Record Search | Search query processing order

If the spelling correction feature is enabled and triggered, the MDEX Engine creates spelling suggestions
by enumerating (for each query term) a set of alternatives, and considering some of the combinations
of term alternatives as whole-query alternatives.

Each of these whole-query alternatives is subject to thesaurus expansion and stemming.

For example, if the tokenized query is employee moral, then employee may generate the set of
alternatives {employer, employee, employed}, while moral may generate the set of alternatives
{moral, morale}.

The two query alternatives generated as spelling suggestions might be employer moral and
employee morale.

For details on the auto-correction feature, see the section about it.

If automatic phrasing is enabled, then the MDEX Engine automatically combines distinct query terms
that match a phrase in the phrase dictionary into a search phrase.

Once distinct terms are grouped as an automatic phrase, the phrase is not subject to additional
thesaurus expansion and stemming.

For example, suppose the phrase dictionary contains two phrases Kenneth Cole and also blue
jeans. If the query is Kenneth Cole blue jeans, the alternative query might be “Kenneth
Cole” “blue jeans”.

For details on automatic phrasing, see the Advanced Development Guide.

Step 5:Thesaurus expansion
The tokenized query, as well as each query alternative generated by spelling suggestion, is expanded
by the MDEX Engine based on thesaurus matches.This topic describes the behavior of the thesaurus
expansion feature.

Thesaurus expansion replaces each expanded query term with an OR of alternatives.

For example, if the thesaurus expands pentium to intel and laptop to notebook, then the query
pentium laptop will be expanded to:

(pentium OR intel) AND (laptop OR notebook)

assuming the match mode is MatchAll.

The other match modes (with the exception of MatchBoolean) behave analogously.

If there is a multiple-word thesaurus match, then OR is used on the query itself to accommodate the
various ways of partitioning the query terms.

For example, if high speed expands to performance, then the query high speed laptop will
be expanded to:

(high AND speed AND (laptop OR notebook)) OR (performance
AND (laptop OR notebook))

Multiple-word thesaurus matches only apply when the words appear in exact sequence in the query.
The queries speed high laptop and high laptop speed do not activate the expansion to
performance.

For more details on thesaurus expansion, see the Advanced Development Guide.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Record Search | Search query processing order164

Step 6: Stemming
Query terms, unless they are delimited with quotation marks to be treated as exact phrases, are
expanded by the MDEX Engine using stemming.

The expansion for stemming applies even to terms that are the result of thesaurus expansion. A
stemmed query term is an OR expression of its word forms.

For example, if the query pentium laptop was thesaurus-expanded to:

(pentium OR intel) AND (laptop OR notebook)

it will be stemmed to:

(pentium OR intel) AND (laptop OR laptops OR notebook
OR notebooks)

assuming that only the improper nouns have plurals in the word form dictionary.

For more details on stemming, see the Advanced Development Guide.

Step 7: Primitive term and phrase lookup
Primitive term and phrase lookup is the lowest level of search processing performed by the MDEX
Engine.

The MDEX Engine evaluates each search term as is, and matches it to the set of documents containing
that precise word or phrase (given the tokenization rules) in the indexes being searched. Search is
never case-sensitive, even for phrases.

Step 8: Did you mean
The MDEX Engine performs the "Did you mean" processing as part of the record search processing.

“Did you mean?” processing is analogous to the spelling correction and automatic phrasing processing,
only that the results are not included, but rather the spelling suggestions and automatic phrases
themselves are returned.

For details on the “Did you mean?” feature, see the Advanced Development Guide.

Step 9: Range filtering
Range filter functionality allows a user, at request time, to specify an arbitrary, dynamic range of values
that are then used to limit the records returned for a navigation query.

Because this step comes after "Did you mean?" processing, it reports the number of records before
filtering.

For more details on range filtering, see Chapter 7.

Step 10: Navigation filtering
The MDEX Engine performs all filtering based on the navigation state after the search processing.
This order is important, because it ensures that the spelling suggestions remain consistent as the
navigation state changes.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

165About Record Search | Search query processing order

Step 11: Business rules and keyword redirects
Dynamic business rules employ a trigger and target mechanism to promote contextually relevant
records to application users as they search and navigate within a data set.

Keyword redirects are similar to dynamic business rules also use trigger and target values. However,
keyword redirects are used to redirect a user's search to a Web page (that is, a URL). These features
are applied after navigation filtering.

For details on these features, see the Advanced Development Guide.

Step 12: Analytics
Endeca Analytics builds on the core capabilities of the Endeca MDEX Engine to enable applications
that examine aggregate information such as trends, statistics, analytical visualizations, comparisons,
and so on, all within the Guided Navigation interface. If Analytics is used, it is applied near the end of
processing.

For more information about this feature, see the Endeca Analytics Guide.

Step 13: Relevance ranking
Relevance ranking is the last step in the MDEX Engine processing for the record search. Each of the
navigation-filtered search results is assigned a relevance score, and the results are sorted in descending
order of relevance.

For details on this feature, see the Advanced Development Guide.

Tips for troubleshooting record search
This topic includes tips for troubleshooting record search.

Due to the user-specified interaction of this feature (as opposed to the system-controlled interaction
of Guided Navigation in which the MDEX Engine controls the refinement values presented to the user),
a user is allowed to submit a keyword search that does not match any records.

Therefore, it is possible for a user to make a dead-end request with zero results when using record
search. Applications utilizing record search need to account for this. Even though there are objects
and methods accessed from the Navigation object that enumerate search-enabled Endeca properties,
these are normally used for debugging purposes that do not explicitly know this information for a given
data set.

In production systems, these Endeca properties are typically hard-coded at the application level,
because the application requires specific search keys to be used for specific functionality.

If an Endeca property is not enabled for record searching but an application attempts to perform a
record search against this property, the MDEX Engine successfully returns a null result set.

The MDEX Engine error log, however, outputs the following message: In fulltext search:
[Wed Sep 3 12:28:02 2007] [Warning] Invalid fulltext search key "Description"
requested.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Record Search | Tips for troubleshooting record search166

The -v flag to the MDEX Engine causes the MDEX Engine to output detailed information about its
record search configuration. If you are unsure whether the MDEX Engine is recognizing a particular
parameter, start it with the -v flag and check the output.

Finally, while implementing record search by enabling record properties for searching is the normal
approach, dimension values can also be enabled for record searching. The dimension name then
replaces the property key as the value for the Ntk parameter in the MDEX Engine query.The resulting
navigation request contains any record that is tagged with a dimension value from the specified
dimension that matches the search terms.

Performance impact of record search
Because record searching is an indexed feature, each property enabled for record searching increases
the size of both the Dgidx process as well as the MDEX Engine process.

The specific size of the increase is related to the size of the unique word list generated by the specific
property in the data set. Therefore, only properties that are specifically needed by an application for
record searching should be configured as such.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

167About Record Search | Performance impact of record search

Chapter 15

Working with Search Interfaces

A search interface is a named collection of properties and dimensions, each of which is enabled for
record search in Developer Studio.

About search interfaces
A search interface allows you to control record search behavior for groups of one or more properties
and dimensions.

A search interface may also contain:

• A number or attributes, such as name, cross-field information, and so on.

• An ordered collection of one or more ranking strategies.

Some of the features that can be specified for a search interface include:

• Relevance ranking
• Matching across multiple properties and dimensions
• Keyword in context results
• Partial match

You can use a search interface to control the behavior of search against a single property or dimension,
or to simultaneously search across multiple properties and dimensions.

For example, if a data set contains both an Actor property and Director dimension, a search
interface can provide the user the ability to search for a person’s name in both. A search interface’s
name is used just like a normal property or dimension when performing record searches. By default,
a record search query on a search interface returns results that match any of the properties or
dimensions in the interface.

About implementing search interfaces
You implement search interfaces in Developer Studio’s Search Interface editor.

Before implementing search interfaces, make sure that all the properties or dimensions that are going
to be included in a search interface have already been enabled for record search.

If you are implementing wildcard search in a search interface, search interfaces can contain a mixture
of wildcard-enabled and non-wildcard-enabled members (although only the former will return
wildcard-expanded results).

After indexing the data with the new search interface, the new key may be used for record searches.

Options for allowing cross-field matches
The Allow Cross-field Matches is one of the attributes in the Search Interface editor in Developer
Studio. This attribute specifies when the MDEX Engine should try to match search queries across
dimension or property boundaries.

The three settings for Allow Cross-field Matches are:

DescriptionSetting

The MDEX Engine always looks for matches across dimension or property boundaries,
in addition to matches within a dimension or property.

Always

If you choose to use cross-field matching, the Always setting is recommended and is
the default.

For example, in the Sony camera user query, if Allow Cross-field Matches is set to
Always, the MDEX Engine returns all matches with Brand = Sony and Prod¬
uct_Type = camera.

The MDEX Engine does not look across boundaries for matches.Never

The MDEX Engine only tries to match queries across dimension or property boundaries
if it fails to find any matches within a single dimension or property.

On Failure

Note: In most cases, the Always setting provides better results than the On
Failure setting.

By default, record search queries using a search interface return the union of the results from the same
record search query performed against each of the interface members.

For example, assume a search interface named MoviePeople that includes actor and director
properties. Searching for deniro against this interface returns the union of records that results from
searching for deniro against the actor property and against the director property.

Less frequently, you may wish to allow a match to span multiple properties and dimensions. For
example, in the same MoviePeople search interface, a query for clint eastwood returns records
where either an actor property or a director property is assigned a value containing the words
clint and eastwood. This behavior is useful for this query, where the search terms all relate to a
single concept (the actor/director Clint Eastwood).

However, in some cases returning a union of the results from the same record search query performed
against each search interface member is unnecessarily limiting. For example, in a home electronics
catalog application, a customer searching for Sony camera might be interested in a broad range of
products, but this record search would only return the few products that have the terms Sony and
camera in the product name.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Search Interfaces | Options for allowing cross-field matches170

In such cases, you can use the attribute in the Search Interface editor in Developer Studio, when you
create a search interface.The Allow Cross-field Matches attribute specifies when the MDEX Engine
should try to match search queries across dimension or property boundaries, but within the members
of the search interface.

How cross-field matches work in multi-assign cases

When a search interface member (that is, a searchable dimension or property) is multi-assigned on a
record, the multi-assigns are treated by the MDEX Engine as separate matches, just as if they were
values from different properties. A search that matches two or more terms in separate multi-assign
values for the same property is treated as a cross-field match by the MDEX Engine.

For example, assume a record has the following property values:

P_Tag: Tom Brady
P_Tag: Jersey

A search against P_Tag for "tom brady jersey" is treated as a cross-field match, even though all results
were found in the same property (P_Tag).

Additional search interfaces options
You can configure additional features for the search interface by specifying other match-related options
in the Search Interface editor in Developer Studio.

For example, you can specify the following options:

• A relevance ranking strategy that is associated with a search interface.

• Partial matching, which allows matches on subsets of the query.

• Complex Boolean search queries.

Search interfaces and URL query parameters (Ntk)
Use the name of the search interface as the value for the Ntk parameter, just as you would use a
normal property or dimension.

No additional MDEX Engine URL query parameters are required to perform a record search using a
search interface.

By default, using a search interface in a search performs a logical OR on the properties/dimensions in
the interface.

For example, if a data set contains both an Actor property and Director dimension, a search
interface can provide the user the ability to search for a person’s name in both.

In this example, a search on the MoviePeople search interface returns records that match the Actor
property OR the Director property.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

171Working with Search Interfaces | Additional search interfaces options

The following two queries are not equivalent:

Ntk=actor|director&Ntt=deniro|deniro
Ntk=moviepeople&Ntt=deniro

• The first query performs a logical AND.This query only returns records where actor AND director
contain deniro.

• The second query performs a logical OR.

Note: The Nrk URL parameter also requires a search interface.

Java examples of search interface methods
To obtain a list of valid search interfaces in Java, use the
Navigation.getERecCompoundSearchKeys() method.

The following example shows how the Navigation.getERecCompoundSearchKeys() method
can be used to obtain a list of search interface keys:

ERecCompoundSearchKeyList keylist =
 nav.getERecCompoundSearchKeys();
for (int i=0; i < keylist.size(); i++) {
// Get specific search interface key
 ERecCompoundSearchKey key = keylist.getKey(i);
 String name = key.getName();
 boolean active = key.isActive();
}

Note: Search interface keys are not returned in calls to the
Navigation.getERecSearchKeys() method, which returns only basic record properties
and dimensions.

.NET examples of search interface properties
To obtain a list of valid search interfaces in .NET, use the Navigation.ERecCompoundSearchKeys
property.

The following example shows how the Navigation.ERecCompoundSearchKeys property can be
used to obtain a list of search interface keys:

ERecCompoundSearchKeyList keylist = nav.ERecCompoundSearchKeys;
for (int i=0; i < keylist.Count; i++) {
// Get specific search interface key
 ERecCompoundSearchKey key =
 (ERecCompoundSearchKey) keylist.Key(i);
 String name = key.Name;
 boolean active = key.IsActive();
}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Working with Search Interfaces | Java examples of search interface methods172

Note: Search interface keys are not returned in calls to the Navigation.ERecSearchKeys
property, which returns only basic record properties and dimensions.

Tips for troubleshooting search interfaces
All the tips for troubleshooting basic record search are also useful for troubleshooting record search
that uses search interfaces. To get the most out of the search interfaces feature, make sure to set
your search interfaces to contain the relevant searchable fields.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

173Working with Search Interfaces | Tips for troubleshooting search interfaces

Chapter 16

Using Dimension Search

There are two types of dimension search, default dimension search and compound dimension search.

About dimension search
Both default dimension search and compound dimension search allow users to perform keyword
searches across dimensions for dimension values with matching names.

The result of a dimension search is a dimension search results object that contains dimension values.

The application can present these dimension values to the end-user, allowing the user to select them
and create a new navigation request.

Depending on the type of dimension search you are using, those dimension values may be organized
by:

• Dimension (default dimension search)

• Sets of dimension values (compound dimension search)

All configuration settings described for the dimension search are performed in the Developer Studio.

Default dimension search
Default dimension search returns single dimension values that match the user’s search terms, organized
by dimension.

A dimension value must match all of a user’s search terms to be considered a valid result when using
default dimension search.

Example of default dimension search

For example, a default dimension search for red might return:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Dimension valuesDimension

Drink with red meatDrinkability

Compound dimension search
Compound dimension search allows the MDEX Engine to return combinations of dimension values,
called navigation states, that match a search query (in addition to single dimension values).

For example, the compound dimension search query:

1996 + merlot

could return a result such as:

{Year: 1996, Varietal: Merlot}

Note: Compound dimension search reduces to default dimension search for single-term queries,
because any navigation state that minimally covers a single-term query will contain only one
dimension value.

Compound dimension search results are navigation states that satisfy the following three properties:

• Validity. A navigation state is valid if it leads to actual records.

For example, the navigation state {Year: 1996, Varietal: Cabernet} is valid if, and only
if, there is at least one record that is assigned both dimension values.

• Coverage. A navigation state covers a query if the union of its dimension values accounts for all
of the terms in the query, possibly by way of query expansion (such as stemming, thesaurus, or
spelling correction).

In other words, each dimension value in the navigation state must match at least one of the search
terms. (We assume here that the query mode is MatchAll. The semantics for other match modes
are discussed in other topics.)

For example, the navigation state {Year: 1996, Varietal: Cabernet} is not a cover for
the query 1996 + merlot, because the query term merlot is not accounted for by any of its
dimension values.

• Minimalism. A navigation state is a minimal cover of the query if removing any of its dimension
values would cause it to no longer cover as many query terms.

For example, the navigation state {Year: 1996, Varietal: Merlot, Flavor: Oak} is
a cover, but it is not a minimal cover, because removing the dimension value Flavor: Oak leaves
us with a cover.

Enabling dimensions for dimension search
The dimension values are enabled for the dimension search differently, depending on the type of the
dimension search that you use.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | Compound dimension search176

In particular:

• Default dimension search.

All dimensions are always enabled for the default dimension search. That is, all dimensions are
searched by the MDEX Engine in the default dimension search.

Unlike record search (which is disabled by default and therefore must be configured), there are
no special configuration settings necessary to enable all dimensions for the default dimension
search.

• Compound dimension search.

If you use the --compoundDimSearch flag for Dgidx, all dimensions are enabled for the compound
dimension search, that is they are searched by the MDEX Engine in the compound dimension
search.

In addition, you must set a Boolean flag on the ENEQuery object using these methods:

• Java: setDimSearchCompound() method

• .NET: DimSearchCompound property

Ordering of dimension search results
Dimension search results are ordered differently, depending on whether you have used the default
dimension search or compound dimension search.

Ordering of results for default dimension search
The ordering of dimensions is determined by the statically defined dimension ranks.

Default dimension search results consist of dimension values grouped by dimension.

The ordering of dimension values, within each dimension, is based either on static dimension value
ranks or on relevance ranking, if the latter is enabled.

Note: Relevance ranking must be explicitly requested (Dk=1) in order for the MDEX Engine to
return ranked results rather than alphabetically sorted results. For more information, see the
topic "Ranking results" later in this chapter.

Example of ordering results for default dimension search

In this example:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

177Using Dimension Search | Ordering of dimension search results

the Wine_Type dimension has a rank of 30, Wineries is ranked 20, and Drinkability is ranked
10.

The dimension values in the Wineries dimension are ranked as follows:

• Green & Red dimension value has a rank 3.

• Red Hill is ranked 2.

• Red Rocks is ranked 1.

Ordering of results for compound dimension search
This topic explains how compound dimension search results are ordered and contains examples of
ordering.

Compound dimension search results are sets of dimension values that represent navigation states.

Technically, these groups are multisets, because a multiselect-AND dimension may be listed more
than once in the set. For example, the navigation state {Actor: Steve Martin, Actor: Goldie
Hawn} is listed in the {Actor, Actor} group.

The sets are ordered according to the following criteria:

• The primary sort is the number of dimensions represented in the navigation state. The fewer the
number of dimensions, the higher the rank.

For example, a result with dimension values from two dimensions would be returned before one
that contained results from three.

• The secondary sort is lexicographical (alphanumeric), based on dimension ranks. The ordering of
dimension values within each navigation state is based either on static dimension ranks (again
lexicographic) or on relevance ranking, if the latter is enabled.

Example of ordering compound dimension search results

For example, consider a compound dimension search whose results are placed in the following
groups:

{Actor}
{Director}
{Actor, Director}
{Actor, Director, Genre}
{Director, Genre}
{Title}

Assume that the static dimension ranks correspond to alphabetical order:

Actor < Director < Genre < Title

The compound dimension search result groups are ordered as follows:

{Actor}
{Director}
{Title}
{Actor, Director}
{Director, Genre}
{Actor, Director, Genre}

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | Ordering of dimension search results178

Filtering results that have no records
You can filter out unused dimension values from your dimension search results in the MDEX Engine
at query time.

Dimension search can return dimension values that have no associated records. Depending on your
application, you may not want your users to see such dimension search results. In such cases, you
can filter out unused dimension values, using the dimension search ability to search within a navigation
state.

You can do this in two ways:

• Call these method and property, passing in a DimValIdList consisting only of the value 0 (zero):

• Java: the ENEQuery.setDimSearchNavDescriptors() method

• .NET: the ENEQuery.DimSearchNavDescriptors property

• Use the Dn URL query parameter, setting the value to zero.

In other words, instead of performing the query:

D=Hampton+Bays

use the query:

D=Hampton+Bays&Dn=0

You can code this into your application by adding &Dn=0 any time you set the dimension search
query. Because the work is done in the MDEX Engine, no UI modification to suppress results is
required.

Advanced dimension search parameters
Advanced dimension search parameters give an application greater control over the matching dimension
values returned. Standard dimension search returns all matching dimension values across all
dimensions.

Advanced dimension search parameters allow the application to do the following:

• Request only the first n dimension values for each dimension. An additional parameter allows you
to page through any additional matching dimension values after displaying the first n dimension
values.

• Specify a single dimension within which to search.

• Restrict dimension search to searching within a given navigation state. The MDEX Engine returns
only those matching dimension values that, when used to refine the specified navigation state,
create a valid navigation request.

Disabling dimension search for synonyms

In some cases, you may decide that the text associated with a particular synonym is not appropriate
for producing dimension search results.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

179Using Dimension Search | Advanced dimension search parameters

Enabling hierarchical dimension search

By default, a dimension search considers only the text in individual dimension value synonyms when
performing query matching. If you want dimension search to consider ancestor dimension values when
matching a dimension search query, you must enable hierarchical dimension search in Developer
Studio.

Returning the highest ancestor dimension

In the Dimension Search Configuration editor in Developer Studio you can specify that the results
of a dimension search return only the highest ancestor dimension value.

For example, if both red zinfandel and red wine match a search query for red and you check
Return Highest Ancestor Dimension, only the red wine dimension value is returned (assuming
the red wine is the ancestor of red zinfandel). If the setting is not checked, then both dimension
values are returned.

Searching inert dimension values

If Include Inert Dimension Values is checked in the Dimension Search Configuration editor in
Developer Studio, then certain non-navigable dimension values (such as dimension roots) are also
returned as the result of a dimension search query.

