
Endeca® Information Access
Platform

Administrator's Guide

Contents

Preface...9
About this guide..9
Who should use this guide..10
Conventions used in this guide...10
Contacting Oracle Support...10

Chapter 1: Introduction..11
Taking ownership of your Endeca implementation..11
About the Endeca Application Controller..12

EAC architecture..12
EAC architecture example...14

About the Deployment Template...14
Directories created by the Deployment Template..15
About the AppConfig.xml file...16

Typical workflows..17
The control framework...17
Data and configuration workflow..18
Logging and reporting workflow...19

Chapter 2:Creating Multiple Server Environments with the Deployment Template.23
About a multiple server environment..23
Overview of staging and production environments ..24
Planning your server topology..26
Configuring the application on multiple servers..27

Changing server settings in AppConfig.xml ..28
Adding MDEX Engine servers...30
Adding Dgraphs...33
Additional customization tasks..34

Chapter 3: Replicating application definitions across environments...37
About replicating application definitions using the Deployment Template...37
Identifying the artifacts that make up an application...39
Creating a custom file for environment-specific settings...41
Controlling paths to ensure interoperability across environments..42
Automating the collection of files..44
Distributing application definitions between environments for the first time..44

Distributing an updated application definition with another environment...45
Approaches to avoiding synchronization conflicts..45

Chapter 4: Performing System Operations with the EAC.....................47
Options for provisioning the application..47

Updating the application provisioning..48
Backing up the EAC application provisioning with eaccmd...48

Options for running system operations...48
Checking the status of EAC components...49
Avoiding defunct EAC processes..50
EAC memory usage..51
Deployment Template and Endeca Workbench interaction...51
Archiving the Dgraph log files ..53
Releasing locks set by the Deployment Template in the EAC...53
Removing components from your configuration...54

Removing components in a Deployment Template environment...56
Determining the state of the EAC with service URLs...56
Logs for the EAC Central Server...56
Changing the IP address for the EAC Central Server machine..57

iii

Chapter 5: Administering Dgidx...59
Dgidx processing and memory usage..59
Running the Dgidx process with the Deployment Template..60
Running the Dgidx binary at the command prompt..60
Tips for speeding up indexing time...61
Troubleshooting Dgidx failures..61
Dgidx logs...63

Dgidx log details for text search indexing..64
Dgidx handling of records with missing or duplicate record spec values...65
Variations in Dgidx indexing time...66

Chapter 6: Administering the Dgraph...67
Checking Dgraph and Agraph with the ping command...67
Specifying arguments to the Dgraph in the Deployment Template...67
Collecting debugging information..68

The logs created by the Dgraph..68
The Agraph request log...70

Troubleshooting baseline update failures..70
Troubleshooting partial updates..71
Identifying connection errors ..71
Troubleshooting socket and port errors with Dgraph..72
Managing the Dgraph core dump files..73

Managing Dgraph crash dump files on Windows...73
Managing Dgraph core dump files on Linux and Solaris...73

Chapter 7: Backing up Endeca applications..75
Required files for backup..75
Backing up CAS configurations..76
Backing up the Discovery Framework...77
What not to backup...77
When primary and recovery environments are different...78

Appendix A:Administrative and configuration operations and logging variables.79
About administrative and configuration operations...79

List of administrative operations..79
List of configuration operations..86

About MDEX Engine logging variables...88
Logging variable operation syntax...88
List of supported logging variables..88

Appendix B: Endeca Flag Reference..91
Agidx flags..91
Agraph flags..92
Dgidx flags..94
Dgraph flags..96

Appendix C: XML Configuration Files..107
About the XML configuration files...107
Creating the XML configuration files...107
Changing the Deployment Template output prefix..108
Creating and modifying the XML configuration files..108

Appendix D:Transferring Endeca Implementations Between Environments.109
For implementations using the Deployment Template..109
About transferring your implementation..109
Retrieving the Endeca Workbench instance configuration with Developer Studio....................................110
About emgr_update..110

emgr_update syntax reference..111
About transferring implementations using the emgr_update utility..113
Removing instance configuration files from Endeca Workbench...116
Sending the dimensions file produced by Forge to Endeca Workbench...116

Removing inactive rules from an instance configuration...117

Endeca® Information Access Platformiv

Transferring auto-generated and external dimension value ID assignments..118
Removing an application from Endeca IAP..119

v

Contents

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2009-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, Hong Kong Patent HK1072114, European Patent EP1459206B1, and other patents
pending.

Endeca IAP Administrator's Guide • December 2010

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes tasks involved in administering and maintaining applications built upon the Endeca
Information Access Platform.

It bridges the gap between the work performed by the Endeca Services team when your Endeca
implementation was being initially deployed, and the issues that you, as a system administrator, may
need to address to maintain the system.

About the contents of the guide

The guide introduces basic Endeca workflows and environments, and discusses the topology, indicating
which physical servers should host specific Endeca components. It then identifies the control framework:
the Endeca Application Controller (EAC) that is managed by Deployment Template scripts. In the
following sections, the guide reviews EAC and the Deployment Template. Next, it discusses various
administrative tasks related to the Deployment Template, EAC, Dgidx and Dgraph, such as operational
tasks and logging.

This guide mainly focuses on Dgraph implementations, and only mentions the Agraph briefly. See the
Performance Tuning Guide for a discussion about when you should use an Agraph rather than a set

of load-balanced Dgraphs. In addition, while this guide mentions updates, it is assumed that customers
implementing updates will refer to the Partial Updates Guide for information.

The guide also contains the reference of all Endeca administrative and configuration operations, an
Endeca flag reference, an overview of the XML configuration files, and an appendix that describes
how to transfer an Endeca implementation between different environments if you are using the Endeca
Workbench (and not the Deployment Template).

Who should use this guide
This guide is intended for system administrators who administer and maintain an Endeca
implementation.

This guide assumes that the Endeca software is already installed on a development server. It may be
already installed in a production environment. It also assumes that you, or your Endeca Services
representatives, have already used the Deployment Template to configure the application on the
development server.

You should also be familiar with the Endeca concepts described in the Concepts Guide.

You can choose to read specific topics from this guide individually as needed while maintaining your
Endeca implementation after it has been initially deployed.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

| Preface10

https://support.oracle.com

Chapter 1

Introduction

This section describes the stage at which you take control of the operation and maintenance of your
Endeca implementation. It also introduces basic administrative components of the system — the
Endeca Application Controller (EAC), and the Deployment Template.

Taking ownership of your Endeca implementation
As a system administrator, you take ownership of the Endeca implementation at a certain stage. This
topic describes the context in which you will perform administrative tasks to maintain the stable operation
of a properly functioning Endeca implementation.

This guide assumes that by this point in using the Endeca software you or your team have done the
following:

• Planned and provisioned the hardware needed for the staging and production environments.
• Installed the Endeca components, including the MDEX Engine, Platform Services, Endeca

Workbench and the Deployment Template.
• Read the Endeca Getting Started Guide.

• Run the Deployment Template's sample scripts for the sample reference implementation on the
development or staging servers.

When you complete your engagement with Endeca Professional Services, you obtain an Endeca
Technical Specification for your Endeca deployment. This assumes the following:

• You have completed the process of extracting source information from your incoming data sources
and feeding the data into the Endeca pipeline using the Content Acquisition System (CAS).

• You have used the Deployment Template scripts to run the offline Forge and Dgidx processes,
thus creating the Endeca index files.

• You have deployed your Endeca solution in a staging environment, and are either preparing to
deploy it in production, or have already deployed it in production.

• You have created a working prototype of your Endeca front-end application for your end users.
This front-end application can be used to issue requests to the running MDEX Engine in a production
environment.

Related Links
The control framework on page 17

This guide assumes that you are using the Deployment Template with the Endeca Application
Controller (EAC) as your primary control framework.

About the Endeca Application Controller on page 12
The Endeca Application Controller (EAC) is a control system you can use to control, manage,
and monitor components in your Endeca implementation.

About the Deployment Template on page 14
The Deployment Template provides a collection of operational components that serve as a
starting point for development and application deployment.

About the Endeca Application Controller
The Endeca Application Controller (EAC) is a control system you can use to control, manage, and
monitor components in your Endeca implementation.

The EAC provides the infrastructure to support Endeca projects from design through deployment and
runtime. It replaces the deprecated Control Interpreter, while leaving the Endeca tools (Developer
Studio and Endeca Workbench) largely intact.

The EAC uses open standards, such as the Web Services Descriptive Language (WSDL), which
makes the Application Controller platform- and language-independent. As a result, the Application
Controller supports a wide variety of applications in production. It allows you to handle complex
operating environments that support features such as partial updates, delta updates, phased MDEX
Engine updates, and more.

Related Links
EAC architecture on page 12

The EAC is installed on each machine that runs the Endeca software and is typically run in
a distributed environment.

EAC architecture example on page 14
A typical Endeca implementation is usually spread across multiple host servers. Each of
these physical servers must have an EAC Agent that controls the components installed on
the server.

EAC architecture
The EAC is installed on each machine that runs the Endeca software and is typically run in a distributed
environment.

Depending on the role that the EAC plays in the Endeca implementation, each instance of the EAC
can take one of two roles:

• EAC Central Server
• EAC Agent

You can communicate with the EAC and provide instance configuration and resource configuration
information to the EAC Central Server, using any of the three methods:

• Endeca Workbench. Endeca Workbench communicates through the WSDL interface to the EAC
Central Server. Using Endeca Workbench you can provision, run, and monitor your application.
For details, see the Endeca Workbench Help.

• The command line utility, eaccmd.eaccmd lets you script the EAC within a language such as Perl,
shell, or batch.

• Direct programmatic control through the Endeca WSDL-enabled interface and languages, such
as Java, that support Web services.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Introduction | About the Endeca Application Controller12

Note: The Endeca Deployment Template utilizes this method for communication with the
EAC Central Server.

Using any of these methods, you can instruct the EAC to perform different operations in your Endeca
implementations, such as start or stop a component (for example, Forge or Dgraph), or a utility (for
example, Copy or Shell environment).

The following diagram describes the EAC architecture and means of communication with it, while the
sections below describe the roles of the EAC Central Server and EAC Agents:

EAC Central Server

One instance of the EAC serves as the EAC Central Server for your implementation. This instance
includes a WSDL-enabled interface, through which you communicate with the EAC. Communication
is implemented with the standard Web services protocol, SOAP.

The EAC Central Server also contains a repository that stores provisioning information — that is, data
about the hosts, components, applications and scripts that the EAC is managing.

Note: You should configure only one EAC Central Server for a given application. The EAC can
run into issues when multiple Central Servers are provisioned with the same application on the
same EAC Agents (for example, it can lead to confusing clean-up instructions being sent to the
Agents from multiple Central Servers, which can interrupt scripts).

EAC Agents

All other instances of the EAC serve as Agents. The Agents instruct their host machines to do the
actual work of an Endeca implementation, such as processing data with a Forge component, or
coordinating the workings of multiple MDEX Engines with an Aggregated MDEX Engine component.

Each Agent also contains a small repository for its own use. The EAC Central Server communicates
with its Agents through an internal Web service interface.You do not communicate directly with the
Agents—all command, control, and monitoring functions are sent through the EAC Central Server.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

13Introduction | About the Endeca Application Controller

EAC architecture example
A typical Endeca implementation is usually spread across multiple host servers. Each of these physical
servers must have an EAC Agent that controls the components installed on the server.

The following diagram shows the architecture of the EAC.

The EAC Central Server communicates with EAC Agents that run on each machine hosting an entire
implementation (or components that comprise an implementation). The EAC Server communicates
to the Agents the information about the instance configuration and resource configuration.The Agents
run the necessary components and their processes on each machine, such as Forge, Dgidx, and
Dgraph.

About the Deployment Template
The Deployment Template provides a collection of operational components that serve as a starting
point for development and application deployment.

The template includes the complete directory structure required for deployment, including Endeca
Application Controller (EAC) scripts, configuration files, and batch files or shell scripts that wrap common
script functionality.

The Deployment Template is the recommended method for building your application deployment
environment.

Related Links
Deployment Template and Endeca Workbench interaction on page 51

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Introduction | About the Deployment Template14

This topic summarizes information about Deployment Template and Endeca Workbench
interaction.

Directories created by the Deployment Template on page 15
The Deployment Template creates the following default directory structure. For each Endeca
implementation that is deployed with the Deployment Template, look into these directories
to identify currently used configuration options and scripts.

About the AppConfig.xml file on page 16
The [appdir]/config/script/AppConfig.xml file is the central configuration file of
the Deployment Template. It defines the hosts and Endeca components that make up the
Endeca implementation known to the EAC. It also defines the scripts that orchestrate updates
by running the defined components.

Directories created by the Deployment Template
The Deployment Template creates the following default directory structure. For each Endeca
implementation that is deployed with the Deployment Template, look into these directories to identify
currently used configuration options and scripts.

The Deployment Template is designed to support operations with the MDEX Engine in the production
environment. This means it must support a variety of possible configurations and their modifications.
Therefore, its AppConfig.xml file contains all the possible blocks and directories that you may need
on your production servers.

For example, the Deployment Template has separate directories to ensure that the MDEX Engine
operations are safely accessing only the information they need. Further, the default Deployment
Template allows for configuring multiple Dgraphs, so additional directories are created to facilitate this
task.

ContentsDirectory

Subdirectories to store any custom scripts or code for your
Deployment Template project.

config/lib

The Developer Studio pipeline file and XML configuration files.config/pipeline

Files required to generate an application's reports.config/report_templates

The AppConfig.xml file and related Deployment Template
scripts responsible for defining the baseline update workflow

config/script

and communication of different Endeca components with the
EAC Central Server.

Shell (UNIX) or batch (Windows) scripts responsible for running
different operations defined within AppConfig.xml.

control

The premodified incoming data files that are ready acquisition
by the Endeca pipeline and should be processed.

data/incoming

Temporary data and configuration files created and stored
during the baseline update process.

data/processing

The data and configuration files that are output from the Forge
process to the Dgidx process.

data/forge_output

The index files that are output from the Dgidx process.data/dgidx_output

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

15Introduction | About the Deployment Template

ContentsDirectory

The copy of the index files used by an instance of the MDEX
Engine.

data/dgraphs

Autogenerated dimensions files.data/state

Merged configuration (that is, Developer Studio files from
config/pipeline, with any Workbench- maintained files

data/complete_index_config

specified in the Deployment Template's ConfigManager
component overwritten by files downloaded from the
Workbench instance).

Configuration files extracted from Workbench by the
Deployment Template's ConfigManager component.

data/web_studio/config

Various log files within subdirectories, such as Dgidx logs.logs

Generated reports.reports

About the AppConfig.xml file
The [appdir]/config/script/AppConfig.xml file is the central configuration file of the
Deployment Template. It defines the hosts and Endeca components that make up the Endeca
implementation known to the EAC. It also defines the scripts that orchestrate updates by running the
defined components.

If you do not require all components in your staging or development environments, or need more than
one of each component, you can modify the AppConfig.xml file to add or remove them.

Note: This guide describes most frequently used tasks you can do with AppConfig.xml. For
detailed information about how each component is defined in AppConfig.xml, see the Endeca
Deployment Template Usage Guide.

Related Links
About the schema for AppConfig.xml on page 16

The eacToolkit.xsd schema determines the valid syntax within AppConfig.xml.

About the schema for AppConfig.xml

The eacToolkit.xsd schema determines the valid syntax within AppConfig.xml.

The eacToolkit.xsd file is located at the top level of the eacHandlers.jar archive file. If any of
your Deployment Template scripts fail due to XML syntax errors, you can look at the schema to learn
which syntax options for attributes and values are allowed.You may decide to modify the schema to
allow you to specify the options you need.

This archive file resides in the config/lib/java sub-directory of a deployed application. It also
resides in the data/eac-java/common/config/lib/java directory of the Deployment Template
installation.

To explore this file, use the following command at a prompt from the directory containing the
eacHandlers.jar archive file:

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Introduction | About the Deployment Template16

• On UNIX: $ENDECA_ROOT/j2sdk/bin/jar xvf eacHandlers.jar eacToolkit.xsd
• On Windows:%ENDECA_ROOT%\j2sdk\bin\jar xvf eacHandlers.jar eacToolkit.xsd

Typical workflows
This section defines basic workflows that take place within the Endeca implementation.

Related Links
The control framework on page 17

This guide assumes that you are using the Deployment Template with the Endeca Application
Controller (EAC) as your primary control framework.

Data and configuration workflow on page 18
The diagram in this topic describes a basic data and configuration workflow. This workflow
reflects the tasks performed when you run the Deployment Template.

Logging and reporting workflow on page 19
The diagram in this topic describes a logging and reporting workflow.

The control framework
This guide assumes that you are using the Deployment Template with the Endeca Application Controller
(EAC) as your primary control framework.

By now you know that the typical Endeca implementation involves many different components (such
as CAS, Workbench, Forge, Dgidx, Dgraph) that can run on different physical servers. Each such
server also hosts the EAC Agent or the EAC Central Server. In other words, the EAC is a control
system that manages these components on each physical server for the Endeca implementation and
coordinates communication between them.

The Deployment Template allows you to start and run the components through the Endeca Application
Controller (EAC) as well as run baseline and partial updates.

The EAC is a mandatory component of the Endeca implementation, while the Deployment Template
is optional and is used to communicate with the EAC.While you can use other methods to communicate
with the EAC, the Deployment Template provides a convenient framework and a set of scripts that
simplify these tasks and is the recommended method for managing your implementation.

Related Links
About the Endeca Application Controller on page 12

The Endeca Application Controller (EAC) is a control system you can use to control, manage,
and monitor components in your Endeca implementation.

About the Deployment Template on page 14
The Deployment Template provides a collection of operational components that serve as a
starting point for development and application deployment.

Options for running system operations on page 48
You can run system operations using two alternative approaches—scripts that utilize the
Deployment Template, or your own scripts provisioned in the EAC Admin Console of the
Endeca Workbench.

Options for provisioning the application on page 47

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

17Introduction | Typical workflows

Provisioning is the task of defining the location and configuration of the Endeca resources
(such as Forge, Dgidx and one or more Dgraphs) that control your Endeca application to the
EAC.

Data and configuration workflow
The diagram in this topic describes a basic data and configuration workflow. This workflow reflects
the tasks performed when you run the Deployment Template.

Basic workflow

The following diagram introduces the basic workflow that takes place when you run the Deployment
Template:

The Deployment Template creates the directory structure and adds the sample wine application data
to the appropriate directories. (If you use your own data, the pipeline that you create in Developer
Studio supplies the instance configuration files.)

Optionally, you can use the Content Acquisition System (CAS) to acquire the source data and prepare
it for further processing in the pipeline. Next, the Deployment Template loads the data, provisions the
application to the Endeca Application Controller (EAC) and runs the baseline update script. This
ensures that the data is indexed by the MDEX Engine, which is now ready to process user queries.

Basic workflow with Endeca Workbench

The following diagram introduces the basic workflow that takes place when you run the Deployment
Template when the deployment includes Endeca Workbench:

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Introduction | Typical workflows18

In this diagram, the environment includes Endeca Workbench, which allows business users to change
business rules, search configuration, thesaurus and other options.

Logging and reporting workflow
The diagram in this topic describes a logging and reporting workflow.

In this diagram:

• The front-end application uses the Endeca Logging API to communicate with the Log Server. (The
front-end application uses the Endeca Presentation API, Web services and XQuery, or the RAD
Toolkit for ASP.NET to communicate with the MDEX Engine.)

• Usage logs are generated for the Report Generator which creates XML reports for Endeca
Workbench. Business users can use Endeca Workbench to analyze the reports and tune business
rules search configuration settings accordingly.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

19Introduction | Typical workflows

For more information, see the Log Server and Report Generator Guide.

Related Links
Refining the application based on production reports on page 20

The diagram in this topic describes the logging and reporting workflow that takes place
between staging and production environments. This process lets you obtain reports from the
production environment and refine your Endeca application by changing the configuration in
the staging environment and pushing it back to production.

The logs created by the Dgraph on page 68
The Dgraph creates up to five logs, although some of these logs depend on your
implementation and the Endeca components that you may be using. This topic provides a
summary of these logs.

Refining the application based on production reports on page 20
The diagram in this topic describes the logging and reporting workflow that takes place
between staging and production environments. This process lets you obtain reports from the
production environment and refine your Endeca application by changing the configuration in
the staging environment and pushing it back to production.

Refining the application based on production reports

The diagram in this topic describes the logging and reporting workflow that takes place between staging
and production environments. This process lets you obtain reports from the production environment
and refine your Endeca application by changing the configuration in the staging environment and
pushing it back to production.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Introduction | Typical workflows20

In this diagram, the following actions take place:

1. The project is established and runs in the staging environment.
2. The data and configuration information is pushed from staging to production. This is illustrated by

arrows that go down from the staging to production environment.
3. The project is established and runs in the production environment.
4. The data from queries goes into the Logging Server, which generates Endeca Reports.
5. Endeca reports are consumed by Endeca Workbench. Based on this information, business users

can make adjustments to the project configuration using Endeca Workbench.

Note: In addition to the Endeca reports that you can analyze in Endeca Workbench, query
logs from the active running MDEX Engine in the production environment allow you to fine
tune MDEX Engine performance in the staging environment and reproduce your changes on
the MDEX Engine production servers. This cycle can be repeated to optimize performance.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

21Introduction | Typical workflows

Chapter 2

Creating Multiple Server Environments with
the Deployment Template

Based on your project requirements, you can proceed to create staging and production environments.
This typically means adding dedicated servers. To add servers and additional MDEX Engines, adjust
the Deployment Template AppConfig.xml file so that it points to the correct host names for the
servers in your staging (or production) environment.

About a multiple server environment
It is typical to establish a development environment (as well as staging and production environments)
with multiple servers.The diagram in this topic illustrates which Endeca components must be installed
in a multiple server environment.

In a multiple server environment, you can host:

• The MDEX Engine, the Platform Services package (which includes the EAC Central Server and
Agent), the data for your application, and the Deployment Template on one server.This is the Data
Processing (ITL) server.

• The MDEX Engine and the EAC Agent on one or more additional servers. These are the MDEX
Engine servers.

• Endeca Workbench and the EAC Agent on a separate server. This is the Tools server.

You can also have a dedicated Application server to host the front-end application, or use one of the
existing servers for this purpose. While you may or may not have an Application server in your
development environment, in staging and production environments it is typical to set up one or more
dedicated Application servers.

The following diagram illustrates which Endeca packages or their parts must be installed on the servers
dedicated to the Endeca deployment:

In this diagram:

• Each server plays a role in your Endeca environment and is represented as a single physical
machine. However, you can configure more than one server for data processing (ITL), the MDEX
Engine, and the front-end application.

• A Data Processing (ITL) server typically hosts the EAC Central Server, which is part of the Platform
Services package.

• A Data Processing (ITL) server that runs on Windows also typically hosts Developer Studio.
• A Data Processing (ITL) server must host the Dgidx component that is part of the MDEX Engine

installation package.
• An MDEX Engine server hosts the Dgraph component that is part of the MDEX Engine installation

package.
• An MDEX Engine server and a Tools server must each host the EAC Agent, which is part of the

Platform Services package.
• An Application server does not require the EAC Agent.

Overview of staging and production environments
While staging and production environments can have identical or very similar hardware setup, they
differ from each other.

This diagram introduces the differences between staging and production environments and explains
how they relate to each other:

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Overview of staging and
production environments

24

In this diagram:

• The top portion of the diagram describes the data and configuration workflow within a staging
environment. This workflow takes place when you create your pipeline, provision and initialize the
application to the EAC, either with the Deployment Template or by using Endeca Workbench, and
then run the baseline or partial update scripts. Next, the data is prepared for indexing and is
processed by the MDEX Engine.The MDEX Engine receives queries from the front-end application
and returns results to the front-end application on the Application server.

