
Endeca® MDEX Engine
Partial Updates Guide

Contents

Preface...7
About this guide..7
Who should use this guide..8
Conventions used in this guide...8
Contacting Oracle Support...8

Chapter 1: Types of Updates...9
Updates processed by the MDEX Engine...9
About baseline updates..10

Baseline update processing..10
Speeding up baseline updates..10

About partial updates..11
About delta updates..11
Which update to run..11

Chapter 2: Partial Updates Processing and Requirements..................13
Introduction to partial updates..13
How partial updates work...13
Partial updates and the Deployment Template...13
Introduction to partial updates processing..14
MDEX Engine processing for partial updates...14

Continuous query..15
Continuous query processing and administrative queries...15
The dgraph_input directory..16
The dgraph_input/updates directory..16

Partial update capabilities...17
Requirements for baseline and partial updates..18

General requirements for partial and baseline updates...19
Adding new leaf dimension values in partial updates..19
Record specifier attribute required for partial updates...20

Chapter 3: MDEX Engine Configuration and Processing.....................21
Enabling the MDEX Engine for partial updates...21
Using the URL update command..21
Running updates on a single file...22
Setting the merge policy...23

Dgraph mergepolicy flag..23
URL mergepolicy command..24

Using the URL updatehistory command...25

Chapter 4: Partial Updates Pipeline..27
About the partial update pipeline..27
Configuring a partial update pipeline..28
Creating the record adapter..29
Creating the record manipulator...29
About the IF expression for the record manipulator..30
About the UPDATE_RECORD expression..31

Expression nodes supported by the UPDATE_RECORD expression...32
Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes.......................................33
UPDATE_RECORD expression reference examples..34

Format of update records...35
Dimension components..36
Naming format of update source data files...37
Naming format of partial update files..37

Examples of numeric-lexicographic and simple lexicographic order...38
Index configuration in the partial update pipeline...38

iii

Chapter 5: Partial Updates in Agraph Implementations........................39
About Agraph implementations with partial updates...39
The Agraph and continuous query support...39
Choosing a distribution strategy..40
How the Agraph partitions handle updates...41
About distributing the Forge output to the Dgraphs..41
Use of the record specifier attribute..41
Naming convention for source data files...42
Configuring the partial update pipeline...42
Configuring the record adapter...43
About configuring the record manipulator...43
Perl expression for random distribution...44
Perl expression for deterministic distribution...44
Configuring the update adapter..45
ROLLOVER element for random distribution..46
ROLLOVER element for deterministic distribution..47

Chapter 6: Backing Up Baseline and Partial Updates...........................49
Types of backups..49

About baseline backups...49
About snapshot backups...49
About incremental backups...50

Backup recommendations..50
Recovering the Endeca index...50

Chapter 7: Troubleshooting Partial Updates..53
Pipeline troubleshooting recommendations..53
Troubleshooting update operations that fail..54
UPDATE_RECORD errors..55
The Dgraph checks permissions on the index directories..55
Performance impact of partial updates...55

Endeca® MDEX Engineiv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, European Patent EP1459206B1, and other patents pending.

Endeca Partial Updates Guide • December 2010

Version 6.1.4

v

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes different types of updates. It concentrates on the basic tasks involved in configuring
partial updates and understanding when to use them.

It assumes that you have read the Endeca Concepts Guide and the Endeca Getting Started Guide
and are familiar with the Endeca terminology and basic concepts.

Use the Partial Updates Guide to learn how to run record updates in the MDEX Engine:

1. Learn about baseline, partial and delta updates, what changes you can make within each type of
update, and when to use each type of update.

2. Learn about update requirements and the MDEX Engine processing of updates.
3. Create your partial updates pipeline in Developer Studio.
4. Back up your update files.
5. Troubleshoot the updates process.

Who should use this guide
This guide is intended for developers who are creating pipelines for running partial updates.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

| Preface8

https://support.oracle.com

Chapter 1

Types of Updates

This section gives an overview of the types of Endeca updates.

Updates processed by the MDEX Engine
The MDEX Engine processes three types of updates. While this topic introduces all three types of
updates, this guide focuses on partial updates.

• Baseline updates. Baseline updates (also called full updates) include reindexing of the data and
require stopping and restarting the MDEX Engine.

• Delta updates. Delta updates are a variation of baseline updates. In delta updates, only added,
updated, or removed source records (and not all source records) are joined in the Forge pipeline
with the output of the previous baseline update. Delta updates require stopping and restarting the
MDEX Engine.

• Partial updates. Partial updates are incremental changes to the data set in the MDEX Engine.
Partial updates run in a perpetual mode (that is, they do not require the MDEX Engine to be
restarted) and therefor are referred to as perpetual partial updates.

Related Links
MDEX Engine processing for partial updates on page 14

At a high level, the MDEX Engine performs the following operations.

About baseline updates on page 10
A baseline update produces a complete re-indexing of the entire data set. It runs the update
process for the whole data set.

About partial updates on page 11
A partial update is a change in the overall data set that does not require restarting the MDEX
Engine. Partial updates allow you to update only those portions of the MDEX Engine index
that have changed since the last baseline update.

About delta updates on page 11
A delta update produces a full baseline index, similar to the baseline update, but does so by
joining a smaller extraction of source data (only the added, updated, or removed source
records) with the output from the previous baseline update.

About baseline updates
A baseline update produces a complete re-indexing of the entire data set. It runs the update process
for the whole data set.

In your baseline update pipeline, you can add, change, or remove records, dimensions, dimension
values, and properties. In addition, configuration changes, such as dimension reordering or stop word
changes require a baseline update.

In many Endeca implementations, you can run baseline updates nightly and use this method as your
update strategy, skipping other types of updates. For small to medium-sized data sets, baselines can
be run frequently, as often as every few minutes.

Alternatively, you can run as many partial updates as needed for those changes that can be done
through partial updates, and periodically run baseline updates for those changes that require a baseline
update.

Baseline update processing
In the baseline update process, Forge takes as its input the data from the pipeline configuration files
and all the source data.

As a result of ITL processing, the Endeca index is created. A copy of the index is added to the
dgraph_input directory. (The directory name used here is arbitrary and is provided as an example
only.You can specify your own name for this directory.) This is the index that the Dgraph takes as its
input to start processing queries.

Note: The MDEX Engine modifies the dgraph_input directory with the information received
from each successfully applied partial update.That is, this directory is not only read by the MDEX
Engine upon a restart (after a baseline update), but is also modified by the MDEX Engine at run
time.

Speeding up baseline updates
There are several techniques for speeding up the baseline update process.

• Speeding up the extraction process by using the Endeca Content Acquisition System (CAS) module
to enable multithreaded document conversion, for example, from PDF or Word.

• Speeding up the indexing time during a baseline update by:

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Types of Updates | About baseline updates10

Analyzing your pipeline for any preprocessing steps that can be reused, such as Perl scripts
or large joins.

•

• Analyzing the incoming data for the presence of any unnecessary wildcarding.

About partial updates
A partial update is a change in the overall data set that does not require restarting the MDEX Engine.
Partial updates allow you to update only those portions of the MDEX Engine index that have changed
since the last baseline update.

Related Links
Partial Updates Processing and Requirements on page 13

This section describes how partial updates work and the requirements for source data and
the pipeline.

About delta updates
A delta update produces a full baseline index, similar to the baseline update, but does so by joining a
smaller extraction of source data (only the added, updated, or removed source records) with the output
from the previous baseline update.

A delta update could be an option for you when you need to reduce the time required for loading the
source data repository and for extracting the data.

For more information on delta updates and when to use them, see the solution article “Implementing
Delta Updates” available online from the Endeca Developer Network (EDeN) at http://eden.endeca.com.

Note: Starting with version 6.0, the MDEX Engine can accommodate high volumes of changed
data during partial updates without significant performance degradation.Therefore, implementing
a delta updates pipeline may no longer be worthwhile. Instead, you can run as many partial
updates as needed for those changes that can be done through partial updates, and periodically
run baseline updates for those changes that require a baseline update.

Which update to run
In your project, you can have changes to the source data, or changes to the project configuration,
such as changes to the way you order or organize dimensions. Depending on the type of changes
you make to the source data and to the Endeca project configuration, your implementation may require
a different type of update.

Baseline and delta updates let you implement all types of changes, both to the source data and to the
project configuration, but can be time consuming. A partial update is faster and lets you implement a
number of the source data changes but not project configuration changes, such as dimension reordering.
For these types of changes, periodically run baseline updates.

Partial updates with high turnover and high frequency perform fast. High turnover means that a large
portion of data can be updated or deleted. Any mix of add, delete, and update operations on a large
number of records is handled gracefully during partial updates.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

11Types of Updates | About partial updates

http://eden.endeca.com

In addition, you can combine record updates into larger batches. Running such large-batch partial
updates results in better overall throughput for the MDEX Engine.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Types of Updates | Which update to run12

Chapter 2

Partial Updates Processing and
Requirements

This section describes how partial updates work and the requirements for source data and the pipeline.

Introduction to partial updates
A partial update is a change in the overall data set that does not require restarting the MDEX Engine.

Partial updates are run concurrently with processing incoming queries. They allow you to update only
those portions of the MDEX Engine index that have changed since the last baseline update.

A partial update lets you implement a number of the source data changes, but does not affect project
configuration. For project configuration changes, run a baseline update.

Even if you are only making source data changes, keep in mind that some configuration information
that is derived from the data, such as dictionary or wildcarding information, can become outdated.
Therefore, to keep dictionaries up-to-date, periodically run baseline updates.

How partial updates work
This topic enumerates how the MDEX Engine version 6.x treats partial updates.

• The MDEX Engine processes partial updates concurrently with processing queries. This function
is also known as continuous query.

• You can use partial updates to perform a large number of changes to a considerable portion of
records.

• You can run partial updates frequently.
• Partial updates can affect any number of records in the system.

Partial updates and the Deployment Template
An EAC partial update script is created and managed for you when you use the Endeca Deployment
Template; you can change this script to suit your needs.You can also create your own partial update

script in the Endeca Application Controller (EAC) environment and provision it to the EAC using Endeca
Workbench.

Endeca recommends using the Deployment Template, which is available as a free download from the
Endeca Developer Network (EDeN) at http://eden.endeca.com.

Introduction to partial updates processing
In the partial update process, Forge takes as its input the data from the partial pipeline configuration
files and the updates data.

As a result of ITL processing, the update files are created.These update files are applied to the MDEX
Engine index.

The MDEX Engine does not close its port to incoming queries while processing partial updates.

When applying a partial update, the MDEX Engine modifies the dgraph_input directory and updates
it with the new data received from a partial update. After a partial update completes successfully, the
MDEX Engine automatically deletes the contents of this update from the dgraph_input/updates
directory.

Although the MDEX Engine deletes the update files after it applies updates to the index, it continues
to check the dgraph_input/updates directory each time it restarts. If you start up the MDEX Engine
with update files in the updates directory (that have not been applied yet), the MDEX Engine applies
these initial updates first, before starting to answer queries.