Collapsible dimension values (that is, dimension values that have their COLLAPSIBLE attribute set
to TRUE within a DVAL_REF element) are never returned by dimension search.

Related Links
Adding search synonyms to dimension values on page 159

You can add synonyms to a dimension value so that users can search for other text strings
and still get the same records as a search for the original dimension value name.

Dgidx flags for dimension search
Depending on the type of dimension search you use (default or compound dimension search), Dgidx
requires different settings.

Dgidx flags for default dimension search

To make all dimension values available for the default dimension search, Dgidx does not require
special flags. If a dimension value is properly created and used to classify a record in the data set, it
is automatically indexed and enabled for the default dimension search.

Although all dimension values are enabled for the default dimension search, you can prevent certain
dimension values from being added to the dimension search index, by filtering results with dimension
values that have no associated records.

You can also limit the default dimension search to one dimension by using the Di parameter and
specifying a single dimension for it.

Dgidx flags for compound dimension search

To make dimension values available for the compound dimension search, run the indexing using
the--compoundDimSearch flag for Dgidx. Otherwise, compound dimension search will not be used
by the MDEX Engine.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | Dgidx flags for dimension search180

Although all dimension values are enabled for the compound dimension search if the--compound¬
DimSearch flag is used for Dgidx, you can limit the compound dimension search to a list of dimensions,
by using the Di parameter and specifying a list of dimension value IDs for it.

Note: Do not confuse indexing for dimension search with the Dgidx flags necessary to enable
record search.

URL query parameters and dimension search
While a basic dimension search can be executed with a single parameter, an advanced dimension
search query can have many different modifiers to control the resulting dimension values returned.
This section contains examples of using these parameters.

As a rule of thumb, for any dimension that could contain more than 100 possible results, use one of
the more advanced dimension search parameters to help control the results returned from the MDEX
Engine. Without these controls, the size of the resulting object could cause slow response times
between an application and the MDEX Engine.

Creating a default dimension search query
A default dimension search query contains a single parameter, D that specifies the keyword(s) to
search with.

Each keyword can be plus- or space-delimited and should be URL encoded.

For example:

D=<string>+<string>…

Without any additional query modifiers, this dimension search is performed across all dimensions, and
any/all matching dimension values in any/all dimensions (including hidden dimensions) are returned.

To create a default dimension search query:

Create a query of this type with the D parameter: D=<string>+<string>….
For example, create a query:

D=red

This query returns the following results, even if the Wineries dimension is hidden:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

Creating a compound dimension search query
Compound search queries use the same dimension search URL parameters as default dimension
search queries (D, Dn, Di, and so forth). Enabling and creating a compound dimension search query
is a three-step process.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

181Using Dimension Search | URL query parameters and dimension search

To enable and create a compound dimension search query:

1. Specify the --compoundDimSearch flag when running Dgidx.

2. Call the following method (Java) or property (.NET), before submitting the query:

Method or propertyPlatform

ENEQuery.setDimSearchCompound()Java

ENEQuery.DimSearchCompound.NET

3. Build the dimension search query using the same dimension search URL parameters as a default
dimension search query (D, Dn, Di, and so forth).

Example query with a compound dimension search

The following is an example of a compound dimension search query (assuming the above three-step
process is performed to enable this query).

This query:

D=red+1996

returns the following results:

Dimension valuesDimension

[Red, 1996]Wine_Type, Year

[Green & Red, 1996], [Red Hill, 1996]Wineries, Year

Note: Only valid navigation requests are returned as results. This example implies that there
are 1996 wines from Green & Red, and from Red Hill, but not from Red Rocks.

Limiting results of dimension search
Dimension search queries could potentially contain many results.You can use different dimension
search options to limit the number of returned results.

While a basic dimension search can be executed with a single parameter, an advanced dimension
search query can have many different modifiers to control the resulting dimension values returned.

As a rule of thumb, for any dimension that could contain more than 100 possible results, use one of
the more advanced dimension search parameters to help control the results returned from the MDEX
Engine. Without these controls, the size of the resulting object could cause slow response times
between an application and the MDEX Engine.

To limit the results of the dimension search, you can:

Use default dimension search or compound dimension search in the following ways:

• Search a single dimension, by using the Di parameter to specify a single dimension, with the
default dimension search.

• Search a list of dimensions, by using the Di parameter to specify a list of dimensions, with the
compound dimension search.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | URL query parameters and dimension search182

Limiting results of compound dimension search
To limit the results of the compound dimension search, use the Di parameter.

The Search Dimension (Di) parameter should always be used in a query with the Dimension Search
(D) parameter.

To limit the results of the compound dimension search by searching a list of dimensions:

In a query, specify a list of dimension values IDs separated by plus signs (+) for the value of the
Di parameter.

Note: By specifing a list of dimension value IDs for the Di parameter, you are requiring that
every result returned has exactly one value from each dimension value ID specified in Di. This
restricts your compound dimension search to the intersection of the specified dimensions (as
opposed to the compound dimension search across all dimensions).

Example of a compound dimension search query

For example, the following compound dimension search query limits the number of returned resuls.

In this query, the Winery dimension has an ID of 11 and the Year dimension has an ID of 12:

D=red+1996&Di=11+12

This query returns only the following results:

Dimension valuesDimension

[Green & Red, 1996], [Red Hill, 1996]Wineries, Year

The order of the IDs is unimportant.

Setting the number of results
Another way to limit dimension search results (in addition to using the Di parameter only) is to identify
the number of dimension values to return with each dimension, using the Dp parameter.

To set the number of dimension values to return with each dimension, upon dimension search:

1. Use the Dp parameter, Dp=int , where int is an integer.

This parameter takes an integer and, when paired with the basic Dimension Search parameter (D),
returns only the first n values from each dimension.

Note: The dimension value count (Dp) parameter cannot be used in a query without the
Dimension Search (D) parameter.

For example, the following query:

D=red&Dp=1

returns only the following results:

Dimension valuesDimension

RedWine_type

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

183Using Dimension Search | URL query parameters and dimension search

Dimension valuesDimension

Green & RedWineries

Drink with red meatDrinkability

2. Optionally, use the Dimension Value Count parameter (Dp) with the Search Dimension parameter
(Di), in which case only the first n dimension values for the specific dimension are returned.

For example, the following query that contains a dimension search where the Winery dimension
has an ID of 11:

D=red&Dp=1&Di=11

returns only the following results:

Dimension valuesDimension

Green & RedWineries

Enabling result paging
To enable an application to page through dimension search results, use the Dimension Value Count
parameter (Dp) in conjunction with the Search Results Offset parameter (Do).

To enable paging through the dimension search results:

1. Use the Do parameter, Do=int , where int is an integer.

This allows an application to view n dimension search results at a time.

For example, for n=5, the first query asks for only five results with no offset, the second query in
the page set asks for five results with an offset of five, the third query asks for five results with an
offset of ten, and so on.

2. (Optional but recommended). Use the Search Results Offset parameter (Do) in conjunction with
both the Dp and Di parameters.

Similar to other advanced dimension search parameters, the Search Results Offset parameter (Do)
is fundamentally dependent on the Dimension Search parameter. Although it is not strictly enforced,
the Search Results Offset parameter is most frequently used in conjunction with both the Dp and
Di parameters.

For example, the following dimension search query with these parameters:

D=red&Dp=1&Di=11&Do=2

returns only the following results:

Dimension valuesDimension

Red RocksWineries

Ranking results
To rank the results of the default dimension search, use the Dk parameter.

To rank the results of the default dimension search:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | URL query parameters and dimension search184

Use the Dk parameter.

This simple ranking rule, when applied to the results of a default dimension search, enforces a
dynamic order on the dimension values.

The dimension search ranking rule favors a combination of exact matches and frequency.

For example,

Dk=0 or 1

By default, matching dimension values are returned in the order that they would appear in the
dimension for refining a navigation request.

It is important to note that this ranking rule is not the same as the more extensive ranking rules
used to modify a record search request.

Note: Compound dimension search results cannot be dynamically ranked, so the Dk
parameter is ignored for compound search results.

Searching within a navigation state
To limit a search to only valid dimension values within results of dimension search, use the Dimension
Search Scope parameter, Dn.

The Dimension Search Scope parameter (Dn) is useful in conjunction with the other dimension search
parameters to limit a search to only valid dimension values that can be combined with a specified
navigation request to form a valid refinement request.

This is different from specifying a single dimension to search within. Think of this as a search within
results for dimension search.

To search within a navigation state:

Use the Dimension Search Scope parameter (Dn).

For example:

Dn=<dimension value id>+<dimension value id>

For example, in this configuration:

Dimension valuesDimension

RedWine_type

Green & Red, Red Hill, Red RocksWineries

Drink with red meatDrinkability

if neither the Red Rocks nor the Red Hill winery dimension values are valid refinements for the
Wine Types: Red Wine navigation query, then the following query:

D=red&Dn=40

where the Red Wine dimension value has an ID of 40, returns only the dimension Wineries and
the dimension values Green & Red.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

185Using Dimension Search | URL query parameters and dimension search

Methods for accessing dimension search results
To access dimension search results, useENEQueryResults. containsDimensionSearch()
(Java) and ENEQueryResults. ContainsDimensionSearch(), as shown in examples in this
topic.

If a valid dimension search request has been made, the following method calls for the query result
object will evaluate to true:

• Java: ENEQueryResults. containsDimensionSearch() method call

• .NET: ENEQueryResults. ContainsDimensionSearch() method call

However, regardless of how the dimension search request is created to control the number of dimension
value results returned, the same objects and methods are used to access those results.

Any matching dimension values are organized by dimension (or dimension list, in the compound
dimension search case), and each specific match contains methods to access other values that describe
the hierarchy of that dimension value within the dimension.

For this reason, the results are actually dimension locations instead of dimension values. Dimension
locations contain a single dimension value, as well as a list of ancestor dimension values.

For example, if a resulting dimension value is merlot, it will not only be returned in the Wine Types
dimension, but it will be contained in a dimension location that contains the dimension value red,
because red is an ancestor of merlot.

Java example

The following code sample in Java shows how to access dimension search results:

ENEQuery usq = new ENEQuery(request.getQueryString(), "UTF-8");
// Set query so that compound dimension search is enabled
usq.setDimSearchCompound(true);
ENEQueryResults qr = nec.query(usq);
// If query results object contains dimension search results
if (qr.containsDimensionSearch()) {
 // Get dimension search results object
 DimensionSearchResult dsr = qr.getDimensionSearch();
 // Get results grouped by dimension groups
 DimensionSearchResultGroupList dsrgl = dsr.getResults();
 // Loop over result dimension groups
 for (int i=0; i < dsrgl.size(); i++) {
 // Get individual result dimension group
 DimensionSearchResultGroup dsrg =
 (DimensionSearchResultGroup)dsrgl.get(i);
 // Get roots for dimension group
 DimValList roots = dsrg.getRoots();
 // Loop over dimension group roots
 for (int j=0; j < roots.size(); j++) {
 // Get dimension root
 DimVal root = (DimVal)roots.get(j);
 // Display dimension root
 %><%= root.getName() %><%
 }
 // Loop over results in group
 for (int j=0; j< dsrg.getTotalNumResults(); j++) {
 // Get individual result
 DimLocationList dll = (DimLocationList)dsrg.get(j);
 // Loop over dimlocations in result
 for (int k=0; k<dll.size(); k++) {

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | Methods for accessing dimension search results186

 // Get individual dimlocation from result
 DimLocation dl = (DimLocation)dll.get(k);
 // Get ancestors list
 DimValList ancs = dl.getAncestors();
 // Loop over ancestors for results
 for (int l=0; l < ancs.size(); l++) {
 // Get ancestor and display its name
 DimVal anc = (DimVal)ancs.get(l);
 %><%= anc.getName() %> > <%
 }
 %><%= dl.getDimValue().getName() %><%
 }
 }
 }
}

.NET example

The following code sample in .NET shows how to access dimension search results:

ENEQuery usq = new ENEQuery(queryString, "UTF-8");
// Set query so that compound dimension search is enabled
usq.DimSearchCompound = true;
ENEQueryResults qr = nec.Query(usq);
// If query results object contains dimension search results
if (qr.ContainsDimensionSearch()) {
 // Get dimension search results object
 DimensionSearchResult dsr = qr.DimensionSearch;
 // Get results grouped by dimension groups
 DimensionSearchResultGroupList dsrgl = dsr.Results;
 // Loop over result dimension groups
 for (int i=0; i < dsrgl.Count; i++) {
 // Get individual result dimension group
 DimensionSearchResultGroup dsrg =
 (DimensionSearchResultGroup)dsrgl[i];
 // Get roots for dimension group
 DimValList roots = dsrg.Roots;
 // Loop over dimension group roots
 for (int j=0; j < roots.Count; j++) {
 // Get dimension root
 DimVal root = (DimVal)roots[j];
 // Display dimension root
 %><%= root.Name %><%
 }
 // Loop over results in group
 for (int k=0; k< dsrg.TotalNumResults; k++) {
 // Get individual result
 DimLocationList dll = (DimLocationList)dsrg[k];
 // Loop over dimlocations in result
 for (int m=0; m<dll.Count; m++) {
 // Get individual dimlocation from result
 DimLocation dl = (DimLocation)dll[m];
 // Get ancestors list
 DimValList ancs = dl.Ancestors;
 // Loop over ancestors for results
 for (int n=0; l < ancs.Count; n++) {
 // Get ancestor and display its name
 DimVal anc = (DimVal)ancs[n];
 %><%= anc.Name %> > <%
 }

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

187Using Dimension Search | Methods for accessing dimension search results

 %><%= dl.DimValue.Name %><%
 }
 }
 }
}

When to use dimension and record search
Dimension search is sometimes confused with record search. This topic provides examples of when
to use each type of search.

Being clear about the differences between the two basic types of keyword search (record search and
dimension search) is important before attempting to create a solution for a specific business problem.
Use the following recommendations:

When to useType of keyword
search

In general, datasets with little descriptive text and extensive dimension values
that represent the most frequently searched terms (for example, autos) are
a good fit for dimension search.

Dimension search

Keyword searches are usually oriented towards such keywords, as for example,
make, model, year, and so on, which would probably be included in the list
of dimensions.

For example, searching for Ford would return a single dimension value from
the Make dimension.

Datasets with descriptive text or names (such as news articles) are better suited
for record search. This is because a reasonable set of dimension values for

Record search

such a dataset cannot be expected to cover all the terms required to handle
keyword search.

In such cases, record search allows an application to search directly against
record text (such as the body of an article).

Note: Read the rest of this topic for additional recommendations.

For many commerce applications, a combination of dimension search and record search is actually
the best solution. In this case, separate dimension search and record search queries are executed
simultaneously for the same keywords, as demonstrated in the reference implementation:

• If a dimension value matches, the user is given the opportunity to select that dimension value in
place of the record search query to produce results that have actually been classified.

• If no dimension values match, the user is still left with the matching records for a record search
query.

Keep in mind that navigation queries and dimension search queries are completely independent. In
the scenario described above where both queries are executed simultaneously, neither query affects
the other.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | When to use dimension and record search188

Record search is a variation of a navigation query. Record search could return results even though
dimension search does not, and visa-versa.

For example, the following query is valid but contains two completely independent types of results:

N=40&D=red

In this query, the ENEQueryResults.containsDimensionSearch() method (Java), and the
ENEQueryResults.ContainsDimensionSearch() method (.NET), as well as the
ENEQueryResults.containsNavigation() method (Java), and the
ENEQueryResults.ContainsNavigation() method (.NET) evaluate to true for the query results
object.

The Navigation object is the same as if the query were only N=40. The dimension search results
object is the same as if the query were only D=red. By that reasoning, the following query also contains
two independent types of results:

N=40&Ntk=Name&Ntt=red&D=red

One final consideration in selecting what type of search solution to implement: Unless compound
dimension search is enabled, dimension search is only used for finding a single dimension value.
Therefore, multiple keywords are still used to find a single dimension value.

For example, red+1996 returns the Red dimension value, and the 1996 dimension value. It only
returns a single dimension value that matches both of those terms, if one exists.

Refer to the "Using Boolean Search" section for details on performing Boolean queries with dimension
search, for example, red+or+1996, which returns both the red dimension value and the 1996
dimension value.

Compound dimension search is most appropriate where multiple terms are used to search for
combinations of concepts, such as D=red+1996. Record search may also be appropriate, and is
described in the section about record search.

Related Links
About Record Search on page 157

This section discusses record search, which is an Endeca equivalent of full-text search, and
is one of the fundamental building blocks of Endeca search capabilities.

Performance impact of dimension search
This topic discusses dimension search and its impact on MDEX Engine performance.

Creating the additional index structures for compound dimension search may result in a moderate
increase in indexing time, particularly if there are a large number of dimensions.

The runtime performance of dimension search directly corresponds to the number of dimension values
and the size of the resulting set of matching dimension values. But in general, this feature performs
at a much higher number of operations per second than navigation requests.

The most common performance problem is when the resulting set of dimension values is exceptionally
large (greater than 1,000), thus creating a large results page. This is when the advanced dimension
search parameters should be used to limit the number of results per request.

Compound dimension search requests are generally more expensive than non-compound requests,
and are comparable in performance to record search requests:

• If you submit a default dimension search query, the query is generally very fast.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

189Using Dimension Search | Performance impact of dimension search

• If you submit a compound dimension search query, performance is not as fast as for the default
dimension search.

In both cases, the query will be faster if you limit the results by using any of the advanced dimension
search parameters. For example, you can use the Di parameter to specify the specific dimension (in
the case of the default dimension search), or a list of dimension value IDs (in the case of compound
dimension search) for which you expect matches returned by the MDEX Engine.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Dimension Search | Performance impact of dimension search190

Chapter 17

Record and Dimension Search Reports

The record and dimension search reports provide API-level access to summary information about
search queries. This information includes the number of results, spelling suggestions, and query
expansion useful for highlighting.

Implementing search reports
The search reports do not require any work in Developer Studio, and no Dgidx or MDEX Engine
configuration flags are necessary to enable this feature. Moreover, there are no URL query parameters
to enable search reports.

Methods for search reports
The MDEX Engine returns search reports as ESearchReport objects.

• For a dimension search, a single ESearchReport object is returned.

• For a record search, one ESearchReport object is returned for each search key.

Retrieving search reports
To retrieve search reports, use getESearchReports() methods (Java) and ESearchReports
properties (.NET) on the DimensionSearchResult and Navigation classes.

Both the DimensionSearchResult and Navigation classes have getESearchReports()
methods (Java), and ESearchReports properties (.NET) that return a Map (Java), and an IDic¬
tionary (.NET) of search keys to ESearchReport objects. In the dimension search case, the single
search report is associated with the literal string Dimension Search.

If, however, you have performed a multiple search (that is, using the Ntk and Ntt parameters with
two or more search keys and terms), you can use the getESearchReportsComplete() method
(Java), and the ESearchReportsComplete property (.NET) in the DimensionSearchResult and
Navigation classes.

These accessors return a Map (Java) and an IDictionary (.NET) of List (Java) and IList (.NET)
objects that contain ESearchReports objects.

Encapsulating the ESearchReports objects in a List (Java), or an IList (.NET) prevents multiple
ESearchReports with the same key from overwriting each other, which can happen with the
getESearchReports() method (Java) and ESearchReports property (.NET).

Accessing information in search reports
An ESearchReport object provides access to summary information about the search through accessor
methods (Java), and properties (.NET). This topic contains code examples for accessing summary
information in search reports.

The report provides basic information about the search through the following ESearchReport
methods (Java), and properties (.NET):

DescriptionMethod (Java) or property (.NET)

Returns the search key used in the current search.Java: getKey()

NET: Key

Returns the search terms as a single String.Java: getTerms()

.NET: Terms

Returns the number of results that matched the search query.
For record searches, this is the number of records. For

Java: getNumMatchingResults()

.NET: NumMatchingResults
dimension searches, this is the number of matching
dimension values.

Match mode information is available through the following ESearchReport methods (Java), or
properties (.NET):

DescriptionMethod (Java) or property (.NET)

Returns the requested match mode.Java: getSearchMode()

NET: SearchMode

Returns the selected match mode.Java: getMatchedMode()

This is different than getSearchMode() (Java) and
SearchMode (.NET) in that getMatchedMode() (Java)

.NET: MatchedMode

and MatchedMode (.NET) return the match mode that was
actually selected by the MDEX Engine as opposed to the
match mode that was requested in the query.

Returns the number of search terms that were successfully
matched.

Java: getNumMatchedTerms()

.NET: NumMatchedTerms

Word interpretation information, which is useful for highlighting or informing users about query
expansion, is available through the ESearchReport.getWordInterps() method (Java), and

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Record and Dimension Search Reports | Methods for search reports192

ESearchReport.WordInterps property (.NET). The method and property return a PropertyMap
that associates words or phrases with their expansions.

Spelling correction information is available through two ESearchReport methods (Java), and properties
(.NET):

DescriptionMethod (Java) or property (.NET)

Is used for autosuggest (alternate spelling correction) results
and returns a List (Java), and an IList (.NET) of
ESearchAutoSuggestion objects.

Java: getAutoSuggestions

NET: AutoSuggestions

Is used for “Did you mean?” results and returns a List an
IList of ESearchDYMSuggestion objects.

