
Endeca® MDEX Engine
Performance Tuning Guide

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...10
Contacting Oracle Support...10

Chapter 1: Before You Begin..11
About the Dgraph and the Agraph..11
When to consider using an Agraph...12
Important concepts...12
Location of additional information...13

Chapter 2: System Characteristics and Hardware.................................15
MDEX Engine architecture and performance...15
Storage considerations...17

Locally attached RAID storage (RAID 5/6, RAID 10, or RAID 0)...17
SAN-backed network-attached storage...18

Memory considerations...18
About Dgraph process memory usage..18
Memory usage recommendations for optimizing performance..19
Dgraph virtual memory vs. RAM: use cases..19
Solutions for memory-based Dgraph performance problems..20
About the Dgraph cache..21
About the File System Cache..22
Cache-tuning recommendations for optimizing performance..22
The Dgraph cache and its impact on virtual process size...24
Estimating the MDEX Engine RAM requirements...24

Network considerations..27
Dgidx performance recommendations..27
Operating system considerations..27

Windows 2008 performance considerations..28
VMware performance considerations..28
Linux considerations..29

Load balancer considerations...31
Load balancing and session affinity...32

High availability considerations...32

Chapter 3: Using Multithreaded Mode..35
About multithreaded mode..35
Benefits of multithreaded MDEX Engine...35
The MDEX Engine threading pool..36
Configuring the number of MDEX Engine threads..37
When to increase the number of threads..37
Multithreaded MDEX Engine performance...38
Recommended threading strategies and OS platform..38

Chapter 4: Diagnosing Dgraph and Agraph Problems..........................41
Information you need..41

System state characteristics..41
Performance tools overview...42

Dgraph performance issues..44
Improving the speed of Dgraph startup...44
Tips for troubleshooting long processing time...44
Warming performance vs. steady state performance..46
About planning for peak Dgraph load..46
About tuning the number of threads..46

iii

Multithreaded Dgraphs on machines with multithreaded processors..46
Multiple Dgraphs on one machine vs. multithreaded Dgraphs...47
Disk access recommendations for optimizing performance..47
CPU recommendations for optimizing performance..48
I/O recommendations for optimizing performance...48

Agraph performance considerations...48
Agraph use of server resources...48
Recommendations for higher throughput with an Agraph...49
About the Agraph in --fork mode..49
Identifying the Agraphs to Dgraphs ratio...50
Identifying performance problems in Agraph deployments..50
Testing Agraph network problems with Eneperf..51
Determining whether the Agraph CPU is saturated...51

Identifying problems with resource usage by the application..52
Coding practices for the front-end application...52
Web application ephemeral port contention..53

Recommendations for identifying network problems..53
Troubleshooting connection errors...54

Next steps...55

Chapter 5: Dgraph and Agraph Analysis and Tuning............................57
Feature performance overview...57
Endeca record configuration...57

Record select...57
Aggregated records...58

Dimensions and dimension values...58
Hidden dimensions..59
Dimensions and dimension values with high record coverage..59
Flat dimension hierarchy..59
Displaying multiselect dimensions...59
Multi-assign dimensions..59
Displaying refinement dimension values...60
Dynamic statistics on dimension values..60
Aggregated refinement counts...61
Dynamic refinement ranking and performance..61
Disabled refinements...61
Displaying dimension value properties..62
Collapsible dimension values..62
Mapping source properties..62
Indexing all properties with Dgidx..63

Record sorting and filtering...63
Sorting records by dimension or property...63
Geospatial sorting and filtering..64
Range filters..64
Record filters...64
Optimizing URL record filters that use complex logic..65

EQL expressions and Record Relationship Navigation..66
When to use EQL-based filters vs. other filter types..66
Performance impact of EQL-based filters..68
Performance impact of RRN..69
Tips for troubleshooting EQL filters...71
Typical causes of EQL filter errors...71

Snippeting...72
Spelling auto-correction and Did You Mean..72

Spelling auto-correction...72
Did You Mean...73

Stemming and thesaurus..74
Guidelines for thesaurus development..74

Record, phrase, and dimension search..75
Record search...75
Boolean search..75
Phrase search...76
Wildcard search...76
Dimension search..79

Endeca® MDEX Engineiv

Precedence rules..79
About precedence rules...79

Relevance ranking..80
Minimizing the performance impact of relevance ranking..80

Dynamic business rules..81
Agraph performance considerations..82

Analytics performance considerations..82
Analytics and the Agraph performance considerations...83

Appendix A: The MDEX Engine Request Log..85
About the MDEX Engine request log..85
Request log file format..85
Extracting information from request logs..89
Request log rolling..90

Appendix B: The MDEX Engine Parameter Listing................................91
Understanding the URL parameter mapping..91

Mappings between request log and UrlENEQuery URL parameters..91
List of request log parameters...94
Example: interpreting error log messages ..94

Description of query types..95
agreq...95
allbins..96
allgroups..96
analytics...97
attrs..97
autoforce..98
autophrase...98
autophrasedwim..98
compound..99
dym..99
filter..100
format..100
group...101
groupby..101
id..102
ignore...102
irversion...103
keyprops..103
lang..103
log..104
merchdebug...104
merchpreviewtime..105
merchrulefilter..105
model...105
nbins..106
nbulkbins..106
node...107
num..108
offset..108
op...109
opts..109
pred...110
pretendtime..110
profiles...111
rank..111
refinement..112
relrank..112
select...113
sort...113
structured...113
terms..114

Appendix C: The Eneperf Tool...115

v

Contents

About Eneperf...115
Using Eneperf...115

Required settings...116
Optional settings..119

Example of Eneperf output...123
About the format of logs for use with Eneperf...125

The Request Log Parser..125
Recommendations for generating a representative log for Eneperf..125
Running Eneperf in two-stream mode: regular logs and logs with updates.......................................127
Converting an MDEX Engine request log file for Eneperf..128
Performance testing .NET 2.0 applications that contain long or complex queries.............................128
Creating a log file by hand using substitute search terms...129

Debugging Eneperf...129

Appendix D: MDEX Engine Statistics and Auditing............................131
About the MDEX Engine Statistics page..131
Viewing the MDEX Engine Statistics page...131
Sections of the MDEX Engine Statistics page..132

The Performance Summary tab...132
The General Information tab..132
The Index Preparation tab...133
The Cache tab...134
The Details tab..134

About the Agraph Statistics page..136
About the Endeca MDEX Engine Auditing page...139

Viewing the MDEX Engine Auditing page..139
Audit persistence file details..139

Sections of the MDEX Engine Auditing page ...140
The Audit Stats tab..140
The General Information tab..141

Appendix E: Useful Third-Party Tools...143
Cross-platform tools..143
Solaris and Linux tools..143
Solaris-specific tools...144
Linux-specific tools...145
Windows tools...145

Appendix F: Tuning the Network Performance....................................147
Tuning network performance on Windows..147
Tuning network performance on Solaris...148
Configuring the FIN_WAIT_2 timeout interval..148

Configuring FIN_WAIT_2 timeout on Linux...149
Configuring FIN_WAIT_2 timeout on Solaris...149
Configuring FIN_WAIT_2 timeout on Windows...149

Endeca® MDEX Enginevi

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, Hong Kong Patent HK1072114, European Patent EP1459206B1, and other patents
pending.

Endeca Performance Tuning Guide • December 2010

Version 6.1.4

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide provides information about tuning your Endeca Dgraphs and Agraphs to provide optimal
performance. It also includes hardware provisioning recommendations, and performance
recommendations related to various aspects of your implementation, including peformance of Dgidx.
This guide includes operating system support, as well as storage, memory, and networks support and
recommendations.

Who should use this guide
This guide is intended for system administrators and developers responsible for the performance of
an Endeca implementation.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

| Preface10

https://support.oracle.com

Chapter 1

Before You Begin

This section provides background information you should know before you begin to diagnose
performance problems in your Endeca implementation.

About the Dgraph and the Agraph
A typical Endeca implementation includes one or more Dgraphs. Optionally, it can include an Agraph
that connects to a number of Dgraphs. This topic reviews these programs.

Introduction to the Dgraph

The Dgraph is the name of the process for the MDEX Engine, which is the query engine that provides
the backbone for all Endeca solutions. The Dgraph uses proprietary data structures and algorithms
that allow it to provide real-time responses to client requests. Because the Dgraph is key to every
Endeca implementation, its performance is critical.

Introduction to the Agraph

A distributed configuration requires a program called the Agraph in addition to the Dgraph.The Agraph
typically resides on a separate machine.

Starting with the MDEX Engine version 6.0, a more powerful Dgraph that utilizes 64-bit support can
accommodate much larger data sets, compared with those supported in previous versions, without
the need to implement an Agraph. Prior to the capabilities of 64-bit support in the MDEX Engine, the
hard platform limit on the amount of RAM available per process could require using an Agraph for
large data set implementations, in order to distribute memory requirements.

The Agraph program is responsible for receiving requests from clients, forwarding the requests to the
distributed Dgraphs, and coordinating the results. From the perspective of the Endeca Presentation
API, the Agraph program behaves similarly to the Dgraph program.

Agraph-based implementations allow parallelization of query processing. The implementation of this
parallelization results from partitioning the set of records into two or more disjoint subsets of records
and then assigning each subset to its own Dgraph.

When to consider using an Agraph
You can use a single Dgraph or a set of load-balanced Dgraphs for processing an entire data set in
many implementations in which an Agraph had to be used in previous versions of Endeca IAP.

Note: Starting with version 6.0, indexing time is improved for many applications, in particular,
for text-heavy applications. It is worth testing such applications without an Agraph.

Consider an Agraph deployment in the following situations:

• The MDEX data is too large to fit on a single server.
• The large number of records in the MDEX Engine causes query processing to be too slow (this

varies from application to application).
• The large number of records causes indexing time to be too slow.

For more information about Agraph performance, see “Agraph performance considerations” in this
guide. To assess whether your application parameters warrant the use of an Agraph, consult Endeca
Professional Services.

Important concepts
There is a small set of terms and concepts you should be familiar with as you read this guide.

The following terms are used to discuss the performance of the MDEX Engine:

• Throughput is the number of requests processed by the MDEX Engine per unit of time. In this
guide, unless otherwise specified, it is expressed as query operations per second (ops/sec).
Throughput is measured with the performance tool Eneperf using an MDEX Engine request log.

• Dgraph sustained throughput is the measure of query capacity, that is, the maximum number of
requests that can be consistently processed by the MDEX Engine per second.

• Latency is how fast the MDEX Engine responds to queries, or the time it takes for a query to be
returned by the Engine, typically in milliseconds.

• Maximum latency is the maximum time it takes for the longest query to be returned by the MDEX
Engine.

Note: Though latency and throughput are related, they are not directly derivable from one
another. The inverse of the average latency is a lower bound on the maximum throughput.
For example, if the average latency for a shopper in a supermarket checkout line is 5 minutes,
we know that the checkout throughput of the store must be at least 0.2 shoppers per minute.
In addition, latency and throughput are tied together by concurrency. Using the same example,
the real maximum throughput may be 10 shoppers per minute because there are many
checkout lanes.

• An operation is defined as a single request to the MDEX Engine.

Such a request may have one of the following types:

• Navigation (possibly including record search, analytics, and so on)
• Dimension search
• Record search
• Aggregated record
• Administration (such as a Web Service invocation for administrative purposes, statistics,

configuration update, partial update, and so on)

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Before You Begin | When to consider using an Agraph12

• Memory bandwidth is the rate at which data can be read from or stored in memory by a processor.
It is measured in bytes per second. In relation to MDEX Engine performance, you may be interested
in the memory bandwidth that a system can sustain while running a Dgraph or multiple Dgraphs.

• The virtual process size (or address space) for the Dgraph is the total amount of virtual memory
allocated by the operating system to the MDEX Engine process at any point in time. This includes
the Dgraph code, the MDEX Engine data as represented on disk, the Dgraph cache and any
temporary work space.

• Resident set size (RSS) is the amount of physical memory currently allocated and used by the
MDEX Engine process. As the MDEX Engine process runs, the active executable code and data
are brought into RAM, becoming part of the RSS for the MDEX Engine.

You can view the resident set size of a process on Linux by using ps -o pid,ucomm, or rss
commands, ucomm, or by using the top program which reports the RSS size.

• The working set size (WSS) of the MDEX Engine process is the amount of physical memory
needed for those parts of the process that have been most recently and frequently accessed. In
other words, the Dgraph WSS is the amount of memory a Dgraph process is consuming now and
that is needed to avoid paging.

The WSS of the Dgraph process directly affects RAM usage. As the working set increases, the
Dgraph process memory demand increases. With a larger WSS, a process needs more memory
to run with acceptable performance.

You cannot measure the WSS, but you can make assumptions about it when you measure the
resident set size and observe performance; performance tends to degrade if the RSS cannot equal
the WSS.

• The Dgraph cache is an area of memory set aside for dynamically saving the partial and complete
results of processing queries.

• Warming is the process during which the MDEX Engine performance gradually increases to a
steady state. A gradual increase in performance takes place either as the MDEX Engine starts up
and processes queries or following a partial update.

• Utilization is the percentage of the total capacity of a resource that is actually being used.
• The number of concurrent users is the number of site users engaging the MDEX Engine at any

given time. When planning for Dgraph capacity based on the number of concurrent users, take
into account the consideration that multiple users on a site do not continually issue queries. Between
queries, a user has some "think time" before issuing another query.

Location of additional information
The table below lists additional information in the Endeca documentation set to support your
performance tuning efforts.

Look hereIf you want

Endeca Administrator's GuideA listing and brief description of all Dgraph and
Agraph flags

Endeca Forge Guide, Endeca Partial Updates
Guide, and Endeca CAS Server Guide

Information on how to develop back-end Endeca
features (primarily pipeline activities)

Endeca Basic Development Guide, Endeca
Advanced Development Guide, Endeca

Information on how to develop front-end Endeca
features (primarily API activities)

Developer’s Guide for Endeca RAD Toolkit for

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

13Before You Begin | Location of additional information

Look hereIf you want

ASP.NET, and the Endeca Web Services and
XQuery Developer's Guide

Endeca Application Controller GuideDetails on the Endeca Application Controller

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Before You Begin | Location of additional information14

Chapter 2

System Characteristics and Hardware

This section provides recommendations for hardware used for an Endeca implementation and discusses
typical hardware-based issues that affect performance of the MDEX Engine.

MDEX Engine architecture and performance
The MDEX Engine is optimized for performance. This section reviews those characteristics of the
Engine that have a direct impact on its performance.

Hardware architecture diagram

The following diagram represents a typical MDEX Engine deployment architecture. It shows a set of
application servers and MDEX Engines, each with a dedicated hardware load balancer.The Information
Transformation Layer (ITL) that supplies data to the MDEX Engine index is not shown.

In this diagram, a load balancer directs query requests to one of the MDEX Engines. If you are using
servers with dual-core or quad-core processors, multiple multithreaded MDEX Engines can be
configured on the same machine, with two or more threads configured for each MDEX Engine.

Resource utilization

The MDEX Engine stores index structures in system memory to provide rapid access during query
execution. Less frequently accessed structures and record data are stored on disk; these are only
pulled into RAM as needed.

Storage locality

The data and indexes are stored in memory and on disk in a manner that provides optimal locality for
common access patterns. When queries have to access disk to retrieve information, they find all the
data required with the minimum number of seek operations.This decreases the cumulative disk access
seek times thereby decreasing the time needed for query processing and increasing query throughput.

Unified Dgraph cache

The MDEX Engine has a unified dynamic cache where it stores intermediate results and index structures
for future processing. When similar requests are made to the Engine with slight changes (example:
sorting by price, then ranking, then popularity), the Engine stores intermediate results in the cache.
This allows for the optimal reuse of data previously retrieved from slower sources, such as disk. The
cache is dynamically managed by the MDEX Engine to keep the optimal data cached for the current
query patterns.

Stateless architecture combined with load balancing

The Endeca implementation has a stateless server architecture. Query processing does not require
any state information about prior queries from this client or other clients. Because of this, when multiple

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | MDEX Engine architecture and performance16

identical MDEX Engines are placed in parallel behind a load balancer, the response will be identical
regardless of which server receives the request. The throughput of such a system is equal to the
throughput of a single server times the number of parallel servers.

Multithreaded mode

The MDEX Engine always runs in multithreaded mode with the total number of threads set to 1 by
default. Endeca recommends to increase this number to maximize the use of system resources. On
processors that are multithreaded or multicore, multiple query threads can use a single processor at
the same time.

64-bit architecture

The MDEX Engine utilizes 64-bit operating systems and processors, and can store and access larger
volumes of data with scale. The MDEX Engine can utilize as much physical memory as can be placed
in a server. Running in the 64-bit environment, the MDEX Engine can service many memory-intensive
requests simultaneously without the risk of running out of memory address space. This, combined
with a large Dgraph cache (1GB), provides a significant performance benefit.

Storage considerations
Endeca recommends using one of two storage approaches with Endeca IAP implementations, RAID
or SAN-backed network-attached storage (if using RAID is not possible).

Locally attached RAID storage (RAID 5/6, RAID 10, or RAID 0)
For RAID disks, use these Endeca recommendations.

Storage availability after disk failure is usually a requirement for your RAID configuration. In this case,
you may opt for either a read/write balanced configuration or a more purely read-oriented configuration.

For most implementations, a configuration that balances the demands of disk read and write activities
is the best choice.

• RAID 5/6. For some implementations, disk read speed is paramount and write speed is much less
important to performance. For example, suppose the baseline index is never modified by partial
updates, and new baseline indexes are moved into production only infrequently. In these
implementations, a RAID 5 (or RAID 6) configuration improves availability with the least cost in
spindles.

• RAID 10 (also known as RAID 1+0) is an excellent choice for devices that are partitioned across
a disk array of four or more spindles. RAID 10 provides the performance benefits of striping and
the redundancy of mirroring.

• RAID 0. The RAID 0 configuration is useful when storage availability after disk failure is not a
concern.This is because both read and write activities are parallelized across all available spindles
to decrease access latency and increase read and write throughput.

In any RAID configuration, high rotational speeds (such as 15k RPM or 10k RPM) are very beneficial
to performance. Performance-oriented RAID controller features, such as battery-backed write caching,
or a large cache size within the RAID controller, are also very beneficial to performance.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

17System Characteristics and Hardware | Storage considerations

SAN-backed network-attached storage
As an alternative to using RAID disks, you can also use SAN-backed storage with a Fibre Channel
backplane network from the MDEX Engine server to the SAN.

A storage area network (SAN) is a network to which remote storage devices are attached, usually
accessible by a single machine in a one-to-one relationship.The storage devices appear to the operating
system as locally attached to the server, as opposed to network- attached disks.

Note: To enable a successful Endeca implementation, ensure that the SAN is properly configured.
It is also preferable that the MDEX Engine has dedicated access to its own SAN disk arrays.

In Endeca implementations, a SAN is in many cases faster and easier to work with than local storage.
SAN-backed storage provides the following benefits:

• Faster promotion of index images from staging to production
• Faster backup of index images in production
• Faster copying of data from staging to production server
• Simpler backups of Endeca index files due to built-in functions for backups and snapshots in SAN

Note: Network-attached storage with NFS is known to cause performance issues and is not
recommended in Endeca implementations.

Memory considerations
This section discusses the relationship between the amount of RAM, the Dgraph process virtual
memory usage, the Dgraph cache, the working set size (WSS), and the resident set size (RSS) for
the Dgraph process and their impact on performance.

In general, storing information on disk, instead of in memory, increases disk activity, which slows down
the server. Although all the information the MDEX Engine may need is stored on disk, the running
MDEX Engine aims to store in memory as many of its structures it currently needs as possible.

The decisions on what to keep in memory at any given time are based on which parts of the Dgraph
are most frequently used. This affects the resident set size and the working set size of the running
Dgraph, which, as they increase, lead to the increase of RAM being consumed.

Related Links
Dgraph virtual memory vs. RAM: use cases on page 19

While the amount of virtual memory consumed by the Dgraph process may grow and even
exceed RAM at times, it is important for performance reasons that the working set size of the
Dgraph process does not exceed RAM.

About Dgraph process memory usage
The Dgraph performs best when the working set of its process fits in RAM without swapping memory
pages to disk.

The working set of the Dgraph process is a collection of pages in the virtual address space of the
process that is resident in physical memory. The pages in the working set have been most recently
and frequently referenced. In other words, the Dgraph working set is the amount of memory a Dgraph
process is consuming now. This is the amount of memory that is needed to avoid paging.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Memory considerations18

In general, depending on the query load, the virtual memory process size of the Dgraph fluctuates. In
some cases, it can exceed physical memory to a degree without affecting performance.

The section “Dgraph virtual memory vs. RAM: use cases” illustrates these statements.

Many factors affect the amount of memory needed by the Dgraph process. The number of records in
the source data and their complexity are the most obvious factors, but the use of almost any feature
will cause some increase in RAM usage.

The amount of memory needed for the Dgraph process also depends on other aspects of the query
mix, such as which of the items that typically constitute Guided Navigation are being used and requested
(records, dimensions, refinements, or other), and their particular usage in the query mix.

Memory usage recommendations for optimizing performance
Use the following recommendations to measure memory and optimize its usage for best performance.

• Periodically measure the virtual memory process size of the MDEX Engine and its resident set
size. The goal for these tests is to check whether the working set size (WSS) of the MDEX Engine
starts to significantly exceed physical memory (it may exceed physical memory to a degree). The
WSS cannot be computed, although it is always less than or equal to the amount of virtual process
size for the MDEX Engine.

• Determine the WSS experimentally: if you notice that increasing RSS (by adding RAM or subtracting
competing processes) improves performance of the MDEX Engine, this means that the WSS was
previously larger than the RSS. This was likely the cause of the performance degradation.

• If the size of the WSS grows too close to the amount of RAM, or starts to exceed it, paging to disk
begins and you will notice rapid decreases in performance.

The most noticeable symptom of paging is a large increase in Dgraph query latency.You can directly
measure the amount of paging by using tools. For a list of some commonly used tools, see “Useful
Third-Party Tools” in this guide.

Dgraph virtual memory vs. RAM: use cases
While the amount of virtual memory consumed by the Dgraph process may grow and even exceed
RAM at times, it is important for performance reasons that the working set size of the Dgraph process
does not exceed RAM.

The following diagram illustrates this relationship:

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

19System Characteristics and Hardware | Memory considerations

In this diagram:

• RAM is the amount of physical memory
• VM is the Dgraph process virtual memory usage
• WSS is the Dgraph process working set size

The diagram illustrates three distinct use cases:

• Typical operation with normal memory saturation. The graph on the left side illustrates the
case where the amount of virtual memory used by the Dgraph process completely fits into RAM
and thus the working set size of the Dgraph process also fits into RAM.This is a standard situation
under which the Dgraph maintains its optimal performance.

• Typical operation in an out-of-memory situation. The graph in the middle illustrates the case
where, while the amount of virtual memory exceeds RAM, the working set size of the Dgraph
process fits into RAM. In this case, the Dgraph also maintains its optimal performance.

• Potentially I/O bound operation with poor performance where WSS starts to exceed RAM.
The graph on the right side illustrates a situation that you should avoid. In this case, both the
amount of virtual memory consumed by the Dgraph and the working set size of the Dgraph exceed
RAM. Two situations are possible in this scenario that are of particular interest to you: the WSS
can start to exceed RAM mildly or significantly. Subsequently, the degradation in I/O performance
can also be mild or significant. Identify the level of I/O performance that is acceptable to your
implementation. Depending on the acceptable I/O performance, you can decide whether you need
to address the situation with WSS exceeding RAM. In general, if WSS starts to considerably exceed
RAM, this causes Dgraph performance to drop dramatically.

Solutions for memory-based Dgraph performance problems
Use the following tips when addressing paging or out-of-memory situations with the Dgraph process.

• Add more RAM to the server hosting a single Dgraph or multiple Dgraphs. This is the simplest
solution to paging issues with the Dgraph. If multiple Dgraphs are sharing a machine, you can

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Memory considerations20

spread them out over a larger number of machines, thus giving each Dgraph a larger share of
RAM. This solution has limits based on your hardware capabilities.

In addition, you can take a conservative approach, and add additional RAM in cases where the
Dgraph memory consumption (WSS) approaches the amount of RAM available for the Dgraph,
but does not exceed it yet. In such cases, while additional RAM may not be necessary to create
an environment free of I/O contention, it provides a buffer and ensures that memory is available
when needed.

• Defragment the file system periodically. Note that this may alleviate some performance problems.
• Consider tuning the read_ahead_kb kernel parameter on Linux. For example, a large data scale

implementation that is operating out of memory can be a candidate for tuning this parameter.
• Explore how you use features such as wildcard search, multi-assign for dimensions, and others.

Related Links
Dgraph and Agraph Analysis and Tuning on page 57

This section describes Dgraph and Agraph performance tuning tips feature by feature. Features
are not presented in order of severity of system impact.

Memory usage recommendations for optimizing performance on page 19
Use the following recommendations to measure memory and optimize its usage for best
performance.

Solutions for memory-based Dgraph performance problems on page 20
Use the following tips when addressing paging or out-of-memory situations with the Dgraph
process.

Cache-tuning recommendations for optimizing performance on page 22
There is no hard and fast rule for how to best allocate memory between internal Dgraph cache
and FS cache, if you do not have enough memory to maximize both. For example, if you are
operating at large data scale, it is likely that you will not have enough memory to maximize
both the FS cache and the Dgraph cache. In practice it is easier to determine the right answer
experimentally.

Tuning the read_ahead_kb kernel parameter on page 30
Endeca recommends setting the read_ahead_kb kernel parameter to 64 kilobytes on all
Linux machines (RHEL 5). This setting controls how much extra data the operating system
reads from disk when performing I/O operations.

About the Dgraph cache
The MDEX Engine cache (or the Dgraph cache) is a storage area in memory that the Dgraph uses to
dynamically save potentially useful data structures, such as partial and complete results of processing
queries.

Since the Dgraph has direct access to the structures it needs, it does not need to repeat the
computational work previously done. The structures that are chosen for storing enable the Dgraph to
answer queries faster by using fewer server resources.

The Dgraph cache is unified and adaptive:

• The cache is unified in that all sorts of data structures go into the same cache. The whole Dgraph
has one cache, and all the threads share it.

• The cache is adaptive in that it uses a dynamic mechanism for evicting those data structures that
it finds no longer useful. Its eviction algorithm attaches value to each cache object based on the
empirical evidence of how useful the object actually is to the Engine, based on your current data,

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

21System Characteristics and Hardware | Memory considerations

and responding to your visitors’ current queries.When this information changes, the Dgraph cache
detects the change and adjusts, but you do not have to retune it.

The default Dgraph cache size (specified by the --cmem flag) is 1024MB (1GB).

The Dgraph cache improves both throughput and latency by taking advantage of similarities between
processed queries. When a query is processed, the Dgraph checks to see whether processing time
can be saved by looking up the results of some or all of the query computation from an earlier query.

The Dgraph cache is used to dynamically cache query results as well as partial or intermediate results.
For example, if you perform a text search query the result will be stored, if it was not already, in the
cache. If you then refine the results by selecting a dimension value, your original text search query is
augmented with a refinement. It is likely that the Dgraph can take advantage of the cached text search
result from your original query and avoid recomputing that result. If the navigation refinement result is
also in the cache, the Engine does not need to do that work either.

To a large extent, the contents of the Dgraph cache are self-adjusting: what information is saved there
and how long it is kept is decided automatically.

However, when deploying a Dgraph you need to decide how much memory to allocate for the Dgraph
cache.

Allocating more memory to the cache improves performance by increasing the amount of information
that can be stored in it. Thus, this information does not have to be recomputed.

Your MDEX Engine is well-tuned only when the Dgraph cache and the file system cache are
well-balanced; therefore you need to understand them both.

About the File System Cache
The file system (FS) cache is a mechanism that the operating system is using to speed up disk read
and write operations.

FS caching is very beneficial for the MDEX Engine, and it is important to tune the file system cache
and the Dgraph cache on the server that runs the Dgraph.

For example, consider read acceleration since it is the aspect of the FS cache that matters most when
tuning the MDEX Engine for performance.The FS cache speeds up reads by holding recently accessed
information in RAM (on the theory that your process will need this data again), and by proactively
reading ahead beyond the area recently accessed, and holding that information in RAM too (on the
theory that your process will likely ask for that data next).

Related Links
Tuning the read_ahead_kb kernel parameter on page 30

Endeca recommends setting the read_ahead_kb kernel parameter to 64 kilobytes on all
Linux machines (RHEL 5). This setting controls how much extra data the operating system
reads from disk when performing I/O operations.

Cache-tuning recommendations for optimizing performance
There is no hard and fast rule for how to best allocate memory between internal Dgraph cache and
FS cache, if you do not have enough memory to maximize both. For example, if you are operating at
large data scale, it is likely that you will not have enough memory to maximize both the FS cache and
the Dgraph cache. In practice it is easier to determine the right answer experimentally.

Use the following practices for optimizing the Dgraph and the file system caches for best performance:

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Memory considerations22

• Examine the Cache tab of the MDEX Engine Stats page, especially if you need to tune the cache.
In particular, pay attention to these columns in the Cache tab:

• “Number of rejections”. Examining this column is useful if you want to see whether you need
to increase the amount of disk space used for the MDEX cache. Counts greater than zero in
the "Number of rejections" column indicate that the cache is undersized and you may want to
increase it.

• “Number of reinsertions”. Examining this column is useful if you want to examine your queries
for similarities and improve performance by considering the redesign of the front-end application.
Large counts in the "Number of reinsertions" column indicate that simultaneous queries are
computing the same values, and it may be possible to improve performance by sequencing
queries, if the application design permits.

• "Total reinsertion time". Examining this column is useful for quantifying the overall performance
impact of queries that contribute to the "Number of reinsertions" column.This column represents
the aggregated time that has been spent calculating identical results in parallel with other
queries.This is the amount of compute time that potentially can be saved by sequencing queries
in a re-design of the front-end application.

• Experiment and increase the size of the Dgraph cache as your hardware allows. However, do not
set the Dgraph cache to use all the free memory available on your server, since you also want to
allocate memory for the file system cache and query working memory.

Use the Dgraph --cmem flag to experimentally tune the Dgraph cache. It specifies the size of the
cache in megabytes of RAM, and is the major mechanism for tuning the Dgraph cache. By default,
if --cmem is not specified, the size of the cache is 1024MB (1GB) for the Dgraph.

If you want the Engine to perform better, and you have physical memory to spare, you can increase
the cache size and see if it works. Once the MDEX Engine obtains extra memory for its cache,
the cache algorithm identifies the best strategy for storing the most useful data structures and
eviction of those structures that are less likely to be needed frequently.

• For a specific MDEX Engine on any server, find the optimal performance point experimentally:

Gradually increase the size of the Dgraph cache until it no longer improves performance. When
you notice that performance stops improving and starts degrading, you will know you have gone
too far.

Back off the Dgraph cache setting by a fair amount (such as 500MB). The right answer depends
on both raw data size and some subtle characteristics of the workload (such as, how much
disk-backed information the average query needs, and how similar or different queries are from
each other).

• Review your query mix to see if it exhibits a high degree of similarity between queries (either
because of a highly constrained user interface or a highly homogeneous user base). This is one
of the cases where performance improvements from a larger Dgraph cache may not be noticeable.
If all your queries are similar, a large Dgraph cache is unlikely to be valuable.

• Find the right balance between the Dgraph cache and the FS cache. When tuning the size of the
Dgraph cache, ensure that you do not accidentally displace the amount of memory allocated to
the FS cache.

In general, the Dgraph cache may contain a slightly larger number of objects useful to the Dgraph
compared with the FS cache. This is often beneficial for the Dgraph performance. However, this
causes a significant performance degradation when information that is not in the FS cache is
needed. This is because real disk access (not just access to the FS cache reads from RAM) will
be needed more often, and disk reads are quite slow relative to the reads from the FS cache.

• Be aware of the paging situation when you experimentally determine the best strategy for allocating
RAM to the Dgraph internal cache and the file system cache.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

23System Characteristics and Hardware | Memory considerations

If you increase the Dgraph cache size in large increments between experiments, you may create
a configuration where the Dgraph process memory (including the Dgraph cache) does not fit into
physical RAM. In this situation not only there is not enough room for the FS cache, but the Dgraph
process starts paging and performance degrades significantly.

• As your hardware permits, experiment with increasing the FS cache, along with the Dgraph cache.
In general, performance gains from using the FS cache vary depending on what processes you
are running and what they are doing with the disk.

For information on the file system caching mechanism, refer to the online sources of information
that are specific to y our operating system and the file system that you use.

The Dgraph cache and its impact on virtual process size
The amount of memory allocated to the Dgraph cache directly affects the virtual process size of the
Dgraph. An example in this topic shows how to adjust the Dgraph cache.

Furthermore, since the cache is accessed frequently, the amount of virtual memory allocated to it
affects the working set size of the Dgraph.This may cause virtual memory paging, which can adversely
affect throughput and especially the maximum latency. Whether this is a problem depends on your
deployment scenario.

Example: Adjusting the Dgraph cache

Consider a scenario where a single Dgraph runs on a machine with 8GB of physical memory:

• If the virtual process size of the Dgraph is 6GB with a default (1GB) Dgraph cache, and the machine
is not being used for any other processes, it makes sense to experiment with increasing the Dgraph
cache size to 2.5GB to improve performance. The resulting 8.5GB virtual process size will not
cause undue memory pressure.