Partial updates are continuously applied to the in-memory representation of the data structures in the
MDEX Engine, and to the index structures on disk that the MDEX Engine uses for processing queries.

This diagram describes partial updates processing:

MDEX Engine processing for partial updates
At a high level, the MDEX Engine performs the following operations.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | Introduction to partial updates processing14

http://eden.endeca.com

1. Once it receives the update files, the MDEX Engine modifies the on-disk representation of the
Endeca index to reflect the updates.

2. After the update files are applied to the Endeca index, the MDEX Engine deletes the contents of
the partial update from the dgraph_input/updates directory.

Integrity of generation files upon recovery

If the server crashes while a partial update is being applied, when the MDEX Engine starts up again,
it will go through its list of generation files to determine if any generation file is in a bad state. If any
are bad, the MDEX Engine will automatically delete them before applying the next partial update. In
other words, no manual intervention is required in the MDEX Engine's generations directory (and any
user modification to the generation files in an attempt to rollback the generations is not supported).

Continuous query
The MDEX Engine processes partial updates concurrently with processing query requests.This function
is also known as continuous query.

During continuous query processing, the MDEX Engine Dgraph port remains open for both query
processing and partial updates processing.

Continuous query is enabled for all types of queries to the MDEX Engine, including navigation,
aggregated records and record queries, queries with text search, queries that contain filters (EQL,
range and record filters), queries containing Web services and XQuery, and all other types of queries.

A few administrative queries are processed differently during continuous query processing. For details,
see the topics in this section.

Since the MDEX Engine continues to process all incoming queries while partial updates are running,
queries are processed against either the pre-update or post-update state of the index data, depending
on when they arrive. The MDEX Engine never processes queries against the data that is in the state
of being updated through a partial update.

With continuous query, the MDEX Engine maintains its query processing performance levels, including
low query latency and partial updates latency.

MDEX Engine startup behavior

Continuous query begins at startup time for the MDEX Engine. For example, assume a scenario where
a server outage occurred during the application of a partial update. As a result, several large partial
files remained in the updates directory. When the MDEX Engine is restarted, it opens its port for both
query processing and partial updates processing.This means that the MDEX Engine's startup behavior
is to process updates in parallel with queries, that is, the MDEX Engine starts processing queries
immediately even when updates are found in the updates directory at startup time.

Continuous query processing and administrative queries
You can issue administrative queries to the MDEX Engine concurrently with running updates, without
any interruptions caused by partial updates processing, except for the following administrative and
configuration queries that are processed differently.

• admin?op=exit

• admin?op=restart

• admin?op=updateaspell

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

15Partial Updates Processing and Requirements | MDEX Engine processing for partial updates

• admin?op=reload-services

• config?op=update

admin?op=exit and admin?op=restart queries cause the MDEX Engine to close its Dgraph port
for accepting future queries. Next, the MDEX Engine processes all previously received queries and
shuts down (or restarts, depending on which of these two commands is issued).

The admin?op=updateaspell operation causes the MDEX Engine to finish processing all existing
preceding queries, temporarily stop processing other queries and begin to process admin?op=up¬
dateaspell. After it finishes processing this operation, the MDEX Engine resumes processing queries
that queued up temporarily behind this request. Only one admin?op=updateaspell operation can
be processed at a time.

config?op=update and admin?op=reload-services operations cause the MDEX Engine to
drain all existing preceding queries, temporarily stop processing other queries and begin to process
config?op=update and admin?op=reload-services. After it finishes processing these operations,
the MDEX Engine resumes processing queries that queued up temporarily behind these requests.

Only one config?op=update operation can be processed at a time.

Note: config?op=update and admin?op=reload-services can be time-consuming
operations. This depends on the number of configuration files the MDEX Engine has to process
for an update (during config?op=update), or the number of XQuery modules that you have
created and that have to be compiled (during admin?op=reload-services).

Processing time for the admin?op=updateaspell administrative query can be higher compared
with the time it takes the MDEX Engine to process partial updates. Processing time depends on
the scope of updates to the spelling dictionary sent to the MDEX Engine with this operation.

You can issue all other administrative queries to the MDEX Engine concurrently with updates, without
any interruptions caused by partial updates processing.

The dgraph_input directory
The Dgraph writes to the dgraph_input directory during normal MDEX Engine operation.

The dgraph_input directory contains regular data that is read by the MDEX Engine on startup. The
data includes the Dgidx output indices, spelling correction dictionaries, thesaurus files and
language-encoding files. In previous releases, this directory was read-only.

The data in dgraph_input is modified using the data from the dgraph_input/updates directory
each time a partial update completes successfully.

Related Links
The dgraph_input/updates directory on page 16

The dgraph_input/updates directory contains partial updates data that have yet to be
processed by the MDEX Engine. The MDEX Engine checks this directory for update files,
when the --updatedir flag is specified for the Dgraph.

The dgraph_input/updates directory
The dgraph_input/updates directory contains partial updates data that have yet to be processed
by the MDEX Engine.The MDEX Engine checks this directory for update files, when the --updatedir
flag is specified for the Dgraph.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | MDEX Engine processing for partial updates16

After a partial update completes successfully, the Endeca index is updated with the changes from that
update. The update files are no longer needed by the MDEX Engine and are automatically removed
from the dgraph_input/updates directory.

The default MDEX Engine behavior includes checking the dgraph_input/updates on restart.When
the Dgraph starts, it checks for the update files in the dgraph_input/updates directory, in case
this directory contains any of them. Under normal conditions, this directory should be empty since the
MDEX Engine deletes update files after applying them.

Checking the dgraph_input/updates directory is also useful if partial updates become available
immediately after a baseline update. For example, consider a case when a baseline update runs,
followed by a partial update that captures data that became available while the baseline was running.
If you restart the Dgraph immediately after this partial update, the MDEX Engine reads these most
recent updates after it restarts and then proceeds to answer queries.

If the Dgraph server crashes in the middle of a partial update, the files from that update are not deleted
from dgraph_input/updates. When the MDEX Engine is restarted, it retains the index state it had
before this partial update was attempted. After a restart, the MDEX Engine checks the contents of
dgraph_input/updates for the presence of last partial update files that were not applied and applies
them.

Endeca recommends that you back up this directory to ensure that you can recover after a disk failure.

Related Links
Backing Up Baseline and Partial Updates on page 49

Endeca recommends that you back up your MDEX Engine index files periodically. This lets
you revert to a specific partial or baseline update. This section describes types of backups
that you can perform for the MDEX Engine index files, lists backup recommendations, and
describes how to recover the index by reverting to a previous state of the MDEX Engine
index.

The dgraph_input directory on page 16
The Dgraph writes to the dgraph_input directory during normal MDEX Engine operation.

Partial update capabilities
You can perform a limited number of actions within partial updates. This topic lists these actions and
also lists those changes that you cannot perform with partial updates.

You can perform the following actions with partial updates or while running partial updates:

• Add an entirely new record with a new set of property values and dimension values to an existing
index.

• Remove a specific record from an existing index.
• Modify selected property and dimension values in an existing record.

Note: When you remove a record or modify property and dimension values for the record,
the dimension values that are no longer associated with any records remain in the system.

• Update an existing record, selectively adding and removing dimension and property values.
Specifically, you can:

• Add property values to a record.
• Remove all property values of a property from a record.
• Add leaf dimension values (but not mid-hierarchy values) to a record.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

17Partial Updates Processing and Requirements | Partial update capabilities

• Remove specific dimension values from a record.
• Remove all dimension values of a dimension from a record.
• Add new auto-generated dimension values to an existing dimension.
• Add new leaf dimension values that have been created as a result of Term Discovery extraction.
• Add synonyms to a new leaf dimension value, when you are adding this dimension value. The

first synonym becomes a dimension value’s name. (Also, the same string can be used as a
synonym for multiple dimension values.)

• Update spelling dictionaries. Use the admin?op=updateaspell operation to update the
spelling dictionary while running partial updates.

Note: Use the baseline update for these operations.

You cannot do the following actions with partial updates or while running partial updates:

• Add new dimensions.
• Add new mid-hierarchy dimension values.
• Add, delete, or change any aspect of an existing dimension value. For example, you cannot add,

change, or remove dimension value properties.You also cannot add or change bounds for range
or sift dimension values, change whether a dimension value is inert (non-navigable), or whether
it is collapsible.

• Add dimension properties to any dimension values.
• Add new properties.
• Update the index configuration files (such as the thesaurus and stop words files).
• Update dynamic word forms. Dynamic word forms are calculated at index time and are not updated

with partial updates.

Requirements for baseline and partial updates
Forge processing for baseline updates and partial updates is done in separate pipelines, but is
coordinated and synchronized. The processing of partial updates affects a running MDEX Engine.

The required coordination between the baseline and partial update pipelines, coupled with the resource
restrictions on the partial update pipeline, impose constraints on the baseline update pipeline. This
section lists the requirements for running partial and baseline updates.

Related Links
General requirements for partial and baseline updates on page 19

This section lists the general requirements for baseline and partial updates.

Adding new leaf dimension values in partial updates on page 19
This section describes one method of adding new leaf dimension values for existing dimensions
in partial updates. In partial updates, you can create new leaf dimension values. (You cannot
add new dimensions or new mid-hierarchy dimension values.)

Record specifier attribute required for partial updates on page 20
A partial updates deployment must have the RECORD_SPEC attribute of one property set to
TRUE. If no property is marked as the RECORD_SPEC property, the MDEX Engine will not
process partial updates.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | Requirements for baseline and partial updates18

General requirements for partial and baseline updates
This section lists the general requirements for baseline and partial updates.

• Baseline updates are needed for configuration changes.

Periodically run baseline updates to ensure that the index representation in the MDEX Engine is
in sync with those configuration changes that can be applied only with a baseline update, such as
dictionary changes or wildcarding.

• Partial updates require a separate partial update pipeline to process the update files.You also
start the MDEX Engine with an additional command-line flag.

• All records in the partial update pipeline must be identified by a single record specifier property
that is unique for each record.

• Baseline updates must not overlap. A new baseline cannot be started until processing of the prior
baseline has been completed (completed means that the baseline update has been loaded into
the MDEX Engine).

• Baseline and partial updates must not overlap. Do not run a baseline update at the same time as
a partial update, since both processes use the autogen_dimensions.xml file that can be
accessed by only one process at a time.

Related Links
Record specifier attribute required for partial updates on page 20

A partial updates deployment must have the RECORD_SPEC attribute of one property set to
TRUE. If no property is marked as the RECORD_SPEC property, the MDEX Engine will not
process partial updates.

Adding new leaf dimension values in partial updates
This section describes one method of adding new leaf dimension values for existing dimensions in
partial updates. In partial updates, you can create new leaf dimension values. (You cannot add new
dimensions or new mid-hierarchy dimension values.)