Java: getDYMSuggestions

.NET: DYMSuggestions

The ESearchAutoSuggestion, and ESearchDYMSuggestion classes have getTerms() method
(Java), and Terms property (.NET) that return the suggestion as a string.

The ESearchDYMSuggestion class also includes a getNumMatchingResults() method (Java),
and NumMatchingResults property (.NET) that return the number of results associated with the
“Did you mean?” suggestion. For more information on these features, see the section on "Did you
mean? feature.

Finally, the following ESearchReport calls report error or warning information:

• The getTruncatedTerms() method (Java) and TruncatedTerms property (.NET) return the
truncated query terms (as a single string), if the query was truncated. If the number of search terms
is too large, the MDEX Engine truncates the query for performance reasons. This method or
property return the new set of search terms after the truncation.

• The isValid() method (Java and .NET) returns true if the search query is valid.

If false is returned, use getErrorMessage() (Java), and ErrorMessage (.NET) to get the
error message.

• The getErrorMessage() method (Java), and ErrorMessage property (.NET) return the error
message for an invalid query.

Java example

The following code snippet in Java shows how to access information in an ESearchReport object:

// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
// Declare the search key being sought
String desiredKey = "my_search_interface";
if (recSrchRpts.containsKey(desiredKey)) {
// Get the ERecSearchReport for the desired search key
 ESearchReport srchReport =
 (ESearchReport) recSrchRpts.get(desiredKey);
 // Get the search term submitted for this search report
 String srchTerms = srchReport.getTerms();
 // Get the number of matching results
 long numMatchingResults = srchReport.getNumMatchingResults();
 // Get the match mode that was used for this search
 ESearchReport.Mode mode = srchReport.getMatchedMode();
 // Display a message if MatchAll mode was used
 // by the MDEX Engine

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

193Record and Dimension Search Reports | Methods for search reports

 String matchallMessage = "";
 if (mode == ESearchReport.MODE_ALL) {
 matchallMessage = "MatchAll mode was used";
 }
}

.NET Example

The following code snippet in .NET shows how to access information in an ESearchReport object:

// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Declare the search key being sought
String desiredKey = "my_search_interface";
if (recSrchRpts.Contains(desiredKey)) {
// Get the ERecSearchReport for the desired search key
 ESearchReport srchReport =
 (ESearchReport) recSrchRpts[desiredKey];
 // Get the search term submitted for this search report
 String srchTerms = srchReport.Terms;
 // Get the number of matching results
 long numMatchingResults = srchReport.NumMatchingResults;
 // Get the match mode that was used for this search
 ESearchReport.Mode mode = srchReport.MatchedMode;
 // Display a message if MatchAll mode was used by
 // Navigation Engine
 String matchallMessage = "";
 if (mode == ESearchReport.MODE_ALL) {
 matchallMessage = "MatchAll mode was used";
 }
}

Troubleshooting search reports
The tokenization used for substitutions depends on the configuration of search characters.

If word interpretation is to be used to facilitate highlighting variants of search keywords that appear in
displayed search results, then the application should consider that words or phrases appearing in
substitutions may not include white space, punctuation, or other configured search characters.

Note: Search reports have no impact on performance.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Record and Dimension Search Reports | Troubleshooting search reports194

Chapter 18

About Search Modes

By default, Endeca search operations return results that contain text matching all user search terms.
In other words, search is conjunctive by default. However, in some cases a less restrictive matching
is desirable, so that results are returned that contain fewer user search terms. This section describes
how to enable the MatchAny and MatchPartial modes for record search and dimension search
operations.

List of valid search modes
The search mode can be specified independently for each record search operation contained in a
navigation query, as well as for the dimension search query.

Valid search modes are the following:

DescriptionSearch mode

Match all user search terms (that is, perform a conjunctive search). This is the
default mode.

MatchAll

Match some user search terms.MatchPartial

Match at least one user search term.MatchAny

Match all user search terms if possible, otherwise match at least one.MatchAllAny

MatchAllAny is not recommended in cases where queries can exceed two words.
For example, a query on womens small brown shoes would return results on each
of these four words and thus be essentially useless. In general, MatchAllPartial is
a better strategy.

Match all user search terms if possible, otherwise match some.MatchAllPartial

Because you can configure this mode to match at least two or three words in a
multi-word query, MatchAllPartial is generally a better choice than MatchAllAny.

Match a maximal subset of user search terms.MatchPartialMax

DescriptionSearch mode

Match using a Boolean query.MatchBoolean

MatchAll mode
In MatchAll mode (the default mode), results must contain text matching each user search query term.

MatchPartial mode
In MatchPartial mode, results must contain text matching at least a certain number of user search
query terms, according to the rules listed in this topic.

In MatchPartial mode, results must contain text matching search query terms, according to the following
rules:

• The Match at least setting specifies the minimum number of user query terms that each result
must match. If there are not enough terms in the original query to satisfy this rule, then the entire
query must match.

• The Omit at most setting specifies the maximum number of user query terms that can be ignored
in the user query. If Omit at most value is set to zero, any number of words can be ignored.

You can specify both of these settings in Developer Studio.

In MatchPartial mode, result sets always include all of the results that a MatchAll query have produced,
and possibly additional results as well.

Interaction of MatchPartial mode and stop words
The presence of a stop word in a query reduces the minimum term count requirement for a document
to match when MatchPartial mode is used. The example in this topic explains the interaction between
stop words and MatchPartial mode.

The Endeca MDEX Engine treats stop words in a query as terms that match every document in the
entire document set when counting how many terms must match a given query.

Therefore, the presence of a stop word in a query reduces the minimum term count requirement for
a document to match by one, the presence of two stop words reduces it by two, and so on.

In practical terms, it means the result set may be both larger and more general than expected.

For example, consider a four-term query (such as Medical Society of America) against a search
interface configured to allow MatchPartial modes to require three terms to match. If one of those four
terms (in this case of) is a stop word, only two of the other terms have to match, meaning results such
as Botanical Society of America or Medical Society Reunion would be included in the
set.

MatchAny mode
In MatchAny mode, results need only match a single user search term.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Search Modes | List of valid search modes196

A MatchAny result set always includes all of the results that a MatchAll or MatchPartial query have
produced, and possibly additional results as well.

Note: MatchAny is not recommended for use with record search in typical catalog applications.

MatchAllPartial mode
In MatchAllPartial mode, the MDEX Engine first uses MatchAll mode to return results matching all
search terms, if any are available.

If no such MatchAll results are available, the MDEX Engine returns the results that MatchPartial would
have produced.This allows a more conservative matching policy than MatchPartial, because high-quality
conjunctive results are returned if they exist and MatchPartial results are used as a fallback on
conjunctive misses.

This behavior, however, can be affected if cross-field matches are applied to the search interface. A
search that matches “any” or “partial” inside of the same-field might be returned before a search that
matches “all” of the terms but has to cross field boundaries to do so.

In addition, spell correction can also alter the results. A search that matches any or partial spell-corrected
in a same field may return before a non-spell-corrected search that matches all terms in different fields.
To the user, this looks like there were no records matching all of the terms, even though there may
be many that match cross-field.

Note: MatchAllPartial is recommended for record search in a typical catalog application. The
default configuration for Partial, which works well, can be adjusted to be more inclusive or
conservative.

MatchAllAny mode
In MatchAllAny mode, the MDEX Engine first uses MatchAll mode to return results matching all search
terms, if any are available.

If no such MatchAll results are available, the MDEX Engine returns the results that MatchAny would
have produced.

Note: MatchAllAny is useful for dimension search.

MatchPartialMax mode
MatchPartialMax mode is a variant of the MatchAllPartial mode: MatchAll results are returned if they
exist.

If no such MatchAll results exist, then results matching all but one terms are returned; otherwise,
results matching all but two terms are returned; and so forth.

MatchPartialMax mode is subject to the Match at least and Omit at most settings used in the
MatchPartial mode. Hence, a MatchPartialMax result set includes results if (and only if) the
corresponding MatchPartial result set includes results, and it contains a subset of the MatchPartial
results (possibly the entire set).

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

197About Search Modes | List of valid search modes

MatchBoolean mode
The MatchBoolean search mode implements Boolean search, which allows users to specify complex
expressions that describe the exact search criteria with which they would like to search.

Configuring search modes
This topic summarizes options you can use to implement search modes.

No Forge or Dgidx configuration is required to enable the MatchAll, MatchAny, or MatchAnyAll search
modes. MatchPartial, MatchAllPartial, and MatchPartialMax are configured as URL query parameters.
In Developer Studio, you configure the minimum number of words for partial match modes and maximum
number of words that may be omitted for partial match modes.

No MDEX Engine configuration flags are necessary to enable search modes.

URL query parameters for search modes
You can use Ntx and Dx parameters with search modes. This topic contains code examples.

By using the following syntax, the search mode can be specified independently for each record search
operation contained in a navigation query:

Ntx=mode+matchmode-1|mode+matchmode-2|...

where matchmode is the name of one of the search modes (such as matchallpartial).

The syntax for a dimension search query is similar:

Dx=mode+matchmode

Using the syntax above, each search query can be enabled for any of the listed modes.

Two sample queries are:

<application>?N=0&Ntk=Brand&Ntt=Nike+Adidas
&Ntx=mode+matchallany

<application>?D=Nike+sneakers&Dx=mode+matchany

Query examples with search modes
The MatchAny mode can be used in combination with multiple record searches to achieve
Boolean-query effects using a simplified interface.

For example, the following query:

Ntk=Brand|Color&Ntt=Polo+Sport|red+blue&Ntx=mode+
matchall|mode+matchany

could be used to search for items with a Brand property matching Polo AND Sport, and with a
Color property matching either red OR blue.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

About Search Modes | Configuring search modes198

In some cases, it is useful to contrast the MatchAny versus MatchAll mode for combined record search
and dimension search operations. For example, the following query in a movie database:

N=0&Ntk=AllText&Ntt=Gere+Roberts&D=Gere+Roberts&Dx=
mode+matchany

would return records matching both Gere AND Roberts (such as Pretty Woman), but would return
dimension values containing either Gere OR Roberts (such as Richard Gere and Julia Roberts).

The MatchPartial mode can be thought of as being the union of several conjunctive queries. For
example, if Match At Least and Omit At Most both have the default value of two in Developer Studio,
then the following query:

N=0&Ntk=AllText&Ntt=brown+leather+jacket&Ntx=mode+matchpartial

would return records matching either brown and leather, or leather and jacket, or brown and
jacket.

On the other hand, if Match At Least is one and Omit At Most is two, then the same query would
return records matching either brown or leather or jacket—the same behavior as MatchAny.

Search mode methods
There are no objects types or method calls associated with search queries that use a match mode.
Results returned are the same as for default MatchAll search queries.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

199About Search Modes | Search mode methods

Chapter 19

Using Boolean Search

This section describes how to enable Boolean search for record search and dimension search.

About Boolean search
The MatchBoolean search mode implements Boolean search, which allows users to specify complex
expressions that describe the exact search criteria with which they would like to search.

Endeca search operations use the MatchAll mode by default, which results in conjunctive searches.
However, users often want more precise control over their exact search query.

For example, there is no way to formulate the query that expresses the request: “Show me all
records that match either red or blue and also match the word car.”

For example, the query (red OR blue) AND car would express the request described above. The
OR in this query is a disjunctive operator and results in a hit on all records that match either red or
blue.This set is then intersected with the set of results for the word car and the result of that operation
is returned from the MDEX Engine.

Unlike the MatchAll and MatchAny modes, Boolean search also lets users specify negation in their
queries.

For example, the query camcorder AND NOT digitalwill search for all Endeca records that have
the word camcorder and will then remove all records that have the word digital from that set
before returning the result.

The set of Boolean operators implemented by the MDEX Engine are:

• AND

• OR

• NOT

• NEAR, used for unordered proximity search
• ONEAR, used for ordered proximity search

In addition, you can use parentheses to create sub-expressions such as:

red AND NOT (blue OR green)

As with other search query modes, you can run Boolean search queries against search interfaces
also; however, they may only be run against a single search interface.

Finally, the colon (:) character is a key restrict operator that you can use to limit a search to a single
property or dimension regardless of whether or not these properties or dimensions are included in the
same search interface.

Related Links
Example of Boolean query syntax on page 202

The complete grammar for expressing Boolean queries, in a BNF-like format, is included in
this topic.

Examples of using the key restrict operator on page 203
This topic uses examples to explain how to use the key restrict operator (:) in queries that
contain Boolean search.

Example of Boolean query syntax
The complete grammar for expressing Boolean queries, in a BNF-like format, is included in this topic.

The following sample code expresses Boolean queries, in a BNF-like format:

orexpr: andexpr ;
 | andexpr OR orexpr ;
andexpr: parenexpr ;
 | parenexpr andexpr ;
 | parenexpr AND andexpr ;
 | parenexpr andnotexpr ;
andnotexpr: AND NOT orexpr ;
 | NOT orexpr ;
parenexpr: LPAREN orexpr RPAREN ;
 | terms ;
terms: word_or_phrase KEY_RESTRICT keyexpr ;
 | word_or_phrase NEAR/NUM word_or_phrase ;
 | word_or_phrase ONEAR/NUM word_or_phrase ;
 | multiple_word_or_phrase ;
multiple_word_or_phrase: word_or_phrase ;
 | word_or_phrase multiple_word_or_phrase ;
keyexpr: LPAREN nr_orexpr RPAREN ;
 | word_or_phrase ;
nr_orexpr: nr_andexpr ;
 | nr_andexpr OR nr_orexpr ;
nr_andexpr: nr_parenexpr ;
 | nr_parenexpr nr_andexpr ;
 | nr_parenexpr AND nr_andexpr ;
 | nr_parenexpr nr_andnotexpr ;
nr_andnotexpr: AND NOT nr_orexpr ;
 | NOT nr_orexpr ;
nr_notexpr: nr_parenexpr ;
 | NOT nr_parenexpr ;
nr_parenexpr: LPAREN nr_orexpr RPAREN ;
 | nr_terms ;
nr_terms: multiple_word_or_phrase ;
word_or_phrase: word ;
 | phrase ;

AND: '[Aa]' '[Nn]' '[Dd]' ;
OR: '[Oo]' '[Rr]' ;
NOT: '[Nn]' '[Oo]' '[Tt]' ;
NEAR: '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;
ONEAR: '[Oo]' '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Boolean Search | Example of Boolean query syntax202

NUM: '[0-9] ;
 | NUM NUM ;
LPAREN: '(' ;
RPAREN: ')' ;
KEY_RESTRICT: ':' ;

Examples of using the key restrict operator
This topic uses examples to explain how to use the key restrict operator (:) in queries that contain
Boolean search.

If you have two properties, Actor and Director, you can issue a query which involves a Boolean
expression consisting of both the Actor and Director properties (for example, “Search for
records where the director was DeNiro and the actor does not include
Pacino.”). The two properties do not need to be included in the same search interface.

Users can successfully conduct a search on this using the following query which will execute the
desired result:

Actor: Deniro AND NOT Director: Pacino

This is useful because it allows you to search for properties that are outside of the search interface
configuration.

The key restrict operator (:) binds only to the words or expressions adjacent to it. The resulting search
is case-sensitive. For example, the query:

car maker : aston martin

will search for the word car against the specified search interface, the word aston against the
property or dimension named maker, and martin against the specified search interface.

If the intention was to search against the property or dimension named “car maker”, you must alter
the query to one of the following:

• "car maker" : aston martin

This query searches for the word aston against the property or dimension car maker, while it
searches for martin against the specified search interface.

• "car maker" : (aston martin)

This query does a conjunctive (MatchAll) search for the words aston martin against the property
or dimension car maker.

• "car maker" : "aston martin"

This query searches for the phrase aston martin against the property or dimension car maker.

About proximity search
The proximity operators, NEAR and ONEAR, let users search for a pair of terms that must occur within
a given distance from each other in a document.

The document is matched if both terms are present in the document, and if the terms are within the
specified number of words from each other.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

203Using Boolean Search | Examples of using the key restrict operator

Wildcards are not supported in term specifications.

The syntax for using the proximity operators is as follows:

term1 NEAR/num term2
term1 ONEAR/num term2

In this example:

• Each term (term1 and term2) can be a single word or a multi-word phrase (which must be
specified within quotation marks).

• The num parameter is an integer that specifies the maximum number of words between the two
terms. That is, if num is 5, then term1 and term2 can be separated by no more than five words.

Example of using NEAR for unordered matching
Use the NEAR operator for unordered proximity searches.

That is, term1 can appear within num words before or after term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

Then both of these sentences will be considered matches:

“Mark Twain wrote some of his best books in Hartford.”
 “Tour the Hartford, Connecticut home where Mark Twain lived
 and worked from 1874 to 1891.”

Phrases are treated as one word. In the first sentence, for example, the software starts counting with
the word “wrote” (not “Twain”).

Example of using ONEAR for ordered matching
Use the ONEAR operator for ordered proximity searches.

term1 must appear within num words before term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

The following sentence:

“Tour the Hartford,
Connecticut home where Mark Twain lived and
 worked from 1874 to 1891.”

would not be considered a match because the word “Hartford” must appear after the phrase
“Mark Twain” in the text (assuming that the next eight words are not “Hartford”).

Proximity operators and nested subexpressions
This topic contains examples of using proximity operators with nested subexpressions.

Using the two proximity operators as sub-expressions to the other Boolean operators is supported.
For example, the expression:

(chardonnay NEAR/5 California) AND Sonoma

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Boolean Search | Proximity operators and nested subexpressions204

is a valid expression because NEAR is being used as a sub-expression to the AND operator.

However, you cannot use the non-proximity operators (AND, OR, NOT) as sub-expressions to the NEAR
and ONEAR operators.

For example, the expression:

(chardonnay OR merlot) NEAR/5 California

is not a valid expression.

This invalid expression, however, could be specified as:

(chardonnay NEAR/5 California) OR (merlot NEAR/5 California)

The proximity operators are therefore leaf operators. That is, they accept only words and phrases as
sub-expressions, but not the other Boolean operators.

Using proximity operators with the key restrict operator also has the same limitations when used as
sub-expressions.

For example, the query:

("car maker" : aston) NEAR/3 martin

is not valid.

However, the following format for a key restrict operator is acceptable:

"car maker" : (aston NEAR/3 martin)

For other support limitations, see the topic about interaction of Boolean search with other features.

Boolean query semantics
This topic discusses the meaning of AND, OR, AND NOT, and other operators allowed in Boolean search
queries.

The following statements describe semantics of Boolean query operators:

• The AND operator executes an intersection of its two operands.
• The OR operator executes a union of the two operands.
• The AND NOT operator executes a set subtract, subtracting the second operand from the first.
• The parentheses operators have two meanings, depending on their usage:

• They can either be used to group sub-expressions, as in “(red or blue) and car”

• Or, they can be used as AND operators in themselves.

For example, the query "(red or blue) car" automatically treats the “)” as a ") AND".
Thus the query would be treated as "(red or blue) and car".

The same is true for usage of the left parenthesis.

• Words or phrases grouped together without any explicit operators (such as "red car or blue
bicycle") are also queried conjunctively.

Thus the example query would return the results for "(red and car) or (blue and bicy¬
cle)". Similarly, "red car" "blue bicycle" will return the results for"red car" AND
"blue bicycle".

• As the examples demonstrate, operator names are not case sensitive, although field names are.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

205Using Boolean Search | Boolean query semantics

Operator precedence
The NOT operator has the highest precedence, followed by the AND operator, followed by the OR
operator.You can always control the precedence by using parentheses.

For example, the expression "A OR B AND C NOT D" is interpreted as "A OR (B AND C AND
(NOT D))".

Interaction of Boolean search with other features
The following table describes whether various features are supported for queries that execute a Boolean
search (including the proximity operators).

CommentsSupport with
Boolean search

Feature

YesStemming

NoThesaurus
matching

Auto-correct and “Did you mean?” are not supported.NoMisspelling
correction

NoRelevance
ranking

Yes for the AND
operator only.

Geospatial
filters and
range filters

Proximity operators do not support wildcards.Yes for the AND, OR,
and NOT operators.

Wildcard
search

Stop words are treated as normal words and are not filtered from
queries.

NoStop words

YesPhrase
search

YesWhy did it
match

YesWord interp

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Boolean Search | Operator precedence206

Error messages for Boolean search
Syntactically invalid queries generate error messages described in this topic.

CommentsError messageSample
query

The final result set is
not allowed to be the

Top-level negation is not allowed.NOT sony

result of a negation
operation.

Unexpected end of expression.(

Neither clause of an
OR expression can be

The <first | second> clause of the OR at
position <position> is a negation. Neither
clause of an OR expression may be a negation.

Sony OR
NOT Aiwa

the result of a negation
operation.

Unexpected end of expression.Sony OR

Unexpected end of expression.Sony AND

Unexpected end of expression. Expecting an
opening left parenthesis, a word, or a phrase.

Sony NOT

Unexpected end of expression. Expecting closing
right parenthesis.

(Sony

The key restrict operator may not be used
within another key restrict expression.

Manufac¬
tur¬
er:(Sony
OR Item:
Camera)

Unexpected end of expression. The key restrict
operator must be followed by a word, a phrase,
or a left parenthesis.

