Endeca® MDEX Engine

Web Services and XQuery Developer's Guide

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 9
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 9
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 9
Conventions USEd N thiS QUIE........ooiiuiiiii et e st e e s e e e e s aanneees 9
10e]] e=Toi 1] o (o @ = 1ol (IS U] o] oo TSP PP PTPRPP P 10
Chapter 1: INtrodUCTHION..........coiiiiii et e e 11
Overview of Web services and XQuUery for ENAECA..........uvvieeeiiiiiiiiiiiiiiec e 11
How the pieces of Web services and XQuery for Endeca work together...........cccoociiiniiiiinnnenn, 12
Using XQuery wWith the MDEX ENQINE.......cciiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e aaannes 13
RTAY YA T V1= Y27 EEERRR 14
Impact on Endeca application deVeIOPMENT..........ciiiiiiiii et e e sbeeee e e 15
Obtaining more information about XQUETY........coiiuiiiiiiiiiiei et e e e eb e eee e 16
Obtaining more information about WED SEIVICES........uuuiiiiiiiee e e e e e e e e e e eee s 16
About this release of Web services and XQuery for ENJECA..........c.uueiiiiiiiiiiiiiiiiiee e 17
Changes SINCE the B.1.2 TEIEASE........coii ittt e e e e e e bbb eeeaaaaeeeas 17
What's NOt iN thiS FEIEASE........viii e 17
Performance expectations for thiS relEaSse. ... 18
About the examples used iN thiS QUIAE........ooi i 18
About connecting Web browsers to your MDEX ENQINE.........uuiiiiiiieiiiiiiiiieieeecee e sniree e e e e e e e e e 19
Chapter 2: Getting Started withWeb Services and XQuery for Endeca.21
Dgraph flags that CONrol XQUETY USE......coiuuiiiieiiiiiiie ittt ettt e e et a e s abba e e e s snnnneee s 21
Setting up your XQuery for ENdeca dir€CLONY...........uuiiiiiiiiiiee et 22
Determining file location in Module IMPOIt............uviiiiiiii e ea e e e 22
(BT o] o 1= g ol =T o NI O SOTPPP PP 22
Performance expectations fOr WED SEIVICES.u i it e e e e e e 23
Exposing XQuery main modules as WED SEIVICES..........coooiiiiiiiiiiiiiee e a e 23
Web services and XQuery for ENdeca €XamPIe............ueiiiiiiiiiiiiiiiiiie ettt e e 24
An example XQUErY Main MOUAUIE.oi ittt e e e e e e e et e e e e e e e e e e e e e aneneeneeeeas 24
Example request and reSPoNSE DOGIES..........ccoiiiiiiiiiiiiiiiec e e e e e e e e e e e e e e e e e ennaes 27
USING the MDEX WED SEIVICE.coiiiiiiiiie ittt e e st e e e s sanbaeee s 27
ADOUL the MDEX WED SEIVICE......utieiiiiiiiie ettt et e e e e e e s et e e e e e e e e e e e e e e nnnbeeeeeeas 27
Inputs and outputs of the MDEX WED SEIVICEcc.uuiiiiiiiiiiie et 28
INVOKING the MDEX WED SEIVICE......ciiiiiiiieiiiii ettt st 31
About the MAEX. WS FIlE.......cc et e e e e e e e e e e ne e e ee s 33
REQUESHING the WSDLo...eoiiiiiiiei ittt e e e e e e e s e e e e e e eaeeeeesaesanbbaaaeeeeaeaeeesesannnnnns 33
Namespaces used by the MDEX WED SEIVICE.........uuiiiiiiiiiiiee ettt 33
Supported binding generators for the MDEX WED SErVICe........ccouiiiiiiiiiiiiiiiie e 33
Exception handling in the MDEX WED SEIVICE...........uuuiiiiiiiie e e e 34
Returning non-MAX XML in the MDEX WED SEIVICE........cuuuiiiiiiiiiiie et 38
Using the exquery command-liNe tOO0...........couuiiiiiiiiii e e e e e e e 38
Application debugging With EXQUETY........coii i e e e e e e e s e s s eee e 39
o [UT=T T 7= To [P UPP PR PRPPPPRN 39
Exquery access to environment vVariables. ... 39
Chapter 3: Web Services and XQuery Components and Features......41
Implementation-defined behavior in XQuery for ENAECA........cccooiiiiiiiiiiiiiicceeeee e 41
SALIC TYPE CHECKING. ... eeeiee ettt e sttt e e e et et e e e e bt e e e e e e anbbe e e e e enbees 41
Troubleshooting StatiC tyPe SYSIEIM EITOIS.......iii ittt et e et e e e s abreeeeeaae 43
Lo [Tt T 1= 1 =Y/ o SRR 44
FRIEITON() DENAVION.....ciiiiiee et e ettt e e e s et e e e s sbbe e e e e s anbaeeeeeane 44
TNIACE() DENAVIONci ittt e e e st e e e s s bb e e e e s anbneeeeeaae 45
LA =2 0] = o=) I =] 1 = Y7 o SRR 45
XS:integer PreCiSion AeTAIIS.ooi i e e e e 46
xs:decimal PreciSioN AeTAIS..........coi i e e 46

D o T [T o 1o 1T 11 = o] o PSSO 46

System resSponSse 10 INTEJEN OVEITIOW.uiiii i 46
Default ordering mode for an emMPLy SEQUENCE.uuuiiiiiiiiee ettt e e e e e e 46
Treatment Of eXternal fUNCHONS.ooiiii e 46
TreatMENT OF OPLIONS. ...ttt e e ekt e e e e st et e e e s et be e e e e e abbe e e e e s anbneeeeeane 46
Treatment of extra digitS iN NUMETIC OPEIAtIONS.........iiiiiiiiiiiiiie e 46
TreatMeNt Of CONALION.ccuiiiiiii e sn e 46
Treatment of illegal Characters iN XML...........oiiiiiiiiii e e e a7
Casting StriNGS t0 XSIAECIMALccoiiiiiiiiiie e e e e e e e e e e e bbb e e eeaaee e s a7
XQUETY trY/CALCN @XPIESSIONS. ..eeiiiiiiie e e i ittt e e e e e e e s e e r e e aee e e s s s s a et ae e e ereeaeeeeasannstntanneereeaaeans 47
Optimizations and error message detalilS...........oooiueiiiiiiii e a7
TipS fOr OPLIMIZING XQUEIY ...ttt e ettt et e e e e e e e s b e ettt e e e e e e e e e s s bbb bbbt e e e e e aaeeeaeaannbnbrneeees 48
Impact of optimizations in the Endeca XQUEry evaluator.............cccccuiriiriiieieeeeee s cssririreeer e e e e e e e 49
Treatment of unused variables in et StAtEMENTS.........ooouiiiiii e 50
Error MeSSAge eLAIIS.cooi i a e e e e e e e e e aaaae 50
ADOUL TUNCTIONS ...ttt e st e s e st e s n et e s n et e s em e e e mr e e e ne e e nnne e e nnne e e nnnees 50
2 L0 T (1] od 1T P PEEPPRR 51
EXIEINAI TUNCHIONS.eeiiieit ittt ettt e et e et e e e s st e e s s n e e e s nnnnneee s 51
User-defined fUNCHIONS.........uui et sne e e s e e nnneenn 59
P o Jo 101 B o] = 1o 1= TP PP OPP PP PPPPPPPN 59
PragIMa MAMESPACE. ...ttt e e e e e e e e e e e e ettt et ee et e et aebe bbb bbb ea e s e e e e e e e eeeeaeaeeeeeeeeennnnes 59
=T o B =] 0T o |V g =T o 1o Y o - OSSR 60
LT =T 40T Y oL (o 1Y/ o1 O PP PP PPPPRP 60
LT oM = ST 1 1011 o TP TP T PR PPPPPPPPPPPP 60
L= 1110 - SRR 61
Working with Web services in the MDEX ENQINE...........uiiiiiiiiiiaiiiiie ettt ee e 62
THE HTTP URL FOIMAL......eeiiiiitieiie ittt e st e st e e s e e e s an e e e e s nanneeeeeaae 62
Web service request and reSPONSE NEAUEIS........uuuiiiiiiiie e e e e e 63
WeD SErvice Xt @NCOMINGuviiiiiiiiiiii ettt e e et e e e e et e e e e s abbe e e e e s sabneeeeeaae 63
LT AS 10] BT o] o To] & F T TP PP PPPPPPPPPP 64
Y o To 10 =0 [0 =) |5 O 67
Coordinating logging details for Web Services inVOCatioNS.ocuuvieeiiiiiieiiniiee e 67
[o] oo o L= TN 11 1 Vo TSP RPN 67
Chapter 4: About the MDEX API through XQuery.............ccvvvviiiieeeeennns 71
MDEX API through XQUEIY ELAIIS........cccoiiiiiiiiieiiie et e e e e e e e e e e e s e st arraeaeeeae s 71
MDEX API through XQUEery Naming SCREIME.........uuiiiiiiiiiii et nanee s 71
MDEX API through XQuUEry SChemMa lI0CALION.eeiiiiiiiaiiiiiiie et e e e e e e 72
ADOUL the INtEINAl NAMESPACE........iiie ettt e et e e e e s e e s e e et aaaeeesssssnstatrnerreeaaeeeesannnnns 73
Understanding error messages in the MDEX API through XQUETY.........coiiuiiiiiiiiiiiiieiiieee e 73
ADOUL MABX TUNCHIONS. ... eee ittt e ettt e e e et e e e st b e e e e s st e e e e e e s anb e et e e s abne e e e e s anrnneeeeanns 73
About declaring and using MAdeX fUNCHIONS............uuiiiiiiiiee e a e 74
MAEX TUNCHION NAMESPACE......ceiutiiiieiiiie ittt ettt ettt e ekt e e e e s bbb et e e s aabb et e e e s sbee e e e s anbbneeeesannnneeeas 74
mdex:add-Navigation-AESCHPLOIS().......uuuuueeetiriaeeeie ittt e e e e e e e e e e et e e aaeeeasaaanbnbbeseeeeaaaeeaeaaaanns 74
mdex:aggregate-record-detailS-qQUEIY().... . it ee e e e e e e e eaaae e e e 75
mdex:compound-dimension-SEArCN-QUEIY()........uuueiiurriieiiiiiite ettt e e 75
MAexX:dimenSioN-SEAICN-GUEIY().......ci it e ettt e e e e e e e ettt e e e e e e e e e e e e s bbbt eeaeeeeaaaaaeeaan 76
mdex:dimension-value-id-from-path(dimension-value-path)...............coccciiiiiiiii e 77
MAEXMELAAATA-GUEIY (). eveeeeeeitteiee ettt ettt ettt e e s e bbbt e e s bbbt e e e aabbb e e e e e anbbe e e e e annneeeas 78
MAEX NAVIGALION-CUETY ()1t teeteteeeeeeeeiietttt ettt e e e e e e et s ettt ettt e e e e e e e e s e aaabbebeeeeeaaaeeeaesaanbnbbebeeeeaaaaaesaesanns 78
aaTo Loy (=Y oto o Bo (=] ez U1 ST U 1T () U EEEPRRR 79
MDEX API through XQUETY data fYPES.uueiiiieiiiiiiee ittt ettt sttt e s e e e st e e e s annneee s 80
AdJUSTMENTTYPE QATA Y P ittt e e e e e ettt e e e e e e e e s e aaa b b et et e e e e aaee e s e e s nnbnbeeeeeeas 80
PaXe o] (=T I 0] RL=Tolo] £ I o1 = TR 4 o = TSRS 80
AggregateRecordDetailSAPPliedFilters data tyPe........ooieiiieiiiiiiee e 81
AggregateRecordDetailSQUErY data tYPe......c.uueeiiiiiiiiie e a e 81
AggregateRecordDetailSRESUIt data tyPe........c.uuviiiiiiiiie e a e 82
AJOregatioNKey ata TYPE.uiiiie ittt e ettt e e s bt e e e s aa b bt e e s abbe e e e e s abreeeeeane 82
AQQregatioNKEYLISt ata LY PE. ettt ettt e e e e e e e st e e e e e e e e e e e e e e nnbnbreeeeeas 82
AlternativePhrasingMOode data tYPe......ceeeeeiiiiiiiiiiiieie e e e e e e s e e e e e e e e e s e s snenrrneeeees 82
ANAIYHCSRESUIL AALA TYPE...c ettt e e et e e e s aa b e e e e abbe e e e e s anbneeeeeaaes 83
AnalyticsStatementRESUIL dAta tYPE......ooi it e e e e e ee e 83
AttributeDIMeNSIONValue data tYPE......uviiee e it e e e e s e r e e e e e e e s e e eee s 84
ATIIDULELIST LA 1Y ettt e e e st e e e s aa b b e e e e s abbe e e e e s anbaeeeeeane 84

iv Endeca® MDEX Engine

Contents

P o 1U] (=11 =1 = Vo F= U= W - L= U £ oSO 84
AttributeMetadataliSt data TYPE......oiiuriiiie ittt e et e e et e e e s b e e e e 84
BetWEENFIIEr JALA TYPB. .. ci ittt e et e e e e e e e s bbb e e e e e e e e e e e e e e e aannnes 85
BUSINESSRUIE AAtA 1YPB....eiiiieiei ettt e e e e e e e e s e s e e e e eaeeeeesannnnstaaneeeeaaaeeesesannnnnes 85
BUSINESSRUIELIST GALA TYPE....c ittt ettt e e e e skt e e s abba e e e e s annnneee s 86
BusinessRUIEPreviewTime data tYPe..... ..o e e 86
BUSINESSRUIESRESUIt dAt@ TYPe.. .. et e e e e e e s e e e e e e e e e e e s ennnnnes 86
CompoundDIimensioNSEarch data tYPE.......cocoiiiiiiiei e 86
CompoundDimensionSearchAppliedFilters data typPe..........uuueieiiiieiiiiiie e 87
CompoundDimensionSearchQUETY data tYPE.....cuieeeeiiiiiciiiiieeiee e e e s e e e e e e e s rrrreaeeeee s 87
CompoundDimensionSearchReSUIt data tYPE.......ccooiiiiiieiiiiiee e 88
CompoundDimensioNValueLiSt data tYPe........uu ittt a e e 88
DT a1 0TS 0T e F= = Y o L= USSR 88
DIMENSIONLIST JAA TYPB... . eeeieiiiiiiii ettt ettt ettt e e s et e e s kbt e e s abbn e e e s annnneeeas 89
DIMeNSIONSEArCh dat@ tYPe......cooo ittt e e e e e e et e e e e e e e e e e e e aaanaes 89
DimensionSearchQUETNY ata tYPe.......uuuuiiiiii et e s s s e e e e e e e e e s e s reereeaeeesesennnnnes 89
DimensionSearchAppliedFilters data tyPe.........cooi i 90
DIimensionSearchRESUIL data LYPe......... it e e e e e e e e e 91
DIMENSIONSTIALE JALA 1Y PO . ieiie i et it e e e e e e e e s e e s s e e e e e eeeeeeesaannnstraaeeeraeaeeesesannnnnns 91
DImenSioNSTAtELIST HATA TYPE.......eeiie ittt et e e s abb e e s as 91
DIMENSIONVAIUE AA TYPO.....cce ittt e e e e e e e e e s bbb r e e e e e e e e e e e e e e aannnes 92
DIMeNSIioNValueld data tYPe........oi et e e e e e e e s e e e e e e e e e s e s e e s nn e e e eeaeeeeeeannnnne 92
DImensionValueldLiSt data tYPe.......coiuueiiieiiiiii ettt e e aannee s 92
DIMeNSIONValUELISt JAtA YD, ...ttt e e e e e e e e e e s bbb e e e e e e e e e e e e e e aaanaes 93
DImMensionValueState data tYPe.......c..uuiiiiiiiiri e e e e e e e s s e e e e e e e e s e s e s s nr e arrerraaaeeesesannnnnes 93
DimensionValueStateLiSt data TYPe.........coii it 93
DimensionValueStratum data@ TYPe..... ... e ittt r e e e e e e e e e e anaes 93
DimensionValueStratumLiSt data tYPe......uuiiieeiieiiiiiiieir s sr e e e e e s e s s e e e e e e e e e e s ennnnnes 94
DisabledRefinementsSConfig data tYPe.......coiuuiiiiiiiiiiie e 94
(1= To ol o [SINe F= 1 r= 1Y o[- TP OPPPPTPPPPPRN 94
(T oo G T I aT= T LT o F= L= U Y o1 OO ERER 95
GreaterThanOrEqUAalFIIter data TYPe.........uuiii i e 95
IncludedRecOrdALtribULELISt data tYPE......ciiii it e e e 95
KeyWordRedire€CtLISt data TYP.....cccueeieiieiiieie e e e e s e e e e e e e e e s e e e e e e e e s e s e e nnne e aeeeereaaeeesesannnnnes 96
LeSSTNANFIITET QALA TYP. .. eeieiiiiiiie ettt ettt e et e e e s kbt e e s aabbn et e e s annnneeeas 96
LessThanOrEqUAIFIIEr ata TYPe.......uuu ettt e e e r e e e e e e e e e e sannes 96
MatchingCompoundDimensionSRESUIt data tyPe.......uuuriiiiiiieeeii i e e e e e 97
MatchingDIimenSIiONSRESUIL dAta tYPE......coiiiiiiiiiiiiii e 97
MatchingDimensionValueList data tYPe........cooiiiiiiiiiiiiiiie e e e e e e 97
MetadataReSUIt data tYPEcceeiiiiieieeie e e e e e e e e e e e e e e e e s e s e e e e e e e e aeeeeenannnne 98
RO AST=] =T oa e F= L= 1Y 01T TP PP PP P PPRPPPP 98
NavigatioNAPPIIEAFIItErs data LYPE........u et e e r e e e e e e e e e e ananes 98
NavigatioNQUETY dat@ tYP€....cccei it e e e e e e e e e e e e s s s e e e e e eaeeeeesaannnsbraaeeeraaaeeesesannnnnns 98
NaVIgatioNRESUIT dALtA TYPE......ci it e et et e e e e b e e e e e annbeas 100
NavigationStateSRESUIL AALA LYPE.......uuiiieiieiee it e e e e e e e e e e e e aaneees 100
N o)] S a] 018 YAS (o e F= = 1Y/ o 1= TSRS 100
PropertyLiSt QatA TYPE. ... ueeiiieiii ittt e et e e et e e s et et e e e e b r e e e e e annneas 100
o] ol=T Yo b= - T 1Y o1 TP PPPPUPTPPN 101
= Lo L= 1 (=T F= L= U Y o1 101
RANGEFIIEILIST HATA 1Y eeeieiiiieie ittt e e e et bt e e e e e e e e e e annreas 101
[yCTeTo] (o Io Fo1 = N 1Y/ oSO PPPPUPTPP 102
RecordDetailsSAPPlIedFIlters data tyPe......ueeeeci i i e e e e e e e e e e e e ennnnes 102
RecordDetailSQUETY data TYP......uii ittt e st e e e e e e e annneas 102
RecordDetailSRESUIL GatA TYPE.........eiiiiiiiiieee ettt e e e e e e e e e e e e e e e e e e e aneees 102
= ToT] (o LIS fo F= L= U Y o1 RSP ERERRR 103
RecordsPerAggregateReCcOrd data tYPe.......o.uuuiiie ittt 103
RECOrdSRESUIL AALA TYPO. .. i iii ittt et e e e e e e s e e e e e e e e e e e e e annnnees 103
RefinementConfig data tYPe.......ccceeiiiiiiiii e e e e e e s a e e e e e e e e nnann 104
RefINEMENTLIST AALA 1Y .. . eiieiiiiiie ettt s bt e e s et et e e e aab e e e e e e annneas 104
RefinementConfigLiSt dat@ Ty Pe........uui et e e e e e e e e neees 105
RelevanceRanKiNg data tyPe.......cccuuuuiiiiiiiiee e e e s s r e e e e e e e s s s e e e e e aeeeeeeannnne 105
RESUIDIMENSION GALA TYPE....eeiiiiiiiiee ittt e e s e aab et e e s e nb e e e e e anbe e e e e e annneas 106
ReSUItDIMENSIONLIST GALA LY Pueeeiiiiiiiiiee ettt e e et e e e e e e st e et e e e e e e e e e e aannnnes 106
Y= = L T = = 1Y/ o1 SO 106