• The bottom portion of the diagram describes the data and configuration workflow within a production
environment. This workflow takes place when you run updates on production servers and also
enable the front-end application to send user queries to the MDEX Engine server for processing.
Note that the production environment does not include Developer Studio and Endeca Workbench,
because by this point, the configuration files and operational settings from the staging environment
are replicated in the MDEX Engine running in the production environment.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

25Creating Multiple Server Environments with the Deployment Template | Overview of staging and
production environments

• Most importantly, the arrows in this diagram that connect the staging and production environments
describe what is involved in pushing your staging data into production. To push your project's data
and configuration from staging to production, you typically perform these two high-level steps:

1. Copy configuration files from the pipeline (Developer Studio) and Endeca Workbench (if you
are using it) to the incoming directory on the Data Processing (ITL) server in the production
environment from which Forge will consume it.You can accomplish this task by running the
scripts within the Deployment Template.

2. Promote configuration files (typically created in Endeca Workbench) to the MDEX Engine server
in the production environment.This enables the MDEX Engine to use your project's configuration
settings. The Configuration Manager of the Deployment Template lets you specify which files
created in Endeca Workbench it needs to promote to the MDEX Engine server in the production
environment.

Planning your server topology
Assess the requirements of your staging and production environments and adjust the AppConfig.xml
file in the Deployment Template to point to the correct host names for your servers.

This topic provides high-level steps. For additional information on customizing the Deployment Template,
see the Deployment Template Usage Guide.

To configure your server topology:

1. Analyze your goals for the performance of your Endeca application. Look at the projected size of
the data set and other characteristics. For detailed information on hardware benchmarking and
performance, see the Performance Tuning Guide.

2. Formulate the requirements of your staging and production environments, based on your goals for
the expected performance.

For example, you will need to have an estimate of how many servers must be provisioned in the
staging and production environments, and how many MDEX Engines you will need to run on each
of the MDEX Engine servers. In the staging environment, you may want to provision a full duplicate
of your expected production environment, or it may be sufficient to provision a subset of your
production servers in a staging environment.

3. Proceed to configure your server topology for both staging and production environments.You do
this by adjusting the Deployment Template AppConfig.xml file so that it points to the correct host
names for your servers.

You will typically run the Deployment Template deploy script in each environment, configuring
each environment as a self-contained project.

After you finish adjustments to the servers, you can configure your application using the Deployment
Template and start customizing the baseline update script for your project.

Related Links
Adding Dgraphs on page 33

You can add one or more additional Dgraphs on an already configured MDEX Engine server
in your environment, by adjusting the AppConfig.xml file.

Adding MDEX Engine servers on page 30
You can add additional MDEX Engine servers to your environment by adjusting the Deployment
Template AppConfig.xml file.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Planning your server topology26

Configuring the application on multiple servers
To configure an application on multiple servers run the Deployment Template deploy script.

Before running the Deployment Template, verify that:

• On the Tools server, you have installed Endeca Workbench and the EAC Agent.
• On the Data Processing (ITL) server, you have installed the Platform Services (this includes the

EAC Central Server and EAC Agent) and the MDEX Engine. The data is typically hosted on this
server as well.

• On the Data Processing (ITL) server, you have downloaded the Deployment Template and set up
a directory for your deployment, such as C:\Endeca\apps on Windows, or localdisk/apps
on UNIX.

• On the MDEX Engine server, you have installed the MDEX Engine and the EAC Agent. (You can
have multiple physical servers each running the MDEX Engine, or more than one MDEX Engine
running on the same machine.)

• On all servers, the Endeca HTTP service is running. This starts the EAC.

To configure the application on multiple servers:

1. Go to the C:\Endeca\Solutions\deploymentTemplate-<version>\bin directory on
Windows or /usr/local/Endeca/Solutions/deploymentTemplate-<version>/bin on
UNIX and run the deploy.bat or deploy.sh script.

This script creates the project directories and configuration files.

2. Confirm the correct version of the Platform Services installation package (the template verifies the
ENDECA_ROOT variable), and answer Yes to proceed.

3. Select the deployment type, Dgraph.

4. Specify the name of the application: MyApp and the location of the application directory:
C:\Endeca\apps on Windows or /localdisk/apps on UNIX.

Note: In this guide, the directory for each of your applications is referred to by the [appDir]
abbreviation. With the paths above, this is equal to C:\Endeca\apps\MyApp on Windows
and /localdisk/apps/MyApp on UNIX.

5. Specify the EAC port (the Endeca HTTP service port) or accept the default port: 8888

6. For Enable IAP Workbench integration, specify Yes.

Note: This configuration also applies to any Endeca Workbench edition.

7. Specify the Endeca IAP Workbench port (this is the Endeca Tools Service port for your Endeca
Workbench edition) or accept the default port: 8006.

8. Specify other necessary ports:

a) For the Dgraph1, specify the Dgraph1 user query port or accept the default: 15000
b) For the Dgraph2, specify the Dgraph2 user query port or accept the default: 15001
c) For the Endeca Logging and Reporting Server, specify the server port or accept the default:

15010

Note: The Logging Server port number can be no larger than 32767. If you plan to use
the reference implementation and verify the Logging Server, you can set the Logging
Server to run on port 15002 (for Dgraph1) or on port 15003 (for Dgraph2), and the reference
implementation will work by default when connected to an MDEX Engine running on ports

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

27Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

15000 and 15001, respectively. These settings assume that the Logging Server runs on
the same machine as the MDEX Engines. If you are using a different port for your Dgraph
with the JSP reference implementation, specify a port equal to Dgraph_port_number
+ 2. This is because the Logging Server for the JSP reference implementation submits
log entries to a port 2 above the Dgraph port.

Related Links
Changing server settings in AppConfig.xml on page 28

To accommodate a deployment on multiple servers, change the settings in the
AppConfig.xml file of the Deployment Template. An example of changes to this file is
included in this topic.

Adding Dgraphs on page 33
You can add one or more additional Dgraphs on an already configured MDEX Engine server
in your environment, by adjusting the AppConfig.xml file.

Adding MDEX Engine servers on page 30
You can add additional MDEX Engine servers to your environment by adjusting the Deployment
Template AppConfig.xml file.

Additional customization tasks on page 34
After you finish adjustments to the Deployment Template workflow so that it knows the location
of your incoming data and correctly reflects the topology of the servers in your environment,
you can start working on the baseline update script for your project.You can later run this
script within the Deployment Template.

Changing server settings in AppConfig.xml
To accommodate a deployment on multiple servers, change the settings in the AppConfig.xml file
of the Deployment Template. An example of changes to this file is included in this topic.

In a multiple server environment, the [appDir]/config/script/AppConfig.xml file should
point to one or more MDEX Engine servers, a Data Processing (ITL) server, and a Tools server.

To change server settings in the AppConfig.xml file:

1. If you are using one or more separate servers to host one or more MDEX Engines, change the
MDEXHost name to the name of the server in your deployment that runs each MDEX Engine.

2. Similarly, if you are using a separate Tools server, change the Endeca Workbench (referred to as
"webstudio" in the AppConfig.xml file of the Deployment Template) host name to the name
of the machine you are using for that server, and specify the port number on which the EAC agent
is running on that machine.

3. Edit the rest of the AppConfig.xml file to change the other machine characteristics in a similar
way. For example, for the Data Processing (ITL) server, change the name of the ITLHost and the
port number on which the EAC agent is running on the ITL server. Change the "WebStudioHost"
property in the ConfigManager section of this file.

You have adjusted the Deployment Template configuration to reflect the multiple server environment.
Now you need to initialize the application.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

28

Example of the changes to the AppConfig.xml file

The following example shows an abbreviated version of the
[appDir]/config/script/AppConfig.xml file with the changes required to accommodate
multiple servers:

<?xml version="1.0" encoding="UTF-8"?>
<!--
 ##

 # This file contains settings for an EAC application.
 ...
 ##

 # Global variables
 #
 -->
 <app appName="myApp" eacHost="PlatformServicesServer.MyCompany.com" eac¬
Port="8888"
 ...
 </app>

 <!--
 ##

 # Servers/hosts
 ...
 -->
 <host id="ITLHost" hostName="PlatformServicesServer.MyCompany.com"
port="8888" />
 <host id="MDEXHost" hostName="MDEXEngineServer.MyCompany.com" port="8888"
 />
 <host id="webstudio" hostName="ToolsServer.MyCompany.com" port="8888" >
 <directories>
 <directory name="webstudio-report-dir">./reports</directory>
 </directories>
 </host>
.....
 <!--
 ##

 # Config Manager.
 ...
 -->
 <custom-component id="ConfigManager" host-id="ITLHost"
class="com.endeca.soleng.eac.toolkit.component.ConfigManagerComponent">
 <properties>
 <property name="webStudioEnabled" value="true" />
 <property name="webStudioHost" value="ToolsServer.MyCompany.com" />
 <property name="webStudioPort" value="8006" />

 </properties>

 <!--
 ##

 # Forge
 #
 -->
 <forge id="Forge" host-id="ITLHost">
 ...

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

29Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

 </forge>
....

<!--
 ##

 # Dgidx
 #
 -->
 <dgidx id="Dgidx" host-id="ITLHost">

 </dgidx>

 <!--
 ##

 # Dgraph Cluster
 #
 -->
 <dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
 </dgraph-cluster>

 <!--
 ##

 # Dgraphs
 #
 -->
 <dgraph id="Dgraph1" host-id="MDEXHost" port="15000">

 </dgraph>

 <dgraph id="Dgraph2" host-id="MDEXHost" port="15001">

 </dgraph>

....
 <!--
 ##

 # LogServer
 #
 -->
 <logserver id="LogServer" host-id="ITLHost" port="15010">

 </logserver>

Adding MDEX Engine servers
You can add additional MDEX Engine servers to your environment by adjusting the Deployment
Template AppConfig.xml file.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

30

When you initially run the Deployment Template, it sets up an environment in which two Dgraphs are
running on the same MDEX Engine server.You can optionally change this configuration and add one
or more MDEX Engine servers, with one or more Dgraphs.

To add MDEX Engine servers:

1. Adjust the [appDir]/config/script/AppConfig.xml file and add MDEX_Server2.My¬
Company.com as shown in the following example.

<!--

##

 # Servers/hosts
 ...
 -->
 <host id="ITLHost" hostName="PlatformServicesServer.MyCompany.com"
port="8888" />
 <host id="MDEXHost1" hostName="MDEXServer1.MyCompany.com" port="8888"
 />
<host id="MDEXHost2" hostName="MDEXServer2.MyCompany.com" port="8888"

 />
<host id="webstudio" hostName="ToolsServer.MyCompany.com" port="8888"/

 >
 <directories>
 <directory name="webstudio-report-dir">./reports</directory>
 </directories>
 </host>
...

2. Add the Dgraph to the Dgraph cluster:

<!--

##

 # Dgraph Cluster
 #
 -->
 <dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />

<dgraph ref="Dgraph2" />
 </dgraph-cluster>

3. Point the Dgraph to the new host:

<!--

##

 # Dgraphs
 #
 -->
 <dgraph id="Dgraph1" host-id="MDEXHost1" port="15000">

 </dgraph>

 <dgraph id="Dgraph2" host-id="MDEXHost2" port="15001">

 </dgraph>

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

31Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

....

Example

In this example, an additional MDEX Engine server is specified, <host id="MDEXHost2" host¬
Name="MDEXServer2.MyCompany.com" port="8888" />.

In addition, Dgraph2 is now pointing to MDEXHost2, as in: <dgraph id="Dgraph2" host-
id="MDEXHost2" port="15001">.

In this configuration Dgraph1 runs on MDEXServer1.MyCompany.com and Dgraph2 runs on
MDEXServer2.MyCompany.com.

Note: The ports specified in the MDEXHost1 and MDEXHost2 definitions are the ports on which
the EAC Agent is running on those machines, not the MDEX Engine query ports.

This example shows an abbreviated version of the file and highlights the required changes:

<?xml version="1.0" encoding="UTF-8"?>
<!--
 ##

 # This file contains settings for an EAC application.
 ...
 ##

 # Global variables
 #
 -->
 <app appName="MyApp" eacHost="PlatformServicesServer.MyCompany.com" eac¬
Port="8888"
 ...
 </app>

 <!--
 ##

 # Servers/hosts
 ...
 -->
 <host id="ITLHost" hostName="PlatformServicesServer.MyCompany.com"
port="8888" />
 <host id="MDEXHost1" hostName="MDEXServer1.MyCompany.com" port="8888" />

 <host id="MDEXHost2" hostName="MDEXServer2.MyCompany.com" port="8888" />

 <host id="webstudio" hostName="ToolsServer.MyCompany.com" port="8888" />

 <directories>
 <directory name="webstudio-report-dir">./reports</directory>
 </directories>
 </host>
...

 <!--
 ##

 # Dgraph Cluster
 #

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

32

 -->
 <dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
 </dgraph-cluster>

 <!--
 ##

 # Dgraphs
 #
 -->
 <dgraph id="Dgraph1" host-id="MDEXHost1" port="15000">

 </dgraph>

 <dgraph id="Dgraph2" host-id="MDEXHost2" port="15001">

 </dgraph>

....

Now that you have added an additional MDEX Engine server, you can add an additional Dgraph on
any of these servers.

Adding Dgraphs
You can add one or more additional Dgraphs on an already configured MDEX Engine server in your
environment, by adjusting the AppConfig.xml file.

When you initially run the Deployment Template, it sets up an environment in which two Dgraphs are
running on the same MDEX Engine server.You can optionally change this configuration and add or
remove Dgraphs from this server.

To add a Dgraph to an MDEX Engine server:

1. Add a line similar to the following <dgraph id="Dgraph3" host-id="MDEXHost"
port="15001"> to the Dgraphs portion of the [appDir]/config/script/AppConfig.xml
file.

2. Make changes to the Dgraph Cluster block and the Dgraphs block, as shown in the following
example. Add any new Dgraphs that you have provisioned to this block in order for a copy of the
index to be pushed out to them during updates.
In this abbreviated example of AppConfig.xml, three Dgraphs are configured on the same MDEX
Engine server:

<?xml version="1.0" encoding="UTF-8"?>
<!--
 ##
 # This file contains settings for an EAC application.
 ...
 ##
 # Global variables
 #
 -->
 <app appName="MyApp" eacHost="PlatformServicesServer.MyCompany.com"

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

33Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

eacPort="8888"
 ...
 </app>

 <!--
 ###
 # Servers/hosts
 ...
 -->
 <host id="ITLHost" hostName="PlatformServicesServer.MyCompany.com"
port="8888" />
 <host id="MDEXHost" hostName="MDEXServer.MyCompany.com" port="8888" />

 <host id="webstudio" hostName="ToolsServer.MyCompany.com" port="8888"
 >
 <directories>
 <directory name="webstudio-report-dir">./reports</directory>
 </directories>
 </host>
...
 <!--
 ##
 # Dgraph Cluster
 #
 -->
 <dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
 <dgraph ref="Dgraph3" />
 </dgraph-cluster>

 <!--
 ##
 # Dgraphs
 #
 -->
 <dgraph id="Dgraph1" host-id="MDEXHost" port="15000">

 </dgraph>

 <dgraph id="Dgraph2" host-id="MDEXHost" port="15001">

 </dgraph>
<dgraph id="Dgraph3" host-id="MDEXHost" port="15007">

 </dgraph>

....

Additional customization tasks
After you finish adjustments to the Deployment Template workflow so that it knows the location of your
incoming data and correctly reflects the topology of the servers in your environment, you can start
working on the baseline update script for your project.You can later run this script within the Deployment
Template.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

34

Running the baseline update script on your project's data is similar to running it on the sample data.
For more information on the Deployment Template customization and capabilities, see the Deployment
Template Usage Guide.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

35Creating Multiple Server Environments with the Deployment Template | Configuring the application on
multiple servers

Chapter 3

Replicating application definitions across
environments

Endeca applications typically go through a life cycle of development, test, use and modification. The
ability to replicate application definitions across heterogeneous environments can greatly simplify the
management of this life cycle, as well as helping with backup and recovery.

About replicating application definitions using the
Deployment Template

The ability to replicate application definitions across environments helps organizations support a
well-structured application life cycle, where applications can be developed, tested, deployed, modified,
re-tested and re-deployed with the least effort.

Replicating application definitions also simplifies administrative processes like the backup and recovery
of Endeca applications.

This section discusses the planning and procedures that you can use to replicate applications, even
the target environments that have very different characteristics.

Endeca administrators and developers may want to use the same application definition in several
hardware and software environments:

• A primary development environment, where the application configurations and files are created
and maintained.

• A staging and test environment, where applications are tested and tweaked.
• A production environment.
• Secondary development environments, where the application definition can be re-used as the

basis for new applications.
• A backup or disaster recovery environment, where the application can be redeployed and restarted

in the event of a problem with the main production environment.

These environments may have very different characteristics, including variations in the numbers and
types of servers, operating systems, and network architectures. For example, a development
environment might be a single Unix workstation, a test environment might be a set of virtual machines
running on a Windows server, and a production environment might include a dedicated subnet
connecting diverse systems for the ITL server, the MDEX Engine, and multiple application servers
and log servers.

Replicating any type of application across diverse environments is challenging. Fortunately, with
planning, some scripting, and the use of certain procedures, you can automate most of the process
of replicating Endeca application definitions across environments with different characteristics.

Part of the solution is to develop with the Endeca Deployment Template. As described in the previous
section, Creating Multiple Server Environments with the Deployment Template, the Deployment
Template utilizes the EAC to manage application definitions across servers in each environment.
Although each environment may contain multiple machines, including the MDEX Engine Server, the
ITL Server, and application servers, the application definition is stored in only one of them: the EAC
Central Server. The Deployment Template generates application control scripts that keep the other
servers updated with the definition stored on the EAC Central Server.

But other procedures are necessary to successfully replicate application definitions between
environments.

A typical situation is illustrated in the following diagram. In this example, an administrator maintains
three environments, one for development, a second for staging, testing and adjusting applications,
and a third for running the application in production.

The administrator wants to synchronize the application across the three environments, so that changes
made in the development environment can be moved quickly to the staging environment, and so that
adjustments made in the staging environment can be deployed easily both to the production
environment, and back to the development environment (where they can be reflected in new versions
of the application under development).

The administrator is developing with the Deployment Template, so when a new or modified application
definition is moved to the EAC Central Server in each environment, the EAC takes care of propagating
the necessary parts of the application definition across the servers in that environment.

But to simplify the replication process as much as possible the administrator must also:

• Create application definitions that can operate with little or no modifications in all environments.
• Automate the process of replicating the elements of the application definition between environments.

Similar considerations would apply if the administrator wanted to:

• Replicate the application definition to a secondary development environment and use it as a basis
of a new application.

• Create a copy of the application that can be stored in a safe location, and then quickly replicated
to a backup environment or disaster recovery site, even if the characteristics of that site differ from
the original environment.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Replicating application definitions across environments | About replicating application definitions using
the Deployment Template

38

The steps to replicating application definitions across environments are:

• Identify the artifacts that make up your application definition.
• Create custom files for environment-specific settings.
• Control paths to ensure interoperability across environments.
• Automate file collection.
• Replicate application definitions across environments.
• Select an approach to avoiding synchronization conflicts.

Identifying the artifacts that make up an application
The artifacts that make up a typical Endeca application definition include the following:

The AppConfig.xml file

The AppConfig.xml file describes each of the application's provisioning information and is stored
in the EAC Central Server. The Deployment Template control scripts use AppConfig.xml as the
authoritative source for application definition. The Deployment Template stores a copy of the
AppConfig.xml file in the [appdir]/config/script directory.

Although you can modify an application configuration with the Workbench, we recommend that
modifications only be made in the AppConfig.xml file. That way, the application configuration will
be saved on disk, ready for sharing between environments.You can use the Workbench for other

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

39Replicating application definitions across environments | Identifying the artifacts that make up an
application

tasks that do not involve modifying the configuration, such as reviewing the configuration, and starting
or stopping individual components.

Note: Some parts of the AppConfig.xml file include settings that are environment specific,
such as the application's name, file system paths, and host addresses in the environment.These
settings should be collected and stored in a custom file. For more information about how to
create this file, see the topic about Creating a custom file for environment-specific settings.

The instance configuration

The instance configuration is a set of files that control the ITL process and the data loaded into the
MDEX Engine servers. The instance configuration files are controlled by the Developer Studio, and
optionally by the Workbench.

These files include configuration data such as dimension definition, search configuration, the Forge
pipeline, and Page Builder landing pages.

Page Builder templates

Page Builder templates are used to drive dynamic landing pages that can be created in Page Builder.
They are defined by xml files stored by the Workbench, and accessed through the emgr_update
command utility.

Command-line scripts

An application deployment typically includes command-line scripts that perform common operations
related to the application's functionality. By convention, these scripts are stored in the Deployment
Template's [appdir]/control directory.

The Deployment Template includes scripts such as baseline_update and
set_baseline_data_ready_flag.

You can create additional scripts under the [appdir]/control directory. These scripts, together
with their input data and output directories, are a part of the application definition. For example, a
developer might create scripts to crawl web pages in preparation for a baseline update. These scripts
might take as input a seed-list file, and create an output file in a custom directory under [appdir].

These command-line scripts, along with their input data and output directories, should be shared
among the development, staging and production environments.

Library files

Many parts of an application use library files. For example, a Forge pipeline using a Java or Perl
manipulator typically requires access to library files implementing those manipulators. BeanShell scripts
may use application- or Endeca-specific Java classes. By convention, library files are kept under
[appdir]/config/lib.

Forge state files

Forge state files reside in the [appdir]/data/state directory.

In most cases these files do not need to be included as part of an application definition. However,
when an application uses dimension values from auto-generated or external dimensions, then Forge
state files do need to be synchronized across the environments. In this situation, the state files contain
the IDs of these dimension values and ensure that the same dimension value always gets the same
ID no matter how many times Forge is run. These dimension values may be used in a variety of ways,
including dynamic business rules, landing pages, dimension ordering, and precedence rules.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Replicating application definitions across environments | Identifying the artifacts that make up an
application

40

In other words, Forge state files should be identified as part of the application definition if the application
uses auto-generated dimensions or external dimensions, and values from these dimensions are
referenced anywhere in the application configuration (for example, in dynamic business rules, Page
Builder landing pages, explicit dimension ordering, or in precedence rules).

Creating a custom file for environment-specific settings
Most application configuration settings can be shared among all environments, but a few are
environment-specific. These settings should be removed from the AppConfig.xml file and stored in
a separate file. That way, each environment will have its own custom file of environment-specific
settings that is not changed during synchronization.

Environment-specific settings typically include an application's name, file system paths, host addresses
in the environment, and the definition of MDEX processes known as the Dgraph cluster.

To create a custom.xml file:

1. Edit the AppConfig.xml file generated by the Deployment Template to include a line similar to
the following :

<spr:import resource="custom.xml" />

2. Move all environment-specific elements from AppConfig.xml to a new custom.xml file. These
elements might include the <app>, <host>, <dgraph-cluster>, <dgraph>, and <logserver>
elements.

3. Create a custom.xml file for each of the environments, with settings appropriate for that
environment.

Here is a sample custom.xml file to use a general reference when creating your own file.

- <!--
 ##

 # Global variables

 -->
- <app appName="wine" eacHost="ConfigMig1" eacPort="8888" dataPrefix="wine"
 sslEnabled="false" lockManager="LockManager">
 <working-dir>${ENDECA_PROJECT_DIR}</working-dir>
 <log-dir>./logs</log-dir>
 </app>
- <!--
 ##

 # Servers/hosts
 #
 # The "webstudio" host and its "webstudio-report-dir" directory use
 # predefined names to inform Web Studio where it should look for reports

 # for this application.
 #
 -->
 <host id="ITLHost" hostName="ConfigMig1" port="8888" />
 <host id="MDEXHost" hostName="ConfigMig1" port="8888" />

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

41Replicating application definitions across environments | Creating a custom file for environment-specific
settings

- <host id="webstudio" hostName="ConfigMig1" port="8888">
- <directories>
 <directory name="webstudio-report-dir">./reports</directory>
 </directories>
 </host>
- <!--
 ##

 # Dgraph Cluster
 #
 -->
- <dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 </dgraph-cluster>
- <!--
 ##

 # Dgraphs
 #
 -->
- <dgraph id="Dgraph1" host-id="MDEXHost" port="15000">
- <properties>
 <property name="restartGroup" value="A" />
 <property name="updateGroup" value="a" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/updates</update-dir>
 </dgraph>
- <!--

 ##

 # LogServer
 #
 -->
- <logserver id="LogServer" host-id="ITLHost" port="15010">
- <properties>
 <property name="numLogBackups" value="10" />
 <property name="targetReportGenDir" value="./reports/input" />
 <property name="targetReportGenHostId" value="ITLHost" />
 </properties>
 <log-dir>./logs/logservers/LogServer</log-dir>
 <output-dir>./logs/logserver_output</output-dir>
 <startup-timeout>120</startup-timeout>
 <gzip>false</gzip>
 </logserver>

Controlling paths to ensure interoperability across
environments

The development, staging and production environments often include servers with different operating
systems and directory structures. Using forward slashes, relative path names and variables can ensure
that application definitions propagated across environments will work in the target environment.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Replicating application definitions across environments | Controlling paths to ensure interoperability
across environments

42

Use forward slashes

To ensure that paths work in all locations, use forward slashes ("/") wherever possible in configuration
files and scripts. Windows and Unix environments both work well with forward slashes. The only
exceptions are platform-specific scripts, such as Windows .bat files or Unix shell scripts.