• If the virtual process size of the Dgraph is 9GB, this exceeds the amount of RAM (8GB) and creates
significant memory pressure. However, it may still make sense to increase the Dgraph cache size
above the default, if the increase is not aggressive. Although in such a situation, increasing the
cache size further will slow down those queries that are not assisted by the Dgraph cache, that
may be acceptable if the effect of speeding up queries by providing a larger cache is greater than
the effect of slowing down queries by causing virtual memory paging.

To make the right trade-off in this situation, increase the cache size while watching throughput,
average latency, and maximum latency. At some point you will see that throughput is improving
but average latency has gotten worse. Whether you are willing to trade latency degradation for
throughput improvement will depend on the specific performance numbers, on your application,
and on the expectations of your users.

Estimating the MDEX Engine RAM requirements
This topic provides recommendations for estimating the requirements for physical memory for an
Endeca 6.1.x system given the anticipated growth of your data set.

The size of the Dgraph process is impacted by:

• The size of the Dgraph index generations in memory
• the size of the precomputed sorts in memory (if precomputed sorts are used)
• the size of the Dgraph cache
• Other factors, such as the size of the in-flight data

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Memory considerations24

Each of these areas is discussed below in a separate section.

Impact of the MDEX Engine cache on WSS

Use --cmem to identify (or change) the Dgraph cache, and take it into account when estimating the
projected amount of RAM needed for the MDEX Engine operations in view of the projected growth of
the data set.

Impact of partial updates on WSS

Partial updates can have a significant impact on RSS and WSS. The precise details of the Endeca
generation merging strategy are complex and proprietary. However, the rough pattern of memory
usage that you can expect to see from a Dgraph running with partial updates is as follows:

• Expect a jump in address space usage each time a partial update is applied. The size of the jump
depends on the size of the update. Each partial update causes one or more index generation files
to be created.

• When merges of partial update generations occur, the MDEX Engine allocates space for a new
generation file and merges two or more existing generations into that new generation file. This
allocation causes a spike in the address space usage. Since some of the merged operations may
cancel each other (for example, adding a record in generation file N is canceled by the deletion of
that record in generation file N+1), the new total generation size may be smaller after the partial
merge.

• Additionally, when full generation merges occur, all existing generations are merged into a single
new generation file. Since the new generation file is roughly the same size as the sum of all
pre-existing generation files (minus any canceled operations), the WSS roughly doubles during
this period.

• While a full merge may cause the WSS to increase significantly, the effects on WSS are muted
by the paging behavior of the operating system. Based on Endeca's recommendations, it is
unnecessary for an MDEX Engine server to have a quantity of RAM equal to twice the generation
file sizes when partial or full merge is occurring.

• It is fairly easy to detect the occurrence of a full merge. Watch the generations directory, found in
<dgidx_output>/<dataset_prefix>_indexes/generations/, and notice when the
number of generation files drops to 1.

• During this testing, push enough of partial updates through the system to trigger the full merge.
This will provide you with a good enough estimate of how much RAM you need for handling partial
updates.

Note: Beginning with version 6.1.4 of the MDEX Engine, you can set the partial updates merges
to use a balanced or aggressive merge strategy. For details on the merge policy, see the Partial
Updates Guide.

Impact of sorting strategies on WSS

When measuring WSS, account for the sorting strategies used by the MDEX Engine. To ensure that
you measure the full "eventual" WSS of the Dgraph in 6.1.x, include a wide range of queries in your
testing logs, ensuring that a portion of your queries utilizes sorting strategies, including precomputed
sorts.

Note: You can confirm whether your sorting queries utilize precomputed sort by checking
whether any of your properties is configured in Developer Studio so that it can be used for record
sort, or by checking the <RECORD_SORT_CONFIG> element in your application's XML
configuration files. This element lists properties that are configured to use precomputed sort.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

25System Characteristics and Hardware | Memory considerations

Precomputed sort techniques may be used by the MDEX Engine in the default sort queries.
Therefore, to verify whether any of your sorting queries use precomputed sort, you can check
the Index Preparation Tab of the Stats page that contains Precomputed Sorts statistics. This
metric displays how much time the Dgraph has spent computing sorts, including computing sorts
and incremental sort updates.

Impact of in-flight data on WSS

In addition to the types of impact that are already listed in this topic, other factors, such as in-flight
processing and data can have an effect on WSS. These factors cannot be measured directly, but you
should be aware of their effect.

Recommendations for estimating projected RAM requirements

Important: Use the following recommendations with the understanding that estimating RSS
and WSS depends to a large degree on the operating system processing, and is also highly
dependant on the context of your Endeca implementation. The size of the Dgraph process is
affected by several aspects, such as the size of the index in memory, cache, and other
computations. These artifacts, in turn, depend on the features you are using, such as types of
updates you run (partial or baseline), or whether the application relies on precomputed sorts.
To summarize, while estimating requirements for physical memory, use these recommendations
in the context of your own implementation, to account for variability in the RSS size due to these
factors.

To estimate projected requirements for physical memory for an Endeca 6.1.x system, use the following
recommendations:

• Measure RSS. Perform evaluations of your average resident set size for your indexes, and peak
resident set size, while noting the record set size on disk. For example, you may find it useful to
identify various ratios between average record size on disk, average resident set size of your
indexes, and peak resident set size. For testing these numbers, employ tests with varying levels
of request activity sent to the Dgraph. For example, send a considerable number of requests to
the 6.1.x MDEX Engine with periodic cache flushes to force the Dgraph to go to memory or disk
as needed to fulfill some of the requests (this is true if you replay request logs for your test).

• If your implementation uses partial updates, account for this fact in your MDEX Engine testing.
Include in your tests large enough files that contain records which will be updated through partial
updates. For more information, see the section in this topic on Impact of partial updates on RSS.

• Similarly, account for the size of the Dgraph cache, for sorting queries that utilize precomputed
sorts, and for the size of in-flight data (see sections in this topic on each of these aspects of the
RSS).

• Identify the ratio of the RSS to on-disk representation of the record set, and confirm that with
different tests this ratio remains the same.

• Based on these evaluations, draw conclusions and identify the following numbers:

• The average on-disk record set size and the largest on-disk record set size.
• The peak resident set size observed with the current record set.

Note: If you are not using partial updates, this number could be roughly equivalent to
the on-disk representation of the MDEX Engine data plus the size of the cache for each
of your Dgraphs, the size of the in-flight processing and data, and the fact whether
precomputed sort is being used. If you are using partial updates, see a section in this
topic for their impact on WSS and RSS.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Memory considerations26

• Using these recommendations, you can identify the following numbers for the MDEX Engine 6.1.x:

• The average on disk record size that is used for your number of records.
• The peak resident set size (RSS) of the Dgraph.
• The peak virtual memory usage.

• Predict the growth of the RSS that you will need.You can do so based on the projected growth of
the on-disk representation of the data set and the numbers that you obtain for the peak resident
size, peak virtual memory usage and their ratios to your data set size.

Once you predict the growth of the resident set size, you can estimate memory requirements for your
Endeca implementation.This will make it possible to provision enough hardware to support the MDEX
Engines with the projected data set growth.

Network considerations
Endeca recommends that you use 100Mbit or Gigabit Ethernet. Also, make sure that all NICs in your
implementation use the same duplex setting. The full-duplex setting is highly recommended.

Dgidx performance recommendations
This topic provides information about performance considerations for Dgidx.

RAM and disk swap size recommendations

Although this guide deals with MDEX Engine performance, since the Dgidx program is involved in the
indexing process, it is important to plan for adequate Dgidx performance as well. It is especially
important to plan for Dgidx performance if you have a large data set.

Endeca recommends provisioning your hardware for running Dgidx using these estimates:

• Plan to run Dgidx with the provisioned amount of RAM that is equal to the size of the finished index
size, that is the size of the data/dgidx_output directory after a successful Dgidx run.

• Increase the amount of swap space size to at least the amount of RAM provisioned on your system.

Troubleshooting tips for Dgidx

if a record takes longer than 60 seconds to process by Dgidx, Dgidx prints out a warning enabling you
to identify and fix the record. This information can be useful to you if you need to identify a record with
extremely large numbers of property assignments.This may occur as a result of an issue with the ETL
process. After you identify the record, you can review it to decide whether all of its assignments are
required by the application.

Operating system considerations
This section discusses various tuning changes on the Operating system level that you can perform
on the server running the MDEX Engine to optimize its performance.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

27System Characteristics and Hardware | Network considerations

Windows 2008 performance considerations
If you experience poor performance on an Intel Xeon processor-based servers running Windows
Server 2008, Endeca recommends changing the default BIOS setting for power management from
"Dynamic" mode to "Static High Performance" mode.

The BIOS has a mode setting that controls the power regulator. In the default "Dynamic" mode, the
system attempts to balance high performance with power savings. Setting the regulator to "Static High
Performance" mode forces the system to always favor performance.

This issue has been observed only on some Xeon-based servers.

VMware performance considerations
This topic discusses performance expectations of MDEX Engine deployments on VMware (all supported
versions) and provides recommendations for such deployments.

Virtualizing Endeca deployments on VMware is motivated by cost management reduction that is
typically associated with server consolidation, as well as by human cost reduction associated with
simplified server administration and maintenance.

Supported guest operating systems

See the "Supported operating systems" section of the Endeca MDEX Engine Installation Guide for
supported guest operating systems.

Configuration guidelines

Endeca recommends using the following guidelines for MDEX Engine deployments on VMware:

• Configure four VCPUs on a virtual machine.
• Specify four threads for each Dgraph. Overall, the number of threads should not exceed the number

of VCPUs.
• Allocate a single Dgraph per virtual machine. Endeca does not recommend running more than

one MDEX Engine per virtual machine.

Performance expectations

Overall, for server-level performance, the average and sustained throughput decrease in a VM
environment, while the latency and the warmup time increase.

If you consider deploying an MDEX Engine with the Dgraph that is configured with four threads and
where the MDEX Engine is assumed to be utilized at full capacity, expect a 10-30% performance
overhead with a VMware-based deployment compared with a non-VM deployment. The indexing
performance is also expected to be in the range of 10-30% overhead above the non-VM deployment.
In some deployments, depending on your hardware, storage and implementation strategy, performance
overhead can be up to 50%.

These performance expectations manifest in the decrease in sustained throughput, increase in average
latency, increase in the amount of time it takes the Dgraph to reach 80% of its expected level of
throughput, and increase in the latency of the longest query (99% of queries perform better than this
query).

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Operating system considerations28

Additional performance recommendations

Performance risk associated with virtualizing the MDEX Engine is directly related to the performance
and scalability requirements of your application. While Endeca recommends virtualization, customers
interested in virtualizing HPC (high-performance computing) applications should analyze the risk
associated with such projects and seek IT support with strong virtualization skills and experience.
Endeca believes that virtualization of the MDEX Engine on VMware is most appropriate at smaller
data scale.

Endeca recommends the following practices to ensure adequate performance on VMware:

• Implement vendor best practices for tuning performance of network and storage in a VM
environment. For example, be aware of the limitation of four virtual CPUs per virtual machine.

• Be aware of the virtualization performance tax. The performance overhead, or "tax", of virtualizing
the MDEX Engine varies by data set and by performance metric. When a deployment is properly
configured and sized, the performance overhead is generally about 10%-30%. Endeca expects
that the virtualization performance tax will exceed the range of 10%-30% and may reach up to
50% in the following situations:

• Improperly configured or improperly sized deployments. Adequate memory allocation is
especially important. Plan for additional memory and storage requirements due to index
replication.

• Write-heavy workloads. In particular, the following Endeca configurations are susceptible: (1)
deployments where Dgidx and Forge are used heavily, and (2) Dgraphs under extensive and
sustained partial update load.

• Rely on a robust deployment architecture. Most of the initial performance problems associated
with deploying VMware occur due to mis-configurations or inadequate system resources.

• The approach to disk storage can be a significant factor in performance. Both locally-attached
storage and network-attached storage solutions are supported.To ensure adequate performance,
pay special attention to testing and tuning the bandwidth and latency of your storage solution with
VMware. Consult with the documentation for your storage manufacturer for information on tuning
your storage configuration for VMware.

• Expect that lower throughput will lead to longer warmup periods.
• Plan for lower ratio of query threads to update threads for applications leveraging frequent partial

updates. Frequent partial updates are recommended in such implementations because each
Dgraph is limited to four threads by the virtual machine limit of four virtual CPUs. On non-VM
platforms, a Dgraph can be configured with significantly more threads, improving the ratio of query
threads to update threads during partial update processing.

Linux considerations
This section lists recommended tuning changes on RHEL 4 and RHEL 5 configurations for the MDEX
Engine.

About the read_ahead_kb kernel parameter

Starting with the MDEX Engine version 6.0, the MDEX Engine takes advantage of the readahead
function.

Readahead is a technique employed by the Linux kernel that can improve file reading performance.
If the kernel assumes that a particular file is being read sequentially, it attempts to read subsequent
blocks from the file into memory before the application requests them. Setting the readahead can
speed up the system's throughput, since the reading application does not have to wait as long for its
subsequent requests, since they are served from cache in RAM, not from disk. However, in some

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

29System Characteristics and Hardware | Operating system considerations

cases the readahead setting generates unnecessary I/O operations and occupies memory pages
which are needed for some other purpose. Therefore, tuning readahead for best performance is
recommended.

You can tune readahead for optimum performance based on the settings recommended by Endeca.

Tuning the read_ahead_kb kernel parameter

Endeca recommends setting the read_ahead_kb kernel parameter to 64 kilobytes on all Linux
machines (RHEL 5). This setting controls how much extra data the operating system reads from disk
when performing I/O operations.

Reducing this value from the default typically increases sustained throughput for the MDEX Engine
while also increasing its warmup time. Warmup is defined as initial performance of the MDEX Engine
after startup (throughput and query latency), until the sustained level of performance is reached.
Therefore, if you decide to tune this parameter, choose a value to balance these concerns.

Reducing read_ahead_kb has a noticeable effect and increases throughput for the MDEX Engine
only in cases where a large data set may not fit into the MDEX Engine memory.

In cases when the index fits into memory, reducing read_ahead_kb from its default has no noticeable
effect on the MDEX Engine performance.

When operating the MDEX Engine on a large data set that is running out of memory, consider adding
more memory in addition to tuning read_ahead_kb to improve performance.

Setting read_ahead_kb to 64 kilobytes is a reasonable choice for most applications running on Linux.

To tune the read_ahead_kb kernel parameter on RHEL 5:

Add a command to /etc/rc.local as root:

echo 64 > /sys/block/sda/queue/read_ahead_kb

where sda is the name of the disk device for the MDEX Engine, and 64 is the number of kilobytes
for the new read_ahead_kb setting.

Changing the I/O scheduler on RHEL 5

Endeca recommends changing the default I/O scheduler that the Linux kernel uses from CFQ to
DEADLINE.

This dramatically speeds up performance of Endeca applications with large data sets in cases where
both the amount of physical memory available to the MDEX Engine and disk I/O are limited. This
recommendation applies to Endeca implementations on both RAID disk arrays and individual disks.

To adjust the I/O scheduler on a device:

1. Add a command similar to the following to /etc/rc.local as root:

echo deadline > /sys/block/sda/queue/scheduler

where sda is the name of the block device where the Dgraph input resides on your system. This
changes the scheduler to DEADLINE.

2. Use performance tools to validate the results.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | Operating system considerations30

Disabling the swap token timeout on RHEL 5

Endeca recommends disabling the swap token timeout by setting it to zero. The swap token is a
mechanism in Linux that allows some processes to make progress when the total working set size of
all processes exceeds the size of physical RAM.

In situations when only one process is active, and the virtual memory size of that process gets close
to, or exceeds the size of the available RAM, enabling the swap token negatively affects performance.
In the context of the Dgraph, this can happen if the physical server is dedicated exclusively to running
the MDEX Engine, and the index size is close to, or exceeds the size of the available RAM.

Endeca recommends disabling the swap token for those MDEX Engine configurations running on
Linux that serve large data sets and are memory- and disk-bound.

If you choose not to disable the swap token, and experience erratic Dgraph performance, you may
wish to examine the system to determine whether the swap token is causing problems. The swap
token can cause "direct steal" operations.

To measure "direct steal" operations, check the contents of /proc/vmstat, adding pgsteal_dma32
and pgsteal_normal values and subtracting kswapd_steal.

Note: Endeca recommends that you disable the swap token explicitly for the MDEX Engine
disk devices even though you can obtain a patch for the Linux kernel that disables it.

To disable the swap token timeout on RHEL 5:

As part of the boot process, add one of the following options to your /etc/rc.local file as root:

sysctl -w vm.swap_token_timeout=0

or

echo 0 > /proc/sys/vm/swap_token_timeout

Or, add vm.swap_token_timeout = 0 to /etc/sysctl.conf.

Load balancer considerations
For all deployment architectures, Endeca recommends the following load balancing practices.

• Use load balancers with the MDEX Engine to increase throughput and ensure availability in the
event of hardware failure. Endeca recommends including two hardware-based load-balancing
switches configured redundantly in your configuration. Having two load balancers ensures their
availability in the event of a load balancer hardware failure.

• Use the "least connections" model as the best routing algorithm for balancing traffic to the Dgraphs.
The “round robin” model can have negative consequences, especially when occasional long-running
queries are possible and the site is operating near its maximum traffic load.

• Ensure that return traffic from Dgraphs to the client tier is directly transmitted, and does not pass
back through the load balancer hardware.

• Use scripting for load balancers. For example, you can use
http://[host]:[port]/admin?op=ping on the load balancer to check whether the Dgraph
process is running on this port. If it is not running, the load balancer fails over to another port, and
directs queries to the MDEX Engine that is currently available.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

31System Characteristics and Hardware | Load balancer considerations

Load balancing and session affinity
In a load balancing situation, consider enabling session affinity on the application server that directs
server requests to the load balanced Dgraphs.

Session affinity, also known as “sticky sessions”, is the function of the load balancer that directs
subsequent requests from each unique session to the same Dgraph in the load balancer pool.
Implementing session affinity makes the utilization of the Dgraph cache more effective, which improves
performance of Dgraph access and the application server.

To facilitate session affinity, your application code can call ENEQuery.setQueryInfo() to create
an ENEQueryInfo object. In this object, you set query-specific information in name/value pairs (such
as the session ID and query ID) for the MDEX Engine to log.

Alternatively, you can also set this information by calling HttpENEConnection.addHttpHeader()
and specifying a name/value pair.

In either approach, the Web application sends the name/value pairs to the MDEX Engine. However,
the setQueryInfo() method adds the name/value pairs to the query object itself; while the addHttp¬
Header() method adds the name/value pairs to the header of the HTTP GET request.

Note: The addHttpHeader() method works with the Dgraph but does not work with the
Agraph. (The setQueryInfo() method works with both the Dgraph and Agraph.)

In cases where long URLs interact poorly with a load balancer, you may need to force a POST request.
You can force a POST request by calling HttpENEConnection.setMaxUrl() and specifying an
upper limit on the length of the URL. Any URLS longer than the specified value are sent to the MDEX
Engine using a POST request.You can also call setMaxUrl() and specify a value of 0 to force a
POST request for all queries regardless of URL length.

Remember that application code automatically sends a query using a POST if the URL becomes too
long to send using a GET request. The setMaxUrl() provides a way to force the request type if
necessary.

Session affinity increases the latency overhead of the load balancer. Therefore, Endeca recommends
testing the load balanced environment for performance optimization. This helps to determine whether
the benefit of increased leverage from the Dgraph cache exceeds the cost of increased latency in the
load balancer.

High availability considerations
Endeca recommends the following practices to ensure high performance and high availability.

• Use the Dgraph in multithreaded mode and experiment with increasing the number of threads. By
default, the Dgraph runs in multithreaded mode with the number of threads set to one. It can be
configured to run with a larger number of threads.

• Protect your configuration from hardware failures:

Use redundant disk drives with RAID (RAID 0, RAID 0+1, RAID 5), or SAN.

Utilize device redundancy for servers, load balancer devices and routers.

Use a second data center (hot or cold standby) to protect from site failures, such as power and
network outages or enterprise data center failures.

• Protect your configuration from software failures:

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

System Characteristics and Hardware | High availability considerations32

If you have not done this already, upgrade to 64-bit systems to avoid “out of address space” failures.
(Starting with its version 6.*, MDEX Engine installations are only supported on 64-bit systems.)

Use respawning monitors to protect against unexpected fatal process errors.

Watch out for paging with process memory usage.

Periodically examine your application for slow queries, or massive responses (too many results
returned not all of which may be needed by the users).

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

33System Characteristics and Hardware | High availability considerations

Chapter 3

Using Multithreaded Mode

This section discusses MDEX Engine performance in multithreaded mode.

About multithreaded mode
The MDEX Engine always runs in multithreaded mode with the default number of threads set to 1.
The multithreaded mode cannot be disabled.

The MDEX Engine always starts with a pool of threads that you can control with the --threads flag.
These threads include query processing and partial update processing threads and additional threads
that support query and update processing.

Each thread acts like an independent MDEX Engine, processing client requests one at a time and
performing other tasks that support these requests, such as sorting and background index merging.
It is important that the threads share data, memory, and the server network port. Essentially, this allows
a multithreaded MDEX Engine with N threads to appear as a single MDEX Engine process that can
work on N queries at a time. Each of the independent threads can run on independent CPUs (or cores),
allowing a single multithreaded MDEX Engine to make use of multi-processor hardware.

Multiple threads can also share a processor, especially a multi-core processor, allowing an MDEX
Engine running on a single-processor host to remain responsive as long-running queries are handled.

Benefits of multithreaded MDEX Engine
The MDEX Engine normally runs in multithreaded mode with the default number of threads set to 1.
For many applications, Endeca recommends running the MDEX Engine with the number of threads
greater than 1. These applications have the following characteristics.

• Large index files on disk. Only one set of index files is required for the multithreaded MDEX
Engine. Thus, in addition to reduced hardware costs, the multithreaded approach reduces the
hardware hosting disk space required.

• Long-running queries. For applications that rely on commonly used MDEX Engine features, the
vast majority of queries complete in a fraction of a second.This allows the MDEX Engine to remain
responsive at all times. However, many applications make use of more advanced features (such
as computing complex aggregate Analytics queries) and can encounter longer running queries.
For such applications, multithreaded mode allows the MDEX Engine to remain responsive while
working on long-running queries.

• Simplified system management and network architecture. Enabling multithreading and tuning
it is much simpler than adding new distinct servers that will run additional MDEX Engines, which
includes reconfiguring the file system, adding load balancers and other infrastructure changes.

• Applications with high throughput requirements with limited hardware resources. The most
efficient way to achieve simultaneous high throughput is to add MDEX Engines and run multiple
MDEX Engines on distinct servers. But, when hardware resources are limited, running a
multithreaded MDEX Engine on the same server requires fewer hardware resources than multiple
distinct Engines, because all threads in the multithreaded MDEX Engine share resources.

The MDEX Engine relies on in-memory index structures to provide sub-second responses to
complex queries. As the scale of application data increases, so does the memory required to host
a single instance of the MDEX Engine.

Multithreaded execution mode enables more efficient utilization of RAM through SMP (Symmetric
Multi-Processing) configurations. For example, if your current data scale requires 4GB of RAM,
and query throughput requires four CPUs, multithreaded execution allows the site to be hosted on
a single quad-processor machine with 5-6GB of RAM, rather than using more costly options, such
as four single-processor machines, each with 4GB of RAM, or a 16GB machine with four Dgraphs
on it.

• Applications that heavily use the MDEX Engine dynamic cache. Such applications cause a
multithreaded MDEX Engine (with threads greater than 1) to perform better than multiple
singlethreaded MDEX Engines because all threads in a multithreaded Engine share the same
dynamic cache. This is especially true when that cache is cleared frequently due to restarts or
partial updates, or when the cache is typically under heavy eviction pressure.

The MDEX Engine threading pool
The MDEX Engine consistently manages all processor-intensive tasks related to query processing
using its preconfigured threading pool.

The --threads flag reflects the total number of threads in the MDEX Engine threading pool.

You define the number of threads in the threading pool at MDEX Engine startup, based on the setting
for the --threads flag.

Recall that the recommended number of threads for the MDEX Engine is typically equal to the number
of cores on the MDEX Engine server. By managing the threading pool, the MDEX Engine lets you
more accurately limit the available computation resources to each core. This ensures that the system
resources are used effectively for the highly prioritized tasks in the MDEX Engine all of which support
query processing and high performance.

The threading pool manages the following MDEX Engine tasks:

• Query processing tasks
• Update and administrative operations
• All tasks that support query processing in the MDEX Engine. The MDEX Engine allocates these

tasks for threads in the threading pool.The tasks include all high-priority, CPU-intensive, frequently
performed operations the MDEX Engine runs in production. For example, they include precomputed
sorting, background merging of index generations, and operations that support high performance
of updates, among others.

Other MDEX Engine operations that do not have a significant impact on CPU usage are not managed
by the threading pool.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Using Multithreaded Mode | The MDEX Engine threading pool36

Note: If you use operating system commands such as top to examine the number of threads
used by the MDEX Engine server, you may see a number that is larger than the number you
specify with the --threads flag. This is because in addition to this number of threads, the
MDEX Engine may use additional threads for other tasks.These additional threads support tasks
that are run infrequently, are less-CPU intensive, and do not affect overall MDEX Engine
performance.You cannot control these additional threads.

Configuring the number of MDEX Engine threads
For most applications, Endeca recommends experimenting and increasing the number of threads.

By default, the MDEX Engine runs in multithreaded mode with the number of threads set to 1.

To increase the number of threads:

Specify it for the --threads flag when starting the MDEX Engine (Dgraph).
For example: --threads 4

This starts the MDEX Engine in multithreaded mode with four threads that are used for query processing
and other MDEX Engine tasks that support query processing.

When to increase the number of threads
Endeca recommends using a higher setting for threads than in previous releases. Increasing the
number of threads allows the MDEX Engine to handle more queries simultaneously.

Use the following recommendations:

• If you are using an application with a low throughput without long-running queries, this
implementation can run in a singlethreaded mode in which one thread is used to process all query
requests to the MDEX Engine. The same thread is used for other query-related processes of the
MDEX Engine.

• If you are using a single MDEX Engine server with one thread, it is worth increasing the number
of threads to improve performance.

A simple recommendation is to configure at least one thread per core. Higher ratios may generate
more throughput, but due to the potential impact on latencies, Endeca recommends running further
testing to find the thread count most beneficial to the needs of a specific application.

If increasing the number of threads stops improving query performance, this is an inflection point
at which you can start considering the need to switch to a configuration with more Dgraphs.

A typical estimate that you can use to start testing with the increased number of threads is about
1 thread per core. For example:

• On a standard processor, enable 1 thread per processor
• On a dual-core processor, enable 2 threads per processor
• On a quad-core processor, enable 4 threads per processor

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

37Using Multithreaded Mode | Configuring the number of MDEX Engine threads

Multithreaded MDEX Engine performance
The performance of an MDEX Engine process is a function of a number of factors.

These factors include:

• Base, single-threaded performance, given the application data and query profile
• Number of processors on the host system
• Query characteristics
• Host operating system

Generally, on a host system with N CPUs or cores, where one single-threaded MDEX Engine can
serve K operations/seconds of query load, N or more independent MDEX Engine processes will serve
somewhat less than N times K, commonly in the 80-90% utilization range. In other words, given the
base single-instance performance of K, the expected N-processor performance is given by

.

The expected performance for one multithreaded MDEX Engine with more than one thread is similar,
but generally somewhat less. In this case, the expected performance is given by the above formula,
except with utilization in the 65% to 85% range (). However, less RAM is required for
running one multithreaded MDEX Engine with threads more than one compared with running separate
single-threaded MDEX Engines.

For example, if one single-threaded MDEX Engine provides 20 ops/sec on a given load, running two
MDEX Engines on a dual processor may provide around 36 ops/sec (U=90%, K=20, N=2). Running
the same application with an MDEX Engine with threads more than one may provide 32 ops/sec
(U=80%, K=20, N=2).

Similarly, if a single MDEX Engine requires 16GB of RAM, two Engines will require 32GB. Whereas
a single MDEX Engine with more than one processing thread will only require slightly more than 16GB
of RAM.

To summarize, Endeca recommends that you run a single MDEX Engine with the number of threads
set to more than one, as opposed to multiple MDEX Engines. (Running multiple MDEX Engines
introduces implementation complexity and also requires a load balancer.)

Recommended threading strategies and OS platform
The size of the thread pool and the host operating system impact performance and processor utilization.

In general, Endeca recommends using one thread per processor or core for good performance in most
cases. The actual optimal number of threads for a given application depends on many factors, and is
best determined through experimental performance measurements using expected query load on
production data.

If high performance is required, enable more than one thread. Determine the optimal number of threads
through load testing of different configurations.

As a starting point, enable the following number of threads:

• On a quad-core processor, enable 4 threads per processor
• On a hyperthreaded processor, enable 2 threads per processor
• On a standard processor, enable 1 thread per processor

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Using Multithreaded Mode | Multithreaded MDEX Engine performance38

For example, consider a server with two hyperthreaded processors and sufficient disk resources and
RAM, on which a high-performance application will be deployed. The appropriate starting point for
such an architecture would be one MDEX Engine running multithreaded with 4 threads.

Multithreaded MDEX Engine on Linux and Solaris

On Linux and Solaris, the MDEX Engine uses the POSIX Thread Library, Pthreads.You can examine
the thread count using standard tools, such as top.

Multithreaded MDEX Engine on Windows

On Windows, the MDEX Engine uses native Windows threads. The thread count for an MDEX Engine
can be examined in the Windows Task Manager in the Threads column.

Note: The number of threads listed may be greater than the value specified for the --threads
flag; the additional threads that could be listed are those that are used infrequently by processes
that are not CPU-intensive and represent internal maintenance tasks. All the CPU-intensive,
query processing-related threads are controlled by the --threads flag.

Multithreaded MDEX Engine on VMware

On VMware, use the following configuration:

• Be aware of the limitation of four virtual CPUs per virtual machine.
• Specify four threads for each Dgraph. Overall, the number of threads should not exceed the number

of VCPUs.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

39Using Multithreaded Mode | Recommended threading strategies and OS platform

Chapter 4

Diagnosing Dgraph and Agraph Problems

This section discusses techniques for determining the root cause of apparent poor MDEX Engine
performance. It walks you through some example scenarios and points you in the appropriate direction,
based upon the problems that may be present in your Endeca implementation.

Information you need
This section lists the information you need and the tools you can use to gather information in order to
analyze and optimize the MDEX Engine performance.

Use the following sources of information:

• System state characteristics
• The MDEX Engine request log
• The Cheetah utility
• Eneperf

Sometimes poor application performance is the symptom of an operational problem (with the hardware,
network, connections, or the application server). At other times, it may require you to review and revise
the application coding, the Dgraph or Agraph settings that were chosen previously and may need to
be adjusted, or interactions between different features.

The first step in performance tuning is to find out what is causing the application to run more slowly
than expected.

As you gather information about system performance, Endeca recommends that you note what steps
you take and any changes you make to your environment, to ensure that you can analyze them or
revert to your previous settings if needed.

When testing performance, make sure that the types of operations used to produce a load against the
Dgraph or Agraph are representative of an actual application usage scenario.

System state characteristics
The first clues to identifying the source of a performance problem are found in the system state. The
following characteristics are easy to extract and may immediately indicate a direction in which to
concentrate further investigation.

• The Dgraph_input directory.
• Information about changes in the configuration. This includes:

Can the issue be replicated in the staging environment?•
• Could the issue be caused by changes in network traffic or other network-related performance

issues?
• Have there been any changes to the incoming data, pipeline or configuration files?

• CPU utilization, disk I/O activity, and internal resource use. This includes:

• Physical number of CPUs available and the number of cores per CPU
• The number of threads the Dgraph has been started with, and the total number of Dgraphs

started on one machine
• The type of disk I/O connection
• CPU utilization statistics from the Dgraph host (especially when the performance problem is

exhibited, if it is transient)
• CPU utilization statistics from the front-end application host
• disk I/O activity: processes other than the Dgraphs running on the machine that are not standard

daemons or services (for example, a periodic backup process may interfere with disk access)

• Memory utilization. This includes:

• Amount of allocated memory on the application server
• Amount of physical memory (RAM) available on the Dgraph machine
• Memory footprint of the Dgraph process.This includes the Dgraph cache (obtain it with --cmem),

resident set size, and the amount of virtual memory available for the Dgraph process.

• Storage capacity and configuration. This includes:

• Disk capacity in GB and disk rotation speed
• Configuration and number of disks holding the index
• Whether network-attached storage is used (SAN with Fibre Channel is recommended) versus

local storage
• Whether RAID configuration is used (the simultaneous use of two or more hard disk drives to

achieve greater levels of performance)
• If RAID is used, the configuration of the read-ahead policy for RAID. If the policy you have

allows read-ahead, this lets the disk controller read additional data into the disk cache, which
in turn increases the Dgraph performance.

• Whether mirrored disks are used

This information defines the basic parameters for the performance problem. Typically, you base initial
hypotheses on these findings, and confirm them with the next steps of the investigation.

Note: It is likely that you already have many of the tools you need to assess system state.

Related Links
Useful Third-Party Tools on page 143

This section lists some third-party tools that you may find useful during the Endeca
performance monitoring process. The tools listed here are not supported by Endeca and are
subject to change. In addition, these suggestions are not meant to overrule your choice of
other tools.