Y=o el VAo [[U RS 1 =T e F= L= U Y o LSO 107

SearchAdjusStMENTLIST dAta TYPE........eeii it e et e e e e nnbeeeeeeaaes 107
SEAICHKEY TAA Y. .. ittt ettt e e e e e e e s e bbb bt e e e e e e e e e e e e e aannbebeeeeeeas 107
Y=o Lo LY T o = U= U 1Y o= SO 108
SEANCNLIST LA 1Y . eeieeeiitii ettt ettt e e ettt e e e s et b bt e e e s bbb e e e e s aabb et e e e sabbeeeeeeaae 108
Y=o e 1LY [o o [o o = N £ L= TP T TP TSR PPPPPP 108
Y=o Lol TR T=T o To T e £ = T 4 o = ST 109
SearChREPOIMLIST GALA TYPE. ... eiieiitiiiee ettt e e ettt e e e bb e e e e e s st b e e e e e sanbeeeeeeaaes 109
Y lo] o[(I IS Ao F= L= T 1 o[T PP TU P TR PTPPPRPP 110
Yo 0 -1 = T Y o1 SO 110
SOMDITECHION TALA TYPE... e iii ittt ettt e e e sttt e e e s at b bt e e e s bbb e e e e s anbeeeeeeaanbeeeeeeane 110
SOIMKEYLIST HALA 1Y, ettt ettt e e e e oottt et e e e e e e e s e e s abb bbbttt e e e e e e e e e s aaaannbebeeeeeeas 110
Yo I ES] Ao = U= 1Y/ 01 SO 111
USEIProfileLiSt data TYP@. .. . eiieiiiiiii ittt e st bt e e e e e e e e e 111
WordInterpretationLiSt data TYPE.......couii it a e 111
MDEX API through XQUErY @XamPIES.......cccciiiiiiiiiiiiiiieee e et e e e e e e e s s s er e e e e e e e e e s e s e nnnrnreeneeees 111
DIimension SEarch qUErY EXAMIPIE.uu ittt e e e e e e e e 111
Build display record OULPUL @XamMIPIE.......ccoii it e e e e e e e 113
Build breadcrumbs OUtPUL @XamMIPIE.......ueiiieie e e e e e e e e e e e e e e e e e e nnnnes 115
NaVIgation QUENY EXBIMPIE. ..ottt ettt e e s et e e s e et b e e e e e anb e e e e e e annreas 116
ANBIYLICS EXAMPIE. ...ttt e oottt e et e e e e e e s e e bbb e e e e et e e e e e e e e e e nnbebreeeeeas 122
Chapter 5: Early Access features............cceivieiiieiiiii e, 125
Early Access CONteNnt iN thiS FEIEASE.........cccvi it e e e e e e e s e rereeeees 125
DIMENSION VAIUE SPECS.eitieiiiiiiitee ittt ettt ettt e sttt e e ekt e e s ek bt e e e e e a bbbt e e e e st b et e e s annbb e e e e e anbbneeeeeannreas 125
Auto-generating dimensSioN VAIUE SPECS........uuuuiiiiiiiiieee ettt e e e e e e e e e anb e eeeeeeas 126
Dimension value SPEC lIMItAtIONS.uuiiiiiieee e e e e e e s reraaaeeesseannnnes 128
Conversion functions for dimensioN VAlUE SPECS.........uuviiiiiiiiiieee ittt e ee e 129
(D= 1 B0 oo F= 1= Y PP PURUTPOP 132
Using Web services to update your Endeca appliCation............cccccvviiiiiiiiiee i ccciiieeeee e e 132
UPAAtING FUNCLIONS.eeeieiiieiee ettt ettt e e et b e e e s s ab b et e e e e et b e e e e e annbne e e e e ennbeas 133
PaYe ol 1aTo Bol g U ol =111 gTo B= W =T oo] (o FR PP EUT TR PPPR 138
D=1 [T 1TV T T (= o] (o PP EERRRR 139
Adding @ dIMENSION VAIUE.uiiiiiiiiiii ettt e e s e e e s e e e s annreeee s 139
Error handling in updating Web SErvVICES.........oooi i 140
Limitations to updating Web services in this Early ACCESS release.......ccccceeevviiiiiciiiiieiiiieee e, 141
fn:put() and persiStent dOCUMENT STOTAGE.uueiie ittt et e et e e et e e e st b e e e e asabreeeeeaaes 141
Chapter 6: Features Enabled with XQuery.......c...cccooiiiiiiiiiicnennnn. 143
Using the MAX API for disabled refilnements reQUESTESoooiuiiiiiiiiiiiie e 143
Retrieving refinement counts for records that match descCriptors.........ccccceeeveiiiiiiiiieeeecee e, 145
Issuing dimension Value DOOSE FEQUESES.ciiiiiiiiiie ittt e e e e anneeee s 147

Vi Endeca® MDEX Engine

Copyright and Disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement. The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.
EntropySoft ECI Copyright © 2005 EntropySoft SAS. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, European Patent EP1459206B1, and other patents pending.

Endeca Web Services and XQuery Developer's Guide « December 2010 ¢ Revision A

Version 6.1.4

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide contains general information about the Web services and XQuery for Endeca implementation,
as well as procedures for developers to get started working with the software.

Who should use this guide

This book is intended for Endeca application developers interested in adding Web services and XQuery
functionality to their Endeca applications.

It assumes knowledge of Web services, the XQuery programming language, and Endeca application
development.

Conventions used in this guide

This guide uses the following typographical conventions:

10 | Preface

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

https://support.oracle.com

Chapter 1
Introduction

This section provides overview information about Web services and XQuery for Endeca, and explains
the scope of this release.

Overview of Web services and XQuery for Endeca

Web services and XQuery for Endeca provides Endeca application developers with a flexible, extensible,
and standards-compliant query processing solution.

You can use Web services and XQuery for Endeca alongside the Endeca Presentation API to extend
the functionality of your Endeca application. You can also write an entire application without using the
binary Presentation APIs at all, as you would want to do if your site were built in a language environment
other than Java or .NET.

The XQuery for Endeca query layer allows an unprecedented level of customization of the core MDEX
Engine. By embedding a complete programmatic environment into the core engine, Endeca has made
it possible for application developers to customize the behavior of and interface to the MDEX Engine,
and share their solutions across platforms and application development environments. By encoding
certain MDEX-specific logic into custom XQuery modules, applications can be made more flexible and
easier to maintain and support.

As the diagram below illustrates, the XQuery for Endeca solution consists of an HTTP server and an
XQuery evaluator embedded in the MDEX Engine framework. The XQuery processing module can
receive a Web service request (such as a SOAP request) over HTTP and process it using XQuery.
The XQuery evaluator interacts with the data store through a set of Endeca-specific functions that
have access to the MDEX data. That is, the MDEX API through XQuery (or MAX) exposes the query
API to the XQuery evaluator. The data returned is represented as XML and can therefore be manipulated
quite readily in the XQuery execution engine.

Introduction | Overview of Web services and XQuery for Endeca

Presentation APls Client (could be Java,

(.MET and Java) MNET, Ruby...)
GET ' :
{binary) i H GET/POST

H i http:/iserver: 1234/ ws/
: H myservice
HTTP(s)
i Web |
Traditional | Services
i Query :
{Processing LRl i
g MAX i

‘- MDEX Core <

When an HTTP request is received, the URL path is used to select an XQuery main module for
evaluation. XQuery functions provide access to features of the HTTP request, including the POST
body, and to navigation and other features of the MDEX Engine. The result of the XQuery evaluation
is then returned as the HTTP response.

How the pieces of Web services and XQuery for Endeca work together

For Endeca application developers, XQuery is an additional way to write queries to the MDEX Engine
and to extend MDEX Engine functionality.

The XQuery developer can write code in any XQuery development editor (including a regular text
editor). The developer puts his or her code into an XQuery main module, which is analogous to a
stored procedure in the RDBMS world. Each main module located in the directory specified in the
--xquery_path flag is automatically enabled as a Web service. For example, the XQuery module
myquery.xq is exposed as the URL http://<mdex_host>:<port>/ws/myquery.

The MDEX Engine handles the HTTP part of the Web service, leaving the XQuery developer free to
implement the request and response structure via any standard protocol such as SOAP, JSON, or
XML-RPC. The developer accesses the HTTP request (the URL, the POST body, and so on) by calling
the XQuery HTTP library. The Web service response is the XML result of the main module evaluation.
Typically, the developer makes one or more calls to the MDEX library per Web services invocation,
but this is not a requirement.

The diagram below illustrates query flow in Web services mode:

MAX Call or Other

Core Library
1. WS Request
. — 2. ———»
Client XQuery |3 o— MDI+EX
4. WS Response Code Engine
¢ —

In this scenario, the client first sends the request via a Web services protocol like SOAP to the MDEX
Engine. The request is dispatched to the body of an XQuery main module, which calls the MDEX API
through XQuery (or MAX) some number of times to help it service the request. The final results of the
main module are packaged as a Web service response (such as a SOAP envelope) and returned to
the issuing client. The XQuery main module in the MDEX Engine can pre- and post-process application

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Introduction | Overview of Web services and XQuery for Endeca 13

requests, and a single Web service call can send multiple requests to the MDEX Engine without
requiring multiple round trips from the client to the MDEX Engine.

The following code extract walks through the same scenario, with highlights around the portions of
the code that relate to each step in the diagram. In the interest of brevity, certain declarations have
been omitted here. For the full version of this XQuery main module, see the section "Getting Started
with Web Services and XQuery for Endeca."

{: MODULE IMPORTS REMOVED HEEE :)

{: NAMESPACE DECLARATIONS REMOVED HEEE :)

{: SOAFP FAULT SECTION EEMOVED HERE :)

{: FUNCTION TO GENERATE WSDL REMOVED HERE :)

{: get the request :)
et Sbodv-str = http:get-body{}]
return
if {fn:exist={http:get—gquery-paramster"WSDL" 1)) then
{: zaller used "WSDL request format —— =end WSDL :)
local igeneratel=dl ()}
eglse 1f (fn:empty($body-=tr)) then
{: no regquest body —— =end SCAF fault)
local :generateFaul tResponse("Enpty body in SOAFP request")

el=se
{: reach into the S0AP request body @)
let sbody = eutil:parse{in:exactly-one{fbody—=tr)) =zoap:Envelope-zoap:Body
{: pull out the input mes=zage :
let Sguery = $body-ex:MatchWord
return

if {fin:count{fguery) ne 1) then
{: s=hould be exactly one input mnessages ;)
local igenerateFaul tEesponse{ fquery)

=l==
{: =tart making a responz=e snvelope)

<=zoap:Envelope:
<=oap:Body>

{: =etup an MDEX API call to do the text =earch :)
let S=str = f{n:datai$guery-ex.word)
let Szl =
<mdata:Query:
<mdata:Searches:
<mdata:Search Key = "English":{fstrl}<-mdata:S=arch:
@ <<mdata:Searches:
<rmdata: Querv:

(. call MDEX AFPI .}

[let Sresult = mdex navigation—guery(scl)]
{: fi1ll in an output message ;)
return

<2 HatchCount »
<X count >

fn:datai$result-mdata:RecordsREesult-@TotalRecordCount)

¥
<-2x.count >
<<2x:MatchCount »

</=oap:Body:>
<~zoap:Envelope:

Using XQuery with the MDEX Engine

Starting with version 6.1, the MDEX Engine provides two ways for application developers to use
XQuery: custom Web services, and the MDEX Web service.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

14 Introduction | Why XQuery?

Creating custom Web services with the Advanced Query Module

XQuery developers can write their own XQuery main and library modules that extend MDEX Engine
functionality.

Developing a custom Web service allows you to write arbitrarily complex XQuery logic organized into
any number of library modules in addition to the main module. The modules are loaded and compiled
on Dgraph startup and ready to process Web service requests efficiently.

Typically, complex, performance-critical XQuery logic for an application in production will be implemented
as a custom Web service, as this makes it easier to manage complexity and obtains the best
performance. It also allows you to use the same XQuery logic from multiple application-tier applications.

Note: The creation of XQuery modules, aside from those provided with the MDEX distribution,
requires the purchase of the Advanced Query Module. Contact your Endeca representative for
details.

Using the MDEX Web service to access XQuery functionality

The MDEX Web service, which is included as part of this release, allows you to use XQuery with the
MDEX Engine without writing custom Web services.

The MDEX Web service is hot meant as a Web service replacement to the Presentation API, but rather
as a data service similar to something that a relational database management system might provide.
In an RDBMS scenario, SQL input transported via ODBC or JDBC returns tabular results. Similarly,
in an MDEX scenario, XQuery input transported via the MDEX Web service returns XML results.

For more details and examples of getting started with the MDEX Web service, see the section "Using
the MDEX Web service."

e . . .
~7 Note: In previous releases of version 6.0, the MDEX Web service was known as the Query
Web service.

Why XQuery?

XQuery is a programming language designed for processing XML and other semi-structured data.
Endeca has added an XQuery evaluator to the MDEX Engine for a number of reasons.

Principally, XQuery is a language designed to make it easy to manipulate XML fragments and other
structured and semi-structured data that can be represented as XML. It is more convenient to manipulate
XML (and therefore record results, dimension trees, and whatever else the MDEX Engine might return)
in XQuery than it would be to do so in SQL, Java, .NET, or Perl.

XQuery is also a W3C standard, with rigorously defined and tested semantics. This allows MDEX
developers to benefit from the body of practice surrounding XQuery. The XQuery language is extensible
via external functions, pragmas (implementation-specific language extension facilities), and library
modules.

In addition to the ease with which XQuery lets you manipulate XML, the benefits of XQuery include
the following:

« It is compatible with Web services.

« It allows business logic to be implemented in the MDEX Engine, without requiring application
modification.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Introduction | Impact on Endeca application development 15

« It supports code reuse between environments such as Java and .NET.

Exposing your custom XQuery main modules as Web services may also provide performance benefits.
It can save the cost of network transfer in application instances where multiple round trips to the MDEX
Engine are required. The data is handed to the XQuery runtime by the MDEX Engine by way of an
in-memory data structure, which is faster than marshaling results, sending them over the wire,
unmarshaling the results, and manipulating them in the client application. There may also be a caching
benefit in cases where a load balancer directs queries at random to numerous Dgraphs, because all
of the requests to the MDEX Engine from a single Web service call will execute in the same Dgraph.

Impact on Endeca application development

XQuery for Endeca provides application developers with a portable, standards-based query processing
solution. In addition, XQuery features are cross-platform and reusable, so application developers can
reuse their own work and share it with other developers.

With XQuery for Endeca, some application logic can be implemented in XQuery and executed within
the MDEX Engine. That means that application developers do not need to implement that functionality
in their application tier. (Exactly when it makes sense to move application logic into XQuery will depend
on the case. See the section below for advice in this regard.)

Application-tier developers do not interact with XQuery at the API level. Instead, they use a Web
service that accesses main modules written in XQuery in the MDEX Engine. This changes the way
you build Endeca applications, because instead of being limited to the MDEX Presentation APIs, you
define the API that makes sense for your application as a set of Web services.

Moving application logic into XQuery

The following guidance should help you decide what logic to move into XQuery and what to keep in
the application tier.

The following logic fits well within XQuery:

« Endeca-specific functionality, such as cascading search.

 Application logic used to compute a query from other information (such as deciding whether to
use a particular record filter, search interface, or type of sort).

« Query output that needs to be filtered down to the minimum amount needed for page rendering in
order to minimize the amount of network traffic. (Presentation APl queries tend to have large
responses.)

» Page views that need more than one query to populate them. If possible, those multiple queries
should be moved to the MDEX Engine behind a single Web service request.

* Application logic used to customize the behavior of the MDEX Engine (such as instructing the
MDEX Engine to automatically run a more general query if there are few results, or to have
breadcrumb removal implicitly select the parent).

« Application logic used to customize results (such as deciding whether to display or hide a dimension,
or render or hide a property).

« Code to reformat queries or results to better fit the needs of a particular application.

» Record filters used for security purposes.