Before adding a new leaf dimension value, ensure that a dimension already exists in your record set
for the leaf dimension value. For example, if you are planning to add a record with a new leaf dimension
value of “Australia”, ensure that a dimension “region” is already specified for your records.

To do this, in your baseline update pipeline, add a new dimension in the Dimension editor in Developer
Studio, and select the Auto Generate mode in the Property Mapper editor.This generates dimension
values for the dimension. Run a baseline update.

In order to add leaf dimension values, you can use the Property Mapper editor option to automatically
generate new values for existing dimensions.

To add a new leaf dimension value in a partial update:

1. Add a new record to your record set that includes a leaf dimension value for the dimension that
already exists in your project (and that was added before).

2. Modify the record manipulator to indicate that you are updating dimension values. Use the UP¬
DATE_RECORD expression with <EXPRNODE NAME="DIM_ACTION" VALUE="ADD"/>.

3. Run a partial update.The newly added leaf dimension value is added to the project during a partial
update.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

19Partial Updates Processing and Requirements | Requirements for baseline and partial updates

For example, when you add a new record that has a value “Australia”, the partial update generates
a new value for region=”Australia” when the new record goes through the property mapper in
the partial update pipeline.

The output XML files in Forge that result from the partial update include the new record, as well as
the new dimension value for it. When the Dgraph is updated with that file, it includes the new record,
as well as the new dimension value of “Australia”.

Record specifier attribute required for partial updates
A partial updates deployment must have the RECORD_SPEC attribute of one property set to TRUE. If
no property is marked as the RECORD_SPEC property, the MDEX Engine will not process partial
updates.

The RECORD_SPEC attribute specifies the property that is used to identify specific records in partial
updates. For example, you may wish to use a field such as UPC, SKU, or part number to identify a
record.You may set the RECORD_SPEC attribute’s value to TRUE in any property where the values for
the property meet the following requirements:

• The value for this property on each record must be unique.
• Each record should be assigned exactly one value for this property.

Only one property in the project may have the RECORD_SPEC attribute set to TRUE. All updates that
add new records must include a valid value (that is, a value that fulfills the above criteria) for the
RECORD_SPEC property.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | Requirements for baseline and partial updates20

Chapter 3

MDEX Engine Configuration and Processing

This section describes how the Endeca MDEX Engine handles partial updates.

Enabling the MDEX Engine for partial updates
You must start the MDEX Engine with the Dgraph --updatedir flag to enable it to process partial
updates.

The flag takes as an argument the path of the directory into which completed partial update files (from
Forge) are placed. During normal operation, the MDEX Engine does not automatically load update
files placed into this directory. The MDEX Engine checks this directory by default upon restart, after
a baseline update.The scripts that you use for partial updates must be configured to notify the running
MDEX Engine to check for new updates. After the MDEX Engine reads these files, they are deleted
from this directory.

Update files are read at startup (after a baseline) as well as when the MDEX Engine receives the
update signal. Because the MDEX Engine looks for update files automatically at startup, recovery from
server failure can be achieved easily by ensuring that the MDEX Engine is provided the same --up¬
datedir directory on recovery as it had prior to failure. (This is true only if you restore partial updates
first.) The MDEX Engine then reads the existing files in the directory, restoring the MDEX Engine to
its pre-failure state.

Related Links
Backing Up Baseline and Partial Updates on page 49

Endeca recommends that you back up your MDEX Engine index files periodically. This lets
you revert to a specific partial or baseline update. This section describes types of backups
that you can perform for the MDEX Engine index files, lists backup recommendations, and
describes how to recover the index by reverting to a previous state of the MDEX Engine
index.

Using the URL update command
To instruct the MDEX Engine to begin processing the partial update files, use the URL update
command.

• In your Web browser, issue the update command with this URL syntax:

http://hostname:dgraphport/admin?op=update

For example:

http://localhost:8000/admin?op=update

Note: If you are using HTTPS mode, use https in the URL.

On receiving the URL update command, the MDEX Engine by default performs the following sequence
of operations:

1. Continues processing queries concurrently with processing the update.
2. Checks the updates directory and uploads all partial updates that have not yet been uploaded.
3. Processes the update files and deletes them.

Note: The MDEX Engine also deletes any update files that are empty. This includes files that
have opening and closing XML tags but no actual update content.

When you issue the URL update command, wait until it finishes before you issue another admin or
config URL command (such as an config?op=update command).

Running updates on a single file
In some cases, you may need to run a partial update by pointing the Dgraph to a single file by using
the admin?op=update&updatefile=filename option.

The recommended way of running partial updates is by using the admin?op=update URL command
that applies all files residing in the dgraph_input/updates directory (or the directory that you specify
for updates with the --updatedir flag). However, pointing the Dgraph to a single updates file may
be useful for performance testing purposes, such as when you plan to run Eneperf in the two-stream
mode to test MDEX Engine performance with partial updates.

Note: For running Eneperf in the two-stream mode, you first need to obtain a separate request
log that contains only partial update requests issued to the MDEX Engine.You can obtain such
a log when you run several partial updates on single update files. For more information on running
Eneperf for testing updates performance, see the Performance Tuning Guide.

To run a partial update on a single file:

1. Add the update file to the dgraph_input/updates directory or the directory specified using the
--updatedir flag.

2. In your Web browser, issue the update command with this URL syntax:

http://hostname:dgraphport/admin?op=update&updatefile=filename

where filename is the name of an update file residing in the updates directory.

You can run this command on a single file only. If you have more than one file, rerun this command
once for each file.

The MDEX Engine deletes the update file after successfully applying the results of the partial
update.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

MDEX Engine Configuration and Processing | Running updates on a single file22

Note: For performance reasons, Endeca recommends running partial updates in batch mode,
by only using the admin?op=update command.This command applies all update files present
in the dgraph_input/updates directory.

Setting the merge policy
You can set the merge policy of the MDEX Engine via a Dgraph command flag or a URL command.

An MDEX Engine's merge policy determines how frequently it merges partial update generations.The
data layer that stores the index is a versioning data store. As a result:

• Old versions can be accessed while new versions are created.
• Old versions are garbage-collected when no longer needed.

A version is persisted as a sequence of generation files. A new version appends a new generation file
to the sequence. Query latency depends, in part, on the number and size of generation files used to
store the index.

Generation files are combined through a process called merging. Merging is a background task that
does not affect the MDEX Engine functionality, but may affect its performance. Because of this, you
can set the policy that dictates the aggressiveness of the merges; this policy is called the merge policy.

The merge policy can be controlled through a Dgraph flag or through the admin interface via a URL
command. Using these controls, you can set the merge policy to one of two settings:

• balanced – This policy that strikes a balance between low latency and high throughput. This is
the default policy of the MDEX Engine.

• aggressive – This policy merges frequently and completely to keep query latency low at the
expense of average throughput.

The balanced policy is recommended for the majority of applications. But aggressive merging may
help those applications that meet the following criteria:

• Query latency is the primary concern.
• A large fraction of the records (for example, 20%) are either modified or deleted by partial updates

before re-baselines.
• The time to perform an aggressive merge is less than the time between partial updates.

Note: Under normal conditions, you do not need to change the default balanced policy. However,
you may need to change to an aggressive policy based on a recommendation from Endeca
Support.

Dgraph mergepolicy flag
The Dgraph --mergepolicy flag allows you to set the default merge policy of the MDEX Engine at
startup time.

The format of the flag is:

--mergepolicy <policy>

where policy is one of these two arguments:

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

23MDEX Engine Configuration and Processing | Setting the merge policy

• balanced – Sets a policy that strikes a balance between low latency and high throughput. This
is the default policy, which means that a balanced policy is used if you do not specify the
--mergepolicy flag when the MDEX Engine starts up.

• aggressive – Sets a policy that merges frequently and completely to keep query latency low at
the expense of average throughput.

The MDEX Engine will exit with a fatal error if the --mergepolicy flag is used without an argument
or with an argument other than balanced or aggressive.

URL mergepolicy command
Use the URL mergepolicy command to force a merge, and (optionally) to change the merge policy
of a running MDEX Engine.

You use the URL mergepolicy command to:

• Manually force a merge. This is called a one-time version because after the merge is performed
(via a temporary aggressive change to the merge policy), the merge policy reverts to its previous
setting.

• Change the merge policy of the running MDEX Engine.

Performing one-time merges

The one-time version of the command is intended for the use case of performing a complete merge
of all generations without making a change to the default merge policy.

The format of the one-time version of the command is:

/admin?op=merge&mergepolicy=aggressive

The assumption is that the MDEX Engine is using a balanced merge policy, and you want to temporarily
apply an aggressive policy so that the merge can be performed. After the merge is performed, the
merge policy reverts to its previous setting.

When you issue the command, the resulting Web page will look like this example:

Dgraph admin, OK.
Dgraph Manual merge started at Sat Jul 17 09:52:47 2010

Changing the current merge policy

The sticky version of the command is intended to change the merge policy of the running MDEX
Engine. The duration of the policy change is for the life of the current Dgraph process (that is, until the
MDEX Engine is restarted) or until another sticky change is performed during the current Dgraph
process.

The format of the sticky version of the command is:

/admin?op=merge&mergepolicy=<policy>&stickymergepolicy

where policy is either balanced or aggressive.

The command also performs a merge operation if warranted.

This example:

http://localhost:8000/admin?op=merge&mergepolicy=aggressive

forces a merge (if one is needed) and changes the current merge policy to an aggressive policy.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

MDEX Engine Configuration and Processing | Setting the merge policy24

Using the URL updatehistory command
The updatehistory URL command returns the list of update files processed since this Dgraph was
started for the first time.

This command has no options.

Note: This command does not track the history of empty update files.

To display the update history:

• Use the Dgraph updatehistory URL command, similar to the following example:

http://localhost:8000/admin?op=updatehistory

The command displays a "Endeca Dgraph Server update directory history contents" page with results
similar to this example:

Checking history for update directory for directory "C:\Endeca\Apps\wine\da¬
ta\dgraphs\Dgraph1\dgraph_input\updates"

 Files in update directory history
"updates/wine-sgmt0.records.xml_2010.07.12.16.29.28"

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

25MDEX Engine Configuration and Processing | Using the URL updatehistory command

Chapter 4

Partial Updates Pipeline

This section describes how to create a partial updates pipeline.

About the partial update pipeline
A partial update requires its own pipeline (separate from the baseline update pipeline) that only deals
with partial updates. Use Developer Studio to create the partial update pipeline.

Each input record in a partial update pipeline describes a transformation to be performed on a single
record in the running application. This means, for example, that a single update cannot change the
spelling of a property on many records; instead, a separate update must be generated to change the
spelling on each record in the application.

The following partial update pipeline is used as an example:

The partial update pipeline is executed at frequent intervals. Between runs, updates are queued.When
the partial update process starts, all the queued updates are processed and written to a staging area.
When Forge is complete, the updates are read from the staging area into the running application.