Performance tools overview
You can use the following performance tools.

• The MDEX Engine Request Log

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Information you need42

• The MDEX Engine Statistics page
• The MDEX Engine Auditing page
• The Cheetah utility
• Eneperf

The following sections describe these tools in detail.

Related Links
The MDEX Engine Request Log on page 85

This section describes the MDEX Engine (Dgraph) request log, which you can use to analyze
Endeca application performance.

MDEX Engine Statistics and Auditing on page 131
The MDEX Engine Statistics page displays MDEX Engine (Dgraph) performance statistics.
You can also view the Agraph Statistics page.The MDEX Engine Auditing page tracks usage
for licensing and performance purposes. This section describes these pages.

The Eneperf Tool on page 115
Eneperf is a performance testing tool that is included in your Endeca installation.This section
describes how to use Eneperf.

The MDEX Engine request log

The MDEX Engine request log captures per-query metrics from a running Dgraph.

You can sort, filter, or otherwise manipulate the Dgraph request log to collect performance information.
For example, you can sort the Dgraph request log based on query processing time to get the list of
most expensive queries, or sort it on response duration to track latency trends.

The MDEX Engine Statistics page

The MDEX Engine Statistics page (also called the Dgraph Stats page) provides aggregated metrics
since startup, and creates a detailed breakdown of what a running Dgraph is doing.

If performance is an issue, this page can help you to figure out which features are at fault.

Typically the feature in the Hot-spot Analysis section with the highest total is the best place to start
your investigation.You can use the figures in the Dgraph Stats page to calculate useful metrics.

For example, to determine your application’s network usage, you can multiply the number of ops/second
by the average result page size.

The MDEX Engine Auditing page

The MDEX Engine Auditing page lets you view the aggregate MDEX Engine metrics over time and
provides output of XML reports that track ongoing usage statistics.

These statistics persist through process restarts. This data can be used to verify compliance with
licensing terms, and is also useful for tracking product usage. Each Dgraph in an implementation is
audited separately.

The Cheetah utility

Use the Cheetah utility for processing request logs to analyze query load metrics for the MDEX Engine.
Cheetah reports actual performance, not the expected performance.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

43Diagnosing Dgraph and Agraph Problems | Information you need

Use the Cheetah utility together with Eneperf to investigate whether you have performance under load.
The Cheetah utility and documentation are available from the Endeca Support Center.

Here are some of the ways you can use this utility:

• Isolate requests within a specific time range with the --timelower and --timeupper flags.
• Focus your attention on user-generated requests, by excluding admin, invalid, empty and error

requests with the --ignore flag.
• Ensure that all statistics are logged. Request metrics in Endeca log reports do not correspond

directly to query load metrics for the MDEX Engine. Differences in request metrics can arise from
pages that issue multiple queries and from caching. For example, run Cheetah with --showAll
flag to ensure all statistics are logged:

perl cheetah.pl --showAllGraph1.log > Graph1.stats

• Determine whether the performance bottleneck is caused by the Dgraph by comparing the statistics
for “Engine-Only Processing Time” with “Round-Trip Response Time”.

• Show statistics based on threading with the --showthreading flag. This is useful when tuning
your Dgraph threading configuration to increase the number of query threads.

Eneperf

Eneperf is a lightweight performance testing tool that is included in your Endeca installation. It makes
Presentation API queries and XQuery-based queries against the Dgraph based on your Dgraph request
logs and reveals how many operations per second the Dgraph responds with.

Dgraph performance issues
This section discusses locating and addressing Dgraph performance issues.

Improving the speed of Dgraph startup
Starting with the 6.1.x version of the MDEX Engine, Web services are loaded by default at startup.
For this reason, Dgraph startup takes slightly longer than it did in the version 6.0.1.The Dgraph startup
is typically faster than in Endeca IAP 5.1.

In most cases this increase in startup time is not an issue. However, if you find the startup time a
problem and you are not planning to use Web services, you can turn off Web services and thus avoid
the startup penalty. To do this, start the Dgraph with the --disable_web_services flag. (This flag
is particularly useful during development, when you might be starting and stopping the Dgraph
frequently.)

Tips for troubleshooting long processing time
You can use the Cheetah utility available from the Endeca Support site to determine whether the
performance bottleneck is caused by the Dgraph by comparing the statistics for “Engine-Only Processing
Time” with “Round-Trip Response Time”.

If "Engine-Only Processing Time" as returned by the Cheetah tool is long, look further into specific
query features to identify possible causes of the problem. This list identifies which problems you may
want to isolate first:

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Dgraph performance issues44

• Is the long processing time for the Engine caused by limitations of hardware resources? Identify
whether long query time is caused by CPU, memory, or disk I/O utilization.

• Is a high number of records being returned by the MDEX Engine? Identify how many records are
being returned per query by looking for large nbins values in queries as reported by Cheetah.
This value indicates the maximum number of records that can be returned in the query. If this
number is high, this can be expensive to compute and affects performance. Consider implementing
paging control methods. For information on using paging control methods, see the Endeca Advanced
Development Guide.

• Are all dimension refinements (dimension values) exposed for navigation? That is, examine whether
your queries are spending most of their time in refinement computation. Identify whether all
dimension refinements are exposed by looking for allgroups=1 in the Dgraph request log (request
URL parameter) or in Cheetah reports.

This setting corresponds to NavAllRefinements value of the ENEQuery method.

If the allgroups=1 setting is present in the URL parameter, review this configuration setting for
your application to decide whether it is necessary. Exposing all refinements for navigation can
decrease performance because the MDEX Engine has to examine each dimension value in the
dimensions and determine whether or not that dimension value is a valid refinement given a current
navigation state. Exposing all dimension refinements for navigation is not recommended.

For dimensions with many dimension values, Endeca recommends introducing a hierarchy (for
example, a sift dimension hierarchy for automatically generated dimensions), so that the MDEX
Engine has fewer dimension values to consider at one time.

• Are your longest queries similar? Check the longest queries for similarities, such as whether they
all use the same search interface with relevance ranking, wildcard search, or record filters. See
the sections in this guide about tuning performance of each of these features.

• Is record search being used? Identify whether a record search is being used by any queries by
looking for “attrs=search_interface_name” in a query. This indicates that a record search
is being used which means that possibly expensive relevance ranking modules can be contributing
to high computation time.

• Which relevance ranking strategies are being used? Check the
app_prefix.relrank_strategies.xml file for the presence of Exact, Phrase and Proximity
ranking modules and test the same query with these modules removed.

• Is sorting enabled for properties or dimensions? Identify whether sorting with sort keys is enabled,
for which properties and dimensions it is being used and whether it is needed.The first time a sort
key is issued to a Dgraph after startup the key must be computed which can slow down performance.
To isolate this problem, test the query in the staging environment by removing the sort key. If you
confirm sort keys are the issue, consider using sort keys in a representative batch of queries used
to warm up the Dgraph after startup.The sorts will become cached and these queries will be faster.

Note: Also, identify if sorting for properties and dimensions is necessary. In particular, it is
not necessary to flag all sortable properties as sort keys in the project. This is often a
performance problem itself.

Related Links
The MDEX Engine Parameter Listing on page 91

This section describes the parameters in the MDEX Engine request logs and provides
mappings between the URL that is sent from the application to the Endeca Presentation API,
and the URL that is sent from the API to the MDEX Engine.

CPU recommendations for optimizing performance on page 48
Use the following recommendations to optimize CPU performance.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

45Diagnosing Dgraph and Agraph Problems | Dgraph performance issues

I/O recommendations for optimizing performance on page 48
If you are testing the Dgraph maximum throughput using Eneperf with an adequate num
connections and the CPU is still not fully utilized, I/O could be a problem, especially if your
application is search intensive but light on other features.

Disk access recommendations for optimizing performance on page 47
To optimize disk access performance, consider the following recommendations.

Relevance ranking on page 80
Relevance ranking can impose a significant computational cost in the context of affected
search operations (that is, operations where relevance ranking is enabled).

Warming performance vs. steady state performance
When a Dgraph starts, its performance will gradually increase until it reaches a steady state. This
process is known as Dgraph warming.

It is important to distinguish between the warming performance of the Dgraph and the steady state
performance. Many of the techniques discussed in this guide address either one or the other, while
others address both types of performance diagnostics and optimization.

The following considerations apply specifically to diagnosing and optimizing the warming performance
of the Dgraph:

• Disk I/O problems can sometimes cause slow warming.
• It is helpful to run a Dgraph warming script at startup. For example, you can use a request log of

characteristic queries played against the Dgraph to help warm it to a steady state.

About planning for peak Dgraph load
It is important that you plan your capacity to handle peak load. Sustained load above the projected
peak load results in requests being queued for a long time. The system cannot keep up, and as a
result, site performance (in particular latency) degrades.

About tuning the number of threads
Standard system diagnostic tools can tell you how busy CPUs on the machine are. If performance is
poor and the CPUs are not very busy, try to increase the number of threads.

By default, starting with the MDEX Engine version 6.0, the Dgraph is running in multithreaded mode,
with the --threads setting set to 1.

If increasing the number of threads does not help, one of the following is happening:

• You are using too many threads in one process. This is unlikely unless you exceed four threads,
in which case consider using multiple Dgraphs.

• You have an I/O problem.
• There is an underlying network problem that needs to be investigated.

Multithreaded Dgraphs on machines with multithreaded processors
Processors with multithreading is a feature that allows a single microprocessor to act like two or more
separate processors to the operating system and the application programs that use it.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Dgraph performance issues46

Hyperthreading is a feature of Intel® Xeon® processors, as well as of Pentium 4® processors that
support this technology.

Similarly, SPARC® Chip Multithreading (CMT) processors provide the technology for processor
multithreading.

If your machine features hyperthreading or CMT, adding threads to your Dgraph can improve peak
throughput by up to 30% per processor.

Multiple Dgraphs on one machine vs. multithreaded Dgraphs
You can run more than one Dgraph on a single machine, add additional threads to a single Dgraph,
or run several Dgraphs with several threads enabled for each. Depending on your application, one
choice might be better than the other.

The following use cases describe these choices:

• In most cases, the following recommendation applies: Dgraphs with a large memory footprint,
especially in search-intensive applications, should be run in multithreaded mode with the number
of threads greater than one for best performance.

For example, suppose you have a four-processor 16GB machine and a 3GB Dgraph.You could
run four identical separate Dgraphs. A better alternative is to run one four-threaded Dgraph and
thus reap the benefits of having more disk cache.

By running with more than one thread, I/O and computation can be overlapped. Although the time
to process an individual request isn’t improved (and can actually increase slightly due to contention
for shared resources), overall throughput is significantly boosted.

• Likewise, in many cases it is appropriate to run two or more Dgraphs on one machine, each with
several threads.Two four-threaded Dgraphs on one machine is an especially common configuration.
The trade-off between thread contention and memory depends on the memory footprint that you
estimate is needed for each Dgraph and the amount of memory available on the machine that will
host multiple Dgraphs.

Disk access recommendations for optimizing performance
To optimize disk access performance, consider the following recommendations.

• Use a dedicated storage device with low latency and high IO ops/sec for all your Endeca indices
and files. Locally-attached storage with a RAID controller is preferred. Only in cases where that is
not possible, SAN using a Fibre Channel will typically provide strong performance assuming it has
been configured correctly.

• If you are using an array controller, Endeca recommends using a striped disk configuration, such
as RAID 5/6 or RAID 0+1 that enable you to avoid having redundant disks but ensures fault
tolerance.

• Do not use disks with NFS, or other file system protocols. They are known to slow down
performance.

• Ensure that the log files are saved locally. Turning off verbose mode, which prints information
about each request to stdout, can sometimes help performance.

• Ensure that you have a fast disk subsystem and plenty of memory available for disk cache managed
by the operating system, since the Dgraph keeps its various text search indices on disk, including
search and navigation indexes.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

47Diagnosing Dgraph and Agraph Problems | Dgraph performance issues

CPU recommendations for optimizing performance
Use the following recommendations to optimize CPU performance.

• If the CPU is under-utilized, increase the number of threads for the Dgraph.
• If the CPU is over-utilized and you are not satisfied with throughput, investigate which activities

make it busy. Add machines or make the queries less taxing by tuning individual features.

Related Links
Dgraph and Agraph Analysis and Tuning on page 57

This section describes Dgraph and Agraph performance tuning tips feature by feature. Features
are not presented in order of severity of system impact.

I/O recommendations for optimizing performance
If you are testing the Dgraph maximum throughput using Eneperf with an adequate num connections
and the CPU is still not fully utilized, I/O could be a problem, especially if your application is search
intensive but light on other features.

There is no absolute threshold that indicates that an application is I/O bound, but typical symptoms
include very high numbers of I/O hits per second or KB per second. If I/O is below the specifications
for the hardware, it is less likely to be a problem. In some cases, it is even possible to go beyond a
device’s theoretical maximum because of disk caching.

To determine the level of I/O activity, use the following tools:

• On Solaris, run iostat -2
• On Linux, run sar -b
• On Windows, do the following:

On the Task Manager, open the Processes tab.

From the menus, select View > Select Columns.

Check I/O Reads, I/O Read Bytes, I/O Writes, and I/O Write Bytes. These options enable new
columns in the Processes pane that provide similar information to sar -b on UNIX.

Agraph performance considerations
Agraph implementations add extra complexity to performance assessment. This section contains
recommendations for CPU, memory, network, and disk resources provisioning, with the goal to optimize
Agraph performance. It also lists specific issues that affect Agraph performance and recommends
ways to improve it.

Agraph use of server resources
The following points describe at a high level how the Agraph process uses key server resources.

• Network resources. The Agraph process handles queries by dispatching child queries to several
Dgraph processes in parallel, and integrating the results of these queries. Therefore, the Agraph
process makes significant use of networking resources, and its demand for networking resources
grows linearly with the number of Dgraph child processes. Consider server hardware for an Agraph
with multiple network connections, especially for Agraph implementations with a large number of

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Agraph performance considerations48

Dgraph child processes. Gigabit Ethernet connections between Agraph and Dgraph tiers are always
recommended.

• CPU usage. The Agraph makes significant use of CPU resources, in particular, when integrating
the set of responses from child Dgraph processes. As discussed in this guide, your choice of
features has a significant impact on server resource demands at the Dgraph tier.Your choice of
features also determines whether Agraph tier processing is CPU-intensive in your implementation.
Examples of operations that place a significant computation load on the Agraph process are deep
pagination into result sets, and Analytics operations that involve heavy cross-child coordination,
such as MEDIAN.

• Memory usage.The Agraph process requires adequate RAM, but does not require or benefit from
large amounts of RAM to the extent that the Dgraph process does. (With the exception of Analytics,
for which the Agraph uses large amounts of RAM, similar to the Dgraph.) RAM requirements for
an Agraph grow with use of features that put significant coordination load on the Agraph process.
Deep pagination and the Analytics operations such as MEDIAN are examples of features that
cause an Agraph to use more memory.

• Disk usage. The size of the index used by the Agraph process is generally a small fraction of the
size of the child Dgraph process indexes. In addition, this index is accessed primarily at Agraph
process startup.Therefore, provisioning high-performance disk storage for an Agraph server, (such
as a large locally-attached RAID 0 or RAID 5 array, or a connection to a SAN backplane), is not
usually necessary, nor does fast disk storage yield a significant performance benefit.

Recommendations for higher throughput with an Agraph
You can achieve higher throughput of Agraph queries from a single server in one of two ways.

• On Linux or Solaris platforms, you can run the Agraph process in forking mode. This is similar to
the Dgraph multi-threaded mode, and allows you to start up one Agraph process that is able to
handle multiple Agraph queries in parallel by forking the Agraph process. On Windows platforms,
you can provision more than one Agraph process on the server.

Server resource requirements, such as networking bandwidth, the number of CPU cores, and the
amount of RAM, grow linearly with the number of Agraph processes, or process forks, running
concurrently on the server.

• Beyond this point, you can reach higher throughput levels by scaling through replication: adding
additional Agraph tier servers, and supporting separate Agraph processes, with the entire Agraph
tier accessed through a load balancer.

About the Agraph in --fork mode
A high performance Agraph solution on UNIX should use the --fork command line flag for the Agraph.
It causes the Agraph to fork off a new process to handle each request.

The default --fork-max setting is 4.You can experiment with higher values (such as 8 or 16), which
may increase throughput, though at the cost of latency. Be sure to increase the number of virtual
clients (the num connections) used by Eneperf so that all these potential Agraph child processes
will be used.

Even if the Agraph machine is a multiprocessor machine, you only need to run a single Agraph if you
are using the --fork flag.The child processes in --fork mode are all independent processes, which
the OS schedules onto the processors.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

49Diagnosing Dgraph and Agraph Problems | Agraph performance considerations

Note: On Windows, where the Agraph does not have the --fork flag, the solution is to add
more Agraph instances and use a load balancer to balance the load across them.

Identifying the Agraphs to Dgraphs ratio
One common consideration when considering server resources for an Agraph implementation is finding
the optimal ratio of Agraph tier CPU resources to Dgraph tier CPU resources.

Outside this optimal range, either the Agraph or Dgraph tier will consistently be the bottleneck on
performance; either Dgraph processes will be idle while Agraph processes are saturated while working
on response integration from Dgraphs, or Agraph processes will be idle while Dgraph processes are
saturated producing responses.

The optimal point for any particular implementation depends on many factors, and can be accurately
found through load testing. Once you find the optimal range at a particular data scale, then the optimal
range for a larger data scale is roughly predictable by holding steady the ratio of Agraph tier CPU
cores to Dgraph tier CPU cores.

As an example, consider an Agraph implementation that provisions 16 child Dgraph processes across
4 Dgraph tier servers, where each Dgraph tier server has 8 CPU cores. In addition, we will assume
that through load testing, we have found that at the current data scale and feature selections we reach
optimal throughput by provisioning 2 Agraph tier servers, where each Agraph tier server also has 8
CPU cores and supports a single forking Agraph process.

At this data scale, the Agraph tier has 16 CPU cores relative to the 32 CPU cores at the Dgraph tier:
this is a one-to-two CPU ratio.

Note: Depending on your selection of features, the optimal ratio of Agraph tier cores to Dgraph
tier cores may be different from this example.

At this step, suppose that we want to increase the data scale of the application by 50%. As a testing
hypothesis, we would expect that this requires 8 additional child Dgraph processes, provisioned on 2
additional Dgraph tier servers of the current specification. Prior to load testing at higher data scale,
we would also assume that optimal performance requires the addition of a third Agraph tier server. If
we did not provision an additional Agraph tier server, we would expect that the Agraph tier would
become the consistent performance bottleneck, and that overall throughput yield of the two existing
Agraph tier servers would degrade, due to the additional resource demands of coordinating work
across 50% more child Dgraph processes. Load testing this hypothesis should provide you with the
knowledge on whether adding a third Agraph tier server will optimize performance.

Identifying performance problems in Agraph deployments
Use the following recommendations to identify performance problems and optimize Agraph performance.

• Evaluate a slow Agraph system. Use Eneperf to measure the performance of a single Dgraph. If
that Dgraph is too slow, the aggregate Agraph system is certainly going to be too slow, so there
is no point in looking further until the individual Dgraph problems have been resolved.

• Isolate performance issues that could be caused by the network. Ensure that you test the Dgraph
performance with Eneperf running on the Dgraph machine and also on the Agraph machine.

• Configure the Agraph on a different machine from the Dgraphs.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Agraph performance considerations50

Testing Agraph network problems with Eneperf
Large Agraph deployments (that is, those with more than 10 or 15 Dgraphs) can saturate the network,
because all of the Dgraphs send data back to the same Agraph machine.Your Agraph implementation
may have performance problems with the network bandwidth.

Each request to an Agraph causes at least one and often two requests from the Agraph to each of the
Dgraphs. Although the amount of data returned by the Agraph is usually equal to the sum of the
responses from the Dgraphs, in some cases each of the Dgraphs can send as much data as the
Agraph. This leads to a significant increase in the network traffic. The Agraph response is not sent
until all the Dgraph responses are received by the Agraph.

If you notice that the Dgraphs take a long time responding to the Agraph, measure the amount of data
sent over the network to the Agraph by each of the Dgraphs.

Use the Dgraph request logs and Eneperf to determine how many bytes each Dgraph is sending back
to the Agraph. Remember that the Agraph machine has to receive that many bytes from n separate
Dgraphs, which may overload the Agraph machine’s network connection (this is why Endeca
recommends using Gigabit Ethernet).

One way to test whether bandwidth to the Agraph machine is sufficient is to run multiple instances of
Eneperf simultaneously on the Agraph machine. Each Eneperf instance should point at a different
Dgraph.

To test the network bandwidth to the Agraph machine from multiple Dgraphs:

1. On a Unix system, run the command from sh as shown in this example:

for i in dg01 dg02 ; do eneperf $i 5555 logfile 4 1 & done

where dg01 and dg02 are the machine names of the Dgraph servers, 5555 is the port number,
and 4 is the setting for num connections for Eneperf.

2. On Windows, run the commands as shown in this example:

C:\> start /B eneperf dg01 5555 log.txt 4 1
C:\> start /B eneperf dg02 5555 log.txt 4 1

where dg01 and dg02 are host names, and 5555 is the port number.

This produces a lot of screen output, but you will be able to see whether all the Eneperf instances
are getting the performance you expect from each Dgraph.

Determining whether the Agraph CPU is saturated
The Agraph process can saturate the CPU resources on its host server, especially in a large Agraph
installation with many Dgraphs. In this situation, Agraph performance can be the bottleneck on overall
system throughput, since the Dgraph processes could each individually support higher throughput.

Watching CPU utilization on the Agraph server typically provides useful information. If the Agraph CPU
is not running out, this indicates that the implementation is likely not CPU-bound on the Agraph server.

The best way to determine whether additional Agraph CPU resources will improve system throughput
is to directly test the Agraph process using a server with more CPUs. If you do not have access to
such a server, an alternative is to use the Eneperf load driver to simulate Agraph query traffic on two
servers, where these two servers have in aggregate more CPU resources than the current Agraph
server.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

51Diagnosing Dgraph and Agraph Problems | Agraph performance considerations

Note: The Agraph CPU can become saturated in a large Agraph system with many Dgraphs.
This is evident when Eneperf is running with sufficient connections to saturate Agraph CPU but
the Dgraphs are not running at full capacity.

In this testing process, prepare to run multiple instances of Eneperf simultaneously. Configure one
Eneperf process for each Dgraph child process, so that each Eneperf instance sends queries to a
different Dgraph. All Eneperf instances can use the same query log. Ideally, this log is derived from
the request log of the Agraph process.

To test whether the Agraph CPU is saturated:

1. Test the throughput of the two Eneperf processes, running all in parallel, when all load drivers are
hosted on the current Agraph server.

This test requires substantially less CPU resources than the Agraph process, because the results
of each query performed by Eneperf are not coordinated, aggregated, or merged by the Agraph.

2. Test the throughput of the two Eneperf processes, running all in parallel, when half of the load
drivers are hosted on each of the Agraph testing servers. The two servers provide, in aggregate,
more CPU resources to the set of load drivers.

3. Compare the throughput numbers of both tests.

If the throughput numbers are similar, the bottleneck for this test is the tier of Dgraph child processes.

If the throughput numbers for the second test are substantially higher, this is a strong evidence
that in the first test the Agraph server CPU was the bottleneck. Because the first test consumes
less CPU resources than a comparable Agraph process, this is by extension strong evidence that
the Agraph process is CPU saturated and would perform better if you add more CPUs.

Identifying problems with resource usage by the application
Use the following recommendations to identify performance problems associated with resource usage.

• Isolate performance testing for those parts of the application that specifically use the Endeca MDEX
Engine from testing for other parts of the application. In other words, measure the performance of
those parts of the application that use the Endeca MDEX Engine separately from the performance
of those parts that use other software that may cause performance problems, such as a relational
database. For example, if the latency is high, consider testing the interaction of the application
with the database, if you are using one.

• If you are sending a lot of requests to the front-end application and performance is slow but the
MDEX Engine servers are idle, the front-end application and its resource usage is probably the
issue. There are two possible fixes: you can reduce consumption of resources by the application
by reviewing your coding practices for the front-end application, or add resources.

Coding practices for the front-end application
Reviewing your front-end application code can help reduce resource usage performance issues that
affect it. Review your Web application to check for any of the following problems.

• Creating or discarding objects unnecessarily.
• Excessive looping, particularly over properties that are not going to be displayed.
• Creating too many variables.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Identifying problems with resource usage by the application52

Web application ephemeral port contention
Each client/server connection has a unique identifier (known as a quad) that includes an ephemeral
port number that will later be reassigned. Each operating system has a range of numbers that it uses
as ephemeral ports (for example, on Windows the range is 1024 through 4999).

The operating system allocates ephemeral ports when a new socket is set up.

If the range is relatively small and you are making several requests per page in parallel, you can run
out of port numbers. At that point the ephemeral port numbers assigned by the operating system start
colliding with ones already in use as they are recycled too quickly, and subsequent connections will
be aborted.

To address this problem, try one of the following:

• Reduce the two-minute time interval that the system waits between a connection close and port
reassignment. The minimum recommended time is 30 seconds.

• Change the ephemeral port range. The method varies depending on your operating system;
however, details are easily obtained on the Web.

Recommendations for identifying network problems
Often the diagnosis of slow performance comes from a query load played against the front-end
application. The front-end application, or the configuration of its application server, may be the reason
for the poor performance.

Alternatively, the network may be the problem, although this is less likely. (In the case of a Dgraph,
unlike an Agraph, it is unusual for the network to be the bottleneck.)

To identify whether the network is a performance issue:

• Compare Eneperf performance on the local host and a remote host. First, run Eneperf against the
Dgraph on the Dgraph machine. Next, run the same Eneperf against the same Dgraph, but from
the front-end machine (if possible), or somewhere on the other side of the network. If the difference
is negligible, the network is not a problem. If Eneperf across the network is slow, you need to
consider both the network itself and the application configuration.

• Alternatively, you can run the Cheetah tool and compare the “Round-Trip Response Time” with
the “Engine-Only Processing Time”. If “Round-Trip Response Time” is long but the “Engine-Only
Processing Time” is short, this can indicate a network problem or a configuration of an application
server for the front-end application.

• Measure network performance using Netperf, a freely available tool that can be used to measure
bandwidth. Alternatively, you can FTP some large files across the network link. If these tools show
poor throughput across the network, this can indicate a network hardware problem such as a failing
network interface card (NIC) or cable.

• In addition, check Eneperf statistics, the Dgraph request logs, or the Dgraph Stats page to see
how much data is being transmitted back from the Dgraph on an average request. Large average
result page size can saturate the network.

If it seems as if your application is trying to move too much data, it is likely that you may need to change
the configuration of your application. To determine if changes are needed, consider the following:

• Is all of the data actually being used by the application? In other words, does the MDEX Engine
return record fields that are then ignored by the front-end application? This is an especially serious
problem with large documents.

• Is your application returning unnecessary fields with the Select feature (described in “Controlling
Record Values with the Select Feature” in the Endeca Advanced Development Guide)?

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

53Diagnosing Dgraph and Agraph Problems | Recommendations for identifying network problems

• Is your application returning navigation pages that are too large? (Navigation pages are result list
pages, as opposed to record detail pages.) If the application returns a lot of detailed information
in the result list pages, consider reserving the details for a click-through and reducing the size of
the result list pages your application returns on initial requests.

• Is your application returning large numbers of records without using the bulk record API (described
in “Bulk Export of Records” in the Endeca Advanced Development Guide)?

• Is the network saturated? Upgrade to Gigabit Ethernet and identify the transmission speed being
used. Ensure there is ample network bandwidth between the front-end application and the Dgraph.
To identify Gigabit Ethernet transmission speeds, work with your network administrator.

• What is the configuration of NIC cards? Ensure that NIC duplex settings match between the Dgraph
host and the web application client host and that both are set to full duplex. A mismatch can cause
latency issues.

• Could large response sizes returned by the Dgraph be saturating the network? Use Cheetah
analysis to confirm large response s izes returned by the Dgraph, which can be caused by the
query features you use. The way certain features are used can cause slow processing time and
also saturate the network.

• Do you have queries waiting in the Dgraph queue to be processed? Check "Threading/Queuing
Information" summary in Cheetah for the number of items experiencing queue issues and the
number of HTTP Error request 408 timeouts. Review the Dgraph setting for the number of worker
threads and consider increasing it, if it is set to 1. Queuing can also be caused by spikes in traffic.

• Does the front-end application process the responses returned by the Dgraph quickly enough?
Check CPU, memory, and disk I/O utilization on the front-end application server. Ensure the
application server does not need to be tuned and that large responses are not being returned by
the Dgraph.

Related Links
Useful Third-Party Tools on page 143

This section lists some third-party tools that you may find useful during the Endeca
performance monitoring process. The tools listed here are not supported by Endeca and are
subject to change. In addition, these suggestions are not meant to overrule your choice of
other tools.

Tips for troubleshooting long processing time on page 44
You can use the Cheetah utility available from the Endeca Support site to determine whether
the performance bottleneck is caused by the Dgraph by comparing the statistics for
“Engine-Only Processing Time” with “Round-Trip Response Time”.

Troubleshooting connection errors
This topic discusses how to debug connection errors with ENEQuery exceptions.

Problem - The application server does not seem to connect to the Endeca server.The Endeca reference
application has no difficulty connecting. A connection to the port works as confirmed by JUnit tests. A
problem exists connecting to the server once all the reference application libraries are packaged into
the EAR file that is run inside the WebSphere application server.

Solution - In general, the HttpENEConection.query ENEQuery method is used to issue a query
against the Dgraph. In the HttpENEConnection.query method in the Java version of the Endeca
Presentation API, any connections problems are raised as an ENEQueryException. (There is an
equivalent in .NET version of the Endeca Presentation API).

To diagnose a connection problem from an application server to an Endeca server, the following
assumptions are made:

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Diagnosing Dgraph and Agraph Problems | Recommendations for identifying network problems54

• The Java version of the Endeca Presentation API is being used.
• The connection from the application server to the MDEX Engine is running on HTTP, not HTTPS.
• The application server and the MDEX Engine on the Endeca server are configured on separate

machines.

To troubleshoot the connection problem, do the following:

1. Verify from the application server machine that you can connect to the port on the Endeca server.
Using telnet on Windows or Unix can help you determine if you can successfully make a connection:

telnet <hostname> <dgraph port>

a) If you cannot establish a connection with telnet, check that the Dgraph process is running with
the specified port. Check the Dgraph stderr log to confirm the Dgraph was able to successfully
bind to the port and another process is not using the port.You can also verify the Endeca server
machine is listening on a socket with the specified port using netstat -a. Check that a valid
network route exists from the application server to the Endeca server.You can also use ping.
Also, use tracert on Windows, tracepath on Linux, or traceroute on Solaris. If no valid
network paths exist, check with your network administrator to eliminate possible problems with
a firewall or routing configuration.

b) If you can obtain a connection from telnet, verify that the application server can talk to the Endeca
server. Write a Java program with a static void main method to make a connection to the
MDEX Engine on the Endeca server. Make sure the Endeca Navigation JAR file is included in
your classpath. If this program makes a connection successfully, the problem should only occur
within the application server.

2. Write a utility JSP page that connects to the MDEX Engine on the Endeca application server and
place it on the application server to verify the connection. Alternatively, you can run the Reference
Application on the application server.

3. If everything works correctly, to troubleshoot further check the application server configuration. For
Websphere, do the following:

a) Check all log files in IBM/Websphere/AppServer/profiles/AppSrv01/logs/server1.
b) Verify that the Reference application is correctly packaged as EAR file.
c) Make sure Websphere deployed the EAR file and the application is running in the WAS admin

console.

Assuming that you have WAS 6.1, go to Security > Secure Administration, application and
infrastructure and check whether Java 2 security is enabled. If it is enabled, make sure your
was.policy file is saved in the META-INF directory.

Next steps
Your hardware needs should be based on the number of ops/second revealed by Eneperf testing. If
you feel that the resulting hardware requirements are too great, the next thing to do is identify costly
features in your front-end application and see what you can do about them.

Modifications you can make to your Dgraph or Agraph settings in order to improve the performance
of your Endeca application are discussed in the next chapter.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

55Diagnosing Dgraph and Agraph Problems | Next steps

Chapter 5

Dgraph and Agraph Analysis and Tuning

This section describes Dgraph and Agraph performance tuning tips feature by feature. Features are
not presented in order of severity of system impact.

Feature performance overview
Once you have determined that the Dgraph or Agraph is the bottleneck using the techniques described
in this guide, there are many things you can do to tune performance. In many cases, unnecessary
complexity slows performance, so small changes can yield big returns.

It is best to begin making adjustments with a conservative strategy that you understand well. Do not
modify too many features at once—it makes it difficult to assess the impact of any one change.

Details on tuning specific features can be found in the following sections. Where applicable, they
discuss problematic feature interactions. Likewise, each section indicates whether the kind of data
you are processing (for example, large text fields as opposed to many part numbers) significantly
impacts a feature’s performance.

This chapter calls out only those aspects of a feature that affect application performance. For more
general information about implementing these features, see the Endeca Forge Guide, Endeca Basic
Development Guide and the Endeca Advanced Development Guide.

Endeca record configuration
This section discusses the performance implications of some aspects of Endeca record configuration.

Record select
The Select feature prevents the transfer of unneeded properties and dimension values when they are
not used by the front-end Web application.