The following logic should be kept in the application tier:

« User session management (such as authentication, bookmark management, and shopping cart
management).
« Ul rendering logic (such as determining which widgets to re-render).

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

16 Introduction | Obtaining more information about XQuery

« State information.
 Authorization logic.
« Integration with third-party systems (such as pulling supplemental data from a database).

Obtaining more information about XQuery

This document assumes that you already have a good working knowledge of XQuery. If you do not,
you may find the resources listed here helpful.

The W3C landing page for XQuery http://www.w3.org/XML/Query/ contains overview information as
well as a number of useful links to discussions and further reading. For information about general
XQuery syntax, consult the XQuery specification here: http://www.w3.org/TR/xquery/. For information
specifically about XQuery built-in XPath functions, consult the XQuery 1.0 and XPath 2.0 Functions
and Operations specification here: http://www.w3.0rg/TR/xpath_functions. For information about
XQuery update, consult the XQuery Update Facility 1.0 spec here:
http://www.w3.org/TR/xquery-update-10/.

Books on XQuery
The following books provide useful information about the XQuery language:
Brundage, Michael. XQuery: The XML Query Language. Boston: Addison-Wesley, 2004.

Katz, Howard, ed. XQuery from the Experts: A Guide to the W3C XML Query Language. Boston:
Addison-Wesley, 2004.

Walmsley, Priscilla: XQuery. Sebastopol, CA: O'Reilly Media, 2007.

Note: Some of these books were published before the XQuery specification, and so do not
exactly reflect the final XQuery language. The technical reports for XQuery published by the
W3C should be taken as the authoritative specifications.

XQuery on the Endeca Developer Network

More information about the XQuery for Endeca implementation is available on the Endeca Developer
Network (EDeN) at http://eden.endeca.com/wiki/display/feature/XQuery.

Obtaining more information about Web services

This document assumes that you already have a good working knowledge of Web services. If you do
not, you may find the resources listed here helpful.

« Skillbuilders' Introduction to Web Services

« w3schools' Web Services Tutorial

« Microsoft's ASP .NET Quick Start Tutorial

« Skillbuilders' Introduction to SOAP, WSDL, and UDDI
« w3schools' SOAP Tutorial

¢ w3schools' WSDL Tutorial

» Axis2 Java SOAP Library

« Axis2 Code Generator Tool

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://www.w3.org/XML/Query/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath_functions
http://www.w3.org/TR/xquery-update-10/
http://eden.endeca.com/wiki/display/feature/XQuery
http://www.skillbuilders.com/Tutorials-V2/ads-wrapper.cfm?content=Web_Services_Overview/Web_Services_Intro/Web_Services_Intro.cfm&title=Web%20Services%20Tutorial:%20Introduction%20to%20Web%20Services
http://www.w3schools.com/webservices/default.asp
http://quickstarts.asp.net/QuickStartv20/webservices/
http://www.skillbuilders.com/Tutorials-V2/ads-wrapper.cfm?content=Web_Services_Overview/Web_Services_Technologies_Used/Web_Services_Technologies_Used.cfm&title=Web%20Services%20Tutorial:%20Introduction%20to%20SOAP,%20WSDL%20and%20UDDI
http://www.w3schools.com/soap/default.asp
http://www.w3schools.com/WSDL/default.asp
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/tools/1_2/CodegenToolReference.html

Introduction | About this release of Web services and XQuery for Endeca 17

About this release of Web services and XQuery for Endeca

This section provides details about the release of Web services and XQuery for Endeca.

Changes since the 6.1.2 release

The following features have been added or modified since the version 6.1.2 release of Web services
and XQuery for Endeca.

For details on any of these features, see elsewhere in this guide. For complete information about
problems fixed in this release, as well as known issues, see the MDEX release notes.

Addition of language IDs to the MAX API

A Language Id element has been added to the navigation, dimension search, and compound dimension
search queries to allow per-query specification of the language to parse search terms in.

XQuery try/catch expression change

If exceptions are raised in a try block, any updates appended within that try block are removed from
the pending update list. This rollback is applied even if the exception is not caught.

MDEX Web service change

When you request the WSDL for the MDEX Web service, mdex?wsdl now pulls the Host header
directly from the HTTP request and uses the host and port information that it finds there.

Early Access features in this release

This release of Web services and XQuery for Endeca includes some features that are in Early Access
state. The interface of these features is likely to change, and they are not supported for production
use at this time. These features are documented in chapter 5 of this guide.

Data Update API for updating Web services

A Data Update API for updating Web services has been added. In this Early Access release, it is
possible to add, modify, or delete a record or add a dimension value.

Statistics related to updating Web services have been added to the MDEX Engine Statistics page.
Persistent document storage with fn:put()

Persistent storage of XML documents has been implemented as an Early Access feature, using the
updating XQuery function fn:put().

Introduction of the dimension value spec

The dimension value spec an Early Access feature in this release. When used, the dimension value
spec serves as a primary key for dimension values within a dimension.

Three utility functions have been added to allow for conversion between dimension value IDs and
dimension value specs.

A Dgidx flag called -—autogenerate-dval -specs enables the auto-generation of dimension value
specs in cases where it is not possible to assign dimension value specs directly.

What's not in this release

This section outlines features that are not part of this release of Web services and XQuery for Endeca.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

18 Introduction | About this release of Web services and XQuery for Endeca

Dgraph features not supported in the MDEX API through XQuery:

« The Agraph (Aggregated MDEX Engine).
« Clustering queries.

XQuery features not supported:

e Schema imports.

* Schema validation.

 Certain XQuery functions have not been implemented yet. A list can be found in the section "About
functions."

» fn:collection():the only collection available at this time is the mdex : //documents collection,
which is an Early Access feature in this release.

« Ability to bind to a context item in a main module, except in the case of the eutil :eval function.

« Ability to bind to external variables in a main module.

Performance expectations for this release
The performance of XQuery for Endeca has improved significantly in this release.

Nonetheless, when using Web services and XQuery for Endeca, keep in mind the following performance
expectations. The time XQuery takes to process a request is directly proportional to the amount of
data it needs to process and return. The Endeca XQuery evaluator is able to process data of the size
of a normal result set (containing records, refinements, and supplements) in a reasonable amount of
time (a few tens of operations per second on contemporary server hardware). Reducing the amount
of data processed and returned by XQuery will increase throughput; correspondingly, increasing the
amount of data processed and returned will reduce throughput.

Details on XQuery for Endeca performance limitations and tips can be found in the "XQuery Components
and Features" section of this guide.

About the examples used in this guide

This topic discusses the conventions used in examples in this guide and points you to additional
examples.

In addition to the special character used for hard line breaks in code examples, mentioned in the
Preface, placeholders in example code that need to be replaced by an actual name appear in angle
brackets. For example, <prefix>:<function-name> might be replaced by fn:string. The topic
"EBNF for the URL format" contains more information about formatting.

The function names in the examples used in this guide are sometimes qualified with the namespace
prefix fn and sometimes not. This makes no difference to the meaning or behavior of the function.
For example, the function fn:concat is the same as the function concat.

Downloading examples from the Endeca Developer Network

Many of the examples used in this guide, in a format suitable for copying, are available on the Endeca
Developer Network (EDeN) at http://eden.endeca.com/wiki/display/feature/XQuery. From there, you
can also download additional examples and more helpful information about Web services and XQuery
for Endeca.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://eden.endeca.com/wiki/display/feature/XQuery

Introduction | About connecting Web browsers to your MDEX Engine 19

About connecting Web browsers to your MDEX Engine

For security reasons, you should never allow user Web browsers to connect directly to your MDEX
Engine (although an administrator may choose to connect directly to the MDEX Engine using proper
precautions).

Non-administrator browsers should always connect to your application through an application server.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

Chapter 2

Getting Started with Web Services and
XQuery for Endeca

This section provides installation, setup, and workflow information to get you started on your first Web

services and XQuery for Endeca project.

Dgraph flags that control XQuery use

The following Dgraph flags control various aspects of XQuery for Endeca. Note that because the MDEX
Engine can now use features of Web services and the Presentation API at the same time, the --ws
flag used in version 6.0.1 has been deprecated.

Flag

--xquery_fndoc <option>

--xquery_path <directory>

Description

Optional. Specifies the handling of the fn:zdoc () function
within XQuery. The following three values are supported:

* none causes all calls to fn:doc () to fail.

 sandbox allows fn:doc(), butinterprets its argument
as a relative path within the xml subdirectory of the
XQuery service directory.

« open allows fn:doc() and interprets its argument as
a URL. At this time, fn:doc () with a setting of open
is not supported for use in production.

If this flag is not specified, it defaults to none.

Optional. The directory in which XQuery Web service
resources are located. XQuery main modules are loaded
from this directory. (Associated library modules are loaded
from the 1ib subdirectory of the directory specified here.)
If ——xquery_path is not specified, a user XQuery path
is not used, and user-supplied XQuery modules are not
loaded.

%
Note: You can specify the path multiple times
pointing to different folders, and the paths will be
searched in the order they are provided.

22 Getting Started with Web Services and XQuery for Endeca | Setting up your XQuery for Endeca directory

Setting up your XQuery for Endeca directory

When you start the MDEX Engine, built-in XQuery library modules are automatically loaded.

Application-specific XQuery modules are loaded from the directory you specifiy in --xquery_path.
The MDEX Engine creates a Web service for each file in the —-—xquery_path directory with an .xq
extension that contains an XQuery main module.

Application-specific library modules are loaded from files with an . xqg extension that are located in the
1ib subdirectory of the directory specified in —-xquery_path. If --xquery_fndoc is set to sandbox,
XML files can be loaded from an xml subdirectory of the directory specified in --xquery_path, and
can then be accessed using the fn:zdoc () built-in function.

b
Note: To suppress the automatic loading of XQuery modules at startup, use the Dgraph
--disable_web_services flag.

Determining file location in module import

When you import an XQuery library module, you specify the namespace on the import line. The Endeca
implementation of XQuery also requires the use of a file location hint in library module import.

In the Endeca XQuery implementation, modules are considered concrete files. Therefore, in addition
to the required namespace, location hints must be provided to import library module files for that
namespace. For example, the file typeahead . xq, downloadable from the Endeca Developer Network
at http://feden.endeca.com/wiki/display/feature/XQuery, contains the following import lines. As you can
see, a location hint consisting of the module name follows the namespace declarations.

import module namespace http = "http://www.endeca.com/XQuery/http/2008" at
"http.xq";

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

import module namespace eutil

at "eutil.xq";

"http://www.endeca.com/XQuery/eutil/2008"

import module namespace esoap = "http://www.endeca.com/XQuery/esoap/2008"
at "esoap.xq";
import module namespace typeahead-wsdl = "http://www.endeca.com/XQuery/ser-

vice/typeahead/wsdl1/2008" at 'typeahead-wsdl.xq";

Library module files are found by looking up the specified hame in the library search path. If
--xquery_path is specified, its 1ib subdirectory is included in the library search path.

Developer checklist

Before you begin writing a Web service main module, you need to decide which of the supported
protocols (such as SOAP or XML-RPC) your service will conform to.

Regardless of the protocol you choose, the code you write needs to meet the following requirements:

« It must use the http:* external functions to get the URL, any related parameters, or any POST
data and process these items as request data according to your choice of Web service protocol.
An example in SOAP would be unpacking a SOAP request.

« It must contain the actual functionality of your service, which may include one or more calls to the
MDEX API through XQuery.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://eden.endeca.com/wiki/display/feature/XQuery

Getting Started with Web Services and XQuery for Endeca | Performance expectations for Web services 23

« You must make the return value of your module be a valid response value according to your choice
of Web service protocol. For example, in SOAP, it would have to be a valid SOAP response.

Tools to support Web services and XQuery for Endeca development

You can write your XQuery main modules in any XQuery editor or text editor. In order to test your Web
services, you need a tool like Progress Software's Stylus Studio®, Eviware's soapUl, or Altova's
XMLSpy® that you can use to send requests and debug responses.

Performance expectations for Web services

The performance of Web services written in XQuery can vary considerably from service to service,
but it is possible to write a service that performs well.

For example, the Typeahead SOAP Web service (available for download on EDeN) can run at over
1000 requests/second. A full Navigation Web service, in which each request to XQuery contains at
least three underlying queries to the data in the MDEX Engine (that is to say, the one Web service
request results in three Presentation APl-equivalent requests), can run at over 150 requests/second.

The fact that the MDEX Engine is serving XML or SOAP, or doing extra processing in XQuery, does
not prohibit fast services from being built, though there are considerations that a developer should
keep in mind when building a service for speed. Some things that affect the performance of a service
include:

« The amount of data examined in XQuery.
» The speed and number of MAX queries.
« The complexity of the XML transformations performed.

» Use of fn:doc () to retrieve data from external sources, which blocks query evaluation for the
duration of the call.

» Use of eutil :eval (), which adds a significant delay while the arguments to eval are compiled.

For more detailed guidance on performance, see the Performance Tuning Guide.

Performance expectations for the MDEX Web service

Because the MDEX Web service compiles a large main module for each query, its performance may
be slower than that of custom Web services.

Exposing XQuery main modules as Web services

To add your own functionality to the MDEX Engine, you can create your own XQuery main modules
and supporting library modules, and then expose the main modules as Web services.

The high-level steps for Web services and XQuery for Endeca development are outlined below.
Following the outline, we provide a simple example.

1. Create your XQuery main module in a text editor.
2. Save the file with an .xq extension.

3. Restart the Dgraph, specifying --xquery_path with the path to the directory containing the new
main module file.

4. Look at the Dgraph error log to uncover any errors.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

24 Getting Started with Web Services and XQuery for Endeca | Web services and XQuery for Endeca
example

5. Try your function in soapUl or another similar tool, sending in requests and debugging responses.
Dynamic errors resulting from the call to the module are reported in the Dgraph error log.

6. Each time you change your main module, reload it using the admin?op=reload-services
administrative option. When you run reload-services, errors in syntax are reported in the
Dgraph error log.

Web services and XQuery for Endeca example

The following example implements a simple SOAP Web service that searches through the English
property in a sample MDEX data set and returns the number of occurrences of a single search term.

»
77 Note: The files for this example can be downloaded from EDeN at
http://eden.endeca.com/wiki/display/feature/XQuery.

An example XQuery main module

This topic contains the XQuery main module example .xq.
The main module is broken down to highlight its component sections, including the following:

« Module import and namespace declaration.

import module namespace http = "http://www.endeca.com/XQuery/http/2008"
at "http.xq";

import module namespace eutil
at “eutil.xqg";

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008"
at "mdex.xq";

"http://www.endeca.com/XQuery/eutil/2008"

declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/’";
declare namespace mdata = "http://www.endeca.com/MDEX/data/I1R600™";
declare namespace ex = "http://endeca.com/example.xsd";

» SOAP processing.

declare function local:generateFaultResponse($message as xs:string*) as
element(soap:Envelope, xs:untyped)
{
<soap:Envelope>
<soap:Body>
<soap:Fault>
<mdata:query-fault>
<mdata:fault-string>{$message}</mdata: faul t-string>
</mdata:query-fault>
</soap:Fault>
</soap:Body>
</soap:Envelope>

}:

» Generating embedded WSDL.
declare function local:generateWsdl()
<definitions name="ExampleMDEXQuery"

targetNamespace="http://endeca.com/example.wsdl"
xmlns:es="http://endeca.com/example.wsdl"

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://eden.endeca.com/wiki/display/feature/XQuery

Getting Started with Web Services and XQuery for Endeca | Web services and XQuery for Endeca 25
example

xmlns:esxsd=""http://endeca.com/example.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/""
xmIns=""http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema
targetNamespace="http://endeca.com/example.xsd"
elementFormDefault=""qualified"
xmIns:xsd=""http://www._w3.0rg/2001/XMLSchema'*>

<I-- request contains just a word to be matched -->
<xsd:element name="MatchWord'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="‘word" type="'xsd:string'/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<I-- response contains just the number of matches -->
<xsd:element name="MatchCount'>
<xsd:complexType>
<xsd:all>
<xsd:element name="'count' type="'xsd:int'/>
</xsd:all>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<I-- request message uses an element from the above schema -->
<message hame="'‘CountMatcheslnput'>

<part name="word" element="esxsd:MatchWord"/>
</message>

<I-- response message uses an element from the above schema -->
<message name="'‘CountMatchesOutput'>

<part name="count™ element="‘esxsd:MatchCount"/>
</message>

<I-- port type specifies the above request and response message -->
<portType name=""ExampleMDEXPortType">
<operation name="CountMatches'>
<input message="es:CountMatcheslInput"/>
<output message=""es:CountMatchesOutput"/>
</operation>
</portType>

<I-- binding specifies the above port type and declares this
web service to be of the document/literal variety -->
<binding name="ExampleMDEXSoapBinding" type="es:ExampleMDEXPortType"'>
<soap:binding style=""document'" transport="http://schemas.xml-
soap.org/soap/http"/>
<operation name="CountMatches'>
<soap:operation soapAction="http://endeca.com/Example'/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

26 Getting Started with Web Services and XQuery for Endeca | Web services and XQuery for Endeca
example

</output>
</operation>
</binding>

<I-- associate the above port type and binding -->

<service name="ExampleMDEXService">
<documentation>Endeca Example MDEX Query Service</documentation>
<port name="ExampleMDEXPortType" binding=""es:ExampleMDEXSoapBinding">

<soap:address location="http://endeca.com/mdex"/>
</port>
</service>

</definitions>

&

« MDEX API through XQuery calls, wrapped in fn:trace() for ease of debugging.