The sample partial update pipeline works as follows:

1. The partial update pipeline reads its input, using a record adapter (named LoadUpdateData) with
the Multi File field checked.

2. The input records are transformed into record updates by a record manipulator (named
UpdateManipulator) using IF and UPDATE_RECORD expressions.

Note: In this diagram, the dimension server is not connected to the record manipulator (called
the UpdateManipulator in the diagram). While this configuration of the partial update pipeline
works for the pipeline used here as an example, in cases when your partial update pipeline
is updating dimension values, you also must connect the dimension server to the record
manipulator that handles the transformations for the record updates. This way, the record
manipulator will know with which dimensions it is working.

3. The record updates are written out to the dgraph_input/updates directory (or another directory
that you specify) using an update adapter. After the files are applied to the MDEX Engine, they are
removed from this directory.Therefore, it is important to back up the update files to another parallel
directory, in case you want to replay them against the data in the MDEX Engine.

Configuring a partial update pipeline
To configure a project for partial updates, create a separate partial update pipeline.

This pipeline can be based on the existing baseline pipeline, although it requires its own components.
One of the ways to start creating a partial update pipeline is to copy your existing baseline update
pipeline and modify it. If you copy the baseline update pipeline that uses its own record adapter, cache,
and assembler components, remove these components in your partial update pipeline.

This section lists high-level tasks required to create a partial update pipeline. For information on a
specific task, such as adding a new record manipulator component, see the related sections in this
chapter.

To configure a partial update pipeline:

1. Add a new record adapter component. Its purpose is to load only the updates that occurred since
the last baseline update.

2. Add a new record manipulator component configured specifically for the partial update pipeline.
The record manipulator decides whether the record is going to be added, replaced, updated or
removed.

3. Add a new update adapter component. The update adapter instructs Forge where to temporarily
place the update-related processed data files (such as the dgraph_input/updates directory).
These files are removed after being applied to the MDEX Engine. Next, the update adapter writes
out the record file(s) that define the new, removed, or modified records.

4. Add additional dimension components, if you are updating dimension values. Ensure that you have
a dimension server in your partial update pipeline that is connected to the record manipulator and
the update adapter.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | Configuring a partial update pipeline28

Creating the record adapter
You start building your partial update pipeline by adding a new record adapter component. Its purpose
is to load only the updates that occurred since the last baseline update.

Note: The following procedure for configuring the record adapter is specific to an example where
a record adapter is configured for a file-based record source with multiple wildcard-matching
files.Your partial update pipeline may not necessarily contain a record source like this, but you
still need to configure a record adapter to load the updates that occurred since the last baseline
update.

To configure the record adapter:

1. In Developer Studio, specify the following basic settings in the General tab of the Record Adapter
editor:

DescriptionOption

Must be Input.Direction

Enter an input URL as a path, with the filename being a pattern.
URL

For example, a URL pattern of ../incoming/updates/*.txt.gz means
that Forge will read any file in the incoming/updates directory that has
the txt.gz suffix. Each file that matches the pattern will be read in strict
lexicographic order of their filenames.

Select this option to specify that Forge can read data from more than one
input file and that the input URL is to be interpreted as a pattern.

Multi File

2. You can leave the other tabs (Sources, Record Index, and so on) in their default state.

Creating the record manipulator
The record manipulator in the partial update pipeline examines whether the record is going to be
added, replaced, updated or removed.

To configure the record manipulator:

1. In Developer Studio, specify the following settings in the Sources tab of the Record Manipulator
editor:

DescriptionOption

Select the name of the property mapper.Record source

Select a dimension server if the record manipulator is performing
any DIM_ACTION or DVAL_ACTION operations; if not, you can
select None (as in the sample pipeline).

Dimension source

You can leave the tab empty.Record Index

2. In the Expression editor, add expressions similar to those described in "About the IF expression
for the record manipulator." You open the Expression editor by double-clicking the record

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

29Partial Updates Pipeline | Creating the record adapter

manipulator component in the Pipeline Diagram.You can add expressions after the record
manipulator is created.

About the IF expression for the record manipulator
The record manipulator used in a partial update pipeline is essentially an IF expression that calls one
of three UPDATE_RECORD expressions based on a conditional evaluation of the incoming record.

Note: The following sample code shows one example of what an expression for the record
manipulator might look like. Depending on the field values in your data, the logic that you add
to your expressions may be different from this example.

The IF expression is coded as follows:

<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE" NAME="UpdateManipulator">
 <RECORD_SOURCE>PropDimMapper</RECORD_SOURCE>
 <EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <COMMENT>
- If the record has a "Remove" field value equal to "1", then delete it.
- If the record has an "Update" field value equal to "1", then update it
- Otherwise, add the new record.
 </COMMENT>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Remove"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="1"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="DELETE_OR_IGNORE"/>
 </EXPRESSION>
 <EXPRNODE NAME="ELSE_IF" VALUE=""/>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Update"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="1"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Price"/>
 </EXPRESSION>
 <EXPRNODE NAME="ELSE" VALUE=""/>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>
 </EXPRESSION>

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the IF expression for the record manipulator30

 </EXPRESSION>
 </RECORD_MANIPULATOR>

About the UPDATE_RECORD expression
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing records
and add new ones.

If different types of partial updates are processed using separate pipelines, the UPDATE_RECORD
expression can be written to perform the same action on all of the input.

For example, a partial update pipeline written to handle only price and availability changes would
always generate UPDATE-type record updates. If the same partial update pipeline needs to handle
REPLACE updates (that is, reclassification of a record), the input data must contain some indication
of what type of update to perform. Most commonly, this will simply be a property on the input record,
which is checked inside an IF expression.

The UPDATE_RECORD expression takes a snapshot of the record at the time it is evaluated and
generates a corresponding record update. Thus, the update contains the property names and values,
as well as classifications, that are in effect at the time of evaluation. If properties are renamed, have
their values changed, or classifications are added or deleted after the record update expression has
been evaluated, the changes have no impact on the record update that will be generated. Only one
record update can be generated per record.

Note the following:

• For ADD record updates, a complete record must be set up before the expression is evaluated.
• For REPLACE record updates, all the necessary property values and dimension values (as well as

the property specifying the RECORD_SPEC) must be on the record.
• For ADD_OR_REPLACE record updates, if no record exists with the specified property value for the

property that has been designated as the RECORD_SPEC, the system adds a new record. If the
record exists, it is replaced.

• For DELETE record updates, the RECORD_SPEC property must be on the record. This property is
used to identify the record to be deleted. All other properties and dimension values are ignored.

• For DELETE_OR_IGNORE record updates, if a record exists with the specified property value for
the property that has been designated as the RECORD_SPEC, the system removes the record. If
the record does not exist, the action is ignored and no error message is generated.

• For UPDATE record updates, further specification is necessary to describe how to handle the
property values and dimension values on the record. UPDATE-type record updates must also
include the RECORD_SPEC property with each record. Each property or dimension can have only
one type of update performed, but a single record update may impact any or all of the properties
and dimensions on a record.

Related Links
Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33

The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify
the numeric ID of the dimension to be modified.

Expression nodes supported by the UPDATE_RECORD expression on page 32
This section provides a reference table of all expression nodes supported by the UP¬
DATE_RECORD expression.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

31Partial Updates Pipeline | About the UPDATE_RECORD expression

UPDATE_RECORD expression reference examples on page 34
This section provides reference examples of the UPDATE_RECORD expression.

Expression nodes supported by the UPDATE_RECORD expression
This section provides a reference table of all expression nodes supported by the UPDATE_RECORD
expression.

DescriptionEXPRNODE
name

The type of action to perform on the record, as indicated by the VALUE attribute.
Valid values for this attribute are:

ACTION

• ADD – Adds a new record if it does not exist, or generates an error message if
it already exists.

• ADD_OR_REPLACE – Adds a new record if it does not exist, or replaces it if it
already exists.

• REPLACE – Replaces a record if it exists, or generates an error message if it
does not exist.

• DELETE – Removes a record if it exists, or generates an error message if it does
not exist.

• DELETE_OR_IGNORE – Removes a record if it exists, but does not generate an
error message if it does not exist.

• UPDATE – Updates a record if it exists, or generates an error message if it does
not exist.

Examples:

<EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
<EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>

If ACTION=UPDATE, the VALUE attribute specifies the type of update to perform on
all the values of the named property. Valid values for this attribute are as follows:

PROP_ACTION

• ADD – All values for the property on the update record are added to the current
record.

• DELETE – All values for the property on the update record are removed from
the current record.

• REPLACE – All values for the property are removed from the current record, then
all values for the property on the update record are added to the current record.
This node must be followed by a PROP_NAME expression node that names the
property to be modified. For example:

<EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
<EXPRNODE NAME="PROP_NAME" VALUE="P_WineType"/>

If ACTION=UPDATE, the VALUE attribute specifies the type of update to perform on
all the values of the named dimension. Valid values for this attribute are as follows:

DIM_ACTION

• ADD – All dimension values in the dimension on the update record are added to
the current record.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the UPDATE_RECORD expression32

DescriptionEXPRNODE
name

• DELETE – All dimension values in the dimension on the update record are
removed from the current record.

Note: Previously-existing parental dimension values are also removed
upon a delete operation. For example, assume you have a parent
dimension value (dval) with id=1, a child dval with id=2, and a record
with dval 1 assigned. With the update operation, you first add dval 2 to the
record (it replaces dval 1, since it is more specific), and then remove dval
2.The record now has no dvals attached to it, despite its initial assignment
to dval 1 which was never explicitly deleted. The parental dval is removed
at the time when a child dval is added. However, this change is not visible
until the child dval is deleted, at which point no dvals remain on the record.

• REPLACE – All dimension values in the dimension are removed from the current
record, then all dimension values in the dimension on the update record are
added to the current record. This node must be followed by a DIMENSION_ID
expression node that specifies the numeric ID of the dimension to be modified.
For example:

<EXPRNODE NAME="DIM_ACTION" VALUE="ADD"/>
<EXPRNODE NAME="DIMENSION_ID" VALUE="8000"/>

If ACTION=UPDATE, removes the dimension value from the record. Note that the
VALUE attribute only supports DELETE. This node must be followed by a DVAL_ID

DVAL_ACTION

expression node that specifies the numeric ID of the dimension value to be removed.
For example:

<EXPRNODE NAME="DVAL_ACTION" VALUE="DELETE"/>
<EXPRNODE NAME="DVAL_ID" VALUE="8031"/>

Related Links
UPDATE_RECORD expression reference examples on page 34

This section provides reference examples of the UPDATE_RECORD expression.

Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33
The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify
the numeric ID of the dimension to be modified.

About the UPDATE_RECORD expression on page 31
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing
records and add new ones.

Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes
The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify the numeric
ID of the dimension to be modified.