It therefore makes the application more efficient because the unneeded data does not take up network
bandwidth and memory on the application server. This may be relevant if your logs are showing large
result pages.

You set the selection list on the ENEQuery.setSelection() method (Java), or the ENEQuery.Se¬
lection property (.NET).

Aggregated records
Aggregated Endeca records are not necessarily an expensive feature in the MDEX Engine. However,
use them only when necessary, because they add organizational and implementation complexity to
the application (particularly if the rollup key is different from the display information).

Using aggregated records slows down the performance of sorting and paging.

Note also that dynamic statistics on regular and aggregated records (controlled with the --stat-abins
Dgraph flag) are expensive computations for the Endeca MDEX Engine. See the topic in this section
for more details.

Derived properties on aggregated records

Some overhead is introduced to calculate derived properties on aggregated records. In most cases
this should be negligible. However, large numbers of derived properties and, more importantly,
aggregated records with many member records may degrade performance.

The number of records returned with an aggregated record and performance

You can use the Np parameter to specify the number of records to be returned with an aggregated
records. For example, Np=1 means that a single representative record is returned with each aggregate
record, and Np=2 brings back all records.

Utilizing Np=2 may adversely affect your performance, as it causes the MDEX Engine to serialize more
records for each query. The degree to which performance is affected is proportional to the number of
base records for each aggregate record that is returned.

In most cases, it is not recommended to bring back all records in each query and aggregate all records
with Np=2 as this computation could be expensive for the MDEX Engine to serialize the result. However,
Np=2 can be useful in some cases.The impact on performance is proportional to the number of records
that will be returned as aggregates.

For example, if each aggregate record contains only 2 records, the record serialization time is only
twice the time as it is for Np=1. If, however, each aggregated record has 100 records associated with
it, it is 100 times more expensive to perform the record serialization for Np=2 than for Np=1.

Record serialization time is typically only a large portion of the query processing time in very low latency
applications or with very large numbers of returned records.

Note also that in many cases, a 100-fold increase in record serialization time is barely noticeable.You
can examine the Prefetching horizontal records statistics in the Hotspot Analysis section
of the Stats page to determine whether their performance issue is due to returning many records.

For example, if you have a very small data set with queries served almost entirely from the cache,
where most of the computation done by the Dgraph for each query consists of assembling the records
to be returned, the negative effect on performance is reflected in the Prefetching horizontal
records statistics being very large in this case which indicates that Np=2 should not be used.

Dimensions and dimension values
This section discusses tuning features related to dimensions and dimension values.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Dimensions and dimension values58

Hidden dimensions
You prevent a dimension from appearing in the navigation controls by designating it as a hidden
dimension.

Hidden dimensions, like regular dimensions, are composed of dimension values that allow the user
to refine a set of records. The difference between regular dimensions and hidden dimensions is that
regular dimensions are returned for both navigation and record queries, while hidden dimensions are
only returned for record queries and dimension search.

In cases where certain dimensions in an application are composed of many values, marking such
dimensions as hidden improves Dgraph performance to the extent that queries on large dimensions
are limited, reducing the processing cycles and amount of data the Dgraph must return.

Dimensions and dimension values with high record coverage
Consider a case where records have dimensions that have almost—but not quite—full coverage over
the records. For example, 99% of the records have a dimension value for a Location dimension, but
the remaining 1% do not.

While this factor does not affect performance significantly, you can add an “n/a” dimension value to
fill the gap and make the dimension have 100% coverage, if you want to let users explicitly refine to
records that do not have an assignment for that dimension.

Flat dimension hierarchy
In general, avoid using large, flat dimensions (that is, dimensions with thousands of dimension values
at the same level of hierarchy).

This is doubly true if statistics are enabled for those dimensions. It is better to design dimensions that
contain sensible levels of hierarchy.

For some applications with extremely large, non-hierarchical dimensions, larger values for --esampmin
can meaningfully improve dynamic refinement ranking quality with minor performance cost.

Displaying multiselect dimensions
When making decisions about whether to configure a dimension as multiselect, keep in mind that
users may take longer to refine the list of results, because the user can continue to refine a multiselect
dimension until all leaf dimensions have been selected.

In particular, refinements for dimensions tagged as multiselect OR are expensive.

Multi-assign dimensions
A dimension is considered to be multi-assign if there exists a record which has more than one dimension
value assigned to it from that dimension.

Making a dimension multi-assign can slow down refinement computation. To improve performance,
you can use multi-assign only for those dimensions for which you need it, and avoid making dimensions
multi-assign where it is not useful.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

59Dgraph and Agraph Analysis and Tuning | Dimensions and dimension values

Displaying refinement dimension values
Run-time performance of the MDEX Engine is sometimes directly related to the number of refinement
dimension values being computed for display. If any refinement dimension values are being computed
by the MDEX Engine but not being displayed by the application, use the Ne parameter more strictly.

The worst-case scenario for run-time performance is having a data set with a large number of
dimensions, each dimension containing a large number of refinement dimension values, and setting
the ENEQuery.setNavAllRefinements() method (Java), or ENEQuery.NavAllRefinements()
property (.NET) to true.This combination is slow to compute and creates a page with an overwhelming
number of refinement choices for the user. Endeca does not recommend using this strategy.

In general, you may want to reconsider the number of refinements you display, as well as consider
implementing precedence rules.

Related Links
Precedence rules on page 79

This section discusses precedence rules and explains their performance impact.

Dynamic statistics on dimension values
You should only enable a dimension for dynamic statistics if you intend to use the statistics in your
Endeca-enabled Web application. Because the Dgraph performs additional computation for the statistics,
there is a performance cost to enabling statistics that your application does not use.

Using dynamic refinement ranking can greatly speed up refinement computation by displaying only
the top refinements for a dimension, rather than computing the exhaustive list of refinements.

To decide whether or not dynamic refinement count statistics are likely to be appropriate for a project,
consider the following aspects of your configuration:

• The number of dimension value refinements per page, especially dimension values assigned to
large numbers of records. The more refinements are returned on each page, the more counts that
need to be computed, and the bigger the performance impact.

For example, if the data set has a large number of dimensions, and/or the application uses ENE¬
Query.setNavAllRefinements (true), then the performance impact will be larger. This is
especially true if many of the dimension values are assigned to large numbers of records. This
frequently happens with hierarchical dimensions. For example, it is more expensive to count Red
Wines than it is to count Merlots.

• The number of records in the data set. Data sets with large numbers of records will see a
proportionally higher performance impact from record count statistics.

• The average number of results per query. Applications that tend to perform searches that match
larger numbers of records will see proportionally higher impact from refinement count statistics.

As a simple rule, add up the counts for all of the refinements on the page. The performance impact of
record count statistics grows proportionally with that sum over all refinements. All of the above
considerations are aspects of the application that can make that sum larger, and increase your
performance slowdown related to record counts.

You can speed up computation of dynamic statistics for refinements by doing the following:

• Set the following options in the STATS subelement in the refinement_config.xml file:

• RECORD_COUNT_DISABLE_THRESHOLD specifies the maximum number of records in a result
set above which the MDEX Engine does not compute or return any dynamic statistics for that
query. This speeds up processing if you do not need the counts in this case.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Dimensions and dimension values60

• MAX_RECORDS_COUNT causes the MDEX Engine to stop computing dynamic statistics for a
particular dimension value when it has reached the specified value. The count returned in this
case is the minimum of the actual count and MAX_RECORDS_COUNT. Thus, you can set this
parameter to a specific value if you do not need to know the count for a particular dimension
value once it is sufficiently high.

Note: Endeca recommends using these options for tuning computation of dynamic statistics
per each dimension since the --stat-bins-thresh, and the --stat-bins-cutoff flags
for the Dgraph have been deprecated.

Aggregated refinement counts
Dynamic statistics on regular and aggregated records are expensive computations for the Endeca
MDEX Engine.

You should only enable a dimension for dynamic statistics if you intend to use the statistics in your
Endeca-enabled Web application.

Similarly, you should only use the --stat-abins flag with the Dgraph to calculate aggregated record
counts if you intend to use the statistics in your Endeca-enabled Web application. Because the Dgraph
does additional computation for additional statistics, there is a performance cost for those that you are
not using.

In applications where record counts or aggregated record counts are not used, these lookups are
unnecessary. The MDEX Engine takes more time to return navigation objects for which the number
of dimension values per record is high.

The --stat-abins flag for the Dgraph lets you calculate aggregated record counts beneath a given
refinement. For more information on using this flag, see the Endeca Basic Development Guide.

Dynamic refinement ranking and performance
You can use --esampmin with the Dgraph, to specify the minimum number of records to sample
during refinement computation. The default is 0.

For most applications, larger values reduce performance without improving dynamic refinement ranking
quality. For some applications with extremely large, non-hierarchical dimensions (if they cannot be
avoided), larger values for --esampmin can meaningfully improve dynamic refinement ranking quality
with minor performance cost.

Disabled refinements
Performance impact from displaying disabled refinements falls into three categories.They are discussed
in the order of importance.

• The cost of computation involved in determining the base and default navigation states.

The base and default navigation states are computed based on the top-level filters that may belong
to these states. These filters are text searches, range, EQL and record filters and selections from
dimensions. The types and numbers of these top-level filters in the base and default navigation
states affect the MDEX Engine processing involved in computing the default navigation state. The
more filters exist in the current navigation state, the more expensive is the task; some filters, such
as EQL, are more expensive to take into account than others.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

61Dgraph and Agraph Analysis and Tuning | Dimensions and dimension values

• The trade off between using dynamic refinement ranking and disabled refinements.

In general, these two features pursue the opposite goals in the user interface — dynamic ranking
allows you to intelligently return less information to the users based on most popular dimension
values, whereas disabled refinements let you return more information to the users based on those
refinements that are not available in the current navigation state but would have been available if
some of the selections were not made by the users.

Therefore, carefully consider your choices for the user interface of your front-end application and
decide for which of your refinements you would like to have one of these user experiences:

• Dynamically ranked refinements
• Disabled refinements

If, for example, for some dimensions you want to have only the most popular dimension values
returned, you need dynamic ranking for those refinements. For it, you set the sampling size of
records (with --esampin), which directly affects performance: the smaller the sampling, the
quicker the computation. However, for those dimensions, the MDEX Engine then does not compute
(and therefore, does not return) disabled refinements.

If, on the other hand, in your user experience you would like to show grayed out (disabled)
refinements, and your performance allows it, you can decide to enable them, instead of dynamic
ranking for those dimensions. This means that for those dimensions, you need to disable dynamic
ranking. As a side effect, this involves a performance cost, since computing refinements without
dynamic ranking is more expensive. In addition, with dynamic ranking disabled, the MDEX Engine
will need to compute refinement counts for more dimension values.

• The cost of navigation queries.

Disabled refinements computation slightly increases the navigation portion of your query processing.
This increase is roughly proportional to the number of dimensions for which you request the MDEX
Engine to return disabled refinements.

Displaying dimension value properties
Dimension value properties (that is, key-value pairs that the Dgraph passes back along with a dimension
value) could slightly increase the processing or querying time because additional data is moved through
the system, but this effect is generally minimal.

If your Endeca application does complex formatting on the properties, this could slow down page loads.
If the properties are used to add formatting HTML or perform other trivial operations, they have minimal
impact on performance.

Collapsible dimension values
Collapsible dimension values have a negative impact on performance.

Mapping source properties
Automatically mapping source properties is a feature that, while it can be used in the staging
environment to facilitate testing, is not recommended for using in the production environment.

The Property Mapper in Developer Studio allows you to automatically map source properties to Endeca
properties or Endeca dimensions, if no mapping is found. (This feature is also known as Automapper).

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Dimensions and dimension values62

The option of the Property Mapper that lets you map source properties to Endeca properties or
dimensions defines the setting that Forge uses to handle source properties that have neither explicit
nor implicit mappings.

Use this option with caution because each source property that is mapped uses system resources.
Ideally, you should only map source properties that you intend to use in your implementation. Many
production-level implementations automatically pull and process new data when it is available. If this
data has new source properties, they will be mapped and included in your MDEX Engine indices,
which uses system resources unnecessarily. As a result, the Forge output is larger, the indexer is
larger and the MDEX Engine has additional indices to process.

Indexing all properties with Dgidx
The --nostrictattrs flag for Dgidx allows you to index every property found on a record, including
those properties that do not have corresponding property mapper settings. Using this flag may negatively
affect performance of Dgidx and the MDEX Engine.

If a large number of unused properties are sent to Dgidx, they will get indexed and will consume system
resources during the indexing process and at run-time. These properties can also affect performance
of the front-end application API, because the amount of information communicated between the MDEX
Engine and the API increases.

Record sorting and filtering
This section discusses the performance impact of record sorting and filtering.

Sorting records by dimension or property
Enabling dimensions and properties for sorting increases the size of the Dgraph process and may
negatively affect partial update latency. The specific size of the increase is related to the number of
records included in the data set.

Therefore, in Developer Studio, enable only those dimensions or properties for sorting which are
specifically needed by an application. Sorting gets slower as the process size grows and paging gets
deeper.

In general, the MDEX Engine explicity uses precomputed sorts for properties that you specifically
configure as sort keys in Developer Studio, using the “Prepare sort offline” option.

Sorting can be done on any property, whether configured for sort or not. Configuring for sort mainly
controls the generation of a precomputed sort (an internal optimization done by the MDEX Engine),
and secondarily enables the field to be returned in the API sort keys function. In cases where the
precomputed sort is rarely or never used (such as when the number of search results is typically small),
the memory can be saved.

If the Dgraph has to compute precomputed sort objects to answer queries, the precomputed sort
process in the Dgraph can be time-consuming. As a side effect of this processing, if you issue the
admin?op=exit command to shut down the Dgraph while the precomputed sort process is still
running, the actual shutdown may be delayed from the time the command is issued.This delay occurs
because the Dgraph shutdown process may still be waiting for the completion of its creating several
precomputed sort objects.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

63Dgraph and Agraph Analysis and Tuning | Record sorting and filtering

Geospatial sorting and filtering
Geospatial sorting and filtering is a query-time operation. The computation time it requires increases
as larger sets of records are sorted and filtered. For best performance, apply geospatial sorting and
filtering once the set of records has been reduced by normal refinement or search.

To optimize performance of geofilters, consider using these recommendations:

• Examine the request log for the presence of long distance queries that contain a geofilter. If there
is a noticeable percentage of such queries, remove the geofilter from them.

In other words, if a portion of your queries represents searches in which distance is very large and
thus appears to be not an important factor in a query, remove the geofilter from such queries.

For example, for users searching for cars within a radius beyond 10, 000 miles, remove the geofilter
for those queries. Removing the geofilter does not affect the records returned, but cuts the MDEX
Engine response times in half.

In general, when the MDEX Engine applies a geofilter, it first uses the area's bounding rectangle
to reduce the number of records it has to consider, and then performs the computation on remaining
records, to determine if the record falls within the specified radius. This computation is expensive.
For queries containing a geofilter for very large distances, the bounding rectangle includes all
records, which means that the MDEX Engine performs this expensive computation for each record.

• Restrict the number of records returned to speed up MDEX Engine performance.

Range filters
Range filters do not impact the amount of memory needed by the Dgraph. However, because the
feature is evaluated entirely at request time, the Dgraph response times are directly related to the
number of records being evaluated for a given range filter request.

You should test your application to ensure that the resulting performance is compatible with the
requirements of the implementation.

Record filters
Record filters can impact the following areas.

• Spelling auto-correction and spelling Did You Mean. Record filters impose an extra performance
cost on spelling auto-correction and spelling Did You Mean.

• Memory cost
• Expression evaluation
• Large OR filters ("part lists")
• Large scale negation
• Record filters with complex logic

Record filters: memory cost

The evaluation of record filter expressions is based on the same indexing technology that supports
navigation queries in the Dgraph. Because of this, there is no additional memory or indexing cost
associated with using navigation dimension values in record filters.

When using property values in record filter expressions, additional memory and indexing cost is incurred
because String properties are not indexed for navigation by default.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Record sorting and filtering64

In some cases, it may be worth replacing some of the filters with dimensions that have the same
meaning. For example, if you notice that 20% of queries have a filter of "price > 0" on them, to improve
performance, add a "has price?" dimension to your records instead of using a filter in this case.

Expression evaluation in record filters: impact on performance

Because expression evaluation is based on composition of indexed information, most expressions of
moderate size (that is, tens of terms and operators) do not add significantly to request processing
time. Furthermore, because the Dgraph caches the results of record filter operations, the costs of
expression evaluation are typically only incurred on the first use of a filter during a navigation session.
However, some expected uses of record filters have known performance bounds, which are described
in the following sections.

Large OR filters (“part lists”)

One common use of record filters is to specify lists of individual records to identify data subsets (for
example, custom part lists for individual customers, culled from a superset of parts for all customers).

The total cost of processing records can be broken down into two main parts: the parsing cost and
the evaluation cost. For large expressions such as “part lists”, which are commonly stored as file-based
filters, XML parsing performance dominates total processing cost.

XML parsing cost is linear in relation to the size of the filter expression, but incurs a much higher unit
cost than actual expression evaluation. Though lightweight, expression evaluation exhibits non-linear
slowdown as the size of the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for
large result sets. While the expression evaluation cost is reasonable into the low millions of records
for large OR expressions, parsing costs relative to total query execution time can become too large,
even for smaller numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable
performance (10 seconds or more load time, depending on hardware platform). Lists with over one
million records can take a minute or more to load, depending on hardware. Because results are cached,
load time is generally only an issue on the first use of a filter during a session. However, long load
times can cause other Dgraph requests to be delayed and should generally be avoided.

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions
(that is, AND with a positive property value), the cost of negation does not add significantly to the cost
of expression evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant.
For example, running top-level negation filtering, such as “NOT availability=FALSE” on a record
set of several million records leads to lower throughput.

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions.
For example, in the case where you want to list only available products, the expression “availabli¬
ty=TRUE” yields better performance than “NOT availability=FALSE”.

Optimizing URL record filters that use complex logic
URL record filters with complex logic may cause an expected growth in memory usage for the MDEX
Engine.You can create either a fast-running filter that heavily uses memory, or a slow-running filter

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

65Dgraph and Agraph Analysis and Tuning | Record sorting and filtering

that uses minimum memory. This section explains the trade offs and recommends which filter logic
you should use.

The filter syntax dictates the sequence in which queries are being run by the MDEX Engine.

Use these recommendations:

• If your goal is to run the record filter as quickly as possible, regardless of concerns for potential
memory usage growth on the MDEX Engine server, use the query logic in your filter that is as flat
as possible. In other words, use AND and OR operations directly on the records, and do not use
nested operations.

For example, this filter lists several records directly without any nested operations. It maximizes
query performance at the expense of memory usage:

Nr=OR(P_WineID:89955,P_WineID:73036,P_WineID:69087,P_WineID:69993,
P_WineID:60641,P_WineID:58831,P_WineID:44996,P_WineID:52212,
P_WineID:81192,P_WineID:75040,P_WineID:76632)

• If your goal is to run the record filter that minimizes memory usage by the MDEX Engine, each
AND and OR statements should contain at most two direct records. Since in many cases you may
need to include more than two records in your filters, you can nest AND and OR operations.

For example, this heavily nested filter minimizes memory usage at the expense of MDEX Engine
query processing time:

Nr=OR(OR(OR(OR(OR(OR(OR(OR(OR(OR(P_WineID:89955,P_WineID:73036),
P_WineID:69087),P_WineID:69993),P_WineID:60641),P_WineID:58831),
P_WineID:44996),P_WineID:52212),P_WineID:81192),P_WineID:75040),
P_WineID:76632)

To summarize, if the data set is large, the filter with flat query logic consumes more memory but runs
faster than the filter with nested logic, which runs slower but consumes minimum memory.

If hardware limitations prevent you from accommodating the expected memory growth, change the
logic of your existing URL record filter.

EQL expressions and Record Relationship Navigation
You can use Endeca Query Language (EQL) expressions for these purposes.

• To filter query results based on dimension values, individual property values, ranges of property
values and search terms.

• To combine EQL expressions using Boolean logic.
• To enable an Endeca feature known as Record Relationship Navigation (RRN).

For more information on EQL and Record Relationship Navigation, see the Endeca Advanced
Development Guide.

When to use EQL-based filters vs. other filter types
You can use EQL expressions to express all of the filter capabilities that are also supported by range
filters (Nf), text search filters (Ntt, Ntk, Ntx) and navigation refinements.This topic helps you decide
which type of filters to use, EQL-based or regular.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation66

In general, due to their Boolean logic capabilities, EQL expressions offer more flexibility than regular
filters expressed through other UrlENEQuery parameters. However, EQL expressions have different
performance characteristics, and demonstrate other effects that you should take into account when
considering which type of filter to implement.

Consider the following characteristics when deciding which type of filters to use, EQL-based or regular:

• Unless you need EQL filter functionality, use regular filters.

In general, when it is possible to express a query using regular filters (range filters and other types),
use those methods instead of EQL expressions, as they often provide better query performance.
Use EQL expressions after you have evaluated using other features for expressing your query
logic.

In particular:

• EQL-based filters may be slower than record filters (Nr).

Use record filters (Nr) for large filters. (Large filters are used to filter out lists of individual
records that identify data subsets, for example custom part lists created for individual customers
that are culled from a superset of parts for all customers.) Large filters are better expressed
with file-based record filter expressions than with EQL expressions.

• EQL-based range filters are slower than range filters (Nf).

• To utilize merchandising rules or other supplementary information generated by regular
filters, use them alone or in combination with EQL filters.

EQL-based filters do not trigger the same supplementary information as a similar refinement
navigation or a text search filter. For example, a navigation refinement may trigger merchandising
rules, but an EQL filter does not.

In cases when you want to take advantage of additional information, such as search reports,
merchandising rules, DYM and --whymatch, use either of the following solutions:

• Use regular filters.
• Use EQL expressions in conjunction with other query parameters (such as N, Ntt, and Nr

filtering parameters, and Nf, Nrk, Nrt, Nrr, and Nrm relevance ranking parameters).

EQL combined with these parameters provides such actions as triggering merchandising rules,
sorting, search reports or relevance ranking.

For examples and information on the feature interaction possibilities, see the Endeca Advanced
Development Guide.

• To implement security, use record filters.

Use record filters instead of EQL-based filters to implement security filtering, such as filtering based
on user role or catalog type. Record filters (Nr) are useful also in cases when you want to use
file-based filters. (File-based filters are the recommended method for filtering out large numbers
of included or excluded records.)

• To maximize the use of the Dgraph cache, use record filters.

Use the Nr parameter instead of EQL for those parts of the filter that are static across many queries.
This is because static parts of the filter are faster with Nr than with EQL, due to the maximized
use of the filter cache.

EQL caches the results of the entire filter, as well as those of a few limited sub expressions. Record
filters (Nr) also cache the full results of each filter.Thus, if some part of an EQL filter is static across

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

67Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

many queries and can be expressed in the language of the Nr parameter, it can be advantageous
to use Nr for that part of the filter so as to maximize use of the cache.

• For more flexibility, use filters in combination.

Use EQL-based filters instead of record filters when you do not require security implications, or
when you need more flexibility in expressing filter logic. In this case you may want to improve EQL
filter performance by using record filters in conjunction with EQL-based filters, as explained in the
next bullet.

• To narrow down the set of records, use record filters first.

Record filters act as pre-filters and narrow down the working set of records for future evaluation
by the MDEX Engine. Other expressions in such a query operate only on records returned by a
record filter. By comparison, EQL-based filters do not narrow down the working set of records in
this way. This has performance implications.

When evaluating a query, the MDEX Engine first evaluates record filters of type Nr, and then all
other filters.

Performance impact of EQL-based filters
Use the following recommendations to optimize query performance of EQL-based filters.

• To optimize the performance of EQL-based filters, use record filters in conjunction with EQL-based
filters. Use record filters first (Nr) if you can, to narrow down the working set, and then use EQL
logic to filter within the smaller working set of records.

• Monitor the size of the standard Dgraph request log file. EQL-based filters have verbose syntax.
Since all Endeca queries are logged to the standard Dgraph request log, the size of EQL-based
queries affects disk space due to the growing size of the Dgraph logs. As an alternative, consider
using file-based record filters.

• Identify slow queries during testing. To determine whether an EQL-based filter is slowing down
your navigation queries, set the EQL statistics logging in the Dgraph. For example:

--log_stats <file_name>
--log_stats_thresh N

This file contains timing for queries taking longer than the specified threshold. Endeca recommends
setting a low threshold value during development, and a more conservative value for testing. Do
not use statistics logging in production since the verbosity of the logs can cause heavy disk writes
and consume available disk space. Look for nodes with large self_time_ms values to identify
the total time, in milliseconds, spent in this query node and its descendants.

• To optimize EQL query performance, use EQL for queries based on property value instead of
queries based on range. For example, if the application's price property contains only 0 or positive
values, using an EQL expression to query for “not (price = 0)” provides a better query performance
than using queries of type “price > 0”. (This recommendation is true for regular range filters as
well.)

• To speed up the MDEX Engine processing of queries, consider implementing the filtering logic in
the Forge pipeline. For more complex range expressions, it is more efficient to implement the
filtering logic in the Forge pipeline. Use expression logic in a record manipulator or Java manipulator
to create a new property with a Boolean value.

For example, create an “onsale = true” property value if the record has “price > 0” and “price <
listprice” properties, and then use the EQL expression to perform a query based on the property

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation68

value for the newly created property (that is, for “onsale = true”), rather than using EQL for computing
range filter expressions on the original properties.

Performance impact of RRN
You can use EQL expressions for Record Relationship Navigation (RRN).

Important: You must configure the MDEX Engine in order to enable Record Relationship
Navigation. This capability is an optional module that extends the MDEX Engine. Endeca
customers who are entitled by their license to use Record Relationship Navigation can find
instructions on the Endeca Support site. Contact your Endeca representative if you need to
obtain a Record Relationship Navigation license.

Use the following recommendations to speed up the RRN queries:

• When writing RRN filters, take into account that RRN filter expressions work from the inside out.
That is, the innermost, or most nested, expressions are evaluated by the MDEX Engine before
the outer ones. The following example illustrates this bottom-up processing:

collection()/record
 [
 author_bookref = collection()/record
 [
 book_year = "1843"
]
 /book_id
]

The MDEX Engine first finds the records that have the book_year property set to “1843”. Then it
finds the list of all of the values in the book_id property for that set of records. Finally, it finds the
set of records with the author_bookref property set to any of the values in that list.

• To speed up RRN queries, assign different property names for records representing different
concepts. This is because RRN query performance depends on the number of records in the
“nested” EQL query. Keep the number of records that match results for the innermost expression
of the RRN filter relatively small. For example, in this query:

collection()/record[
 record_type = "Film"
 and
 endeca:matches(., "title", "Godfather")
 and
 actor_id = collection()/record[
 record_type = "Actor"
 and
 gender = "male"
 and
 nationality = "Italian"
]

the MDEX Engine uses its bottom-up query execution strategy in the following way:

It first evaluates the inner query and finds the set of records for which the record_type property
has the value "Actor," the gender property has the value "male," and the nationality property has
the value "Italian."

It then creates a collection of all the values of the id property for this set of records.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

69Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

Next, it iterates over the set of “/id” values to filter the set of "Film" records. Thus, if the size of the
collection of “/id” values is really large, the iteration can be relatively slow.

In this example, if the number of film IDs that are returned from the innermost filter to the Actor
filter is relatively small, the RRN filter that will evaluate these records will be fast; if the number of
IDs returned is large, the RRN evaluation will be slow.

To generalize, when you know that the number of records that will have to be evaluated for a RRN
filter is quite large (in this example, it is the number of Italian male actors), a query could be slow.
To solve this problem, one solution is to use the user interface and force the users to narrow down
the set of records early on in the navigation process.

If this is not a reasonable solution for your application, and you cannot guarantee that the user’s
navigation path will necessarily limit the set of records, you can narrow down this set by limiting
the number of records that match in the innermost query, as shown in this example:

collection()/record[
 record_type = "Film"
 and
 endeca:matches(., "title", "Godfather")
 and
 actor_id = collection()/record[
 record_type = "Actor"
 and
 gender = "male"
 and
 nationality = "Italian"
 and
 film_id = collection()/record[
 record_type = "Film"
 and
 endeca:matches(., "title", "Godfather")
]/id
]/id
]

This method is mimicking a top-down execution of a query.

While building an application, test the performance of this inner query with EQL statistics logging
to evaluate the time spent in it.

• To speed up RRN queries, assign different property names for different record types of the RRN
collection()/record function.

For example, consider this generic RRN query:

collection()/record[propertyKey1 = recordPath/propertyKey2]

where:

propertyKey1 is the NCName of an Endeca property on a record type to be filtered, such as
record of type Vineyard. The resulting records will have this property.

recordPath is one or more of the collection()/record functions.

propertyKey2 is the NCName of an Endeca property on another record type, such as record of
type Wine, that will be compared to propertyKey1. Records that satisfy the comparison will be
added by the MDEX Engine to the returned set of records.

In this example, instead of assigning the same value of “ID” for propertyKey1 and proper¬
tyKey2, assign two different property names— “wine_reference_ID” on a record representing a
vineyard, and “wine_ID” on a record representing a wine. As the number of records evaluated for

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation70

the RRN query increases, having the naming convention with different property names for different
record types has a greater effect on performance.

When properties with the same name are assigned on each side of the RRN query, this negatively
affects RRN query performance.

For more information about RRN, see the Endeca Advanced Development Guide.

Tips for troubleshooting EQL filters
To detect queries with errors in EQL, check the Dgraph standard error log located at $ENDE¬
CA_PROJECT_DIR/logs/dgraphs/DgraphN/DgraphN.reqlog.

We recommend using tail -f to follow the log during query development.

To troubleshoot EQL filters, use the following recommendations:

• Watch for disk space limitations. All Endeca queries are logged to the standard Dgraph request
log. Be careful to monitor the size of this log file; there is a risk to run out of disk space due to large
log files.

• Watch for filter length limitations. The Dgraph process has no limits on the length of a request.
The Endeca APIs, however, may have limitations stemming from the programming languages in
which they are implemented.

• Detect slow EQL queries with a dedicated statistics log. Use these Dgraph flags to enable a
special EQL statistics log:

• --log_stats [path_to_file]

• --log_stats_thresh N

The log contains an execution plan, including timing, for queries taking longer than the specified
threshold. To identify slow EQL queries, in the log, look for nodes with large self_time_ms
values.

This statistics logging is turned off by default. Specifying a target for --log_stats implicitly turns
it on.

Endeca recommends placing this log in the same directory as all other Dgraph logs, such as in:
$ENDECA_PROJECT_DIR/logs/dgraphs/DgraphN/DgraphN.eqllog.

You can specify values for the optional --log_stats_thresh argument either as seconds or
milliseconds, such as 1s or 500. If unspecified, the default is 60 seconds. Endeca recommends
setting a low threshold value during development and a more conservative value for testing to
capture queries that take longer than the threshold. In general, do not use statistics logging in
production, as additional logs can cause operational issues due to heavy disk usage and
consumption of available disk space.

Typical causes of EQL filter errors
EQL filter errors are logged into the Dgraph standard error log.This topic lists the most frequent causes
of EQL filter errors.

When errors with parsing or syntax occur in EQL filters, they are logged to the Dgraph standard error
log located at $ENDECA_PROJECT_DIR/logs/dgraphs/DgraphN/DgraphN.reqlog.

Note: When EQL filter errors occur, the query returns zero results and no messages are included
in the API response. Therefore, it is important to look into the Dgraph standard error log.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

71Dgraph and Agraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

The top issues that may cause errors in the EQL filters are the following:

• Missing brackets. Make sure your expressions have matching brackets [] and parentheses ().
• Case-sensitivity. All fields and values are case-sensitive. This includes boolean operators which

must be lower case.
• Property is not indexed properly. Ensure that you enable properties for record filters in Developer

Studio. For any property enabled for record filtering, the Dgidx process creates an inverted index.
If a property is not enabled, you may receive an error message like this: Property "p_name"
is not invertible; comparison will fail.

• Property or dimension is not an NCName. For example, "Wine Type" is not correct,
"Wine_Type" or "WineType" are correct.

• Whitespace is present in values. For example, this is applicable to property value filters: "Foo
" != "Foo".

• You are using an Agraph. EQL filters are supported only in the Dgraph.

Snippeting
You can minimize the performance impact of snippeting by limiting the number of words in a property
that the MDEX Engine evaluates to identify the snippet.

This approach is especially useful in cases where a snippet-enabled property stores large amounts
of text. Provide the --snip_cutoff <num words> flag to the Dgraph to restrict the number of words
that the MDEX Engine evaluates in a property. For example, --snip_cutoff 300 evaluates the
first 300 words of the property to identify the snippet.

If the --snip_cutoff Dgraph flag is not specified, or is specified without a value, the snippeting
feature defaults to a cutoff value of 500 words.

Spelling auto-correction and Did You Mean
This section discusses tuning the spelling auto-correction and spelling Did You Mean features.

Spelling auto-correction
Spelling auto-correction performance is impacted by the size of the dictionary in use. Spell-corrected
keyword searches with many words, in systems with very large dictionaries, can take a disproportionately
long time to process relative to other Dgraph requests.

It is important to carefully analyze the performance of the system together with application requirements
prior to production application deployment.