Manufac¬
turer:

The key restrict operator must be followed by
a word, a phrase, or a left parenthesis.

Manufac¬
turer:OR

The search index
name must exactly

Unknown search index name "Foo" used for
restrict operator

Foo:Sony

match the search
index name used in
the data.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

207Using Boolean Search | Error messages for Boolean search

CommentsError messageSample
query

Repeated operators
are an error.

Expecting a term or phrase.Sony AND
OR Aiwa

Implementing Boolean search
Except for proximity search, no Forge or Dgidx configuration is required to enable Boolean search
mode.

Properties and dimensions should be configured appropriately for record search and/or dimension
search as described in the documentation for those features.

There are no MDEX Engine configuration flags necessary to enable Boolean search mode.

URL query parameters for Boolean search
To specify a Boolean search query, use the Ntx (for record search), and Dx (for dimension search)
URL query parameters.

• Record search.

To specify a Boolean search for each record search operation contained in a navigation query,
use the following URL query syntax with Ntx:

Ntx=mode+matchboolean|...

• Dimension search.

To specify a Boolean search for a dimension search query, use the following URL query syntax
with Dx:

Dx=mode+matchboolean

You can specify the search mode independently for each record search operation contained in a
navigation query, and for the dimension search query.

Using the syntax above, you can enable each search query for MatchAll mode (which is the default if
no mode is specified), MatchAny mode, or MatchBoolean mode. These are the mode definitions:

• In MatchAll mode, results must contain text matching each user search query term in at least one
location.

• In MatchAny mode, results need only match a single user search term.

• In MatchBoolean mode, the results must satisfy the specified Boolean expression.

Additional examples of queries with Boolean search

The following are example queries:

<application>?N=0&Ntk=Brand&Ntt=Nike+or+Adidas
&Ntx=mode+matchboolean

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Boolean Search | Implementing Boolean search208

<application>?N=0&Ntk=Title&Ntt=Japan+or+UK+not+USA
&Ntx=mode+matchboolean

<application>?D=solid+not+mahogany&Dx=mode+matchboolean

Methods for Boolean search
This topic contains examples of code in Java and .NET for obtaining Boolean search information in
the ESearchReport object.

There are no object types or method calls associated with MatchBoolean search query processing.
Results are returned the same as for default MatchAll search queries.

However, results returned by the MDEX Engine for MatchBoolean URL query parameters contain the
following information in the Record Search Report supplement (ESearchReport object):

• Whether or not the Boolean query is valid. Use the ESearchReport.isValid() method to
determine this.

• If the query is invalid, an error message is returned. Use ESearchReport.getErrorMessage()
(Java), and ESearchReport.ErrorMessage (.NET) to obtain an error message (in English)
that is suitable for display directly to the user.

Java example

The following code snippet in Java shows how to obtain the information in the ESearchReport
object:

// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport srchRpt =
 (ESearchReport) recSrchRpts.get(searchKey);
 // Check if the search is valid
 if (! srchRpt.isValid()) {
 // If invalid search, get the error message
 String errorMessage = srchRpt.getErrorMessage();
 // Print or log the message
 ...
 }
 }
 }
}

.NET Example

The following code snippet in .NET shows how to obtain the information in the ESearchReport
object:

// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

209Using Boolean Search | Methods for Boolean search

String searchKey = Request.QueryString["Ntk"];
 if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport srchRpt = (ESearchReport)
 recSrchRpts[searchKey];
 // Check if the search is valid
 if (! srchRpt.isValid()) {
 // If invalid search, get the error message
 String errorMessage = srchRpt.ErrorMessage;
 // Print or log the message
 ...
 }
 }
 }
}

Troubleshooting Boolean search
If you encounter unexpected behavior while using Boolean search, use the Dgraph -v flag when
starting the MDEX Engine. This flag prints detailed output to standard error describing its execution
of the Boolean query.

Performance impact of Boolean search
The performance of Boolean search is a function of the number of records associated with each term
in the query and also the number of terms and operators in the query.

As the number of records increases and as the number of terms and operators increase, queries
become more expensive.

The performance of proximity searches is as follows:

• Searches using the proximity operators are slower than searches using the other Boolean operators.

• Proximity searches that operate on phrases are slower than other proximity searches and slower
than normal phrase searches.

• Searches using the NEAR operator are about twice as slow as searches using the ONEAR operator
(because word positioning must be calculated forwards and backwards from the target term).

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Boolean Search | Troubleshooting Boolean search210

Chapter 20

Using Phrase Search

Phrase search allows users to specify a literal string to be searched. This section discusses how to
use phrase search.

About phrase search
Phrase search allows users to enter queries for text matching of an ordered sequence of one or more
specific words.

By default, an MDEX Engine search query matches any text containing all of the search terms entered
by the user. Order and location of the search words in the matching text is not considered. For example,
a search for John Smith returns matches against text containing the string John Smith and also
against text containing the string Jane Smith and John Doe.

In some cases, the user may want location and order to be considered when matching searches. If
one were searching for documents written by John Smith, one would want hits containing the text
John Smith in the author field, but not results containing Jane Smith and John Doe.

Phrase search allows the user to put double-quote characters around the search term, thus specifying
a literal string to be searched. Results of a phrase search contain all of the words specified in the
user’s search (not stemming, spelling, or thesaurus equivalents) in the exact order specified.

For example, if the user enters the phrase query “run fast”, the search finds text containing the
string run fast, but not text containing strings such as fast run, run very fast, or running
fast, which might be returned by a normal non-phrase query.

Additionally, phase search queries do not ignore stop words. For example, if the word the is configured
as a stop word, a phrase search for “the car” does not return results containing simply car (not
preceded by the).

Also, phrase search enables stop words to be disabled. For example, if the is a stop word, a phrase
search for “the” can retrieve text containing the word the.

Because phrase searches only consider exact matches for contained words, phrase search also
provides a means to return only true matches for a particular word, avoiding matches due to features
such as stemming, thesaurus, and spelling.

For example, a normal search for the word corkscrew might also return results containing the text
corkscrews or wine opener. Performing a phrase search for the word “corkscrew” only returns
results containing the word corkscrew verbatim.

About positional indexing
To enable faster phrase search performance and faster relevance ranking with the Phrase module,
your project builds index data out of word positions. This is called positional indexing.

Dgidx creates a positional index for both properties and dimension values.

Phrase search is automatically enabled in the MDEX Engine at all times. However, the default operation
of phrase search examines potential matching text to verify the presence of the requested phrase
query string. This examination process can be slow if the text data is large (perhaps containing long
description property values) or offline (in the case of document text).

The MDEX Engine uses positional index data to improve performance in these scenarios. Positional
indexing improves the performance of multi-word phrase search, proximity search, and certain relevance
ranking modules.The thesaurus uses phrase search, so positional indexing improves the performance
of multi-word thesaurus expansions as well. Positional indexing is enabled by default for Endeca
properties and dimensions and cannot be disabled with Developer Studio.

How punctuation is handled in phrase search
Unless they are included as special characters, all punctuation characters are stripped out, during
both indexing and query processing. When punctuation is stripped out during query processing, the
previously connected terms have to remain in their original order.

URL query parameters for phrase search
You can request phrase matching by enclosing a set of one or more search terms in quotation marks
(ASCII character decimal 34, or hexadecimal 0x22).You can include phrase search queries in either
record search or dimension search operations and combine phrase search with non-phrase search
terms or other phrase terms.

Examples of phrase search queries

The following are examples of phrase search queries:

• A record searh for phrase cd player is as follows:

N=0&Ntk=All&Ntt=%22cd+player%22

• A record searh for records containing phrase cd player and the word sony is as follows:

N=0&Ntk=All&Ntt=%22cd+player%22+sony

• A record search for records containing phrase cd player and also phrase optical output
is as follows:

N=0&Ntk=All&Ntt=%22cd+player%22+%22optical+output%22

• A dimension search for dimension values containing the phrase Samuel Clemens is as follows:

D=%22Samuel+Clemens%22

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Phrase Search | About positional indexing212

Performance impact of phrase search
Phrase search queries are generally more expensive to process than normal conjunctive search
queries.

In addition to the work associated with a conjunctive query, a phrase search operation must verify the
presence of the exact requested phrase.

The cost of phrase search operations depends mostly on how frequently the query words appear in
the data. Searches for phrases containing relatively infrequent words (such as proper names) are
generally very rapid, because the base conjunctive search narrows the results to a small set of candidate
hits, and within these hits relatively few possible match positions need to be considered.

On the other hand, searches for phrases containing only very common words are more expensive.
For example, consider a search for the phrase “to be or not to be” on a large collection of
documents. Because all of these words are quite common, the base conjunctive search does not
narrow the set of candidate hit documents significantly. Then, within each candidate result document,
numerous possible word positions need to be scanned, because these words tend to be frequently
reused within a single document.

Even very difficult queries (such as “to be or not to be”) are handled by the MDEX Engine
within a few seconds (depending on hardware), and possibly faster on moderate sized data sets.
Obviously, if such queries are expected to be very common, adequate hardware must be employed
to ensure sufficient throughput. In most applications, phrase searches tend to be used far less frequently
than normal searches. Also, most phrase searches performed tend to contain at least one
information-rich, low-frequency word, allowing results to be returned rapidly (that is, in less than a
second).

You can use the --phrase_max <num> flag for the Dgraph to specify the maximum number of words
in each phrase for text search. Using this flag improves performance of text search with phrases. The
default number is 10. If the maximum number of words in a phrase is exceeded, the phrase is truncated
to the maximum word count and a warning is logged.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

213Using Phrase Search | Performance impact of phrase search

Chapter 21

Using Snippeting in Record Searches

This section describes how to use snippeting. Snippeting provides the ability to return an excerpt from
a record in context, as a result of a user query.

About snippeting
The snippeting feature (also referred to as keyword in context or KWIC) provides the ability to return
an excerpt from a record—called a snippet—to an application user who performs a record search
query.

A snippet contains the search terms that the user provided along with a portion of the term’s surrounding
content to provide context. A Web application displays these snippets on the record list page of a
query’s results. With the added context, users can more quickly choose the individual records they
are interested in.

A snippet can be based on the term itself or on any thesaurus or spell-correction equivalents. At least
one instance of a term or equivalent is highlighted per snippet, regardless of the number of times the
term or its equivalents appear in the snippet. A thesaurus or spell-corrected alternative may be
highlighted instead of the term itself, even if both appear within the snippet.

You enable snippeting on individual members (fields) in a search interface that typically have many
lines of content. For example, fields such as Description, Abstract, DocumentBody, and so on are
good candidates to provide snippeting results.

The result of a query with snippeting enabled contains at least one snippet in which enough terms are
highlighted to satisfy the user's query. That is, if it is an AND query, the result contains at least one of
each term, and if it is an OR query, it contains at least one of the alternatives.

For example, if a user searches for intense in a wine catalog, the record list for this query has many
records that match intense. A snippet for each matching record displays on a record list page:

Snippet formatting and size
A snippet consists of search terms, surrounding context words, and ellipses.

A snippet can contain any number of search terms bracketed by <endeca_term></endeca_term>
tags. The tags call out search terms and allow you to more easily reformat the terms for display in
your Web application.

The snippet size is the total number of search terms and surrounding context words.You can configure
the total number of words in a snippet In order to adhere to the size setting for a snippet, it is possible
that the MDEX Engine may omit some search terms and context words from a snippet. This situation
becomes more likely if an application user provides a large number of search terms and the maximum
snippet size is comparatively small.

A snippet consists of one or more segments. If there are multiple segments, they are delimited by
ellipses in between them. Ellipses (...) indicate that there is text omitted from the snippet occurring
before or after the ellipses.

Example of a snippet

For example, here is a snippet made up of two segments with a maximum size set at 20 words. The
snippet resulted from a search for the search terms, Scotland and British, which are enclosed
within <endeca_term> tags.

...in Edinburgh <endeca_term>Scotland</endeca_term>, and has
been employed by Ford for 25 years...He first joined Ford's
<endeca_term>British</endeca_term> operation. Mazda motor...

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Snippeting in Record Searches | Snippet formatting and size216

Snippet property names
The MDEX Engine dynamically creates new snippet properties by appending .Snippet to the original
name of the search interface members (fields) that you enabled for snippeting.

For example, if you enable snippeting for properties named Description and Reviews, the MDEX
Engine creates new properties named Description.Snippet and Reviews.Snippet and returns
these properties with the result set for a user’s record search.

Snippets are dynamically generated properties
It is important to emphasize that the MDEX Engine dynamically generates snippet properties.

This means the snippet properties, unlike other Endeca properties, are not created, configured, or
mapped using Developer Studio. A dynamically generated snippet property is not tagged to an Endeca
record. The snippet property appears with a record only on a record list page.

About enabling and configuring snippeting
You enable the snippeting feature in the Member Options dialog box, which is accessed from the
Search Interface editor in Developer Studio.

Each member of a search interface is enabled and configured separately. In other words, snippeting
results are enabled and configured for each member of a search interface and not for all members of
a single search interface.

Note: A search interface member is a dimension or property that has been enabled for search
and that has been added to the Selected members pane of the Search Interface editor.

You can enable and configure any number of individual search interface members. Each member that
you enable produces its own snippet. Enabling a member in one search interface does not affect that
member if it appears in other search interfaces. For example, enabling the Description property for
Search Interface A does not affect the Description property in Search Interface B.

URL query parameters for snippeting
You can configure snippeting on a per query basis by using the Ntx URL query parameter, the snip
operator of Ntx, and key/value pairs that indicate which field to snippet and how many words to return
in a snippet. This section contains examples of record search queries with snippeting.

Providing these values in a URL overrides any configuration options specified in a Developer Studio
project file.

You can disable snippeting on a per query basis by using the nosnip+true operator of Ntx. The
nosnip+true operator globally disables all snippets for any search interface member you enabled.

Examples of queries with snippeting

You can include snippeting only in record search operations.The following are examples of snippeting
in queries:

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

217Using Snippeting in Record Searches | Snippet property names

• In a record search for records containing the word blue, snippet the description property with
a maximum size of thirty words:

N=0&Ntk=description&Ntt=blue&Ntx=snip+description:30

• In a record search for records containing the words shirt and blue, snippet the title property
with a maximum size of ten words and the description property with a maximum size of thirty
words:

N=0&Ntk=title|description&Ntt=shirt|blue&Ntx=snip+title:10|snip+descrip¬
tion:30

• In a record search for records containing the word blue, disable snippet results for the query:

N=0&Ntk=description&Ntt=blue&Ntx=nosnip+true

Reformatting a snippet for display in your Web application
After the MDEX Engine returns a snippet property to your application, you can remove or replace the
<endeca_term> tags from the snippet before displaying it in a record list page.

To reformat a snippet for display in a front-end Web application:

Add application code to replace the <endeca_term> tags in a snippet property with an HTML
formatting tag, such as (bold), to highlight search terms in a snippet.

Your Web application can display the snippet as a property on a record list page like other Endeca
properties. For details, see the section about Displaying Endeca records.

Performance impact of snippeting
The snippeting feature does not have a performance impact during Data Foundry processing. However,
enabling snippeting does affect query runtime performance.

There is no effect on Forge or Dgidx processing time or indexing space requirements on your hard
disk.

You can minimize the performance impact on query runtime by limiting the number of words in a
property that the MDEX Engine evaluates to identify the snippet. This approach is especially useful in
cases where a snippet-enabled property stores large amounts of text.

Provide the --snip_cutoff <num words> flag to the Dgraph to restrict the number of words that
the MDEX Engine evaluates in a property.

For example, --snip_cutoff 300 evaluates the first 300 words of the property to identify the
snippet.

Note: If the --snip_cutoff Dgraph flag is not specified, or is specified without a value, the
snippeting feature defaults to a cutoff value of 500 words.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Snippeting in Record Searches | Reformatting a snippet for display in your Web application218

Tips and troubleshooting for snippeting
If a snippet is too short and you are not seeing enough context words in it, open the Member Options
editor in Developer Studio and increase the value for Maximum snippet size. The default value is 25
words.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

219Using Snippeting in Record Searches | Tips and troubleshooting for snippeting

Chapter 22

Using Wildcard Search

Wildcard search allows users to match query terms to fragments of words in indexed text.This section
discusses how to use wildcard search.

About wildcard search
Wildcard search is the ability to match user query terms to fragments of words in indexed text.

Normally, Endeca search operations (such as record search and dimension search) match user query
terms to entire words in the indexed text. For example, searching for the word run only returns results
containing the specific word run.Text containing run as a substring of larger words (such as running
or overrun) does not result in matches.

With wildcard search enabled, the user can enter queries containing the special asterisk or star operator
(*). The asterisk operator matches any string of zero or more characters. Users can enter a search
term such as *run*, which will match any text containing the string run, even if it occurs in the middle
of a larger word such as brunt.

Wildcard search is useful for performing text search on data fields such as part numbers, ISBNs, and
SKUs. Unlike cases where search is performed against normal linguistic text, in searches against data
fields it may be convenient or even necessary for the user to enter partial string values. Details on
how data fields that include punctuation characters are processed are provided in this section.

For example, suppose users were searching a database of integrated circuits for Intel 486 CPU chips.
The database might contain records with part numbers such as 80486SX and 80486DX, because
these are the full part numbers specified by the manufacturer. But to end users, these chips are known
by the more generic number 486. In such cases, wildcard search is a natural feature to bridge the gap
between user terminology and the source data.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words that
are shorter than 1024 characters. Words that are longer than 1024 characters are not indexed
for wildcard search.

Interaction of wildcard search with other features
The table in this topic describes whether various features are supported for queries that execute a
wildcard search.

CommentsSupport with
wildcard search

Feature

NoStemming

NoThesaurus matching

Auto-correct and “Did you mean?” are not supported.NoMisspelling correction

YesRelevance ranking

YesBoolean search

NoSnippeting

NoPhrase search

YesWhy did it match

YesWord interp

Ways to configure wildcard search
You use Developer Studio to configure wildcard search in your application, using one of these dialogs:
the Dimension and Property editors, the Dimension Search Configuration editor, and the Search
Interface editor. The following topics provide details on these configuration options.

Configuring wildcard search with Dimension and Property editors
The Dimension and Property editors of Developer Studio allow you to enable wildcard search for
any Endeca property or dimension.

Before you can enable wildcard search with Dimension and Property editors, you must first:

• Select the property or dimension for which you want to enable wildcard search.

• Check the Enable Record Search option in both editors for the specified Endeca property or
dimension.

Note: If you use this method, you will only affect records enabled for search, but not
dimensions enabled for search. (For dimensions enabled for search, you can enable wildcard
search for ALL dimensions at once.)

To configure wildcard search in Dimension and Property editors:

1. In Developer Studio, go to Dimension or Property editor and select a Search tab.

2. In the Search tab, check Enable Wildcard Search option, as shown in the following example:

Note: This configuration affects only a single property or dimension that you have selected.
For a dimension, it only affects record search for that dimension.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Wildcard Search | Ways to configure wildcard search222

Configuring wildcard search with the Dimension Search Configuration
editor

The Dimension Search Configuration editor in Developer Studio lets you configure wildcard search
for all dimensions in your project.

Unlike the option for enabling wildcard search in the Search tab of the Dimension editor, which affects
only a single dimension, the Dimension Search Configuration editor globally sets the options for all
dimensions in a project.

Note: When you enable wildcard search for all dimensions in a project, this affects your results
when you perform dimension search (that is, this does not apply to record search. For record
search, you enable wildcard search per each property or dimension.)

To configure wildcard search with Dimension Search Configuration editor:

Check the Enable Wildcard Search option, as shown in the following example:

Configuring wildcard search with the Search Interface editor
You can enable wildcard matching for a search interface by adding one or more wildcard-enabled
properties and dimensions to the search interface.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

223Using Wildcard Search | Ways to configure wildcard search

Use the Search Interface editor in Developer Studio to add the desired properties and dimensions.
Wildcard search can be partially enabled for a search interface. That is, some members of the search
interface are wildcard-enabled while the others are not.

Searches against a partially wildcard-enabled search interface follow these rules:

• The search results from a given member follow the rules of its configuration. That is, results from
a wildcard-enabled member follow the rules of wildcard search while results from non-wildcard
members follow the rules for non-wildcard searches.

• The final result is a union of the results of all the members (whether or not they are
wildcard-enabled).

You should keep these rules in mind when analyzing search results. For example, assume that in a
partially wildcard-enabled search interface, Property-W is wildcard-enabled while Property-X is
not. In addition, the asterisk (*) is not configured as a search character. A record search issued for
woo* against that search interface may return the following results:

• Property-W returns records with woo, wood, and wool.

• Property-X only returns records with woo, because the query against this property treats the
asterisk as a word break. However, it does not return records with wool and wood, even though
records with those words exist.

However, because the returned record set is a union, the user will see all the records. A possible
source of confusion might be that if snippeting is enabled, the records from Property-X will not have
wood and wool highlighted (if they exist), while the records from Property-W will have all the search
terms highlighted.

To enable wildcard search with the Search Interface editor in Developer Studio:

1. Add the desired properties and dimensions to the search interface.

2. Enable wildcard search for members of the search interface.

Wildcard search can be partially enabled for a search interface. That is, some members of the
search interface are wildcard-enabled while the others are not.