(: get the request :)
let $body-str := fn:trace(http:get-body(), "REQUEST')
return
if (fn:exists(http:get-query-parameter("'WSDL™))) then
(: caller used ?WSDL request format -- send WSDL :)
local :generateWsdl ()
else if (fn:empty($body-str)) then
(: no request body -- send SOAP fault :)
local :generateFaul tResponse("'Empty body in SOAP request')
else
(: reach into the SOAP request body :)
let $body := eutil:parse(fn:exactly-one($body-str))/soap:Enve-
lope/soap:Body
(: pull out the iInput message :)
let $query := $body/ex:MatchWord
return
it (fn:count($query) ne 1) then
(: should be exactly one input message :)
local :generateFaul tResponse($query)
else
(: start making a response enveleope :)
fn:trace(
<soap:Envelope>
<soap:Body>

(: setup an MDEX API call to do the text search :)
let $str := fn:data($query/ex:word)
let $cl :=
<mdata:Query>
<mdata:Searches>
<mdata:Search Key = "English">{$str}</mdata:Search>
</mdata:Searches>
</mdata:Query>
(: call MDEX APl :)

let $result := mdex:navigation-query($cl)
(: Fill in an output message :)
return

<ex:MatchCount>
<ex:count>

{
fn:data($result/mdata:RecordsResult/@TotalRecordCount)
}

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 27

</ex:count>
</ex:MatchCount>

}
</soap:Body>
</soap:Envelope>, "RESPONSE')

> L
77" Note: After writing your main module, make sure you save it to the directory specified in the
--xquery_path flag.

Example request and response bodies

This example request searches the English property for the word two.
Sending a request message like this one:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:exam="http://endeca.com/example _xsd">
<soapenv:Body>
<exam:MatchWord>
<exam:word>two</exam:word>
</exam:MatchWord>
</soapenv:Body>
</soapenv:Envelope>

Returns a response message like this:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/ >
<soap:Body>
<ex:MatchCount xmlns:ex="http://endeca.com/example.xsd">
<ex:count>19</ex:count>
</ex:MatchCount>
</soap:Body>
</soap:Envelope>

Using the MDEX Web service

This section describes how to get started with the MDEX Web service, which is included with Web
services and XQuery for Endeca.

About the MDEX Web service

The MDEX Web service, which is included as part of this release, allows you to use XQuery with the
MDEX Engine without writing custom Web services.

The MDEX Web service consists of an mdex.xqg main module and mdex.wsdl file. These files
implement a service that provides a SOAP wrapper for the MAX API.

The MDEX Web service is a WS-I compliant, WSDL/SOAP 1.x Web service. Along with any other
Web services included in the installation, it is loaded automatically upon MDEX Engine startup, unless
the engine is started with the —-disable_web_services flag.

Bulk export is not supported in this release of the MDEX Web service.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

28

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service

%
Note: The MDEX Web service included as part of this release was called the Query Web service
in release 6.1.1 and earlier versions.

What the MDEX Web service does

The MDEX Web service is hot meant as a Web service replacement to the Presentation API, but rather
as a data service similar to something that a relational database management system might provide.
In an RDBMS scenario, SQL input transported via ODBC or JDBC returns tabular results. Similarly,
in an MDEX scenario, XQuery input transported via the MDEX Web service returns XML results.

The MDEX Web service accepts an XQuery main module as its request argument, and returns the
result of evaluating that module in the MDEX. The main module is a string that can be constructed
programatically in your application. The module contained in each request is compiled in the MDEX
Engine on the fly. Such main modules may call library modules that have been loaded into the MDEX
Engine, including custom library modules.

If your XQuery logic is very simple, your application has modest performance requirements, or you
need complex application-tier logic to generate your XQuery code on the fly, you will benefit from the
MDEX Web service. In particular, if your XQuery logic consists simply of MDEX API through XQuery
(or MAX) calls, the MDEX Web service has an important advantage: the WSDL for it will allow stub
generators to provide you with bindings for all of the MAX return types. In general, generated stubs
will return results in this form whenever the query’s return type is a MAX return type. When you run
XQuery code that does not return MAX types, or embeds them in other elements, the generated stubs
will provide you with an XML DOM tree, which you will have to traverse to obtain the result data.

Using the MDEX Web service in conjunction with custom Web services

The MDEX Web service is useful during XQuery development. It provides a convenient way to try out
an ad hoc XQuery code fragment against the MDEX Engine, including ad hoc calls to library modules
that you have written earlier. A convenient way to develop XQuery applications is to start with simple
MDEX Web service calls that you gradually evolve by factoring out function declarations and moving
them into library module files loaded into the MDEX Engine. In this scenario, at any point in time your
well-tested and stable code lives in library module files, and your new and experimental function
declarations and query body are sent to the MDEX Engine using the MDEX Web service. You may
then choose to move the library module to a file loaded into the MDEX Engine as well, completing the
transition to a custom Web service.

b
Note: The creation of XQuery modules, aside from those provided with the MDEX distribution,
requires the purchase of the Advanced Query Module. Contact your Endeca representative for
details.

Updating with the MDEX Web service

The MDEX Web service uses euti I zeval (), which is a non-updating function, and cannot, therefore,
invoke updating expressions.

If you want to use XQuery update functionality, you must create custom Web services.

Inputs and outputs of the MDEX Web service

This topic describes inputs and outputs to the MDEX Web service.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 29

The MDEX Web service takes as its input a the contents of a SOAP envelope in the form of a string
that is an XQuery main module. That element can consist of a MAX function, pathing, or some other
string. Main modules sent to the MDEX Web service have the MAX libaries imported automatically.

The service can return two kinds of results:

< MAX function calls produce typed results. These typed results are defined in the mdex.wsdl,
which can be used to generate stub files.

< Any result that is not a direct output of a MAX function call, including modified MAX results, is
wrapped in an untyped XML response, with each element of a sequence returned as a separate
response. Untyped results contain a single Xs:any element containing two elements: a root result
element, and a child element containing the actual result of the XQuery, wrapped in the result
element.

Examples

The following examples illustrate both a MAX query and a non-MAX query. In both cases, the input
is a Request element wrapped in a SOAP envelope that takes a string which is valid XQuery.

In the following MAX example, a CDATA is used to avoid complicated escaping:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/” xmlns:ns="http://www.endeca.com/MDEX/data/IR600"">
<soapenv:Header/>
<soapenv:Body>
<ns:Request>
<I[CDATAL
mdex:navigation-query(<mdata:Query/>)
1>
</ns:Request>
</soapenv:Body>
</soapenv:Envelope>

The output of this example would consist of a single Response element. Evaluated XQuery returns
a sequence of nodes, with the Response element containing one Result element for each item in
the return sequence. (The following code sample is truncated for the sake of brevity).

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/'>
<soapenv:Header/>
<soapenv:Body>
<mdata:Response xmlns:mdata=""http://www.endeca.com/MDEX/
data/1R600"">
<mdata:TypedResult>
<NavigationResults xmlns="http://www.endeca.com/
MDEX/data/ 1R600"">
<Dimensions>

<Dimension Name="Designation™ I1d="7"
MultiSelect="None" GroupName="Ratings'>
<DimensionValue Name="Designation"™ I1d=""7"
IsLeaf="false" IsNavigable="false'">
<DimensionValues>
<DimensionValue Name="Highly Recommended"
1d=""8029"" IsLeaf=""true' IsNavigable="true"/>
<DimensionValue Name="Best Buy" 1d="8031"
IsLeaf=""true" IsNavigable=""true'"/>
</DimensionValues>
</DimensionValue>
</Dimension>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

30

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service

</Dimensions>
<NavigationStatesResult>
<DimensionStates>
<DimensionState DimensionName=""Wine Type"
Dimensionld="6200"">
<Refinements ParentName="Wine Type"
Parentld="6200" HasMore=""false"
IsRefinable=""true"/>
</DimensionState>

</DimensionStates>
</NavigationStatesResult>
<RecordsResult Offset="0" RecordsPerPage="10"
TotalRecordCount="57076"">

<Records>
<Record 1d="34699">
<Attributes>

<AssignedDimensionValue Key=""Review Score"
Dimensionld="9" 1d="21">0 to 10

</AssignedDimensionValue>

<Property Key="P_DateReviewed'>
08/31/95</Property>

<Property Key="P_Description”>Supple
and polished cedar, coffee, cherry and berry

flavors. This is elegant, finishing with firm

tannins and good length. Drinkable now.
</Property>
<Property Key="P_Name'>A Red Blend
Alexander Valley</Property>
<Property Key="P_Price'>18.000000</Property>
<Property Key="P_Region''>Sonoma</Property>
<Property Key="P_Score'>5</Property>
<Property Key="P_WinelD">34699</Property>
<Property Key="P_Winery">Lyeth</Property>
<Property Key="P_WineType''>Cabernet Blend
</Property>
<Property Key="P_WineType''>Red</Property>
<Property Key="P_Year'>1992</Property>
</Attributes>
</Record>

</Réé6rds>
</RecordsResult>

</NavigationResults>
</mdata:TypedResult>
</mdata:Response>
</soapenv:Body>
</soapenv:Envelope>

The following non-MAX example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:ns="http://www.endeca.com/MDEX/data/IR600"">
<soapenv:Header/>
<soapenv:Body>

<ns:Request>for $x in (1 to 5) return $x</ns:Request>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 31

</soapenv:Body>
</soapenv:Envelope>

Returns this:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/
soap/envelope/ >
<soap:Body>
<mdex:Response xmlns:mdata="http://www.endeca.com/MDEX/
data/IR600"">

<mdata:UntypedResult>
<mdata:Result>1</mdata:Result>

</mdata:UntypedResult>

<mdata:UntypedResul t>
<mdata:Result>2</mdata:Result>

</mdata:UntypedResult>

<mdata:UntypedResult>
<mdata:Result>3</mdata:Result>

</mdata:UntypedResult>

<mdata:UntypedResul t>
<mdata:Result>4</mdata:Result>

</mdata:UntypedResult>

<mdata:UntypedResult>
<mdata:Result>5</mdata:Result>

</mdata:UntypedResult>

</mdata:Response>
</soap:Body>
</soap:Envelope>

Invoking the MDEX Web service

This very simple example demonstrates how to create a Web services call to the MDEX service.

You can perform this task in the WSDL tool of your choice, such as Stylus Studio or soapUl. We use
soapUl here. A free version of this tool can be found at http://www.soapui.org.

1. Create a new project in the soapUl tool. This includes giving the project a name and pointing it at
the mdex .wsdl file, which is returned from http://<hostname:port>/ws/mdex?wsdl.

o |
&}

9] Projects
=B QuerywebService
&- T MDEXSoapBinding
=@ query
‘- 52 Reguest

| MEnigatr

L

2. In the MDEXSoapBinding element, click the Service Endpoints tab and replace <hostname:port>
with your information to set the service endpoint.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.soapui.org

32 Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service

I MDEXSoapBinding o B
rOverview |/Service Endpoints |’WSDL Content rWS-I Compliance

t Lo Assign &
Endpoint |Userna... . |Domain WSS-T... |\WSS-Ti... | Outgoi... | Mode |
http: ffcsigman-t60:15000/ws/mdex | COMPLE. .. a

3. Put a SOAP request to the port and execute the service by clicking the green arrow in the upper
left corner of the SOAP Request window. Here, we make a simple navigation query request.

D
no

Request 1
= 2 [il [htu::;',chiqman-tﬁo:15000fw9fmdex v] 1

Zzoapenv: Enwvelope xmlns:scapenv="http://schemas.xmlzoap. org/soapsenvelopes" zmlns:ire="http: /o endeca. |
“zoapenv:Header /=
“zoapent: Body=

Rawy | XML | W

“iré&: Requests
=< [CDATAT
mdex:mavigation—queryi<ndata: Ouary, =)
11=
= /i Bequests
=/ =zoapenv:EBodys

“/=zoapenv: Enveloper

1

| rle

Aut Headers (0) Attachments (0} WS-A

4. If the service executes successfully, soapUl displays the response message on the right side of
the window and posts the response time in the status bar at the bottom of the screen. (If the service
encounters any problems, details appear in the status bar.)

. i2 Request 1

P =R O im [http:ffcsiqman—tﬁt]:15000fwsfmdex - '
; ﬁ =soapenv: Envelope xnlns:soapenv="httplffschemnas i xnlsoapiorgSsoapfenvalopas s

T “soapenv:Header /=

= “soapenty: Body=

g “mdata: BPesponse xmlns:mdata="http: A endeca. conMDEX/data,//ITRE00" =

“mdata: TypedBesult:>
“NavigationBesults xmlns="http:/ fwnr. endeca. con/MDEX data sTREOO" =
=DIimensions>
“Dimension Name="Wintage" Id="Z" Multifelect="Nones"=
=DimensionWalue Name="Wintage" Id="z" Isleaf="false" IsMavigahle="false"/=
= /Dimension>
=Dimension Name="Drinkability" Id="3" Multifelect="None" GroupName="Characteristics"=
=DimensionWalue Name="Drinkability" Id="32" IsLeaf="false" IsNavigable="false"/=
= /Dimension>
“Dimension MName="Body" Id="E5E" Multifelect="None" GroupMame="Characteristics">
=DIimensionWalue Name="Body" Id="E" IsLeaf="false" IsNavigable="false"/=
= /Dimension>
“Dimension Name="Designation" Id4d="7" MultifSelect="None" GroupMName="Ratings":=>
=DimensionWalue Name="Designation" Id="7" IsLeaf="false" IsNavigahle="false"=

=DimensionValues:

Headers (9) Attachments (03 =cL info 0es
response time: 9160ms (22619 bytes)

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 33

5. Confirm the result in the Dgraph request log. In the final four lines shown below, you can see a
record of Web service execution.

Dgraphl.reqglog | ;
o e B L e e "DGEAPH STARTUF (1232569139150}, data set "C:“Endeca»apps~JanWine~datadg:
1232569166416 127 . 0.0.1 — 1 313 54.30 1.43 200 - 0 8 ~admin?op=ping — Accept®3A+textX2Fhtml*%2C+inage’2Fgi1
1232569318524 127.0.0.1 — 2 13822 1456.23 1452.80 200 — 0 9 ~sgraphtnode=0&group=0&of {=et=0&nbins=10&irvers:
1232572690421 127 .0.0.1 — 3 334 A50.56 125.14 200 - 0 8 ~w=s — Accept®3A+textX2Funl¥2Capplication®2F=ml¥2C:
1232572691262 127.0.0.1 — 4 348 264.14 263.18 404 — 0 9 sfavicon.ico - Accept®3A+imageX2Fpngk2CH2AK2FR2A%
1232576324250 172.30.112 .96 — 5 629 1873.13 1802 .98 200 - 0 8 rwesmdex - Acceptx3h+imageik2Fgifk2C+imagei2]
1232576344312 172.30.112 .96 — & 27315 756.94 755.76 200 — 0 9 rwssmdextwsdl — AcceptX3A+imageX2FgifX2C+ims
1232576610000 172.30.112 .96 — 7 22869 6598 .92 5784 .62 200 - 0 8 rwesmdex %3CsocapenviidEnvelope+zmln=iklhso:
1232077249531 172 .30 112 .96 — & 629 16 60 14 93 200 — 0 9 ~ws-mdex — AcceptX3a+x2axaFuAn0D0Abccept2DEnC

About the mdex.wsdl file
The mdex schema used by MDEX Web service is defined in the mdex.wsdl file.

The mdex.wsdl file is located in $ENDECA_MDEX_ROOT/xquery/xml directory. You can use the
WSDL as an API to write your query in the language of your choice (such as Java, C#, or Perl).The
WSDL for the MDEX Web service is retrievable directly from the MDEX Engine by way of an HTTP
GET request.

Requesting the WSDL
You can get the WSDL for the MDEX Web service by adding ?wsdl to the URL for the service.

The syntax of the request is /ws/mdex?wsdl.

& . .
77" Note: The mdex?wsdl service pulls the Host header directly from the HTTP request.

Namespaces used by the MDEX Web service

The MDEX Web service uses two pre-defined namespaces: mdex and mdata.

MDEX lib modules and MAX functions are automatically imported under the prefix mdex
(http://www.endeca.com/mdex/data/IR600).

Any MAX results are returned under the prefix mdata.

& .
77" Note: Do not attempt to redefine these two namespaces.

Supported binding generators for the MDEX Web service

If you want to generate bindings for MDEX Web service client stubs, you must use one of the supported
binding generators.

The following are supported:

» Axis2 version 1.4.1, using XMLBeans. Note that bindings generated with the ADB will not function
properly.
« .NET 2.0 Framework (or later) wsd 1 . exe tool.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

34 Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service

Exception handling in the MDEX Web service

The MDEX Web service runs user-supplied XQuery code and generates SOAP responses.

If the code throws an exception it cannot handle, the generated SOAP response contains a SOAP
fault structure that includes detailed information about the exception. If a SOAP error occurs while
processing the request, the SOAP HTTP server issues an HTTP 500 "Internal Server Error" response
and includes a SOAP message in the response. This SOAP message contains a SOAP Fault element
indicating the SOAP processing error.

The MDEX Web service uses try/catch expressions to catch exceptions. Exceptions thrown can be
one of the following types:

» Dynamic errors, which emerge during processing.
« Static errors, which include typos and parsing errors.
» Type-checking errors.

For more information about Endeca's implementation of try/catch, see the topic "XQuery try/catch
expressions."

SOAP Fault details
The SOAP Faults generated by the MDEX Web service are SOAP 1.1 compliant.

A SOAP Fault is an optional SOAP element that provides information about errors that prevent a
request from being processed successfully. The information in the SOAP Fault makes it easier to
debug problems in a SOAP Web service. In the case of an error, the MDEX Web service returns a
SOAP Fault that wraps a detailed mdata:Fault element.

The structure of a fault is as follows:

<soap-envelope:Fault>
<soap-envelope:faultcode> ... </soap-envelope:faultcode>
<soap-envelope:faultstring> ... </soap-envelope:faultstring>
<soap-envelope:detail>
<mdata:Fault>

<mdata:ErrorCode> ... </mdata:ErrorCode>
<mdata:ErrorDetail> ... </mdata:ErrorDetail>
<mdata:ErrorSequence> ... </mdata:ErrorSequence>
<mdata:StackTrace> ... </mdata:StackTrace>

</mdata:Fault>
</soap-envelope:detail>
</soap-envelope:Fault>

« The faultcode element is one of the following: "MustUnderstand", "Client", or "Server".
« The Faultstring element contains a description of the error.

« The detai l element contains the mdata: Faul t element, which holds the following details about
the exception:

» The ErrorCode element contains the fault code generated by the MAX API. For details about
these codes, see the topic "External function error codes."

» The ErrorDetai Il element contains the same description of the error found in faul tstring.

» The ErrorSequence element contains the items provided in the third argument to the
fn:error() function (if the exception was generated by a call to the three-argument form of
fn:error()). If you only call MAX API functions, this element will always be empty, because
MAX API functions do not use the three-argument form of fn:zerror().