Performance of admin?op=updateaspell

You can use the admin?op=updateaspell administrative query to make changes to the Aspell
spelling dictionary without having to stop and restart the MDEX Engine. This administrative query
causes the MDEX Engine to temporarily stop processing other regular queries, update the spelling
dictionary and then resume its regular processing.

If the total amount of searchable text is large, this increases the latency of the admin?op=updatea¬
spell operation, especially at large data scale.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Snippeting72

Dictionary pruning

The performance of spelling correction in the Dgraph depends heavily on the size of the dictionary.
An unnecessarily large dictionary can slow response times and provide less focused results.

Dictionary pruning techniques allow you to reduce the size of the dictionary without sacrificing much
in the way of usefulness. To improve spelling correction performance, consider making the following
adjustments in Developer Studio’s Spelling editor:

• Set the minimum number of word occurrences to a number greater than one.

The first setting in the Spelling editor indicates the number of times a word must occur in the source
data in order for it to be included in the dictionary. For record search, the default value is four,
which means only words that appear four or more times are included in the dictionary.

• Set the minimum word length to a number greater than one.

The second setting in the Spelling editor specifies the minimum length (number of characters) of
a word for inclusion in the dictionary. By default, words that are longer than three characters and
shorter than sixteen characters are included.

While less dramatic than tuning the minimum word occurrences, adjusting the minimum word
length can result in a cleaner, more useful dictionary.

Tuning word break analysis

Word-break analysis allows you to consider alternate queries computed by changing the word divisions
in the user’s query. The performance impact of word-break analysis can be considerable, depending
on your data. Seemingly small deviations from default values, such as increasing the value of
--wb_maxbrks from one to two or decreasing the value of --wb-minbrklen from two to one, can
have a significant impact, because they greatly increase the workload on the MDEX Engine. Endeca
suggests that you tune this feature carefully and test its impact thoroughly before exposing it in a
production environment.

Did You Mean
Lowering the value for --dym_hthresh (a Dgraph spelling option) may improve the performance of
Did You Mean.

The option --dym_hthresh indicates when spelling Did You Mean engages. The default is 20,
meaning that spelling Did You Mean engages even if there are up to 20 results.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

73Dgraph and Agraph Analysis and Tuning | Spelling auto-correction and Did You Mean

Depending upon your data, making Did You Mean suggestions at this point may be unnecessary or
even overwhelming to your end users. Setting --dym_hthresh to 2 or 4 is often a better choice.

Stemming and thesaurus
Stemming and thesaurus equivalences generally introduce little memory overhead (beyond the amount
of memory required to store the raw string forms of the equivalences).

In terms of online processing, both features expand the set of results for typical user queries.

While this generally slows search performance (search operations require an amount of time that
grows linearly with the number of results), typically these additional results are a required part of the
application behavior and cannot be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low,
but could slow performance in cases where a large thesaurus (tens of thousands of entries) is asked
to process long search queries (dozens of terms).

Because matching for stemming entries is performed on a single-word basis, the cost for
stemming-oriented query expansion does not grow with the size of the stemming database or with the
length of the query. However, the stemming performance of a specific language is affected by the
degree to which the language is inflected. For example, German nouns are much more inflected than
English nouns.

Guidelines for thesaurus development
To avoid performance problems related to expensive and non-useful thesaurus search query
expansions, consider the following thesaurus clean-up rules.

• Use --thesaurus_cutoff <limit> to set a limit on the number of words in a user’s search
query that are subject to thesaurus replacement.The default value of <limit> is 3. Up to 3 words
in a user’s search query can be replaced with thesaurus entries. If there are more terms in the
query that match thesaurus entries, these terms are not replaced by thesaurus expansion. This
option serves as a performance guard against very expensive thesaurus queries. Lower values
improve thesaurus engine performance.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki
can refer to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki
= pants, then a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such
as top = shirt = sweater = vest. This increases the number of results the user has to go through
while reducing the overall accuracy of the items returned.

In this instance, better results are attained by creating individual one-way thesaurus entries between
the general term top and each of the more specific terms.

• Use care when creating thesaurus entries that include a term that is a substring of another term
in the entry. Consider the following example with a two-way equivalency between Adam and Eve
and Eve.

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would
have gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam
and Eve) or Eve, causing the Adam part of the query to be ignored.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Stemming and thesaurus74

There are times when this behavior might be desirable (such as in an equivalency between George
Washington and Washington), but not always.

• Do not use stop words such as and or the in single-word thesaurus forms.

For example, if the has been configured as a stop word, thesaurus equivalency between thee and
the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are
handled as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

• Avoid multi-word thesaurus forms where single-word forms are appropriate.

In particular, avoid multi-word forms that are not phrases that users are likely to type, or to which
phrase expansion is likely to provide relevant additional results. For example, the two-way thesaurus
entry Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D. 939) should be
replaced with the single-word form Aethelstan = Athelstan.

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus
entry Pikes Peak > Pike’s Peak should only be used if apostrophe (’) is enabled as a search
character.

• Use --thesaurus_multiword_nostem to specify that words in a multiple-word thesaurus form
should be treated like phrases and should not be stemmed. This may increase performance for
some query loads. Single-word terms will be subject to stemming regardless of whether this flag
is specified.

This flag prevents the Dgraph from expanding multi-word thesaurus forms by stemming.Thesaurus
entries continue to match any stemmed form in the query, but multi-word expansions only include
explicitly li sted forms. To get the multi-word stemmed thesaurus expansions, the various forms
must be listed explicitly in the thesaurus.

Record, phrase, and dimension search
This section discusses the performance impact of various kinds of search.

Record search
Because record search is an indexed feature, each property enabled for record search increases the
size of the Dgraph process. The specific size of the increase is related to the size of the unique word
list generated by the specific property in the data set.

Therefore, only properties that are needed by an application for record searching should be configured
as such.

Boolean search
The performance of Boolean search is a function of the number of terms and operators in the query
and also the number of records associated with each term in the query.

As the number of records increases and as the number of terms and operators increase, queries
become more expensive.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

75Dgraph and Agraph Analysis and Tuning | Record, phrase, and dimension search

Proximity search impacts the system in various ways. The performance of proximity searches is as
follows:

• Searches using the proximity operators will be slower than searches using the other Boolean
operators.

• Proximity searches that operate on phrases will be slower than other proximity searches and slower
than normal phrase searches.

Note: If you notice unexpected behavior while using Boolean search, use the Dgraph -v flag
when starting the Dgraph. This flag prints detailed output to stderr describing the running
Boolean query process.

Phrase search
The cost of phrase search operations depends mostly on how frequently the query words appear in
the data and the number of words in the phrase.You can improve performance of phrase search by
limiting the number of words in a phrase with the --phrase_max <num> flag for the Dgraph.

Searches for phrases containing relatively infrequent words (such as proper names) are generally
very rapid.

You can use the --phrase_max <num> flag for the Dgraph to specify the maximum number of words
in each phrase for text search. Using this flag improves performance of text search with phrases. The
default number is 10. If the maximum number of words in a phrase is exceeded, the phrase is truncated
to the maximum word count and a warning is logged.

Wildcard search
The MDEX Engine uses a mechanism for wildcard search that simplifies user configuration. In most
cases, the size of the on-disk index is reduced considerably, and indexing performance is improved
compared with previous releases. This topic provides recommendations for optimizing your wildcard
search performance.

To optimize performance of wildcard search, use the following recommendations:

• Account for increased time needed for indexing. In general, if wildcard search is enabled in
the MDEX Engine (even if it is not used by the users), it increases the time and disk space required
for indexing. Therefore, consider first the business requirements for your Endeca application to
decide whether you need to use wildcard search.

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words
that are shorter than 1024 characters. Words that are longer than 1024 characters are not
indexed for wildcard search.

• Do not use "low information" queries. For optimal performance, Endeca recommends using
wildcard search queries with at least 2-3 non-wildcarded characters in them, such as abc* and
ab*de. Avoid wildcard searches with one non-wildcarded character, such as a*, since they are
more expensive to process. Also be aware that the MDEX Engine ignores queries that contain
only wildcards, such as *. Similarly, wildcard queries that contain only punctuation symbols, spaces
and wildcards, such as *., *', or * *, are ignored.

• Analyze the format of your typical wildcard query cases.This lets you be aware of performance
implications associated with one specific wildcard search pattern. Examine your queries to identify
whether you have queries that contain punctuation syntax in between strings of text, such as

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Record, phrase, and dimension search76

ab*c.def*. For strings with punctuation, the MDEX Engine generates lists of words that match
each of the punctuation-separated wildcard expressions. In this case, the MDEX Engine uses the
--wildcard_max <count> setting to optimize its performance. This setting does not affect
wildcard searches for strings which do not contain punctuation.

You enable wildcard search in Developer Studio.

Wildcard search with punctuation and performance

The number of terms to which the MDEX Engine matches the wildcard search strings is limited by the
--wildcard_max <count> number (the default is 100). This flag lets you specify to the MDEX
Engine the maximum number of terms that can match a wildcard term in a wildcard search query that
contains punctuation.

When a search reaches the --wildcard_max limit, the verbose Dgraph error log records a message
similar to the following:Wildcard term 1*0*.234* is too general: returns 1618 words,
which is greater than max of 100. Using the most frequent 100 terms, which
took 46.2 ms. to compute.

Increasing the --wildcard_max <count> improves the completeness of results returned by wildcard
search for strings with punctuation, but negatively affects performance. Thus you may want to find the
number that provides a reasonable trade-off.

If your wildcard search queries contain punctuation, such as 1*0*.234*, the MDEX Engine generates
lists of words that match each of the punctuation-separated wildcard expressions, and uses these
non-wildcard terms to locate related results in the documents (records).

This means that if the corpus of data contains other possible matches beyond the --wildcard_max
<count> (and beyond the results that are already found), the MDEX Engine may not return them as
results. Thus, the list of results returned by the Engine in a wildcard search with punctuation may not
be exhaustive.This creates a trade-off situation in which you need to optimize performance cost versus
business value of maximum completeness of returned results.

To summarize, if the business requirements of your application require a nearly 100% complete list
of results even on very "low-information" wildcard queries with punctuation, such as 1*0*.234*,
increase the value of wildcard_max. Next, pay attention to the information returned in the search
report. From it, you can estimate whether it may make sense to increase the wildcard_max value
further.

Gradually increase the --wildcard_max value, while watching the performance of the MDEX Engine.

Note: If search queries contain only wildcards and punctuation, such as *.*, the MDEX Engine
rejects them for performance reasons and returns no results.

Preventing expensive wildcard searches

Certain types of wildcard queries may cause the MDEX Engine to grow in memory footprint and take
a long time to complete. Even though these types of queries are legitimate searches that would
eventually return, they can cause the appearance of a timeout and potentially cause a site outage. As
a best practice, Endeca recommends preventing these types of wildcard queries in your front-end
application code.

The behavior of such wildcard queries does not typically indicate an actual timeout of the MDEX
Engine; instead, it may indicate, for example, that the query search term is so broad that it takes a
very long time to compute results. For example, to process a search for "a*", the MDEX Engine must

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

77Dgraph and Agraph Analysis and Tuning | Record, phrase, and dimension search

return every record containing any word beginning with a; this is a more time-intensive query for the
Dgraph to compute.

The following types of wildcard queries are potentially very expensive to compute for the MDEX Engine:

• Wildcard queries with short search terms, such as *a*, */*, or * *.
• Wildcard queries with search terms that contain non-searchable characters, such as punctuation

or dashes.
• Wildcard queries with search terms that have quoted phrases in them, such as *"pizza pie"*.

To prevent users from issuing such types of wildcard queries, utilize front-end application code to
circumvent these scenarios for all queries that contain a wildcard character (*).

Note: If search queries contain only wildcards and punctuation, such as *.*, the MDEX Engine
rejects them for performance reasons and returns no results.

Use the following recommendations in the front-end application, by utilizing application code at query
time:

1. Remove all non-searchable characters from each wildcard query before issuing it to the MDEX
Engine.

Stripping non-searchable characters should make little difference in your search results because
the MDEX Engine treats non-searchable characters as white space both when indexing and when
retrieving word matches.

2. Parse the queries to calculate their search term length to avoid very low information queries, such
as "a*". For, example, you may want to prevent issuing to the MDEX Engine wildcarding queries
that contain fewer than 3 non-wildcarded characters.

Filtering out such queries should make no difference in your search results because wildcard search
for two characters or less would bring back an unusable results set in almost all instances.

3. Exclude wildcard queries with quoted phrase searches. This will not affect your search results
because when users issue quoted phrase search, most likely they expect exact matches and do
not require wildcards in this case.

You can accomplish these recommendations in the front-end application tier by programmatically
analyzing search terms entered by the users before issuing them to the MDEX Engine, determining
whether a query will be issued, and prompting the user to submit a better query (or using logic of your
choice to handle this situation).

Note: In the majority of cases, none of these changes should impact the user experience.

Wildcard approximation

Approximate wildcard search query matching (set with the Dgraph flag --wildcard_approx) is
deprecated as it is no longer used by the wildcard search indexing mechanism. The MDEX Engine
ignores this flag if it is used.

Several other wildcard tuning parameters that existed in versions prior to 6.1.2, are also deprecated.
For a summary of changes, see the MDEX Migration Guide for that version.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Record, phrase, and dimension search78

Dimension search
The runtime performance of dimension search directly corresponds to the number of dimension values
and the size of the resulting set of matching dimension values. In general, this feature performs at a
much higher number of operations per second than navigation requests.

The most common performance problem occurs when the resulting set of dimension values is
exceptionally large (greater than 1,000), thus creating a large results page. Always use the advanced
dimension search and query parameters to limit the number of results per request. For details, see
“Using Dimension Search” in the Endeca Basic Development Guide.

Compound dimension search requests are generally more expensive than non-compound requests,
and are comparable in performance to record search requests.

To summarize, if you submit a default dimension search query, the query is generally very fast. If you
submit a compound dimension search query, performance is not as fast as for the default dimension
search. In both cases, the query will be faster if you limit the results by using any of the advanced
dimension search parameters. For example, you can use the Di parameter to specify the specific
dimension (in the case of the default dimension search), or a list of dimension value IDs (in the case
of compound dimension search) for which you expect matches returned by the MDEX Engine.

Note: Do not confuse the Dgraph configuration for dimension search with the Dgraph
configuration to enable record search.

Precedence rules
This section discusses precedence rules and explains their performance impact.

About precedence rules
Precedence rules let you limit the presentation of certain Guided Navigation dimensions only to specified
navigation states.

You configure precedence rules in Developer Studio.

Each precedence rule lets you identify a trigger dimension value and a target dimension, and presents
the target dimension for Guided Navigation only in those query contexts in which:

• Users explicitly select the trigger dimension value as a refinement, or
• The trigger dimension value is assigned to all records in the current result set.

Example of a precedence rule

For example, suppose that an application includes a precedence rule linking the trigger dimension
value “Part Category > Passives > Resistors” to a target dimension “Resistance”, which might contain
refinements such as “10 ohms” and “22 ohms”.

In a navigation query where, for example, the user performs a search matching records tagged with
a variety of values from “Part Category” including “Resistors” and other values, and where the user
does not explicitly or implicitly select the dimension value “Part Category > Passives > Resistors”, the
“Resistance” dimension is not returned for Guided Navigation.

This prevents the presentation of a contextually irrelevant navigation dimension to the user. Before
the user has indicated some interest in resistors, presenting “Resistance” navigation choices may be

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

79Dgraph and Agraph Analysis and Tuning | Precedence rules

unexpected, clutter the presentation of more relevant navigation choices, and detract from the overall
experience.

If the user subsequently selects the “Part Category > Passives > Resistors” dimension value as a
refinement, the “Resistance” dimension is presented for Guided Navigation (assuming that there are
valid, available navigation refinements available for “Resistance”). Similarly, if the user performs a
search that triggered “Part Category > Passives > Resistors” as an implicit refinement, for example if
the user performed a text search for a manufacturer who only makes resistors, the “Resistance”
dimension is returned for navigation.

This unique behavior provided by the MDEX Engine allows the contextual presentation of appropriate
navigation dimensions to be more automatic and adaptive, as the front-end application need not be
aware that the user's search has implied “Part Category > Passives > Resistors” for the “Resistance”
dimension to be presented automatically as a navigation dimension.

Relevance ranking
Relevance ranking can impose a significant computational cost in the context of affected search
operations (that is, operations where relevance ranking is enabled).

Important: The relevance ranking chapter in the Endeca Advanced Development Guide outlines
recommended strategies for both retail catalogs and document repositories. If you are developing
an Endeca application on your own, you should start with the recommended relevance ranking
strategy. Later, if the recommended strategy is not sufficient, you can experiment carefully with
strategy tuning.

The set of modules that will provide acceptable performance depends heavily on the size and
characteristics of the application data set.

In general, Endeca recommends testing the set of modules used for relevance ranking in a staging
environment before using it in production. This is because the qualities of the data set may affect
relevance ranking performance in unexpected ways. The following characteristics of the data set may
negatively affect performance:

• The data set is too large to fit into RAM
• It contains large file content used in search
• It uses stemming or thesaurus heavily
• It has many dimensions or properties per record
• It frequently produces large result set sizes

Minimizing the performance impact of relevance ranking
You can minimize the performance impact of relevance ranking in your implementation by making
module substitutions when appropriate, and ordering the modules you do select sensibly within your
relevance ranking strategy.

Making module substitutions

Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance
ranking depends heavily on the set of ranking modules used. In general, modules that do not perform
text evaluation introduce significantly lower computational costs than text-matching-oriented modules.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Relevance ranking80

Although the relative cost of the various ranking modules is dependent on the nature of your data and
the number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.
• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost

modules, presented in the order of decreasing cost.
• WFreq can also be costly in some situations.
• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms, Interp,

Numfields, Maxfields and Field) are generally relatively cheap.

In order to maximize the performance of your relevance ranking strategy, consider a less expensive
way to get similar results. For example, replacing Exact with Phrase may improve performance with
relatively little impact on results.

Note: Choose the set of modules used for relevance ranking most carefully when the data set
is large or contains large file content that is used for search operations.

Ordering modules sensibly

Relevance ranking modules are only evaluated as needed. When higher-priority modules determine
the order of records, lower-priority modules do not need to be calculated. This can have a dramatic
impact on performance when higher-cost modules have a lower priority than a lower-cost module.

To optimize performance, make sure that the cheaper modules are placed before the more expensive
ones in your strategy.

Dynamic business rules
Dynamic business rules (used in merchandising and content spotlighting) require very little data
processing or indexing, so they do not impact the Dgraph memory footprint.

However, because the MDEX Engine evaluates dynamic business rules at query time, the larger the
number of rules, the longer the evaluation and response time.

To improve query response-time performance of the Dgraph with dynamic business rules:

• Monitor and limit the number of rules that are evaluated for each request. Each rule that is evaluated
for a request impacts the response time for that request.

To do this, specify the number of records returned in the Maximum Records text box of the Styles
editor in Developer Studio. Setting the Maximum Records value prevents business rules from
returning an entire set of matching records, potentially overloading the network, memory, and page
size limits for a request. If the Maximum Records value is set to a large number, such as 1,000,
then as many as 1,000 promoted records could be returned with each navigation request, causing
significant performance degradation.

• Use Nmrf to specify the syntax for the rule filter. Rule filters restricts which rules can promote
records for a navigation query. The Nmrf query parameter controls the use of a rule filter. Nmrf
has a corresponding ENEQuery method and parameter.

• Set a rule limit for each rule zone.
• Configure triggers for all business rules. Business rules without triggers are evaluated for every

navigation query and negatively affect performance.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

81Dgraph and Agraph Analysis and Tuning | Dynamic business rules

• Review how rule sorting is used. Rule sorting allows you to sort the rule’s promoted records by a
specified property or dimension value. Per-rule sorts can increase the performance cost of dynamic
business rules.

Agraph performance considerations
Ideally, the Agraph speeds up the processing of requests in the MDEX Engine by a factor of the number
of partitions.The MDEX Engine achieves close to the ideal speed-up for handling expensive requests,
especially analytics requests.

For smaller requests, the overhead of the Agraph tends to nullify the benefits of parallelizing the
computation.

Dynamic business rules and the Agraph

If you are using dynamic business rules with the Agraph, you may experience a loss of performance
if you are using unique zones combined with high maximum values (for the number of records returned)
or large numbers of rules. To avoid a slowdown in Dgraph operation, you may need to reduce the rule
count, reduce the number of records returned or abandon uniqueness.

Paging and the Agraph

The combination of paging (particularly deep paging) and the Agraph can be slow.

Analytics performance considerations
This section explores issues related to optimizing performance of Analytics queries.

Important: Endeca Analytics is a separate module that extends the MDEX Engine.You should
configure the MDEX Engine in order to enable Analytics. Endeca customers who are entitled by
their license to use Analytics can find instructions on the Endeca Support site. Contact your
Endeca representative if you need to obtain an Endeca Analytics license.

For more information about how to use Endeca Analytics functions, and for examples and best practices,
see the Endeca Analytics Guide, and the solution article “Analytics Considerations and Best Practices”
available online from the Endeca Developer Network (EDeN).

Each of the following considerations has an impact on the Analytics query performance:

• Review existing Analytics queries to understand their processing order and Analytics statement
dependencies. For example, you may improve query performance if you narrow down the working
record set which Analytics statements must process.

When a query contains an Analytics query, the Analytics processing is one of the last steps in the
overall query processing order. The Analytics statements are calculated on the resulting record
set (NavStateRecords) after any search, navigation, or filtering has been applied by the Endeca
query. This has performance benefits, since the fewer records the Analytics statements need to
process, the better.

• Test Analytics queries that contain a GROUP BY operation to measure RAM footprint and query
response time. This will help identify the size of a result set that does not negatively affect
performance.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Analytics performance considerations82

GROUP BY operations result in a large number of aggregated records that are stored within the
Dgraph RAM. This may cause an increase in the RAM footprint and the Dgraph processing time.
It may be necessary to tune GROUP BY operations within Analytics statements in your queries.

• Build Analytics queries in a way that lets them utilize the caching of Analytics statements used in
more than one query.

The Dgraph dynamic cache stores Analytics statements. If statement dependencies exist in your
queries, you can utilize previously computed data within other Analytics statements. If one Analytics
query includes multiple Analytics statements, each statement is cached separately, which results
in a significant performance gain in cases when specific Analytics statements are shared across
multiple queries.

Analytics and the Agraph performance considerations
If you are using an Agraph, consider which Analytics functions should be performed by an Agraph
versus those that should be processed by child Dgraph processes. From a performance standpoint,
the more work the Dgraphs can perform, the more efficient the query is.

Consider the following cases:

• Be aware that Analytics statement dependencies that occur in an Agraph require that all of the
lookup processing occurs in the Agraph. This results in slower query processing.

• Review how you use different types of aggregate functions.The aggregate functions are calculated
at different stages of Analytics processing. Understanding the differences between the functions
can be useful when optimizing the performance of the Analytics statements. In particular, logically
distribute SUM, COUNT, AVG and COUNTDISTINCT functions that are used in your Analytics queries
between Dgraphs and an Agraph to ensure that they are optimized for performance.

For example:

• Each of the Dgraphs can process its own SUM, while an Agraph computes the resulting SUM
of SUMS.

• Similarly, Dgraphs can perform SUM and COUNTS on their records, while an Agraph computes
the resulting SUM of SUMs and SUM of COUNTs, as well as AVG.

• For more complex functions such as COUNTDISTINCT, each Dgraph can send a full list of its
unique values to the Agraph, while the Agraph determines the COUNTDISTINCT across all
Dgraphs responses.

Note: For more information about aggregate functions, see the solution article “Analytics
Considerations and Best Practices” available online from the Endeca Developer Network
(EDeN).

• Revise your data partitioning strategy to account for Analytics queries by choosing the most
appropriate partition key.

In an Agraph architecture, you can partition the data by specifying a total number or partitions and
a partition key based on which the data will be split.

If this partition key is included in the GROUP BY clause, the Dgraphs perform significantly more of
the work, which optimizes Analytics performance. Therefore, when possible, the partition key
should be a property that is used within a GROUP BY clause most frequently, or that is expected
to return a large number of results.

For this optimization to work properly, the Endeca configuration files must have only one Rollup
key defined, and it must be the key that the data was partitioned on. If the configuration is not

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

83Dgraph and Agraph Analysis and Tuning | Analytics performance considerations

created properly, the Agraph may try to optimize the query when it should not, resulting in the
Agraph returning multiple aggregate records for the same GROUP BY value.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Dgraph and Agraph Analysis and Tuning | Analytics performance considerations84

Appendix A

The MDEX Engine Request Log

This section describes the MDEX Engine (Dgraph) request log, which you can use to analyze Endeca
application performance.

About the MDEX Engine request log
The MDEX Engine request log (also called the Dgraph request log) is the file that captures Web
application query information.

The MDEX Engine always generates a request log with a default name dgraph.reqlog.You use
the --log option when running the MDEX Engine to specify a different path to store the request log.

You can extract queries from this log file and use them with the Endeca Eneperf tool to analyze Web
application performance.You can also use Perl to extract useful information from Dgraph request logs.

In addition, depending upon the size of your log files, you can import them into a tool that allows you
to manipulate column-based data, such as Microsoft Excel.

Related Links
Extracting information from request logs on page 89

MDEX Engine request logs can be very large and difficult to read.You might find it useful to
sort them on fields you are interested in, such as Processing Time or Total Request Duration.
You can then look for a pattern or feature in the most time-consuming queries that might be
the origin of the performance issue.

Request log file format
The content of the request log file varies slightly, depending upon whether it is treating Presentation
API queries or Web services invocations.

Note: If a field is not relevant to the query in question, the request log entry for that query
contains a dash (-) in that location.

Each entry has the following 14 columns:

[Timestamp] [Client IP Address] [Agraph Transaction ID]
[HTTP Exchange ID] [Response Size] [Total Request Time]
[Total Processing Time] [HTTP Return Code] [Number of Results]

[Queue Status] [Thread ID] [Query String] [Query Body]
[HTTP Headers]

These entries are listed in the order of the timestamp. Because of this, the entries are listed in the
response order, not in the request order. The following table describes the log entries in more detail:

DescriptionPresentation API
Queries or Web
Services
Invocations

Column

Time stamp indicating the time the request was completed, in
milliseconds, since the epoch (January 1, 1970, 00:00:00 UTC). For
example:

BothTimestamp

1208947882000=2008-04-23 10:51:22 AM GMT

The time is recorded in GMT (not the localized time of the server).
You can convert it using a UTC epoch converter utility, such as UTC.

IP address of the requesting client.BothClient IP

Agraph transaction identifier.
Presentation API
Queries

Agraph
Transaction
ID

Note: This field is always empty unless the Dgraph is running
under an Agraph.

Unique query identifier.This identifier allows you to correlate Dgraph
request log items with error messages in the Dgraph log. In addition,

BothHTTP
Exchange ID

it is used by the MDEX Server Statistics page to compose most
expensive query statistics.

Note: The identifier is only unique within a single Dgraph
instance, and is not persistent across Dgraph shutdown.

Number of bytes written to the client. May be less than or equal to
the intended result size, for example, due to a premature session
end.

BothResponse
Size

The request lifetime, in milliseconds. Equal to the total amount of
time between when the Dgraph reads the request from the network

BothTotal
Request
Time and finishes sending the result. May include queuing time, such as

time spent waiting for earlier requests to be completed.

Note: In previous releases, the request lifetime ended when
the connection was closed. If connection close did not time
out, this lifetime would include the time to transport the
response to the client, and the time for the client to read the
response. Starting with 6.1.0, the request lifetime ends when
the response has been successfully delivered to the socket
layer.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Request Log | Request log file format86

DescriptionPresentation API
Queries or Web
Services
Invocations

Column

Processing time, in milliseconds.
BothTotal

Processing
Time Equal to the total computation time required for the Dgraph to handle

the request, excluding network and wait time. This value gives an
accurate measure of how expensive the request was to compute,
given current system state. (That is, if the machine in question was
busy with other threads or processes, the time may be longer than
on an otherwise unused machine.)

For any given query, Processing Time is always smaller than Total
Request Time.

The HTTP return code. A status code of 200 (OK) is returned if the
request was successful. For details on other codes that can appear
in this field, see the table below.

BothHTTP Status
Code

Number of results from your query (or "-" if the HTTP request was
not a query).

Presentation API
Queries

Number of
Results

Note: This number reflects the number of results, not
necessarily the number of results returned. That is, this is the
number of results from your query, not accounting for your
nbins and offset settings. nbins and offset are used
to specify how many of the results are actually returned.

The number of threads busy when the request was received. This
number is calculated when the request was received, thus this
request is not included in this number.

BothQueue
Status

In previous releases, this column reported the number of threads
busy (when Q was a positive number), or the number of query
threads that are idle (when Q was a negative number). Starting with
the MDEX Engine version 6.1.2, this column does not report the
number of query threads that are idle because there is no longer a
one-to-one relationship between threads and queries.

Specifically, when you use the --threads flag to specify the number
of threads to the MDEX Engine, the number you specify determines
the total number of threads available to the MDEX Engine, which
includes query processing threads and other threads that support
query processing. As an implication, there is a greater chance that
a non-saturated Dgraph could experience minor queuing, even in
the case when the number of query requests in the queue is less
than the number of threads specified.

For more information, see the chapter in this guide about using the
multithreaded mode.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

87The MDEX Engine Request Log | Request log file format

DescriptionPresentation API
Queries or Web
Services
Invocations

Column

The thread ID of the thread that was assigned the request (or “-” in
single-threaded mode).

BothThread ID

The URL of the Presentation API query or of the Web service.BothQuery String

The URL-encoded POST body of the query. The actual entry in the
request log is a single token, even though POST body can contain
multiple lines of text.

Web Services
Invocations

Query Body

The URL-encoded HTTP headers that were sent with the query.
BothHTTP

Headers
The actual entry in the request log is a single token, even though
HTTP headers can contain multiple lines of text.

Non-OK HTTP Status Codes

This table details the non-OK HTTP Status Codes that might appear in the Request Log.

ConditionNameStatus Code

In response to HTTP request header Expect: 100-continue (not an
error)

Continue100

Admin or config request with unsupported opBad Request400

HTTP request line parse error, or HTTP request header parse error,
or HTTP request Transfer-Encoding other than chunked

Bad Request400

HTTP request with invalid chunk size or missing chunk terminatorBad Request400

HTTP request with invalid trailing header formatBad Request400

HTTP request with wildcard URL ("*") not valid for METHODBad Request400

HTTP request URL includes protocol other than "http", or protocol but
no host, or neither protocol nor host and path does not start with "/"

Bad Request400

HTTP request with version 1.1 but no HostBad Request400

HTTP request with more data than expectedBad Request400

Conversion of POST body to string failed for web service requestBad Request400

Admin ops are disabled for the Dgraph, and admin?op=exit or ad¬
min?op=restart is requested

Forbidden403

Presentation API request with URI parse error or processing errorNot Found404

Request has empty path, or admin or config request has additional
path steps

Not Found404

File server request for non-existent file or for a directory, or file outside
of allowed root directory

Not Found404

Web service request for unknown Web serviceNot Found404

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Request Log | Request log file format88

ConditionNameStatus Code

Queue timeout exceeded for the request, or I/O timeout reading HTTP
request

Request
Time-out

408

Presentation API request for unsupported featureGone410

HTTP POST request with Content-Length missing or empty or not a
non-negative integer

Length
Required

411

HTTP request with "If-None-Match" headerPrecondition
Failed

412

Content-Type parse error in Web service requestUnsupported
Media Type

415

Attempt to return informational status code to HTTP 1.0 clientInternal Server
Error

500

Exception from XQuery evaluation in Web service requestInternal Server
Error

500

Unhandled exception during request processingInternal Server
Error

500

admin?op=update is requested and no update directory was specified
for the Dgraph

Internal Server
Error

500

HTTP request for unsupported Method (such as PUT)Not
Implemented

501

HTTP request includes an unsupported header that must not be
ignored: ("Authorization", "Content-Encoding",
"Content-Transfer-Encoding", "Range", "Content-Range", "If-Range")

Not
Implemented

501

Presentation API request for disabled featureNot
Implemented

501

HTTP request to server that is closed (in the process of shutting down)Service
Unavailable

503

HTTP request with version not "1.0" and not "1.1"
HTTP Version
Not Supported

505

Related Links
List of request log parameters on page 94

This section lists request log parameters.

Extracting information from request logs
MDEX Engine request logs can be very large and difficult to read.You might find it useful to sort them
on fields you are interested in, such as Processing Time or Total Request Duration.You can then look
for a pattern or feature in the most time-consuming queries that might be the origin of the performance
issue.

Here are two approaches to extract information from request logs:

• Run the Cheetah script available from the Endeca Developer Network (EDeN).

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

89The MDEX Engine Request Log | Extracting information from request logs

• Write your own Perl code.

The Cheetah script reads one or more MDEX Engine logs and reports on the nature and performance
of the queries recorded in those logs. This report provides information on what actually happened in
the past, instead of reporting on potential performance or capacity planning for the future. This script
can be run manually in order to debug performance problems, and should also be run on a regular
basis to continually monitor performance and call out trends in Dgraph traffic load, latency, throughput,
and application behavior.

The Cheetah script is available from the Downloads section of EDeN under Tools and Utilities.