Use relative paths in the pipeline

Using absolute paths in the Forge pipeline ties the application to a particular location in one environment.
It is therefore better to use relative paths.

In record-adapters, paths are relative to [appdir]/data/processing, which contains the content
of [appdir]/data/incoming before the pipeline is run. Therefore any files from
[appdir]/data/incoming can be referenced directly by name, without specifying a directory.

Java manipulator paths are relative to [appdir]. This applies both to the manipulator's class path
and to any files the Java code may try to access. Since these file names are often given as
pass-throughs, keep such pass-through values relative to [appdir].

Use variables in scripts

You can specify relative paths in scripts, but keep in mind that scripts are not always invoked from the
same directory. For example, there might be a script called crawl.sh in [appdir]/control. If this
script uses paths relative to [appdir]/control, then it will only work correctly if it is invoked while
stored in this directory. But if the script is invoked as/control/crawl.sh from [appdir], then the
paths will be incorrect and the script may fail.

To avoid this problem, scripts can use preset variables to refer to a known directory without presuming
any particular absolute path. In Windows batch files, the variable%~dp0 resolves to the directory
containing the script. In Unix Bash scripts, the variable$0 resolves to the script name, and running the
dirname command on it will give the script's directory. In BeanShell scripts for AppConfig.xml, the
variable ${ENDECA_PROJECT_DIR} points to [appdir]. By using these variables, you can construct
portable paths in location-independent scripts.

All the scripts generated by the Deployment Template use this technique and can serve as examples.

For Unix, the scripts generally start with the following lines:

WORKING_DIR=`dirname ${0} 2>/dev/null`
. "${WORKING_DIR}/../config/script/set_environment.sh"

This sets the WORKING_DIR variable to the directory containing the script being run, and then addresses
the set_environment.sh file in a different directory by making the path relative to WORKING_DIR.
Wherever the script is invoked, the path to set_environment.sh will always resolve correctly.

For Windows, the scripts usually start with the following line:

call %~dp0..\config\script\set_environment.bat

This addresses set_environment.bat via a path relative to%~dp0. It ensures that the reference
is correct wherever the script is invoked.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

43Replicating application definitions across environments | Controlling paths to ensure interoperability
across environments

Automating the collection of files
After you modify an application configuration, you must collect all of the files and artifacts for the
application definition and store them in the Deployment Template's[appdir] directory, so they can
be replicated to the other environments. This requires collecting files from various locations, including
the Deployment Template's[appdir] directory, the Workbench, and arbitrary locations used by the
application's scripts.

To create a script that collects these files:

1. Use your editor of choice and specify all the Workbench parts of the application definition.

2. In the same file, combine the Workbench parts with the remaining application definition stored in
the Deployment Template's[appdir]directory.

Running the script results in collecting and storing all of the artifacts in subdirectories under [appdir],
such as /config, /control, /test-data, data/state, and data/incoming.

A sample collection script, collect-app.bat, is shown below.You can write a similar script to fit
your Endeca environment. This particular sample is provided as reference only.

set app=wine
set wbench=localhost:8006
call %~dp0..\config\script\set_environment.bat
call %~dp0runcommand.bat ConfigManager updateWsConfig
xcopy /y %~dp0\..\data\complete_index_config %~dp0\..\config\pipeline
set templ=%~dp0\..\config\templates
mkdir %templ%
emgr_update --app_name %app% --host %wbench% --action get_templates --dir
%~dp0\..\config\templates

You can also create a script to upload relevant parts of the updated application definition to the
Workbench from the[appdir]directory. A sample script for upload.bat is shown as follows:

set app=new-wine
set wbench=localhost:8006
call %~dp0..\config\script\set_environment.bat
emgr_update --app_name %app% --host %wbench% --action update_mgr_settings
--dir %~dp0\..\config\pipeline --prefix %ENDECA_PROJECT_NAME%
emgr_update --app_name %app% --host %wbench% --action set_templates --dir
%~dp0\..\config\templates

Note: Be careful when running the collect_app.bat and upload.bat scripts.These scripts
can overwrite settings in the Developer Studio and the Workbench.

Distributing application definitions between environments
for the first time

After you collect all the files and artifacts for an application definition and store them in a central location,
you can distribute them by copying them to the[appdir]directory on the EAC Central Servers of the
target environment. A few additional steps are required when an application is being deployed to an
environment for the first time.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Replicating application definitions across environments | Automating the collection of files44

To replicate an application definition the first time an environment is provisioned, for example when a
new application is first moved from development to staging, or from staging to production:

Note: These steps assume that your environment operates under a version control system.

1. On the EAC Central Server of the source environment, run the collect-app.bat script to store
all of the application configuration artifacts in[appdir]directory.

2. Commit the contents of the[appdir]directory.

3. In the target environment, create the[appdir]directory on the ITL Server.

4. Copy the contents of the[appdir]directory of the source environment into the [appdir] directory
of the target environment.

5. Edit the environment-specific parts of the definition and supply the correct values for this environment.
For more information, see the Using techniques to ensure interoperability across environments
topic.

6. Edit the environment-specific parts of the definition and supply the correct values for this environment.
For more information, see the Using techniques to ensure interoperability across environments
topic.

7. On the EAC Central Server of the target environment, run the Deployment Template's
initialize_services script in the [appdir]/control directory.

8. On the EAC Central Server of the target environment, run the Workbench upload.bat script to
ensure that the target environment's Workbench is updated.

Distributing an updated application definition with another environment
To distribute an updated application definition with another environment:

Note: These steps assume that your environment operates under a version control system.

1. On the EAC Central Server of the source environment, run the collect-app.bat script to store
all of the application configuration artifacts in the [appdir]directory.

2. Commit the content of the relevant [appdir] subdirectories.

3. Update the[appdir]directory on the EAC Central Server in the target environment.

4. On the EAC Central Server of the target environment, run the upload.bat script to ensure that
the target environment's Workbench is updated.

Approaches to avoiding synchronization conflicts
In some situations, several users might be modifying an application definition concurrently. For example,
several application developers might be working on the same application in their own development
environments, or business users might be changing application configurations in the staging environment
while developers are making other changes in the development environment.To avoid synchronization
conflicts, review the following approaches.

A token system

Token systems prevent synchronization conflicts by allowing only one person in an environment to
modify an application configuration. Only the person holding the "token" can make changes.The token

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

45Replicating application definitions across environments | Approaches to avoiding synchronization
conflicts

is passed from one environment to another during synchronization: the target environment acquires
the token from the source environment when the application definition is propagated. Any changes
performed before obtaining the token will be run over without warning.

Token systems are simple, because it is easy to tell which environment is entitled to make changes
at any given moment, and any part of the application is allowed to change in the token-holding
environment. However, a token system prevents concurrent development.

Separation of concerns

A separation of concerns method restricts the scope of changes allowed in an environment. Each
environment is concerned with a distinct part of the configuration. For example, one environment may
be in charge of Page Builder templates, while another is in charge of dimension definitions. Changes
to the area of concern can only be made in the appropriate environment. Therefore changes made in
one environment never overwrite changes made in another.

Separation of concern methods facilitate concurrent development, but the separation of concerns must
be well defined in advance and enforced consistently.

Manual resolution

Conflicts arising from unrestricted concurrent changes in multiple environments can be resolved by
manually comparing all the conflicting files and treating each difference individually.

However, manual resolution processes are time-consuming, require extensive knowledge of Endeca
components and internal formats, are prone to human error, and are not scalable. Therefore, you
should not consider manual resolution for synchronizing Endeca environments.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Replicating application definitions across environments | Approaches to avoiding synchronization
conflicts

46

Chapter 4

Performing System Operations with the
EAC

This section discusses operational tasks related to your Endeca application. It focuses on the
recommended practice of using the Deployment Template to interact with the EAC, but mentions
alternative methods of performing some tasks. It also lists essential administrative information related
to EAC operations, such as pointers to EAC logs.

Options for provisioning the application
Provisioning is the task of defining the location and configuration of the Endeca resources (such as
Forge, Dgidx and one or more Dgraphs) that control your Endeca application to the EAC.

You can provision an application in three ways:

DescriptionMethod

This is the easiest way to provision an application.
By running the initialize_ser¬
vices script of the Deployment
Template For information, see this guide, along with the Deployment

Template Usage Guide.

For information, see the Endeca Workbench Help.Using Endeca Workbench

For information, see the EAC Guide.Directly to the EAC using the eaccmd
tool

Related Links
Updating the application provisioning on page 48

When you make changes to the AppConfig.xml file, the application provisioning in the
Deployment Template configuration must be updated as well.You can update the application
provisioning definition in the Deployment Template's environment without having to run a
baseline update.

Backing up the EAC application provisioning with eaccmd on page 48
If you use eaccmd (and not the Deployment Template), to back up an existing application's
provisioning, you can run the eaccmd describe-app command and redirect its output to
a file.This is a useful technique for testing, since it allows you to easily revert your application
to its original provisioning if you make unwanted changes.

Updating the application provisioning
When you make changes to the AppConfig.xml file, the application provisioning in the Deployment
Template configuration must be updated as well.You can update the application provisioning definition
in the Deployment Template's environment without having to run a baseline update.

To update the AppConfig.xml definition in the Deployment Template configuration:

Run the runcommand script with --update-definition option as follows:

DescriptionOption

C:\apps\myApplication\control\runcommand.bat --up¬
date-definition

Windows

/apps/myApplication/control/runcommand.sh --update-
definition

UNIX

The --update-definition option updates the application provisioning.

Backing up the EAC application provisioning with eaccmd
If you use eaccmd (and not the Deployment Template), to back up an existing application's provisioning,
you can run the eaccmd describe-app command and redirect its output to a file. This is a useful
technique for testing, since it allows you to easily revert your application to its original provisioning if
you make unwanted changes.

It is possible to use the eaccmd describe-app command for this purpose, because the output of
this command is in the same XML format used by the eaccmd define-app command.

For more information on the eaccmd commands see the "Provisioning commands" section in the
"Using the Eaccmd Tool" chapter of the EAC Guide.

To back up provisioning for an existing application with eaccmd:

Run the following command:eaccmd describe-app --app application_name –canoni¬
cal>application.xml

This command writes the XML to a file that can easily be used later by the define-app command.
The eaccmd describe-app –canonical command has a required –app parameter that takes
the name of the application to be described. The --canonical flag forces the application's
description to use absolute paths for every entry, and to resolve references such as . and .. to
produce straightforward paths. This makes reading the application description significantly easier.

You can later use the resulting application description file as a definition file for the eaccmd define-
app command.

Options for running system operations
You can run system operations using two alternative approaches—scripts that utilize the Deployment
Template, or your own scripts provisioned in the EAC Admin Console of the Endeca Workbench.

This guide assumes that you use the Deployment Template as a primary means of running operational
tasks in your Endeca implementation, and provides basic information about the EAC.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Options for running system operations48

DescriptionMethod

The sample scripts provided with the Deployment Template
control the Endeca operational tasks through the EAC.You
can use these scripts, or create custom scripts based on them.

Customized scripts within the
Deployment Template environment

The scripts typically run such processes as routine baseline
and partial updates.You can also add specific scripts that run
before the Dgraph is stopped or after it is started.

You can create your own operational scripts for running
baseline and partial updates, and for other purposes, and

Your own Java scripts within the
Endeca Workbench environment

provision them in the Endeca Workbench for running from
there.

Your scripts should communicate with the EAC Central Server
which controls the processes on each of your servers.

If you would like to use your own custom Java scripts that
directly communicate with the EAC and need more information
on how to write them, see the EAC Guide.

Checking the status of EAC components
You can use several methods to check the status of your application's components that are provisioned
to the EAC, such as Dgidx, Forge, and Dgraph.

To check the status of EAC components, use one of these methods:

• Endeca Workbench. Use the EAC Administration console to monitor a particular application's
component status. The status of each component can be set to auto-refresh.

• The eaccmd utility. Run the following command at a command line (UNIX and Windows):

eaccmd status --app <app_id> --comp <comp_id

Note: You can also substitute the --comp <comp_id> argument with the --script
<script_id> argument to confirm the status of an EAC script.

• The Deployment Template. Run the following command at a command line:

Windows:
<PROJECT_DIR>\control\runcommand.bat --print-status
UNIX :
<PROJECT_DIR>/control/runcommand.sh --print-status

This commands prints the status for each component in the current application.

• Your application.You can build your application to query EAC via programmatic Web service
calls. For more details about using the getComponentStatus() API method, see the "Endeca
Application Controller API Interface Reference" section of the Endeca Application Controller Guide.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

49Performing System Operations with the EAC | Checking the status of EAC components

Avoiding defunct EAC processes
On UNIX systems, the ps command may report a number of defunct EAC-originated processes. This
is known and expected EAC behavior and it does not necessarily indicate a problem.

For example, you might see the following output from the ps command:

> ps -ef | grep endeca
endeca 1924 1875 0 - ? 2:00 <defunct>
[...]

Additionally, warning messages of this form appear in the $ENDECA_CONF/logs/process.0.log
file on the affected server:

Apr 17, 2009 11:24:17 AM
com.endeca.esf.delegate.procctrl.ExecutableProcessHandle
tryCleanShutdown
WARNING: Process 1924 did not shutdown cleanly after 30 seconds.
Terminating forcefully.

The cause of these warning messages is as follows. When the EAC shuts down a child process like
a Dgraph, it initially sends the correct exit command for the process (admin?op=exit in the case of
the Dgraph) and waits 30 seconds for the process to exit. However, if the Dgraph is processing a
long-running query, or if its request queue is long, it may not be able to shut down within 30 seconds.

If the process does not exit after 30 seconds, the EAC logs the warning message shown above and
then kills the process with the operating system's kill command. When this occurs, the affected
process is reported by ps as being in a <defunct> state. In this state, it does not use memory, disk
space, or ports and should not be a problem for the system.

Alternatively, this can happen if you kill the EAC process directly rather than by using the shutdown.sh
script. In this case the EAC process terminates immediately, leaving any chlid processes in a <de¬
funct> state.

To avoid defunct EAC processing, consider the following recommendations:

• For a Dgraph or Agraph, the request log shows whether queuing or long processing times are
preventing the Dgraph from responding in time to the admin?op=exit command. If this is the
case, spreading traffic over a larger number of MDEX Engine mirrors (for queuing) or reducing
query complexity (for long processing times) should allow the Dgraph to respond more quickly to
the exit command.

• Another option may be to override the default 30-second timeout period for EAC shutdowns by
modifying the value of the com.endeca.eac.process.shutdownTimeoutSecs setting in your
server's $ENDECA_CONF/conf/eac.properties file.

This value shows the length of time in seconds that the EAC Agent on that server waits for a
process to exit. Specifying a higher value for this setting may help prevent creation of <defunct>
EAC child processes, but may also make EAC updates slower, because the EAC Agent will wait
longer for all processes to exit.

Note: Modifications to this setting will not take effect until the Endeca HTTP service (which
contains the EAC) is restarted on the server.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Avoiding defunct EAC processes50

EAC memory usage
This topic outlines recommendations for optimizing EAC memory usage. For example, if a server is
running more than one MDEX Engine and more than one EAC agent, you may encounter performance
problems due to multiple EAC agent processes having a large memory footprint (amount of RAM
consumed by the EAC agent processes).

To optimize EAC memory usage, use the following recommendations:

• Use third-party utilities, such as top, to measure the virtual memory usage and the Resident Set
Size (RSS) of the EAC agent processes.

• Note that although the virtual memory usage may be high, as long as the working set size of the
processes fits into RAM, this should not be a cause for concern.

For detailed information on memory usage in the MDEX Engine and the information on how RSS,
working set size, and virtual memory used by the process relate to each other, see the MDEX
Engine Performance Guide.

• Free up memory for the MDEX Engine and EAC agent processes by removing non-critical
non-Endeca processes running on the server. Also, consider increasing the amount of swap space.

• If your current implementation is memory constrained and processes are running out of memory,
consider reconfiguring the topology of your implementation. For example, if previously you had 10
MDEX Engine servers each with 8 cores hosting two MDEX Engines, consider reconfiguring your
topology to have one MDEX Engine running with 8 threads per server instead of two. Such a
configuration will be much more memory efficient.

Note: Although one 8-threaded Dgraph is not expected to yield as much throughput as two
4-threaded Dgraphs if there were enough RAM for both, in cases where there are physical
memory constraints on servers running the MDEX Engine, one 8-threaded Dgraph may yield
more throughput because restarting of the MDEX Engine due to it running into memory
issues will be avoided.

•

Deployment Template and Endeca Workbench interaction
This topic summarizes information about Deployment Template and Endeca Workbench interaction.

If you use Endeca Workbench in your environment in addition to the Deployment Template, consider
the following points that summarize their interaction:

Note: This topic provides a summary of interaction between these two components and lists
recommendations for administrative practices. For detailed information on how to implement
both Endeca Workbench and the Deployment Template in staging and production environments,
see the Deployment Template Usage Guide.

• Manage changes to the operational environment through the Deployment Template.

Endeca strongly recommends managing changes to your EAC component configuration, such as
command line arguments to Forge, Dgidx and Dgraph, through the Deployment Template (once
you choose to use it for your operational tasks), and not through EAC Admin Console in Endeca
Workbench.

• Manually upload changes to the instance configuration to Endeca Workbench.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

51Performing System Operations with the EAC | EAC memory usage

If, after you have initially deployed your application, you make changes to the instance configuration
files, such as add a new dimension, or define a new zone for dynamic business rules, and then
run the Deployment Template scripts for baseline and partial updates, the Deployment Template
does not automatically upload changed configuration files and settings to Endeca Workbench.

You can manually upload configuration updates to Workbench through a Deployment Template
script, when needed. This may be necessary when changes to dynamic business rule zones and
styles are updated, or dimensions are added or removed, and Workbench needs to be updated
to allow business users to maintain rules based on the updated configuration.

Typically, it is useful to synchronize changes with Workbench before your Endeca implementation
is deployed in the production environment, or during updates to your Endeca implementation. Use
the update_web_studio_config.[sh|bat] script to deploy these pipeline changes through
Workbench.

Calling update_web_studio_config.[sh|bat] requires all locks in Workbench to be available.
This means all users must be logged out of the system and not holding any locks on resources.
When you do run update_web_studio_config.[sh|bat], you are responsible for resolving
any locking issues via the Workbench interface.

• Manage some settings in Endeca Workbench.

In general, once you use the Deployment Template framework, its scripts become your designated
environment through which you manage all changes to the EAC components and instance
configuration files.

However, if you also use Workbench for managing rules, keyword redirects, search, dimension
order, and reports, you can enable the Configuration Manager in the Deployment Template. The
Configuration Manager informs the Deployment Template that for these changes, the Deployment
Template should use Endeca Workbench, and not Developer Studio.

Note: The Deployment Template does not actually create, modify, or manage configuration
files and operational settings; Developer Studio and Endeca Workbench perform these
functions. However, when running its scripts, the Deployment Template needs to know which
settings and files to use: from Developer Studio (this is the default assumption), or from
Workbench.To decide whether changes that originated from Developer Studio or Workbench
should be used, the Deployment Template uses its Configuration Manager. However, if you
specify in the Configuration Manager the files as being maintained by Endeca Workbench,
you ensure the Developer Studio version of these files is not used in scripts that run within
the Deployment Template framework.

To summarize, if you prefer to maintain some changes through Endeca Workbench, enable the
Configuration Manager component to ensure that these Workbench-maintained configuration files
are used when running the scripts from the Deployment Template. For details on using this
component, see the "Application Configuration" chapter of the Deployment Template Usage Guide.

Related Links
Releasing locks set by the Deployment Template in the EAC on page 53

In some instances, you may find it necessary to manually release locks that the Deployment
Template scripts have put in the EAC on a particular component.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Deployment Template and Endeca Workbench interaction52

Archiving the Dgraph log files
Your Dgraph files are archived automatically once you run a baseline update script with the Deployment
Template. In addition, if you prefer to archive Dgraph files on a more granular basis, you can create
a custom Deployment Template script that stops the MDEX Engine process, archives the Dgraph log
files and restarts the Dgraph.

The applyIndex() method of the baseline update script stops the Dgraph, archives the log files,
and restarts the Dgraph. This method is located in the DistributeIndexAndApply step of the
default baseline update script in the Deployment Template.You can use this method to create a
customized script.

To stop the Dgraph, archive its logs, and restart the Dgraph:

1. Copy the applyIndex() method into a new script within your Deployment Template project, and
modify it as needed, as shown in the following example:

<!--#######################################
 # CUSTOM: Restart all dgraphs, archiving log files
 #
 -->
<script id="DgraphRestartWithArchive">
<log-dir>./logs</log-dir>
 <bean-shell-script>
 <![CDATA[
 for (DgraphComponent dgraph : DgraphCluster.getDgraphs())
 {
 if (dgraph.isActive())
 {
 dgraph.stop();
 }
 dgraph.archiveLogDir();
 dgraph.start();
 }
]]>
 </bean-shell-script>
</script>

2. To archive Dgraph logs, go to the application /control directory, and run this script:runcommand
DgraphRestartWithArchive

Releasing locks set by the Deployment Template in the EAC
In some instances, you may find it necessary to manually release locks that the Deployment Template
scripts have put in the EAC on a particular component.

Different types of locks can appear in your Endeca implementation.The first type of lock is a Windows
file system lock. For example, if you have Windows Explorer open at the data\forge_output
location and the baseline update tries to clean up that folder, it will fail due to explore.exe holding
on to the directory lock. To release file system locks, make sure that no processes and users have
related folders (or files within those folders) open. (UNIX does not put exclusive system locks on files.)

Other types of locks that you may encounter are locks (or EAC flags) that are put into the EAC by the
Deployment Template baseline_update script, partial_update scripts, or other scripts. The

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

53Performing System Operations with the EAC | Archiving the Dgraph log files

default lock is called update_lock. It is created by the following line in the Deployment Template
script:

LockManager.acquireLock("update_lock")

If the running Deployment Template script breaks halfway through its execution due to an unhandled
exception, or is manually interrupted by a user pressing Ctrl-C while it is running, the lock remains
set within the EAC.

For example, you may see the following exception error in the Deployment Template logs:

[10.17.09 06:52:09] SEVERE: Caught an exception while
 invoking method 'run' on object 'BaselineUpdate'.
Releasing locks.
Caused by java.lang.reflect.InvocationTargetException
...
[10.17.09 06:52:09] INFO: Released lock 'update_lock'.

While there can be other causes for this exception, it typically results from a failure to release locks
on the Dgraph.

To release the lock on a component within the EAC, run the following commands:

1. Using the eaccmd tool, run the following command to obtain a list of all outstanding flags in the
application.You may want to review these flags before running the remove-all-flags command.
list-flags --app application_name

2. Run the following commands from the command line, or using the eaccmd tool:

DescriptionOption

Go to the .<AppDir>/control/ directory.

Run the following Deployment Template command:

From the command
line:

On Windows: .\runcommand.bat LockManager releaseLock
update_lock

On UNIX: ./runcommand.sh LockManager releaseLock up¬
date_lock

Windows:eaccmd.bat remove-all-flags -app <your applica¬
tion>

Using the eaccmd
tool:

UNIX:eaccmd.sh remove-all-flags -app <your application>

The LockManager is internally using EAC flagging functionality, so the
remove-all-flags function of eaccmd effectively cleans the Deployment
Template locks.