» The StackTrace element represents the stack trace associated with the current exception.
The stack trace, by identifying the expression where an error occurred and the expressions it

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 35

was called from, makes it easier to debug errors in your XQuery code. For more information
about stack traces, see the topic "eutil:get-stack-trace()."

SOAP fault schema used by the MDEX Web service

This fragment of the mdex.wsdl contains the SOAP fault schema used by the MDEX Web service,
along with other information.

<complexType name="'Location'>
<attribute name="line" type="'string" use="‘required” />
<attribute name="column" type="string' use="required" />
</complexType>

<complexType name="'Span''>
<sequence>
<element name="Start" type="tns:Location'/>
<element name="End" type="tns:Location"/>
</sequence>
<attribute name="uri' type='"'string" use="required" />
</complexType>

<complexType name="StackTrace'>
<sequence>
<element name="'Span" type="tns:Span"
maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="ErrorSequence'>
<sequence>
<any processContents="l1ax" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
</complexType>

<element name="Fault">
<complexType>
<seguence>
<element name="ErrorCode"
type="string" />
<element name="ErrorDetail"
type="string" />
<element name="ErrorSequence"
type=""tns:ErrorSequence" />
<element name="'StackTrace"
type=""tns:StackTrace"/>
</sequence>
</complexType>
</element>

<message name=""MDEXFault''>
<part name="fault™ element="tns:Fault'/>
</message>

<portType name="MDEXPort'>
<operation name="query"'>
<input name="request"
message=""tns :MDEXRequest''/>
<output name="‘response"
message=""tns :MDEXResponse"' />

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

36 Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service

<fault nane="fault"
nmessage="t ns: MDEXFaul t "/ >
</operation>
</portType>

Examples using SOAP Faults within the MDEX Web service

This topic contains two examples of SOAP Faults returned for exceptions thrown in the MDEX Web
service.

Exception thrown due to a typo in query

In the following example, a misspelling of the attribute RelevanceRankingStrategy causes an
exception to be thrown. This is a static error.

Here is the query:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/* xmIns:ir6="http://www.endeca.com/MDEX/data/IR600">
<soapenv:Header/>
<soapenv:Body>
<ir6:Request><!I[CDATA[mdex:dimension-search-query(<mdata:Query>
<mdata:DimensionSearch RelevanceRankingSrategy="Exact'>1
</mdata:DimensionSearch></mdata:Query>)]]></ir6:Request>
</soapenv:Body>
</soapenv:Envelope>

Here is the response:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org
/soap/envelope/'>
<soapenv:Header/>
<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Client</faultcode>
<faultstring>exception encountered while executing external
function "internal:schema-validate-query-input®, caused
by error endeca-client-err:MAXFOOO1 : Schema Validation

Error. - Invalid xml: Attribute "RelevanceRankingSrategy*
is not declared for element "DimensionSearch*®
</faultstring>
<detail>
<mdata:Fault xmlns:mdata="http://www.endeca.com/MDEX/data/
1R600"">

<mdata:ErrorCode>endeca-client-err:MAXFO001
</mdata:ErrorCode>
<mdata:ErrorDetai l>exception encountered while
executing external function "internal:schema-
validate-query-input®, caused by error
endeca-client-err:MAXFOOO1 : Schema
Validation Error. : Invalid xml: Attribute
"RelevanceRankingSrategy” is not declared for
element "DimensionSearch®"</mdata:ErrorDetail>
<mdata:ErrorSequence/>
<mdata:StackTrace>
<mdata:Span uri="%28INTERNAL%29%2Fmdex_internal_
dimension_search.xq">
<mdata:Start line="20" column="75"/>
<mdata:End line="20" column="143"/>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the MDEX Web service 37

</mdata:Span>

<mdata:zSpan uri="%28INTERNAL%29%2Fmdex .xq"">
<mdata:Start line="44" column="2"/>
<mdata:End line="44" column="'58"/>

</mdata:Span>

<mdata:Span uri="">
<mdata:Start line="2" column="0"/>
<mdata:End line="2" column="136"/>

</mdata:Span>

<mdata:Span uri="<ENDECA_ MDEX_ ROOT>%2Fxquery%2Fmdex.xq"">
<mdata:Start line="93" column="15"/>
<mdata:End line="93" column="'46""/>

</mdata:Span>

<mdata:Span uri="<ENDECA_MDEX_ROOT>%2Fxquery%2Fmdex.xq"">
<mdata:Start line="165" column="4"/>
<mdata:End line="171" column="5"/>

</mdata:Span>

<mdata:Span uri="<ENDECA MDEX ROOT>%2Fxquery%2Fmdex.xq">
<mdata:Start line="183" column="2"/>
<mdata:End line="183" column="24"/>

</mdata:Span>

</mdata:StackTrace>
</mdata:Fault>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

An exception thrown by an external function passing an invalid argument

In this example, an exception is thrown by external function dimension-value-id-from-path
when an invalid dimension name is passed as argument. This is a dynamic error.

Here is the query:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org
/soap/
envelope/" xmIns:ir6="http://www.endeca.com/MDEX/data/IR600" >
<soapenv:Header/>
<soapenv:Body>
<ir6:Request><![CDATA[mdex:dimension-value-id-from-path
(("'NoSuchDimension'™))]]></ir6:Request>
</soapenv:Body>
</soapenv:Envelope>

Here is the response:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/'>
<soapenv:Header/>
<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Client</faultcode>
<faultstring>exception encountered while executing external
function "mdex:dimension-value-id-from-path®, caused by
error endeca-client-err:MDEXO0OO7 : Dimension not found
</faultstring>
<detail>
<mdata:Fault xmlns:mdata=""http://www.endeca.com/MDEX/
data/IR600"">

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

38 Getting Started with Web Services and XQuery for Endeca | Using the exquery command-line tool

<mdata:ErrorCode>endeca-client-err:MDEX0007
</mdata:ErrorCode>
<mdata:ErrorDetai l>exception encountered while
executing external function "mdex:dimension-
value-id-from-path®, caused by error
endeca-client-err:MDEXO007 : Dimension not found
</mdata:ErrorDetail>
<mdata:ErrorSequence/>
<mdata:StackTrace>
<mdata:Span uri="">
<mdata:Start line="2" column="0"/>
<mdata:End line="2" column="42"/>
</mdata:Span>
<mdata:zSpan uri="<ENDECA_MDEX_ROOT>%2Fxquery%2Fmdex.xq"">
<mdata:Start line="93" column="15"/>
<mdata:End line="93" column="'46""/>
</mdata:Span>
<mdata:Span uri="<ENDECA MDEX ROOT>%2Fxquery%2Fmdex.xq">
<mdata:Start line="165" column="4"/>
<mdata:End line="171" column="5""/>
</mdata:Span>
<mdata:Span uri="<ENDECA_ MDEX_ ROOT>%2Fxquery%2Fmdex.xq"">
<mdata:Start line="183" column="2"/>
<mdata:End line="183" column="24"/>
</mdata:Span>
</mdata:StackTrace>
</mdata:Fault>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

Returning non-MAX XML in the MDEX Web service

If you are returning non-MAX XML, ensure that your query does not return a result where the root
element name is the same as a return type of MAX.

If you do, the client bindings will fail to parse the result and the query will generate an error.

Using the exquery command-line tool

Endeca provides a command-line developer tool, exquery, that you can use to run XQuery. It can be
used in interactive or file-based mode to test and debug the XQuery functions that you write yourself.

Exquery is run from the $ENDECA_MDEX_ROOT/bin directory.
Important: This version of the exquery tool is for development use only. It is not intended or
supported for production use. The MDEX API through XQuery is not available in the exquery

tool. In terms of external functions, http functions are not available in the exquery tool, but
eutil functions are.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Getting Started with Web Services and XQuery for Endeca | Using the exquery command-line tool 39

Application debugging with exquery

When building an application, you can use the exquery tool to develop and debug much of your XQuery
code before running it in the Dgraph.

However, exquery neither implements nor resolves the http and mdex external functions provided
by the Endeca XQuery implementation. That means that if your code references these functions, it
will not compile correctly in exquery.

In order to take advantage of the exquery debugging environment, you can temporarily replace the
unimplemented external functions with local functions that refer to dummy XML data, so that the rest
of the code can be validated. You can supply the dummy data in two ways: inline, or by using fn:doc()
to return XML data that is located in a separate file

For example, if your code refers to the mdex:dimension-search-query external function, you
might declare a stand-in function similar to the following:

declare function local:mydimension-search-query($query as element(mda-
ta:Query, xs:untyped)) as element(mdata:Results, xs:untyped)

fn:exactly-one(fn:doc("'path-to-sample-output.xml')/*)
}:

Then, anywhere your code calls mdex :dimension-search-query, modify it to call

local :mydimension-search-query instead. When you have finished developing and testing your
code, you can replace the references to mdex :dimension-search-query before running the query
in the Dgraph.

Note: Remember to declare the local namespace in your main module.

Exquery usage
This topic defines the usage of the exquery command-line tool.

You can access the usage message in the tool by using the —-help option.

Usage:

Evaluate expression: exquery <expr>

Print AST: exquery -a <expr>

Normalize expression: exquery -n <expr>

Expand and normalize expression: exquery -e <expr>

Print expression static type after expansion and normalization: exquery
-t <expr>

-f <fname>: executes the query in the XQuery main module in <fname>
-fn <fname>: normalizes the query in the XQuery main module in <fname>
-c <path-to-xml-file>: makes XML Ffile available via fn:collection()
-1 <path-to-xml-file>: makes XML Ffile available via .: the context item

Exquery access to environment variables

The exquery tool can use user-defined environment variables as external variables in XQuery.

In exquery, any variable in the namespace http://www.endeca.com/XQuery/exquery/2008/env
and declared to be external will be an xs:untypedAtomic variable. Its value will be taken from its
environment, if it is defined.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

40 Getting Started with Web Services and XQuery for Endeca | Using the exquery command-line tool

For example, consider the following session in the bash shell:

$ export my_shell_var=saffron

$ exquery

Endeca XQuery!

%% declare namespace env = "http://www.endeca.com/XQuery/exquery/2008/env'’;
declare variable $env:my_shell_var external; $env:my_shell_var

>> saffron

>>

%%

On Windows, use "set varname=value® instead of "export"”.

Notes

 This only works in exquery, and not in the MDEX Engine.

» Environment variables are traditionally uppercase, and XQuery variables are traditionally lowercase,
but both upper and lower case are allowed in each one. However, in Unix shells, you may not use
dashes in an environment variable name, so another seperator, like an underscore, must be used.
On Windows, environment variables are case-insensitive, so the external variable in XQuery may
be of any case. Once the variable is defined, the same capitalization must be used consistently in
the program.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Chapter 3

Web Services and XQuery Components and
Features

This section discusses the components and features that make up Web services and XQuery for
Endeca. If you choose to copy XQuery snippets from this document, be aware that in some cases
hard line breaks have been added to improve legibility. These extra line breaks must be removed in
order for the XQuery snippets to work properly.

Implementation-defined behavior in XQuery for Endeca

The XQuery specification identifies implementation-defined features, the behavior of which may vary
in different implementations. This section provides details about implementation-defined behavior in
the Endeca XQuery implementation.

Static type checking

This topic discusses what static type checking is, why it is important, and how Endeca has implemented
this feature.

4 Note: Several of the examples in this topic are shown in the format used by the command-line
developer tool, exquery, that is provided by Endeca. You can use exquery in interactive or
file-based mode to test and debug the XQuery functions that you write yourself. More information
about exquery appears in the section "Getting Started with Web Services and XQuery for Endeca."”

Static type checking attempts to determine at compile time whether an XQuery expression can encounter
a type error at runtime. Endeca’'s XQuery implements restrictive static type checking. It performs static
type checking when compiling XQuery modules and fails at compile time unless it can prove that a
type error cannot occur at runtime, except in cardinality functions or treat as expressions, which
perform explicit runtime type-checking. In contrast, some other XQuery implementations use permissive
static type checking, which only fails when it can prove that a type error must occur at runtime.

Because Endeca's static type checking is stricter than that done by many other existing XQuery
implementations, it is conservative, meaning that the fact that a program compiles means that it could
not contain a type error. If an expression could fail for type reasons, it is marked. Therefore, if you are
testing your XQuery code with another, more optimistic tool, such as Saxon or eXist, that implements
static type checking differently, XQuery code that works in another tool may not work in the Endeca
XQuery evaluator.

42 Web Services and XQuery Components and Features | Implementation-defined behavior in XQuery
for Endeca

Usually, an optimistically valid program can be turned into a conservatively valid program by adding
treat as statements and adding cardinality functions (such as exactly-one()) that make explicit
the places where type errors could occur.

Type checking example
The following example shows a simple type checking error:

%% 1 + "one”
>> Query failure: at 1:0-1:9: XPST0017: In function: _fs:plus() with 2 pa-
rameters: Argument types "((xs:integer), (xs:string)) (where xs =
"http://www.w3.0rg/2001/XMLSchema’) " do not match any signature for operator;
possible signatures are "((xs:integer), (Xs:integer)) (where xs =
"http://www.w3.0rg/2001/XMLSchema’™) ; ((xs:decimal), (xs:decimal)) (where
xs = "http://www.w3.0rg/2001/XMLSchema’™); ((xs:float), (xs:float)) (where
xs = "http://www._.w3.0rg/2001/XMLSchema’™); ((xs:double), (xs:double)) (where
xs = "http://www.w3.0rg/2001/XMLSchema') "

To analyze this message, note the following:

» The span 1:0-1:9 shows that the type error is in the addition operation (which, in this case, is
the whole program).

« The + operator is internally normalized to a function called _fs:plus().

« The + operator takes either two integers, two decimals, two floats, or two doubles as arguments.
(Expressions like 1 + 1.0e0 are valid because of type promotion.)

e The notes (where xs = "http://www.w3.0rg/2001/XMLSchema'") are included to help
fix errors where prefixes and namespaces in different contexts do not correspond exactly.

Static type checking and occurrence indicators

In XQuery, all values are considered to be sequences. The Endeca implementation of XQuery regards
the occurrence indicators ? (that is, the item can appear zero times or one time), * (the item can appear
zero or more times), and + (the item must appear one or more times), which regulate the sequence
length of a valid value, as part of the type. The Endeca XQuery evaluator handles these indicators
intelligently, knowing that anything that is a valid xs: integer? is also a valid xs: integer>. However,
the Endeca XQuery evaluator will catch a misused quantifier if it does not match, as in the case of
using an xs:string+ as an xs:string. In the Endeca implementation of XQuery, whenever it
cannot be statically determined that a sequence value has the cardinality required in a given context,
a function such as one-or-more() or exactly-one() must be used to make run-time checking
explicit. By contrast, many other XQuery implementations statically permit an expression if it could
possibly work in any case.

Cardinality examples

In the following example:

%% string-to-codepoints("X") + 1

>> Query failure: at 1:0-1:29: XPTY0004: In function:

>> fs:convert-operand() with 2 parameters: Expected type

>> "xs:ianyAtomicType?" and found type "xs:integer*" (where xs =
>> “http://www._w3.0rg/2001/XMLSchema™)

convert-operand is introduced in normalization around the arguments to the + operator, which
does not allow sequences longer than one element. The compiler cannot prove that

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Implementation-defined behavior in XQuery 43
for Endeca

string-to-codepoints("X") returns a sequence with only one element, but we know that it will,
so we can do the following:

%% exactly-one(string-to-codepoints("X")) + 1
>> 89

In this next example:

%% let $e = <wrapper><elem>val</elem></wrapper> return concat(data($e/elem),
- ue I)

>> Query failure: at 1:53-1:80: XPTY0004: In function: fn:concat() with

>> 2 parameters: Expected type "xs:anyAtomicType?" and found type

>> "xs:untypedAtomic*" (where xs = "http://www.w3.0rg/2001/XMLSchema'™)

(Note that data() is a special function whose return type is dependent on the type that is passed to
it—it always returns values of the same cardinality that was passed in.)

Here, the compiler knows that concat() needs to take a sequence of length zero or one for both
arguments. The second argument is a sequence with one element, so it is fine. But data() says it
will return a sequence of length zero-or-more. However, in this case, we know that data() will always
return a single element, so we can write:

%% let $e := <wrapper><elem>val</elem></wrapper> return concat(exactly-
one(data($e/elem)), “ue®)
>> value

Troubleshooting static type system errors
This topic provides some guidance for avoiding XQuery static type errors.
Declare return types for functions

If a function is declared without a return type, its return type is assumed to be item()*. Usually, this
is not useful, so you should specify a more specific return type.

Use the type el enrent (*, xs: untyped) for prototypes and quick projects

The type element(*, xs:untyped) is useful for passing XML in a function element or return value.
In addition, using an element name instead of * in the first argument to the element() type (that is,
element(<name>, xs:untyped)) allows the typechecking system to verify that you are using XML
data as you intend to.

The following example illustrates the use of element(*, Xxs:untyped):

let $e-ut as element(*, Xxs:untyped) := <e a="42°">v</e>
return (

data($e-ut), (: fn:data() always returns an atomic value, so the result
in this case is of type xs:untypedAtomic :)

concat(data($e-ut), "alue"), (: xs:untypedAtomic can be used in any
function call where an atomic value is required :)

data($e-ut/@a) div 6 (: operators are function calls, too. Note that
pathing down preserves untypedness :)

)

%
Note: In terms of performance, using untyped variables is slower than using specific types.

Usefn:doc() treat as

fn:doc() is of type document-node()?. You can use document-node()? in a path, so it is
possible to use fn:doc($uri)/my/data. However, fn:data(doc($uri)/my/data) will cause
a static type error, because the path expression does not have a typed value. You can solve this by

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

44

Web Services and XQuery Components and Features | Implementation-defined behavior in XQuery
for Endeca

using (fn:doc($uri) treat as document-node(element(*, xs:untyped)) in place of
an ordinary call to fn:doc().

Do not use el enent () as atype

It is not a good idea to use element() as a type. element() is equivalent to element(*,
xs:anyType nillable). Instead, use xs:untyped.