If you write Perl to extract, manipulate, and analyze the information in a request log, you may find the
following setting useful in Perl scripts:

perl -nae

where:

• n indicates that it is a loop processing each line of the input file(s) in turn
• a turns on autosplit
• e indicates that it should execute the next argument, which should be Perl code

This script shows how many queries took more than five seconds. It splits the line on whitespace into
an array called F. The sixth element in the array ([5]) corresponds to the Total Request Time and
represents the amount of time the query took.

perl -nae 'print if $F[5] > 5000' logfile

If you are tracking system trends by time, you may find it useful to correlate the epochal time that the
log displays with human-readable time. This script is used to convert the time stamps into a more
readable form.

perl -nae 'print scalar localtime $F[0]," $_"'

Note: In this script, Localtime is set to the location where you are doing analysis, so if you
are looking at a log from a different time zone, you may want to change the time zone. On UNIX
systems the TZ environment variable can be set to effect this change. For example,
TZ=US/Pacific.

Request log rolling
The MDEX Engine request log is subject to log rotation when it goes over one gigabyte.

When this occurs, the existing logfile is renamed from, say, dgraph.reqlog to
dgraph.reqlog.PID.N, where:

• PID is the Dgraph process ID
• N is the number of logs that this Dgraph has already rotated. N=0 the first time the Dgraph does

log rotation, and then goes up by 1 each time.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Request Log | Request log rolling90

Appendix B

The MDEX Engine Parameter Listing

This section describes the parameters in the MDEX Engine request logs and provides mappings
between the URL that is sent from the application to the Endeca Presentation API, and the URL that
is sent from the API to the MDEX Engine.

Understanding the URL parameter mapping
Typically, when you analyze the MDEX Engine request query logs for troubleshooting purposes, you
investigate a log entry for a query in question, and identify an MDEX Engine parameter in the query’s
log entry.

Next, you want to trace this log parameter to its corresponding settings in the user-visible URL that is
sent from the application to the Endeca Presentation API and the URL that is sent from the API to the
MDEX Engine. There is not a one-to-one correlation between the two URLs.

The Presentation API transforms the URL it receives from the application into an MDEX Engine-specific
URL before sending it to the MDEX Engine.

Mappings between request log and UrlENEQuery URL parameters
This explains a mapping between the URL that is sent from the application to the Endeca Presentation
API, and the URL that is sent from the API to the MDEX Engine.

It helps you translate the MDEX Engine request log file, which tells you exactly which URLs the MDEX
Engine has processed. By extension, these are the URLs that the Presentation API has sent to the
MDEX Engine. If the API has sent an incorrect URL to the MDEX Engine, it is a good indication that
the API received an incorrect URL from the Web application in the first place.

Note: For a complete description of the ENE URL query parameters, see the Endeca Advanced
Development Guide.

Example mappings

Here are some sample mappings:

API to MDEX EngineWeb Application to API

/graph?node=0/controller.jsp?N=0

/graph?node=0+attrs=DESC+merlot/controller.jsp?N=0&Ntk=DESC&
Ntt=merlot

Mapping parameters

The table in this section establishes a mapping between those MDEX Engine request log parameters
that have corresponding UrlENEQuery URL parameters, such as N and Ntt.

Not all request log parameters have corresponding UrlENEQuery URL parameters. This table does
not list those MDEX Engine request log parameters that do not have directly corresponding end-user
parameters. It also does not indicate which methods or properties of the ENEQuery objects can be
used to produce the specified request log parameters.

In this table, the ENE parameters in bold are the primary parameters, while those in non-bold are
secondary parameters.

Maps to...DescriptionMDEX Engine parameter

NNavigation querygraph?

NNavigation query parameter,
navigation descriptors

node

NoNavigation query parameter,
record offset

offset

NaoNavigation query parameter,
aggregated record offset

offset

NeNavigation query parameter,
exposed refinements

group

NpNavigation query parameter,
records per aggregated record

allbins

NaNavigation query parameter,
analytics expression to apply to
a query

analytics

NsNavigation query parameter, sortsort

NsoNavigation query parameter, sort
order

sort

NuNavigation query parameter,
rollup

groupby

Ntk, Ntt, NtxNavigation query parameter,
record search key, terms, and
options

attrs

Nrk, Nrt, Nrr, NrmNavigation query parameter,
search interface, relevance

relrank

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Understanding the URL parameter mapping92

Maps to...DescriptionMDEX Engine parameter

ranking terms, relevance ranking
strategy and match mode

NtyNavigation query parameter, Did
You Mean

dym

NtpcNavigation query parameter,
compute phrasings

autophrase

NtprNavigation query parameter,
rewrite query

autophrasedwim

NmptNavigation query parameter,
merchandising preview time

merchpreviewtime

NmrfNavigation query parameter,
merchandising rule filter

merchrulefilter

NfNavigation query parameter,
range filters

pred

NrNavigation query parameter,
record filters

filter

NrsNavigation query parameter,
Endeca Query Language

structured

NrcNavigation query parameter,
dynamic refinement ranking

refinement

DDimension search querysearch?

DDimension search query
parameter, search terms

terms

DxDimension search query
parameter, options

options

DnDimension search query
parameter, dimension search
scope

node

DiDimension search query
parameter, search dimension

model

DpDimension search query
parameter, number of results

num

DoDimension search query
parameter, offset

offset

DkDimension search query
parameter, rank

rank

DfDimension search query
parameter, range filters

pred

DrDimension search query
parameter, record filters

filter

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

93The MDEX Engine Parameter Listing | Understanding the URL parameter mapping

Maps to...DescriptionMDEX Engine parameter

DrsDimension search query
parameter, Endeca Query
Language

structured

AAggregated record queryabin?

AAggregated record query
parameter, record ID

id

AnAggregated record query
parameter, descriptors

node

AuAggregated record query
parameter, rollup

groupby

AfAggregated record query
parameter, range filters

pred

ArAggregated record query
parameter, record filters

filter

ArsAggregated record query
parameter, Endeca Query
Language

structured

RRecord querybin?

RRecord query parameter, record
ID

id

List of request log parameters
This section lists request log parameters.

It provides the following information:

• Lists the request log parameters and explains what they do.
• Identifies how the request log parameters correspond with the end user visible URL parameters.

In other words, a mapping is established between the parameters that are visible in the end-user
URL, known as the UrlENEQuery URL parameters, such as N and Ntt, and the parameters that
are present in the request log, such as node and attrs.

• Lists those request log parameters that do not have directly corresponding end-user parameters,
such as allgroups and nbins.

• Indicates which methods or properties of the ENEQuery objects can be used to produce the
specified request log parameters.

In general, in your application, you use either the UrlENEQuery URL parameters, such as N and
Ntt, or the methods or properties of the ENEQuery object class. In either case, both methods
produce the MDEX request log parameters described in this section.

Example: interpreting error log messages
This example illustrates how to interpret the messages found in the MDEX Engine error log.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Understanding the URL parameter mapping94

Suppose the following messages appear in your MDEX Engine error log:

ERROR 06/04/08 18:13:33.250 UTC DGRAPH {dgraph}: Bad dimension or property
 name
[WineType] in select

To troubleshoot, look through the corresponding MDEX request log for entries that contain “select”
and “WineType”. The results are as follows:

1212603213 127.0.0.1 - 3378 105.54 7.49 200 56300 -2 10
/graph?node=0&select=P_Name+P_Score+WineType&group=0&offset=0&nbins=10&pred=
P_Score%7CGTEQ+70&irversion=510

Check the documentation in this section for the select parameter that appears in the MDEX Engine
URL, in the request log.You will find that it corresponds to the Java API ENEQuery.setSelection()
method; there is no corresponding UrlENEQuery URL parameter.This means that the incorrect value
is set through this method.You can now look through the application code and find the setSelec¬
tion() call to try to determine why it is specifying an incorrect property or dimension name as part
of the value for this method. In this example, it is because the code is specifying "WineType" rather
than "Wine Type" with a space.

Description of query types
The parameters in the MDEX request log use the query type names that correspond to the types of
user queries. This section and the table below list the query types and maps them to user queries.

Description of the corresponding user query typeQuery type as indicated in the request
log

Administrative query
admin, config

Record query
bin, abin

Navigation and record search queries that return navigation
data

graph

Dimension search queries only
search

agreq

Identifier string for an Agraph query; is used to
correlate entries in Dgraph request logs with those

Description

from the Agraph request log. agreq is set
automatically by the Agraph.

graph, search, bin, abinValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

Underscore-separated string valuesFormat

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

95The MDEX Engine Parameter Listing | Description of query types

UNIX timestamp, IP address, port, sequential countValues (order)

agreq=1184080225_172.30.20.117_8888_2Example

allbins

Specifies the number of representative records
returned with each aggregated record.

Description

graphValid in query types

Java:ENEQuery.setNavErecsPerAggrERec()
ENEQuery method or property

.NET: ENEQuery.NavERecsPerAggrERec

NpUrlENEQuery URL parameters

Numeric valueFormat

0 (no representative records),
Values (order)

1 (one representative record),

2 (all records associated with aggregated record).

Value "0" equates to API constant
ENEQuery.ZERO_ERECS_PER_AGGR,

"1" to ENEQuery.ONE_EREC_PER_AGGR

"2" to ENEQuery.ALL_ERECS_PER_AGGR

N/AExample

allgroups

Specifies whether child refinements are exposed
for all dimension values. Takes precedence over

Description

group if both are specified. The API includes one
parameter or the other.

Note: allgroups=1 in the Dgraph URL can
cause significant impact on performance of
the MDEX Engine and indicates that all
refinements are exposed for navigation. If
you notice this setting in the queries check
the validity of this setting for the application.

graphValid in query types

Java: ENEQuery.setNavAllRefinements()
ENEQuery method or property

.NET: ENEQuery.NavAllRefinements

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types96

N/AUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true)Values (order)

N/AExample

analytics

Specifies an analytics expression to apply to a
query.

Description

graphValid in query types

Java: ENEQuery.setAnalyticsQuery()
ENEQuery method or property

.NET: ENEQuery.AnalyticsQuery

NaUrlENEQuery URL parameters

String analytics expressionFormat

N/AValues (order)

analytics=Q%28A%28Test%28T%29SL

%28S%28%28Vintage%29KEY%28Vin¬
tage%29%29%29%29%29

Example

attrs

Specifies search key, terms, and options for record
searches

Description

graphValid in query types

Java: ENEQuery.setNavERecSearches()
ENEQuery method or property

.NET: ENEQuery.NavERecSearches

Ntk, Ntt, NtxUrlENEQuery URL parameters

Space-separated string values for search key,
literal plus character separator, space-separated

Format

string values for search terms, pipe character
separator, space-separated string values for search
options (mode, rel, and autoforce).

See aboveValues (order)

attrs=Inter¬
face+search+terms|mode+matchall+rel+ex¬
act+autoforce+correction

Example

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

97The MDEX Engine Parameter Listing | Description of query types

autoforce

Is set automatically by the Agraph.
Description

Note:

Starting with the Endeca IAP v.5.1, auto¬
force is a search option specified in attrs,
and is no longer a separate URL parameter.

Specifies to a child Dgraph to force a spelling
auto-correction to the specified term or terms. Used
on Agraph re-queries to unify autocorrection results
across all child Dgraphs.

N/AValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

N/AFormat

N/AValues (order)

N/AExample

autophrase

Specifies whether the MDEX Engine computes
autophrase matches for search terms.

Description

graphValid in query types

Java: ENEQuery.setNavERecSearchCom¬
puteAlternativePhrasings()

ENEQuery method or property

.NET:ENEQuery.NavERecSearchComputeAl¬
ternativePhrasings

NtpcUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true)Values (order)

N/AExample

autophrasedwim

Specifies whether the MDEX Engine replaces
phrases found in search terms with computed

Description

autophrase matches. Is functional only if the
autophrase parameter is also set to 1 (true).

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types98

graphValid in query types

Java:ENEQuery.setNavERecSearchRewrite¬
QueryWithAnAlternativePhrasing()

ENEQuery method or property

.NET: ENEQuery.NavERecSearchRewrite¬
QueryWithAnAlternativePhrasing

NtprUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true)Values (order)

N/AExample

compound

Specifies whether dimension search is performed
as a compound dimension search.

Description

searchValid in query types

Java: ENEQuery.setDimSearchCompound()
ENEQuery method or property

.NET: ENEQuery.DimSearchCompound

N/AUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true)Values (order)

N/AExample

dym

Specifies whether "did you mean" (DYM) spelling
correction is enabled for a record search.

Description

graphValid in query types

Java: ENEQuery.setNavERecSearchDidY¬
ouMean()

ENEQuery method or property

.NET:ENEQuery.NavERecSearchDidYouMean

NtyUrlENEQuery URL parameters

Numeric Boolean valueFormat

(order) 0 (false), 1 (true)Values (order)

N/AExample

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

99The MDEX Engine Parameter Listing | Description of query types

filter

Specifies record filter to apply for navigation,
dimension-search, or aggregated-record (abin)
queries.

Description

graph, search, abinValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavRecordFilter()

.NET: ENEQuery.NavRecordFilter

(search)

Java:ENEQuery.setDimSearchNavRecordFil¬
ter()

.NET:ENEQuery.DimSearchNavRecordFilter

(abin)

Java:ENEQuery.setAggrERecNavRecordFil¬
ter()

.NET:ENEQuery.AggrERecNavRecordFilter

Nr (graph), or
UrlENEQuery URL parameters

Dr (search), or

Ar (abin)

String values separated by plus signsFormat

String valuesValues (order)

filter=P_Region%3aPortugal, fil¬
ter=8021

Example

format

Description Specifies result object return format
for a query.

Description

Note: Format can only be set by hand. XML
schema is unsupported and is subject to
change.

graph, search, bin, abinValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

String valueFormat

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types100

binary (default) or XMLValues (order)

N/AExample

group

Specifies dimension values for which child
refinements should be exposed; Overridden by

Description

allgroups if both are specified. The API includes
one parameter or the other. Only a single dimval
from any given dimension can be specified (even
if the dimension is configured for multiselect).

graphValid in query types

Java: ENEQuery.setNavExposedRefine¬
ments()

ENEQuery method or property

.NET: ENEQuery.NavExposedRefinements

NeUrlENEQuery URL parameters

Space-separated numeric dimval IDsFormat

Numeric dimval IDsValues (order)

group=123+3893+1232123Example

groupby

Specifies rollup (aggregation) key to apply for
navigation or aggregated-record queries.

Description

graph, abinValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavRollupKey()

.NET: ENEQuery.NavRollupKey

(abin)

Java: ENEQuery.setAggrERecRollupKey()

.NET: ENEQuery.AggrERecRollupKey

Nu (graph), or
UrlENEQuery URL parameters

Au (abin)

Space-separated string property or dimension
names

Format

String property or dimension namesValues (order)

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

101The MDEX Engine Parameter Listing | Description of query types

groupby=My+DimName, groupby=P_WineryExample

id

Specifies a record to return (by record spec value
or other identifier).

Description

Note: Aggregated-record (abin) queries only
support a single record identifier, not a
space-separated list.

bin, abinValid in query types

(bin)
ENEQuery method or property

Java: ENEQuery.setERecs()

.NET: ENEQuery.ERecs

(abin)

Java: ENEQuery.setAggrERecSpec()

.NET: ENEQuery.AggrERecSpec

R (bin), or
UrlENEQuery URL parameters

A (abin)

Space-separated string valuesFormat

String valuesValues (order)

id=18114, id=Record+23, id=2+73Example

ignore

Specifies whether the Dgraph ignores missing
dimension value IDs in a query. When set to false,

Description

queries with missing dimval IDs fail with "Invalid
category id… in query" errors; when set to true,
such queries return successfully with "Detected
missing category… (query will return zero results)"
messages.

Note: Set to 1 by Agraph for queries to child
Dgraphs.

graphValid in query types

N/AENEQuery method or property

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types102

N/AUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true, default)Values (order)

N/AExample

irversion

Specifies a major version of API; set automatically
by API and should not be changed.

Description

graph, search, bin, abinValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

Three-digit numeric valueFormat

N/AValues (order)

irversion=500 (5.0.x), irversion=510 (5.1.x),
irversion=601 (6.0.1)

Example

keyprops

Specifies whether to return key properties with the
query results.

Description

graphValid in query types

Java: ENEQuery.setNavKeyProperties()
ENEQuery method or property

.NET: ENEQuery.NavKeyProperties

NkUrlENEQuery URL parameters

String valueFormat

none (default), all
Values (order)

“All” equates to API constant ENE¬
Query.KEY_PROPS_ALL

“None” equates to ENEQuery.KEY_PROPS_NONE

N/AExample

lang

Specifies a language to use for a query.Description

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

103The MDEX Engine Parameter Listing | Description of query types

graph, searchValid in query types

Java: ENEQuery.setLanguageId()
ENEQuery method or property

.NET: ENEQuery.LanguageId

LanguageIdUrlENEQuery URL parameters

N/AFormat

Standard language code string valueValues (order)

lang=en for English, lang=zn_CH for simplified
Chinese

Example

log

Specifies session and query ID values.Description

graph, search, bin, abinValid in query types

Java: ENEQuery.setQueryInfo()
ENEQuery method or property

.NET: ENEQuery.QueryInfo

N/AUrlENEQuery URL parameters

String containing one or more URL-encoded
key=value pairs, separated by ampersands.

Format

key=value pairsValues (order)

log=sid%3d11586B%26rid%3d11586Example

merchdebug

Specifies debugging output for business rule
evaluation in the Dgraph error log. Configured by
the --merch_debug flag.

Description

graphValid in query types

Java: ENEQuery.setMerchDebugOn()
ENEQuery method or property

.NET: ENEQuery.MerchDebugOn

N/AUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (false), 1 (true)Values (order)

N/AExample

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types104

merchpreviewtime

Specifies preview time to use for business rules.Description

graphValid in query types

Java:ENEQuery.setNavMerchPreviewTime()
ENEQuery method or property

.NET: ENEQuery.NavMerchPreviewTime

NmptUrlENEQuery URL parameters

String valueFormat

now (current time), or a date expressed in
yyyy-mm-ddTmm:ss format (such as,
2007-07-12T08%3a15 for 8:15am, 12 July 2007).

Values (order)

merchpreviewtime=now, merchpreview¬
time=2007-08-28T12%3a51

Example

merchrulefilter

Specifies the filter for business rules.Description

graphValid in query types

Java:ENEQuery.setNavMerchRuleFilter()
ENEQuery method or property

.NET: ENEQuery.NavMerchRuleFilter

NmrfUrlENEQuery URL parameters

String value, formatted per record filters.Format

N/AValues (order)

merchrulefilter=endeca.internal.work¬
flow.state%3aACTIVE

Example

model

Specifies dimension(s) to which dimension search
will be restricted.

Description

Multiple values are only usable for compound
dimension searches (such as, search for "ford
tempo" against intersection of Make and Model
dimensions).

Simple dimension searches are restricted to a
single dimension only, and return 0 results if
multiple dimval IDs are specified.

searchValid in query types

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

105The MDEX Engine Parameter Listing | Description of query types

(search, simple)
ENEQuery method or property

Java:ENEQuery.setDimSearchDimension()

.NET: ENEQuery.DimSearchDimension

(search, compound)

Java:ENEQuery.setDimSearchDimensions()

.NET: ENEQuery.DimSearchDimensions

DiUrlENEQuery URL parameters

Numeric dimval ID (simple dimension search), or
space-separated list of numeric dimval IDs
(compound dimension search).

Format

N/AValues (order)

model=2344 (simple dimension search), mod¬
el=1+18+25 (compound dimension search)

Example

nbins

Specifies maximum number of ERec objects to return for a navigation
query, assuming that a query can be on non-aggregated records

Description

and on aggregated records. Does not map to any UrlENEQuery
URL parameter.

graphValid in query types

ENEQuery method or property • In non-aggregated navigation queries:

Java: ENEQuery.setNavNumERecs()

.NET: ENEQuery.NavNumERecs

• In aggregated navigation queries:

Java: ENEQuery.setNavNumAggrERecs()

.NET: ENEQuery.NavNumAggrERecs

N/AUrlENEQuery URL parameters

Numeric valueFormat

10 (default)Values (order)

nbins=10 (default), nbins=500Example

nbulkbins

Specifies maximum number of ERec objects to be
returned via bulk export.

Description

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types106

This parameter corresponds to different methods
when querying aggregated records, that is, when
a rollup key is applied.

graphValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavNumBulkERecs()

.NET: ENEQuery.NavNumBulkERecs

(graph, aggregated records)

Java:ENEQuery.setNavNumBulkAggrERecs()

.NET: ENEQuery.NavNumBulkAggrERecs

N/AUrlENEQuery URL parameters

Numeric valueFormat

Values (order) 0 (default), positive values, -1 (all
records, or ENEQuery.MAX_BULK_ERECS_AVAIL¬
ABLE)

Values (order)

Note: "-1" is equivalent to all records, or to
setting ENE¬
Query.MAX_BULK_ERECS_AVAILABLE
(that is, bulk-exporting all records matching
the query) for the relevant methods.

N/AExample

node

Specifies selected (descriptor) dimension values.Description

graph, search, abinValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavDescriptors()

.NET: ENEQuery.NavDescriptors

(search)

Java:ENEQuery.setDimSearchNavDescrip¬
tors()

.NET:ENEQuery.DimSearchNavDescriptors

(abin)

Java: ENEQuery.setAggrERecNavDescrip¬
tors()

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

107The MDEX Engine Parameter Listing | Description of query types

.NET: ENEQuery.AggrERecNavDescriptors

N (graph), Dn (search), An (abin)UrlENEQuery URL parameters

Space-separated numeric dimval IDs.Format

N/AValues (order)

node=0, node=125+234423+87Example

num

Specifies the number of dimension value matches
to return from each dimension as results of
dimension search, per dimension.

Description

searchValid in query types

Java: ENEQuery.setDimSearchNumDimVal¬
ues()

ENEQuery method or property

.NET: ENEQuery.DimSearchNumDimValues

DpUrlENEQuery URL parameters

Numeric valueFormat

N/AValues (order)

num=5Example

offset

Specifies the number of values to skip before
beginning to return record objects (for record

Description

search), or dimension value objects (for dimension
search).

graph, searchValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavERecsOffset()

.NET: ENEQuery.NavERecsOffset

(graph, aggregated records)

Java:ENEQuery.setNavAggrERecsOffset()

.NET: ENEQuery.NavAggrERecsOffset

(search)

Java:ENEQuery.setDimSearchResultsOff¬
set()

.NET: ENEQuery.DimSearchResultsOffset

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types108

No (graph) or
UrlENEQuery URL parameters

Nao (graph, aggregated records), or

Do (search)

Numeric valueFormat

N/AValues (order)

offset=20 (begins returning objects from record
or dimension value starting with 21 and onward).

Example

op

Specifies an operation to perform for command-type
(non-query) URLs.

Description

admin, configValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

String valueFormat

The following admin operations are supported: audit, au¬
ditreset, exit, flush, help, logroll, ping, restart,

Values (order)

update, updatehistory, reload-services, stats, and
statsreset.

The following config operations are supported: help, log-
disable, log-enable, log-status, and update.

Note: The config log-enable and log-disable
operations can take several logging variables, which are
documented in the MDEX Engine Logging Variables
appendix to the Endeca Advanced Developement Guide.

admin?op=update, admin?op=stats, config?op=up¬
date

Examples

opts

Specifies options, such as match mode, for
dimension search.

Also specifies a spell+nospell option for
disabling spelling correction and DYM suggestions
on individual queries.

Description

searchValid in query types

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

109The MDEX Engine Parameter Listing | Description of query types

Java: ENEQuery.setDimSearchOpts()
ENEQuery method or property

.NET: ENEQuery.DimSearchOpts

DxUrlENEQuery URL parameters

Space-separated string valuesFormat

N/AValues (order)

opts=mode+matchall+spell+nospellExample

pred

Specifies a range filter expression for a query.Description

graph, search, abinValid in query types

(graph)
ENEQuery method or property

Java: ENEQuery.setNavRangeFilters()

.NET: ENEQuery.NavRangeFilters

(search)

Java: ENEQuery.setDimSearchNavRange¬
Filters()

.NET:ENEQuery.DimSearchNavRangeFilters

(abin)

Java: ENEQuery.setAggrERecNavRange¬
Filters()

.NET:ENEQuery.AggrERecNavRangeFilters

Nf (graph), or
UrlENEQuery URL parameters

Df (search), or

Af (abin)

Space-separated string valueFormat

property or dimension name key, pipe character
separator, operator (such as BTWN, GT), values.

Values (order)

pred=P%5FPrice%7CBTWN+8+12 (restricts query
to records where P_Price value is between 8 and
12).

Example

pretendtime

Specifies time value to use for time-triggered
business rules.

Description

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types110

graphValid in query types

N/AENEQuery method or property

N/AUrlENEQuery URL parameters

String time value (m/ d/ yyyy hh:mm)Format

Values (order)
Note: Set by the Agraph for queries to child
Dgraphs. Value is the time of Agraph query.

pretendtime=+2%2F+1%2F2007+11%3A49Example

profiles

Specifies user profiles to apply to a query (used to
restrict triggering of business rules).

Description

graphValid in query types

Java: ENEQuery.setProfiles()
ENEQuery method or property

.NET: ENEQuery.Profiles

N/AUrlENEQuery URL parameters

Space-separated list of string profile namesFormat

String profile namesValues (order)

profiles=free_shipping+USAExample

rank

Specifies whether to use relevance ranking to order
dimension values returned by dimension search.

Description

searchValid in query types

Java: ENEQuery.setDimSearchRankRe¬
sults()

ENEQuery method or property

.NET: ENEQuery.DimSearchRankResults

DkUrlENEQuery URL parameters

Numeric Boolean valueFormat

0 (default dimension value ranking), 1 (relevance
ranking)

Values (order)

N/AExample

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

111The MDEX Engine Parameter Listing | Description of query types

refinement

Specifies query-time dynamic refinement ranking
settings.

Description

graphValid in query types

Java: ENEQuery.setNavRefinementCon¬
figs()

ENEQuery method or property

.NET: ENEQuery.NavRefinementConfigs

NrcUrlENEQuery URL parameters

Colon-separated list of space-separated valuesFormat

string, number key, value pairs.Values (order)

refinement=dimvalid:6300+dynrank:1+
exposed:1+dynorder:0+dyncount:4

Example

relrank

Specifies query-time relevance ranking settings.Description

graphValid in query types

ENEQuery method or property
• Through IAP 5.1.1:

Java: ENEQuery.setNavRelRankERec¬
Search()

.NET:ENEQuery.NavRelRankERecSearch

• IAP 5.1.2 and later:

Java: ENEQuery.setNavRelRankERe¬
cRank()

.NET: ENEQuery.NavRelRankERecRank

Nrk Nrt Nrr NrmUrlENEQuery URL parameters

Pipe-separated list of space-separated valuesFormat

search key, search terms, relevance-ranking
strategy, search mode

Values (order)

relrank=All|napa+valley|ex¬
act|matchall

Example

Note: Match mode and Nrm parameter are
only supported as of IAP 5.1.2. Using older
API libraries with newer versions of the
MDEX Engine may produce unexpected
results.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types112

select

Specifies fields (properties and dimensions) to
return on ERec objects from navigation query.

Description

graphValid in query types

Java: ENEQuery.setSelection()
ENEQuery method or property

.NET: ENEQuery.Selection

N/AUrlENEQuery URL parameters

Space-separated list of string property/dimension
name values

Format

String property/dimension name valuesValues (order)

select=P_Name+VintageExample

sort

Description Specifies sort key(s) and order to use
for records returned by a query.

Description

Note: Current version only uses the Ns
parameter (Nso is deprecated).

graphValid in query types

Java: ENEQuery.setNavActiveSortKeys()
ENEQuery method or property

.NET: ENEQuery.NavActiveSortKeys

Ns
UrlENEQuery URL parameters

Nso (deprecated)

Pipe-separated list of string key| order value pairs
(two pipes between pairs)

Format

asc (ascending), desc (descending)Values (order)

sort=P_Price|asc||Vintage|descExample

structured

Specifies an Endeca Query Language (EQL)
expression to apply to a query.

Description

graph, search, abinsValid in query types

(graph)
ENEQuery method or property

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

113The MDEX Engine Parameter Listing | Description of query types

Java:ENEQuery.setNavRecordStructureEx¬
pr()

.NET: ENEQuery.NavRecordStructureExpr

(search)

Java: ENEQuery.setDimSearchNavRecord¬
StructureExpr()

.NET:ENEQuery.DimSearchNavRecordStruc¬
tureExpr

(abin)

Java:ENEQuery.setAggrERecStructureEx¬
pr()

.NET: ENEQuery.AggrERecStructureExpr

Nrs (graph),
UrlENEQuery URL parameters

Drs (search)

Ars (abin)

String EQL expressionFormat

EQL expressionValues (order)

structured=collec¬
tion%28%29%2frecord%5bP_Re¬
gion%3d%22Sonoma%22%5d

Example

terms

Specifies search terms for dimension search.Description

searchValid in query types

Java: ENEQuery.setDimSearchTerms()
ENEQuery method or property

.NET: ENEQuery.DimSearchTerms

DUrlENEQuery URL parameters

Space-separated listFormat

String values for termsValues (order)

terms=my+search+termsExample

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types114

Appendix C

The Eneperf Tool

Eneperf is a performance testing tool that is included in your Endeca installation.This section describes
how to use Eneperf.

About Eneperf
Eneperf is a performance, analytics and debugging tool that can measure throughput to help you
identify system bottlenecks. Eneperf makes HTTP queries against the MDEX Engine (Dgraph) based
on your MDEX Engine request logs and gathers the resulting statistics, without processing the results
in any way.

Because Eneperf is lightweight, it has a very slight impact on performance. In most cases, it can be
run on the same machine as the Dgraph or Agraph being tested. It can also be run on a remote
machine.

Eneperf drives a substantial load at the MDEX Engine and reveals how many operations per second
the MDEX Engine responds with. Eneperf lets you measure both query latency and throughput.You
specify the log file and specify to Eneperf how many times to run through it, as well as the number of
client connections to simulate.

Eneperf understands Endeca MDEX Engine URLs, which use the pipe symbol (|). Because the pipe
symbol is not a legal character in the URL/URI standards, other programs, such as wget, may transform
it inappropriately.

Using Eneperf
Eneperf is installed in the Endeca IAP bin directory. It has the following usage.

usage: eneperf [-v]
 [--header <header file path>]
 [--help] [--gzip]
 [--list] [--nreq <n>]
 [--nodnscache>] [--msec-between-updates]
 [--progress] [--pidcheck <pid>]
 [--prelude <log file path>] [--postlude <log file path>]
 [--quitonerror] [--rcvbuf <size bytes>]
 [--record <recording file prefix>] [--record_hdr]
 [--record_ord] [--record_roll <max KB per recording file>]
 [--reqstats] [--reqtimeout <secs>]

 [--runtime <max runtime (minutes)>]
 [--seek <n>] [--seekrepeat] [--sleeponerror <secs>]
 [--stats <num reqs>] [--throttle <max req/sec>]
 [--updates-log] [--version]
 [--warn <max req time warning threshold (msecs)>]
 <host> <port> <log> <num connections> <num iterations>

Eneperf has both required and optional settings.

Required settings
The required settings (shown in order) are as follows.

<host> <port> <log> <num connections> <num iterations>

Their usage is as follows.

DescriptionSetting

Target host for requests.<host>

Port on which the target host is listening for
requests.

<port>

Log file of the query portion of the MDEX Engine
URLs and optional associated information (that is,

<log>

the portion that resides in the last three columns
of the MDEX Engine request log).

This log file is used for HTTP request generation.
URLs and associated information from the <log>
file are replayed in order.

Each line of the <log> file contains three columns:

• A URL (required)
• A POST body (URL-encoded and optional)
• HTTP headers (URL-encoded and optional).

If a dash (-) is found in an optional column, the
column is ignored.

Maximum number of outstanding requests to allow
before waiting for replies. In other words, the

<num connections>

number of simultaneous HTTP connection streams
to keep open at all times. This number emulates
multiple clients for the target server. For example,
using <num connections> of 16 emulates 16
concurrent clients querying the target server at all
times.

Number of times to replay the URL query log.
<num iterations>

All outstanding requests are processed before a
new iteration is started.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | Using Eneperf116

Host and port settings for running Eneperf locally or remotely

You can run Eneperf locally or from a remote machine.

• Running Eneperf locally. Eneperf is lightweight and has a very slight impact on performance. It
can usually be run on the same machine as the Dgraph or Agraph being tested with no impact on
results.

To run Eneperf on the same machine as the Dgraph or Agraph, you point it to localhost and
<port>. This configuration is useful for isolating MDEX Engine performance from any potential
networking issues.

• Running Eneperf on a remote host. Eneperf can also be run from a remote host. Using Eneperf
to test the same MDEX Engine from the local machine and from across the network can expose
networking problems if the throughputs are significantly different.

Note: Eneperf can be run on a machine with a different architecture than one you are testing.

Log file settings suitable for Eneperf input

MDEX Engine request logs can be used as Eneperf input with some modifications.

URLs in the log should not include any machine connection parameters such as protocol, host, or port.
These are added automatically. For example, a log entry of the following form is valid:

/graph?node=0

But a log entry of the following form is not valid:

http://myhost:5555/graph?node=0

You can achieve higher concurrent load by using a single large request log file (which might simply
be repeated concatenations of a smaller log file) than by using multiple iterations of a small log file.
The log file should preferably be at least 100 lines, even if it consists of the same query repeated over
and over. Because Eneperf drains all connections between each iteration, running a one-line log file
through Eneperf 100 times results in skewed throughput statistics.