This releases the locks in the EAC.

Removing components from your configuration
To remove inactive components you can use several options — stop and remove them in the
Deployment Template, run initialize_services, use eaccmd, or use the EAC Console of Endeca
Workbench.

To stop and remove a component from the EAC definition:

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Removing components from your configuration54

Use any of the following options:

DescriptionOption

The runcommand of the Deployment Template stops the components
if they are running and removes their definition. After that, you can
remove the components from AppConfig.xml.

Use the Deployment
Template runcommand.

1. If the component is running, stop it:[appDir]/control/runcom¬
mand component_name stop

2. Remove the component's definition: [appDir]/control/run¬
command component_name removeDefinition

3. Remove the inactive component from the AppConfig.xml file.

This script resets your provisioning to components specified in
AppConfig.xml. It stops any running components (such as Dgraphs

Run the Deployment
Template initial¬
ize_services script. or log servers), removes the application from the EAC, and provisions

the entire application again to the EAC.

Important: Re-running the initialize_services script will
wipe out any configuration that exists in Endeca Workbench,
such as configuration of rules (if you have created them in
Workbench).

The Endeca Workbench communicates with the EAC, stops and
removes the component.

Use the EAC Admin
Console of the Endeca
Workbench.

The eaccmd tool stops and removes the inactive components from
the EAC.

Use the eaccmd tool to
stop and remove the
component.

1. Stop the component:

• On Windows: eaccmd.bat host:port stop --app
<appname> --comp <component id>

• On UNIX: eaccmd.sh host:port stop --app <app¬
name> --comp <component id>

2. Remove the component:

• On Windows: eaccmd.bat host:port remove-compo¬
nent --app <appname> --comp <component id>

• On UNIX: eaccmd.sh host:port remove-component
--app <appname> --comp <component id>

Related Links
Removing components in a Deployment Template environment on page 56

This topic explains how the Deployment Template treats components that have been removed
from its AppConfig.xml file. Incremental provisioning in the Deployment Template updates
existing components, but does not remove components that are not defined in the AppCon¬
fig.xml.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

55Performing System Operations with the EAC | Removing components from your configuration

Removing components in a Deployment Template environment
This topic explains how the Deployment Template treats components that have been removed from
its AppConfig.xml file. Incremental provisioning in the Deployment Template updates existing
components, but does not remove components that are not defined in the AppConfig.xml.

In general, running initialize_services removes an application from both the EAC and the
Endeca Workbench store, and re-provisions the application, so at that point you can be sure that the
EAC has only the components provisioned in the Deployment Template.

When the Deployment Template performs its provisioning check, it verifies that all of the components
currently listed in the AppConfig.xml are provisioned and up-to-date with the EAC copy of the
components. Any new or modified components are provisioned or have their provisioning updated in
the EAC at this time.

However, the Deployment Template does not consider components that are not declared in AppCon¬
fig.xml (including ones that were declared there at some point but since removed).This means that
components that are provisioned in the EAC (including components previously provisioned with the
Deployment Template) may remain—the Deployment Template supports an environment where it is
not the only tool interacting with the EAC.

Example scenario

Following the provisioning step, whenever the Deployment Template runs a baseline update, it checks
whether the definition in the AppConfig.xml file has changed compared to what is stored in the EAC
Central Server. It picks up changes such as new flags or additional components.

However, if you modify the baseline update script by removing a Dgraph in the AppConfig.xml file,
the baseline_update script honors the change, but does not affect the provisioning configuration
stored in the EAC Central Server. It does issue a message about the discrepancy when running the
script.The removed Dgraph continues running, even though it is no longer listed in the AppConfig.xml
file.

Determining the state of the EAC with service URLs
You can use the following service URLs to determine whether the EAC Central Server or EAC Agent
is running.

To determine the state of the EAC:

• For the EAC Central Server, go to: http://machine_name:8888/eac/ProvisioningSer¬
vice?wsdl

• For the EAC Agent, go to:http://machine_name:8888/eac-agent/IDelegateServer?wsdl

Logs for the EAC Central Server
Aside from log files associated with specific EAC components, utilities, and scripts, the EAC Central
Server and its services generate log files in their workspace directories.

The EAC logs are located in %ENDECA_CONF%\logs (on Windows), or $ENDECA_CONF/logs (on
UNIX).

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Determining the state of the EAC with service URLs56

Specifically, the /logs directory contains a number of files generated by the Endeca HTTP service,
and the applications running inside it, such as the EAC Central Server and EAC Agent.

The EAC logs have a default size limit of 1Gb. The log is named main.rotation number.log and
is part of a two-log rotation that rolls automatically when the maximum size is reached. When the
second log file reaches the maximum size, the first is overwritten.That is, when main.0.log reaches
the 1G size limit, the system starts to write to main.1.log. Once main.1.log reaches the 1G size
limit, main.0.log is overwritten.

The following log files are typically useful and relevant in EAC development and debugging:

DescriptionType of EAC logs

Most EAC logging goes into this log file. For example, exceptions
thrown when invoking a shell or component are logged in it.

Main log, such as main.0.log

For example, if you attempt to launch a utility on a non-existent
host, an exception similar to the following is logged in this file:
"The host "my_host" in application "my_app"
does not exist"

Logs generated by the EAC process control module go into this
file.This log contains messages associated with process control
and recovery.

Process log, such as pro¬
cess.0.log

These messages include information about starting and stopping
scripts, components and utilities, recovering failed processes
and rebinding to active processes.

This file contains logs associated with the EAC Web service
invocations. For example, this file records the exact XML content
of Web service requests and responses.

Invocation log, such as in¬
voke.0.log

These logs are useful when errors occur while loading the EAC.Tomcat/Catalina logs, such as:

• catalina.out For example, if the context configuration for EAC specifies the
wrong path for the EAC WAR file, an error occurs when starting
the Endeca HTTP service, and is logged in these log files.

• catalina.[date].log

• tomcat_[std¬
out|stderr].log Alternatively, a clean startup of the Endeca HTTP service results

in no exceptions, and a successful output of a message:
"Server startup in [n] ms"

Changing the IP address for the EAC Central Server
machine

This topic describes how to change the IP address of an EAC Central Server machine, in an environment
featuring remote MDEXHost machines, where the AppConfig.xml files use host names rather than
IP addresses for the machines.

To change the IP address for an EAC Central Server machine:

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

57Performing System Operations with the EAC | Changing the IP address for the EAC Central Server
machine

1. Stop the Endeca HTTP service on both the EAC Central Server and remote MDEXHost.

2. Change the networkaddress.cache.ttl in the java.security file to 0 on both machines.
This file is located by default in %ENDECA_ROOT%\j2sdk\jre\lib\security on Windows and
$ENDECA_ROOT/j2sdk/jre/lib/security on UNIX.

3. Change the IP address of the EAC Central Server, making sure that the MDEXHost operating
system can resolve the EAC Central Server at the new IP address.

4. Restart the Endeca HTTP service on both machines.

5. Optionally, you may go back to the java.security file mentioned in step 2 above, change the
networkaddress.cache.ttl back to -1, and restart the Endeca HTTP service on both machines
to avoid subsequent DNS spoof attacks.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Performing System Operations with the EAC | Changing the IP address for the EAC Central Server
machine

58

Chapter 5

Administering Dgidx

This section describes the Dgidx process and outlines administrative tasks that help ensure its proper
operation. It also contains tips for improving Dgidx performance and troubleshooting problems.

Dgidx processing and memory usage
Dgidx is the component of the MDEX Engine that organizes the acquired records into a structure,
partially precomputes some results that will be used by the Dgraph, and creates the Endeca index.

The Dgidx is part of the MDEX Engine installation package, and as such it is installed on both the ITL
server and the MDEX Engine server. Since Dgidx is part of the offline processing that runs during
baseline updates, the best practice is to run it on the ITL server (the Deployment Template implements
this practice with its scripts).

At a very high level, the Dgidx process consists of the following steps:

1. It reads dimensions and records into its process memory. Records are loaded gradually, processed,
and released as needed.

2. It indexes records one at a time, adding the relevant information to all indexes. These indexes are
stored on disk.

3. It merges the index generations.

As part of its processing, Dgidx sorts the acquired records and produces navigational, text, and wildcard
indexes.

Dgidx memory usage

Dgidx relies on the operating system caching of indexes on disk and uses memory-mapped I/O to
retrieve its indexes.This affects the size of the virtual memory allocated to the Dgidx working process,
which can increase periodically.

For more information about memory considerations and the way the MDEX Engine uses memory, see
the Performance Tuning Guide.

Related Links
Variations in Dgidx indexing time on page 66

When you analyze Dgidx logs, you may notice that periodically indexing times are longer
than you might expect.

Running the Dgidx process with the Deployment Template
You typically start the Dgidx process by using the runcommand utility of the Deployment Template.

The runcommand utility lets you start the Dgidx indexing process on a remote Endeca data processing
server.

To run the Dgidx process:

Run the command from the Deployment Template:

DescriptionOption

runcommand.bat MyDgidx runWindows

./runcommand.sh MyDgidx runUNIX

Where MyDgidx is the id value of a dgidx element specified in the AppConfig.xml file, such
as <dgidx id="MyDgidx" host-id="ITLHost">.

Note: In addition to running Dgidx with the Deployment Template runcommand, you can
also run the Dgidx executable binary from the command line. This can be useful for
troubleshooting purposes.

Related Links
Running the Dgidx binary at the command prompt on page 60

In rare instances, you may need to run the Dgidx binary from the command prompt outside
of your EAC and Deployment Template configuration. This is helpful if the Dgidx process
fails, and you need to identify whether a possible cause of the problem is in the Deployment
Template scripts, the EAC, or Dgidx itself.

Running the Dgidx binary at the command prompt
In rare instances, you may need to run the Dgidx binary from the command prompt outside of your
EAC and Deployment Template configuration. This is helpful if the Dgidx process fails, and you need
to identify whether a possible cause of the problem is in the Deployment Template scripts, the EAC,
or Dgidx itself.

Note: You should only run the Dgidx binary directly at the command prompt in rare instances
when you need to replicate a Deployment Template job in a separate testing environment. If
you need to re-run a particular process with its normal settings, Endeca recommends using the
runcommand of the Deployment Template.

Before running the Dgidx binary at the command prompt, do the following prerequisite tasks:

• Copy the necessary files into the locations where the Dgidx process can find them.
• Create the dgidx_output directory. It must exist prior to running Dgidx, but is not created

automatically as part of running it from the command prompt.

To run the Dgidx binary at the command prompt:

1. Go to the %ENDECA_MDEX_ROOT%\bin directory on Windows, or to $ENDECA_MDEX_ROOT/bin
on UNIX.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering Dgidx | Running the Dgidx process with the Deployment Template60

2. Enter the Dgidx command, such as dgidx (on Windows) or dgidx on UNIX.

The usage information for the Dgidx binary is displayed.

The parameters for Dgidx depend on your specific implementation. Examine the Dgidx command
usage to construct the command you will run in the next step.

3. Run the command, which will be similar to the following example:

DescriptionOption

%ENDECA_MDEX_ROOT%\bin\dgidx --out \localdisk2\endeca\ver¬
sion\dgidx.log --dtddir %ENDECA_ROOT%\conf\dtd \locald¬

Windows

isk2\endeca\version\endeca \localdisk2\endeca\ver¬
sion\dgidx_output\endeca

$ENDECA_MDEX_ROOT/bin/dgidx --out /localdisk2/endeca/ver¬
sion/dgidx.log --dtddir $ENDECA_ROOT/conf/dtd /localdisk2/en¬

UNIX

deca/version/endeca /localdisk2/endeca/version/dgidx_out¬
put/endeca

This command points to the location of the Dgidx log, its DTD directory, and the Dgidx output file.

Tips for speeding up indexing time
While Dgidx is optimized for best performance, you may adjust your configuration and front-end
application to speed up indexing time.

To speed up indexing, consider using fewer of the following:

• Records or fields.
• Text-searchable fields.
• Wildcard-searchable fields.

Note: For details on performance of specific features, see the Performance Tuning Guide.

Troubleshooting Dgidx failures
This topic lists major causes of possible Dgidx crashes, to help you identify and fix them, or prevent
them from occurring.

Troubleshooting Deployment Template failures with Dgidx

Dgidx is often the first component to fail, because it is one of the first components that needs to run
within the Deployment Template scripts.

For example, you may see the following Dgidx failure:

SEVERE: Batch component 'Dgidx' failed. Refer to component
 logs in /usr/local/endeca/[version]/endeca/project/sample
/control/.././logs/dgidxs/Dgidx on host ITLHost.
Occurred while executing line 32 of valid BeanShell script:
[[

29| Forge.archiveLogDir();

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

61Administering Dgidx | Tips for speeding up indexing time

30| Forge.run();
31| Dgidx.archiveLogDir();
32| Dgidx.run();
33|
34| // distributed index, update Dgraphs
35| DistributeIndexAndApply.run();

]]

Use the following steps to investigate Dgidx failures in the Deployment Template:

• Locate and examine the Dgidx error log.
• Verify that the MDEX Engine is also installed on the data processing (ITL) server, because Dgidx

is part of the MDEX Engine installation.
• Check the eac.properties file, which is located under your Platform Services workspace/conf

folder (for example, /endeca/PlatformServices/workspace/conf/eac.properties).
Verify that the com.endeca.mdexRoot property is set to the correct location and version of your
MDEX_ROOT (for example, /usr/local/endeca/MDEX/[version]), and restart the HTTP
service.

• Run Dgidx from the command line. This way, you are accessing the Dgidx directly, without the
layer of the Deployment Template and EAC configuration.

It is useful to run Dgidx directly for debugging purposes. For example, if you notice that Dgidx fails
when running it with the Deployment Template runcommand, but runs successfully from the
command line, this means that the issue is either with the EAC or the Deployment Template, as
opposed to the problems in the data.

Troubleshooting memory allocation failures with Dgidx

In rare cases the Dgidx process may fail due to running out of virtual memory or swap space that it
requires to run successfully.

For example, you may see a memory allocation error similar to the following:

FATAL DATE 13:50:40.753 UTC DGIDX {dgidx,baseline}:
memory allocation failure
--
Endeca fatal error detected.
--

Use the following tips to troubleshoot memory allocation crashes:

• Locate and examine the Dgidx error log.
• Run another baseline update and use vmstat (on UNIX) to closely monitor the Dgidx memory

usage and the amount of memory and swap space available on the ITL server.You can save the
output of vmstat and explore it to identify whether the amount of free and swap memory drops
or remains sufficient.

• On UNIX, use the top and prtconf commands and explore their output.
• Temporarily shut down some processes running on this server and examine whether the Dgidx

process continues to fail consistently.
• If the process does not fail, note its peak virtual memory usage while it is running.

Related Links
Dgidx logs on page 63

To locate your application's Dgidx logs, consult the Dgidx definition in the AppConfig.xml
file of the Deployment Template.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering Dgidx | Troubleshooting Dgidx failures62

Dgidx logs
To locate your application's Dgidx logs, consult the Dgidx definition in the AppConfig.xml file of the
Deployment Template.

By default, if your application name is MyApp and your Dgidx process name is Dgidx1, the Dgidx logs
are located in MyApp/logs/dgidxs/Dgidx1.

For example, the following Dgidx definition from the AppConfig.xml lists the location of the Dgidx
logs:

 # Dgidx
 #
 -->
 <dgidx id="Dgidx1" host-id="ITLHost">
 <properties>
 ...
 </properties>
 <directories>
 <directory name="incomingDataDir">./data/forge_output</directory>
 <directory name="configDir">./data/forge_output</directory>
 </directories>
 <args>
 <arg>-v</arg>
 </args>

<log-dir>./logs/dgidxs/Dgidx1</log-dir>
 <input-dir>./data/dgidxs/Dgidx1/dgidx_input</input-dir>
 <output-dir>./data/dgidxs/Dgidx1/dgidx_output</output-dir>
 <data-prefix>Test-part0</data-prefix>
 <temp-dir>./data/dgidxs/Dgidx1/temp</temp-dir>
 <run-aspell>true</run-aspell>
 </dgidx>

The following examples list some of the typical items in a Dgidx log file and explain them:

Note: You may notice that Dgidx also creates three properties of type admin on each record,
named Endeca.DataSize, Endeca.NumAssigns, and Endeca.NumWords.These properties
are visible in the Dgidx log and in the key properties in the Dgraph. Because these properties
may not be supported in future releases, Endeca recommends that you ignore these properties
in the log and avoid building front-end application logic around them.

Example 1

=== DGIDX: Finished phase
"Read raw dimensions,
 properties, and records"
=== Phase Time: 19 minutes, 44.11 seconds

This log entry indicates that the Dgidx is reading in all data and creating all indexes.

Example 2

$->tail Dgidx.log
Sorting... 22.16 seconds
Writing cycle 255 to temporary file
Parsing text fields...
...
179,600,000 text fields,
5,726,985,428 elements

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

63Administering Dgidx | Dgidx logs

179,700,000 text fields,
5,730,167,391 elements
...

This log entry indicates the following:

• text fields. Text fields are individual entries in a record that Dgidx adds to its index for
dimension search, record search, or both.The Dgidx output log lists the total number of text fields
in each dimension or property of the record, then periodically outputs how many text fields have
been processed during text search indexing.

Because text search indexing operates on text fields from all dimensions or properties, the totals
printed periodically can be greater than the totals from each.

Text fields contain one or more terms. The large difference between the number of text fields and
the number of elements is due to records containing large numbers of terms per property and/or
dimension.

• elements. Elements represent the number of individual terms or term-related objects sent to the
index.

Elements are sorted and stored for text search (including dimension search, if applicable).

For example, consider an employee record: Name: John Lee Age: 24 Hired: 2008-08-14
Description: Permanent. If Name is a dimension enabled for dimension search, and Descrip¬
tion is a property enabled for text search, then Dgidx would represent this record in the log as having
2 text fields and 3 elements.

Note: These numbers are approximate and reflect on the magnitude of items in the index. Do
not interpret these numbers as the exact number of unique terms in the data corpus. Among
other considerations, a single input word generates multiple index elements, and for different
types of its indexes Dgidx uses different types of unique elements.

Related Links
Dgidx log details for text search indexing on page 64

You can examine the text search indexing portion of your Dgidx logs and use the information
in this topic to identify which items in the log contribute to indexing time.

Dgidx handling of records with missing or duplicate record spec values on page 65
When Dgidx processes records with missing or duplicate record specifier (or spec) values,
it completes successfully, but produces a very large log file.

Variations in Dgidx indexing time on page 66
When you analyze Dgidx logs, you may notice that periodically indexing times are longer
than you might expect.

Dgidx log details for text search indexing
You can examine the text search indexing portion of your Dgidx logs and use the information in this
topic to identify which items in the log contribute to indexing time.

Stemming and spelling do not affect the log numbers in the text search indexing portion of Dgidx logs.
However, wildcard search increases the number of entries made to the index.

The following items related to text search indexing appear in the Dgidx log:

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering Dgidx | Dgidx logs64

DescriptionDgidx log item

Corresponds to the actual number of records and dimensions listed in the
recsearch_indexes.xml file. This represents the number of records
and dimensions that need to be indexed by Dgidx for text search.

Records

Corresponds to the total number of pairs that are available for text search.
(Pairs are associations between a dimension or property and their
corresponding values.)

Text fields

Corresponds to the total number of entries that were made to the index.Entries

Note: If wildcard search is enabled, this increases the number for
entries.

Reflects the standard index.Rec

Reflects the wildcard index that is created in addition to the standard index.RecWC

Dgidx handling of records with missing or duplicate record spec values
When Dgidx processes records with missing or duplicate record specifier (or spec) values, it completes
successfully, but produces a very large log file.

The log contains WARN-level messages that print entire records. These warning messages appear
in the Dgidx log because records are improperly assigned property values from the project's configured
record spec property.

• If the application has a record spec property defined, each record must contain a single unique
value from that property. If a record contains no record spec property value, Dgidx prints the
"record... has no value assigned to it from any record specifier property"
warning, as in the following example:

WARN 08/16/09 15:49:23.897 UTC DGIDX {dgidx,baseline}: The record
with the following properties has no value assigned to it from any
record specifier property. This record cannot be modified with
rapid updates:
[Record Id=4]
Dimension[6200,"Wine Type"]: Value[8013] "White"
Dimension[8,"Region"]: Value[4294967254] "Mendocino Lake"
[...]
Property["P_Body"]: Value[0xce1bd0] "Ripe"
Property["P_DateReviewed"]: Value[0xce1470] "02/28/95"
[...]

• If a record contains a record spec property value that is already in use by another record (a
non-unique value), Dgidx prints the "Two records cannot share the value... for
specifier property" warning, as in the following example:

WARN 08/16/09 15:49:23.897 UTC DGIDX {dgidx,baseline}: Two records
cannot share the value "34699" for specifier property "P_WineID";
removing this record:
[Record Id=2]
Dimension[6200,"Wine Type"]: Value[8013] "White"
Dimension[8,"Region"]: Value[4294967282] "Sonoma"
[...]
Property["P_Body"]: Value[0xce1870] "Crisp"

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

65Administering Dgidx | Dgidx logs

Property["P_WineID"]: Value[0xcd6e40] "34699"
[...]

In either case, Dgidx prints the record's property and dimension values into the log so that it can be
identified and corrected in a future update.

There is no way to suppress this display of the full record in the cases mentioned above. Instead, you
should correct the record spec problems noted in the log by modifying the project's Forge pipeline or
its record spec property selection. Assign record spec property values to records that lack them, and
ensure that each record is assigned a unique record spec value so that duplicates do not occur.You
can use the record details printed into the Dgidx log to identify the affected records even if they do not
have unique record spec property values.

Variations in Dgidx indexing time
When you analyze Dgidx logs, you may notice that periodically indexing times are longer than you
might expect.

The indexing operation may appear to you like your normal addition of records, and not a major or
minor shift in the character of the existing records that would explain the change in indexing time.

Dgidx periodically goes through a merging process of many indexing generations. In particular, when
the number of generation files becomes large, Dgidx merges them together to reduce the number of
open files. Dgidx does this extra merge step when the number of generation files exceeds 200.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering Dgidx | Dgidx logs66

Chapter 6

Administering the Dgraph

This section describes basic administrative tasks for the Dgraph. It also contains Dgraph troubleshooting
tips, and describes Dgraph and Agraph logs.

Checking Dgraph and Agraph with the ping command
A quick way of checking the health of a Dgraph or an Agraph is by accessing the URL as described
in this topic.

To check the aliveness of a Dgraph or Agraph:

For a Dgraph, access:

http://DgraphServerNameOrIP:DgraphPort/admin?op=ping

or for an Agraph, access:

http://AgraphServerNameOrIP:AgraphPort/admin?op=ping

The Dgraph or Agraph quickly returns a lightweight HTML response page with the following content:

dgraph host:port responding at date/time

or

agraph host:port responding at date/time

Note: You can also view the MDEX Engine Statistics page to check as to whether the MDEX
Engine is running and accepting queries.

Specifying arguments to the Dgraph in the Deployment
Template

If you are using the Deployment Template, you specify Dgraph arguments in the AppConfig.xml
file under the <dgraph-defaults> element.

To specify arguments to the Dgraph:

Add arguments in the <args> element of <dgraph-defaults> in the AppConfig.xml file,
similar to the following example:

<dgraph-defaults>
<properties>
 ...
</properties>
<directories>
 ...
</directories>
<args>
 <arg>--threads</arg>
 <arg>2</arg>
 <arg>--spl</arg>
 <arg>--dym</arg>
</args>
<startup-timeout>120</startup-timeout>
</dgraph-defaults>

Note: Arguments that take a value, such as --threads, should be separated into two
consecutive <arg> elements.

Collecting debugging information
Before attempting to debug an issue with the MDEX Engine, collect the following information.

• Hardware specifications and configuration.
• Description of the Endeca topology (servers, number of Dgraphs).
• The data from the MDEX Engine Statistics page.
• Your AppConfig.xml file.
• The contents of the pipeline directory.
• Dgraph input.
• Partial update files.
• Description of typical partial updates.
• Description of which Dgraphs are affected.