Xs:anyType and xs:untyped both provide no type information about the contents of an element.
However, marking an element as containing xs:untyped data makes the data eligible for extraction
with fn:data. Any node, including one that contains xs:anyType, can have its data extracted as a
string with fn:string, but fn:data can directly return values in the appropriate types such as
doubles and integers.

Consider using f n: exact | y- one() on path expressions

Consider the following example:

let $e as element(X, xs:untyped) := <x><y>21</y></x>
return exactly-one(data($e/y)) + 21

An element might have more than one child named y. Because $e/y has the type element(y,
xs:untyped)*, fn:data($e/y) has the type xs:untypedAtomic*. The + operator requires both
of its operands to have a cardinality of exactly-one. To eliminate the *, a function call to fn:exact-
ly-one() is required.

fn:doc() behavior

The fn:doc () function retrieves an external document identified by a URI. In order to help system
administrators manage possible security threats, Endeca has implemented a stepped enforcement
scheme to control its use.

The Dgraph flag --xquery_fndoc has three possible values that specify the handling of the fn:doc()
function within XQuery.

The following values are supported:

* none: Causes all calls to fn:doc () to fail. This is the default if --xquery_fndoc is not provided.
« sandbox: Allows fn:doc(), but controls the environment within which it is used. When you call
fn:doc(), its argument is always interpreted as a relative path to the xml subdirectory of the
directory specified with the Dgraph flag —-xquery_path. The path is screened for ".." steps, so

if the function tries to go outside of the xml subdirectory, fn:doc () fails.

e open: At the open level, arguments to fn:doc() are interpreted as URLs and given to a URL
resolver. The URL is not restricted to the local host or local domain. The open setting may impact
security and performance significantly.

> L
77 Note: At this time, fn:doc() with a setting of open is not supported for use in production.

Using fn:doc() with document nodes

Regardless of the Dgraph flag setting, fn:doc() always works when used to retrieve documents
stored at any URI starting with mdex ://documents.

fn:error() behavior

The Endeca implementation of fn:error () signals an error by throwing an exception.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Implementation-defined behavior in XQuery 45
for Endeca

If an exception is thrown during the evaluation of an XQuery main module, either from the MDEX
Engine or by an explicit call to fn:error (), and that exception is not caught in the main module, an
HTML response, with the details of the exception, is returned, with a status code of 500: Internal
Server Error.

As defined in the XQuery spec, the fn:error () function can take zero, one, two, or three optional
arguments. In the case of XQuery for Endeca, the third argument in the three-argument version is
used to specify the error sequence. If an error raised by fn:error () is not caught, the contents of
the third argument, if any, are serialized and returned as the body of the HTTP response. In the case
of SOAP faults generated by the MDEX Web service, this appears in the ErrorSequence element
of the mdata:Fault.

%
Note: MAX API functions do not use the three-argument form of fn:error (), so if the XQuery
code passed in the request to the MDEX Web service does not itself call the three-argument
form of fn:error (), the ErrorSequence element in the SOAP Fault will always be empty.

fn:trace() behavior

The fn:trace() function is useful for debugging XQuery modules. It wraps an expression and writes
its value to an implementation-defined log. In the Dgraph, output generated by calls to fn:trace()
is sent to the Dgraph log file, or to stdout, if the Dgraph is run from a shell.

fn:trace() takes two arguments: the expression you are tracing and a label. The XQuery evaluator
serializes the value of the expression (that is, turns a typed value into a string) and returns the same
value again, so you can transparently annotate your query.

The following example illustrates fn:trace() usage:

trace(<parent><childl/><child2/></parent>/*, "my_label")
dgraph log output:
Request: 1 - trace(<childl/><child2/>, my_label)

4 Note: An XQuery processor is only required to evaluate as much of a query as is necessary to
compute the final result. That means that unused sub-expressions are not guaranteed to be
evaluated, so their values may not be directed to the log. For more information, see the topic
"Endeca XQuery evaluator expression-skipping behavior."

fn:replace() behavior

Endeca's implementation of fn:replace() does not handle subexpression references in the
replacement string exactly as specified in the XQuery specification.

In particular, it fails if it encounters a reference for which there is no corresponding subexpression in
the pattern, instead of replacing it by an empty string. Endeca's implementation of fn:replace()
therefore imposes several constraints, to confine usage of subexpression references to those which
will yield correct results according to XQuery. The following are not permitted:

1. Multiple-digit subexpression references.
2. References to non-existent subexpressions.
3. Digits immediately following a subexpression.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

46 Web Services and XQuery Components and Features | Implementation-defined behavior in XQuery
for Endeca

xs:integer precision details

The Endeca implementation of the type xs: integer limits values to those representable by 64-bit
integers.

xs:decimal precision details

The Endeca implementation of the type xs:decimal limits the precision of values to 18 digits.

xs:string length limitation

The length of xs:string is limited by available memory.

System response to integer overflow

In the event of integer overflow, XQuery for Endeca raises an error (FOAR0002).

Default ordering mode for an empty sequence

The default ordering mode for an empty sequence is empty greatest, which means that when
sorting, an empty sequence is considered the largest of all.

Treatment of external functions

If an external function is found, it is guaranteed either to succeed or to raise an error as defined in the
specification.

If an external function is not found, it raises an err : XPST0017 "function not found" error, and
causes the compilation of the module containing the call to that function to fail.

Treatment of options

The Endeca implementation of XQuery does not recognize any option declarations, as defined by the
XQuery specification.

Treatment of extra digits in numeric operations

Extra digits in numeric operations are rounded according to IEEE round-to-nearest, except in the case
of decimals.

Decimals are rounded away from zero.

Treatment of collation

The Endeca implementation of XQuery supports only default collation, as defined in the XQuery
specification.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Optimizations and error message details a7

The default collation is the Unicode code point collation.

Treatment of illegal characters in XML

The Endeca implementation of XQuery raises an error (SERE0Q003) if the result of a query includes
XML nodes, and the serialization of these nodes would generate characters that are not legal within
XML documents.

For details on illegal characters, see http://www.w3.0org/TR/REC-xml/#charsets.

Casting strings to xs:decimal

If there are too many decimal digits when casting a string to xs :decimal, XQuery for Endeca truncates
them.

XQuery try/catch expressions
This topic describes how XQuery try/catch is implemented in XQuery for Endeca.

The Endeca XQuery implementation supports the try/catch facility specified in XQuery 1.1 Working
Draft 3 (http://www.w3.0rg/TR/xquery-11). Try/catch expressions provide a mechanism for handling
errors raised during the evaluation of an XQuery main module.

Try/catch simplifies the development of Web services in XQuery by enabling the author to handle
application errors appropriately in the service. For example, an XQuery main module implementing a
SOAP Web service might contain an outermost try/catch to intercept any errors raised during evaluation
of the service and produce a response containing an appropriate SOAP Fault.

Errors that are unhandled by a service, and thus escape the XQuery evaluator, are treated as follows:

e The HTTP return code is set to 500.

« If the error is associated with a non-empty error sequence (via the third argument to the fn:error
function), the response body is computed by serializing the error sequence.

« Otherwise, an HTML body is constructed containing the error code (QName), a description, and
any associated details about the error.

The interaction of XQuery try/catch expressions with updating expressions

When try/catch expressions are used with the Endeca implementation of XQuery update, if exceptions
are raised in a try block, any updates appended within that try block are removed from the pending
update list. This rollback is applied regardless of whether the exception is caught at that point, caught
further up the stream, or escapes the program.

Optimizations and error message details

This section provides information about the behavior of optimizations and error messages in the Endeca
XQuery evaluator.

Related Links
Impact of optimizations in the Endeca XQuery evaluator on page 49

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.w3.org/TR/xquery-11

48 Web Services and XQuery Components and Features | Optimizations and error message details

The Endeca XQuery evaluator may reorder or change expressions in a way that is guaranteed
not to change the computed result of an expression.

Treatment of unused variables in let statements on page 50
Unused variables in let statements are pruned completely.

Error message details on page 50
This topic describes the XQuery error message format and points you to additional information
about XQuery error handling.

Tips for optimizing XQuery
This topic contains tips for optimizing XQuery.
&
" Note: Several of the examples in this topic are shown in the format used by the command-line
developer tool, exquery, that is provided by Endeca. You can use exquery in interactive or
file-based mode to test and debug the XQuery functions that you write yourself. More information

about exquery appears in the chapter "Getting Started with Web Services and XQuery for
Endeca."

« Use the ep:time pragma as a profiling tool to find hotspots. Only optimize code that is expensive
to execute. However, keep in mind that the ep:time pragma may produce unintuitive results
because of XQuery optimization. For example, consider the following code:
declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008';

(#ep:time all#) {

let $n = (#ep:time seqstuff#) { reverse(l to 1000000)[1] }
return (#ep:time add#) { $n + 1 }

}

which, run in exquery, emits the following:

TRACE{seqstuff}: 821.809 ms
TRACE{add}: 822.199 ms
TRACE{all}: 822.229 ms
1000001

Not only does this imply that the al I block take less time than the sum of its children, but also
that creating and reversing a million-element list takes as long as performing addition. The cost of
addition is actually trivial, but the XQuery compiler performed let-inlining to produce code
structured like this:
declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008';

(#ep:time all#) {

return (#ep:time add#) { (#ep:time seqstuff#) { reverse(l to

1000000)[1] }» + 1 }

To investigate cases where the optimizer may have interfered with the time pragma, you can put
the time pragma around larger blocks of code to look out for inconsistencies, or use the 1o modifier
in exquery to see what the optimizer does to various kinds of expressions.

* Do not calculate the same value, or walk down the same path, repeatedly in performance-critical
code. For example, instead of:
<packed>

<fish>{$x/categories/foodstuffs/[@type = "Fish"]}</Fish>
<bread>{$x/categories/foodstuffs/[@type = "bread"]}</bread> </packed>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Optimizations and error message details 49

use:

let $foodstuffs := $x/categories/foodstuffs return
<packed>
<fish>{$foodstuffs/[@type = "fish"]}</Fish>
<bread>{$foodstuffs/[@type = "bread"]}</bread>
</packed>

This can save a significant amount of time, if $x or $x/categories or
$x/categories/fToodstuffs has many children. (Common sub-expression elimination has
not yet been implemented.)

< The XQuery evaluator is not optimized to work on large results sets. If you bring a large data set
into XQuery, it will have to be internally materialized and processed, even if XQuery does not emit
a lot of data. Do as much work like filtering and searching as possible in the queries executed by
the Dgraph, rather than in XQuery code.

« Because sorting is expensive, you should not use the order by clause in FLOWR expressions
more than is necessary. In addition, you should minimize the size of the sequence values that are
sorted.

« The Endeca XQuery evaluator does not perform tail-call optimization or limit recursion depth.
Therefore, recursive functions may execute slowly, and deep recursion may cause a stack overflow.

Impact of optimizations in the Endeca XQuery evaluator

The Endeca XQuery evaluator may reorder or change expressions in a way that is guaranteed not to
change the computed result of an expression.

In some cases, evaluation of an expression may be skipped altogether if it does not impact the results.
Such optimizations may cause counter-intuitive side effects, such as the printing of items by fn:trace
and the timing reported by the ep:time pragma.

Consider the following example:

let $foo := fn:trace(“x”, “y”)

return <nothing/>

Since the return value does not depend on the binding of fn:trace(**x”, *“y’’) to the variable
$foo, the call to fn:trace will be elided.

As another example, consider the following expression in which we attempt to time the evaluation of
the path expression $results//DimVal:

let $results := mdex:query(...)
let $dvals := (#Hep:time#) {
$results//Dimval

¥
return $dvals[1], $dvals[2]

Because the variable $results is referenced only once, its value may be inlined at the site of reference
as in the following code:

let $dvals := (#ep:time#) {
mdex:query(...)//Dimval

return $dvals[1], $dvals[2]

This can impact the time reported by the ep:time pragma, which will now time both the call to
mdex :query and the path expression.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

50 Web Services and XQuery Components and Features | About functions

Treatment of unused variables in let statements
Unused variables in let statements are pruned completely.

Keep this in mind when you are debugging related issues, because it is possible to comment out more
than you intend to in the chain of execution.

Error message details

This topic describes the XQuery error message format and points you to additional information about
XQuery error handling.

Errors reported by XQuery for Endeca follow standard XQuery coding conventions. For example, the
message err :XPST0017 "function not found" is issued if an external function is missing. This error
can be broken down into the following parts:

 err indicates that it is an error.

» XP denotes it as an error defined by XPath.

» ST denotes it as a static error, rather than a dynamic error or a type error.

* 0017 is the unique numeric code for this error.

Information about error handling in XQuery can be found here:
http://www._.w3.0rg/TR/2007/REC-xquery-20070123/#errors.

Namespace for proprietary errors

The namespace used for Endeca-proprietary XQuery errors is:
http://www.endeca.com/XQuery/errors/2008

About functions

The XQuery language uses functions to query XML data.
Every XQuery function must have a namespace-qualified name and a return type.

A function may also have one or more typed arguments. XQuery supports three kinds of functions:
built-in functions, external functions, and user-defined functions.

In addition, the Endeca XQuery implementation allows library modules. Library modules make it easier
to group and share related functions, including those you develop yourself.

Related Links

Built-in functions on page 51
The XQuery language defines over 100 built-in functions defined in the XQuery 1.0 and XPath
2.0 Functions and Operators specification.

External functions on page 51
The Endeca XQuery implementation contains numerous external functions for use by
application queries. These external functions add Endeca-specific features to the Endeca
XQuery implementation.

User-defined functions on page 59
You can create your own functions, declare them in library or main modules, and access
them with Web services.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | About functions 51

Built-in functions

The XQuery language defines over 100 built-in functions defined in the XQuery 1.0 and XPath 2.0
Functions and Operators specification.

For this release, the Endeca XQuery implementation supports a large subset of this built-in function
library.

Note that for the fn:normalize-unicode function, NFC (Unicode Normalization Form C) is the only
normalization form supported. That is, the NFKC, NFD, or NFKD normalization forms are not supported.

Unimplemented functions in this release
The built-in functions listed here are not implemented in this release of XQuery for Endeca.

Each function or group of functions is listed with the section of the XQuery 1.0 and XPath 2.0 Functions
and Operators specification that refers to it. See http://www.w3.org/TR/xpath-functions for more
information about these functions.

2.3 fn:nilled

7.4.11 fn:iri-to-uri

7.4.12 fn:escape-html-uri

8.1 fn:resolve-uri

10. Functions and Operators on Durations, Dates and Times
11.1.1 fn:resolve-QName

11.2.5 fn:namespace-uri-for-prefix

11.2.6 fn:in-scope-prefixes

12. Operators on base64Binary and hexBinary
13. Operators on NOTATION

15.5.2 fn:id

15.5.3 fn:idref

16.3 fn:current-dateTime

16.4 fn:current-date

16.5 fn:current-time

16.6 fn:implicit-timezone

External functions

The Endeca XQuery implementation contains numerous external functions for use by application
queries. These external functions add Endeca-specific features to the Endeca XQuery implementation.

External functions are not implemented using XQuery syntax, nor are they defined by the XQuery
specification. For this reason, a query must include declarations of the external functions it uses, either
directly or by importing the library modules that contain the declarations of these functions.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.w3.org/TR/xpath-functions

52

Web Services and XQuery Components and Features | About functions

XQuery function declaration syntax

This topic describes the syntax used to declare XQuery functions. It is only necessary to declare
external functions and user-defined functions.

To declare a function, use the following syntax:

declare function prefix:function-name($parameter-name as parameter-type,

---)

as return-type external;

For more information, see http://www.w3.org/TR/xquery/#FunctionDeclns.

External function library modules

In order to use the Endeca external functions, you must import the correct library modules, or include
equivalent declarations in your query.

These modules are located in SENDECA_MDEX_ROOT/li1b/xquery/internal.

« The library module for eutil functions is eutil . xq.
« The library module for http functions is http.xq.

* The library module for mdex functions, mdex. xq.

;"\
Important: The modification of these files without the express prior written consent of Endeca
is not permitted.

Endeca http functions

The external functions declared in the http.xq library module provide access to the HTTP request
within XQuery. The names of these functions belong to the http namespace.

& , , ,
" Note: For related information, see the topic, "About the HTTP URL format."

Declaring and using http functions
To use any of the http functions in a module, the import statement that follows, or equivalent
declarations, must be included in that module.

import module namespace http =
"http://www.endeca.com/XQuery/http/2008" at "http.xq";

Http function namespace
This topic provides the namespace URI for http functions. The module import statement implicitly
declares the namespace.

The namespace for http functions is:
http://www.endeca.com/XQuery/http/2008
http:get-method()

The http:get-method() function returns the HTTP request method as a string, such as "GET" or
"POST".

Function http:get-method() as xs:string
Signature

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://www.w3.org/TR/xquery/#FunctionDeclns

Function
Summary

Parameters

Example

http:get-path()

Web Services and XQuery Components and Features | About functions 53

The http:get-method() function returns the HTTP request method as a string,
such as "GET" or "POST". The HTTP request method is generally sent from the
HTTP client to the Web server and communicates the purpose of the request.

none
http:get-method() might return the following:
"POST"

The http:get-path() function returns the request path as a string, such as /Zws/myservice.

Function
Signature

Function
Summary

Parameters

Examples

http:get-path() as xs:string

The http:get-path() function returns the request path as a string, such as
/ws/myservice.

none
Consider an echo service. You would use http://server:1234/ws/echo to
execute the service.

Consider a "GET" request to
http://server:1234/ws/echo/some/path/here.

In this case, within the XQuery for the echo service, a call to http:get-path()
would return the string "/ws/echo/some/path/here”.

In addition, here is an example using query parameters:

http://server:1234/ws/ser-
vice?paraml=vall¶m2=val2¶m3=val3

In this case, http:get-path() would return "/ws/service".

http:get-header(header-name)
The http:get-header(header-name) function returns the value of the named HTTP request
header as a string, or an empty sequence if the named header was not present in the current request.

Function
Signature

Function
Summary

Parameters

Example

Endeca Confidential

http:get-header($name as xs:string) as Xxs:string?

The http:get-header (header-name) function returns the value of the named
HTTP request header, such as "Content-Type", as a string, or as an empty sequence
if the named header was not present in the current request.