If you are planning to measure performance of partial updates with Eneperf, (as opposed to measuring
performance of regular queries), create a separate updates log based on your existing request log.

That is, suppose your MDEX Engine request log contains both regular queries and updates operations.
Then your updates log should contain only config?op=update operations.You can create this
updates log manually, by extracting these operations from a regular log.You can then run Eneperf
against the updates log and the regular log, to measure the performance of your updates, by using
the --updates-log and the --log settings together.

Note: This is only one way to measure performance of updates and should only be used in
cases when you care about the time between the updates. (If you do not care about the timing
between updates, you can use the regular log for your testing.)

About the number of connections and iterations

Eneperf load is driven by the num connections setting, which indicates the number of simultaneous
connections Eneperf tries to maintain at a time.

For example, if num connections is set to 4, it sends four requests to the MDEX Engine. When one
returns, another is sent out to replace it.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

117The Eneperf Tool | Using Eneperf

To adequately measure performance of the MDEX Engine, you need to identify the number of
connections for Eneperf that saturates the MDEX Engine thread pool.

The number of connections needed to saturate the MDEX Engine depends on the MDEX Engine
threading configuration and the server characteristics, and generally correlates with the number of the
MDEX Engine threads in use, (assuming the MDEX Engine is configured with enough threads).
However, an MDEX Engine with four threads might be saturated by only three connections if the
queries are complex and all CPUs are being fully utilized.

To identify an appropriate setting for num connections, Endeca recommends running tests with
the following settings:

• For debugging, run a test with num connections set to one. This test sends only one request
to the MDEX Engine at a time. Each query is processed alone; no other query computations are
contending for the machine’s resources.This test generates an MDEX Engine request log showing
the canonical time for each query.You can examine the request log to identify slow queries without
the concern that they happened to be slow because other queries were processed simultaneously.
Note that using a log file with just one entry limits num connections to one.

• For stress testing, run a test with num connections set to the number of threads for the MDEX
Engine. In this test, no requests are waiting in the queue. This lets you obtain an estimate of the
maximum expected MDEX Engine performance. Because no queueing occurs, this test offers a
conservative bias for throughput.

In addition, you can run a test with num connections set to the “number of threads + one”. In
this test case, a minimal waiting in the queue for the MDEX Engine request may occur. This also
lets you obtain an estimate of the maximum expected MDEX Engine performance. Because
queueing does not occur, this test offers an aggressive bias for throughput.

• Do not use a small log with a large number of num connections. Also, do not run a small log
many times to simulate a large log.

Example: Selecting the number of connections

Commonly, you will wish to perform the load testing of the MDEX Engine to a level below saturation.
Use the following examples to help you select an appropriate number of connections for Eneperf that
will saturate MDEX Engine performance to the desired levels.

Typically, front-end applications have different requirements for response times and peak loads. Such
as:

• An application that is used steadily across the year. For applications of this type, MDEX Engine
performance must support average query response time under average loads. Occasional
slowdowns under peak load are acceptable. Therefore, you need to measure average response
time under average load.

• An application that is used during the peak seasons. For applications of this type, MDEX Engine
performance must support peak response time under peak loads. It is acceptable for this application
to have extra performance capacity during non-peak seasons.

To identify the projected throughput for the MDEX Engine, use the following formulas.

These formulas represent a highly simplified approach to calculating throughput. Although you can
use more thorough methods, these formulas provide reasonable estimates, and can be used for initial
assessment:

concurrent users / (expected page latency + think time) = page views/sec
page views / second x MDEX queries/page = ops/second for the MDEX Engine

Where:

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | Using Eneperf118

• The number of concurrent users is the estimated number of users currently logged in to the
application

• The number of simultaneous requests is the number of users currently making a request to the
application. Typically, it is 20-30% of the number of concurrent users.

• Peak load is the expected maximum number of simultaneous requests, such as during a specific
time period

• Think time is the time between requests issued by a single user. It is used to calculate simultaneous
requests based on the estimated number of concurrent users.

For example, 100 concurrent users with a 5 second think time and a 1 second expected page latency
will yield 17 pages/sec. 17 pages/second with 2 MDEX Engine queries per page will yield 34 ops/sec
for the expected performance of the MDEX Engine. This means that to support 100 concurrent users
in this application, the MDEX Engine must perform at 34 ops/sec.

In another example, if your implementation includes a load balancer serving four application servers,
and two MDEX Engines with another load balancer, the following calculations provide you with the
estimated performance for each of the MDEX Engines:

• 600 concurrent users are distributed across 4 application servers.This means 150 users per server.
• 150 users divided by 5 (4 sec think time and 1 sec expected page latency) yields 30 simultaneous

page views per server.
• 30 page views with 2 MDEX Engine queries per page yield 60 MDEX Engine queries per server.
• 60 queries per server multiplied by 4 application servers yield 240 queries total.
• 240 queries are sent to the load balancer that distributes them across two MDEX Engines. Each

MDEX Engine serves 120 queries.

This means that to support 100 concurrent users in this application, each MDEX Engine must perform
at 120 ops/sec.

To summarize, you can use these recommendations to identify the number of connections (equal to
the number of simultaneous requests in these examples) that you need to provide to Eneperf to achieve
the desired MDEX Engine performance.

Optional settings
Eneperf contains the following optional settings.

DescriptionSetting

Verbose mode. Print query URLs as they are requested.-v

Add Accept-encoding: gzip to the HTTP request header.--gzip

Specify path of file containing HTTP header text, one header field
per line. This setting, if used, overrides headers from the log file
(which you can also specify).

--header <head¬
er_file_path>

Print the help usage and exit.--help

Treat the <log> parameter as the name of a file containing the
names of a sequence of request logs, rather than directly naming

--list

a single request log. As a result, Eneperf iterates over the
sequence of logs.

Each line in the <log> names a request log file to be replayed
against Eneperf in sequence, during each iteration.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

119The Eneperf Tool | Using Eneperf

DescriptionSetting

If you use this setting with --updates-log, it specifies the
minimum time interval between sending partial update requests,

--msec-between-updates

in milliseconds. Before sending a new update request, Eneperf
waits for a free connection (after the specified time interval
expires).

This setting must not be used together with --list, --seek,
--seekrepeat, --prelude,--postlude, and --throttle.

Note: The --msec-between-updates setting is
optional. If you use only the --updates-log setting,
Eneperf processes updates one after another. Eneperf
waits for the current update to finish and immediately sends
another update. It does not wait for any period of time
between sending individual updates to the Dgraph.

Stop after n requests.--nreq <n>

Disable caching of DNS hostname lookups. By default, Eneperf
caches these lookups to improve performance.

--nodnscache

On a connection error, check the specified Dgraph or Agraph
process to see if it is running. If the process is not running,
terminate Eneperf.

--pidcheck <pid>

Specify a <log_file_path> of the file with URLs to replay
before those of the <log> parameter, for each iteration.

--prelude <log_file_path>

Use this flag together with the --list flag to avoid repetition of
requests in the several log files named in the <log> parameter.

Specify a <log_file_path> of the file with URLs to replay after
those of the <log> parameter, for each iteration.

--postlude <log_file_path>

Use this flag together with the --list flag to avoid repetition of
requests in the several log files named in the <log> parameter.

Display the percentage of the query log file processed.--progress

Note: If you run Eneperf in the two-stream mode for testing
updates performance, it displays the progress only for the
regular queries log, not for the updates log.

Terminate the Eneperf process if it encounters a fatal HTTP
connection error. By default, errors are ignored and do not stop
the Eneperf run.

--quitonerror

Override the default TCP receive buffer size, set with the
SO_RCVBUF socket option.

--rcvbuf <size_bytes>

Record a log of all HTTP responses. Recorded data is placed in
output files with the prefix <rec_file_prefix>. Data files are

--record <rec_file_prefix>

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | Using Eneperf120

DescriptionSetting

given the suffixes .dat1, .dat2, and so on. An index file with the
suffix .idx is also produced.

In --record mode, record HTTP header information along with
page content.

--record_hdr

In --record mode, ensure that log entries are recorded in the
same order that they are listed in the <log> file, even if they are
processed out of order.

--record_ord

Set the maximum number of KB per recording file. Default is 1024
KB.

--record_roll <max_KB>

Maintain and report per-request timing statistics.
--reqstats

Note: This option produces accurate results only if you
specify <num connections> as 1.

Places a limit on the time for any individual request. Default is
600 seconds.

--reqtimeout

Place a limit on the run time for Eneperf. Eneperf exits after
<max_runtime> minutes. Minutes are the default unit.

--runtime <max_runtime>

Skip a specified number of requests in the specified log file and
start with log entry n. For example, in a log containing 100

--seek <n>

requests, if you run Eneperf with --seek 50, it issues 50
requests from 50 to 100.

Use in conjunction with --seek. Start each iteration with the log
entry specified by --seek. --seekrepeat has an impact only

--seekrepeat

if the number of iterations specified is greater than one. If it is so,
when Eneperf reaches the end of the log file, --seekrepeat
indicates that it should start the next iteration from the log entry
specified as a value to --seek (50 in the example above).

The behavior without --seekrepeat and with --seek specified
is to seek only on the first iteration and restart from the beginning
of the file on subsequent iterations.

Sleep for a specified number of seconds before sending any new
requests after a connection error occurs.

--sleeponerror <secs>

Print statistics after the specified <num reqs> are processed
(sent and received).

--stats <num_reqs>

Place an approximate limit on the number of requests per second
that Eneperf generates.

--throttle <max_req/sec>

Specifying the updates log allows running Eneperf in a two-stream
mode with two logs: regular query request logs and update

--updates-log

request logs. In this mode, Eneperf sends update requests from
the updates log at regular intervals while sending queries from
the query log.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

121The Eneperf Tool | Using Eneperf

DescriptionSetting

This setting can be used either together with the --msec-be¬
tween-updates setting, or without it:

• If this setting is used together with --msec-between-up¬
dates, it specifies the updates log file that contains partial
update requests. These requests are replayed at every
interval in milliseconds specified with --msec-between-
updates.

• If this setting is used without --msec-between-updates,
updates are sent to the Dgraph one after another, that is,
Eneperf waits for the current update to finish and immediately
sends another update. It does not wait for any period of time
between sending individual updates to the Dgraph.

This setting must not be used together with --list, --seek,
--seekrepeat, --prelude,--postlude, and --throttle.

Before running Eneperf in the two-stream mode, you need to
create a separate log that contains only partial update requests.
You should create such a log with several partial update requests
pointing to a single update file using the admin?op=update&up¬
datefile=filename command. For more information on
running partial updates on a single file, see the Partial Updates
Guide.

Add the version of Eneperf that is used for this iteration.
--version

The version information is always displayed at the beginning of
Eneperf output, as follows: Endeca eneperf version <number>.

Print a warning message for any requests that take longer than
the specified threshold time limit to return (useful for finding the

--warn <max_req_threshold>

“slow” requests in a log file). The threshold time limit is specified
in milliseconds.

About generating incremental statistics

You use the --stats setting to specify how many queries you want to see statistics reported on.

Typical values are 500 or 100. The --reqstats setting provides a finer level of detail.

Generating statistics on the fly

Eneperf can run for hours. If you neglected to set --stats yet want to obtain a statistics printout
without stopping the process, you can send Eneperf a usr1 signal.

For example, on UNIX, you could use the kill command to send a signal like this:

kill -usr1 pid

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | Using Eneperf122

About setting the number of queries sent to the Dgraph

By default, Eneperf drives load as fast as the MDEX Engine can handle it. However, there is a setting,
--throttle, that allows you to place an approximate limit on the number of queries per second sent
to the MDEX Engine. That means you can drive load at a rate you select.

The --throttle setting is useful when you want to approximate a special case. For example, imagine
you expect high-traffic load during the holiday season.You want to calculate maximum load, while
maintaining a comfortable margin of error for the MDEX Engine by running it at 80% utilization.

You might prepare an estimate by multiplying the maximum load by 0.8. Alternatively, you could use
--throttle to try different numbers of queries per second and to capture the CPU performance on
the MDEX Engine machine, using a tool such as vmstat on Solaris.You could then calculate the
average CPU utilization from these numbers, or plot a chart of utilization over time in Microsoft Excel.

The mapping of the --throttle setting to queries per second is not exact. Eneperf uses a simple
method to calculate the waiting times to insert between queries.You get a real number of operations
per second but it might be significantly lower than you want or expect. The --throttle setting to
Eneperf can generate performance results that exceed the maximum throughput of the MDEX Engine
and still result in throughput results for the MDEX Engine that are less than its maximum. Experiment
with this setting to identify the best strategy for your situation.

Example of Eneperf output
This topic contains an example of Eneperf output and describes it briefly.

Running iteration 1...
Done:
58881 sent, 58881 received, 0 errors.
22 minutes, 42.63 seconds for iteration 1, 43.2112 req/sec.
22 minutes, 42.63 seconds elapsed (user: 6.20 seconds, system: 15.24 sec¬
onds).
Net: 1.18389e+06 KB (868.829 KB/sec).
Page Size: avg=91.34 KB, std dev=142.81 KB, max=1238.37 KB, min=0.16 KB.
Latency: avg=92.36 ms, std dev=238.27 ms, max=13441.11 ms, min=0.18 ms. 250
 queries longer than 1s.
Eneperf completed:
58881 sent, 58881 received, 0 errors.
22 minutes, 42.63 seconds elapsed (user: 6.20 seconds, system: 15.24 sec¬
onds).
Net: 1.18389e+06 KB (868.829 KB/sec).
Page Size: avg=91.34 KB, std dev=142.81 KB, max=1238.37 KB, min=0.16 KB.
Latency: avg=92.36 ms, std dev=238.27 ms, max=13441.11 ms, min=0.18 ms. 250
 queries longer than 1s.
 Best iteration time: 22 minutes, 42.63 seconds.
 Peak rate: 43.2112 req/sec.
 Avg iteration time: 22 minutes, 42.63 seconds.
 Avg rate: 43.2112 req/sec.
 Total rate: 43.2112 req/sec.

The entries from Eneperf output are described in the following table:

DescriptionSample Eneperf output entry

Is printed as each iteration begins.
Running iteration 1...

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

123The Eneperf Tool | Example of Eneperf output

DescriptionSample Eneperf output entry

The numbers following this line, until "Eneperf
completed:" occur for each iteration requested.
The number of iterations requested is the last
Eneperf parameter.

Is printed once the iteration finishes.done:

“Sent” is the number of queries sent. It is the sum
of “Received” and “Errors” and the number of

58881 sent, 58881 received, 0 errors.

errors, where errors is the number of 404 or 400
HTTP codes that the Dgraph returns, (rather than
errors in the Dgraph log).

“Received” is the number of queries with a 200
HTTP status code that the Dgraph returns.

“Errors” is the number of queries with 404 or 400
HTTP status code that the Dgraph returns, rather
than errors in the Dgraph log.

The time for the specific iteration, and the
throughput for this iteration.

22 minutes, 42.63 seconds for
iteration 1, 43.2112 req/sec.

The total runtime up until this point.
22 minutes, 42.63 seconds elapsed
(user: 6.20 seconds, system: 15.24
seconds). System time is the time spent in the operating

system on behalf of the Dgraph.

User time is the time spent in the Dgraph itself.

The total amount of data returned for the entire
test (not just for one iteration).

Net: 1.18389e+06 KB (868.829 KB/sec).

Cumulative statistics on the amount of data
returned for each query.

Page Size: avg=91.34 KB, std
dev=142.81 KB, max=1238.37 KB,
min=0.16 KB.

Cumulative statistics on the latencies.The statistics
include previous iterations.

Latency: avg=92.36 ms, std dev=238.27
ms, max=13441.11 ms, min=0.18 ms. 250
queries longer than 1s.

Latency information may be inaccurate when
multiple connections are in use, particularly if the
network is slow. If accuracy is critical, consider
obtaining latency information from the Dgraph
request log.

The processing rate of the iteration in the test with
the best performance, but should not be confused

Peak rate: 43.2112 req/sec.

with "peak" performance in the sense of a single
second that showed the highest throughput. It is
the total number of requests processed in that
iteration divided by the time of the iteration in
seconds.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | Example of Eneperf output124

DescriptionSample Eneperf output entry

If the test includes only one iteration, peak rate is
the processing rate for that iteration.

The average time of the iterations in the test.
Avg iteration time: 22 minutes, 42.63
seconds.

The average rate of the iterations in the test, in
requests processed per second.

Avg rate: 43.2112 req/sec.

The total of requests processed for all of the
iterations in the test, divided by the total time of all
of the iterations in the test.

Total rate: 43.2112 req/sec.

All information after this statement is cumulative
over the entire run. This line is printed once all
iterations have completed.

Eneperf completed:

About the format of logs for use with Eneperf
In order to use Eneperf, you need a log of URLs in the correct format. The lines in the log file you use
with Eneperf should not specify the run-time statistics, hostname and the port.

There are numerous ways that you can obtain such logs; this section provides you with guidelines and
a few examples.

The Request Log Parser
In order to use Eneperf, you need a log of URLs in the correct format. The Request Log Parser is an
Endeca utility that converts the MDEX Engine log format into Eneperf log format.

Alternatively, you can convert URLs yourself. For more information, see Converting a MDEX Engine
request log file for Eneperf.

You can download the Request Log Parser from EDeN.

Recommendations for generating a representative log for Eneperf
The test log that you will use with Eneperf determines the contents and the results of your performance
testing. Because the test log serves as input to Eneperf, it should be representative of those aspects
of the MDEX Engine performance you want to test.

Use these recommendations to create a representative log:

• Add queries of various types to your log to account for a variety of queries. Depending on the query
type, some queries are processed much faster than others.

For example, dimension and record search queries are the fastest, queries on aggregate records,
or navigation and search queries take longer, whereas navigation with Analytics, or navigation
queries with RRN may take more time. Even within queries of the same type, individual queries
can have large performance differences, depending on the query parameters.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

125The Eneperf Tool | About the format of logs for use with Eneperf

• If you want to test a particular feature configuration for performance, ensure that your query log
contains a fair percentage of queries of this type.

• If you are planning to test updates that run at regular intervals, create a separate updates log from
your regular log that contains only config?op=update operations, and run Eneperf against this
updates log and the regular log at the same time. Use the --updates-log setting together with
log and --msec-between-updates settings.

• If queries are repeated in the log, or parts of them are repeated, this makes the log less useful for
performance testing, since a large percentage of queries may be served entirely from the MDEX
Engine cache. Therefore, do not replay a short query log multiple times.

• For a full-scale performance test, generate a log that runs for 30 minutes or more. In addition, you
may want to create a smaller log that runs for 5-10 minutes to use it as a quick test.

• To create a representative log, use the existing MDEX Engine logs from the production system.
Use the Request Log Parser to strip undesired columns and queries. For information, see “The
Request Log Parser”.

• Translate existing Web application logs into the MDEX Engine format. For example:

/results.jsp?searchterm=ipod

turns into:

graph?node=0&group=0&offset=0&nbins=10&attrs=All+ipod|mode+matchall&dym=1

• Translate existing traffic reports, such as a list of top search terms, into the MDEX Engine format
by programmatically generating URLs as produced by the MDEX Engine. For example, for the
term “iron man”, generate:

graph?node=0&group=0&offset=0&nbins=10&at¬
trs=All+iron+man|mode+matchall&dym=1

• Use the Request Log Parser to remove all admin queries from a request log (use the default or
-q gb options for the parser). Typically, process health requests of type /admin?op=ping can
run every few seconds, are typically very fast and not generated by end users. However, requests
of type /admin?op=exit stop and restart the process and will impact your log.

• Remove dimension search queries from your Eneperf log. This is because a single API request
that includes a dimension search is turned into two MDEX Engine requests. For example, the
following request:

?N=0&Ntk=All&Ntt=plum&Nty=1&D=plum

turns into:

/graph?node=0&group=0&offset=0&nbins=10&attrs=All+plum
/search?terms=plum&rank=0&offset=0&compound=1

From the application perspective, this request constitutes one query, since the presentation API
waits for both responses and recombines them into a single response object to the front-end
application. However, the MDEX Engine and performance tools, such as Eneperf and Cheetah,
treat such dimension search requests as two queries.

If you remove these dimension search queries, which are known to be fast, from the Eneperf log
and replace them with other queries, you can use Eneperf to measure the MDEX Engine
performance against this log. If the desired level of performance is achieved with such a log, you
will achieve or exceed that performance when dimension searches are included again.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | About the format of logs for use with Eneperf126

Running Eneperf in two-stream mode: regular logs and logs with updates
You can run Eneperf in a two-stream mode using two streams of request logs — regular query request
logs and logs that contain partial update requests. This lets you test MDEX Engine performance with
partial updates applied at regular intervals while running a regular query load.

To run Eneperf in the two-stream mode, use the following Eneperf settings together:

• --updates-log

• --msec-between-updates

• --log

When used in this mode, Eneperf sends update requests from the updates log at regular intervals
while sending queries from the query log.

In more detail, Eneperf runs in the following way:

1. It uses the log file (specified with --log) and sends requests from this file for the duration that you
specify by the --msec-between-updates setting.

2. At the specified time interval, it sends an update request from the updates log file (specified with
--updates-log) and uses one of its connections for this request.

3. It continues to send query requests from the query log (--log), using the other connections.

Note: This behavior assumes that you are running Eneperf with the number of connections
set to more than one. If you use only one connection, Eneperf will switch between update
and regular query requests.

4. This process continues until either the regular query log or the updates log has been completely
processed. For example:

• If Eneperf sends the last update request from the updates log, but the query log still contains
queries, Eneperf will send additional queries for the time interval specified with --msec-be¬
tween-updates and then stop. (Since the two-stream mode is designed specifically to test
updates performance, Eneperf does not process regular queries after the last update in the
updates log has been processed.)

• If Eneperf sends the last query from the regular log, but the updates log still contains additional
update requests, it will not send these updates to the Dgraph.Therefore, ensure that the regular
query log contains sufficient number of requests to last for the duration of your two-stream
Eneperf testing session.

The format of the updates request log is the same as the format of a regular query log for Eneperf,
except that the updates log should contain only config?op=update operations in order to provide
meaningful performance results. (If your updates log contains regular queries, Eneperf still processes
this log successfully. However, the results are not meaningful for measuring updates performance.)

Using --updates-log and --log settings is useful to measure performance of those updates that
run at regular intervals. To test updates that run at random times, you can continue using your regular
log with Eneperf.

Note: The actual time interval between sending update requests may be equal to or greater
than the time specified with --msec-between-updates. This is because Eneperf uses the
same num connections setting while processing the regular query log and updates log. This
causes Eneperf to wait for a preceding request to complete before it can process the next updates
log request.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

127The Eneperf Tool | About the format of logs for use with Eneperf

Before running Eneperf in the two-stream mode, you need to create a separate log that contains only
partial update requests.You should create such a log with several partial update requests pointing to
a single update file using the admin?op=update&updatefile=filename command. For more
information on running partial updates on a single file, see the Partial Updates Guide.

Note: The --msec-between-updates flag is optional. In other words, if you only specify the
--updates-log flag, the updates are sent to the Dgraph one after another. Eneperf waits for
the current update to finish and immediately sends another update. It does not wait for any period
of time between sending individual updates to the Dgraph.

Converting an MDEX Engine request log file for Eneperf
In order to use Eneperf, you need a log of URLs in the correct format.You can manually convert the
log to the desired format, or use the Request Log Parser available from EDeN.

The lines in the log file you use with Eneperf should not specify the run-time statistics, hostname and
the port. For example, raw URL requests could be formatted like these:

/search?terms=blackberry&rank=0&opts=mode+matchall&offset=0&compound=1
&irversion=510
/graph?node=0&group=10&offset=0&nbins=10&attrs=All+berry|mode+matchall
&dym=1&irversion=510

To convert a complete MDEX Engine request log file for Eneperf use:

Run the following command:

sed -e '/DGRAPH STARTUP/d' <logfile> |
sed -e '/\/admin.*$/d' |
cut -d ' ' -f 12-

This does the following:

• It deletes DGRAPH STARTUP lines, because these lines contain no commands.
• It removes admin requests, such as admin?op=stats or admin?op=exit, that can cause

problems in an Eneperf run.
• It obtains the last three columns in the log (the URL, POST body, and HTTP headers).

Performance testing .NET 2.0 applications that contain long or complex
queries

In rare cases, if your .NET 2.0 (or later) application uses very complex record filters or Analytics
statements, you may find that your Eneperf results differ from what is seen in production.

This discrepancy results from the way the .NET 2.0 API to the MDEX Engine handles very long or
complex queries. Instead of the usual HTTP GET request to the MDEX Engine, it uses an HTTP POST
request. However, the MDEX Engine logs the query as if it were a GET request.The different processing
and validation that occurs for POST requests may result in performance differences.

To better simulate the performance of applications that contain such queries, you can use the Request
Log Parser to pre-process the logs used to run the Eneperf test. For each request in the log that is
longer than 65,000 characters, prepend ‘/graph’ with a space after it to the request. Use the
subsequent log as the input to Eneperf.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

The Eneperf Tool | About the format of logs for use with Eneperf128

Note: This behavior only manifests itself in the case of very long or complex queries. Most
applications never use queries of this sort.

Creating a log file by hand using substitute search terms
You can also approximate a log file to be used with Eneperf. This method is useful when you do not
have a running MDEX Engine and archives of logs to work with.

For example, you may want to test the performance of search terms culled from some other system.

To create a log file by hand:

1. Create a list of search terms that you want to test.

2. Copy or create a URL and optional HTTP POST body in the appropriate format.

3. Compose a new log file by substituting your search terms into URL requests containing suitable
options.

Debugging Eneperf
Eneperf generates error messages in various error conditions.

• If you make an error while typing the command line argument, Eneperf returns its help message.
• if you accidentally mistype the MDEX Engine port, Eneperf generates numerous failed connection

error messages.
• If Eneperf encounters socket connection errors, it reports error messages.

It is also possible for error messages to be displayed during normal operation. For example, if the log
file contains a request to retrieve a record that is not present in the MDEX Engine data set, Eneperf
(as expected) presents a 404 (file not found) message.

Note: Queries that cause HTTP errors are not counted towards ops/sec performance results
displayed by Eneperf.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

129The Eneperf Tool | Debugging Eneperf

Appendix D

MDEX Engine Statistics and Auditing

The MDEX Engine Statistics page displays MDEX Engine (Dgraph) performance statistics.You can
also view the Agraph Statistics page. The MDEX Engine Auditing page tracks usage for licensing and
performance purposes. This section describes these pages.

About the MDEX Engine Statistics page
The MDEX Engine Statistics page provides a detailed breakdown of what the Dgraph is doing, and is
a useful source of information about your Endeca implementation’s configuration and performance.

The statistics page is also called the Dgraph Stats page or Admin Stats page.

It provides information such as startup time, last data indexing time, and indexing data path. This
allows you to focus your tuning and load-balancing efforts. By examining this page, you can see where
the Dgraph is spending its time. Begin your tuning efforts by identifying the features in the Hot Spot
Analysis section with the highest totals.

Note: In addition to the Dgraph Stats page, if you are using an Agraph implementation, you can
access the Agraph Stats page.

Viewing the MDEX Engine Statistics page
You can request the MDEX Engine Statistics page for the Dgraph with the URL listed below.

http://DgraphServerNameOrIP:DgraphPort/admin?op=stats

For example, if your Dgraph is running on your local machine and listening on port 8000, specify this:

http://localhost:8000/admin?op=stats

You can determine the host and port on the EAC Admin Console of Endeca Workbench by opening
the MDEX Engine component or by exploring your Deployment Template AppConfig.xml file.

To reset the statistics, make the following request:

http://DgraphServerNameOrIP:DgraphPort/admin?op=statsreset

To view the statistics information for a single request, clear statistics, issue a request and inspect
statistics again.

The statistics page information is valid as long as the MDEX Engine keeps running; it is cleared upon
the MDEX Engine restart.

The source data for the Dgraph statistics is stored in XML. By default, the MDEX Engine Statistics
page is rendered into HTML through an Endeca XSLT stylesheet, stats.xslt, that is installed in
the ENDECA_MDEX_ROOT/conf/dtd/xform directory.

If your browser supports XSLT transformations (for example, Internet Explorer 6 and later), you can
view the statistics as transformed by stats.xslt, or you can modify the shipped stats.xslt stylesheet
to provide a different transformation of the data.

If your browser does not support XSLT transformations, or if you want to see the raw XML, rename
or remove ENDECA_MDEX_ROOT/conf/dtd/xform/stats.xslt.

To ensure that the statistics page displays properly in your browser, Javascript must be enabled, as
part of the settings for the browser. (If your browser’s security setting is set to high, this may disable
Javascript.)

Sections of the MDEX Engine Statistics page
The MDEX Engine Statistics page for the Dgraph is divided into tabs. Information on all of the tabs is
presented through the URL of the statistics page as described in the following sections.

The Performance Summary tab
The Performance Summary tab contains the highest level statistics. They reflect and help to monitor
those characteristics that are external to the actual processing of queries, such as the queue of incoming
queries, the thread pool, and the overall throughput of the process.

The Performance Summary tab contains the following sections:

DescriptionSection

Various statistics (average, standard deviation, minimum,
maximum, and total) on:

Performance

• The total number of requests received

• Total CPU usage (in seconds of total user time and total
system time).

• The memory resource usage.
• Resident Set Size (RSS) statistics.

Five-minute, one-minute, and ten-second average throughput
statistics (only for multithreaded mode). When thread becomes
available, the throughput statistics is measured.

Throughput (req/sec)

The General Information tab
The General Information tab contains the following sections.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page132

DescriptionSection

Basic connection and machine details, such as process ID, parent process ID,
user ID, user name, effective user ID, group ID, effective group ID, current working

Information

directory, hostname, server port for the Dgraph, start time, information about the
data (path, tag and date), and the number of index generations.

A list of all arguments the Dgraph was started with.Arguments

The Index Preparation tab
The Index tab tracks index preparation and precomputed sorts statistics, including timing.

It contains the following sections:

DescriptionSection

The number of non-XQuery updates run against the Dgraph, and performance
of updates (count, average, standard deviation, min, max and total), on the
following items:

Update Totals

• Record changes, including the number of adds, updates, deletes and
replacements

• Dimension changes
• Record change errors
• Dimension change errors
• Update latency, including various finer-grained performance statistics of

indexing processing.

The number of XQuery updates run against the Dgraph, and performance of
updates (count, average, standard deviation, min, max and total), on the
following items:

XQuery Update Totals

• Record changes, including the number of adds, updates, deletes and
replacements

• Dimension changes
• Record change errors
• Dimension change errors
• Update latency, including various finer-grained performance statistics of

indexing processing.

Note: The XQuery update feature is Early Access in this release. For
details, see the Web Services and XQuery Developer's Guide.

Displays how much time the Dgraph has spent computing sorts, including
computing sorts and incremental sort updates.

Precomputed Sorts

Note: For some of the statistics on this page, it is possible to drill down for further information
by clicking on the black arrow that appears outside the rightmost column.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

133MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page

The Cache tab
The Cache tab contains information about the MDEX Engine cache.

DescriptionSection

Provides details on totals, including number of entries in the cache, size of entries,
number or lookups in the cache, number of rejections, percentage of hit rate and

Main Cache

miss rate, number and size of evictions from the cache, number of reinsertions,
total reinsertion time and average creation and eviction times.

In particular, if you need to analyze the MDEX Engine cache, examine the results
in the following columns. Analyzing these results may help you tune your cache
and re-design your front-end application to improve performance of the MDEX
Engine.

• Number of rejections. Counts greater than zero in this column indicate that
the cache is undersized and you may want to increase it.

• Number of reinsertions. Large counts in this column indicate that simultaneous
queries are computing the same values, and it may be possible to improve
performance by sequencing queries, if the application design permits.

• Total reinsertion time. Examining this column is useful for quantifying the
overall performance impact of queries that contribute to the "Number of
reinsertions" column. This column represents the aggregated time that has
been spent calculating identical results in parallel with other queries. This is
the amount of compute time that potentially can be saved by sequencing
queries in a re-design of the front-end application.

The Details tab
The Details tab contains the following sections:

DescriptionSection

The URL and total time in milliseconds for the ten queries with the largest total
computation time (that is, queue time plus Dgraph processing time plus write
time) made in the session. The queries are ordered by processing time.

Most Expensive
Queries

Each time a new Dgraph transaction that yields results is completed, this tab
may become updated with a new query, if it makes the list of current top ten
most expensive queries.

Each query is described with these characteristics:

• Query rank
• Computation processing time (in milliseconds)
• URL

Unlike in Presentation API mode, where the URL contains all of the information
about the query, in Web services mode the URL only contains the service
name. The bulk of the query is contained in the POST body. Therefore, if the
Dgraph is running in Web services mode, a serial number is appended to the
URL, as in the following example:/ws/myservice:57.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page134

DescriptionSection

This serial number corresponds to the HTTP Exchange ID in the MDEX Engine
Request Log.You can use it to retrieve additional information about the contents
of the query from the Request Log’s Query Body field.

Details on the performance of specific features, such as clustering, record
search, record filter, range filter, content spotlighting and snippeting.

Hotspots

This section also contains the following page render and record sorting statistics:

• Page render total. After the MDEX Engine knows which records and values
must be returned, this time represents the total time spent generating and
returning those results to the Presentation API.This time includes retrieving
records from memory or disk, ordering them based on the specified sort or
relevance ranking strategies, as well as other information returned to the
API, such as content spotlighting results.