Note: If you have a partially wildcard-enabled search interface, the MDEX Engine logs an
informational message similar to the following example: Search interface "MySearch"
has some fields that have wildcard search enabled and others that do
not. A wildcard search will behave differently when applied to wildcard
enabled fields than when applied to other fields in this search
interface (see the documentation for more details). Fields with wildcard
indexing enabled: "Authors" "Titles" Fields with wildcard indexing
disabled: "Price". The message is only for informational purposes and does not affect
the search operation.

MDEX Engine flags for wildcard search
There is no MDEX Engine configuration required to enable wildcard search. If wildcarding is enabled
in Developer Studio, the MDEX Engine automatically enables the use of the asterisk operator (*) in
appropriate search queries.

The following considerations apply to wildcard search queries that contain punctuation, such as
abc*.d*f:

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Wildcard Search | MDEX Engine flags for wildcard search224

The MDEX Engine rejects and does not process queries that contain only wildcard characters and
punctuation or spaces, such as *., * *. Queries with wildcards only are also rejected.

The maximum number of matching terms for a wildcard expression is 100 by default.You can modify
this value with the --wildcard_max flag for the Dgraph.

If a search query includes a wildcard expression that matches too many terms, the search returns
results for the top frequent terms and the is_valid flag is set to false in the record search report.

To retrieve the error message, use the ESearchReport.getErrorMessage() method (Java), or
ESearchReport.ErrorMessage property (.NET).

In case of wildcard search with punctuation, you may want to increase --wildcard_max, if you would
like to increase the number of returned matched results. For more information on tuning this parameter,
see the Performance Tuning Guide.

Other flags or attributes that existed in previous releases for tuning wildcard search are deprecated
starting with the version 6.1.2 and ignored by the MDEX Engine.

Presentation API development for wildcard search
No specific Presentation API development is required to use wildcard search.

If wildcard search is enabled during indexing, users can enter search queries containing asterisk
operators to request partial matching.

There are no special MDEX Engine URL parameters, method calls, or object types associated with
wildcard search.

Whereas the simplest use of wildcard search requires users to explicitly include asterisk operators in
their search queries, some applications automate the inclusion of asterisk operators as a convenience,
or control the use of asterisk operators using higher-level interface elements.

For example, an application might render a radio button next to the search box with options to select
Whole-word Match or Substring Match. In Substring Match mode, the application might automatically
add asterisk operators onto the ends of all user search terms. Interfaces such as this make wildcard
search more easily accessible to less sophisticated user communities to which use of the asterisk
operator might be unfamiliar.

Performance impact of wildcard search
To optimize performance of wildcard search, use the following recommendations.

• Account for increased time needed for indexing. In general, if wildcard search is enabled in
the MDEX Engine (even if it is not used by the users), it increases the time and disk space required
for indexing. Therefore, consider first the business requirements for your Endeca application to
decide whether you need to use wildcard search.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words
that are shorter than 1024 characters. Words that are longer than 1024 characters are not
indexed for wildcard search.

• Do not use "low information" queries. For optimal performance, Endeca recommends using
wildcard search queries with at least 2-3 non-wildcarded characters in them, such as abc* and

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

225Using Wildcard Search | Presentation API development for wildcard search

ab*de, and avoiding wildcard searches with one non-wildcarded character, such as a*. Wildcard
queries with extremely low information, such as a*, require a significant amount of time to process.
Queries that contain only wildcards, or only wildcards and punctuation or spaces, such as *. or
* *, are rejected by the MDEX Engine.

• Analyze the format of your typical wildcard query cases.This lets you be aware of performance
implications associated with one specific wildcard search pattern.

For example, it is useful to know that if search queries contain only wildcards and punctuation,
such as *.*, the MDEX Engine rejects them for performance reasons and returns no results.

Do you have queries that contain punctuation syntax in between strings of text, such as
ab*c.def*?

For strings with punctuation, the MDEX Engine generates lists of words that match each of the
punctuation-separated wildcard expressions. Only in this case, the MDEX Engine uses the
--wildcard_max <count> setting to optimize its performance.

Increasing the --wildcard_max <count> improves the completeness of results returned by
wildcard search for strings with punctuation, but negatively affects performance. Thus you may
want to find the number that provides a reasonable trade-off. For more detailed information on this
type of tuning, see the Performance Tuning Guide.

Note: You enable wildcard search in Developer Studio.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Using Wildcard Search | Performance impact of wildcard search226

Chapter 23

Search Characters

This section describes the semantics of matching search queries to result text.

Using search characters
The Endeca MDEX Engine supports configurable handling of punctuation and other non-alphanumeric
characters in search queries.

This section does the following:

• Describes the semantics of matching search queries to result text (that is, records in record search
or dimension values in dimension search) when either the query or result text contains
non-alphanumeric characters.

• Explains how you can control this behavior using the search characters feature of the Endeca
MDEX Engine.

• Provides information about features supporting special handling for ISO-Latin1 and Windows
CP1252 international characters during search indexing and query processing.

Note: Modifying search characters has no effect on Chinese, Japanese, or Korean language
tokenization.

Query matching semantics
The semantics of matching search queries to text containing special non-alphanumeric characters in
the Endeca MDEX Engine is based on indexing various forms of source text containing such characters.

Basically, user query terms are required to match exactly against indexed forms of the words in the
source text to result in matches. Thus, to understand the behavior of query matching in the presence
of non-alphanumeric characters, one must understand the set of forms indexed for source text.

Categories of characters in indexed text
The Endeca system divides characters in indexed text into three categories:

• Alphanumeric characters including ASCII characters as well as non-punctuation characters in
ISO-Latin1 and Windows CP1252.

• Non-alphanumeric search characters (configured using the search characters feature, as described
below).

• Other non-alphanumeric characters (this category is the default for all non-alphanumeric characters
not explicitly configured to be in group 2).

During data processing, each word in the source text (that is, searchable properties for record search,
dimension values for dimension search) is indexed based on the alternatives for handling characters
from the three categories, which is described in subsequent topics.

Indexing alphanumeric characters
Alphanumeric characters are included in all forms.

Because Endeca search operations are not case sensitive, alphabetic characters are always included
in lowercase form, a technique commonly referred to as case folding.

Indexing search characters
Search characters are non-alphanumeric characters that are specified as searchable.

Search characters are included as part of the token.

Indexing non-alphanumeric characters
The way non-alphanumeric characters that are not defined as search characters are treated depends
on whether they are considered punctuation characters or symbols.

• Non-alphanumeric characters considered to be punctuation are treated as white space. In a
multi-word search with the words separated by punctuation characters, word order is preserved
as if it were a phrase search. The following characters are considered to be punctuation: ! @ # &
() – [{ }] : ; ', ? / *

• Non-alphanumeric characters that are considered to be symbols are also treated as white space.
However, unlike punctuation characters, they do not preserve word order in a multi-word search.
If a symbol character is adjacent to a punctuation character, the symbol character is ignored. That
is to say, the combination of the symbol character and the punctuation character is treated the
same as the punctuation character alone. For example, a search on ice-cream would return the
same results as a phrase search for “ice cream”, while a search for ice~cream would return the
same results as simply searching for ice cream. A search on ice-~cream would behave the same
way as a search on ice-cream. Symbol characters include the following: ` ~ $ ^ + = < > “

Search query processing
The semantics of matching search query terms to result text containing non-alphanumeric characters
are described in this topic.

• During query processing, each user query term is transformed to replace all non-alphanumeric
characters that are not marked as search characters with delimiters (spaces).

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Search Characters | Search query processing228

Non-alphanumeric characters considered to be punctuation (! @ # & () – [{ }] : ; ', ? / *) are
treated as white space and preserve word order. This means that the equivalent of a quoted

•

phrase search is generated. For that reason, all search features that are incompatible with
quoted phrase search, such as spelling correction, stemming, and thesaurus expansion, are
not activated. (For details, see the chapter "About phrase search.")

• Non-alphanumeric characters that are considered to be symbols (` ~ $ ^ + = < > “) are also
treated as white space. However, unlike punctuation characters, they do not preserve word
order in a multi-word search.

• Alphabetic characters in the user query are replaced with lowercase equivalents, to ensure that
they match against case-folded indexed strings.

• Each query term in the transformed query must exactly match some indexed string from the given
source text for the text to be considered a hit.

As noted above, when parsing user-entered search terms, a query with non-searchable characters is
transformed to replace all non-alphanumeric characters (that are not marked as search characters)
with white space, but the treatment of word order depends on whether the character in question is
considered to be a punctuation character or a symbol. The search behavior preserves the word order
and proximity of the search term only in the case of punctuation characters.

For example, a search query for ice-cream will replace the hyphen (a punctuation character) with white
space and return only records with this text:

• ice-cream
• ice cream

Records with this text are not returned because the word order and word proximity of text does not
match the original query term:

• cream ice
• ice in the cream container

However, assuming the match mode is MatchAll, a search for ice~cream would return non-contiguous
results for [ice AND cream].

Implementing search characters
Search indexing distinguishes between alphanumeric characters and non-alphanumeric characters
and supports the ability to mark some non-alphanumeric characters as significant for search operations.

You mark a non-alphanumeric character as a search character in the Search Characters editor in
Developer Studio.

Note: Search characters are configured globally for all search operations. For example, adding
the plus (+) character marks it as a search character for dimension search, record search, record
search group, and navigation state search operations.

Dgidx flags for search characters
There are no Dgidx flags that are necessary to enable the search characters feature. Dgidx automatically
detects the configured search characters.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

229Search Characters | Implementing search characters

Presentation API development for search characters
The search characters feature does not require any Presentation API development.

There are no relevant MDEX Engine parameters to control this feature, nor does this feature introduce
any additional method calls or object types.

MDEX Engine flags for search characters
There are no MDEX Engine flags necessary to enable the search characters feature. The MDEX
Engine automatically detects the additional search characters.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Search Characters | Presentation API development for search characters230

Chapter 24

Examples of Query Matching Interaction

The following examples of query matching interaction use record search, but the general matching
concepts apply in all other search features supported by the MDEX Engine.The tables below illustrate
the combined effects of various features by exposing text matches for given record search queries.
In all cases we assume MatchAll search mode.

Record search without search characters enabled
In this example, the hyphen (-) is not specified as a search character.

In this table, 1 through 4 represent the text, while a through d represent the query.

d) "ice cream"c) icecreamb) ice-creama) ice cream

YesIf word-break
analysis is used,

YesYes1. ice cream

this alternate form
will be included for
consideration as a
spelling correction.
It will be ranked for
quality and
considered
alongside other
results when the
query is executed.

YesYesIf word-break
analysis is used,

If word-break
analysis is used,

2. icecream

this alternate formthis alternate form
will be included forwill be included for
consideration as aconsideration as a
spelling correction.spelling correction.
It will be ranked forIt will be ranked for
quality andquality and
consideredconsidered
alongside otheralongside other

results when the
query is executed.

results when the
query is executed.

YesIf word-break
analysis is used,

YesYes3. ice-cream

this alternate form
will be included for
consideration as a
spelling correction.
It will be ranked for
quality and
considered
alongside other
results when the
query is executed.

NoNoNoYes. Note that by
using Phrase

4. cream ice

relevance ranking,
the priority of this
text would be
lowered.

Note: Keep in mind that although an alternate form is considered for spelling correction, the
form will be discarded if the original terms return enough results.

Record search with search characters enabled
In this example, the hyphen (-) has been specified as a search character.

In this table, 1 through 4 represent the text, while a through d represent the query.

d) "ice cream"c) icecreamb) ice-creama) ice cream

YesYes, if word-break
analysis is used.

NoYes1. ice cream

NoYesYes, if espell is
enabled and the

Yes, if word-break
analysis is used.

2. icecream

--spellnum Dgidx
option is enabled.

NoYes, if espell is
enabled and the

YesNo3. ice-cream

--spellnum Dgidx
option is enabled.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Examples of Query Matching Interaction | Record search with search characters enabled232

NoNoNoYes4. cream ice

Record search with wildcard search enabled but without
search characters

In this example, the hyphen (-) has not been specified as a search character, and wildcards are used
in the queries.

In this table, 1 through 4 represent the text, while a through e represent the query.

e) ic*rea*d) "ice crea*"c) icecrea*b) ice-crea*a) ice crea*

NoNoYes, if
word-break

YesYes1. ice cream

analysis is
used.

YesNoYesYes, if
word-break

Yes, if
word-break

2. icecream

analysis is
used.

analysis is
used.

NoNoYes, if
word-break

YesYes3. ice-cream

analysis is
used.

NoNoNoNoYes. Note that
by using

4. cream ice

Phrase
relevance
ranking, the
priority of this
text would be
lowered.

Record search with both wildcard search and search
characters enabled

In this example, the hyphen (-) has been specified as a search character, and wildcards are used in
the queries.

In this table, 1 through 4 represent the text, while a through e represent the query.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

233Examples of Query Matching Interaction | Record search with wildcard search enabled but without
search characters

e) ic*rea*d) "ice crea*"c) icecrea*b) ice-crea*a) ice crea*

NoNoYes, if
word-break

NoYes1. ice cream

analysis is
used.

YesNoYesNoYes, if
word-break

2. icecream

analysis is
used.

YesNoNoYesNo3. ice-cream

NoNoNoNoYes4. cream ice

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Examples of Query Matching Interaction | Record search with both wildcard search and search characters
enabled

234

Appendix A

Endeca URL Parameter Reference

This appendix provides a reference to the Endeca Presentation API’s URL-based syntax for navigation,
record, aggregated record, and dimension search queries.

About the Endeca URL query syntax
The Endeca query syntax defines how the client browser communicates with the Presentation API.

This appendix describes two methods:

• URL parameters
• ENEQuery setter methods (Java) and properies (.NET)

URL parameter description format

The tables in this appendix describe the Endeca query parameters, using the following characteristics:

The query parameter, which is case-sensitive.Parameter

The common name for the query parameter.Name

The corresponding ENEQuery Java setter method for the parameter.Java setter method

The corresponding ENEQuery .NET setter property for the parameter..NET setter property

The type of valid value for the query parameter.Type

The basic MDEX result object that this parameter is associated with.Description

A description of the query parameter, including information about its
arguments.

Object

Additional query parameters that are required to give this parameter context.Dependency

In addition, an example of the query parameter use is given after the table.

About primary parameters

The following parameters are primary parameters:

• N (Navigation)
• R (Record)
• A (Aggregated Record)

• An (Aggregated Record Descriptors)
• Au (Aggregated Record Rollup Key)
• D (Dimension Search)

All other parameters are secondary. In order to use the secondary parameters in a query, you must
include the primary parameters associated with that query type. For example, you cannot use a
Dimension Search Scope (Dn) parameter without a Dimension Search (D) parameter

Note that the A, An, and Au parameters are mandatory for all aggregated record queries and must
always be used together.

N (Navigation)
The N parameter sets the navigation field for a query.

NParameter

NavigationName

ENEQuery.setNavDescriptors()Java setter method

ENEQuery.NavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

A unique combination of dimension value IDs that defines each navigation
object. The root navigation object is indicated when zero is the only value in
the parameter.

Description

NavigationObject

noneDependency

Examples

/controller.php?N=0

/controller.php?N=132831+154283

Nao (Aggregated Record Offset)
The Nao parameter sets the navigation aggregated record list offset.

NaoParameter

Aggregated Record OffsetName

ENEQuery.setNavAggrERecsOffset()Java setter method

ENEQuery.NavAggrERecsOffset.NET setter property

intType

Specifies a number indicating the starting index of an aggregated record list.
This parameter is similar to No (Record Offset) but for aggregated records.

Description

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | N (Navigation)236

NavigationObject

N, NuDependency

Examples

/controller.php?N=0&Nao=3&Nu=ssn

/controller.php?N=132831+154283&Nao=15&Nu=ssn

Ndr (Disabled Refinements)
The Ndr parameter lets you display disabled refinements.

NdrParameter

Disabled RefinementsName

setNavDisabledRefinementsConfigJava setter method

NavDisabledRefinementsConfig.NET setter property

<basedimid>+<textsearchesinbase>+<true/false>+<eqlfilter¬
inbase>+<true/false><rangefiltersinbase>+<true/false>+...

Type

Determines which dimension refinements are not available for navigation in the
current navigation state but would have been available if the top-level navigation

Description

filters, such as previously chosen dimensions, range filters, EQL filters, text
filters or text searches were to be removed from this navigation state.

Configuration settings include:

• <basedimID> — an ID of a dimension that is to be included in the base
navigation state.

• <eqlfilterinbase> — a true or false value indicating whether the EQL
filter is part of the base navigation state.

• <textsearchesinbase> — a true or false value indicating whether text
searches are part of the base navigation state.

• <rangefiltersinbase> — a true or false value indicating whether range
filters are part of the base navigation state.

When the Ndr parameter equals zero, no disabled refinement values are
returned for any dimensions (which improves performance).

NavigationObject

NDependency

Examples

The first example illustrates a query that enables disabled refinements to be returned. In this example,
the Ndr portion of the UrlENEQuery URL indicates that:

• Text search should be included in the base navigation state.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

237Endeca URL Parameter Reference | Ndr (Disabled Refinements)

• The navigation selections from the dimension with ID 100000 should be included in the base
navigation state.

/graph?N=110001+210001&Ne=400000&Ntk=All&Ntt=television&Ndr=textsearchesin¬
base+true+basedimid+100000

In the second example of a query, in addition to text searches, the EQL filters and range filters are
also listed (they are set to false):

N=134711+135689&Ntk=All&Ntt=television&Ndr=basedimid+100000+textsearchesin¬
base+true+eqlfilterinbase+false+rangefiltersinbase+false

Ne (Exposed Refinements)
The Ne parameter sets the dimension navigation refinements that will be exposed.

NeParameter

Exposed RefinementsName

ENEQuery.setNavExposedRefinements()Java setter method

ENEQuery.NavExposedRefinements.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Determines which dimension navigation refinements are exposed. When the
Ne parameter equals zero, no refinement values are returned for any dimensions

Description

(which improves performance). When this parameter contains valid dimension
value IDs, refinement values are only returned for that dimension.

NavigationObject

NDependency

Examples

/controller.php?N=132831+154283&Ne=0

/controller.php?N=132831+154283&Ne=134711

Nf (Range Filter)
The Nf parameter sets the range filters for the navigation query.

NfParameter

Range FilterName

ENEQuery.setNavRangeFilters()Java setter method

ENEQuery.NavRangeFilters.NET setter property

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Ne (Exposed Refinements)238

<string>|[[LT|LTEQ|GT|GTEQ] <numeric value> |BTWN <numeric value>
<numeric value>]

Type

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the range filters for the navigation query on properties, or for the navigation
query on dimensions. Multiple filters are specified by a vertical pipe (|) delimiting
each filter.

Description

Accepts property and dimension values of Numeric type (Integer, Floating point,
DateTime), or Geocode type. For values of type Floating point, you can specify
values using both decimal (0.00...68), and scientific notation (6.8e-10).

NavigationObject

NDependency

Examples

/controller.php?N=0&Nf=Price|GT+15

/controller.php?N=0&Nf=Price|BTWN+9+13

/controller.php?N=0&Nf=Location|GCLT+42.365615,-71.075647+10

Nmpt (Merchandising Preview Time)
The Nmpt parameter sets a preview time for the application.

NmptParameter

Merchandising Preview TimeName

ENEQuery.setNavMerchPreviewTime()Java setter method

ENEQuery.NavMerchPreviewTime.NET setter property

<string> value of the form:

YYYY-MM-DDTHH:MM

Type

The letter T is a separator between the day value and the hour value. Time
zone information is omitted.

Sets a preview time that overrides the clock of the MDEX Engine. Allows the
user to preview the results of dynamic business rules that have time values

Description

associated with their triggers. This is a testing convenience for rules with time
triggers.

NavigationObject

NDependency

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

239Endeca URL Parameter Reference | Nmpt (Merchandising Preview Time)

Example

/controller.php?N=0&Nmpt=2006-10-15T18:00&Ne=1000

Nmrf (Merchandising Rule Filter)
The Nmrf parameter sets a dynamic business rule filter for the navigation query.

NmrfParameter

Merchandising Rule FilterName

ENEQuery.setNavMerchRuleFilter()Java setter method

ENEQuery.NavMerchRuleFilter.NET setter property

This filter can include strings, integers, separator characters, Boolean operators,
wildcard operators, and Endeca property values.

Type

This parameter can be used to specify a rule filter that restricts the results of a
navigation query to only the records that can be promoted by rules that match
the filter.

Description

NavigationObject

NDependency

Examples

/controller.php?N=0&Nmrf=or(state:pending,state:approved)

/controller.php?N=0&Nmrf=or(1,5,8)

No (Record Offset)
The No parameter sets the navigation record list offset.

NoParameter

Record OffsetName

ENEQuery.setNavERecsOffset()Java setter method

ENEQuery.NavERecsOffset.NET setter property

intType

The offset defines the starting index for a navigation object’s record list. If the
No parameter is 20, the list of items returned in a navigation object’s record list
will begin with item 21. (Offset is a zero-based index.)