Similarly, the DVAL_ACTION expression node requires a DVAL_ID node to specify the numeric ID of
the dimension value to be modified.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

33Partial Updates Pipeline | About the UPDATE_RECORD expression

To obtain IDs for the DIM_ACTION and DVAL_ACTION expression nodes:

• To obtain the dimension IDs for the DIM_ACTION expression, use the Dimension editor in
Developer Studio.

• To obtain the IDs for the DVAL_ACTION expression, open the Dimensions.xml configuration file
with a text editor and look for the specific dimension value.

For example, consider this dimension named Designation:

<DIMENSION NAME="Designation" SRC_TYPE="INTERNAL">
 <DIMENSION_ID ID="7"/>
 <DIMENSION_NODE>
 <DVAL TYPE="EXACT">
 <DVAL_ID ID="7"/>
 <SYN CLASSIFY="FALSE" DISPLAY="TRUE"
 SEARCH="FALSE">Designation</SYN>
 </DVAL>
 <DIMENSION_NODE>
 <DVAL TYPE="EXACT">
 <DVAL_ID ID="8031"/>
 <SYN CLASSIFY="TRUE" DISPLAY="TRUE"
 SEARCH="TRUE">Best Buy</SYN>
 </DVAL>
 </DIMENSION_NODE>
...
 </DIMENSION_NODE>
</DIMENSION>

The dimension ID is 7, while the ID of the dimension value named Best Buy is 8031. If you want
to use a DVAL_ACTION expression node to modify the Best Buy dimension value, the corresponding
a DVAL_ID expression node would use a value of 8031.

Related Links
About the UPDATE_RECORD expression on page 31

The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing
records and add new ones.

Expression nodes supported by the UPDATE_RECORD expression on page 32
This section provides a reference table of all expression nodes supported by the UP¬
DATE_RECORD expression.

UPDATE_RECORD expression reference examples on page 34
This section provides reference examples of the UPDATE_RECORD expression.

UPDATE_RECORD expression reference examples
This section provides reference examples of the UPDATE_RECORD expression.

Example 1

An expression configured to convert input records to ADD_OR_REPLACE RECORD updates:

<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>
</EXPRESSION>

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the UPDATE_RECORD expression34

Example 2

An expression configured to convert input records to replace the Price property, and the price range
and availability classifications:

<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Price"/>
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="100"/><!--100=PriceRange-->
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="200"/><!--200=Availability-->
</EXPRESSION>

Related Links
Expression nodes supported by the UPDATE_RECORD expression on page 32

This section provides a reference table of all expression nodes supported by the UP¬
DATE_RECORD expression.

Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33
The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify
the numeric ID of the dimension to be modified.

About the UPDATE_RECORD expression on page 31
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing
records and add new ones.

Format of update records
The UPDATE_RECORD expression, as used in the sample partial update pipeline, requires that each
incoming record have one of the Delimited formats described below.

Format of records to be deleted

The first column in the header row must be a Remove column. The first column in each record must
have a value of 1 to delete the record:

Remove|P_WineID|P_Year|P_Wine|P_Winery|...|
1|34699|1992|A Red Blend Alexander Valley|Lyeth|...|

Format of records to be updated

The first column in the header row must be an Update column. The first column in each record must
have a value of 1 to update the record properties:

Update|P_WineID|P_Wine|P_PriceStr|
1|34701|Albarino Rias Baixas|1000.00|

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

35Partial Updates Pipeline | Format of update records

Format of records to be added

The header row of records to be added do not begin with a Remove or Update column. Instead, they
use the normal set of header row columns (P_WineId, P_Year, and so on). The first column in each
record has a normal property value:

P_WineID|P_Year|P_Wine|P_Winery|P_PriceStr|...|
99000|1992|First New Wine Added|Lyeth|18.00|...|

Format of records in your implementation

If your implementation uses Delimited format records, you can use the above format to specify how
the records are handled. If you use another format, you must use a record manipulator with the
appropriate expressions to handle your source records.

Dimension components
The sample partial update pipeline contains two dimension adapters and one dimension server.

Dimension adapters

To support classification, the same dimensions that are loaded in the baseline update pipeline must
be loaded in the partial update pipeline. To cut down on startup time, the dimensions can be split into
multiple files, and only the dimensions actually used by the partial update pipeline need to be loaded.
In the baseline update pipeline, multiple dimension adapters can feed into the same dimension server
to consolidate the separate dimension files.

The sample pipeline uses two dimension adapters, one for the dimensions.xml file and the other
for the winetype_dimension.xml file. For both dimension adapters, the Dimension Source field
(on the Sources tab) is set to None.

Dimension server

The dimension server uses the two dimension adapters as sources.

The URL field (General tab) specifies the location to which the autogen_dimensions.xml.gz file
is written. This file contains persistent dimension data produced by auto-generation and also data
produced by the record to dimension adapter.

There are special considerations when using AutoGen classification with partial updates. When new
dimension values are generated in the partial update pipeline, the dimension changes are included in
the updates sent to the MDEX Engine.

Because the baseline and partial update pipelines share the same autogen file, changes to
Autogen_dimensions.xml are also shared between the two. However, at any given time, only one
of the two update processes can modify the Autogen_dimensions.xml file.

Rather than suspend partial updates during baseline updates, Forge supports the --noAutoGen
command-line option, which turns off the creation of new dimension values. Classification with existing
dimension values continues normally, but classification failures result in no matching dimension values,
rather than in the creation of new ones.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | Dimension components36

Naming format of update source data files
When Forge processes update source data files, it is important to keep two issues in mind concerning
the names of the data files.

• The update files should be processed by Forge in order of their creation. The reason is that if a
specific record appears in more than one update file, you want the latest update to be processed
last, so that it will override earlier versions when the Dgraph loads the update record files.

• Forge reads the files in strict lexicographic order of their filenames. Therefore, you should use a
naming scheme that ensures the processing of the update files in chronological order of their
creation (i.e., last created, last processed).

For these reasons, it is strongly recommended that you use a timestamp format as the naming scheme
for the filenames. If necessary, use leading zeros to force the desired numeric order. For example, if
you have two files named 9.xml and 10.xml, Forge will process 10.xml before 9.xml; therefore,
you must rename 9.xml to 09.xml so that it is processed before 10.xml.

Related Links
Naming convention for source data files on page 42

Whether you are using a random or deterministic distribution strategy, it is strongly
recommended that you use a timestamp format as the naming scheme for the update source
data files.

Naming format of partial update files on page 37
When Forge generates partial update files, they need to be named in a manner that allows
the MDEX Engine to read them in the right order.

Naming format of partial update files
When Forge generates partial update files, they need to be named in a manner that allows the MDEX
Engine to read them in the right order.

The MDEX Engine reads update files that it receives in numeric-lexicographic order of their filenames.

Therefore, the scripts that you use for partial updates should rename the Forge output files with a
timestamp. In other words, the scripts should name update files in ascending numeric-lexicographic
order over time to ensure that updates are processed by the MDEX Engine in the order they are
produced by Forge.

Related Links
Naming convention for source data files on page 42

Whether you are using a random or deterministic distribution strategy, it is strongly
recommended that you use a timestamp format as the naming scheme for the update source
data files.

Naming format of update source data files on page 37
When Forge processes update source data files, it is important to keep two issues in mind
concerning the names of the data files.

Examples of numeric-lexicographic and simple lexicographic order on page 38
While the MDEX Engine reads files in numeric-lexicographic order, Forge reads them in
simple lexicographic order. Keep this difference in mind when naming files.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

37Partial Updates Pipeline | Naming format of update source data files

Examples of numeric-lexicographic and simple lexicographic order
While the MDEX Engine reads files in numeric-lexicographic order, Forge reads them in simple
lexicographic order. Keep this difference in mind when naming files.

The following examples illustrate the ordering modes:

• Simple lexicographic order is the order in which Forge reads partial update files. Using this order,
Forge compares the file names lexicographically. For example, when comparing 5.txt and
10.txt, “5” is compared with “1”. Based on this comparison, Forge first reads 10.txt and then
5.txt.

• Numeric-lexicographic order is the order in which the MDEX Engine reads partial update files.
Using this order, the MDEX Engine breaks a file name into a numeric prefix and a non-numeric
suffix, and compares the numeric prefixes numerically. It breaks ties in numeric prefixes by
proceeding to compare suffixes lexicographically. For example, when comparing 10hello.txt,
010jello.txt, and 5z.txt, “10” is compared with “010” and “5” numerically. This identifies
5z.txt as the file name that should be ordered first. To resolve the tie between “10” and “010”,
“h” is compared with “j”. As a result, 5z.txt is processed first, 10hello.txt is processed next,
and 010jello.txt is processed last.

Related Links
Naming format of partial update files on page 37

When Forge generates partial update files, they need to be named in a manner that allows
the MDEX Engine to read them in the right order.

Index configuration in the partial update pipeline
Using the partial updates, you can update only records and dimensions.You cannot update the index
configuration files, such as the thesaurus and stop words files.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates Pipeline | Index configuration in the partial update pipeline38

Chapter 5

Partial Updates in Agraph Implementations

This section describes how to run partial updates in Endeca implementations that use the Endeca
Aggregated MDEX Engine (Agraph).

About Agraph implementations with partial updates
Implementing partial updates in Agraph implementations is similar to single-Dgraph deployments, with
the important differences listed in the following sections.

For examples of the control scripts used for partial updates in the Agraph implementations, see the
Endeca Control System Guide.

Note: Control scripts are deprecated.

The Agraph and continuous query support
Starting with the MDEX Engine version 6.1.2, the Agraph supports the MDEX Engine feature known
as continuous query.

The following statements describe how the Agraph supports continuous query:

• The Agraph can continually answer queries to its clients even while partial updates are applied
across its different child Dgraphs. This eliminates the need to stop the Agraph when applying
partial updates to the Dgraphs.

• Although an Agraph does not wait for all of its child Dgraphs to finish updating when querying
them, it always ensures that it uses consistent results from a single child Dgraph to which partial
updates are being applied.

A query result is always returned by the Agraph after it aggregates the child Dgraph results, without
specific guarantees that all child results reflect the partial updates.

• If a deployment requires consistent results from all child Dgraphs following a partial update, Endeca
recommends to run multiple Agraphs (each with its set of child Dgraphs) within a load-balancer
pool. This allows selectively removing an Agraph from the pool, and letting pending requests to
complete before applying the updates to all its child Dgraphs. Once updates have been applied
to the child Dgraphs, you can add the Agraph back to the load-balancer pool.

In Agraph implementations that utilize a load balancer between a single Agraph and its Dgraphs,
if a deployment requires consistent results from all child Dgraphs following a partial update, ensure
that re-queries made by an Agraph target the same child Dgraph.You can achieve this by
configuring the load balancer to track session information, and ensuring that all requests associated
with a session go to the same child Dgraph.

Choosing a distribution strategy
The update record files produced by Forge contain XML definitions of the updated records, including
information on how the records should be treated by the Dgraphs.

For example, records to be deleted are flagged with a RECORD_DELETE element in the file.