• Prefetching horizontal record. The cost to retrieve records from the data
layer of the MDEX Engine.

• Statistics related to various sorting strategies.The MDEX Engine examines
information about the data being returned and selects the best sorting
strategy.

Note: These statistics may change. They are used for internal
debugging and tuning of the MDEX Engine sorting selection strategy
and are not useful to the end user.

The following items are listed in the Results section. The statistics includes
count, average, standard deviation, min, max and total, where applicable:

Results

• Number of records in result set
• Result page size in bytes
• Result page format performance in milliseconds

Statistical information for the MDEX Engine server:
Server

• HTTP: Total request time
• HTTP: Time reading request
• HTTP: Time in scheduler
• HTTP: Time writing response
• HTTP: Request bytes read (including HTTP overhead)
• HTTP: Response body size (including HTTP overhead)
• Scheduler: Queue time before processing
• Scheduler: Processing time
• Scheduler: Queue time after processing
• Scheduler: Queries queued

This metric describes the queue length.

• Scheduler: Queries in process

This metric describes the number of queries that are in process.

• Scheduler: Update queue time

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

135MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page

DescriptionSection

• XQuery: Total time in XQuery engine
• XQuery: Total time in XQuery external functions

Note: This statistic only includes the time spent in the following
functions: internal:query(), mdex:dimension-value-id-
from-path(), and mdex:add-navigation-descriptors().

• XQuery: Time retrieving documents with fn:doc()
• XQuery: Time storing documents with fn:put()
• XQuery: Result serialization time
• Most expensive MAX invocations
• Custom timing list

This metric, which can list things like expensive queries, only appears when
you implement custom metric gathering with the ep:stats-timing
pragma. See the Web Services and XQuery Developer’s Guide for more
information.

Information about the number of navigation pages, as well as navigation
performance, query size, and result size by average, standard deviation,
minimum, maximum, and total.

Navigation

The number and type of sorts performed (does not include timing), and the
percentage of those sorts for each sort type.

Record Sorting

Information pertaining to the analytics features in Endeca Analytics, such as
total processing time, query parsing, time checking and evaluation times.

Analytics

Disk usage statistics for the indices:
Disk usage

• current total disk usage value (MB)
• disk usage high water mark value (MB)

A finer-grained analysis of the performance of individual features. This
information is used for the internal analysis by Endeca.

Search

Statistical information about the data layer performance. This information is
used for the internal analysis by Endeca.

Data Layer
Performance

Note: For some of the statistics on this page, it is possible to drill down for further information
by clicking the black arrow that appears outside the rightmost column.

Note: If you modified the stats.xslt style sheet that is included in the installation, the
information might display differently.

About the Agraph Statistics page
In an Agraph implementation, you can access the Agraph Statistics page.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

MDEX Engine Statistics and Auditing | About the Agraph Statistics page136

To view the Agraph Statistics page, use the syntax as shown in the following example:

http://AgraphServerNameOrIP:AgraphPort/admin?op=stats

where AgraphServerNameOrIP:AgraphPort are the host name and the port number on which
the Agraph is running.

You can determine the host and port of the Agraph on the EAC Admin Console of Endeca Workbench
by opening the MDEX Engine component, or by exploring your Deployment Template AppConfig.xml
file and information in it about the Agraph.

To reset the statistics, make the following request:

http://AgraphServerNameOrIP:DgraphPort/admin?op=statsreset

To view the statistics information for a single request, clear statistics, issue a request and inspect
statistics again.

The statistics page information is valid as long as the MDEX Engine keeps running; it is cleared upon
the MDEX Engine restart.

Note: Unlike the Dgraph Stats page, the source for the Agraph Stats page is stored in an HTML
file, not an XML file.

Example of the Agraph Statistics page

This table describes parameters listed on the Agraph Stats page. It is followed by an example of the
Agraph Stats page:

DescriptionAgraph Stats page
parameter

The version of the MDEX Engine that is being used
Version

Process ID
PID

User ID
UID

Group ID
GID

Path to the current working directory
CWD

Path to the updates directory of Agidx
Data Path

Number of query requests made to the Agraph
Num requests

Information about Agraph performance. This information is used for
the internal analysis by Endeca.

Num requeries, Num re¬
queries failed

The size of the Agraph process in memory
current_process_size
(MB)

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

137MDEX Engine Statistics and Auditing | About the Agraph Statistics page

DescriptionAgraph Stats page
parameter

The argc parameter indicates the number of arguments listed with
argv.

argc, argv

The argv parameter lists the arguments with which the Agraph has
been started, such as the Agraph flags, location of the log file, the
Agidx data file, and the hosts and ports of the child Dgraphs.

Various statistics on Agraph query performance and system usage.
This information is used for the internal analysis by Endeca.

Result page stats,
System usage

This example illustrates typical results returned by the Agraph Statistics page:

Endeca Navigation Engine (agraph) Server Statistics

Current time: [Date and Time]
Avg. Throughput (10 sec.): 0.67 req/sec
Avg. Throughput (1 min.): 0.67 req/sec
Avg. Throughput (5 min.): 0.67 req/sec

General Information
Version: [version used]
PID: 1742 (PPID: 1)
UID: 10094, userID (EUID: 10094)
GID: 10094 (EGID: 10094)
CWD: /current_working_directory/ene/agraph
Host: agraph_host
Server Port: 5555
Start Time: [Date and Time]
Data Path: /localdisk/ene/agraph/updates/agidx
Data Tag: unknown
Data Date: [Date and Time]
Last Request Time: [Date and Time]
Num Requests: 6
Num Requeries: 2
Num Requeries Failed: 0
current_process_size (MB): 85.6523

argc: 14
argv[0]: /localdisk/dev/x86_64pc-linux/bin/agraph
argv[1]: --no-partial
argv[2]: --stat-brel
argv[3]: --port
argv[4]: 5555
argv[5]: --pidfile
argv[6]: /localdisk/dev/ene/agraph/updates/_agraph.pid
argv[7]: --log
argv[8]: /localdisk/dev/ene/agraph/updates/_agraph.log
argv[9]: /localdisk/dev/ene/agraph/updates/agidx
argv[10]: --child
argv[11]: localhost:5590
argv[12]: --child
argv[13]: localhost:5591

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

MDEX Engine Statistics and Auditing | About the Agraph Statistics page138

Result Page Stats
Num result pages served: 3
Result page format performance (milliseconds): avg=0.113037 stdDev=0.0800197
 min=0.0219727 max=0.172119
Result page size (bytes): avg=6684.67 stdDev=5314.51 min=548 max=9753

System Usage
Rusage (user time): 0.0560 seconds
Rusage (system time): 0.0120 seconds

About the Endeca MDEX Engine Auditing page
The MDEX Engine Auditing page lets you view the aggregate MDEX Engine metrics over time. It
provides the output of XML reports that track ongoing usage statistics.

These statistics persist through process restarts.

This data can be used to verify compliance with licensing terms, and is also useful for tracking product
usage.

Note: Each Dgraph in an implementation is audited separately.

Viewing the MDEX Engine Auditing page
You can request the MDEX Engine Auditing page with the URL below.

To view the MDEX Engine Auditing page:

Access the following URL:

http://DgraphServerNameOrIP:DgraphPort/admin?op=audit

For example, if your Dgraph is running on your local machine and listening on port 8000, specify
this:

http://localhost:8000/admin?op=audit

The information on the MDEX Engine Auditing page is persistent and is valid across the MDEX Engine
restarts.

The source data for the auditing reports is stored in XML. By default, the MDEX Engine Auditing page
is rendered into HTML through an Endeca XSLT stylesheet, audit.xslt, that is installed in the
ENDECA_MDEX_ROOT/conf/dtd/xform directory.

Audit persistence file details
The naming convention for the audit persistence file is:
audit-<data_prefix>-<agidx_persistence_number>.xml.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

139MDEX Engine Statistics and Auditing | About the Endeca MDEX Engine Auditing page

For example, an audit persistence file on the sample wine implementation might look like this:
audit-wine-0.xml.

This convention ensures that each Dgraph creates a unique file. It makes it possible to maintain the
audit persistence files for numerous Dgraphs in an application in the same directory without contention.

By default, the audit persistence file is written to a directory called persist that is located in the
application’s working directory. To direct it elsewhere, use the Dgraph flag --persistdir when you
first create the Dgraph. Do not move or rename this directory after it has been created.

You should not delete the audit persistence file or attempt to edit it manually. Upon startup, the Dgraph
checks for the presence of this file, and if it cannot find it or read it, it issues a warning message and
creates a new one. However, if you see such a warning message when you first create a Dgraph, you
can safely disregard it.

Note: The auditing function adds information prefixed by the word Endeca.* to records. This
namespace is reserved for administrative use and should not be used for other purposes.

Sections of the MDEX Engine Auditing page
The MDEX Engine Auditing page consists of two tabs: Audit Stats and General Information.

Auditing statistics are gathered in one of two ways:

• The Query Load statistic tracks the hour with the most queries in each calendar week, starting
when you first run the Dgraph and persisting through process restarts.

• All other auditing statistics constantly monitor the peak value over the course of a calendar week,
and report the exact time when a value greater than the current peak value appears, starting when
you first run the Dgraph and persisting through process restarts.

Because these metrics are calculated over the course of a week, a change such as a deleted
record is not reflected until the following week, when the peak value count is reset.

The Audit Stats tab
The Audit Stats tab contains the following information.

DescriptionSection

The peak number, in the week beginning at the displayed time, of queries
that the Dgraph has received in any single hour, plus the time at which that
peak occurred.

Query Load

This field contains the sum of the next two fields, Net Query Load and WS
Query Load. Depending on the modes in which you run your Dgraph, there
may be values in both of these fields or only one of them.

The peak number, in the week beginning at the displayed time, of queries
that the Dgraph has received in any single hour while running in Presentation
API mode, plus the time at which that peak occurred.

Net Query Load

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Auditing page140

DescriptionSection

The peak number, in the week beginning at the displayed time, of queries
that the Dgraph has received in any single hour while running in Web services
mode, plus the time at which that peak occurred.

WS Query Load

The peak number, in the week beginning at the displayed time, of records,
plus the time at which that peak was reached.

Number of Records

The peak value, in the week beginning at the displayed time, for the total
number of properties and dimensions across all records, plus the time at
which that peak was reached.

Number of Columns

The peak value, in the week beginning at the displayed time, for the total
number of words (counting multiple occurrences of the same word) across
all records, plus the time at which that peak was reached.

Number of Words

The peak value, in the week beginning at the displayed time, for the total
number of populated dimension and property values across all records, plus
the time at which that peak was reached.

Number of
Assignments

The peak value, in the week beginning at the displayed time, for the total size
occupied by all records, plus the time at which that peak was reached.

Size of Data

Note: This may vary, depending on operating system platform.

The General Information tab
The General Information tab contains the following sections.

DescriptionSection

Basic connection and machine details.Information

A list of all arguments the Dgraph was started with.Arguments

Note: This tab is identical to the one of the same name on the MDEX Engine Server Statistics
page.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

141MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Auditing page

Appendix E

Useful Third-Party Tools

This section lists some third-party tools that you may find useful during the Endeca performance
monitoring process. The tools listed here are not supported by Endeca and are subject to change. In
addition, these suggestions are not meant to overrule your choice of other tools.

Cross-platform tools
The following tools are available in both UNIX and Windows versions.

DescriptionTool

Wireshark is an open source network protocol analyzer for both UNIX and
Windows. It allows you to examine data from a live network or a capture file
on disk.

Wireshark

For information and downloads, see http://www.wireshark.org/download.html.

Tcpdump (and its Windows version, Windump) are network traffic analysis
tools. These tools can be used to watch and diagnose network traffic
according to various complex rules.

Tcpdump/Windump

You can download Tcpdump from http://www.tcpdump.org.

You can download Windump from http://www.winpcap.org/windump.

Note: Tcpdump comes with most Linux distributions by default.

Solaris and Linux tools
The following tools are available for both Solaris and Linux.

http://www.wireshark.org/download.html
http://www.tcpdump.org
http://www.winpcap.org/windump

DescriptionTool

Netperf is a network benchmarking tool that can be used to measure the
throughput of many different types of TCP and UDP connections. Netperf provides
tests for both unidirectional throughput, and end-to-end latency.

Netperf

Note: Be sure to compile netperf with histogram support.

To simulate the network traffic to a MDEX Engine with average result pages of
50,000 bytes, run netperf like this:

netperf -l 600 -v 2 -H remotehost -p 8899
-t TCP_CRR -- -r 200, 50000

where:

• -l is the length of the test in seconds
• -v specifies verbose output level
• -H indicates the host where netserver is running
• -p indicates the port that was given to the netserver process
• -t indicates the test to run. TCP_CRR is the TCP test that opens a new

TCP connection for each request/response
• -r specifies the request/response characteristics, in this case a 200 byte

request (approximately the size of a URL) and a 50K result

For information and downloads, see http://www.netperf.org.

Top is a UNIX utility you can use to quickly identify top CPU-using processes.
It is a popular and common tool for monitoring system-wide process activity.

Top

For information and downloads, see http://www.groupsys.com/top.

Sar reports system activity on single processor systems. It reports the status of
counters in the operating system that are incremented as the system performs

Sar

various activities. These include counters for CPU utilization, buffer usage, disk
I/O activity, TTY device activity, switching and system-call activity, file access,
queue activity, inter-process communications, swapping and paging.

On Solaris, sar is part of the system activity reporter package. On Linux, it is
part of the downloadable sysstat package.

The iostat utility iteratively reports terminal, disk, and tape I/O activity, as well
as CPU utilization.

iostat

On Solaris, iostat is built in to the operating system. On Linux, it is part of the
downloadable sysstat package.

Solaris-specific tools
The following utilities are built into Solaris.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Useful Third-Party Tools | Solaris-specific tools144

http://www.netperf.org
http://www.groupsys.com/top

DescriptionTool

On Solaris the prstat command displays information about active processes
on the system. By default, prstat displays information about all processes
sorted by CPU usage.

prstat

On multiprocessor machines, cpusar reports per-CPU statistics, and mpsar
reports system-wide statistics.

cpusar and mpsar

Kstat reports many kernel parameters and statistics.Kstat

The lockstat utility gathers and displays kernel locking and profiling statistics.
It allows you to identify what are the processes and kernel really doing.

lockstat

Lockstat allows you to specify which events to watch, how much data to gather
for each event, and how to display the data.

The SE Toolkit is a collection of scripts for performance analysis that gives
advice on performance improvements.

SE Toolkit

Linux-specific tools
The following tools are available for Linux.

DescriptionTool

The sysstat utilities package is a download for Linux that contains performance
monitoring tools such as iostat, sar, and mpstat. Iostat and sar are described
in “Solaris and Linux tools” on ...; mpstat is described below.

sysstat

For information and downloads, see http://perso.wanadoo.fr/sebastien.godard.

Mpstat is the Linux multiprocessor load display utility. It displays system
processor activity information on your screen for each of the processors serialized
on your system.

Mpstat

Windows tools
The following tools are available for Windows.

DescriptionTool

The Windows Task Manager provides information about programs and
processes running on your computer. It also displays the most commonly
used performance measures for processes.

Task Manager

You can access the Task Manager by right-clicking an empty area on the
task bar on your Windows machine.

The Performance Monitor provides details about the resources used by
specific components of the operating system and by programs that have
been designed to collect performance data.

Performance Monitor

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

145Useful Third-Party Tools | Linux-specific tools

http://perso.wanadoo.fr/sebastien.godard

DescriptionTool

You can access the Performance Monitor from the Control Panel by
selecting Administrative Tools > Performance.

Sysinternals (http://www.sysinternals.com) offers useful freeware tools,
including the following:

Other performance tools

• Process Explorer, which shows you information about which handles
and DLL processes have opened or loaded.

• TCPView, which shows you detailed listings of all TCP and UDP
endpoints on your system, including the local and remote addresses
and state of TCP connections. On Windows NT, 2000, and XP
TCPView also reports the name of the process that owns the endpoint.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Useful Third-Party Tools | Windows tools146

http://www.sysinternals.com

Appendix F

Tuning the Network Performance

You only need to perform the procedures described in this appendix if you are installing in a production
environment—they are not required for a typical developer installation.You will not see the benefits
of this tuning until the Endeca server is placed under very heavy load.

Tuning network performance on Windows
Endeca provides two registry scripts that you can use, singly or in combination, to tune your server’s
network performance.

• The tcp_time_wait_tune.reg script tunes the server’s network performance by changing the default
time wait interval from 240,000 to 60,000 milliseconds. This change accelerates the rate at which
the server re-uses ports when establishing TCP connections.

To determine if you need to run the tuning script, open the Registry Editor and look for the following
key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\TcpTimedWaitDelay

Note: In the Registry Editor Explorer pane, expand the folders until you reach Parameters.
Then click on the Parameters folder and look for the TcpTimedWaitDelay setting in the right
pane.

If this key does not exist, that means that the system is using the default time-out of 240,000
milliseconds.

• The tcp_max_ports_tune.reg script increases the number of ports available for TCP connections
from 5,000 to 65,534. The affected key appears in the Registry Editor as follows:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\MaxUserPort

To tune network performance on Windows:

1. In the %ENDECA_MDEX_ROOT%\bin directory, double-click one of the following scripts:

• tcp_time_wait_tune.reg

• tcp_max_ports_tune.reg

2. When the information box reading “Are you sure you want to add the information in script name to
the registry?” appears, click Yes.

3. The system displays a confirmation message that reads “Information in script name has been
successfully added to the registry.” Click OK.

4. Optionally, repeat these steps for the other tuning script.

5. Reboot the server for the registry changes to take effect.

Tuning network performance on Solaris
This section applies only to Solaris installations, not to Linux installations.

The Endeca installation includes a script that tunes the server’s network performance by changing the
default time wait interval from 240,000 to 30,000 milliseconds. This change accelerates the rate at
which the server re-uses ports when establishing TCP connections.

To determine if you need to run the tuning script, run the following command:

netstat -an | grep TIME_WAIT | wc -l

If the resulting number is consistently greater than 5,000, apply the tuning script and wait 4 minutes.
The number of connections in a time wait state will drain off and you should find that the 5,000+ number
drops by at least a factor of two.

To run the tuning script:

1. Change directories to the $ENDECA_MDEX_ROOT/bin directory.

2. As root, type the following at the prompt:

./tcp_time_wait_tune.sh

3. Press Enter.

A message appears indicating that the tcp_time_wait_interval has been set to 30,000.

Configuring the FIN_WAIT_2 timeout interval
The FIN_WAIT_2 timeout interval is the number of seconds that the HTTP server waits after sending
the response for the client to close down its end of the socket. If this timeout expires, the server forcibly
shuts down the connection.

This timeout interval is important for two reasons:

• Waiting for some time before shutting down the socket ensures that clients get complete responses.
• Timing out after certain period protects against buggy clients, which may never close their end of

the socket. This can tie up resources on the server machine, leading to performance degradation
and, in the extreme case, denial of service.

When the MDEX Engine finishes sending a response to a client, it does a "soft close" of the socket.
This allows the client to finish reading data, and to close its end of the socket whenever it is ready.
The state of the server-side socket during the interval between the server closing one end, and the
client closing the other, is known as FIN_WAIT_2. All operating systems supported in this release
automatically clean up sockets that stay in FIN_WAIT_2 for too long.

In general, you should not need to change this from the default value. If you do need to change the
setting, follow the instructions below for your operating system.

Endeca ConfidentialEndeca® MDEX Engine Performance Tuning Guide

Tuning the Network Performance | Tuning network performance on Solaris148

Configuring FIN_WAIT_2 timeout on Linux
On Linux systems, the tcp_fin_wait timeout is stored in
/proc/sys/net/ipv4/tcp_fin_timeout.

You can change the value of this parameter using the sysctl command.

To get the value, issue the following command:

/sbin/sysctl net.ipv4.tcp_fin_timeout

To set the value, issue the following command:

/sbin/sysctl -w net.ipv4.tcp_fin_timeout=30

Note: Root permissions are typically required to set this value.

Configuring FIN_WAIT_2 timeout on Solaris
On Solaris systems, you can modify the FIN_WAIT_2 timeout interval in /dev/tcp.

The default value is 675000ms.

To get the value, issue the following command:

ndd -get /dev/tcp tcp_fin_wait_2_flush_interval

To set the value, issue the following command:

ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 30000

Note: Root permissions are typically required to set this value.

Configuring FIN_WAIT_2 timeout on Windows
On Windows systems, the variable to control the FIN_WAIT_2 timeout interval can be modified in the
Windows Registry.

The Registry entry that controls this setting is HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon¬
trolSet\Services\Tcpip\Parameters.You need to specify the TcpFinWait2Delay value for
the above entry in the registry. The default value is 240s.

Note: Administrator privileges are required to set this value.

1. In the Windows Registry, go to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ser¬
vices\Tcpip\Parameters

2. If the TcpFinWait2Delay value already appears in the details window, tune the value. The valid
range is between 30s and 300s.

3. If the value does not exist, right click and select Add a new DWORD value. Add TcpFinWait2De¬
lay and set its value.

4. Restart your system for the change to take effect.

Endeca® MDEX Engine Performance Tuning GuideEndeca Confidential

149Tuning the Network Performance | Configuring the FIN_WAIT_2 timeout interval

Index

64-bit architecture 17

A

additional information
locating 14

Agraph
introduced 11
performance considerations 82
using dynamic business rules 82
when to use 12

agreq query type 95
allbins query type 96
allgroups query type 96
analytics query type 97
application server issues 52
attrs query type 97
Auditing page 43
autoforce query type 98
autophrase query type 98
autophrasedwim query type 98

B

bandwidth
defined 13

Boolean search 75

C

cache
examining 134

Cheetah utility 44
compound query type 99
concurrent users

defined 13
connection setting for Eneperf 117
CPU considerations 48
Cpusar performance analysis tool 145

D

Dgidx
hardware performance recommendations 27

Dgraph
introduced 11

Dgraph cache
about 21
defined 13
impact on virtual process size 24
performance recommendations 22

Dgraph memory usage
performance impact of 18

Dgraph request log file 85
Dgraph warming 46
dictionary pruning 73
dimension search 79
dimension values

displaying refinements 60
dynamic statistics on 60

disabled refinements
performance impact 61

disk access considerations 47
displaying

multi-select dimensions 59
refinement dimension values 60

dym query type 99
dynamic business rules 81

and the Agraph 82
dynamic refinement ranking

improving 61
dynamic statistics on dimension values 60

E

Eneperf
introduced 115
logs for use with 125
optional settings 122
required settings 116
running locally 117
running remotely 117
setting the number of queries 123
usage 115
two-stream mode 127

Eneperf, about 44
ephemeral port 53
EQL filters

troubleshooting 71
typical errors 72

Ethereal performance analysis tool 143
expression evaluation of record filters 65

F

feature performance
overview 57

file system (FS) cache
about 22

filter query type 100
flat dimension hierarchy 59
format query type 100
front-end application

coding recommendations for 52

full-duplex
recommended for NICs 27

G

gathering performance information
guidelines for 41

Gigabit Ethernet 27
group query type 101
groupby query type 101

H

hidden dimensions 59

I

id query type 102
ignore query type 102
Iostat performance analysis tool 144
irversion query type 103
iteration setting for Eneperf 117

K

keyprops query type 103

L

lang query type 103
large OR filter performance 65
large scale negation 65
latency and maximum latency

defined 12
Linux

performance tools 145
sysstat package 145
tuning 29

load balancers
recommendations 31

load balancing 31
locating additional information 14
Lockstat performance analysis tool 145
log file (eneperf)

about 125
converting Dgraph request log 128
settings 117
with updates 127

log query type 104

M

MDEX Engine architecture
optimized for performance 15

MDEX Engine request log
converting for use with Eneperf 128

MDEX Engine Statistics page
about 131

MDEX Engine Statistics page (continued)
presentation transformed with XSLT 131
viewing 131

memory usage
costs of record filters 64
impact on performance 18
recommendations 19

merchdebug query type 104
merchpreviewtime query type 105
merchrulefilter query type 105
model query type 105
Mpsar performance analysis tool 145
Mpstat performance analysis tool 145
multi-select dimensions

displaying 59
multithreaded mode

associated costs 37
introduced 35
Solaris 39
Linux 39
VMware 39
Windows 39

N

nbins query type 106
nbulkbins query type 106
Netperf performance analysis tool 144
network recommendations 27
node query type 107
num query type 108

O

offline query type 108
op query type 109
operation

defined 12
opts query type 109
out-of-memory situations

Dgraph 20
solutions 20

P

part list performance 65
performance impact

disabled refinements 61
wildcard search 76

performance in multithreaded mode 38
Perl guidelines

for MDEX Engine request log 90
port setting for Eneperf 117
precedence rules

defined 79
pred query type 110
pretendtime query type 110
Process Explorer performance analysis tool 146
profiles query type 111

Endeca® MDEX Engine152

Index

Prstat performance analysis tool 145

R

RAID recommendations 17
RAM estimates

for the MDEX Engine 24
rank query type 111
read_ahead_kb parameter for tuning on Linux 30
record counts for refinements

aggregated records 61
record filters

expression evaluation 65
large scale negation 65
memory costs 64

Record Relationship Navigation
performance impact 69

record search 75
records

sorting by dimension or property 63
refinement dimension values

displaying 60
refinement query type 112
relevance ranking

performance impact 80
relrank query type 112
Request Log Parser

modifying, for long or complex queries 128
resident set size (RSS)

defined 13
RSS

defined 13

S

SAN-backed storage recommendations 18
Sar performance analysis tool 144
select query type 113
snippeting

performance impact 72
socket timeout interval

configuring 148
Solaris performance tools 145
sort query type 113
spelling correction 72
stat-abins

aggregated record counts per refinement 61
statistics

viewing for MDEX Engine 131
stats.xslt file 131
stemming and thesaurus 74
structured query type 113
sustained throughput for Dgraph

defined 12

T

Task Manager performance analysis tool 145
Tcpdump performance analysis tool 143
TCPView performance analysis tool 146
terms query type 114
thesaurus development

guidelines for 74
threaded Dgraph 46
throttle setting to Eneperf 123
throughput

defined 12
Top performance analysis tool 144
tuning

cache 134
wildcard search 77

U

uncovering network problems 53
update logs and Eneperf 127
updates performance, testing with Eneperf 127
utilization

defined 13

V

virtual process size
defined 13

W

warming
effect on performance 46

warming for the Dgraph process 13
wildcard search

performance impact 76
preventing expensive queries 77
with punctuation 77

wildcard_max setting 77
Windows

Task Manager 145
Windows 2008

support 28
Windows performance tools 146
Windump performance analysis tool 143
working set size

defined 13
WSS

defined 13

X

XSLT
transforming MDEX Engine statistics 131

153

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Before You Begin
	About the Dgraph and the Agraph
	When to consider using an Agraph
	Important concepts
	Location of additional information

	System Characteristics and Hardware
	MDEX Engine architecture and performance
	Storage considerations
	Locally attached RAID storage (RAID 5/6, RAID 10, or RAID 0)
	SAN-backed network-attached storage

	Memory considerations
	About Dgraph process memory usage
	Memory usage recommendations for optimizing performance
	Dgraph virtual memory vs. RAM: use cases
	Solutions for memory-based Dgraph performance problems
	About the Dgraph cache
	About the File System Cache
	Cache-tuning recommendations for optimizing performance
	The Dgraph cache and its impact on virtual process size
	Estimating the MDEX Engine RAM requirements

	Network considerations
	Dgidx performance recommendations
	Operating system considerations
	Windows 2008 performance considerations
	VMware performance considerations
	Linux considerations
	Tuning the read_ahead_kb kernel parameter
	Changing the I/O scheduler on RHEL 5
	Disabling the swap token timeout on RHEL 5

	Load balancer considerations
	Load balancing and session affinity

	High availability considerations

	Using Multithreaded Mode
	About multithreaded mode
	Benefits of multithreaded MDEX Engine
	The MDEX Engine threading pool
	Configuring the number of MDEX Engine threads
	When to increase the number of threads
	Multithreaded MDEX Engine performance
	Recommended threading strategies and OS platform

	Diagnosing Dgraph and Agraph Problems
	Information you need
	System state characteristics
	Performance tools overview
	The MDEX Engine request log
	The MDEX Engine Statistics page
	The MDEX Engine Auditing page
	The Cheetah utility
	Eneperf

	Dgraph performance issues
	Improving the speed of Dgraph startup
	Tips for troubleshooting long processing time
	Warming performance vs. steady state performance
	About planning for peak Dgraph load
	About tuning the number of threads
	Multithreaded Dgraphs on machines with multithreaded processors
	Multiple Dgraphs on one machine vs. multithreaded Dgraphs
	Disk access recommendations for optimizing performance
	CPU recommendations for optimizing performance
	I/O recommendations for optimizing performance

	Agraph performance considerations
	Agraph use of server resources
	Recommendations for higher throughput with an Agraph
	About the Agraph in --fork mode
	Identifying the Agraphs to Dgraphs ratio
	Identifying performance problems in Agraph deployments
	Testing Agraph network problems with Eneperf
	Determining whether the Agraph CPU is saturated

	Identifying problems with resource usage by the application
	Coding practices for the front-end application
	Web application ephemeral port contention

	Recommendations for identifying network problems
	Troubleshooting connection errors

	Next steps

	Dgraph and Agraph Analysis and Tuning
	Feature performance overview
	Endeca record configuration
	Record select
	Aggregated records

	Dimensions and dimension values
	Hidden dimensions
	Dimensions and dimension values with high record coverage
	Flat dimension hierarchy
	Displaying multiselect dimensions
	Multi-assign dimensions
	Displaying refinement dimension values
	Dynamic statistics on dimension values
	Aggregated refinement counts
	Dynamic refinement ranking and performance
	Disabled refinements
	Displaying dimension value properties
	Collapsible dimension values
	Mapping source properties
	Indexing all properties with Dgidx

	Record sorting and filtering
	Sorting records by dimension or property
	Geospatial sorting and filtering
	Range filters
	Record filters
	Optimizing URL record filters that use complex logic

	EQL expressions and Record Relationship Navigation
	When to use EQL-based filters vs. other filter types
	Performance impact of EQL-based filters
	Performance impact of RRN
	Tips for troubleshooting EQL filters
	Typical causes of EQL filter errors

	Snippeting
	Spelling auto-correction and Did You Mean
	Spelling auto-correction
	Did You Mean

	Stemming and thesaurus
	Guidelines for thesaurus development

	Record, phrase, and dimension search
	Record search
	Boolean search
	Phrase search
	Wildcard search
	Wildcard search with punctuation and performance
	Preventing expensive wildcard searches
	Wildcard approximation

	Dimension search

	Precedence rules
	About precedence rules

	Relevance ranking
	Minimizing the performance impact of relevance ranking

	Dynamic business rules
	Agraph performance considerations

	Analytics performance considerations
	Analytics and the Agraph performance considerations

	The MDEX Engine Request Log
	About the MDEX Engine request log
	Request log file format
	Extracting information from request logs
	Request log rolling

	The MDEX Engine Parameter Listing
	Understanding the URL parameter mapping
	Mappings between request log and UrlENEQuery URL parameters
	List of request log parameters
	Example: interpreting error log messages

	Description of query types
	agreq
	allbins
	allgroups
	analytics
	attrs
	autoforce
	autophrase
	autophrasedwim
	compound
	dym
	filter
	format
	group
	groupby
	id
	ignore
	irversion
	keyprops
	lang
	log
	merchdebug
	merchpreviewtime
	merchrulefilter
	model
	nbins
	nbulkbins
	node
	num
	offset
	op
	opts
	pred
	pretendtime
	profiles
	rank
	refinement
	relrank
	select
	sort
	structured
	terms

	The Eneperf Tool
	About Eneperf
	Using Eneperf
	Required settings
	Host and port settings for running Eneperf locally or remotely
	Log file settings suitable for Eneperf input
	About the number of connections and iterations
	Example: Selecting the number of connections

	Optional settings
	About generating incremental statistics
	About setting the number of queries sent to the Dgraph

	Example of Eneperf output
	About the format of logs for use with Eneperf
	The Request Log Parser
	Recommendations for generating a representative log for Eneperf
	Running Eneperf in two-stream mode: regular logs and logs with updates
	Converting an MDEX Engine request log file for Eneperf
	Performance testing .NET 2.0 applications that contain long or complex queries
	Creating a log file by hand using substitute search terms

	Debugging Eneperf

	MDEX Engine Statistics and Auditing
	About the MDEX Engine Statistics page
	Viewing the MDEX Engine Statistics page
	Sections of the MDEX Engine Statistics page
	The Performance Summary tab
	The General Information tab
	The Index Preparation tab
	The Cache tab
	The Details tab

	About the Agraph Statistics page
	About the Endeca MDEX Engine Auditing page
	Viewing the MDEX Engine Auditing page
	Audit persistence file details

	Sections of the MDEX Engine Auditing page
	The Audit Stats tab
	The General Information tab

	Useful Third-Party Tools
	Cross-platform tools
	Solaris and Linux tools
	Solaris-specific tools
	Linux-specific tools
	Windows tools

	Tuning the Network Performance
	Tuning network performance on Windows
	Tuning network performance on Solaris
	Configuring the FIN_WAIT_2 timeout interval
	Configuring FIN_WAIT_2 timeout on Linux
	Configuring FIN_WAIT_2 timeout on Solaris
	Configuring FIN_WAIT_2 timeout on Windows

	Index