Description

This parameter allows users to page through a long result set, either directly
or step by step. If an offset is greater than the number of items in a navigation
object’s record list, then the record list returned will be empty.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Nmrf (Merchandising Rule Filter)240

NavigationObject

NDependency

Example

/controller.php?N=132831+154283&No=20

Np (Records per Aggregated Record)
The Np parameter sets the maximum number of records to be returned in each aggregated record.

NpParameter

Records per Aggregated RecordName

ENEQuery.setNavERecsPerAggrERec()Java setter method

ENEQuery.NavERecsPerAggrERec.NET setter property

0, 1, or 2Type

Specifies the number of records to be returned with an aggregated record:Description

• A value of 0 means that no records are returned with each aggregated
record.

• A value of 1 means that a single representative record is returned with each
aggregate record.

• A value of 2 means that all records are returned with each aggregated
record.

To improve performance, use 0 or 1.

NavigationObject

N, NuDependency

Example

/controller.php?N=0&Nu=ssn&Np=0

Nr (Record Filter)
The Nr parameter sets a record filter on a navigation query.

NrParameter

Record FilterName

ENEQuery.setNavRecordFilter()Java setter method

ENEQuery.NavRecordFilter.NET setter property

<string>Type

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

241Endeca URL Parameter Reference | Np (Records per Aggregated Record)

This parameter can be used to specify a record filter expression that will restrict
the results of a navigation query.

Description

NavigationObject

NDependency

Examples

/controller.php?N=0&Nr=FILTER(MyFilter)

/controller.php?N=0&Nr=OR(sku:123,OR(sku:456),OR(sku:789))

Nrc (Dynamic Refinement Ranking)
The Nrc parameter sets a dynamic refinement configuration for the navigation query.

NrcParameter

Dynamic Refinement RankingName

ENEQuery.setNavRefinementConfigs()Java setter method

ENEQuery.NavRefinementConfigs.NET setter property

<string>+<string>+<string>...Type

Sets one or more dynamic refinement configurations for the navigation query.
Each dynamic refinement configuration is delimited by the pipe character and

Description

must have the id setting. Note that this parameter works only if dynamic
refinement ranking has been enabled.

The configuration settings are:

• id (the dimension value ID)
• exposed (either true if the dimension value's refinements are exposed or

false if not)
• dynrank (whether the dimension value has Dynamic Ranking enabled:

enabled, disabled, or default)
• dyncount (maximum number of dimension values to return: either default

or an integer >= 0)
• dynorder (sort order: static, dynamic, or default)

Omitting a setting or specifying default results in using the setting in Developer
Studio.

NavigationObject

NDependency

Example

/controller.php?N=0&Nrc=id+134711+exposed+true+dynrank+enabled
 +dyncount+20+dynorder+dynamic|id+132830+dyncount+7

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Nrc (Dynamic Refinement Ranking)242

Nrcs (Dimension Value Stratification)
The Nrcs parameter sets the list of stratified dimension values for use during refinement ranking by
the MDEX Engine.

NrcsParameter

Dimension Value StratificationName

ENEQuery.setNavStratifiedDimVals()Java setter method

ENEQuery.NavStratifiedDimVals.NET setter property

int,int;int,int;...Type

Sets the stratification configuration for a list of dimension values. The stratified
dimension values are delimited by semi-colons (;) and each stratified dimension
value is in the format:

stratumInt,dimvalID

Description

where dimvalID is the ID of the dimension value and stratumnt is a signed
integer that signifies that stratum into which the dimension value will be placed.
For stratumInt, a positive integer will boost the dimension value while a negative
integer will bury it. Dimension values that are not specified will be assigned the
strata of 0.

NavigationObject

NDependency

Example

/controller.php?N=0&Nrcs=2,4001;2,3429;1,4057;1,4806;1,4207;-1,5408;-1,4809

Nrk (Relevance Ranking Key)
The Nrk parameter sets the search interface to be used when using relevance ranking in a record
search.

NrkParameter

Relevance Ranking KeyName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<search interface>Type

Sets the search interface to be used when using relevance ranking in a record
search. Note that the search interface is not required to have a relevance ranking
strategy implemented.

Description

Dimension names or property names are not supported for this parameter, only
search interfaces. In addition, this parameter does not support multiple search
interfaces; therefore, the use of a pipe (|) is not allowed.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

243Endeca URL Parameter Reference | Nrcs (Dimension Value Stratification)

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk,
Ntt, and Ntx.

NavigationObject

N, Nrt, NrrDependency

Example

/controller.php?N=0&Ntk=P_Desc&Ntt=sono¬
ma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Nrm (Relevance Ranking Match Mode)
The Nrm parameter sets the relevance ranking match mode to be used to rank the results of the record
search.

NrmParameter

Relevance Ranking Match ModeName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>Type

With the exception of MatchBoolean, all of the search modes are valid for use:
MatchAll, MatchPartial, MatchAny, MatchAllAny, MatchAllPartial, and

Description

MatchPartialMax. Attempting to use MatchBoolean with this parameter will
cause the record search results to be returned without relevance ranking.

This parameter does not support multiple match modes; therefore, the use of
a pipe (|) is not allowed.

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk,
Ntt, and Ntx.

This parameter is not supported for use with the Aggregated MDEX Engine
(Agraph).

NavigationObject

N, Nrk, Nrt, NrrDependency

Example

/controller.php?N=0&Ntk=P_Desc&Ntt=sono¬
ma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Nrm (Relevance Ranking Match Mode)244

Nrr (Relevance Ranking Strategy)
The Nrr parameter sets the relevance ranking strategy to be used to rank the results of the record
search.

NrrParameter

Relevance Ranking StrategyName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>Type

Sets the relevance ranking strategy to be used to rank the results of the record
search.The valid id module names that can be used are: exact, field, first, freq,

Description

glom, interp, maxfield, nterms, numfields, phrase, proximity, spell, compound,
stem, thesaurus, and static.

This parameter does not support multiple relevance ranking strategies; therefore,
the use of a pipe (|) is not allowed.

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk,
Ntt, and Ntx.

This parameter is not supported for use with the Aggregated MDEX Engine
(Agraph).

NavigationObject

N, Nrk, NrtDependency

Example

/controller.php?N=0&Ntk=P_Desc&Ntt=sono¬
ma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Nrs (Endeca Query Language Filter)
The Nrs parameter sets an EQL record filter on a navigation query.

NrsParameter

Endeca Query Language FilterName

ENEQuery.setNavRecordStructureExpr()Java setter method

ENEQuery.NavRecordStructureExpr.NET setter property

<string>Type

Sets the Endeca Query Language expression for the navigation query. The
expression will act as a filter to restrict the results of the query.

Description

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

245Endeca URL Parameter Reference | Nrr (Relevance Ranking Strategy)

The Nrs parameter must be URL-encoded. For clarity’s sake, however, the
example below is not URL-encoded.

NavigationObject

NDependency

Examples

/controller.php?N=0&Nrs=collection()/record[type="book"]

Nrt (Relevance Ranking Terms)
The Nrt parameter sets the terms by which the relevance ranking module will order the results of the
record search.

NrtParameter

Relevance Ranking TermsName

ENEQuery.setNavRelRankERecRank()Java setter method

ENEQuery.NavRelRankERecRank.NET setter property

<string>+<string>+<string>...Type

Sets the terms by which the relevance ranking module will order the records.
Each term is delimited by a plus sign (+). Note that these terms can be different
from the search terms used in the record search.

Description

This parameter does not support multiple sets of terms; therefore, the use of a
pipe (|) is not allowed.

The Nrt parameter must be used with the Nrk parameter (which sets the search
interface) and the Nrr parameter (which indicates the relevance ranking strategy
to use for ordering the record set).

Note that the Nrk, Nrt, Nrr, and Nrm parameters take precedence over Ntk,
Ntt, and Ntx.

This parameter is not supported for use with the Aggregated MDEX Engine
(Agraph).

NavigationObject

N, Nrk, NrrDependency

Example

/controller.php?N=0&Ntk=P_Desc&Ntt=sono¬
ma&Nrk=All&Nrt=pear&Nrr=field&Nrm=matchall

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Nrt (Relevance Ranking Terms)246

Ns (Sort Key)
The Ns parameter sets the list of keys that will be used to sort records.

NsParameter

Sort KeyName

ENEQuery.setNavActiveSortKeys()Java setter method

ENEQuery.NavActiveSortKeys.NET setter property

Ns=sort-key-names[(geocode)][|sort order][||…]Type

Specifies a list of properties or dimensions (sort keys) by which to sort the
records, and an optional list of directions in which to sort.

Description

In other words, in order to sort records returned for a navigation query, you
must append a sort key parameter (Ns) to the query, using the following syntax:

Ns=sort-key-names[(geocode)][|sort order][||…]

A sort key is a dimension or property name enabled for sorting on the data set.
Optionally, each sort key can specify a sort order of 0 (ascending sort, the
default) or 1 (descending sort).The records are sorted by the first sort key, with
ties being resolved by the second sort key, whose ties are resolved by the third
sort key, and so on.

Whether the values for the sort key are sorted alphabetically, numerically, or
geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument
to the sort key parameter (noting that the sort key parameter must be a geocode
property). Records are sorted by the distance from the geocode reference point
to the geocode point indicated by the property key.

Sorting can only be performed when accompanying a navigation query.
Therefore, the sort key (Ns) parameter must accompany a basic navigation
value parameter (N).

NavigationObject

NDependency

Examples

N=132831+154283&Ns=Price|1

N=0&Ns=Price
N=101&Ns=Price|1||Color
N=101&Ns=Price|1||Location(43,73)

Nso (Sort Order)
The Nso parameter sets the sort order for the record list of the navigation object.

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

247Endeca URL Parameter Reference | Ns (Sort Key)

NsoParameter

Sort OrderName

ENEQuery.setNavSortOrder()Java setter method

ENEQuery.NavSortOrder.NET setter property

0 or 1Type

Specifies the sort order for a navigation object’s record list:
Description

• A value of 0 indicates an ascending sort, which is the default if the Nso
parameter is not present.

• A value of 1 indicates a descending sort.

Note that previously, a sort key was specified with the Ns=key parameter and
a sort order was specified with Nso=1.The Nso parameter has been deprecated.
Now, the preferred way of specifying the sort order is also through the Ns
parameter, using Ns=key|1.

NavigationObject

N, NsDependency

Example

/controller.php?N=132831+154283&Ns=Price&Nso=1

Ntk (Record Search Key)
The Ntk parameter sets which dimension, property, or search interface will be evaluated when
searching.

NtkParameter

Record Search KeyName

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<search key>Type

Sets the keys of the record search for the navigation query. The keys are
delimited by a pipe (|). Search keys can be either valid dimension names or

Description

property names enabled for record search in the data set. The search key can
also be a search interface.

The Ntk parameter must be used with the Ntt parameter, which indicates the
search terms for each key. In addition, Ntt should have the same number of
term sets as Ntk has keys.

Note that there is no explicit text search descriptor API object, so displays of
text search descriptors need to be extracted from the current query.

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Ntk (Record Search Key)248

NavigationObject

N, Ntt.Dependency

Examples

/controller.php?N=0&Ntk=DESCRIP&Ntt=merlot+1996

/controller.php?N=132831&Ntk=DESCRIP&Ntt=merlot+1996

Ntpc (Compute Phrasings)
The Ntpc parameter sets whether the MDEX Engine computes alternative phrasings for the current
query.

NtpcParameter

Compute PhrasingsName

ENEQuery.setNavERecSearchComputeAlternativePhrasings()Java setter method

ENEQuery.NavERecSearchComputeAlternativePhrasings.NET setter property

0 or 1Type

Specifies whether to turn on the computed alternative phrasings feature for a
record search (a value of 1) or to turn it off (a value of 0). 0 is the default.

Description

NavigationObject

N, Ntk, Ntt.Nty is also a dependency if Did You Mean and automatic phrasing
are being used.

Dependency

Example

/controller.php?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1

Ntpr (Rewrite Query with an Alternative Phrasing)
The Ntpc parameter sets whether the MDEX Engine uses one of the alternative phrasings it has
computed.

NtprParameter

Rewrite Query with an Alternative PhrasingName

ENEQuery.setNavERecSearchRewriteQueryToAnAlternativePhrasing()Java setter method

ENEQuery.NavERecSearchRewriteQueryToAnAlternativePhrasing.NET setter property

0 or 1Type

Sets whether the MDEX Engine uses one of the alternative phrasings it has
computed instead of the end user's original query when computing the set of

Description

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

249Endeca URL Parameter Reference | Ntpc (Compute Phrasings)

documents to return. 1 instructs the MDEX Engine to use a computed alternative
phrasing, while 0 (the default) instructs it to use the user’s original query.

NavigationObject

N, Ntk, Ntt, Ntpc. Nty is also a dependency if Did You Mean and automatic
phrasing are being used.

Dependency

Example

/controller.php?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1&Ntpr=1

Ntt (Record Search Terms)
The Ntt parameter sets the actual terms of a record search for a navigation query.

NttParameter

Record Search TermsName

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<string>+<string>+<string>...Type

Sets the terms of the record search for a navigation query. Each term is delimited
by a plus sign (+). Each set of terms is delimited by a pipe (|).

Description

The Ntt parameter must be used with the Ntk parameter, which indicates
which keys of the records to search. In addition, Ntt should have the same
number of term sets as Ntk has keys.

Note that there is no explicit text search descriptor API object, so displays of
text search descriptors need to be extracted from the current query.

NavigationObject

N, Ntk.Dependency

Examples

/controller.php?N=0&Ntk=DESCRIP&Ntt=merlot+1996

/controller.php?N=132831&Ntk=DESCRIP&Ntt=merlot+1996

Ntx (Record Search Mode)
The Ntx parameter sets the options for record search in the navigation query.

NtxParameter

Record Search ModeName

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Ntt (Record Search Terms)250

ENEQuery.setNavERecSearches()Java setter method

ENEQuery.NavERecSearches.NET setter property

<string>+<string>+<string>...Type

Sets the options for record search in the navigation query. The options include:
Description

• mode for specifying a search mode.
• rel for specifying a relevance ranking module.
• spell+nospell for disabling spelling correction and DYM suggestions

on individual queries.
• snip and nosnip operators for enabling or disabling the snippeting feature,

specifying a field to snippet, and configuring how many words to return in
a snippet.

NavigationObject

N, Ntk, NttDependency

Examples

/controller.php?N=0&Ntk=Brand&Ntt=Nike+Adidas&Ntx=mode+matchallany+rel+MyS¬
trategy

/controller.php?N=0&Ntk=Brand&Ntt=Nike+Adidas&Ntx=mode+spell+nospell

Nty (Did You Mean)
The Nty parameter sets the Did You Mean feature for record search in the navigation query.

NtyParameter

Did You MeanName

ENEQuery.setNavERecSearchDidYouMean()Java setter method

ENEQuery.NavERecSearchDidYouMean.NET setter property

0 or 1Type

Sets whether the record search should turn on the "Did You Mean" feature.
This parameter is only used if a full-text query is being made with the navigation.
The default value is 0 (off).

Description

NavigationObject

N, Ntk, NttDependency

Example

/controller.php?N=0&Ntk=DESC&Ntt=merlot+1996&Nty=1

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

251Endeca URL Parameter Reference | Nty (Did You Mean)

Nu (Rollup Key)
The Nu parameter sets the rollup key for aggregated records.

NuParameter

Rollup KeyName

ENEQuery.setNavRollupKey()Java setter method

ENEQuery.NavRollupKey.NET setter property

<dimension or property key>Type

Specifies the dimension or property by which records in a navigation object’s
record list should be aggregated. By setting a key with this parameter,

Description

aggregated Endeca records (AggERec objects) will be returned by the navigation
query instead of Endeca records (ERec objects). Note that the rollup attribute
of the property or dimension must be set in Developer Studio.

NavigationObject

NDependency

Examples

/controller.php?N=0&Nu=ssn

/controller.php?N=13283&Nu=ssn

R (Record)
The R parameter sets the ID of the record to be queried for.

RParameter

RecordName

ENEQuery.setERecs()Java setter method

ENEQuery.ERecs.NET setter property

<record ID>Type

Query to obtain a single specific Endeca record.Description

Record (ERec)Object

noneDependency

Example

/controller.php?R=7

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Nu (Rollup Key)252

A (Aggregated Record)
The A parameter sets the ID of an aggregated record to be queried for.

AParameter

Aggregated RecordName

ENEQuery.setAggrERecSpec()Java setter method

ENEQuery.AggrERecSpec.NET setter property

<agg record ID>Type

Query to obtain a single aggregated record from the MDEX Engine.Description

Aggregated Record (AggrERec)Object

An, Au (Note that A, An, and Au are all considered primary parameters and
must be used together.)

Dependency

Example

/controller.php?A=7&An=123&Au=ssn

Af (Aggregated Record Range Filter)
The Af parameter sets the aggregated record range filters for the navigation query..

AfParameter

Aggregated Record Range FilterName

ENEQuery.setAggERecNavRangeFilters()Java setter method

ENEQuery.AggERecNavRangeFilters.NET setter property

<string>|[[LT|LTEQ|GT|GTEQ] <numeric value> |BTWN <numeric value>
<numeric value>]

Type

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the aggregated record navigation range filters. Multiple filters are delimited
by vertical pipes (|).

Description

Aggregated Record (AggrERec)Object

A, An, AuDependency

Example

/controller.php?A=7&An=123&Au=ssn&Af=Base|GT+100000

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

253Endeca URL Parameter Reference | A (Aggregated Record)

An (Aggregated Record Descriptors)
The An parameter sets the navigation values which the aggregated record will be aggregated in relation
to.

AnParameter

Aggregated Record DescriptorsName

ENEQuery.setAggrERecNavDescriptors()Java setter method

ENEQuery.AggrERecNavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Sets the aggregated record navigation values for the query. An and Au define
the record set from which the aggregated record was created.

Description

Aggregated Record (AggrERec)Object

A, Au (Note that A, An, and Au are all considered primary parameters and must
be used together.)

Dependency

Example

/controller.php?A=7&An=123&Au=ssn

Ar (Aggregated Record Filter)
The An parameter sets the aggregated record navigation record filter.

ArParameter

Aggregated Record FilterName

ENEQuery.setAggERecNavRecordFilter()Java setter method

ENEQuery.AggERecNavRecordFilter.NET setter property

<string>Type

Sets the aggregated record navigation record filter.This filter expression restricts
the records contained in an aggregated record result returned by the MDEX
Engine.

Description

Aggregated Record (AggrERec)Object

A, AnDependency

Example

/controller.php?A=2496&An=0&Au=sku&Ar=OR(10001,20099)

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | An (Aggregated Record Descriptors)254

Ars (Aggregated EQL Filter)
The Ars parameter sets an aggregated record EQL filter.

ArsParameter

Aggregated EQL FilterName

ENEQuery.setAggrERecStructureExpr()Java setter method

ENEQuery.AggrERecStructureExpr.NET setter property

<string>Type

Sets the Endeca Query Language expression for aggregated record query.The
expression will act as a filter to restrict the results of the query.

Description

The Ars parameter must be URL-encoded. For clarity’s sake, however, the
example below is not URL-encoded.

Aggregated Record (AggrERec)Object

ADependency

Example

/controller.php?An=0&A=1&Au=author_nationality
&Ars=collection()/record[recordtype = "author" and not(author_name="kurt
vonnegut")]

As (Aggregated Record Sort Key)
The As parameter sets the list of keys that will be used to sort representative records in an aggregated
record details query.

AsParameter

Aggregated Record Sort KeyName

ENEQuery.setAggrERecActiveSortKeys()Java setter method

ENEQuery.AggrERecActiveSortKeys.NET setter property

As=sort-key-names[(geocode)][|sort order][||…]Type

Specifies a list of properties or dimensions (sort keys) by which to sort the
representative records, and an optional list of directions in which to sort.

Description

In other words, in order to sort representative records in aggregated records,
you must append a sort key parameter (As) to the aggregated record query,
using the following syntax:

As=sort-key-names[(geocode)][|sort order][||…]

A sort key is a dimension or property name enabled for sorting on the data set.
Optionally, each sort key can specify a sort order of 0 (ascending sort, the

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

255Endeca URL Parameter Reference | Ars (Aggregated EQL Filter)

default) or 1 (descending sort). The records are sorted by the first sort key,
with ties being resolved by the second sort key, whose ties are resolved by the
third sort key, and so on.

Whether the values for the sort key are sorted alphabetically, numerically, or
geospatially is specified in Developer Studio.

To sort records by their geocode property, add the optional geocode argument
to the sort key parameter (noting that the sort key parameter must be a geocode
property). Records are sorted by the distance from the geocode reference point
to the geocode point indicated by the property key.

Aggregated Record (AggrERec)Object

A, AnDependency

Example

/controller.php?A=7&An=123&Au=ssn&As=Price|1

Au (Aggregated Record Rollup Key)
The Au parameter sets the rollup key for aggregated records.

AuParameter

Aggregated Record Rollup KeyName

ENEQuery.setAggrERecRollupKey()Java setter method

ENEQuery.AggrERecRollupKey.NET setter property

<dimension or property key>Type

Sets the aggregated record rollup key (a property or dimension) with which the
aggregated record is derived. Note that the rollup attribute of the property or
dimension must be set in Developer Studio.