Related Links
The logs created by the Dgraph on page 68

The Dgraph creates up to five logs, although some of these logs depend on your
implementation and the Endeca components that you may be using. This topic provides a
summary of these logs.

The logs created by the Dgraph
The Dgraph creates up to five logs, although some of these logs depend on your implementation and
the Endeca components that you may be using. This topic provides a summary of these logs.

You can use these Dgraph logs to troubleshoot MDEX Engine queries, or to track performance of
particular queries or updates.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering the Dgraph | Collecting debugging information68

Dgraph request log

The Dgraph request log is always created.You can use it to debug both queries and update processing.
It contains one entry for each query processed.

You can set the path to this log by using one of these methods:

• In the AppConfig.xml file of the Deployment Template, specify the path set by the Dgraph
component's <log-dir> element. Based on it, the Deployment Template creates the file in the
following format:$component.reqlog. For example, Dgraph1.reqlog is the path to the Dgraph
log for a Dgraph component with the name Dgraph1.

• If you are using the Dgraph from the command line, create the path to the request log in the Dgraph
working directory with the filename dgraph.reqlog.

Details about the Dgraph request log can be found in the Performance Tuning Guide.

Dgraph error log

The Dgraph error log is created only if you redirect stderr to a file, using a command line or a dgraph
--out flag. Otherwise, error messages appear in stderr.

The Dgraph error log includes startup messages as well as warning and error messages. It can be
configured via Dgraph flags (such as -v). In addition, the config?op=log-enable operation,
described in an appendix to this book, makes it possible to record more details about specific features.

In the AppConfig.xml file, you can specify the path set by a Dgraph component's <log-dir>
element, using the format $component.log. For example, Dgraph1.log is the path to a Dgraph
component with the name Dgraph1.

Update log

The Dgraph update log is created only if you run the Dgraph with the --updatelog flag, or through
the Deployment Template.

You can set the path to this log in the Deployment Template in the Dgraph component <log-dir>
element, in the following format: $component.updatelog. For example, Dgraph1.updatelog is
the path to the Dgraph update log for a Dgraph component with the name Dgraph1.

Process start log

The Dgraph process start log is created in the Deployment Template and EAC environments for
messages which occur during the Dgraph process startup.This log is typically empty. It may sometimes
be useful for debugging Deployment Template or EAC issues.

You can set the path to this log by the Dgraph component <log-dir> element, with the format
$component.start.log. For example, Dgraph1.start.log identifies the process start log for
a Dgraph component with the name Dgraph1.

EQL per-query statistics log

The EQL per-query statistics log is useful if you use Endeca Query Language (EQL). It is created only
if you run the Dgraph with the --log_stats path flag. This log is not created in the default
configuration driven by the Deployment Template.

For more information on the Endeca Query Language, see the Advanced Development Guide.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

69Administering the Dgraph | Collecting debugging information

The Agraph request log
You can examine the Agraph request log to track performance of a specific Agraph query.

The MDEX Engine generates unique IDs for each Agraph request, communicates these IDs to its child
Dgraphs, and maintains these IDs if it needs to requery the child Dgraph for the same request. This
means that the IDs generated by an Agraph are listed in all the corresponding Dgraph log entries
related to the same request.

For example, assume that the Agraph log contains an entry with request ID A1. The child Dgraphs log
entries for this request repeat this ID from the Agraph. This allows you to trace queries in the Dgraph
logs back to queries in the Agraph log.

Troubleshooting baseline update failures
To debug baseline update failures, examine the Dgraph request log and the baseline update log first,
followed by the EAC process logs.

Use the following recommendations:

• Review Dgraph request logs. Review the logs around the time of the baseline update failure, to
rule out issues in the Dgraph.

Notice the times when health checks were sent to the Dgraph, the Dgraph was restarted, the partial
updates were issued, and the last query was issued.

For example, this modified abstract from the Dgraph request log shows activity for a period of time:

12096521815/1/09 14:29 last search query
12096522265/1/09 14:30 health check
12096526095/1/09 14:36 last health check for x time
12096571605/1/09 15:52 health checks resume
12096574435/1/09 15:57 last empty health check
12096601195/1/09 16:41 Dgraph startup
12096601435/1/09 16:42 first query

Notice that the Dgraph did not receive any requests besides health checks for a period of time
from 14:29 to 15:57. The log does not include error messages. The Dgraph was not restarted
during this time.These observations indicate that the problem that led to the baseline update failure
in this example possibly occurred outside of the Dgraph.

• Review baseline update.out logs. For example, in the case below, observe that an error occurred
while stopping the Dgraph component:

[05.01.09 10:07:54] INFO: Stopping component 'Dgraph1'.
[05.01.09 10:17:54] SEVERE: Error communicating with EAC agent while
stopping component.
Occurred while executing line 5 of valid BeanShell script:

To investigate further the reason for why the EAC was not able to stop the Dgraph component,
examine the logs for EAC processes and increase their verbosity.

• Increase the verbosity of the EAC process logs.

Specify the EAC logging configuration in [ENDECA_CONF]/conf/logging.properties file.
Set the log level for com.endeca.eac.invoke, com.endeca.eac.process and com.ende¬
ca.eac.main to FINE.This provides additional debug information, if the baseline update process
fails again.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering the Dgraph | Troubleshooting baseline update failures70

Note: Monitor the size of the ENDECA_CONF/logs directory, to ensure it does not fill up
the disk.

To continue with the example, the EAC process logs may, for instance, indicate an outage of a
hardware component between the Web server and the Dgraph server. These logs may further
assist you if the baseline update fails again.

Troubleshooting partial updates
This topic contains several pointers to help you troubleshoot partial updates.

Accessing failed update files

The default directory that the MDEX Engine uses for storing the failed update files is
<updatedir>/failed_updates/.

You can use the --failedupdatedir <dir> command on the Dgraph to specify another directory
for these files.

Permission to access index directories

If you are encountering Dgraph failures associated with partial updates, ensure that the Dgraph has
permission to access the index directories.

The Dgraph checks permissions on the index directories before applying partial updates. If the required
read/write permissions are missing, the Dgraph issues an error in the standard error log, and fails to
apply the update.

If the Dgraph is running in verbose mode, it also logs the path to the index directories to which the
Dgraph does not have read/write permissions.

The Dgraph checks permissions on these directories in the [AppDir]/dgidx_output/myApp_in¬
dexes:

• /committed

• /generations

(These filepaths assume that the Deployment Template scripts were used to set up the application.)

Both of these directories should have read and write permissions to allow the Dgraph to access them.
However, these permissions may be reset, due to file system issues or hardware maintenance issues
combined with the Endeca implementation's topology. This may make these directories unaccessible
by the Dgraph.

Identifying connection errors
If the Dgraph standard out log contains connection broken messages, although it may look like
the problem occurred with the Dgraph, the actual cause of the problem is usually a broken connection
between the server that hosts the front-end application and the server that hosts the Dgraph.

In the case of connection errors, various parts of the Endeca implementation issue the following error
and warning messages:

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

71Administering the Dgraph | Troubleshooting partial updates

• The .NET API throws the following exception:

Endeca.Navigation.ENEConnectionException:
Error reading from the connection. The operation has timed out
 at Endeca.Navigation.OptiBackendRequest.GetContent()
 at Endeca.Navigation.OptiBackend.GetNavigation(OptiBackendRequest req)

 at Endeca.Navigation.HttpENEConnection.Query(ENEQuery neq)

The Java API throws a similar exception.

• The Dgraph standard out log contains warnings similar to the following:

WARN [DATE TIME] UTC (1239830549803)
DGRAPH {dgraph}: Aborting request: connection broken: client 10.10.21.21

• And finally, the Dgraph request log contains an abnormal status 0 message similar to the
following:

1239830549803 10.6.35.35 - 349 0 19.35 0.00 0 - 0 0 - -

Typically, the connection broken message means that the Dgraph encountered an unexpected
failure in the connection between the client and the Dgraph. This type of error may occur outside the
Dgraph, such as in the network, or be caused by the timeout of the client application session.

Investigate the connection between the client and the Dgraph. For example, to prevent timeouts of
the client application sessions, you may decide to implement front-end application retries.

Troubleshooting socket and port errors with Dgraph
The Dgraph cannot start if its process cannot bind to a socket and its port cannot initialize. This error
tends to occur when you upgrade the MDEX Engine and attempt to use a port that is already occupied
by another process on your server.

The baseline update script from the Deployment Template completes, but the MDEX Engine does not
start. The following errors appear in the Dgraph log:

ERROR (date and time)
DGRAPH {dgraph,baseline}: Unable to bind
to socket [err=`Result too large',errno=34]
FATAL (date and time)
DGRAPH {dgraph,baseline}: Unable to initialize the
main server port: 8000

The "Unable to bind to socket" errors usually indicate that the port in question is already in
use by another process.

The Windows command-line utility netstat -ano lists all ports in use along with the process ID of
the process using them. Use this utility to identify the process ID occupying port 8000, and locate that
process in the Windows Task Manager to confirm that it is used by another process. This prevents
the Dgraph from starting.

To identify ports in use on your Windows system:

1. Run netstat -ano

This command lists ports and process IDs of all processes that are running.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering the Dgraph | Troubleshooting socket and port errors with Dgraph72

2. Examine which process occupies the port that the Dgraph is trying to use. In this example, it is port
8000.

3. Run the Dgraph on another port, or ensure that the previously occupied port can be freed to be
used by the MDEX Engine.

Managing the Dgraph core dump files
In the rare case of a Dgraph crash, the Dgraph writes its core dump files on disk.

When the Dgraph runs on a very large data set, its in-memory representation of the index size may
exceed the size of the physical RAM. If such a Dgraph process fails, it may need to write out potentially
very large core dump files on disk.

To troubleshoot the Dgraph, it is often useful to preserve the entire set of core files written out as a
result of such failures. When there is not enough disk space, only a portion of the files is written to
disk until this process stops. Since the most valuable troubleshooting information is contained in the
last portion of the core files, to make these files meaningful for troubleshooting purposes, it is important
to provision enough disk space to capture the files in their entirety.

Two situations are possible, depending on your goal:

• To troubleshoot the Dgraph crash, provision enough disk space to capture the entire set of core
files. In this case, the files will be saved at the expense of potentially filling up the disk.

• To prevent filling up the disk, you can limit the size of these files on the operating system level. In
this case, with large Dgraph applications, only a portion of core files is saved on disk. This may
limit their usefulness for debugging purposes.

Related Links
Managing Dgraph crash dump files on Windows on page 73

On Windows, all Dgraph crash dump files are saved on disk by default. (The MDEX Engine
uses the MiniDump function from the Microsoft DbgHelp library.)

Managing Dgraph core dump files on Linux and Solaris on page 73
Endeca recommends using the ulimit -c unlimited setting for Dgraph core dump files.
Non-limited core files contain all Dgraph data that is resident in memory (RSS of the Dgraph).

Managing Dgraph crash dump files on Windows
On Windows, all Dgraph crash dump files are saved on disk by default. (The MDEX Engine uses the
MiniDump function from the Microsoft DbgHelp library.)

Provision enough disk space to accommodate core files based on this estimate:

• The projected upper limit for the size of these files is equal, at a maximum, to the size of the physical
memory used by the MDEX Engine plus index size. Often the files take up less space than that.

Managing Dgraph core dump files on Linux and Solaris
Endeca recommends using the ulimit -c unlimited setting for Dgraph core dump files. Non-limited
core files contain all Dgraph data that is resident in memory (RSS of the Dgraph).

Since large MDEX applications may take up all the available RAM, the core dump files can also grow
large and take up the space equal to the size of the physical RAM on disk plus index size.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

73Administering the Dgraph | Managing the Dgraph core dump files

Note: For RSS discussion, see the Performance Tuning Guide.

Provision enough disk space to accommodate core files based on this estimate:

• The projected upper limit for the size of these files should be equal, at a maximum, to the size of
the physical RAM. Often the files take up less space than that.

Note: If you are not setting ulimit -c unlimited, you could be seeing the MDEX Engine
crashes that do not write any core files to disk, since on some Linux installations the default for
ulimit -c is set to 0.

Alternatively, to limit the size of core files, you can use the ulimit -c <size> command (although
this is not recommended). If you set the limit size in this way, the core files cannot be used for
debugging, although their presence will confirm that the Dgraph had crashed.To be able to troubleshoot
the crash, change this setting to ulimit -c unlimited, and reproduce the crash while capturing
the entire core file. Similarly, to enable Endeca Support to troubleshoot the crash, you will need to
reproduce the crash while capturing the full core file.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administering the Dgraph | Managing the Dgraph core dump files74

Chapter 7

Backing up Endeca applications

This section provides a list of the directories and files in your Endeca application that you will want to
back up. The application directory structure is based on an environment that was initially established
using the Deployment Template. If your implementation varies from the structure described, then the
lists of directories and files will give you a starting point for building your backup and recovery strategy.

Required files for backup
For completeness, you can back up an application by making a copy of the entire deployment template
application folder. If you want to be more selective, back up the directories in the following table.

The directory structure below is based on an environment managed by the Deployment Template.
The variables in paths have the following meanings:

• [appdir] indicates the path into which your application was deployed when you ran the deploy
script. For example, if your application name is MyApp, specifying the deployment directory as
C:\Endeca\apps installs the template for your application into C:\Endeca\apps\MyApp.

• ENDECA_CONF indicates the path of the workspace directory for the Endeca HTTP service. In
default installation, this value is C:\Endeca\PlatformServices\workspace (on Windows)
or endeca/PlatformServices/workspace (on UNIX).

• ENDECA_TOOLS_ROOT indicates the path of the workspace directory for the Endeca Tools Service.
In default installation, this value is C:\Endeca\Workbench\workspace (on Windows) or
endeca/Workbench/workspace (on UNIX).

CommentsContentsDirectoryProduct

Configuration and
pipeline files

[appdir]\configEndeca application

Scripts[appdir]\control

The system requires
that you copy this

Log files[appdir]\logs

directory the first time
you back up.
Subsequent backups
of this directory is
optional.

Initial index[appdir]\data\dgidx_output

You must apply these
files to the initial
index.

Partial update files[appdir]\data\partials\
cumulative_partials

These files contain
the dimension value

State files[appdir]\data\state

IDs for the
application. In some
applications, it is
important to retain IDs
from one update to
the next.

These files are
optional.

Test data files[appdir]\test_data

Pagebuilder
templates are also

ENDECA_CONF\confPlatform Services

included in this
directory.

ENDECA_CONF\etc

You should back up
this directory if a

ENDECA_CONF\reports

custom report
directory is specified
in the webstudio-
report-dir
parameter of the
AppConfig.xml file.

Includes Workbench
extensions, and

ENDECA_TOOLS_ROOT\confWorkbench

Workbench user
definitions.

ENDECA_TOOLS_ROOT\state\emanager

Note: For more information about backing up indices, see the MDEX Engine Partial Updates
Guide and the MDEX Engine Migration Guide.

Backing up CAS configurations
Backing up CAS configurations requires a different approach than you would perform for copying and
archiving files.

To extract your CAS configurations, you must run specific commands that are described in the
Administering Content Acquisition section of the CAS Developer's Guide.The components you should
back up for your CAS environment include the following:

• Crawl configurations
• Crawl data
• Record store configurations

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Backing up Endeca applications | Backing up CAS configurations76

• Record store data
• Custom web crawlers

Backing up the Discovery Framework
The directories and files you should back up for the Discovery Framework are listed in the following
table.

Note: Always stop your Discovery Framework server before backing up the Discovery Framework
files.

CommentsContentsDirectory or files

endeca-portal/data

Data sourcesendeca-portal/Endeca-data-sources

Portal propertiesendeca-portal/portal-ext.properties

License for the
Discovery
Framework

endeca-portal/ee/license

These files should be backed up
if environment-specific

Deployed portletsendeca-portal/tomcat/version/
webapps

configurations have been applied
to deployed portlets.

Appearance filesendeca-portal/tomcat/version/
webapps/corda/WEB-INF/classes/
Corda60/chart_root/appfiles

Backing up custom or extended portlets

If you customized or extended any portlets, you should back up the source code and the WAR files
for the portlets themselves and also any JAR files that the portlets reference.

Backing up the Discovery Framework database

If you are using MYSQL, DB2 or another relational database management system, you should back
up the Discovery Framework database using the backup procedures and tools provided by the vendor.

If your development environment uses the Hypersonic SQL database that is packaged with Liferay,
you can back up the database by copying up the hsql directory, in which it resides.

Note: For information on backing up the Discovery Framework, see the Discovery Framework
Installation Guide.

What not to backup
The following table lists files that you do not need to back up for recovery.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

77Backing up Endeca applications | Backing up the Discovery Framework

CommentsFilesFile Type

Time-stamped archive files such as
forge_output, dgidx_output, and logs
are optional.

Archives

You should backup

data/partials/
cumulative_partials.

[appdir]/data/complete_data_config

[appdir]/data/forge_output

[appdir]/data/incoming

Processing
files

[appdir]/data/partials

[appdir]/data/processing

[appdir]/data/temp

[appdir]/data/web_studio

[appdir]/data/dgraphsDgraph
instances

When primary and recovery environments are different
In some scenarios, the recovery environment may differ from the primary production environment,
with different number of servers, operating systems and network architectures.

By using the Deployment Template and following certain procedures, you can ensure that Endeca
applications running in one environment can be smoothly replicated in other environments with different
characteristics.

Techniques for replicating Endeca applications across heterogeneous environments are described in
Chapter 3 of this guide.

Backing up customized files

Endeca recommends that administrators store files created for customized applications, such as
command-line scripts and library files, under [appdir]. However, if you choose not to follow this
practice, then you must keep track of where these files are stored, and include their file locations in
backup processes.

One option is to create a script that collects these files and stores copies under [appdir]. Running
this script immediately before a backup ensures that copies of the customized files will be backed up
together with your application files.

A sample script, collect-app.bat is available in Chapter 3 of this guide.You can write a similar
script to fit your Endeca environment.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Backing up Endeca applications | When primary and recovery environments are different78

Appendix A

Administrative and configuration operations
and logging variables

The MDEX Engine supports many administrative and configuration operations that you can access
through simple URLs.You can use these operations and their logging variables to control the behavior
of the MDEX Engine cleanly from within the system.

About administrative and configuration operations
Administrative and configuration operations make it possible to check Dgraph statistics, and enable
or disable diagnostic flags without having to stop a running Dgraph. They also let you stop and restart
the Dgraphs. This section lists URLs exposed by the Dgraph, describes the functions of each URL,
and defines the syntax of those URLs. It indicates which URLs are supported by the Agraph.

The syntax of administrative and configuration operations

In the following listings, <host> refers to the hostname or IP address of the MDEX Engine and <port>
refers to the port on which the MDEX Engine is listening. Queries to these URLs are handled in the
MDEX Engine's request queue like any other request—that is, they are handled on a first-come,
first-served basis. They are also reported in the MDEX Engine request log like any other request.

For administrative operations, the syntax is:

http://<host>:<port>/admin?op=<supported-operation>

For configuration operations, the syntax is:

http://<host>:<port>/config?op=<supported-operation>

Note: If you are using HTTPS mode, use https in the URL.

List of administrative operations
Administrative (or admin) operations listed in this topic allow you to control the behavior of the MDEX
Engine from within the system.

The MDEX Engine recognizes the following admin operations:

DescriptionAdmin operation

Returns the usage page for all of the admin operations./admin?op=help

Checks the aliveness of an MDEX Engine and returns a
lightweight message.

/admin?op=ping

Specifies when the MDEX Engine should flush its dynamic
cache.

/admin?op=flush

Stops a running MDEX Engine./admin?op=exit

Restarts the MDEX Engine./admin?op=restart

Returns the MDEX Engine Auditing page./admin?op=audit

Resets the MDEX Engine Auditing page./admin?op=auditreset

Returns the MDEX Engine Statistics page./admin?op=stats

Resets the MDEX Engine Statistics page./admin?op=statsreset

Forces a query log roll, with the side effect of remapping
stdout.

/admin?op=logroll

Applies any partial update files to the MDEX Engine./admin?op=update

Rebuilds the aspell dictionary for spelling correction from
the data corpus without stopping and restarting the MDEX
Engine.

/admin?op=updateaspell

Shows a list of the update files that the MDEX Engine has
processed recently.

/admin?op=updatehistory

A Web services operation that reloads the application's main
and library modules.

/admin?op=reload-services

Related Links
help on page 81

/admin?op=help returns the usage page for all of the administrative operations.

ping on page 81
/admin?op=ping checks the aliveness of an MDEX Engine and returns a lightweight
message.

flush on page 81
/admin?op=flush flushes the Dgraph cache.

exit on page 82
/admin?op=exit stops a running MDEX Engine.

restart on page 82
/admin?op=restart restarts the Dgraph.

audit on page 82
/admin?op=audit returns the MDEX Engine Auditing page.

auditreset on page 83
/admin?op=auditreset resets the MDEX Engine Auditing page.

stats on page 83
/admin?op=stats returns the MDEX Engine Statistics page.

statsreset on page 84

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About administrative and configuration
operations

80

/admin?op=statsreset resets the MDEX Engine Statistics page.

logroll on page 84
/admin?op=logroll forces a query log roll, with the side effect of remapping stdout.

update on page 84
/admin?op=update applies any partial update files to the Dgraph.

updateaspell on page 85
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary
for spelling correction from the data corpus without stopping and restarting the MDEX Engine.

updatehistory on page 86
/admin?op=updatehistory shows a list of the update files that the Dgraph has processed
since it was started.

reload-services on page 86
/admin?op=reload-services is a Web services operation that reloads the application's
main and library modules.

help

/admin?op=help returns the usage page for all of the administrative operations.

Agraph support

The help operation is supported in the Agraph.

ping

/admin?op=ping checks the aliveness of an MDEX Engine and returns a lightweight message.

You can view the MDEX Engine Statistics page to check whether the MDEX Engine is running and
accepting queries, but that comes with some overhead. A quicker way to check the aliveness of a
Dgraph or an Agraph is by running the ping command.

The ping command returns a lightweight page that lists the MDEX Engine, the current date and time,
such as the following:

dgraph example.endeca.com:8000 responding at Wed Oct 25 15:35:27 2009

You can use this operation to monitor the health or heartbeat of the MDEX Engine, and as a health
check for load balancers.

Agraph support

The ping operation is supported in the Agraph.

flush

/admin?op=flush flushes the Dgraph cache.

The flush operation clears all entries from the Dgraph cache. It returns the following message:

flushing cache...

Agraph support

The flush operation is not supported in the Agraph, because the Agraph does not contain a cache.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

81Administrative and configuration operations and logging variables | About administrative and configuration
operations

exit

/admin?op=exit stops a running MDEX Engine.

The exit operation puts the Dgraph on hold while all outstanding transactions (queries) are completed.
Once all transactions have been completed, the Dgraph shuts down. This is the recommended way
to shut down a Dgraph, as opposed to manually killing the process, since it gracefully completes all
transactions and exits cleanly.

The output looks similar to the following:

Dgraph admin, OK
Dgraph shutting down at Wed May 20 11:23:08 2009

Both the Endeca Application Controller (EAC) and the deprecated Control Interpreter use the exit
operation behind the scenes to stop an MDEX Engine. However, if the MDEX Engine in question was
originally started by the EAC or the Control Interpreter, manually submitting this operation fails to
permanently shut down the MDEX Engine, because the EAC or the Control Interpreter interprets the
resulting MDEX Engine shutdown as a failure and restarts it immediately. MDEX Engines started by
the EAC or the Control Interpreter should be shut down through the control framework that originally
started them.

Agraph support

The exit operation is supported in the Agraph.

restart

/admin?op=restart restarts the Dgraph.

The restart operation acts similarly to the exit operation, except that after shutting down, the
Dgraph restarts. This is the recommended way to restart a Dgraph, as opposed to manually stopping
and starting the process, since it gracefully completes all transactions and exits cleanly before starting
up again.

The restart operation returns output similar to the following:

Dgraph admin, OK
Dgraph restarting at Wed May 20 11:25:19 2009

Agraph support

The restart operation is supported in the Agraph.

audit

/admin?op=audit returns the MDEX Engine Auditing page.