$header-name as xs:string (this is not case sensitive)
http:get-header (*'Content-Type')might return the following:

"text/plain”

Endeca® MDEX Engine Web Services and XQuery Developer's Guide

54

Web Services and XQuery Components and Features | About functions

http:get-header-names()
The http:get-header-names() function returns the names of the headers present in the current
request as a sequence of strings.

Function Signature |http:get-header-names() as xs:string*

Function Summary | The http:get-header-names() function returns the names of the headers
present in the current request.

Parameters none
Example http:get-header-names() might return a sequence such as the following:

("Content-Type","Content-Length")

http:get-body()
The http:get-body() function returns the HTTP request body as a string, or an empty sequence
if no body was provided.

http:get-body(), together with eutil zparse(xml-string), can be used to access the SOAP
body or other POST body in main modules.

Function http:get-body() as xs:string?

Signature

Function The http:get-body() function returns the HTTP request body as a string, or an
Summary empty sequence if no body was provided.

Parameters none

Example You could use eutil:parse(fn:exactly-one(http:get-body()))to get

the request body as an XML document.

http:get-id()
The http:get-id() function returns the HTTP request ID as a numeric string. This is an
internally-generated ID that is unique for each request during a single run of the Dgraph.

Function Signature http:get-id() as xs:string

Function Summary | The http:get-id() function returns the HTTP request ID. This is an
internally-generated ID that is unique for each request during a single run of the

Dgraph.

Parameters none

Example http:get-id() might return the following:
"9700"

http:get-query()
The http:get-query() function returns the query part of the URL as a string, or an empty sequence
if the URL does not include a query part.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | About functions 55

The query portion of an HTTP URL string is formatted as a series of parameter name=value pairs
separated by ampersands, such as namel=valuel&name2=value2. In the example URL that follows,
http://host:port/ws/service?namel=valuel&name2=value2#tag, the query part is
namel=valuel&name2=value2.

Function Signature |http:get-query() as xs:string?
Function Summary | The http:get-query() function returns the query part of the URL as a string.
Parameters none

Example http:get-query() returns something similar to ""namel=val-
uel&name2=value2".

http:get-query-parameter-names()
The http:get-query-parameter-names() function returns the query parameter names as a
sequence of strings.

The query portion of an HTTP URL string is formatted as a series of parameter name=value pairs
separated by ampersands, such as n1l=v1&n2=v2. The order of the sequence of names returned by
http:get-query-parameter-names() is not specified. Each name in the URL appears only once,
even if it was repeated multiple times in the URL.

Function Signature | http:get-query-parameter-names() as xs:string*

Function Summary | The http:get-query-parameter-names() function returns the query
parameter names as a sequence of strings.

Parameters none
Example http:get-query-parameter-names() might return something like "'val -
uel™.

http:get-query-parameter()
The http:get-query-parameter () function returns the values of a query parameter as a sequence
of strings.

It is possible to have multiple values associated with one parameter name. These values are always
returned in the same order that they appeared in the URL. If the name appears in the query string with
no value, (that is, as "name" rather than "name=value"), the corresponding value appears in the value
sequence as an empty string. The argument is case sensitive.

Function Signature |http:get-query-parameter($name as xs:string) as xs:string*

Function Summary | The http:get-query-parameter () function returns the value of a query
parameter as a sequence of strings.

Parameters $name as xs:string

Example http:get-query-parameter () might return something like ("*val-
uel™,"value2').

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

56

Web Services and XQuery Components and Features | About functions

Endeca eutil functions

The external functions declared in the euti I . xq library modules provide general-purpose extensions
to the Endeca XQuery implementation. These functions do not depend on the Dgraph. The names of
these functions are bound to the eutil namespace.

Declaring and using eutil functions
To use any of the eutil functions, the import statement that follows, or equivalent declarations, must
be included in the query.

import module namespace eutil =
"http://www.endeca.com/XQuery/eutil/2008" at "eutil.xq";

Eutil function namespace
In order to use the eutil functions, you have to declare the namespace URI. The module import
statement implicitly declares the namespace.

The namespace for eutil functions is http://www._endeca.com/XQuery/eutil/2008. In
addition, the euti I :get-stack-trace function requires the stack-trace namespace
(http://www.endeca.com/XQuery/stacktrace/2009).

eutil:eval(xquery-string)

The euti I :eval (xquery-string) function evaluates xquery-string as an XQuery main module

and returns a result. The evaluation is performed with no context item defined. It throws an exception

if xquery-string is not a valid main module, or if the evaluation causes a dynamic error.

_-"ﬁ"

Important: Because xquery-string is compiled each time eutil:eval () is called, use of
this function can be time-consuming. It was designed for development use, and is not supported
for production use.

Function eutil:eval ($xquery-string as xs:string) as item(Q*

Signature

Function The eutil zeval (xquery-string) function evaluates xquery-string as

Summary an XQuery main module and returns a result. It throws an exception if
Xxquery-stringis not a valid main module, or if the evaluation causes a dynamic
error.

Parameters $xquery-string as xs:string

Example eutil:eval ("1 to 4") returns the sequence
1,2,3,4)

Errors Thrown * endeca-err:EVALOO0OL1 if the input to the function was a library module rather

than a main module.

* endeca-err:EVALOOO2 if the input to the function was an updating main
module.

« endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | About functions 57

eutil:eval(xquery-string,context-item)

The eutil eval (xquery-string, context-item) function is similar to

eutil:eval (xquery-string) except that the evaluation is performed with the context item set to
the value of the second argument. The static type of the context item is defined to be "item()". The
context item is a value that the XQuery evaluator makes available to the query that can be set by the

implementation.

M

Important: Because xquery-string is compiled on the fly each time eutil zeval () is
called, it can be time-consuming. It was designed for development use, and is not supported for
production use.

Function
Signature

Function
Summary

Parameters

Example

Errors Thrown

Note

eutil:eval ($xquery-string as xs:string, $context-item as
item()) as item(QO*

The eutil :eval (Xquery-string, context-item) function is similar to
eutil:eval (xquery-string) butin addition sets the context item to the provided
item.

$xquery-query as xs:string, $context-item as item(Q)

eutil:eval("let $item as node() := . treat as node()
return $item/text()", <something>some text</something>)
returns:

"some text"

» endeca-err:EVALOOOL1 if the input to the function was a library module rather
than a main module.

» endeca-err:EVALOOO2 if the input to the function was an updating main
module.

e endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

The context-itemtypeis item(), so you need a treat expression or something
similar to use it as a value with a more specific type.

eutil:parse(xml-string)
The euti I : parse(xml-string) function parses xml-string and returns the resulting document
node. It throws an exception if xml-string is either empty or is not well-formed XML.

eutil:parse(xml-string) can be used with http:get-body() to access the SOAP body or
other POST body in main modules.

Function
Signature

Endeca Confidential

eutil:parse($xml-string as xs:string) as
document-node(element(*, Xs:untyped))

Endeca® MDEX Engine Web Services and XQuery Developer's Guide

58 Web Services and XQuery Components and Features | About functions

Function
Summary

Parameters

Example

Errors Thrown

The eutil :parse(xml-string) function parses xml-string and returns the
resulting document node. It throws an exception if xml-string is either empty or
is not well-formed XML.

$xml-string as xs:string
You could use euti I : parse(fn:exactly-one(http:get-body()))to getthe
request body as an XML document.

« endeca-err:PARS0001 if the input to the function was not valid XML.
* endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

eutil:get-stack-trace()

The eutil :get-stack-trace() function returns a sequence of span elements representing the
stack trace associated with the current exception. The stack trace, by identifying the expression where
an error occurred and the expressions it was called from, makes it easier to debug errors in your

XQuery code.

This function should only be used within a catch block in a try/catch expression. That expression should
be generating human-readable diagnostic information, such as a SOAP fault. If
eutil :get-stack-trace() is used outside of a try/catch expression, it returns an empty sequence.

Function
Signature

Function
Summary

Parameters

Example

Endeca® MDEX Engine

eutil:get-stack-trace() as element(stack-trace:span,
Xs:untyped)*

The eutil :get-stack-trace() function returns a sequence of Span elements.
Each Span element contains a uri attribute that identifies the file in which the error
occurs, as well as elements for the starting and ending location of the error. In a
sequence of Span elements, the first one is the innermost expression where the error
occurred, while any subsequent ones locate enclosing expressions.

none
This example shows an embedded stack trace:

<stack-trace:Span uri="%28 INTERNAL%29%2Fmdex_internal _dimen-
sion_search.xq">
<stack-trace:Start line="20" column="75"/>
<stack-trace:End line="20" column="143"/>
</stack-trace:Span>
<stack-trace:Span uri="%28INTERNAL%29%2Fmdex.xq"">
<stack-trace:Start line="44" column=""2"/>
<stack-trace:End line="44" column="58"/>
</stack-trace:Span>
<stack-trace:Span uri=""">
<stack-trace:Start line="2" column="0"/>
<stack-trace:End line="2" column="136"/>
</stack-trace:Span>
<stack-trace:Span uri="%2Flocaldisk%2Fvvaradha%2Fsand-

Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | About pragmas 59

box%2FDEV%2Ftrunk%2F I inux-x86_64-release%2Finstal 1%2Fx-
query%2Fmdex.xq"*>
<stack-trace:Start line="91" column="15"/>
<stack-trace:End line="91" column="46"/>
</stack-trace:Span>
<stack-trace:Span uri="%2Flocaldisk¥%2Fvvaradha%2Fsand-
box%2FDEV%2Ftrunk%2F I inux-x86_64-release%2Finstal 1%2Fx-
query%2Fmdex.xq"*>
<stack-trace:Start line="157" column="4"/>
<stack-trace:End line="163" column="5"/>
</stack-trace:Span>
<stack-trace:Span uri="%2Flocaldisk¥%2Fvvaradha%2Fsand-
box%2FDEV%2Ftrunk%2F I inux-x86_64-release%2Finstal 1%2Fx-
query%2Fmdex.xq"*>
<stack-trace:Start line="175" column="2"/>
<stack-trace:End line="175" column="24"/>
</stack-trace:Span>

User-defined functions

You can create your own functions, declare them in library or main modules, and access them with
Web services.

-]
7 Note: The creation of XQuery modules, aside from those provided with the product, requires
the purchase of the Advanced Query module. Contact your Endeca representative for details.

About pragmas

Pragmas are implementation-specific language extension facilities that are used to provide information,
such as additional parameters, to the XQuery evaluator.

Pragmas wrap an expression and have complete control over static type checking and evaluation.
The syntax for pragmas is defined in the "Extension Expressions" section of the XQuery specification,
at http://www.w3.0org/TR/xquery/#id-extension-expressions.

Endeca provides several pragmas that were designed to speed application development. All of these
pragmas pass through the static type and dynamic value of the enclosed expression unchanged and
have side effects related to logging.

Pragma namespace
The pragma namespace must be declared in any query that uses pragmas.

The namespace for all of the supported pragmas is http://www.endeca.com/XQuery/prag-
mas/2008.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.w3.org/TR/xquery/#id-extension-expressions

60

Web Services and XQuery Components and Features | About pragmas

ep:emit-dynamic-type

The ep:emit-dynamic-type pragma writes out the dynamic type of the enclosed expression.

When evaluated, ep:emit-dynamic-type causes the dynamic type of the result of evaluating the
enclosed expression to be emitted via the same mechanism as fn:trace(). The pragma contents
are used as the label for the trace.

The following example of ep:emit-dynamic-type:

declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008";

(#ep:emit-dynamic-type my_label#) {
<parent><childl/><child2/></parent>/*

}

would result in the following Dgraph log output:
Request: 1 - fn:trace(element childl , element child2, my_ label)

ep:emit-static-type

The ep:emit-static-type pragma writes out the static type of the enclosed expression.

When evaluated, ep:emit-static-type causes the statically computed type of the enclosed
expression to be emitted via the same mechanism as fn:trace(). The pragma contents are used
as the label for the trace.

The following example of ep:emit-static-type:

declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008";

(#ep:emit-static-type my_label#) {
<parent><childl/><child2/></parent>/*

}

would result in the following Dgraph log output:
Request: 1 - fn:trace((element * of type xs:untyped | none)*, my_label)

ep:stats-timing

The ep:stats-timing pragma tracks the time in milliseconds used to evaluate the enclosed
expression and writes this information in list form to the MDEX Engine Statistics page. This pragma
makes it easier to determine what part of a Web services query is impacting performance.

The ep:stats-timing pragma collects most expensive query statistics for MAX. If you are using
MAX functions, the most expensive MAX queries are collected automatically.

The ep:stats-timing pragma can also be used to collect custom timing data. In such cases, you
use the pragma to create your own lists. The custom timing list appears below the most expensive
MAX invocation list in the XQuery Server Statistics section on the MDEX Engine Statistics page.

When evaluated, ep:stats-timing causes the amount of time spent evaluating the enclosed
expression to be emitted via the same mechanism as fn:trace(). The pragma contents are used
as the label for the trace. The ep:stats-timing pragma is similar to ep:time, except that
ep:stats-timing puts its output into a list.

The format of the ep:stats-timing pragma is as follows:

(#ep:stats-timing my_list#)

"identifying expression”,

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | About pragmas 61

<parent><childl/><child2/></parent>
}

The ep:stats-timing pragma must take a sequence expression, joined by a comma, as the
enclosed expression.
« my_list is the name of the list to add to.
* "identifying expression isthe expression to use to identify the evaluation of the expression.
* <parent><childl/><child2/></parent> is the expresion to time and evaluate.

If the expression inside the ep - stats-timing pragma is not a sequence, an endeca-err:STATO001
error is thrown.

The following example uses the ep : stats-timing pragma to keep track of the top ten most expensive
calls to a function.
declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008";

declare function local:example ($input as xs:string)
as xs:string

(#ep:stats-timing Example Function List#)

$input,
concat(“'Hello, ",$input, "I'")
}
}

This pragma would add an entry to a list entitled Example Function List, with an ID matching the string
value of $input, and a value equal to the time it took to evaluate concat(**Hello, ",$input,

ep:time

The ep:time pragma writes out the time in milliseconds used to evaluate the enclosed expression.
The ep:time pragma writes this information to both the Dgraph log and the MDEX Engine Statistics
page.

When evaluated, ep:time causes the amount of time spent evaluating the enclosed expression to

be emitted via the same mechanism as fn:trace(). The pragma contents are used as the label for
the trace.

The ep:stats-timing pragma is similar to ep:time, except that ep: stats-timing puts its output
into a list.

The following example of ep:time:

declare namespace ep = "http://www.endeca.com/XQuery/pragmas/2008";
(#ep:time my_ label#) {
<parent><childl/><child2/></parent>/*

might result in the following Dgraph log file output:
Request: 1 - fn:trace(1.008 ms, my_ label)

Note: For information about how optimization can make using ep: time confusing, see the
topic "Tips for optimizing XQuery."

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

62 Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine

Working with Web services in the MDEX Engine

This section contains details about using Web services with your Endeca application.

The HTTP URL format

This topic defines the format used by the MDEX Engine for Web services URLSs.

This format is based on the standard URL format of http://<host>:<port>/<path>. In addition
to the required path, an MDEX Engine Web services URL can include optional query parameters and
fragment identifiers.

For example, in the URL http://host:port/ws/service?nl=v1&n2=v2#tag:

e service is a service name that corresponds to an XQuery main module. Service nhames are case
sensitive.

* n1l=v1&n2=v2 is the optional query part of the URL. These parameters may be specified after the
<path> element by appending a ? followed by parameters. Parameters are <name>=<value>
pairs, separated by ampersands (&).

 tag is the optional fragment identifier part of the URL.

EBNF for the URL format

The following EBNF grammar describes the syntax for the URL format.

The EBNF uses the same Basic EBNF notation as the W3C specification of XML, located here:
http://www.w3.org/TR/xml/#sec-notation.

§3R5> := "http://" <host> ":" <port> <path> ["?" <query>] ["#" <fragment-
id>

<path> ::= "/ <prefix> [/ <service-name> ["/' <path-step-list>]]
<prefix> -:= "ws"

<path-step-list> ::= <path-step-name> ['/'" <path-step-list>]

<query> ::= <query-parameter-list>

<query-parameter-list> ::= <query-parameter> ["&" <query-parameter-list>]
<query-parameter> ::= <query-parameter-name> ["="" <query-parameter-value>]

Note these important items about the syntax:

» Reserved items in this syntax include terms used by the grammar, such as ws.

 If <path> == <prefix>, then the list operation is executed to list currently available services.
All quoted strings are case-insensitive.

If <path> includes a service name, the corresponding XQuery main module will be evaluated. If
there is no corresponding main module, then a 404 Not Found message is returned.

If <path> does not include a service name, an administrative operation identified by the query
parameter op will be performed.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://www.w3.org/TR/xml/#sec-notation

Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine 63

Viewing a list of available Web services

The following command returns a list of available Web services modules:
http://<host>:<port>/ws

About URL paths
URL paths are used to invoke various HTTP operations.
There are two kinds of HTTP operations:

< Adminstrative operations
« Configuration operations

» _ _ - ,
7~ Note: For details on these operations, see the Endeca IAP Administrator's Guide.

Web service request and response headers

This topic describes how Web services and XQuery for Endeca handles request and response headers.

For POST requests, the request body is always converted to a string. The client can specify any
encoding supported by ICU, using the charset field of the Content-Type header. Depending upon the
situation, the following behavior occurs:

« If there is no Content-Type header, or the Content-Type header doesn't specify the charset, the
encoding defaults to iso-8859-1, as required by the HTTP spec.

« If a specified encoding is not recognized, an Unsupported Media Type status is returned, with an
HTML body describing the error.

« If the encoding is recognized, but the conversion to string fails, a Bad Request status is returned,
with an HTML body describing the error.

« If a Content-Type header is present, but its value cannot be parsed (including the case where the
media type part is not of the form "<mime-type>/<mime-subtype>"), an Unsupported Media
Type status is returned, with an HTML body explaining the error.

» The media type specified in the request Content-Type header has no effect on request processing,
except in so far as the Web service itself depends on the value of this header.

Within the Web service, the request body can be accessed as an xs:string using http:get-
body (), and this can be parsed as XML using eutil :parse(). The value of the Content-Type
header, if present, can be accessed using http:get-header(*'Content-Type'"). No functions
are provided to access the media type and charset fields separately. For GET requests, http:get-
body () returns an empty sequence.