New records (that is, the ones that use an ADD or ADD_OR_REPLACE action for the UPDATE_RECORD
expression) are defined with a RECORD_ADD element that contains the partition number (in a PARTITION
attribute) to which the record is assigned. Both ADD and ADD_OR_REPLACE records are assigned
partition numbers.

For example, this XML snippet shows a RECORD_ADD element that assigns a new record to Agraph
partition1:

<UPDATE>
 <UPD_UNIT>
 <RECORD_ADD PARTITION="1">
 <PROP NAME="P_WineID">
 <PVAL>99005</PVAL>
 </PROP>
 <PROP NAME="P_Year">
 <PVAL>1992</PVAL>
 </PROP>
 ...
 </RECORD_ADD>
 </UPD_UNIT>
...
</UPDATE>

How the partition number is assigned to a new record depends on which distribution strategy you have
chosen to implement:

• Random distribution, where you let Forge decide which partition gets the new record. That is,
Forge uses the configured partition property (typically the record spec or rollup property) as a basis
of assigning the partition number to the PARTITION attribute.

• Deterministic distribution, where you control the assignment of records to specific partitions. That
is, you tell Forge which partition number it should assign to the PARTITION attribute.

The main advantage of random distribution is that you do not need to know exactly where the records
should go in order for updates to be processed correctly. This scheme also simplifies operations
because the same update record file is sent to all partitions, so there is less conditional logic in your
script.

Which distribution strategy you chose depends on the needs of your implementation. In general,
Endeca recommends that the distribution strategy for partial updates be the same as for baseline
updates.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates in Agraph Implementations | Choosing a distribution strategy40

How the Agraph partitions handle updates
Regardless of which distribution strategy you are using, the Agraph partitions (that is, the individual
Dgraphs) handle the record update requests in one of two ways.

• If a DELETE, REPLACE, or UPDATE action request is sent to all partitions of the Agraph, only the
partition that contains the record actually deletes, replaces, or updates the record. The other
partitions issue a warning message, but continue to function as before.

• If an ADD or ADD_OR_REPLACE action request is sent to all partitions, only the designated partition
(as specified in the PARTITION attribute of the record file) will add the record.The other partitions
ignore the request.

Because any partition knows how to deal with any update request, this architecture allows you to send
the record files to all partitions without having to worry about which partition is the correct one.

To summarize, record updates can be sent to all Dgraphs, although they have to be sent only to the
specific partition to which they apply. Dimension updates must be distributed to all partitions. Since
both types of updates typically are combined in a single file (that is, the partial update pipeline generates
one output file from Forge, with both record and dimension updates), the typical recommended strategy
is to distribute this file to every partition, ensuring that dimensions go everywhere and relying on the
partition to read its record updates and ignore irrelevant record updates that apply to other partitions.

About distributing the Forge output to the Dgraphs
For a random distribution strategy, partial updates in Agraph implementations do not require any
special update distribution requirements. Both dimension modifications (such as, dimension value
additions) and record modifications (updates, deletes, replaces, and adds) should be sent to all Dgraphs
in the deployment.

Each Dgraph should then be notified to check for new updates. If a Dgraph cannot handle data that
is associated with another Dgraph, it will simply log a warning but will otherwise continue working.The
Agraph process itself does not process updates.

For a deterministic distribution strategy, the distribution of the record files depends on the use of
auto-generated dimensions as follows:

• If you are using auto-generated dimensions, distribute all the record files to all the Dgraphs.
• If you are not using auto-generated dimensions, you can distribute each record file to its specific

Dgraph.

To make sure that there is no interruption in servicing navigation requests, you may configure your
Dgraphs to check for new updates at different times. Or you can also have smaller subgroups read in
updates simultaneously (for example, three Dgraphs at a time in a six-Dgraph implementation).

Use of the record specifier attribute
The RECORD_SPEC attribute in an Agraph deployment requires that the record property be unique
across all records across all MDEX Engines.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

41Partial Updates in Agraph Implementations | How the Agraph partitions handle updates

Naming convention for source data files
Whether you are using a random or deterministic distribution strategy, it is strongly recommended that
you use a timestamp format as the naming scheme for the update source data files.

This format ensures that Forge processes the files in the proper order of their creation.

For both strategies, a Perl expression in the record manipulator can use the timestamp part of the
filename for the name of the output record file.

Random distribution format

For a random distribution strategy, a suggested format is:

YYYYMMDDHHNNSS.ext

where YYYY is the four-digit year, MM is the two-digit month, DD is the two-digit day, HH is the two-digit
hour, NN is the two-digit minute, and SS is the two-digit second, as this example:

20051023161408.txt

These files may contain new records that are distributed randomly to the Agraph partitions.

Deterministic distribution format

For a deterministic distribution strategy, a suggested format is:

YYYYMMDDHHNNSS-partX.ext

where X is the number of the Agraph partition for which these records are intended. For example,
records in this source data file are intended for partition3:

20050717151408-part3.txt

The Perl expression in the record manipulator parses the filename for the partition number and uses
it to assign new records to that partition.

The expression also uses the timestamp and -partX information for the name of the output record
file. For example, the above input filename generates this output record file:

20050717151408-part3.records.xml

Keep in mind that if you pre-partition your baseline source files, you should also pre-partition the
records to be added. That is, all ADD (or ADD_OR_REPLACE) records for the partition 0 Dgraph should
be in one file, records for the partition1 Dgraph should be in a second file, and so on.

Related Links
Naming format of update source data files on page 37

When Forge processes update source data files, it is important to keep two issues in mind
concerning the names of the data files.

Naming format of partial update files on page 37
When Forge generates partial update files, they need to be named in a manner that allows
the MDEX Engine to read them in the right order.

Configuring the partial update pipeline
This section describes how to configure the partial update pipeline for either distribution strategy.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates in Agraph Implementations | Naming convention for source data files42

Note: The procedures described in this section require that you hand-edit the pipeline files with
a text editor. After you edit these files, do not open the project in Developer Studio, because it
will overwrite the settings of the update adapter.

Configuring the record adapter
The record adapter in the partial update pipeline that uses an Agraph loads the data files that are
updated.

To configure the record adapter:

In the record adapter, specify the following settings:

DescriptionOption

Set to True so that Forge can read multiple input data files.MULTI

Set the attribute to the path of the incoming directory, with the filename
being a pattern (such as ../incoming/updates/*.txt).

URL

In order to use the naming format of the input file for the records file name,
set this attribute to a value of FILENAME.

MULTI_PROP_NAME

These settings apply to both random and deterministic record adapters.

The following is an example of a record adapter for the partial update pipeline:

<RECORD_ADAPTER
 NAME="LoadUpdateData"
 URL="../incoming/updates/*.txt"
 FORMAT="DELIMITED"
 COL_DELIMITER="|"
 ROW_DELIMITER="|\n"
 DIRECTION="INPUT"
 FILTER_EMPTY_PROPS="TRUE"
 FRC_PVAL_IDX="TRUE"
 MULTI="TRUE"
 MULTI_PROP_NAME="FILENAME"
 REQUIRE_DATA="FALSE"
</RECORD_ADAPTER>

The FILENAME setting for the MULTI_PROP_NAME attribute is processed by both the update adapter
and the Perl expression in the record manipulator.

About configuring the record manipulator
For both random and deterministic pipelines, the record manipulator should contain the same IF and
UPDATE_RECORD expressions that are documented for the single-Dgraph implementation.

In addition, you can add a Perl expression that parses the name of each input file (up to the file
extension) and uses it to name the output record file (which has a records.xml extension). The
exact Perl code in the expression depends on the distribution strategy.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

43Partial Updates in Agraph Implementations | Configuring the record adapter

Related Links
Perl expression for random distribution on page 44

For a random distribution pipeline, a Perl expression can be inserted into the record
manipulator.

Perl expression for deterministic distribution on page 44
For a deterministic distribution pipeline, a Perl expression can be inserted into the record
manipulator.

Perl expression for random distribution
For a random distribution pipeline, a Perl expression can be inserted into the record manipulator.

For example:

<EXPRESSION TYPE="VOID" NAME="PERL">
 <COMMENT>
 This Perl expression handles taking the source input
 filename and outputting a record file with the same
 naming format.
 It assumes filenames of the format: timestamp.ext
 </COMMENT>
 <EXPRBODY><![CDATA[
 # Translate filename of input to filename of output.
 # Filename is everything after the last slash
if ($props[0]->value() =~ /[\/\\]((\w+[\.])*(\w+))\.[^\.]+$/ {
 my $filename = $1;
 $props[0]->value($filename);
 replace_prop("FILENAME", 0, $props[0]);
 } else {
 die("Could not parse filename: " . $props[0]->value());
 }
]]>
 </EXPRBODY>
</EXPRESSION>

The expression generates output record files with names similar to this example:

20050717180812.records.xml

This sample expression is for use on both Windows and UNIX platforms.

Note: Keep in mind that you must change the Perl regex code if you use another naming
convention for the source input files.

Perl expression for deterministic distribution
For a deterministic distribution pipeline, a Perl expression can be inserted into the record manipulator.

The Perl expression for the record manipulator in a deterministic distribution pipeline is similar to the
random distribution example, with the addition of code that extracts the partition ID (the partX piece)
from the input filename and stores it in the X_PartitionNum property.The partition ID will be assigned
by Forge to that record in the record file (via the PARTITION attribute of the ADD_RECORD element).

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates in Agraph Implementations | Perl expression for random distribution44

The Perl expression is as follows:

<EXPRESSION TYPE="VOID" NAME="PERL">
 <COMMENT>
 This Perl expression handles taking the source input filename and
 determining the appropriate partition. It assumes filenames of the
 format: timestamp-partN.ext
 The expression extracts the N in the "partN" piece.
 </COMMENT>
 <EXPRBODY><![CDATA[
 # Translate filename of input to filename of output.
 my @props = get_props_by_name("FILENAME");
 # Filename is everything after the last slash
 if ($props[0]->value() =~ /[\/\\]((\w+[\.])*(\w+))\.[^\.]+$/ {
 my $filename = $1;
 $props[0]->value($filename);
 replace_prop("FILENAME", 0, $props[0]);
 # Extract the partition ID from the filename to determine
 # the partition number for the record.
 $filename =~ /part(\d+)$/;
 my $part_num = $1;
 # X_PartitionNum specifies the target partition for
 # this particular record.
 my $part_prop = new Zinc::PropVal("X_PartitionNum", $part_num);
 add_props($part_prop);
 } else {
 die("Could not parse filename: " . $props[0]->value());
 }
]]>
 </EXPRBODY>
</EXPRESSION>

This sample expression is for use on both Windows and UNIX platforms.

Related Links

Configuring the update adapter
The configuration of the update adapter in a partial update pipeline that uses the Agraph is similar to
that in single-Dgraph implementations.

To configure the update adapter:

1. Specify the following settings for the update adapter, for both random and deterministic distribution:

DescriptionOption

Set to the path of the incoming directory, with the filename being
a pattern.