The MDEX Engine Auditing page lets you view the aggregate Dgraph metrics over time. It provides
the output of XML reports that track ongoing usage statistics. These statistics persist through process
restarts.This data can be used to verify compliance with licensing terms, and is also useful for tracking
product usage.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About administrative and configuration
operations

82

Note: For details about the MDEX Engine Auditing page, see the Performance Tuning Guide.

Agraph support

The audit operation is supported in the Agraph.

auditreset

/admin?op=auditreset resets the MDEX Engine Auditing page.

It returns the following message:

resetting auditing stats...

Agraph support

The auditreset operation is not supported in the Agraph.

stats

/admin?op=stats returns the MDEX Engine Statistics page.

The MDEX Engine Statistics page provides a detailed breakdown of what the Dgraph is doing, and is
a useful source of information about your Endeca implementation’s configuration and performance. It
provides information such as startup time, last data indexing time, and indexing data path. This lets
you focus your tuning and load-balancing efforts. By examining this page, you can see where the
Dgraph is spending its time. Begin your tuning efforts by identifying the features on the Details tab
Hotspots section with the highest totals.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

83Administrative and configuration operations and logging variables | About administrative and configuration
operations

Note: For details about the MDEX Engine Statistics page, see the Performance Tuning Guide.

Agraph support

The stats operation is supported in the Agraph, but returns a smaller set of statistics.

statsreset

/admin?op=statsreset resets the MDEX Engine Statistics page.

The statsreset operation returns the following message:

resetting server stats...

Agraph support

The statsreset operation is supported in the Agraph.

logroll

/admin?op=logroll forces a query log roll, with the side effect of remapping stdout.

The logroll command returns a message similar to the following:

rolling log... Successfully remapped stdout/stderr to specified
path "C:\Endeca\apps\JanWine\logs\dgraphs\Dgraph2\Dgraph2.log".
Successfully rolled log file.

Agraph support

The logroll operation is supported in the Agraph.

update

/admin?op=update applies any partial update files to the Dgraph.

This operation instructs the Dgraph to process the partial update files in its update directory. For more
information on partial updates, see the Partial Updates Guide.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About administrative and configuration
operations

84

On receiving the URL update command, the Dgraph by default performs the following sequence of
operations:

1. Continues processing queries concurrently with processing the update.
2. Checks the updates directory and uploads all partial updates that have not yet been uploaded.
3. Processes the update files and deletes them.

Processing updates from a single file

In some cases, you may need to run a partial update by pointing the Dgraph to a single file. In this
case, run the admin?op=update&updatefile=filename option where filename is the name
of an update file residing in the update directory.

If you have more than one file, rerun this command. The update file is deleted after the MDEX Engine
successfully applies the results of the partial update.

Agraph support

The /admin?op=update operation is not supported in the Agraph.

updateaspell

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus without stopping and restarting the MDEX Engine.

The admin?op=updateaspell operation performs the following actions:

• Crawls the text search index for all terms
• Compiles a text version of the aspell word list
• Converts this word list to the binary format required by aspell
• Causes the Dgraph to finish processing all existing preceding queries and temporarily stop

processing incoming queries
• Replaces the previous binary format word list with the updated binary format word list
• Reloads the aspell spelling dictionary
• Causes the Dgraph to resume processing queries waiting in the queue

The Dgraph applies the updated settings without needing to restart.

Only one admin?op=updateaspell operation can be processed at a time.

The admin?op=updateaspell operation returns output similar to the following in the Dgraph error
log:

...
aspell update ran successfully.
...

Note: If you start the Dgraph with the -v flag, the output also contains a line similar to the
following:

Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

Agraph support

The admin?op=updateaspell is not supported in the Agraph.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

85Administrative and configuration operations and logging variables | About administrative and configuration
operations

updatehistory

/admin?op=updatehistory shows a list of the update files that the Dgraph has processed since
it was started.

The updatehistory operation returns output similar to the following:

Endeca Dgraph Server update directory history contents

Checking for update directory for directory "..\data\partition0\dgraph_in¬
put\updates\"

Files in update directory history

"..\data\partition0\dgraph_input\updates\\wine-
sgmt0.records.xml_2009.05.19.10.31.25"
"..\data\partition0\dgraph_input\updates\\wine-
sgmt0.records.xml_2009.05.19.10.30.08"
"..\data\partition0\dgraph_input\updates\\wine-
sgmt0.records.xml_2009.05.19.10.32.13"

Agraph support

The updatehistory operation is not supported in the Agraph.

reload-services

/admin?op=reload-services is a Web services operation that reloads the application's main and
library modules.

The admin?op=reload-services operation causes the Dgraph to process all existing preceding
queries, temporarily stop processing other queries and begin to process admin?op=reload-ser¬
vices. After it finishes processing this operation, the Dgraph resumes processing queries that queued
up temporarily behind this request.

Note: admin?op=reload-services can be a time-consuming operation, depending on the
number of XQuery modules that you have created and that have to be compiled.

Agraph support

The reload-services operation is not supported in the Agraph.

List of configuration operations
Configuration (or config) operations listed in this topic allow you to modify configuration and logging
information for the MDEX Engine from within the system.

The Dgraph recognizes the following config operations:

DescriptionConfig operation

Returns the usage page for all of the
config operations.

/config?op=help

Loads and applies updated MDEX
Engine configuration files.

/config?op=update

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About administrative and configuration
operations

86

DescriptionConfig operation

Enables verbose logging for one or
more specified variables.

/config?op=log-enable

Disables verbose logging for one or
more specified variables.

/config?op=log-disable

Returns verbose logging status./config?op=log-status

Related Links
help on page 87

/config?op=help returns the usage page for all of the config operations.

update on page 87
The config?op=update operation loads any updated Dgraph configuration files (containing
information about items such as thesaurus entries or dynamic business rules). The Dgraph
applies the updated settings without needing to restart.

help

/config?op=help returns the usage page for all of the config operations.

update

The config?op=update operation loads any updated Dgraph configuration files (containing information
about items such as thesaurus entries or dynamic business rules). The Dgraph applies the updated
settings without needing to restart.

The config?op=update operation causes the Dgraph to drain all existing preceding queries,
temporarily stop processing other queries and begin to process config?op=update. The operation
loads and applies any updated configuration files. After it finishes processing these operations, the
Dgraph resumes processing queries that queued up temporarily behind these requests.

Only one config?op=update operation can be processed at a time. This command is useful during
development and debugging, when it is desirable to quickly load configuration changes without the
interruption of restarting an MDEX Engine.

Note: The config?op=update operation can be time consuming, depending on the number
of configuration files the Dgraph has to process for an update.

The update operation returns output similar to the following:

Processing configuration file
"<full path to XML configuration file>"
Successfully processed configuration file
"<full path to XML configuration file>"
Finished processing config updates.

Agraph support

The config?op=update operation is not supported in the Agraph.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

87Administrative and configuration operations and logging variables | About administrative and configuration
operations

About MDEX Engine logging variables
You can use logging variables with config operations. This lets you obtain detailed information about
Dgraph processing, to help diagnose unexpected application behavior or performance problems,
without stopping and restarting the Dgraph or requiring a configuration update.

Although you can also specify general verbose logging at the Dgraph command line with the --v flag,
it requires a Dgraph restart to take effect.

Related Links
Logging variable operation syntax on page 88

MDEX Engine logging variables are toggled using the /config?op=log-en¬
able&name=<variable-name> and /config?op=log-disable&name=<variable-
name> operations.

List of supported logging variables on page 88
The following table describes the supported logging variables that you can use with related
config operations to toggle logging verbosity for specified features.

Logging variable operation syntax
MDEX Engine logging variables are toggled using the /config?op=log-enable&name=<variable-
name> and /config?op=log-disable&name=<variable-name> operations.

You can include multiple logging variables in a single request. Unrecognized logging variables generate
warnings.

For example, this operation:

/config?op=log-enable&name=merchverbose

turns on verbose logging for the dynamic business rule feature, while this operation:

config?op=log-enable&name=textsearchrelrankverbose&name=textsearchspellver¬
bose

turns on verbose logging for both the text search relevance ranking and spelling features.

However, this operation:

config?op=log-enable&name=allmylogs

returns an unsupported logging setting message.

In addition, the following operations are supported:

• /config?op=log-status returns a list of all logging variables with their values (true or false).
• The special name all can be used with /config?op=log-enable or /config?op=log-
disable to set all logging variables.

List of supported logging variables
The following table describes the supported logging variables that you can use with related config
operations to toggle logging verbosity for specified features.

Logging variable names are not case sensitive.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About MDEX Engine logging variables88

DescriptionVariable

Enables verbose mode.verbose

Prints information about each request to stdout.requestverbose

Show verbose messages while processing updates.updateverbose

Enables verbose information about record filter performance.recordfilterperfverbose

Enables verbose debugging messages during merchandising
rule processing.

merchverbose

Enables verbose information about relevance ranking during
search query processing.

textsearchrelrankverbose

Enables verbose output for spelling correction features.textsearchspellverbose

Enables verbose performance debugging messages during
core Dgraph navigation computations.

dgraphperfverbose

Enables refinement verbose/debugging messages.dgraphrefinementgroupverbose

Related Links
log-enable on page 89

The log-enable operation lets you turn on verbose logging.

log-disable on page 89
The log-disable operation lets you turn off verbose logging.

log-status on page 90
The log-status operation returns a list of all logging variables with their values (true or
false).

log-enable

The log-enable operation lets you turn on verbose logging.

You can include multiple logging variables in a single request. Unrecognized logging variables generate
warnings.

For example, this operation:

/config?op=log-enable&name=merchverbose

turns on verbose logging for the dynamic business rule feature, while this operation:

config?op=log-enable&name=textsearchrelrankverbose&name=textsearchspellver¬
bose

turns on verbose logging for both the text search relevance ranking and spelling features.

However, this operation:

config?op=log-enable&name=allmylogs

returns an “unsupported logging setting” message.

log-disable

The log-disable operation lets you turn off verbose logging.

/config?op=log-disable with no arguments returns the same output as log-status.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

89Administrative and configuration operations and logging variables | About MDEX Engine logging variables

log-status

The log-status operation returns a list of all logging variables with their values (true or false).

For example, if you have not enabled verbose logging on any feature, you would see a message
similar to the following:

Logging settings:

verbose - FALSE
requestverbose - FALSE
updateverbose - FALSE
recordfilterperfverbose - FALSE
merchverbose - FALSE
textsearchrelrankverbose - FALSE
textsearchspellverbose - FALSE
dgraphperfverbose - FALSE
dgraphrefinementgroupverbose - FALSE

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Administrative and configuration operations and logging variables | About MDEX Engine logging variables90

Appendix B

Endeca Flag Reference

This appendix provides a description of the flags (options) used by the Agidx, Agraph, Dgidx, and
Dgraph programs. For information on Forge flags, see the Forge Guide.

Agidx flags
Agidx is a program that runs in a distributed environment. It creates a set of Agidx indices and
aggregates the Agraph index with the current data subset.

Agidx has the following usage:

agidx [-v] [--agidx_out <input db_prefix>]
 [--help]
 [--config]
 [--out <stdout/stderr file>] [--version]
 <input db_prefix list> <output db_prefix>

where <db_prefix> specifies the path to the directory, and the prefix used for the files in your Endeca
application.

Agidx contains the following options:

DescriptionFlag

Prefix for output generated previously by
Agidx that should now be used as input.This

--agidx_out <input db_prefix>

option helps you incrementally build the Agidx
index, allowing you to run Agidx against
individual data subsets that have been
generated by Dgidx.

Specify a configuration file to read on startup.
Configuration file should contain arguments

--config

of the same format used on the command
line (it ignores whitespace, including new
lines). A command line that includes the
--config argument is processed as if the
contents of the config file were inserted in
place of the --config option.

Print this usage information and exit.--help

DescriptionFlag

Verbose mode.-v

Specify file path to which stdout/stderr
should be remapped (default is to use default
stdout/stderr for the process).

--out <stdout/stderr file>

Print version information and exit.--version

Agraph flags
A distributed configuration requires a program called Agraph.

The Agraph program is responsible for receiving requests from clients, forwarding the requests to the
distributed MDEX Engines, and coordinating the results. From the perspective of the Endeca API, the
Agraph program behaves identically to a Dgraph program.

The Agraph has the following usage:

agraph [-v] [--flags] <db_prefix>

where <db_prefix> specifies the path to the directory, and the prefix used for the files in your Endeca
application.

The Agraph uses the following flags:

DescriptionFlag

Verbose mode-v

Deprecated. Disallow server shutdown and restart operations
through admin?op=exit and admin?op=restart URL
commands sent to the Dgraph.

-A

Enable backwards compatibility, so that the Agraph can
communicate with previous versions of the Presentation API. The

--back_compat
<api-version>

following full versions are supported: 6.0.x, 5.1.x, 5.0.x and 4.8.x.
Therefore, the value for <api-version> must be one of the following:

• 601 for all 6.0.x versions of the API.
• 510 or 500for all corresponding versions of the API, 5.1.x.
• 480 for the 4.8.x versions of the API, including the Perl API.

Specify the location of a child Dgraph or Agraph process.--child <host>:<port>

Specify a configuration file to read on startup.The configuration file
should contain arguments of the same format used on the command
line (that is, it ignores whitespace, including newlines).

--config <filename>

Explicitly set the "connection:close" header on all HTTP responses.--explicit_no_keep_alive

(UNIX only) Causes the Agraph to fork off a new process to handle
each request.

--fork

(UNIX only) Set the maximum number of live child processes in
--fork mode. Default value is 4.

--fork-max
<max-fork-children>

Print usage information and exit.--help

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Agraph flags92

DescriptionFlag

Change the path for the request log file (./agraph.reqlog is the
default value)

--log <path>

Set default maximum wait time (in seconds) for client connection
shutdown. The default value is 1 second.

--net-close-timeout

Specify the maximum number of seconds the Agraph waits for the
client to download data across the network. The default network
timeout value is 30 seconds.

--net-timeout

Disable caching of hostname to IP number lookups for child
Dgraphs. By default, the Agraph caches these name lookups to
improve performance.

--nodnscache

Disable inclusion of implicit refinement dimension values in
computed refinement sets. Implicit refinements are dimension values

--noimplicit

that are assigned to all records in the current result set, and whose
selection therefore does not narrow the results.

This flag sets the following conditions:

• Implicit dimensions values are not displayed.
• Dimensions with only implicit dimension values are not

displayed.
• Implicit dimension values trigger precedence rules.

Do not process dynamic business rule results from children. These
are processed by default.

--nomerch

Do not return results if any child fails to respond.--no-partial

Specify file path to which stdout/stderr should be remapped. (The
default is to use default stdout/stderr for the process.)

--out <stdout/stderr
file>

Specify the file to which to write the process ID (pid). If unspecified,
the default name of the pid file depends on how the Agraph starts.

--pidfile <pidfilename>

Running the Agraph in a Control System environment (deprecated)
or from the command line creates a default named agraph.pid.
Running the Agraph in an Endeca Application Controller environment
creates a default named agraph-S0-R0.pid.

Specify the port that the Agraph listens to for user queries on the
associated host. Default is 8888.

--port <num>

Specify initial record list radius (tuning parameter; the default is
100).

--radius <num>

Create dynamic record properties indicating the relevance rank
assigned to record search results.

--stat-brel

Specify the name of the SSL certificate file. If not given, SSL is not
enabled for Agraph communications.

--sslcertfile

Specify the name of the SSL Certificate Authority file. If not given,
CA verification is not performed.

--sslcafile

Only allow the ciphers specified in the colon-separated list of cipher
names following this option.

--sslcipher

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

93Endeca Flag Reference | Agraph flags

DescriptionFlag

Print version information and exit.--version

Dgidx flags
The Dgidx program indexes the tagged Endeca records that were prepared by Forge, and creates the
proprietary indices for the Endeca MDEX Engine.

The usage of Dgidx is as follows:

dgidx [-qv] [--flags] <data export file> <output db_prefix>

where <db_prefix> specifies the path to the directory, and the prefix used for the files in your Endeca
application.

Dgidx supports the following flags:

DescriptionFlag

Quiet mode.-q

Verbose mode.-v

Specify the auto-generation of dimension value specs. If this flag is
specified, then during both baseline and partial updates, any dimension
value that does not have a dimension value spec is assigned one.

--autogenerate-dval-specs

Enable compound dimension search for the application. Use of this
option increases indexing time. However, if this option is not enabled

--compoundDimSearch

at index time, compound dimension results (multiple-dimension-value
results) are not returned by the MDEX Engine.

Compute and report coverage statistics for dimensions and properties.--cov

Ignore character accents when indexing text. For details about how
characters with diacritical marks are mapped to their ASCII equivalents,
see the MDEX Engine Basic Development Guide.

--diacritic-folding

Deprecated. The MDEX Engine ignores this flag if it is specified.

Compute dimension value equivalence classes as a space-saving
optimization.This adds time to the indexing phase, but reduces the size
of the index. The default is to search leaf assignments only.

--equivopt

Print the help message and exit.--help

Assume all documents are in the specified language. The default for
<lang-id> is en.

--lang <lang-id>

Deprecated. Ignore character accents when indexing text. Use ISO
Latin 1 character mappings for international characters when performing

--latin1

search indexing. Note that the accents are folded down before indexing,
so only a single form is indexed.

Deprecated. The MDEX Engine ignores this flag if it is specified.--ngram_min <value>

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgidx flags94

DescriptionFlag

Disable computation of implicit refinement dimension values. Implicit
refinements are dimension values that are assigned to all records in

--noimplicit

the current result set, and whose selection therefore does not narrow
the results.

In addition, this flag disables computation of dimension values for
disabled refinements.

Disable strict attribute checking. Allows records to retain property values
for properties with no property (or PROP_REF element) defined in the

--nostrictattrs

navigation configuration file, and in the Properties view of Developer
Studio.

Do not perform XML validation while reading the XML export file. This
option only makes a difference if the export file is in XML format.

--noxmlvalidate

Limit the number of records that Dgidx reads.--numbins <num>

Specify file path to which stdout/stderr should be remapped (the default
is to use default stdout/stderr for the process).

--out <stdout/stderr
file>

Specify a default sort specification for the data set.The format of <spec>
is (including the quotation marks):

"key|dir"

--sort <spec>

where key is the name of a property or dimension on which to sort and
dir is either asc for ascending or desc for descending (if not specified,
the order will be ascending).

key can also be a geocode property, as in this example:

"Location(43,73)|desc"

You can specify multiple sort keys in the format:

"key_1[|dir_1]||key_2[|dir_2]||...||key_n[|dir_n]"

If you specify multiple sort keys, the records are sorted by the first sort
key, with ties being resolved by the second sort key, whose ties are
resolved by the third sort key, and so on.

Note that if you are using the Endeca Application Controller (EAC) to
control your environment, you must omit the quotation marks from the
--sort flag. Instead, use the following syntax:

--sort key_1|dir_1||key_2|dir_2||...||key_n|dir_n

Specify the spelling correction mode for the application. Supported
modes are:

--spellmode <mode>

• default
• aspell
• espell
• aspell_OR_espell
• aspell_AND_espell

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

95Endeca Flag Reference | Dgidx flags

DescriptionFlag

In spelling modes that enable the espell module, include non-word
terms (numbers, symbols, and so on) in the espell dictionary. By default,
such terms are not included.

--spellnum

Specify an optional XML file of stemming updates to apply to a default
stemming dictionary. See the MDEX Engine Advanced Development
Guide for XML examples and file name requirements.

--stemming-updates
<file>

Specify the number of sorting threads to use for the multi-threaded
portion of the indexing process. The default is 1. If this flag is not

--threads <num>

specified, or if 1 is specified for it, Dgidx uses one sorting thread. If the
specified value is greater than 1, Dgidx uses the specified number of
threads to sort data.

Note that Dgidx runs in multithreaded mode by default. In addition to
the number of sorting threads that you can control with the --threads
flag, Dgidx may use additional maintenance threads that run in the
background by default, and are not used for sorting data.

To improve indexing performance, Endeca recommends increasing the
number of sorting threads. In deployments where a dedicated server
is used for indexing the Endeca application, allocate as many threads
as your server allows to the Dgidx sorting process.

For best performance, the number of sorting threads specified should
correlate with the number of cores on the server. Since sorting is only
part of the indexing process, using N sorting threads does not speed
up Dgidx by N times.

Print version information and exit.--version

Deprecated. The MDEX Engine ignores this option if it is specified.

Report which record properties are mapped to which languages.

--verbose-language-mapping

Dgraph flags
The Dgraph program starts the MDEX Engine.

You start the MDEX Engine by running a program called Dgraph, which you point at a set of indices
prepared by the Dgidx.The Dgraph has a number of options that allow you to adjust the MDEX Engine.
For example, you can tweak spelling, caching, and so forth.

The usage of Dgraph is as follows:

dgraph [-?Adv] [--flags] <db_prefix>

where <db_prefix> specifies the path to the directory, and the prefix used for the files in your Endeca
application.

DescriptionFlag

Print the help message and exit.?

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgraph flags96

DescriptionFlag

Deprecated. Disallow server shutdown and restart operations
through admin?op=exit and admin?op=restart URL
commands sent to the Dgraph.

-A

Start in debug mode.-d

Verbose mode. Print information about each request to stdout.-v

Compute counts for root dimension values and any intermediate
dimension value selections. By default, the Dgraph only computes

--ancestor_counts

refinement counts for proper refinements (in other words, for actual
refinement dimension values). It does not compute counts for root
dimension values or for any intermediate dimension value
selections.

Enable backwards compatibility, so that the Dgraph can
communicate with previous versions of the Presentation API. In

--back_compat
<api-version>

addition to the currently supported version of the Presentation API,
the following previous full versions are supported: 6.0.x, 5.1.x, 5.0.x
and 4.8.x. Therefore, the value for <api-version> must be one of
the following:

• 601 for all 6.0.x versions of the API.
• 510 or 500 for all corresponding versions of the API, 5.1.x and

5.0.x.
• 480 for the 4.8.x versions of the API, including the Perl API.

Note: Starting with version 6, the Endeca Presentation API
is part of the Platform Services package. For the version of
the Platform Services that is compatible with the current
version of the MDEX Engine, see the MDEX Engine
Installation Guide.

Specify the wait limit (in seconds) for a query that has been read
and queued for processing.This is the maximum number of seconds

--backlog-timeout
<seconds>

that a query is allowed to spend waiting in the processing queue
before the Dgraph responds with a timeout message. The default
value is 60 seconds.

Specify the maximum memory usage in MB for the MDEX Engine
main cache. When --cmem is not specified, the default value is
1024 MB (1GB), for Dgraph installations on 64-bit platforms.

--cmem <MB>

Specify a configuration file to read on startup. The configuration
file should contain arguments of the same format used on the
command line (that is, it ignores whitespace, including newlines).

--config <path>

Deprecated. The MDEX Engine ignores this flag if it is specified.--deadends

Ignore character accents when processing search requests. For
details about how characters with diacritical marks are mapped to

--diacritic-folding

their ASCII equivalents, see the MDEX Engine Basic Development
Guide.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

97Endeca Flag Reference | Dgraph flags

DescriptionFlag

Disable fast mode for the aspell spelling module. If you disable fast
mode, it decreases the performance of the spelling correction, but
may allow additional queries to be corrected.

When the fast mode is enabled, it can significantly speed up
applications that use spelling correction features with the aspell
module. The fast mode is used by default.

--disable_fast_aspell

Suppress the automatic loading of XQuery modules at startup.--disable_web_services

Specify the data tag to send with all result XML objects.The default
is to use db_prefix as the data tag.

--dtag <data-tag>

Enable DYM (Did You Mean?) explicit query spelling suggestions
for full-text search queries.

--dym

Specify the threshold number of hits at or above which DYM (Did
You Mean?) suggestions will not be generated. The default is 20.

--dym_hthresh <thresh>

Specify the maximum number of DYM (Did You Mean?) query
suggestions to return for any query. The default is 1.

--dym_nsug <count>

Specify the threshold spelling correction score for words used by
the DYM (Did You Mean?) engine. The default is 175.

--dym_sthresh <thresh>

Use this flag to force the MDEX Engine to consider intermediate
collapsible dimension values as candidates for dynamic ranking.