Description

Aggregated Record (AggrERec)Object

A, AnDependency

Example

/controller.php?A=7&An=123&Au=ssn

D (Dimension Search)
The D parameter sets the dimension search query terms.

DParameter

Dimension SearchName

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Au (Aggregated Record Rollup Key)256

ENEQuery.setDimSearchTerms()Java setter method

ENEQuery.DimSearchTerms.NET setter property

<string>+<string>+<string>...Type

Query to obtain the set of dimension values whose names match the search
term(s).

Description

Dimension Value SearchObject

noneDependency

Examples

/controller.php?D=Merlot

/controller.php?D=Red+White

Df (Dimension Search Range Filter)
The Df parameter sets the navigation range filters that restrict the dimension search.

DfParameter

Dimension Search Range FilterName

ENEQuery.setDimSearchNavRangeFilters()Java setter method

ENEQuery.DimSearchNavRangeFilters.NET setter property

<string>|[[LT|LTEQ|GT|GTEQ] <number> |BTWN <number> <number>]
Type

<key>|[GCLT|GCGT|GCBTWN][+<geocode reference point>]+<value>[+<value>]

Sets the dimension search to be applied to dimension values for those records
that passed the range filter used for this property. Multiple filters are vertical
pipe (|) delimited.

Description

Dimension Value SearchObject

DDependency

Example

/controller.php?D=Merlot&Df=Price|LT+11

Di (Search Dimension)
The Di parameter sets the dimensions which the dimension search can search from.

DiParameter

Search DimensionName

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

257Endeca URL Parameter Reference | Df (Dimension Search Range Filter)

ENEQuery.setDimSearchDimensions()Java setter method

ENEQuery.DimSearchDimensions.NET setter property

<dimension id> or <dimension id>+<dimension id>...Type

The Di parameter can be used with two types of dimension search:
Description

• Default dimension search
• Compound dimension search.

This parameter must be used in conjunction with the D parameter.

Note that by default, all dimensions are enabled for the default dimension search.
If you use Dgidx --compoundDimSearch flag, all dimensions are enabled for
the compound dimension search.

If used for the default dimension search, specify a single dimension for the Di
parameter. The dimension ID value that you specify refers to the single
dimension from which matches will be returned by the MDEX Engine. In other
words, the default dimension search will occur within a single dimension (as
opposed to the standard behavior of the default dimension search to search
across all dimensions).

If used for the compound dimension search, specify a list of dimension value
IDs for the Di parameter. This way, you are requiring that every result returned
has exactly one value from each dimension value ID specified in Di. This
restricts your compound dimension search to the intersection of the specified
dimensions (as opposed to the compound dimension search across all
dimensions).

Note that in order to receive matches when you specify more than one value
for the Di parameter, you must also enable the compound dimension search
by using Dgidx --compoundDimSearch flag. If the compound dimension
search is not enabled and you specify more than one value for the Di parameter,
the MDEX Engine does not return any results (since it can match an intersection
only with the compound dimension search enabled).

Dimension Value SearchObject

DDependency

Examples

/controller.php?D=Merlot&Di=11378

/controller.php?D=red+1996&Di=11+12

Dk (Dimension Search Rank)
The Dk parameter sets how the dimension search results are sorted.

DkParameter

Dimension Search RankName

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Dk (Dimension Search Rank)258

ENEQuery.setDimSearchRankResults()Java setter method

ENEQuery.DimSearchRankResults.NET setter property

0 or 1Type

Sets the dimension search behavior used to rank results:Description

• If set to 0, default dimension value ranking (alpha, numeric or manual as
set in Developer Studio) is used to order dimension search results. This is
the default.

• If set to 1, relevance ranking is used to sort dimension search results.

Dimension Value SearchObject

DDependency

Example

/controller.php?D=Merlot&Dk=1

Dn (Dimension Search Scope)
The Dn parameter sets a navigation state that reduces the scope of a dimension value search.

DnParameter

Dimension Search ScopeName

ENEQuery.setDimSearchNavDescriptors()Java setter method

ENEQuery.DimSearchNavDescriptors.NET setter property

<dimension value id>+<dimension value id>+<dimension value id>...Type

Specifies the navigation values that describe a navigation state that restrict the
number of values that can be searched from.

The Dn parameter takes a single dimension value for a given single-select
dimension, and multiple dimension values for a given multiselect dimension.

Description

When the search query is combined with this parameter, the MDEX Engine
returns dimension values that create valid navigation objects.

Dimension Value SearchObject

DDependency

Example

/controller.php?D=Merlot&Dn=132831

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

259Endeca URL Parameter Reference | Dn (Dimension Search Scope)

Do (Search Result Offset)
The Do parameter sets the dimension search results offset.

DoParameter

Dimension Search OffsetName

ENEQuery.setDimSearchResultsOffset()Java setter method

ENEQuery.DimSearchResultsOffset.NET setter property

intType

Specifies the offset with which the dimension search will begin returning results
per dimension. For example, you could specify an offset of 5 to look at a single
dimension five results at a time.

Description

Dimension Value SearchObject

D, Di, DpDependency

Example

/controller.php?D=Merlot&Di=11378&Dp=3&Do=3

Dp (Dimension Value Count)
The Dp parameter sets the number of dimension value matches to return per dimension.

DpParameter

Dimension Value CountName

ENEQuery.setDimSearchNumDimValues()Java setter method

ENEQuery.DimSearchNumDimValues.NET setter property

intType

Sets the number of dimension value matches to return per dimension. If you
do a dimension search, you normally get all of the results back. If you only want
to see the first three, for example, specify 3 for the Dp parameter.

Description

Dimension Value SearchObject

D, DiDependency

Example

/controller.php?D=Merlot&Di=11378&Dp=3

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Do (Search Result Offset)260

Dr (Dimension Search Filter)
The Dr parameter sets the record filter for the dimension search navigation query.

DrParameter

Dimension Search FilterName

ENEQuery.setDimSearchNavRecordFilter()Java setter method

ENEQuery.DimSearchNavRecordFilter.NET setter property

<string>Type

Sets the dimension search navigation record filter.This filter restricts the scope
of the records that will be considered for a dimension search. Only dimension

Description

values represented on at least one record satisfying the specified filter are
returned as search results.

Dimension Value SearchObject

DDependency

Example

/controller.php?D=Hawaii&Dn=0&Dr=NOT(Subject:Travel)

Drs (Dimension Search EQL Filter)
The Drs parameter sets the dimension search EQL filter.

DrsParameter

Dimension Search EQL FilterName

ENEQuery.setDimSearchNavRecordStructureExpr()Java setter method

ENEQuery.DimSearchNavRecordStructureExpr.NET setter property

<string>Type

Sets the Endeca Query Language filter for a dimension search.This filter restricts
the scope of the records that will be considered for a dimension search. Only

Description

dimension values represented on at least one record satisfying the specified
filter are returned as search results.

Note that the Drs parameter must be URL-encoded. For clarity’s sake, however,
the example below is not URL-encoded.

Dimension Value SearchObject

DDependency

Example

/controller.php?D=classic&Drs=collection()/record

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

261Endeca URL Parameter Reference | Dr (Dimension Search Filter)

Dx (Dimension Search Options)
The Dx parameter sets the option set that dimension search will use.

DxParameter

Dimension Search OptionsName

ENEQuery.setDimSearchOpts()Java setter method

ENEQuery.DimSearchOpts.NET setter property

<string>+<string>+<string>...Type

Sets the dimension search options used in search mode and relevance ranking.
Description

Uses the spell+nospell option for disabling spelling correction and DYM
suggestions on individual queries.

Dimension Value SearchObject

D, DkDependency

Examples

/controller.php?D=mark+twain&Dk=1&Dx=rel+exact,static(rank,descending)

This example shows how to disable spelling correction for a dimension search query for "blue
suede shoes":

/controller.php?D=blue+suede+shoes&Dx=mode+matchallpartial+spell+nospell

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Endeca URL Parameter Reference | Dx (Dimension Search Options)262

Appendix B

Dgidx Character Mapping

This section lists the character mappings performed by Dgidx.

Diacritical Character to ASCII Character Mapping
Dgidx supports mapping Latin1, Latin extended-A, and Windows CP1252 international characters to
their simple ASCII equivalents during indexing.

Using the --diacritic-folding flag on Dgidx causes accented characters to be mapped to simple
ASCII equivalents.

Using the --diacritic-folding flag on the Dgraph allows Anglicized search queries such as cafe
to match against result text containing international characters (accented) such as café.

The accented characters are folded down before indexing, so only the single form is indexed. The
mappings performed are listed in the table below (characters not listed are not affected by the
--diacritic-folding option).

Note that capital characters are mapped to lower case equivalents because Endeca search indexing
is always case-folded.

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital A, grave accentaÀ192

Capital A, acute accentaÁ193

Capital A, circumflex accentaÂ194

Capital A, tildeaÃ195

Capital A, dieresis or umlaut markaÄ196

Capital A, ringaÅ197

Capital AE diphthongaÆ198

Capital C, cedillacÇ199

Capital E, grave accenteÈ200

Capital E, acute accenteÉ201

Capital E, circumflex accenteÊ202

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital E, dieresis or umlaut markeË203

Capital I, grave accentiÌ204

Capital I, acute accentiÍ205

Capital I, circumflex accentiÎ206

Capital I, dieresis or umlaut markiÏ207

Capital Eth, IcelandiceÐ208

Capital N, tildenÑ209

Capital O, grave accentoÒ210

Capital O, acute accentoÓ211

Capital O, circumflex accentoÔ212

Capital O, tildeoÕ213

Capital O, dieresis or umlaut markoÖ214

Capital O, slashoØ216

Capital U, grave accentuÙ217

Capital U, acute accentuÚ218

Capital U, circumflex accentuÛ219

Capital U, dieresis or umlaut markuÜ220

Capital Y, acute accentyÝ221

Capital thorn, IcelandicpÞ222

Small sharp s, Germansß223

Small a, grave accentaà224

Small a, acute accentaá225

Small a, circumflex accentaâ226

Small a, tildeaã227

Small a, dieresis or umlaut markaä228

Small a, ringaå229

Small ae diphthongaæ230

Small c, cedillacç231

Small e, grave accenteè232

Small e, acute accenteé233

Small e, circumflex accenteê234

Small e, dieresis or umlaut markeë235

Small i, grave accentiì236

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping264

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Small i, acute accentií237

Small i, circumflex accentiî238

Small i, dieresis or umlaut markiï239

Small eth, Icelandiceð240

Small n, tildenñ241

Small o, grave accentoò242

Small o, acute accentoó243

Small o, circumflex accentoô244

Small o, tildeoõ245

Small o, dieresis or umlaut markoö246

Small o, slashoø248

Small u, grave accentuù249

Small u, acute accentuú250

Small u, circumflex accentuû251

Small u, dieresis or umlaut markuü252

Small y, acute accentyý253

Small thorn, Icelandicpþ254

Small y, dieresis or umlaut markyÿ255

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital A, macron accenta 256

Small a, macron accenta 257

Capital A, breve accenta 258

Small a, breve accenta 259

Capital A, ogonek accenta 260

Small a, ogonek accenta 261

Capital C, acute accentc 262

Small c, acute accentc 263

Capital C, circumflex accentc 264

Small c, circumflex accentc 265

Capital C, dot accentc 266

Small c, dot accentc 267

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

265Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital C, caron accentc 268

Small c, caron accentc 269

Capital D, caron accentd 270

Small d, caron accentd 271

Capital D, with stroke accentd 272

Small d, with stroke accentd 273

Capital E, macron accente 274

Small e, macron accente 275

Capital E, breve accente 276

Small e, breve accente 277

Capital E, dot accente 278

Small e, dot accente 279

Capital E, ogonek accente 280

Small e, ogonek accente 281

Capital E, caron accente 282

Small e, caron accente 283

Capital G, circumflex accentg 284

Small g, circumflex accentg 285

Capital G, breve accentg 286

Small g, breve accentg 287

Capital G, dot accentg 288

Small g, dot accentg 289

Capital G, cedilla accentg 290

Small g, cedilla accentg 291

Capital H, circumflex accenth 292

Small h, circumflex accenth 293

Capital H, with stroke accenth 294

Small h, with stroke accenth 295

Capital I, tilde accenti 296

Small I, tilde accenti 297

Capital I, macron accenti 298

Small i, macron accenti 299

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping266

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital I, breve accenti 300

Small i, breve accenti 301

Capital I, ogonek accenti 302

Small i, ogonek accenti 303

Capital I, dot accenti 304

Small dotless iiı305

Capital ligature IJi 306

Small ligature IJi 307

Capital J, circumflex accentj 308

Small j, circumflex accentj 309

Capital K, cedilla accentk 310

Small k, cedilla accentk 311

Small Krak 312

Capital L, acute accentl 313

Small l, acute accentl 314

Capital L, cedilla accentl 315

Small l, cedilla accentl 316

Capital L, caron accentl 317

Small L, caron accentl 318

Capital L, middle dot accentl 319

Small l, middle dot accentl 320

Capital L, with stroke accentlŁ321

Small l, with stroke accentlł322

Capital N, acute accentn 323

Small n, acute accentn 324

Capital N, cedilla accentn 325

Small n, cedilla accentn 326

Capital N, caron accentn 327

Small n, caron accentn 328

Small N, preceded by apostrophen 329

Capital Engn 330

Small Engn 331

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

267Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital O, macron accento 332

Small o, macron accento 333

Capital O, breve accento 334

Small o, breve accento 335

Capital O, with double acute accento 336

Small O, with double acute accento 337

Capital Ligature OEoŒ338

Small Ligature OEoœ339

Capital R, acute accentr 340

Small R, acute accentr 341

Capital R, cedilla accentr 342

Small r, cedilla accentr 343

Capital R, caron accentr 344

Small r, caron accentr 345

Capital S, acute accents 346

Small s, acute accents 347

Capital S, circumflex accents 348

Small s, circumflex accents 349

Capital S, cedilla accents 350

Small s, cedilla accents 351

Capital S, caron accentsŠ352

Small s, caron accentsš353

Capital T, cedilla accentt 354

Small t, cedilla accentt 355

Capital T, caron accentt 356

Small t, caron accentt 357

Capital T, with stroke accentt 358

Small t, with stroke accentt 359

Capital U, tilde accentu 360

Small u, tilde accentu 361

Capital U, macron accentu 362

Small u, macron accentu 363

Endeca ConfidentialEndeca® MDEX Engine Basic Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping268

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital U, breve accentu 364

Small u, breve accentu 365

Capital U with ring aboveu 366

Small u with ring aboveu 367

Capital U, double acute accentu 368

Small u, double acute accentu 369

Capital U, ogonek accentu 370

Small u, ogonek accentu 371

Capital W, circumflex accentw 372

Small w, circumflex accentw 373

Capital Y, circumflex accenty 374

Small y, circumflex accenty 375

Capital Y, diaeresis accentyŸ376

Capital Z, acute accentz 377

Small z, acute accentz 378

Capital Z, dot accentz 379

Small Z, dot accentz 380

Capital Z, caron accentzŽ381

Small z, caron accentzž382

Small long ss 383

Endeca® MDEX Engine Basic Development GuideEndeca Confidential

269Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

Index

A

A (Aggregated Record) parameter 88, 253
Af (Aggregated Record Range Filter) parameter 253
agg_rec module 39, 42
aggregated records

creating record queries 88
getting from ENEQueryResults objects 89
methods for rollup keys 86
overview 85
ranking of refinements 93
refinement counts 91
retrieving attributes from AggrERec object 90
retrieving from Navigation object 90
setting maximum number 88
sorting 88
specifying rollup key for queries 87

Agraph
sort order and record lists 66

alphanumeric characters, indexing 228
An (Aggregated Record Descriptors) parameter 88, 254
ancestors, getting dimension 110
Ar (Aggregated Record Filter) parameter 254
Ars (Aggregated EQL Filter) parameter 255
As (Aggregated Record Sort Key) parameter 255
As (Aggregated Record Sort) parameter 88
Au (Aggregated Record Rollup Key) parameter 88, 256
automatic phrasing 164

B

basic queries
aggregated Endeca record 28
dimension search 28
Endeca record 28
navigation 28

Boolean search
about 201
error messages 207
examples of using the key restrict operator (:) 203
interaction with other features 206
operator precedence 206
proximity search 203
semantics 205
syntax 202
URL query parameters 208

boost and bury, See dimension value boost
browser requests transformed into MDEX Engine queries
16
building an Endeca-enabled Web application 33
business rules and keyword redirects 166

C

categories of characters in indexed text 228
characters

indexing alphanumeric 228
indexing search 228

characters, indexing non-alphanumeric 228
collapsible dimension values 180
complete dimensions 106
compound dimension search

about 176
enabling 177
enabling and creating a query 182
enabling with Dgidx flag 180
example of ordering results 178
flags in Dgidx 177
limiting results 183

compoundDimSearch flag 177
configuring

dimension search 177
snippeting 217

controller module 38, 39
creating a query for default dimension search 181
cross-field matching 170

D

D (Dimension Search) parameter 256
DateTime properties 99
dead ends, See disabled refinements
dead-end query results, avoiding 136
default dimension search

about 175
creating a query 181
enabling 177
enabling for dimensions 180
example of ordering results 177

derived properties
about 151
configuring 152
performance impact 151
Presentation API methods 152

DERIVED_PROP element 152
descriptor dimensions 106
descriptors

creating new queries from 129
displaying 124
performance impact 125
removing from navigation state 128
retrieving dimension values 125
URL parameters 125

Developer Studio
enabling hierarchical record search 158

Developer Studio (continued)
making properties searchable 158

Df (Dimension Search Range Filter) parameter 257
Dgidx

--compoundDimSearch flag 177
--nostrictattrs flag 56
--sort flag 65
Diacritical character to ASCII character mapping 263
flags for search characters 230

Dgraph.Aggrbins property for aggregated record counts
91, 130
Dgraph.Bins property for regular record counts 130
Dgraph.Strata property 148
Di (Search Dimension) parameter 257
Diacritical character to ASCII character mapping, Dgidx
263
did you mean 165
dimension groups

API methods 101
displaying 101
performance impact 104
ranking 103
versus dimension hierarchy 103

dimension refinements
displaying 104
extracting 107
Ne parameter for 104
retrieving values for 106

dimension search
about 175
compound, about 175
default, about 175
enabling dimensions for it 177
enabling paging 184
filtering results 179
limiting results 182
limiting results of queries 183
ordering of results 177
performance impact 189
ranking results 184
reports 191
searching within a navigation state 185
troubleshooting 188
URL query parameters 181
when to use 188

dimension value boost
API methods 147
Dgraph.Strata property 148
interaction with disabled refinements 148
Nrcs parameter 146
overview 145

dimension value properties
about 140
accessing 141
configuring 141
performance impact 143

dimension values
boost and bury feature 145
collapsible 180
numeric sort on non-numeric values 64

dimensions
accessing hierarchy 110
configuring for record sort 64
extracting implicit refinements from 108
extracting standard refinements from 107
hidden 136
multiselect 133
performance impact when displaying 60
working with external 143

disabled refinements 112
.NET API 113
configuring with the Presentation API 113
identifying from query output 116
interaction with dimension value boost feature 148
interaction with navigation features 117
Java API 113
performance impact 117
URL parameter 115

displayKey parameter 48
Dk (Dimension Search Rank) parameter 258
Dn (Dimension Search Scope) parameter 259
Do (Dimension Search Offset) parameter 260
Dp (Dimension Value Count) parameter 260
Dr (Dimension Search Filter) parameter 261
Drs (Dimension Search EQL Filter) parameter 261
Duration properties 99
Dx (Dimension Search Options) parameter 262
dynamic refinement ranking

about 118
API calls 122
configuring in Developer Studio 118
displaying 123
Nrc parameter 121
query-time control 120

E

enabling compound dimension search 180
enabling record search for properties and dimensions
158
Endeca APIs 15
Endeca Presentation API

ENEQuery class 24
ENEQueryResults class 26
HttpENEConnection class 23
UrlENEQuery class 24

Endeca records
boost and bury feature 79
displaying 53
displaying dimension values for 58
paging through a record set 60
sorting 63

Endeca.stratify sort module 83
eneHost parameter 47
enePort parameter 47
ENEQuery class

building a basic query with 29
introduced 23

Endeca® MDEX Engine272

Index

ENEQueryResults class
described 26
introduced 23

ERecList object, displaying records in 53
example

record search with search characters enabled 232
record search with wildcard and search characters
233
record search with wildcard but not search
characters 233
record search without search characters enabled
231

external dimensions 143

F

filtering results from dimension searches 179

G

geocode sorting
URL parameters for filters 75
use with Ns parameter 66

geospatial sorting
API methods 70
dynamically-created properties 71
Ns parameter 70
overview 69
performance impact 72
Perl manipulator 69

grayed out refinements 112

H

hidden dimensions
about 136
configuring 137
example 138
handling in an application 137
performance impact 138

hideMerch parameter 48
hideProps parameter 48
hideSups parameter 48
hierarchical record search 158
HttpENEConnection class 23