OUTPUT_URL

Set to an empty string, because the output filename begins with
a timestamp format.

OUTPUT_PREFIX

Set to True so that Forge can read multiple input data files.MULTI

Set to a value of FILENAME.MULTI_PROP_NAME

2. Specify the settings for the ROLLOVER element depending on the type of the distribution strategy.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

45Partial Updates in Agraph Implementations | Configuring the update adapter

Related Links
ROLLOVER element for random distribution on page 46

In a random distribution pipeline, the are five recommended settings for the ROLLOVER
element.

ROLLOVER element for deterministic distribution on page 47
In a deterministic distribution pipeline, the are five recommended settings for the ROLLOVER
element.

ROLLOVER element for random distribution
In a random distribution pipeline, the are five recommended settings for the ROLLOVER element.

DescriptionOption

Although this attribute normally sets the number
of Agraph partitions, it is recommended that you

NUM_IDX

use the Forge --numPartitions flag for the
Forge component to actually set the number of
partitions. Therefore, leave the field blank or use
any number.

Set to the partition property, which is the record
spec or rollup property by which records are

PROP_NAME

assigned to each partition. An empty field means
that Forge will use a round-robin strategy to assign
partitions to records.

Set to the partition property’s type (typically, AL¬
PHA).

PROP_TYPE

Typically set to FALSE.REMOVE_PROP

Set to the default value of 2000000000.CUTOFF

The following is an example of an update adapter using the above settings:

<UPDATE_ADAPTER NAME="UpdateAdapter"
 OUTPUT_URL="../partition0/dgraph_input/updates"
 OUTPUT_PREFIX=""
 MULTI="TRUE"
 MULTI_PROP_NAME="FILENAME">
 <RECORD_SOURCE>UpdateManipulator</RECORD_SOURCE>
 <ROLLOVER NAME="RECORD"
 NUM_IDX=""
 PROP_NAME="P_WineID"
 PROP_TYPE="ALPHA"
 REMOVE_PROP="FALSE"
 CUTOFF="2000000000"/>
</UPDATE_ADAPTER>

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Partial Updates in Agraph Implementations | ROLLOVER element for random distribution46

ROLLOVER element for deterministic distribution
In a deterministic distribution pipeline, the are five recommended settings for the ROLLOVER element.

DescriptionOption

Leave blank or use any number, as it is
recommended you use the Forge --numParti¬

NUM_IDX

tions flag for the Forge component to actually
set the number of Agraph partitions.

Set to the property (X_PartitionNum, for
example) created by the Perl expression in the
record manipulator.

PROP_NAME

Set to the INTEGER (because it will hold the
partition number of the ADD record).

PROP_TYPE

Set to TRUE (because the PROP_NAME property
should not be in the output).

REMOVE_PROP

Set to the default value of 2000000000.CUTOFF

The following is an example of an update adapter using the above settings:

<UPDATE_ADAPTER NAME="UpdateAdapter"
 OUTPUT_URL="../partition0/dgraph_input/updates"
 OUTPUT_PREFIX=""
 MULTI="TRUE"
 MULTI_PROP_NAME="FILENAME">
 <RECORD_SOURCE>UpdateManipulator</RECORD_SOURCE>
 <ROLLOVER NAME="RECORD"
 NUM_IDX=""
 PROP_NAME="X_PartitionNum"
 PROP_TYPE="INTEGER"
 REMOVE_PROP="TRUE"
 CUTOFF="2000000000"/>
</UPDATE_ADAPTER>

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

47Partial Updates in Agraph Implementations | ROLLOVER element for deterministic distribution

Chapter 6

Backing Up Baseline and Partial Updates

Endeca recommends that you back up your MDEX Engine index files periodically. This lets you revert
to a specific partial or baseline update. This section describes types of backups that you can perform
for the MDEX Engine index files, lists backup recommendations, and describes how to recover the
index by reverting to a previous state of the MDEX Engine index.

Types of backups
In your implementation, you can run only baseline, or baseline and delta, updates without having to
run partial updates.You can also run frequent partial updates along with periodic baseline updates.
In each case, you need to back up your MDEX Engine index files periodically.

Typical backup scenarios fall into three categories:

• Baseline backup
• Snapshot backup
• Incremental backup

About baseline backups
A baseline backup is a periodic backup of baseline updates only.

Baseline backups are always useful. In particular, they are useful when your baseline updates are so
fast that you can recover from failures by rerunning baseline updates.

Performing baseline backups works well in implementations in which you run baseline or delta updates
only, without having to run partial updates. In these cases, it is sufficient to back up baseline update
files so that you can recover the index by restarting the MDEX Engine with the dgraph_input directory
reconstructed from a baseline backup.

About snapshot backups
A snapshot backup is a periodic backup of the dgraph_input directory after stopping the MDEX
Engine. Snapshot backups are useful if your baseline updates are relatively infrequent.

Snapshot backups are useful when you run baseline or delta updates with periodic partial updates in
between, and can afford to periodically stop and restart the MDEX Engine, which lets you back up the

dgraph_input directory. For example, you may run a baseline update daily, partial update hourly,
and stop and restart the MDEX Engine nightly to back up dgraph_input.

About incremental backups
An incremental backup includes a backup of partial updates that have occurred since the last baseline
backup or snapshot backup. Incremental backups allow you to revert to a more granular state of the
MDEX Engine index.

In this scenario, you run baseline or delta updates with periodic partial updates in between, and back
up partial update files, so that you can recover the index to its specific state at a particular date and
time. In addition, you also create baseline or snapshot backups.

Backup recommendations
Use the recommendations provided in this section to back up the Endeca index files used by the MDEX
Engine.

• Back up the Dgraph input directory after each baseline update. Periodically, back up the
dgraph_input directory and all its subdirectories to an alternate location.dgraph_input is the
directory where the MDEX Engine index is stored. When backing it up, ensure that you use a
naming scheme that will allow you to retrieve baseline update files based on date and time.

Back up the dgraph_input directory only when the MDEX Engine is stopped. Do not back up
this directory when the Dgraph is running. If you try to copy it while the Dgraph is running, you may
capture files in an inconsistent state.

• Back up partial update files. Prior to running partial updates, ensure that the partial update files
are saved automatically in another backup directory.You may need to modify your partial updates
script so that this backup occurs automatically. Use a time stamp naming scheme to ensure that
you can retrieve the update files if needed.

The files in the dgraph_input/updates directory are deleted after a partial update completes
successfully. Therefore, if you want to revert to a particular partial update, back up all files and
subdirectories in this directory.

• Periodically delete previous backups of partial update files. In other words, you do not have to
retain all incremental backups—only retain those incremental backups that occurred since the
most recent baseline or snapshot backup. When you restore the index, you only need to use the
partial update files since the baseline backup or snapshot backup of the dgraph_input directory
(this is the copy of the directory on which you will restart the MDEX Engine).

Once you do a baseline or snapshot backup, you can delete all backups of partial updates that
took place before the baseline or snapshot backups, if you choose to do so.

Recovering the Endeca index
You can recover the Endeca index by reverting to a particular baseline or partial update.

You can revert the MDEX Engine to the Endeca index representing the state of data after a specific
baseline or partial update. To do so, restart the MDEX Engine on the index files that were backed up

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Backing Up Baseline and Partial Updates | Backup recommendations50

after this baseline update, and point the MDEX Engine at the dgraph_input/updates directory
that contains partial update files that occurred since this baseline update.

To revert to a previously applied baseline or partial update:

1. Stop the MDEX Engine.

2. Clean up the active dgraph_input and dgraph_input/updates directories.

3. In the backup directory for baseline update files, locate the files from the last successful baseline
update.

4. Copy the backed-up baseline update files into dgraph_input.

5. In the backup directory for partial update XML files, locate the files since the baseline update you
are reverting to.

6. Copy all backed-up partial update XML configuration files from all partial updates that occurred
since the baseline update to which you want to revert into the dgraph_input/updates directory.

If you are using the Deployment Template, the
app-dir/data/partials/cumulative_partials directory is where all partial updates since
the last baseline are typically stored.You can reapply them by copying the necessary files to the
Dgraph updates directory and apply the updates afterwards.

7. Restart the MDEX Engine. The MDEX Engine reads the files in dgraph_input and in
dgraph_input/updates.

If you are using the Deployment Template, the numPartialsBackups setting (in the PartialForge
module of the AppConfig.xml configuration file) determines how many cumulative partials to store. If
you do not define this number high enough, you may not have all the previous update files to even
restore the state of the index. If this is the case, you will have to run a full baseline.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

51Backing Up Baseline and Partial Updates | Recovering the Endeca index

Chapter 7

Troubleshooting Partial Updates

This section contains recommendations for troubleshooting partial updates, and describes how the
MDEX Engine treats failed partial update operations.

Pipeline troubleshooting recommendations
Setting up partial updates correctly involves making sure that the record adapter, record manipulator,
update adapter, dimension server, and other pipeline components are configured properly.

Use the following recommendations to troubleshoot a partial update pipeline:

• For all incoming records, verify that your Endeca project has an Endeca property configured as
the record specifier. Only one property in the project can have the RECORD_SPEC attribute set to
TRUE.

• For the record adapter, verify that the information provided to it is in the right format. The format
should correspond to the pattern that you specified in the URL field. The record adapter works
properly if all of the files with the extension *.txt.gz are formatted in the same way. For example,
a URL pattern of incoming/updates/*.txt.gz means that Forge reads any file that has the
txt.gz suffix in the incoming/updates directory. Each file that matches the pattern is read in
sequence.

• If you are supplying multiple update files, verify that the Multi file field is checked in the Record
Adapter editor in Developer Studio.

• For the record manipulator, verify that you are correctly using the expressions used for removing
and manipulating the data.

• For the update adapter, verify that the Output URL field in Developer Studio points to the directory
in which completed updated records from the last partial update will be placed by Forge, for the
consumption by the MDEX Engine.

• For the update adapter, verify that the partial update pipeline output prefix is identical to the one
used for baseline updates.

• For the naming format of the update source data files, use a timestamp as the naming scheme.
This ensures that Forge processes the files in the proper order of their creation.

• For the EAC partial update script that runs partial updates, verify that it is configured properly.The
default script is created for you when you use the Endeca Deployment Templates to create the
Endeca project; you can modify it to suit your needs.

Related Links
Naming format of update source data files on page 37

When Forge processes update source data files, it is important to keep two issues in mind
concerning the names of the data files.

Troubleshooting update operations that fail
Verify that the MDEX Engine processes the updates according to your configuration in the partial
updates pipeline.

The MDEX Engine processes updates on a record-by-record basis. Updates fail or succeed entirely
at the record level. This means that a record update that fails (for example, because it attempts to
assign an unknown dimension value to the record), leaves the value of the record unchanged. Property
value changes or dimension value changes in the failed record update have no effect.