This flag alters the default behavior of the MDEX Engine when
dynamically ranking dimensions with collapsible dimension values.

--dynrank_consider_collapsed

By default (without this flag specified), the MDEX Engine considers
only leaf dimension values for dynamic ranking, removing all
intermediate dimension hierarchy from consideration.

With the default behavior, when a hierarchical dimension's mid-level
values (all except the root and leaf values) are configured as
collapsible in Developer Studio, and when the dimension is also
set to use dynamic refinement ranking, the dimension collapses
and displays only leaf values for all navigation queries. The
mid-level dimension values are never displayed regardless of the
number of leaf values present in the navigation state.

If you would like the MDEX Engine to consider intermediate
dimension values (that are configured as collapsible) for dynamic
ranking, use this flag.

Specify the minimum number of records to sample during refinement
computation. The default is 0. Tuning recommendations:

--esampmin <num>

• For most applications, larger values reduce performance without
improving dynamic refinement ranking quality.

• For some applications with extremely large, non-hierarchical
dimensions (if they cannot be avoided), larger values can
meaningfully improve dynamic refinement ranking quality with
minor performance cost.

Deprecated.--ethresh <num>

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgraph flags98

DescriptionFlag

Deprecated. If specified, triggers a deprecation warning but is
otherwise ignored.

--explicit_no_keep_alive

Specify the directory into which the MDEX Engine should save the
failed update files.

The default directory that the MDEX Engine uses for storing the
failed update files is <updatedir>/failed_updates/.

--failedupdatedir <dir>

Print the help message and exit.--help

Deprecated. The MDEX Engine ignores this flag if it is specified.--implicit_exact

Deprecated. The MDEX Engine ignores this flag if it is specified.--implicit_sample

Assume all queries are in the specified language. The default is
en (US English).

--lang <lang-id>

Deprecated. Ignore character accents when handling search
requests, and use ISO Latin 1 character mappings when processing
search requests.

--latin1

Specify the path for the Dgraph request log file. The default log file
is named dgraph.reqlog.

--log <path>

Specify the path and filename for the EQL (Endeca Query
Language) statistics log. By default, this log is turned off; specifying
this flag activates logging of statistics for EQL requests.

--log_stats <path>

Set the threshold above which statistics information for an Endeca
Query Language request will be logged. The value is specified in

--log_stats_thresh
<value>

milliseconds (1000 milliseconds = 1 second). The value can also
be specified in seconds by adding a trailing s to the number, such
as 1s for 1 second. The default is 60000 milliseconds (1 minute).
Note that this flag is dependent on the --log_stats flag being
used.

Deprecated . The MDEX Engine ignores this flag if it is specified.--memusage

Set the default merge policy of the MDEX Engine for partial updates.
The value for <policy> must be either balanced or aggressive.

--mergepolicy <policy>

If this flag is not used, balanced will be the default merge policy.
For details on the merge policy, see the Partial Updates Guide.

Deprecated. Prior to version 6.1, this flag set the default maximum
wait time (in seconds) for client connection shutdown. The MDEX

--net-close-timeout

Engine now uses the FIN_WAIT_2 timeout interval to set the
number of seconds that the HTTP server waits after sending the
response for the client to close down its end of the socket. If this
timeout expires, the server forcibly shuts down the connection.The
default value varies by operating system: for Linux it is 60s; for
Solaris, it is 675000ms; and for Windows it is 240s. For details on
changing the default value in your operating system, see the
Performance Tuning Guide.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

99Endeca Flag Reference | Dgraph flags

DescriptionFlag

Specify the maximum number of seconds the Dgraph waits for the
client to download data from queries across the network.The default
network timeout value is 30 seconds.

--net-timeout

Do not return information about implicit dimensions with node
results, when displaying refinements in navigation results.

--noctrct

This flag lets you optimize performance for applications where it is
not necessary to present the implicit dimensions to the users in
navigation results. If you specify this flag, the MDEX Engine still
computes the implicit dimensions with node results, but they are
not included in the navigation results that are displayed to the users.

Disable filtering for dynamic business rules.--nomrf

Specify file path to which stdout/stderr should be remapped (the
default is to use default stdout/stderr for the process).

Running the Dgraph in an Endeca Application Controller
environment creates a default file named dgraph-S0-R0.out.

--out <stdout/stderr
file>

Deprecated. The MDEX Engine ignores this flag if it is specified.--pcmem

Direct the Dgraph audit persistence file to a directory of your choice.
By default, the file is written to a directory called persist that is

--persistdir

located in the application’s working directory. For details about the
audit persistence file, see the Endeca Performance Tuning Guide.

Important: Use the --persistdir flag only when you first start
the Dgraph. Do not move or rename this directory after it has been
created.

Specify the maximum number of words in each phrase for text
search.The default number is 10. If the maximum number of words

--phrase_max <num>

in a phrase is exceeded, the phrase is truncated to the maximum
word count and a warning is logged.

Specify the file to which to write the process ID (pid). If unspecified,
the default name of the pid file depends on how the Dgraph starts.

Running the Dgraph in a Control System environment or from the
command line creates a default named dgraph.pid. Running the

--pidfile <pidfile-path>

Dgraph in an Endeca Manager environment creates a default
named dgraph-S0-R0.pid.

Specify the port to use in server (non-interactive) mode.The default
is 5555.

--port <num>

Specify the maximum number of terms for text search. Default is
10.

--search_max <num>

Limit the number of words in a property that the MDEX Engine
evaluates to identify the snippet. If a match is not found within

--snip_cutoff <num>

<num> words, the MDEX Engine does not return a snippet, even
if a match occurs later in the property value.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgraph flags100

DescriptionFlag

If the flag is not specified, or <num> is not specified, the default is
500.

Globally disable snippeting.--snip_disable

Specify location of spelling data files. Parameter should be a full
path to a directory containing the needed aspell support files for

--spellpath <path>

spelling correction features (see the --dym and --spl options).
Note that this path must be an absolute path (relative paths are not
supported). In addition, this is a path to a directory containing at
least the generic pspell/aspell support files. This does not need to
be the same as the location of the .spelldat file for the indexed data
set.The Dgraph typically requires write permissions in this directory,
unless a correct or writable .pwli file is already available in this
directory.

Set maximum number of variants considered for spelling and DYM
(Did You Mean?) correction (the default is 32).

--spell_bdgt <num>

Allow cross-property suggestions, and count cross-property matches
when evaluating the frequencies of suggestions. Normally,
suggestions must match results in a single property value.

--spell_glom

Disable word-break analysis in the suggestion engine. Normally,
in addition to considering spelling corrections, the suggestion engine

--spell_nobrk

considers alternate word separation points for the query to generate
suggestions for DYM (Did You Mean?) and auto-correct.

Enable auto-suggest spelling corrections for record (full text) and
dimension search.

--spl

Specify the minimum number of hits at or above which auto-correct
suggestions will not be generated. The default is 1, meaning that

--spl_hthresh <thresh>

if there are one or more hits for a user’s search, then auto-correct
does not provide spelling suggestions. Stated differently, if you use
the default of 1 and there are zero (0) hits for a user’s search, then
spelling auto-correct does engage and provides suggestions for
alternate keyword spellings.

Specify the maximum number of auto-correct suggestions to return.
The default is 1.

--spl_nsug <count>

Specify the threshold spelling correction score for words used as
auto-correct suggestions. The default is 125.

--spl_sthresh <thresh>

Specify the path of the eneCert.pem certificate file that will be
used by the Dgraph to present to any client for SSL

--sslcertfile
<certfile-path>

communications. Using this flag provides the certificate which the
MDEX Engine presents to the client for SSL; this option also forces
HTTPS connections rather than HTTP. If not given, SSL is not
enabled for Dgraph communications.

Specify the path of the eneCA.pem Certificate Authority file that
the Dgraph will use to authenticate SSL communications with other

--sslcafile
<CA-certfile-path>

Endeca components. This flag defines the Certificate Authority file
the MDEX Engine uses to validate client connections for mutual

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

101Endeca Flag Reference | Dgraph flags

DescriptionFlag

authentication purposes. If not given, SSL mutual authentication
is not performed.

Note: If you need to establish a secure but not authenticated
connection, use the --sslcertfile flag without the
--sslcafile flag.

Set one or more cipher names (such as RC4-SHA) that specify the
minimum cryptographic algorithm that the Dgraph will use during

--sslcipher <cipher-list>

the SSL negotiation. If multiple ciphers are specified, the names
must be separated by colons.

Enable all available dynamic dimension value attributes. Note that
this option has performance implications and is not intended for
production use.

--stat-all

Enable refinement counts for aggregated records. A refinement
count is the number of records that would be in the result set if you

--stat-abins

were to refine on a dimension value. An aggregated record is a
record that represents several records that are rolled up into a
single record for display purposes.

If you use this flag, the refinement counts reflect how many
aggregated records the MDEX Engine would return in a result set
if you were to refine on a dimension value.

In general, the MDEX Engine calculates refinement counts as
follows:

• When returning regular (non-aggregated) record results, the
MDEX Engine calculates refinement counts per refinement.
(You enable refinement counts in Developer Studio.) The
refinement counts for regular records are returned by the MDEX
Engine as the Dgraph.Bins property.

• When returning aggregated record results, the --stat-abins
flag lets the MDEX Engine return the refinement counts for
aggregated records.These counts accurately reflect the number
of aggregated records per refinement. (You enable refinement
counts for aggregated records by using this flag.) The
refinement counts for aggregated records are returned by the
MDEX Engine as the Dgraph.AggrBins property.

Note that dynamic statistics on aggregated records is an expensive
computation for the MDEX Engine. Use this flag only if you intend
to display the refinement counts for aggregated records in your
front-end application.

Deprecated. Set the cutoff for record counts. Once there are this
many records associated with a refinement dimension value, the

--stat-bins-cutoff <num>

record count algorithm stops and returns this number or a number
higher than it.

Deprecated. Set the threshold for the maximum number of records
above which the MDEX Engine stops computing record counts. By

--stat-bins-thresh
<thresh>

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgraph flags102

DescriptionFlag

default, the MDEX Engine returns refinement counts for records
with no threshold.

Create dynamic record attributes indicating the relevance rank
assigned to fulltext search result records.

--stat-brel

Create dynamic dimension value attributes indicating the relevance
ranking score (for dimension value search results).

--stat-rel

Direct all output to syslog.--syslog

Set a limit on the number of words in a user’s search query that
are subject to thesaurus replacement.

The default value of <limit> is 3. This means that up to 3 words in
a user’s search query can be replaced with thesaurus entries. If

--thesaurus_cutoff
<limit>

there are more terms in the query that match thesaurus entries,
none of the words are thesaurus expanded.

This option is intended as a performance guard against very
expensive thesaurus queries. Lower values improve thesaurus
engine performance.

Specify that words in a multiple-word thesaurus form should be
treated like phrases and should not be stemmed, which increases

--thesaurus_multiword_nostem

performance for some query loads. Single-word terms will be subject
to stemming regardless of whether this flag is specified.

This flag prevents the Dgraph from expanding multi-word thesaurus
forms by stemming. Thesaurus entries continue to match any
stemmed form in the query, but multi-word expansions only include
explicitly listed forms. To get the multi-word stemmed thesaurus
expansions, the various forms must be listed explicitly in the
thesaurus.

Specify the number of threads in the MDEX Engine threading pool.
The default is 1 (multithreaded mode). The multithreaded mode
cannot be disabled.

The recommended number of threads for the MDEX Engine is
typically equal to the number of cores on the MDEX Engine server.

--threads <num>

If you specify a value greater than 0, the Dgraph runs the specified
number of threads for processing client requests (queries and partial
updates), and other CPU-intensive operations related to query
processing.The MDEX Engine prioritizes tasks assigned to threads
in its threading pool.

Note: If the specified value is 0, the Dgraph interprets it as
1 and still runs in multithreaded mode with the number of
threads in its threading pool set to 1.

Additional threads are also started to perform internal maintenance
tasks that are less CPU-intensive and do not affect query processing
or updates (their number cannot be controlled).

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

103Endeca Flag Reference | Dgraph flags

DescriptionFlag

Specify the path to a temporary directory to be used to hold
temporary files (the default is the base directory of db_prefix).

--tmpdir <dir>

Specify to the Dgraph not to compute implicit dimensions, and to
only compute and present explicitly specified dimensions, when

--unctrct

displaying refinements in navigation results. Specifying this flag
does not reduce the size of the resulting record set that is being
displayed; however, it improves run-time performance of the MDEX
Engine.

Be aware that if you use this flag, in order to receive meaningful
navigation refinements, you need to make top-level precedence
rules work for ALL outbound queries.

Specify the directory into which completed partial update files will
be placed. Partial update files are also read from this directory.

--updatedir <dir>

Specify the file for update-related log messages. If unspecified, the
default name of the update file depends on how the Dgraph starts.

--updatelog

Running the Dgraph in a Control System environment (deprecated)
or from the command line creates a default named
dgraph.updatelog. Running the Dgraph in an Endeca
Application Manager environment creates a default named
dgraph-S0-R0-update.log.

Show verbose messages while processing updates.--updateverbose

Validate that all indexed data loads and then exit.--validate_data

Print version information and exit.--version

In word-break analysis, specify the maximum number of breaks to
insert or remove per query. The default is 1.

--wb_maxbrks

In word-break analysis, specify the minimum length of a new
word-break term. The default is 2.

--wb_minbrklen

In word-break analysis, disable word-break insertion analysis.--wb_noibrk

In word-break analysis, disable word-break removal analysis.--wb_norbrk

Deprecated. The MDEX Engine ignores this flag.--wildcard_approx <mode>

Specify the maximum number of terms that can match a wildcard
term in a wildcard query that contains punctuation, such as
ab*c.def*. The default is 100.

--wildcard_max <count>

Enable computation of "Why Did It Match" dynamic record attributes
returned as results of full-text search queries. These dynamic

--whymatch

attributes contain a copy of the property/dimension key and value
that caused the match, along with query interpretation notes
(spelling, thesaurus, and so on).

Similar to --whymatch, but produces more concise dynamic
attribute values containing only the property/dimension key and

--whymatchConcise

query interpretation notes. This is useful when the property value
might include large amounts of text, such as document contents.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Endeca Flag Reference | Dgraph flags104

DescriptionFlag

Enable computation of word interpretation dynamic supplement (or
see-also) objects, which report on alternate forms of user query

--wordinterp

terms considered by the text search engine while processing full-text
(record) search requests.

Deprecated. The MDEX Engine ignores this flag and issues a
warning if it is specified.

--ws

Specifies the handling of the fn:doc() function within XQuery.
The following three values are supported:

--xquery_fndoc <mode>

• none causes all calls to fn:doc() to fail.
• sandbox allows fn:doc(), but interprets its argument as a

relative path within the XML subdirectory of the XQuery service
directory.

• open allows fn:doc() and interprets its argument as a URL.

If not specified, defaults to none. Note that open is not supported
for use in deployed applications.

Specify the directory in which XQuery Web service resources are
located. XQuery main modules and WSDL files are loaded from

--xquery_path <path>

this directory. Library modules are loaded from the lib
subdirectory. If not specified, a user XQuery path is not used.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

105Endeca Flag Reference | Dgraph flags

Appendix C

XML Configuration Files

This section describes the XML configuration files used by the Endeca application. As a system
administrator, you do not typically create these files. However, you need to understand and be able
to locate the files, in case you need to modify or move them.

About the XML configuration files
The XML configuration files contain settings used to control aspects of the behavior of the Forge,
Dgidx, Agidx, Dgraph, and Agraph processes.

The XML configuration files, which are documented in detail in the Endeca XML Reference, define
dimensions, dimension search, dimension search index, precedence rules, properties, refinements,
and many other aspects of your incoming records. Dgidx reads and consumes some of the XML
configuration files, while others are passed further into the Dgidx output directory and from there to
the Dgraph input directory. In particular, the Dgraph rereads configuration files which are present in
XML format in the Dgraph input directory during configuration updates. These files include business
rule, keyword redirect, and landing page definitions, thesaurus entries, search interface definitions,
derived property definitions, rendering settings, and other files.

The XML configuration files are copied by Forge to its output directory for use by the Dgidx indexer
process. If the Forge output and Dgidx input directories are not the same, the Deployment Template
scripts copy the configuration files from the Forge output directory to the Dgidx input directory.

The Project.xml file informs the Dgidx where to find the Forge-generated files (records, dimensions,
and property/dimension configuration), as well as the configuration files copied over by Forge.You do
not typically need to edit this file.

Note: In some cases, you need to correct a problem in the XML configuration files. If you are
using Endeca Workbech, to learn how to obtain configuration files out of Workbench (or push
existing files into Workbench), see the appendix in this guide.

Creating the XML configuration files
The XML configuration files are created as part of your application in one of two ways:

• When you deploy a new application using the Deployment Template, a set of default XML
configuration files are created for you in the application's /config/pipeline directory. These

files are all initially created by the Deployment Template with a prefix containing the application
name, such as MyApp.Dimensions.xml. Members of your team can edit these files in Developer
Studio or Endeca Workbench to change the default settings.

• When application developers create an Endeca project using Developer Studio, Developer Studio
creates the XML configuration files. As your application developers modify the project, Developer
Studio and Workbench write changes to the XML files.

The /config/pipeline directory also contains the Developer Studio pipeline file, pipeline.epx.

You can merge the configuration files from Workbench with the MyApp/config/pipeline file set
during a baseline update, depending on your ConfigManager settings. See the Deployment Template
Usage Guide for more details.

Changing the Deployment Template output prefix
If you are using the Deployment Template, be aware that if you change the output-prefix value
in the Indexer Adapter pipeline component in Developer Studio and save this setting, a new set of
XML files is saved with that modified prefix.

The Deployment Template project, however, retains the default prefix for the names of its components,
and can copy older files into the output directory, when its scripts run Forge, for instance. This may
overwrite the most recent configuration files. Therefore, Endeca recommends that you do not change
the default prefix for the XML configuration files.

Creating and modifying the XML configuration files
There are several ways to create and update the XML configuration files.

Endeca recommends that you use Developer Studio or Endeca Workbench to configure your project,
and only modify the XML files directly when required in unusual situations. If you choose to modify the
XML configuration files directly, avoid writing Byte Order Marks (BOMs) into them.

For more information about BOMs, see this site.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

XML Configuration Files | Changing the Deployment Template output prefix108

http://unicode.org/faq/utf_bom.html#BOM

Appendix D

Transferring Endeca Implementations
Between Environments

Read this section only if you use Endeca Workbench (and not the Deployment Template) for your
project.This section describes how to transfer your Endeca implementation from a staging environment
that uses Endeca Workbench to a production environment that uses Endeca Workbench.

For implementations using the Deployment Template
While this section is limited to implementations that only use the Endeca Workbench, the preferred
approach to establishing and maintaining an implementation is by using the Deployment Template.

For information about creating and replicating your implementation using the Deployment Template,
see the sections, Creating Multiple Server Environments and Replicating application definitions in this
guide.

About transferring your implementation
This section focuses on transferring your instance configuration and MDEX Engine between
environments.

Two methods are described: one uses the Endeca tools to manually transfer the implementation, and
the other uses the emgr_update utility that allows you to script and automate transfers. To improve
the readability of the section, we assume you are transferring your Endeca implementation from a
staging environment to a production environment. This need not be the case, however.You can use
these procedures to transfer between any environments you choose.

Depending on your environment and requirements, you may also have to transfer your front-end Web
application to complete the move from one environment to another. From an Endeca perspective, all
you have to do to transfer the front-end Web application is make sure the MDEX Engine hostname
and port you are using in your ENEConnection object is correct for the new environment.

Note: See the Endeca Basic Development Guide for details on using the ENEConnection
interface.

Retrieving the Endeca Workbench instance configuration
with Developer Studio

You can use the Endeca tools to manually transfer from a staging environment that uses Endeca
Workbench to a production environment that uses Endeca Workbench.

To retrieve the Endeca Workbench instance configuration with Developer Studio:

1. In your staging environment, start Developer Studio and create a new project.

2. From the Tools menu, choose Workbench Settings.
The Workbench Settings dialog box appears.

3. Specify the hostname and port for Endeca Workbench for this application. Make sure the hostname
and port that are specified correspond with Endeca Workbench whose information you want to
retrieve.

4. In the same dialog box, select the application from the drop-down list, or make sure that the
application name that is specified corresponds with the name of the application whose configuration
you want to retrieve from Endeca Workbench. Note that you can have instance configurations for
more than one application created in Endeca Workbench.

5.
In the Endeca Workbench toolbar, click Get Instance Configuration:

6. From the File menu, choose Save to save the project with the latest instance configuration.

7. Optionally, remove inactive dynamic business rules from the instance configuration.

8. Copy the instance configuration files from the saved project to the location in your production
environment where the Endeca Application Controller expects them to be.

9. If you have used the load function in Developer Studio to load auto-generated or external dimensions,
you should manually synchronize these Forge state files.

10. Use the Application Controller to run a baseline update on the production system.

Note: If you have loaded any auto-generated or external dimension values into Developer Studio
using the load function, the ID assignments are not stored in the instance configuration.You
must manually synchronize these files between implementation environments.

Related Links
Transferring auto-generated and external dimension value ID assignments on page 118

If you have loaded any auto-generated or external dimension values into Developer Studio
using the load function, the ID assignments are not stored in the instance configuration.
Therefore, you should manually synchronize these files between implementation environments.

About emgr_update
The emgr_update utility assists you in updating the instance configuration of a production system
based on the changes made with the Endeca tools in a staging environment.

By using the appropriate --action operations, you can use emgr_update to do the following tasks:

• Transfer the instance configuration files for a particular application of your choice from the staging
environment to the production environment. After the transfer, you run a baseline update using
your own EAC scripts.You have the option of transferring all instance configuration files, or
transferring just the instance configuration files that Endeca Workbench modified.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Transferring Endeca Implementations Between Environments | Retrieving the Endeca Workbench
instance configuration with Developer Studio

110

• Transfer the instance configuration for a particular application from one Endeca Workbench
environment to another.

• Remove instance configuration information for a specified application from the Endeca Workbench
configuration.

• Send the Forge dimensions to the Endeca Workbench.

emgr_update syntax reference
This section lists all command line parameters that you can use with emgr_update.

The emgr_update utility assists you in updating the instance configuration of a production system
based on the changes made with the Endeca tools in a staging environment.

You run emgr_update from a command line. Open a command prompt or UNIX shell to run the program.
The syntax for running emgr_update is: emgr_update <parameters>

The following table describes the command line parameters you can use with emgr_update.You can
specify only one --action operation for each invocation of the utility.

Here is an example of usage:

emgr_update --host localhost:8006 --action get_ws_settings
--prefix wine --dir /apps/endeca/data/forge_input --app_name wine

Descriptionemgr_update parameter

Specifies the host name of a machine running Endeca
Workbench and the Endeca Tools Service port on
that machine.

If you are retrieving settings (using the get operation),
this is the host name of the environment you are

--host name:port

transferring from; if you are updating settings (using
the set operation), this is the host name of the
environment you are transferring to.

Specifies one of the actions, where <op> is one of
the operations listed below.

--action <op>

Retrieves all the instance configuration settings for a
project you performed in the Endeca Workbench in

--action get_all_settings

the staging environment, for their use in the
production environment.

Required parameters: --dir, --prefix

Optional parameters: --filter

Retrieves only those instance configuration settings
that can be modified in Endeca Workbench (not all
settings).

These configuration settings include the following
Endeca Workbench features: dynamic business rules,

--action get_ws_settings

keyword redirects, thesaurus entries, automatic
phrases, stop words, and dimension ordering.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

111Transferring Endeca Implementations Between Environments | About emgr_update

Descriptionemgr_update parameter

Retrieves the instance configuration settings that were
modified in Endeca Workbench, and that do not

--action get_mdex_settings

require a baseline update to update the MDEX
Engine.

These configuration settings include the following
Endeca Workbench features: dynamic business rules,
keyword redirects, thesaurus entries, automatic
phrases.

Required parameters: --dir, --prefix

Optional parameters: --filter

Updates the Endeca Workbench configuration with
the post-Forge dimensions.

--action set_post_forge_dims

Retrieves the copy of Endeca Workbench settings
for the post-Forge dimensions. Typically, this
operation can be used for debugging purposes.