I

implementing
search characters 229
Boolean search 208
phrase search 211
search modes 198
wildcard search 221, 222
wildcard search for a search interface 224
wildcard search, globally 223

implicit dimension refinements
about 106

implicit dimension refinements (continued)
extracting 108

indexing
search characters 228
non-alphanumeric characters 228

inert dimension values
about 138
configuring 138
handling in an application 139

Information Transformation Layer 50

M

mapping record properties 55
MatchPartial mode and stop words 196
MDEX Engine 163

flags for search characters 230
package overview 49
query result objects 18

MDEX Engine queries
building with the ENEQuery class 29
building with the UrlENEQuery class 24, 25, 28
creating 24
creating with ENEQuery from state information 25
exceptions 27
executing 26
four basic queries 28
results 26
using the core objects 26
working with results 31, 32

MDEX Engine query
aggregated Endeca record objects 19
creating from a client browser request 16
dimension search objects 19
Endeca record objects 19
navigation objects 19

multiselect dimensions
avoiding dead-end query results 136
configuring 134
displaying 133
handling in applications 134
performance impact 136
refinement counts 136

N

N (Navigation) parameter 236
Nao (Aggregated Record Offset) parameter 236
nav module 38, 40
navigation filtering 166
Ndr (Disabled Refinements) parameter 237
Ne (Exposed Refinements) parameter 104, 238
NEAR Boolean operator 204
Nf (Range Filter) parameter 74, 75, 238
Nmpt (Merchandising Preview Time) parameter 239
Nmrf (Merchandising Rule Filter) parameter 240
No (Record Offset) parameter 61, 240
non-alphanumeric characters, indexing 228

273

Index

non-MDEX Engine parameters in UI reference
implementations 47
non-navigable dimension values, using 138
Np (Records per Aggregated Record) parameter 88, 241
Nr (Record Filter) parameter 241
Nrc (Dynamic Refinement Ranking) parameter 121, 242
Nrcs (Dimension Value Stratification) parameter 146,
243
Nrk (Relevance Ranking Key) parameter 243
Nrm (Relevance Ranking Match Mode) parameter 244
Nrr (Relevance Ranking Strategy) parameter 245
Nrs (Endeca Query Language Filter) parameter 245
Nrt (Relevance Ranking Terms) parameter 246
Ns (Sort Key) parameter 66, 83, 247
Nso (Sort Order) parameter 248
Ntk (Record Search Key) parameter 248
Ntpc (Compute Phrasings) parameter 249
Ntpr (Rewrite Query with an Alternative Phrasing)
parameter 249
Ntt (Record Search Terms) parameter 250
Ntx (Record Search Mode) parameter 82, 250
Nty (Did You Mean) parameter 251
Nu (Rollup Key) parameter 87, 252
numeric sort and non-numeric dimension values 64

O

ONEAR Boolean operator 204
ordering

compound dimension search results 178
default dimension search results 177
results of dimension search 177

overview
MDEX Engine package 49

P

paging
in dimension search results 184
through a record set 60

performance impact
derived properties 151
descriptors 125
dimension groups 104
dimension search 189
dimension value properties 143
disabled refinements 117
displaying dimensions 60
displaying refinements 112
dynamic refinement ranking 124
geospatial sorting 72
hidden dimensions 138
listing records 55
multiselect dimensions 136
phrase search 213
range filters 78
record search 167
refinement statistics 133
snippeting 218

performance impact (continued)
sorting records 68
wildcard search 225

phrase search
examples of queries 212
implementing 211
performance impact 213
URL query parameters 212

positional indexing, about 212
Presentation API

architecture 15
Web application modules 16

primitive term and phrase lookup 165
processing order for record search queries 163
properties

accessing 56
configuring for record sort 64
dimension value 140
displaying 55
indexing 56
mapping 55
returned as supplemental objects by the MDEX
Engine 57
types supported in the MDEX Engine 97

Q

queries
examples of limiting results with compound
dimension search 183
examples with compound dimension search 182

query matching interaction examples
query matching semantics 227
Query method (.NET) 23
query method (Java) 23

R

R (Record) parameter 252
range filtering 165
range filters

configuring properties and dimensions for 73
dynamically-created properties 76
Nf parameter examples 76
overview 73
performance impact 78
rendering results 78
troubleshooting 78
URL parameter 74
using multiple 76

ranking results for dimension search 184
rec module 38, 41
record boost and bury

enabling properties 80
Ntx parameter 82
overview 79, 118
sorting 83
stratify relevance ranking 80

record filtering during record searches 163

Endeca® MDEX Engine274

Index

record filters
enabling properties for use 80

record search
about 157
against multiple terms 161
auto correction 164
examples 158, 160
features for controlling it 159
MDEX Engine processing logic 163
methods for rendering results 162
performance impact 167
reports 191
stemming 165
thesaurus expansion 164
tokenization 163
troubleshooting 166
URL query parameters 160
when to use 188

reference implementations
primary modules 38
UI 35

refinement counts
for multiselect-OR dimensions 136

refinement dimensions
creating a new query from a value 109
displaying counts 129
performance impact of 112
query-time control of dynamic ranking 120
retrieving values for 106

refinement ranking
record boost and bury 118

refinement statistics
displaying 129
enabling 129
performance impact 133
retrieving 130
retrieving for records that match descriptors 131

refinements
disabled 112
grayed out 112

rendering results for record search 162
reports for record and dimension search 191
request parameters

extracting, Endeca-specific 17
methods for passing to the application modules 17

rollup keys, determining available 86

S

search characters
categories of characters 228
implementing 229
indexing specified search characters 228
MDEX Engine flags for 230
Presentation API development for 230
query matching semantics 227
Dgidx flags for 230
indexing alphanumeric 228
using 227

search interface
about 169
configuring wildcard search for it 224

search interfaces
cross-field matching 170
implementing 169
methods in Java 172
properties in .NET 172
troubleshooting 173
URL query parameters 171

search modes
about
examples 198
implementing 198
list of, valid 195
MatchAll 196
MatchAllAny 197
MatchAllPartial 197
MatchAny 197
MatchBoolean mode 198
MatchPartial mode 196
MatchPartialMax mode 197
methods 199
URL query parameters 198

search query processing 228
search query processing order 163
search reports

implementing 191
list of methods and properties 192
methods used 191
retrieving 191
troubleshooting 194

snippeting
about 215
configuring 217
disabling 217
dynamic properties 217
examples of queries 217
performance impact 218
reformatting for display 218
tips 219
URL query parameters 217

sort key
sorting records that lack a 64

sorting records
with no sort key 64
Agraph sort order and record lists 66
API methods 66
changing sort order 65
geospatial sort 69
Ns parameter for queries 66
numeric sort on non-numeric values 64
overview 63
performance impact 68
record boost and bury 83
troubleshooting problems 68

spelling correction 164
stemming 165
stop words and MatchPartial mode 196
stratify relevance ranking module 80

275

Index

synonyms used for search 159

T

taxonomies, external 143
temporal properties, about 98
thesaurus expansion 164
time and date properties

defining 98
working with 99

Time properties 99
tokenization in record search 163
troubleshooting record search 166

U

UI reference implementation
intended usage 37
Javascript in 39
module descriptions 44
module maps (.NET) 42
module maps (Java) 39
non-MDEX Engine parameters in 47
tips on using 47

URL parameters
A 88
A (Aggregated Record) 253
Af (Aggregated Record Range Filter) 253
An 88
An (Aggregated Record Descriptors) 254
Ar (Aggregated Record Filter) 254
Ars (Aggregated EQL Filter) 255
As 88
As (Aggregated Record Sort Key) 255
Au 88
Au (Aggregated Record Rollup Key) 256
D (Dimension Search) 256
Df (Dimension Search Range Filter) 257
Di (Search Dimension) 257
Dk (Dimension Search Rank) 258
Dn (Dimension Search Scope) 259
Do (Dimension Search Offset) 260
Dp (Dimension Value Count) 260
Dr (Dimension Search Filter) 261
Drs (Dimension Search EQL Filter) 261
Dx (Dimension Search Options) 262
geocode range filters 75
N (Navigation) 236
Nao (Aggregated Record Offset) 236
Ndr (Disabled Refinements) 237
Ne (Exposed Refinements) 104, 238
Nf (Range Filter) 238
Nmpt (Merchandising Preview Time) 239
Nmrf (Merchandising Rule Filter) 240

URL parameters (continued)
No (Record Offset) 240
non-MDEX Engine-specific 47
Np 88
Np (Records per Aggregated Record) 241
Nr (Record Filter) 241
Nrc (Dynamic Refinement Ranking) 121, 242
Nrcs (Dimension Value Stratification) 243
Nrk (Relevance Ranking Key) 243
Nrm (Relevance Ranking Match Mode) 244
Nrr (Relevance Ranking Strategy) 245
Nrs (Endeca Query Language Filter) 245
Nrt (Relevance Ranking Terms) 246
Ns (Sort Key) 247
Nso (Sort Order) 248
Ntk (Record Search Key) 248
Ntpc (Compute Phrasings) 249
Ntpr (Rewrite Query with an Alternative Phrasing)
249
Ntt (Record Search Terms) 250
Ntx (Record Search Mode) 250
Nty (Did You Mean) 251
Nu 87
Nu (Rollup Key) 252
R (Record) 252
range filters 74
sorting record 66

URL query parameters
Boolean search 208
for dimension search 181
phrase search 212
record search 160
search interfaces 171
search modes 198
snippeting 217

UrlENEQuery class 24, 28

W

Web applications
building for Endeca implementation 33
modules 16
primary functions 16

wildcard search
about 221
configuring 222
configuring for a search interface 224
configuring globally 223
false positive matches and performance 224
front-end application tips 225
implementing 221
interaction with other features 222
performance impact 225
retrieving error messages 224

Endeca® MDEX Engine276

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Presentation API Basics
	Endeca Presentation API Overview
	List of Endeca APIs
	Architecture of the Presentation API
	About Web application modules
	Methods for transforming requests into queries
	Methods for passing request parameters

	The Endeca Presentation API for Java and .NET

	One query, one page
	About query result objects returned by the MDEX Engine
	About top-level object types
	Example of a top-level object
	Example of an Endeca record object for the wine data
	Obtaining additional object information

	Working with the Endeca Presentation API
	Core classes of the Presentation API
	HttpENEConnection
	Changing the timeout setting for HttpENEConnection

	ENEQuery and UrlENEQuery
	Creating the query with UrlENEQuery
	Executing MDEX Engine queries

	ENEQueryResults

	Using the core objects to query the MDEX Engine
	List of query exceptions
	Four basic queries
	Building a basic query with the UrlENEQuery class
	Building a basic query with the ENEQuery class
	ENEQuery naming convention
	Methods of accessing data in basic query results
	Methods of determining types of queries passed to the MDEX Engine

	Getting started with your own Web application

	Using the UI Reference Implementation
	UI reference implementation overview
	The UI reference implementation screenshots
	The purpose of the UI reference implementation
	Four primary modules
	About JavaScript files
	Module maps
	Module descriptions
	Tips on using the UI reference implementation modules
	Non-MDEX Engine URL parameters

	About the Endeca MDEX Engine
	MDEX Engine overview
	About the Information Transformation Layer

	Record Features
	Working with Endeca Records
	Displaying Endeca records
	Displaying a list of Endeca records
	Displaying each record in the ERecList object
	Performance impact when listing records

	Displaying record properties
	Mapping and indexing record properties
	Accessing properties from records
	Properties returned by the MDEX Engine
	Displaying all properties on all records

	Displaying dimension values for Endeca records
	Configuring how dimensions are displayed
	Accessing dimensions from records
	Performance impact when displaying dimensions

	Paging through a record set
	Using the No parameter in queries
	Using paging control methods

	Sorting Endeca Records
	About record sorting
	Configuring precomputed sort
	Changing the sort order with Dgidx flags
	Agraph default sort order and displayed record lists
	URL parameters for sorting
	Sort API methods
	Troubleshooting application sort problems
	Performance impact for sorting
	Using geospatial sorting
	Configuring geospatial sorting
	URL parameters for geospatial sorting
	Geospatial sort API methods
	Dynamic properties created by geocode sorts
	Performance impact for geospatial sorting

	Using Range Filters
	About range filters
	Configuring properties and dimensions for range filtering
	URL parameters for range filters
	URL parameters for geocode filters
	Dynamic properties created by geocode filters

	Using multiple range filters
	Examples of range filter parameters
	Rendering the range filter results
	Troubleshooting range filter problems
	Performance impact for range filters

	Record Boost and Bury
	About the record boost and bury feature
	Enabling properties for filtering
	The stratify relevance ranking module
	Record boost/bury queries
	Boost/bury sorting for Endeca records

	Creating Aggregated Records
	About aggregated records
	Enabling record aggregation
	Generating and displaying aggregated records
	Determining the available rollup keys
	Creating aggregated record navigation queries
	Creating aggregated record queries
	Getting aggregated records from record requests
	Retrieving aggregated record lists from Navigation objects
	Displaying aggregated record attributes
	Displaying refinement counts for aggregated records
	Displaying the records in the aggregated record

	Aggregated record behavior
	Refinement ranking of aggregated records

	Dimension and Property Features
	Property Types
	Formats used for property types
	Temporal properties
	Defining Time and DateTime properties
	Time properties
	DateTime properties
	Duration properties
	Working with time and date properties

	Working with Dimensions
	Displaying dimension groups
	Dimension group API methods
	Notes on displaying dimension groups

	Displaying refinements
	Configuring dimensions for query refinement
	URL parameters for dimension refinement values
	Retrieving refinement dimensions
	Extracting refinement values
	Creating a new query from refinement dimension values
	Accessing dimensions with hierarchy
	Non-navigable refinements
	Using ENEQueryToolkit.selectRefinement
	Performance impact for displaying refinements

	Displaying disabled refinements
	About disabled refinements
	Configuring disabled refinements
	URL query parameter for displaying disabled refinements
	Identifying disabled refinements from query output
	Interaction of disabled refinements with other navigation features
	Performance impact of disabled refinements

	Implementing dynamic refinement ranking
	Configuring dynamic refinement ranking
	Using query-time control of dynamic refinement ranking
	URL query parameter for setting dynamic refinement ranking
	Using refinement configuration API calls
	Displaying the returned refinement values
	Performance impact of dynamic refinement ranking

	Displaying descriptors
	URL parameters for descriptors
	Retrieving descriptor dimension values
	Creating a new query from selected dimension values

	Displaying refinement statistics
	Enabling refinement statistics for dimensions
	Retrieving refinement counts for records
	Retrieving refinement counts for records that match descriptors
	Performance impact of refinement counts

	Displaying multiselect dimensions
	Configuring multiselect dimensions
	Handling multiselect dimensions

	Using hidden dimensions
	Configuring hidden dimensions
	Handling hidden dimensions in an application

	Using inert dimension values
	Configuring inert dimension values
	Handling inert dimension values in an application

	Displaying dimension value properties
	Configuring dimension value properties
	Accessing dimension value properties
	Performance impact for displaying dimension value properties

	Working with external dimensions

	Dimension Value Boost and Bury
	About the dimension value boost and bury feature
	Nrcs parameter
	Stratification API methods
	Retrieving the DGraph.Strata property
	Interaction with disabled refinements

	Using Derived Properties
	About derived properties
	Configuring derived properties
	Displaying derived properties

	Basic Search Features
	About Record Search
	Record search overview
	Making properties or dimension searchable
	Enabling hierarchical record search
	Adding search synonyms to dimension values

	Features for controlling record search
	URL query parameters for record search
	Methods for using multiple search keys and terms
	Methods for rendering results of record search requests

	Search query processing order
	Step 1: Record filtering
	Step 2: Endeca Query Language filters
	Step 3: Tokenization
	Step 4: Auto correction (spelling correction and automatic phrasing)
	Step 5: Thesaurus expansion
	Step 6: Stemming
	Step 7: Primitive term and phrase lookup
	Step 8: Did you mean
	Step 9: Range filtering
	Step 10: Navigation filtering
	Step 11: Business rules and keyword redirects
	Step 12: Analytics
	Step 13: Relevance ranking

	Tips for troubleshooting record search
	Performance impact of record search

	Working with Search Interfaces
	About search interfaces
	About implementing search interfaces
	Options for allowing cross-field matches
	Additional search interfaces options
	Search interfaces and URL query parameters (Ntk)
	Java examples of search interface methods
	.NET examples of search interface properties
	Tips for troubleshooting search interfaces

	Using Dimension Search
	About dimension search
	Default dimension search
	Compound dimension search
	Enabling dimensions for dimension search
	Ordering of dimension search results
	Ordering of results for default dimension search
	Ordering of results for compound dimension search
	Filtering results that have no records

	Advanced dimension search parameters
	Dgidx flags for dimension search
	URL query parameters and dimension search
	Creating a default dimension search query
	Creating a compound dimension search query
	Limiting results of dimension search
	Limiting results of compound dimension search
	Setting the number of results
	Enabling result paging
	Ranking results
	Searching within a navigation state

	Methods for accessing dimension search results
	When to use dimension and record search
	Performance impact of dimension search

	Record and Dimension Search Reports
	Implementing search reports
	Methods for search reports
	Retrieving search reports
	Accessing information in search reports

	Troubleshooting search reports

	About Search Modes
	List of valid search modes
	MatchAll mode
	MatchPartial mode
	Interaction of MatchPartial mode and stop words
	MatchAny mode
	MatchAllPartial mode
	MatchAllAny mode
	MatchPartialMax mode
	MatchBoolean mode

	Configuring search modes
	URL query parameters for search modes
	Query examples with search modes

	Search mode methods

	Using Boolean Search
	About Boolean search
	Example of Boolean query syntax
	Examples of using the key restrict operator
	About proximity search
	Example of using NEAR for unordered matching
	Example of using ONEAR for ordered matching

	Proximity operators and nested subexpressions
	Boolean query semantics
	Operator precedence
	Interaction of Boolean search with other features
	Error messages for Boolean search
	Implementing Boolean search
	URL query parameters for Boolean search
	Methods for Boolean search
	Troubleshooting Boolean search
	Performance impact of Boolean search

	Using Phrase Search
	About phrase search
	About positional indexing
	How punctuation is handled in phrase search
	URL query parameters for phrase search
	Performance impact of phrase search

	Using Snippeting in Record Searches
	About snippeting
	Snippet formatting and size
	Snippet property names
	Snippets are dynamically generated properties
	About enabling and configuring snippeting
	URL query parameters for snippeting
	Reformatting a snippet for display in your Web application
	Performance impact of snippeting
	Tips and troubleshooting for snippeting

	Using Wildcard Search
	About wildcard search
	Interaction of wildcard search with other features
	Ways to configure wildcard search
	Configuring wildcard search with Dimension and Property editors
	Configuring wildcard search with the Dimension Search Configuration editor
	Configuring wildcard search with the Search Interface editor

	MDEX Engine flags for wildcard search
	Presentation API development for wildcard search
	Performance impact of wildcard search

	Search Characters
	Using search characters
	Query matching semantics
	Categories of characters in indexed text
	Indexing alphanumeric characters
	Indexing search characters
	Indexing non-alphanumeric characters

	Search query processing
	Implementing search characters
	Dgidx flags for search characters
	Presentation API development for search characters
	MDEX Engine flags for search characters

	Examples of Query Matching Interaction
	Record search without search characters enabled
	Record search with search characters enabled
	Record search with wildcard search enabled but without search characters
	Record search with both wildcard search and search characters enabled

	Endeca URL Parameter Reference
	About the Endeca URL query syntax
	N (Navigation)
	Nao (Aggregated Record Offset)
	Ndr (Disabled Refinements)
	Ne (Exposed Refinements)
	Nf (Range Filter)
	Nmpt (Merchandising Preview Time)
	Nmrf (Merchandising Rule Filter)
	No (Record Offset)
	Np (Records per Aggregated Record)
	Nr (Record Filter)
	Nrc (Dynamic Refinement Ranking)
	Nrcs (Dimension Value Stratification)
	Nrk (Relevance Ranking Key)
	Nrm (Relevance Ranking Match Mode)
	Nrr (Relevance Ranking Strategy)
	Nrs (Endeca Query Language Filter)
	Nrt (Relevance Ranking Terms)
	Ns (Sort Key)
	Nso (Sort Order)
	Ntk (Record Search Key)
	Ntpc (Compute Phrasings)
	Ntpr (Rewrite Query with an Alternative Phrasing)
	Ntt (Record Search Terms)
	Ntx (Record Search Mode)
	Nty (Did You Mean)
	Nu (Rollup Key)
	R (Record)
	A (Aggregated Record)
	Af (Aggregated Record Range Filter)
	An (Aggregated Record Descriptors)
	Ar (Aggregated Record Filter)
	Ars (Aggregated EQL Filter)
	As (Aggregated Record Sort Key)
	Au (Aggregated Record Rollup Key)
	D (Dimension Search)
	Df (Dimension Search Range Filter)
	Di (Search Dimension)
	Dk (Dimension Search Rank)
	Dn (Dimension Search Scope)
	Do (Search Result Offset)
	Dp (Dimension Value Count)
	Dr (Dimension Search Filter)
	Drs (Dimension Search EQL Filter)
	Dx (Dimension Search Options)

	Dgidx Character Mapping
	Diacritical Character to ASCII Character Mapping

	Index