In addition, if an error occurs during a record update, and subsequent update operations relate to the
same record, these operations may also fail. However, in general, previous and future record updates
and dimension updates are not affected by a specific record update failure.

For example, if a partial update operation fails, because you try to delete a record that does not exist,
or add a child dimension value to a dimension that does not exist, the MDEX Engine does all of the
following:

• Continues the partial update process.
• Logs a message to stderr, or to the file specified by --out on the command line.
• Writes a copy of the entire file containing the failed update record or dimension value to the

<updatedir>/failed_updates directory, which the MDEX Engine automatically creates in
your working directory.

Important: The failed_updates directory may fill up with failed update files. To prevent
your system from running out of disk space, periodically clean this directory.

Update files that are due for processing are deleted after each partial update that has successfully
processed them. They do not accumulate in the dgraph_input/updates directory.

The default directory the MDEX Engine uses for storing failed update files is
<updatedir>/failed_updates/.

Note: You can use the --failedupdatedir flag for the Dgraph to specify the directory in
which the MDEX Engine should store the failed update files.

Therefore, to troubleshoot failed update operations, provision enough disk space in your working
directory for /failed_updates, and check this directory for failed update operations, if you notice
any failed update errors in the log.

During development, use the --updateverbose flag to specify that the MDEX Engine should output
verbose messages while processing updates. Do not use this flag on production systems, because it
negatively impacts partial update performance.

Keep in mind that when the MDEX Engine starts up, it begins to process queries and updates in
parallel. This means that if there are update files in the updates directory at startup time, the MDEX
Engine (after opening its port) begins to process those updates at the same time that it begins to
accept and service queries.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Troubleshooting Partial Updates | Troubleshooting update operations that fail54

UPDATE_RECORD errors
If the UPDATE_RECORD expression is not configured properly in the record manipulator (which is used
for updating dimension values or property values), Forge issues errors.

The following expression errors cause Forge to generate errors:

• ACTION is not one of ADD, ADD_OR_REPLACE, REPLACE, DELETE, DELETE_OR_IGNORE, or UP¬
DATE.

• ACTION is ADD and a record with that specification already exists. In this case, the record to be
added is skipped instead of replacing the existing record. Use an ACTION of ADD_OR_REPLACE
to add a record if it does not exist or replace it if it does.

• ACTION is UPDATE and a record with that specification does not exist. In this case, the record to
be updated is skipped.

• ACTION is UPDATE and a sub-action is not specified.
• ACTION is not UPDATE and a sub-action is specified.
• ACTION is DELETE and a record with that specification does not exist. In this case, the record to

be deleted is skipped and an error message is generated. Use an ACTION of DELETE_OR_IGNORE
to suppress the error message if the record does not exist.

• More than one sub-ACTION (such as DVAL_ACTION) is specified for a given property, dimension,
or dimension value.

The Dgraph checks permissions on the index directories
Starting with the version 6.1.2, the Dgraph checks permissions on the index directories before applying
partial updates.

If the required read/write permissions are missing, the Dgraph fails to apply the update and issues an
error in the standard error log. It also logs the path to the index directories to which it does not have
read/write permissions.

The Dgraph checks permissions on these directories in the Endeca/myApp/dgidx_out¬
put/myApp_indexes:

• /committed

• /generations

(The filepaths assume that the Deployment Template scripts are used to set up the application.)

Both of these directories should have read and write permissions to allow accessing them by the
Dgraph. However, due to file system issues or hardware maintenance issues combined with the Endeca
implementation's topology, it is possible that under some conditions these permissions are reset. This
may make these directories unaccessible by the Dgraph.

Performance impact of partial updates
This section provides a reference list of performance gains of partial updates.

• Partial updates do not require periodically running baselines for performance improvements. Update
operations done through multiple partial updates do not require running a periodic baseline update
due to performance concerns or memory-use constraints.

Endeca® MDEX Engine Partial Updates GuideEndeca Confidential

55Troubleshooting Partial Updates | UPDATE_RECORD errors

After you run the first few partial updates, MDEX Engine query performance decreases slightly.
After this initial performance decrease, query performance stabilizes.

• Startup performance after partial updates decreases slightly and stabilizes afterwards. Overall,
startup time is roughly proportional only to the total size of the MDEX Engine index, regardless of
how many updates played a role in its state.

• Partial updates with high turnover and high frequency perform fast. High turnover means that a
large portion of the data is being updated or deleted. Any mix of add, delete, and update operations
on a large number of records is handled gracefully during partial updates.

In addition, you can combine record updates into larger batches. Running such large-batch partial
updates results in better overall throughput for the MDEX Engine. (The overall downtime for running
one specific partial update with high data turnover may be longer, but in total, the time it takes to
run one large-batch partial update is shorter compared with running many smaller scale partial
updates in previous releases.)

• The MDEX Engine is stable in the face of hardware crashes. A power failure of the MDEX Engine
server does not affect the state of indexed data. It leaves indexed data on disk in a consistent state
no matter at which point in time a crash occurs. If a crash occurs during a partial update, the files
from the dgraph_input/updates directory are not deleted. After a restart, the MDEX Engine
checks the dgraph_input/updates directory for the presence of any files that were not applied
and applies them.

Endeca ConfidentialEndeca® MDEX Engine Partial Updates Guide

Troubleshooting Partial Updates | Performance impact of partial updates56

Index

A

aggressive merge policy
definition 23
setting with dgraph flag 24

Agraph
handling updates 41
partial updates 39

B

Backups
baseline 49
incremental 50
recommendations 50
recovering the index 50
snapshot 49
types of 49

balanced merge policy
definition 23
setting with dgraph flag 24

Baseline update
backups 49

Baseline updates
general requirements 19
introduced 9
overview 10
pipeline details 18
processing overview 10
requirements 18, 19
speeding up 10

C

continuous query 15

D

Delta updates
introduced 9
overview 11

Deployment Template, See Endeca Deployment
Template
Deterministic distribution

Perl expression for 44
recommended ROLLOVER settings 47

Dgraph
failed updates 54
mergepolicy flag 23
updatehistory command 25

dgraph_input 16
dgraph_input/updates 17
DIM_ACTION 33

Dimension adapter 36
Dimension components

Dimension adapter 36
Dimension server 36

Dimension server 36
distribution strategy

deterministic 42
random 42

DVAL_ACTION 33

E

Endeca Deployment Template 14

F

Forge output
distributing to Dgraphs 41

I

IF expression 30

L

Leaf dimensions
adding 19

M

MDEX Engine processing
for partial updates 15

merge policy
setting with dgraph flag 23
setting with URL command 24

merge policy for partial updates 23

N

numeric-lexicographic 38

P

Partial updates
and the Endeca Deployment Template 14
capabilities 17
general requirements 19
IF expression for record manipulator 30
in Agraph deployment 39
Index configuration 38
introduced 9, 13

Partial updates (continued)
introduction to processing 14
leaf dimensions 19
MDEX Engine processing 15
merge policy 23
naming format of data files 37, 42
naming format of partial update files 37
overview 11
performance impact 55
Perl expression for record manipulator 44
pipeline details 27
pipeline, configuring 28
random distribution strategy 40
record adapter component 29
record adapter for Agraph deployment 43
record manipulator component 29
record manipulator for Agraph deployment 43
record specifier 20
requirements 18, 19
starting the MDEX Engine 21
update adapter for Agraph 45
UPDATE_RECORD expression 31
UPDATE_RECORD expression examples 34
UPDATE_RECORD expression formats 35
URL update command parameters 21

performance
partial updates 55

Perl expression
for partial updates 44

Perpetual partial updates
introduced 9

R

Random distribution
Perl expression for 44
recommended ROLLOVER settings 46

random distribution strategy for partial updates 40
Record adapter

creating for Agraph partial updates 43

Record Adapter
creating for partial updates 29

record adapter for Agraph deployment 43
Record manipulator

creating for Agraph partial updates 43
creating for partial updates 29
IF expression 30
Perl expressions 44

Record specifier attribute 42
required for partial updates 20

recovering the Endeca index 50
reverting to an index state 50
ROLLOVER element

recommended deterministic distribution settings 47
recommended random distribution settings 46

S

simple lexicographic 38

T

Troubleshooting
failed updates 54
recommendations for pipeline 53
UPDATE_RECORD errors 55

U

Update adapter
for Agraph partial updates 45

UPDATE_RECORD
supported expression nodes 32
troubleshooting errors 55

UPDATE_RECORD expression 31
examples 34
formats 35

updatehistory 25
Updates

introduced 9

Endeca® MDEX Engine58

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Types of Updates
	Updates processed by the MDEX Engine
	About baseline updates
	Baseline update processing
	Speeding up baseline updates

	About partial updates
	About delta updates
	Which update to run

	Partial Updates Processing and Requirements
	Introduction to partial updates
	How partial updates work
	Partial updates and the Deployment Template
	Introduction to partial updates processing
	MDEX Engine processing for partial updates
	Continuous query
	Continuous query processing and administrative queries
	The dgraph_input directory
	The dgraph_input/updates directory

	Partial update capabilities
	Requirements for baseline and partial updates
	General requirements for partial and baseline updates
	Adding new leaf dimension values in partial updates
	Record specifier attribute required for partial updates

	MDEX Engine Configuration and Processing
	Enabling the MDEX Engine for partial updates
	Using the URL update command
	Running updates on a single file
	Setting the merge policy
	Dgraph mergepolicy flag
	URL mergepolicy command

	Using the URL updatehistory command

	Partial Updates Pipeline
	About the partial update pipeline
	Configuring a partial update pipeline
	Creating the record adapter
	Creating the record manipulator
	About the IF expression for the record manipulator
	About the UPDATE_RECORD expression
	Expression nodes supported by the UPDATE_RECORD expression
	Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes
	UPDATE_RECORD expression reference examples

	Format of update records
	Dimension components
	Naming format of update source data files
	Naming format of partial update files
	Examples of numeric-lexicographic and simple lexicographic order

	Index configuration in the partial update pipeline

	Partial Updates in Agraph Implementations
	About Agraph implementations with partial updates
	The Agraph and continuous query support
	Choosing a distribution strategy
	How the Agraph partitions handle updates
	About distributing the Forge output to the Dgraphs
	Use of the record specifier attribute
	Naming convention for source data files
	Configuring the partial update pipeline
	Configuring the record adapter
	About configuring the record manipulator
	Perl expression for random distribution
	Perl expression for deterministic distribution
	Configuring the update adapter
	ROLLOVER element for random distribution
	ROLLOVER element for deterministic distribution

	Backing Up Baseline and Partial Updates
	Types of backups
	About baseline backups
	About snapshot backups
	About incremental backups

	Backup recommendations
	Recovering the Endeca index

	Troubleshooting Partial Updates
	Pipeline troubleshooting recommendations
	Troubleshooting update operations that fail
	UPDATE_RECORD errors
	The Dgraph checks permissions on the index directories
	Performance impact of partial updates

	Index