--action get_post_forge_dims

Updates an Endeca Workbench production
environment with instance configuration settings that

--action update_mgr_settings

were extracted from the Endeca Workbench
configuration in the staging environment.

Removes all the instance configuration files from
Endeca Workbench for the application that you
specify with the --app_name parameter.

Removing the instance configuration does not remove
the associated provisioning information for an
application.

--action remove_all_settings

Specifies the name of the application provisioned to
the EAC Central Server.

--app_name <string>

DescriptionAdditional action parameters

Specifies the pathname of the directory where the
instance configuration files are written to or read

--dir <pathname>

from. Required for all --action operations except
for set_post_forge_dims and re¬
move_all_settings.

Specifies the prefix used for the instance
configuration files. This option is required for all

--prefix <pathname>

--action operations except for
get_post_forge_dims and
set_post_forge_dims.

Filters out dynamic business rules that have a state
of inactive. (A rule has the property endeca.inter¬

--filter

nal.workflow.state set to INACTIVE.) This
option can be used in conjunction with

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Transferring Endeca Implementations Between Environments | About emgr_update112

DescriptionAdditional action parameters

get_all_settings or get_ws_settings when
retrieving an instance configuration.

Removing inactive rules is not required but it is
recommended. With the default rule filter in place,
the MDEX Engine does not fire any rule whose state
is inactive. In other words, you can transfer an
instance configuration, including both active and
inactive rules, and the MDEX Engine fires only active
rules in reply to user queries.

Specifies the pathname to the file that contains
post-Forge dimensions. This option is required for
the set_post_forge_dims operation.

--post_forge_file <pathname>

DescriptionOptional global parameters

Stops the utility without asking you if the target
directory is not empty before a get operation, or if it

--stop_on_warnings

finds extra or missing files before an update
operation.

Continues running the utility if the target directory is
not empty before a get operation, or continues if

--ignore_warnings

there are extra or missing files before an update
operation.

Displays the usage parameters for the utility.--help

Displays the version number for the utility.--version

Related Links
About transferring implementations using the emgr_update utility on page 113

Similar to the Endeca tools, the emgr_update utility lets you transfer your Endeca
implementation from a staging environment that uses Endeca Workbench to the production
environment that uses Endeca Workbench.

About transferring implementations using the emgr_update utility
Similar to the Endeca tools, the emgr_update utility lets you transfer your Endeca implementation
from a staging environment that uses Endeca Workbench to the production environment that uses
Endeca Workbench.

The primary benefit of the emgr_update utility is that it allows you to script and automate transfers
between environments.Transferring an implementation from staging to production is a two-step process
where you get the instance configuration from the staging environment and then set (update) the
configuration in the production environment.

This section describes how to transfer instance configuration files from a staging environment that
uses Endeca Workbench to a production environment that also uses Endeca Workbench.Two scenarios
are described:

• Transferring all instance configuration files for an Endeca project.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

113Transferring Endeca Implementations Between Environments | About emgr_update

• Transferring only the instance configuration files that can be modified by Endeca Workbench.

Note: If you have loaded any auto-generated or external dimension values into Developer Studio
using the load function, the ID assignments are not stored in the instance configuration.You
must manually synchronize these files between implementation environments.

Related Links
emgr_update syntax reference on page 111

This section lists all command line parameters that you can use with emgr_update.

Transferring auto-generated and external dimension value ID assignments on page 118
If you have loaded any auto-generated or external dimension values into Developer Studio
using the load function, the ID assignments are not stored in the instance configuration.
Therefore, you should manually synchronize these files between implementation environments.

Transferring all instance configuration files

To transfer all instance configuration files, you move the files from the staging environment to the
Forge input directory in the production environment.

You then use the Endeca Application Controller to run a baseline update.

To transfer all configuration files to the production system:

1. In the staging environment, use Developer Studio and/or Endeca Workbench to make changes to
the project.

2. Run emgr_update with an --action of get_all_settings.

a) For the --host parameter, specify the machine name and port for the staging Endeca
Workbench environment.

b) For the --dir parameter, specify the Forge input directory in the production environment.
c) For the --app_name parameter, specify the application name whose instance configuration

you want to transfer.
d) Use the --filter parameter to remove inactive business rules.

The following is a UNIX example:

emgr_update --host localhost:8006 --app_name My_application --action
get_all_settings --prefix wine --filter --dir /apps/endeca/data/forge_input

3. If the destination directory is not empty, you will be prompted to continue. Answer y.

When the utility finishes, all project configuration files (including the project and pipeline files) are
copied to the production directory specified by the --dir parameter.

4. Use the Endeca Application Controller to run a baseline update on the production system.

The utility uses prefix.esp as the name of the output Developer Studio project file (where prefix
is whatever you specified with the --prefix parameter). If there is an existing project file in the
production directory with another name, it is recommended that you change it to prefix.esp.

Note: If you have loaded any auto-generated or external dimension values into Developer Studio
using the load function, the ID assignments are not stored in the instance configuration.You
must manually synchronize these files between implementation environments.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Transferring Endeca Implementations Between Environments | About emgr_update114

Transferring only instance configuration files modified by Endeca Workbench

You can transfer only those instance configuration files that can be modified in Endeca Workbench
from a staging environment to a production environment.

In this task, you transfer files from the staging environment to the Forge input directory in the production
environment. However, these files are the instance configuration files that can be modified by Endeca
Workbench. They are not the full set of instance configuration files. Endeca Workbench can modify
instance configuration files for any of the following features:

• Dynamic business rules
• Thesaurus entries
• Automatic phrases
• Stop words
• Dimension ordering

A subsequent baseline update uses the updated files for these features.

To transfer instance configuration files modified by Endeca Workbench to a production system:

1. In the staging environment, use Endeca Workbench to make any necessary instance configuration
changes.

2. Run emgr_update with an --action of get_ws_settings.

a) For the --host parameter, specify the machine name and port for the staging Workbench
environment.

b) For the --dir parameter, specify the Forge input directory in the production environment.
c) For the --app_name parameter, specify the application name whose instance configuration

you want to transfer.
d) Use the --filter parameter to remove inactive business rules.

The following is a Windows example:

emgr_update.bat --host localhost:8888 --app_name My_application --action
 get_ws_settings--prefix wine --filter --dir c:\endecaproduction\da¬
ta\forge_input

3. If the destination directory is not empty, you will be prompted to continue. Answer y.
When the utility finishes, the project files that Endeca Workbench modified are copied to the
production directory specified by the --dir parameter.

4. Use the Endeca Application Controller (EAC) to run a baseline update on the production system.

Transferring from one Workbench environment to another

The process for transferring and deploying instance configuration files from one Endeca Workbench
environment to another, using the emgr_update utility is accomplished using one of the emgr_update
utility’s --action operations. The entire process can be scripted.

To transfer and deploy all instance configuration files to the production system:

1. In the staging environment, use Developer Studio, Endeca Workbench, or a combination of both
to make changes to the project.

2. Run emgr_update with an --action of get_all_settings.

a) For the --host parameter, specify the machine name and port for the staging Endeca
Workbench environment.

b) For the --dir parameter, specify the Forge input directory in the production environment.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

115Transferring Endeca Implementations Between Environments | About emgr_update

c) For the --app_name parameter, specify the application name whose instance configuration
you want to transfer.

d) Use the --filter parameter to remove inactive business rules.

The following is a Windows example:

emgr_update.bat --host localhost:8006 --app_name My_app --action
get_all_settings --prefix wine --filter --dir c:\endecaproduction\da¬
ta\forge_input

3. If the destination directory is not empty, you will be prompted to continue. Answer y.

When the utility finishes, all project configuration files are copied to the production directory specified
by the --dir parameter.

4. Run emgr_update with an --action of update_mgr_settings.

a) For the --host parameter, specify the machine name and port for the production environment
in Endeca Workbench.

b) For the --dir parameter, specify the directory that contains the project configuration files that
will be used to update the production environment in Endeca Workbench (typically, this will be
the same directory that was used in step 2).

c) For the --app_name parameter, specify the application name whose instance configuration
you want to transfer.

The following is a Windows example:

emgr_update.bat --host localhost:8006 --app_name My_app --action up¬
date_mgr_settings --prefix wine --dir c:\endecaproduction\data\forge_input

5. Use the Endeca Application Controller (EAC) to run a baseline update on the production system.

Removing instance configuration files from Endeca Workbench
Deleting an application in the EAC Admin Console in Endeca Workbench does not remove its instance
configuration files. If you want to delete the instance configuration files for the application, you can
use emgr_update.

To remove instance configuration files:

• Run emgr_update with an --action of remove_all_settings.

a) For the --host parameter, specify the machine name and port for the staging environment in
Endeca Workbench.

b) For the --app_name parameter, specify the application name whose instance configuration
you want to remove.

The following is a Windows example:

emgr_update.bat --host localhost:8006 --app_name My_app --action re¬
move_all_settings --prefix My_prefix

Sending the dimensions file produced by Forge to Endeca Workbench
If you are using your own scripts for running the baseline update, then after you run Forge, you need
to send the dimensions file produced by Forge to the Endeca Workbench instance configuration for
your application.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Transferring Endeca Implementations Between Environments | About emgr_update116

Note: Read this section only if you are not using a Deployment Template default script for
running the baseline update, and are using your own scripts for this purpose.

To send the dimensions file produced by Forge to the Endeca Workbench, run emgr_update as
follows:

• On the machine that has access to the output files of Forge (this is typically the machine on which
you ran Forge), run emgr_update with an action of set_post_forge_dims:

a) For the --host parameter, specify the machine name and port for the environment in Endeca
Workbench.

b) For the --app_name parameter, specify the application name whose instance configuration
you want to update with this information.

c) For the --post_forge_file parameter, specify the full pathname to the output file where
Forge stores its dimensions.

The following is a Windows example:

emgr_update.bat –-host localhost:8006 --action set_post_forge_dims –-
app_name wine –-post_forge_file C:\sample_wine_data\data\parti¬
tion0\forge_output\wine.dimensions.xml

Removing inactive rules from an instance configuration
You should remove dynamic business rules that have a state of inactive before transferring an Endeca
implementation from staging to production.

Note: The --filter option of emgr_update removes inactive rules. This topic describes
another option for manually removing inactive rules.

The State column in the rule list on the Rule Manager page of Web Studio indicates whether a rule
is active or inactive. Additionally, you can examine the merch_rule_group.xml file for a rule and
check whether a rule has the property endeca.internal.workflow.state set to ACTIVE or IN¬
ACTIVE.

Removing inactive rules is not required but it is recommended. With the default rule filter in place, the
MDEX Engine does not fire any rule whose state is inactive. In other words, you can transfer an
instance configuration, including both active and inactive rules, and the MDEX Engine fires only active
rules in reply to user queries.

To remove inactive dynamic business rules:

1. Create an XSLT file that strips out the inactive rules from each rule group's XML file. Use the
following example by copying the XSLT below and pasting it into a text file:

<?xml version="1.0" encoding="utf-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

 <!-- explicitly output doctype -->
 <xsl:output method="xml" doctype-system="merch_rule_group.dtd" />

 <!-- copy all elements and their attributes -->
 <xsl:template match="* | @*">

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

117Transferring Endeca Implementations Between Environments | Removing inactive rules from an instance
configuration

 <xsl:copy><xsl:copy-of select="@*"/><xsl:apply-templates/></xsl:copy>

 </xsl:template>

 <!-- strip out the MERCH_RULE elements who have a PROP specifying
 the workflow state as INACTIVE -->
 <xsl:template
match="MERCH_RULE[PROP[@NAME='endeca.internal.workflow.state'][PVAL='IN¬
ACTIVE']]"
></xsl:template>

 </xsl:stylesheet>

2. Save the file with an .xslt suffix to a location of your choice.

3. Obtain and install an XSLT processor. Xalan is a popular XSLT processor if you do not have one
already.You can download Xalan from http://xml.apache.org/xalan-j/.

4. Copy the rule group DTD file to the working directory for Xalan. In a default installation, the DTD
is located in C:\Endeca\MDEX\version\conf\dtd\merch_rule_group.dtd.

5. Run the XSLT processor once per rule group passing in the name of the rule group's XML file. For
example, if a project has five rule groups, run Xalan five times.

The processor applies the XSLT instructions to each rule group's XML file and outputs only active
rules. There are several parameters the XSLT processor needs, including:

• The name and path to each rule group XML file. Files are named
merch_rule_group_name.xml where the value of name is the literal rule group name.

• The name and path to the XSLT file you created in step 1.

6. Continue transferring the modified instance configuration according the instructions for your
environment.

Transferring auto-generated and external dimension value
ID assignments

If you have loaded any auto-generated or external dimension values into Developer Studio using the
load function, the ID assignments are not stored in the instance configuration. Therefore, you should
manually synchronize these files between implementation environments.

Otherwise — unless your data is identical in each environment — IDs assigned by Forge may not
match those assigned by Developer Studio. Mismatched ID assignments can affect project settings
that depend on IDs stored in Developer Studio such as dimension value ordering, precedence rules,
and business rules.

To transfer auto-generated and external dimension value ID assignments:

1. Navigate to the Forge state directory of the Endeca application instance that you use to modify
dimension value ordering, precedence rules, and business rules.
For example:

C:\Apps\staging\myapp\data\state

2. Locate and back up the Forge state files containing the auto-generated and external dimension
value ID assignments.

Endeca ConfidentialEndeca® Information Access Platform Administrator's Guide

Transferring Endeca Implementations Between Environments | Transferring auto-generated and external
dimension value ID assignments

118

http://xml.apache.org/xalan-j/

For example:

C:\Apps\staging\myapp\data\state\autogen_dimensions.xml.external.gz
C:\Apps\staging\myapp\data\state\autogen_dimensions.xml.gz

3. Copy the Forge state files.

4. Paste these files into the Forge state directory of the application instance to which you are
transferring your implementation.
For example:

C:\Apps\production\myapp\data\state

5. Repeat this process for any additional implementation environments.

Your auto-generated and external dimension value IDs are now identical in both environments.You
should repeat this process whenever you modify dimension value ordering, precedence rules, or
business rules.

Removing an application from Endeca IAP
To completely remove an application from Endeca IAP, you must remove the provisioning information
with the EAC Admin Console and the instance configuration files with emgr_update.

Removing an application in the EAC Admin Console removes provisioning information for an application
but does not remove instance configuration files. Running remove_all_settings in emgr_update
removes instance configuration files but not provisioning information. To completely remove all
information about an application, you remove the provisioning information with the EAC Admin Console
and then remove the instance configuration files with emgr_update. If you do not perform both steps,
you may store unnecessary or duplicate sets of files for an application.

To completely remove an application from the Endeca IAP:

1. In Endeca Workbench, log in to the application you want to remove.

2. On the EAC Admin Console page, click Delete. Alternatively, you can also perform steps 1 and 2
using an EAC Web services client. This removes the provisioning information.

3. Run emgr_update with an --action of remove_all_settings to delete the instance
configuration files.

Related Links
Removing instance configuration files from Endeca Workbench on page 116

Deleting an application in the EAC Admin Console in Endeca Workbench does not remove
its instance configuration files. If you want to delete the instance configuration files for the
application, you can use emgr_update.

Endeca® Information Access Platform Administrator's GuideEndeca Confidential

119Transferring Endeca Implementations Between Environments | Removing an application from Endeca
IAP

Index

A

adding
Dgraphs 33
MDEX Engine servers 31

admin operations
about 79
audit 82
auditreset 83
exit 82
flush 81
help 81
list of 79
logroll 84
ping 81
reload-services 86
restart 82
stats 83
statsreset 84
update 84
updateaspell 85
updatehistory 86
back up

Agidx flags 91
Agraph

checking aliveness of 67
flags 92
logs 70

AppConfig.xml
about 16
schema for 16

AppConfig.xml file
adding Dgraphs 33
adding MDEX Engine servers 31
multiple servers 29

application
provisioning on multiple development servers 27

application removal in the Endeca IAP 119
Application server, defined 23
applications

provisioning 47
architecture of the EAC 12
archiving Dgraph logs 53
audit admin operation 82
auditreset admin operation 83
auto-generated dimension value ID assignments 118
automating file collection 44

B

backing up
CAS 76
different environments 78

backing up (continued)
Discovery Framework 77
provisioning 48
required files 75
what not to back up 78

C

Catalina
logs from EAC 56

collect-app.bat 44, 78
command-line scripts 40
config operations

about 86
for logging verbosity 88
help 87
log-disable 89
log-enable 89
log-status 90
logging variables 88
update 87

configuration operations
about 79

configuring
additional servers and components 26

connection errors
Dgraph and client 71

control framework
choosing 17

core dump files
in the Dgraph 73
managing 73

custom.xml 41

D

Data Processing (ITL) server, defined 23
Deployment Template

AppConfig.xml 16
archiving Dgraph logs 53
changing the output prefix 108
directories 15
removing components 54
running 27
running Dgidx 60
specifying Dgraph arguments 67

development server
multiple 23

Dgidx
log details for text search indexing 64
log examples 63
memory usage 59
processing 59

Dgidx (continued)
records with missing or duplicate record spec values
65
running at the command prompt 60
running with Deployment Template runcommand 60
setting number of threads 96
speeding up indexing 61
troubleshooting 61
variations in indexing time 66

Dgraph
archiving logs 53
checking aliveness of 67
crash dump files on Windows 73
identifying connection errors 71
logs 68
managing core dump files on LInux and Solaris 73
specifying arguments in the Deployment Template
67
what to collect for debugging 68

dimension value IDs
transferring 118

E

EAC
changing the IP address for the Central Server 57
checking the status of its components 49
determining state, with service URLs 56
logs for Central Server 56
removing defunct processes in 50

EAC memory 51
EAC process logs

increasing verbosity 70
emgr_update

about 110
syntax reference table 111

Endeca Application Controller
about 12
architecture 12
architecture example 14

Endeca implementation
administering 11

exit admin operation 82
external dimension value ID assignments 118

F

flush admin operation 81
Forge state files 40
forward slashes 43

H

help admin operation 81
help config operation 87

I

implementation
transferring 109

installation packages
where to install each package on multiple servers
23

instance configuration 40
removing from Workbench 116
retrieving for Workbench 110
transferring files 114

instance configuration files
transferring for an Endeca project 113

introduction 11

L

library files 40
locks in EAC

releasing manually 53
log-disable config operation 89
log-enable config operation 89
log-status config operation 90
logging and reporting

diagram of workflow 21
logging variables

MDEX Engine 88
operation syntax 88, 89
supported variables for 88

logroll admin operation 84

M

manual resolution 45
MDEX Engine

logging variables for 88
ways to control 48

MDEX Engine server, defined 23
multiple development servers, about 23

O

operation syntax
for MDEX Engine logging variables 88, 89

overview
Deployment Template 14

P

Page Builder templates 40
partial updates

troubleshooting 71
ping admin operation 81
pinging components 67
provisioning

application, on multiple servers 27
provisioning an application 47

Endeca® Information Access Platform122

Index

R

records
with missing or duplicate record spec values 65

relatives paths 43
releasing

EAC locks 53
reload-services admin operation 86
removing

an application 119
removing components 54

and the Deployment Template 56
replicating application definitions 45
replicating_application_definitions 37
restart admin operation 82
running system operations 48

S

separation of concerns 45
staging vs. production environment

adding servers 26
staging vs. production environment, defined 24
stats admin operation 83
statsreset admin operation 84

T

this guide
about 9

threads in Dgidx, setting 96
token system 45
Tomcat

logs from EAC 56
Tools server, defined 23
transferring

files between Workbench environments 115
transferring implementations between environments 109
transferring instance configuration files 114
transferring Workbench instance configuration files 115

troubleshooting
baseline updates 70

troubleshooting:
Dgraph port and socket errors 72

U

update admin operation 84
update config operation 87
updateaspell admin operation 85
updatehistory admin operation 86
upload.bat 44, 45
URL operations

about 79

V

variables
supported in MDEX Engine logging 88

variables in scripts 43

W

ways to control the MDEX Engine 48
Who should use this guide 10
Windows

Dgraph crash dump files 73
Workbench

removing instance configuration from 116
retrieving instance configuration 110
transferring files between environments 115

workflow diagram
for data and configuration 18
for logging and reporting 19

X

XML configuration files
about 107
creating 108

123

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	Taking ownership of your Endeca implementation
	About the Endeca Application Controller
	EAC architecture
	EAC architecture example

	About the Deployment Template
	Directories created by the Deployment Template
	About the AppConfig.xml file
	About the schema for AppConfig.xml

	Typical workflows
	The control framework
	Data and configuration workflow
	Logging and reporting workflow
	Refining the application based on production reports

	Creating Multiple Server Environments with the Deployment Template
	About a multiple server environment
	Overview of staging and production environments
	Planning your server topology
	Configuring the application on multiple servers
	Changing server settings in AppConfig.xml
	Adding MDEX Engine servers
	Adding Dgraphs
	Additional customization tasks

	Replicating application definitions across environments
	About replicating application definitions using the Deployment Template
	Identifying the artifacts that make up an application
	Creating a custom file for environment-specific settings
	Controlling paths to ensure interoperability across environments
	Automating the collection of files
	Distributing application definitions between environments for the first time
	Distributing an updated application definition with another environment

	Approaches to avoiding synchronization conflicts

	Performing System Operations with the EAC
	Options for provisioning the application
	Updating the application provisioning
	Backing up the EAC application provisioning with eaccmd

	Options for running system operations
	Checking the status of EAC components
	Avoiding defunct EAC processes
	EAC memory usage
	Deployment Template and Endeca Workbench interaction
	Archiving the Dgraph log files
	Releasing locks set by the Deployment Template in the EAC
	Removing components from your configuration
	Removing components in a Deployment Template environment

	Determining the state of the EAC with service URLs
	Logs for the EAC Central Server
	Changing the IP address for the EAC Central Server machine

	Administering Dgidx
	Dgidx processing and memory usage
	Running the Dgidx process with the Deployment Template
	Running the Dgidx binary at the command prompt
	Tips for speeding up indexing time
	Troubleshooting Dgidx failures
	Dgidx logs
	Dgidx log details for text search indexing
	Dgidx handling of records with missing or duplicate record spec values
	Variations in Dgidx indexing time

	Administering the Dgraph
	Checking Dgraph and Agraph with the ping command
	Specifying arguments to the Dgraph in the Deployment Template
	Collecting debugging information
	The logs created by the Dgraph
	The Agraph request log

	Troubleshooting baseline update failures
	Troubleshooting partial updates
	Identifying connection errors
	Troubleshooting socket and port errors with Dgraph
	Managing the Dgraph core dump files
	Managing Dgraph crash dump files on Windows
	Managing Dgraph core dump files on Linux and Solaris

	Backing up Endeca applications
	Required files for backup
	Backing up CAS configurations
	Backing up the Discovery Framework
	What not to backup
	When primary and recovery environments are different

	Administrative and configuration operations and logging variables
	About administrative and configuration operations
	List of administrative operations
	help
	ping
	flush
	exit
	restart
	audit
	auditreset
	stats
	statsreset
	logroll
	update
	updateaspell
	updatehistory
	reload-services

	List of configuration operations
	help
	update

	About MDEX Engine logging variables
	Logging variable operation syntax
	List of supported logging variables
	log-enable
	log-disable
	log-status

	Endeca Flag Reference
	Agidx flags
	Agraph flags
	Dgidx flags
	Dgraph flags

	XML Configuration Files
	About the XML configuration files
	Creating the XML configuration files
	Changing the Deployment Template output prefix
	Creating and modifying the XML configuration files

	Transferring Endeca Implementations Between Environments
	For implementations using the Deployment Template
	About transferring your implementation
	Retrieving the Endeca Workbench instance configuration with Developer Studio
	About emgr_update
	emgr_update syntax reference
	About transferring implementations using the emgr_update utility
	Transferring all instance configuration files
	Transferring only instance configuration files modified by Endeca Workbench
	Transferring from one Workbench environment to another

	Removing instance configuration files from Endeca Workbench
	Sending the dimensions file produced by Forge to Endeca Workbench

	Removing inactive rules from an instance configuration
	Transferring auto-generated and external dimension value ID assignments
	Removing an application from Endeca IAP

	Index