Web service text encoding

AllWeb service HTTP response bodies are strings encoded as UTF-8, with a Content-Type of “text/xml;
charset=UTF-8".

The string is only well-formed XML if the result of evaluating the XQuery main module is a single
element node, or a document node with a single element node child. The element node can itself have
arbitrary child and descendent nodes.

Main and library modules loaded from disk files must be UTF-8. Files loaded using fn:doc() in
sandbox mode must be UTF-8. POST bodies with Content-Type "charset=UTF-8" must be valid
UTF-8. Validation errors during module load generate warnings, but do not prevent other modules

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

64 Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine

from being loaded, or the MDEX Engine from starting up. UTF-8 validation errors during request
processing cause the request to fail with non-OK status.

Dgraph Web service clients that use non-ASCII characters in their URLs (whether in service names
or in query parameter names or values) must first convert these characters to UTF-8 and then URL
encode the separate UTF-8 bytes to form the actual URL. When a Web service request is received,
the path and the fragment ID are URL decoded. If any of these generates invalid UTF-8, the request
fails with a Bad Request status, and a warning is logged. In addition, all query parameter names and
values are URL decoded. If the name or value of any query parameter cannot be URL decoded to
valid UTF-8, that name-value pair is ignored, and a warning is written to the error log.

WSDL support

There is no explicit support for WSDL in Web services and XQuery for Endeca.

However, it is possible to create a Web service that returns a WSDL document, instead of the normal
Web service result, based on the query parameters in the request. To do so, you can embed the WSDL
text directly in the Web service XQuery code.

In the example that follows, the WSDL is embedded in the XQuery main module:

import module namespace http = "http://www.endeca.com/XQuery/http/2008" at
"http.-xq";

import module namespace eutil = "http://www.endeca.com/XQuery/eutil/2008"

at "eutil.xq";

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/";
declare namespace mdata = "http://www.endeca.com/MDEX/data/1R600";
declare namespace ex = "http://endeca.com/example.xsd";

declare function local:generateFaultResponse($message as xs:string*) as
element(soap:Envelope, Xxs:untyped)
{
<soap:Envelope>
<soap:Body>
<soap:Fault>
<mdata:query-fault>
<mdata:fault-string>{$message}</mdata: faul t-string>
</mdata:query-fault>
</soap:Fault>
</soap:Body>
</soap:Envelope>

}:
declare function local:generateWsdl()

<definitions name="ExampleMDEXQuery"
targetNamespace="http://endeca.com/example.wsdl"
xmIns:es=""http://endeca.com/example.wsdl"
xmlns:esxsd=""http://endeca.com/example.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmIns=""http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema
targetNamespace="http://endeca.com/example._xsd"
elementFormDefault="qualified"

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine 65

xmIns:xsd="http://www_w3.0org/2001/XMLSchema'*>

<I-- request contains just a word to be matched -->
<xsd:element name="‘MatchWord">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="word" type="'xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<I-- response contains just the number of matches -->
<xsd:element name="MatchCount'>
<xsd:complexType>
<xsd:all>
<xsd:element name="'count" type="'xsd:int"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<l-- request message uses an element from the above schema -->
<message nhame="‘CountMatcheslnput'>

<part name="word" element="esxsd:MatchWord"/>
</message>

<I-- response message uses an element from the above schema -->
<message name="'‘CountMatchesOutput'>

<part name="count™ element="esxsd:MatchCount"/>
</message>

<I-- port type specifies the above request and response message -->
<portType name="'ExampleMDEXPortType">
<operation name="CountMatches'>
<input message="es:CountMatcheslnput"/>
<output message="es:CountMatchesOutput"/>
</operation>
</portType>

<I-- binding specifies the above port type and declares this web service
to
be of the document/literal variety -->
<binding name="ExampleMDEXSoapBinding" type="es:ExampleMDEXPortType"'>
<soap:binding style="document' transport="http://schemas.xml-
soap.org/soap/http"/>
<operation name="CountMatches'>
<soap:operation soapAction="http://endeca.com/Example’/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<I-- associate the above port type and binding -->

<service name="ExampleMDEXService">
<documentation>Endeca Example MDEX Query Service</documentation>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

66 Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine

<port name="ExampleMDEXPortType" binding=""es:ExampleMDEXSoapBinding">
<soap:address location="http://endeca.com/mdex"/>
</port>
</service>

</definitions>

¥

(: get the request :)
let $body-str := fn:trace(http:get-body(), "REQUEST")
return

if (fn:exists(http:get-query-parameter("*WSDL™))) then
(: caller used ?WSDL request format -- send WSDL :)
local :generateWsdl ()
else if (fn:empty($body-str)) then
(: no request body -- send SOAP fault :)
local :generateFaul tResponse(""Empty body in SOAP request'™)
else
(: reach into the SOAP request body :)
let $body := eutil:parse(fn:exactly-one($body-str))/soap:Enve-
lope/soap:Body
(: pull out the input message :)
let $query := $body/ex:MatchWord
return
if (fn:count($query) ne 1) then
(: should be exactly one input message :)
local :generateFaul tResponse($query)
else
(: start making a response enveleope :)
fn:trace(
<soap:Envelope>
<soap:Body>

(: setup an MDEX APl call to do the text search :)
let $str := fn:data($query/ex:word)
let $cl :=
<mdata:Query>
<mdata:Searches>
<mdata:Search Key = "English">{$str}</mdata:Search>
</mdata:Searches>
</mdata:Query>
(: call MDEX APl :)
let $result := mdex:navigation-query($cl)
(: Fill in an output message :)
return
<ex:MatchCount>
<ex:count>

{
fn:data($result/mdata:RecordsResult/@TotalRecordCount)

</ex:count>
</ex:MatchCount>

}
</soap:Body>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine 67

</soap:Envelope>, "RESPONSE')

About request IDs

When the Dgraph is operating in Web services mode, it maintains a sequence number that starts with
the value 1 each time the Dgraph is started. Each request that is received gets the next sequential
value appended to its URL. These numbers are known as request IDs or HTTP Exchange IDs.

The request ID is copied in each MDEX Engine request log entry, in certain tables in the MDEX Engine
statistics page, and in certain other sources of logging information, to help correlate this information
with the associated request.

Coordinating logging details for Web services invocations

For Web services invocations, logging and debugging information about queries needs to be gathered
from multiple sources. You can use the request ID to correlate information across logs.

The MDEX Engine provides several tools for tracking and monitoring engine and query performance,
including the following:

* The MDEX Engine request log (also called the Dgraph request log) captures query information,
which you can use to analyze application performance.

* The MDEX Engine Statistics page displays MDEX Engine (Dgraph) performance statistics. It
provides a detailed breakdown of what the Dgraph is doing, and is a useful source of information
about your Endeca implementation’s configuration and performance.

« The Dgraph error log tracks errors at the engine level.

When Web services invocations are used in the MDEX Engine, requests are logged and statistics
generated just as they are for Presentation API queries. However, collecting query details for Web
services invocations is a multi-part process, because the Web services URL contains only the service
name. The bulk of the query is contained in the POST body. To make it easier to correlate queries
across logs for Web services invocations, the MDEX Engine appends a request ID to each query.

For example, if you wanted to gather more information about the most expensive queries in your
application, you would need to look at both the request log and the statistics page. On the MDEX
Engine Statistics page, the Most Expensive Queries tab lists query URLSs by service name and request
ID, as in the example /ws/myservice:57. This request ID corresponds to the HTTP Exchange ID
in the MDEX Engine request log. By looking for HTTP Exchange ID 57, you could retrieve additional
information about the contents of the query from the request log’s Query Body field.

The same HTTP Exchange ID is used by the Dgraph error log and so can be used to track errors as
well.

For detailed information about using both the MDEX Engine Statistics page and the MDEX Engine
Request Log, see the Performance Tuning Guide.

Error code listing

External functions in the Endeca implementation of XQuery raise useful errors. You can use try/catch
expressions to handle such errors.

In almost all cases, the actual errors thrown provide additional detail describing the specific condition
that led to the error. For example, referencing a dimension named Sales that does not exist would
lead to an MDEXO0001 error with the detail message "Dimension 'Sales' does not exist."

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

68 Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine

Errors use the prefix endeca-err and the URI http://www.endeca.com/XQuery/errors/2009.

> . . . , ;
~ Note: This table does not list the errors you might encounter if you attempt to use internal-only
interfaces. Such use is not supported

Code Message When Thrown Meaning

SCHMO0001 | "'Schema valida— | This error can be thrown from | The input to a function did not pass
tion failed” any of the following functions: |schema validation.

» mdex-data:put-record

» mdex-data:put-dimen-
sion-value

* mdex:navigation-
query

» mdex:dimension-
search-query

» mdex:compound-dimen-
sion-search-query

» mdex:record-details-
query

» mdex:aggregate-
record-details-query

PARSO0001 | "It is a dynam-|This error is thrown from the | The input to eutil -parse was
ic error if eutil :parse function. not valid XML.
the argument
to eutil:parse
cannot be
parsed as
XML

MDEX0001 | "Invalid in- This error can be thrown from | The input to a function was

put" any of the following functions: | contextually invalid—that is, it
passed schema validation, but
failed some further logical
validation. For example, a
non-existent dimension name was

» mdex-data:put-record

» mdex-data:put-dimen-
sion-value

- mdex:get-record specified, or a non-existent record
+ mdex-data:delete- spec was provided.

record
» mdex:navigation-

query

» mdex:dimension-
search-query

» mdex:compound-dimen-
sion-search-query

e mdex:record-details-
query

» mdex:aggregate-
record-details-query

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Code
EVALO0001

EVAL0002

STAT0001

EXTF0001

Endeca Confidential

Web Services and XQuery Components and Features | Working with Web services in the MDEX Engine

Message When Thrown

This error is thrown from the
eutil zeval function.

"It is a dynam-
ic error if
the query argu-
ment to eu-
til:-eval com-
piles to a li~
brary module."

This error is thrown from the
eutil zeval function.

"eutil:eval
cannot evalu-
ate an updat-
ing main mod-
ule.”

This error is thrown at
compilation time.

"It is a stat-
ic error if
the expression
enclosed with-
in a stats-
timing pragma
is not a se-
quence expres-

sion."

"External This error can be thrown from
function er- any external function.

ror."

69

Meaning

The input to eutil :eval was a
library module (as opposed to a
main module).

The input to eutil:eval was an
updating main module.

The expression inside a stats-
timing pragma was not a
sequence.

An unexpected internal error
occurred in an external function.
This error is thrown when more
specific errors listed above do not

apply.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide

Chapter 4
About the MDEX API through XQuery

The MDEX API through XQuery (or MAX) exposes MDEX Engine features in XQuery.

MDEX API through XQuery details

MAX is easy to use natively in XQuery, allowing you to perform common tasks for library building such
as combining the results of several queries together, building several related queries for a single click,
restructuring results, and so on.

MAX contains a set of XQuery functions that execute queries of different types. There are six query
types:

* navigation

« dimension-search

e compound-dimension-search

* record-details

e aggregate-record-details

* metadata

The naming convention used is <query-type>-query. These functions take, as input, a document
that represents a query. The input schema for each query type defines the structure of these input
documents.These functions return another document representing the results of the query. The output
schemas define the structure of these documents.

MDEX API through XQuery naming scheme

The naming scheme used for the data types in MAX provides some insight into the relationships
between elements.

All elements used in MAX are in the namespace http://www.endeca.com/MDEX/data/ IR600.
In examples, this is usually assigned the prefix mdata.

The input of each query function (except mdex :metadata-query()) is an element with local name
Query that conforms to a data type ending in Query. For example, the input of
mdex:navigation-query is an element named Query that conforms to the NavigationQuery
data type.

72

About the MDEX API through XQuery | MDEX API through XQuery schema location

The result of each function is an element with local name <QueryType>Resul ts that conforms to a
data type ending in Result. For example, the result of ndex:navigation-query is an element
named NavigationResults that conforms to the NavigationResult data type.

Collections of similar elements are contained in an outer element with a plural name. For example, to
specify which dimension values to select in a navigation query, you create a SelectedDimension-
Valuelds element that contain a DimensionValueld element for each dimension value you are
selecting. For example:

<Query xmlns="http://www.endeca.com/MDEX/data/1R600">
<SelectedDimensionValuelds>
<DimensionValueld>8026</DimensionValueld>
</SelectedDimensionValuelds>
</Query>

To find out which filters were applied from the results of a query, look under the AppliedFilters
element. For example:

let $numFiltersApplied := fn:count($results/mdata:AppliedFilters/*)

Any data type ending in List can only contain elements of the same type (or that are extensions of
the same type). In addition, all elements that conform to a type ending in List have a plural name.
They may also contain attributes that relate to all of the elements that they contain.

In the following example, the records in a navigation query are contained in an element named Records,
which conforms to the data type RecordList. This element contains only elements of the type
Record.

for $record in $results/mdata:RecordsResult/mdata:Records/*

return
$record/@ld

Note that in the example above, you could use either * or mdata:Record after ndata:Records,
because all children of the Records element can be treated as a record.

All attributes of a dimension value and properties on a record are contained in an element named
Attributes, which conforms to the data type AttributeList. All children of this element can be
treated as simple key-value pairs, because an AttributeDimensionValue is an extension of
Property. For example:

for $attribute in $record/mdata:Attributes/*

return
fn:concat($attribute/@Key, "-", fn:data($attribute))

Note that the * after mdata:Attributes will give you both the properties and the dimension values.

Any element with a type ending in List will not appear in the results if it is empty, although it may
appear if it contains relevant attributes. The element will appear, even if it is empty, if it is a direct child
of the Resul ts element.

Empty elements with a type ending in List are allowed in the input of a function.

MDEX API through XQuery schema location

The MAX installation contains the following schemas.

e aggregate_record_details_query.xsd
e compound_dimension_search_query.xsd
e dimension_search_query.xsd

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | About the internal namespace 73

» mdex.xsd
* navigation_query.xsd
e record_details_query.xsd

The schemas are located in the $ENDECA_MDEX_ROOT/conf/schema directory.

& L . . .
77 Note: This directory also contains other schemas intended for internal use only.

About the internal namespace

Anything in the namespace internal is not intended for public consumption and may change from
release to release. Direct usage of these features by custom XQuery logic is not supported.

Understanding error messages in the MDEX API through
XQuery

This topic explains some MAX error messages.

Passing invalid Dgraph arguments in Web services mode
If your query includes arguments that pass schema validation but are invalid to the Dgraph, you will
see the following message:

"exception encountered while executing external function "internal:query”,
caused by Error:[MDEX] There was a problem processing the requested query."

This might appear if you specify a rollup key for a dimension that is not enabled for rollup, or if you
specify a record ID that does not exist in a RecordDetailsQuery. If you sent the equivalent query in
Presentation API mode, you would receive a 404 message.

To get more information about the problem that caused this error, look at the Dgraph error log.

Schema validation errors

When schema validation fails, you may receive a 500 error similar to the following:

WARN 09/23/09 15:08:09.949 UTC (1222182489949) DGRAPH {dgraph}: Exchange
38 returned 500 Internal Server Error™: exception encountered while execut-
ing external function "internal:schema-validate-query-input®, caused by
Invalid xml: Element "SelectedDimensionValuelds® should be qualified

In order to obtain more specific information, you can check your query input against the schema. You
may want to use a schema validator like the one freely available from W3C at
http://www.w3.0rg/2001/03/webdata/xsv to do this. The schemas for MAX, mdex_internal_*_xq
and mdex. xq, are located in the $ENDECA_MDEX_ROOT/lib/xquery/internal directory.

About mdex functions

The functions declared in the mdex . xq library provide access to the internal API of the MDEX Engine.
The names of these functions are bound to the mdex namespace.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.w3.org/2001/03/webdata/xsv

74 About the MDEX API through XQuery | About mdex functions

About declaring and using mdex functions

To use any of the mdex functions, the import statement that follows, or equivalent declarations, must
be included in the query.

import module namespace mdex =
"http://www.endeca.com/XQuery/mdex/2008" at "'mdex.xq";

Mdex function namespace

In order to use mdex functions, you have to declare the namespace URI. The module import statement
implicitly declares the namespace.

The namespace declaration for mdex functions is the following.
declare namespace mdex = "http://www.endeca.com/XQuery/mdex/2008";

In addition, you need to declare the namespace for the XML used in arguments and return values for
mdex functions as follows:

declare namespace mdata = "http://www.endeca.com/MDEX/data/IR600";

mdex:add-navigation-descriptors()

The mdex:add-navigation-descriptors function allows you to determine the navigation state
produced by following a navigation or refinement from an intial state.

This function might be used, for example, to allow refinements to be rendered as unique URL paths
in an application.

mdex:add-navigation-descriptors($currentDescriptors
as xs:string*, $refinements as xs:string+) as
Xs:string*

Function Signature

Function Summary Returns the navigation state that would result from starting at the
navigation state represented by the dimension values in
$currentDescriptors, and following the refinements represented
by the dimension values in $refinements.

Parameters $currentDescriptors: a sequence of one or more dimension value
IDs, representing the starting navigation state

$refinements: a sequence of one or more dimension value IDs,
representing the refinements to follow from the starting navigation state.

Return Values Returns a sequence of dimension value IDs, representing the resulting
navigation state.

Example The following example returns the navigation state that would result
from following a refinement for dimension value 10025 from a navigation
state in which dimension values 10002 and 18003 were already selected.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | About mdex functions 75

mdex:add-navigation-descriptors((10002,18003),
(10025))

mdex:aggregate-record-details-query()

The mdex:aggregate-record-detai ls-query() function executes an aggregate record details

query.

Function Signature mdex:aggregate-record-details-query($query as
element(mdata:Query, xs:untyped)) as
element(mdata:Results, xs:untyped)

Function Summary Executes an aggregate record details query.

Parameters $query: An element representing an aggregate record details query.
This element should be of type
mdata:AggregateRecordDetai IsQuery.

Return Values Returns a Resul ts element of type
mdata:AggregateRecordDetai I sResult containing the results
of the query.

Example The following example returns the results from an aggregate record
details query for the record with ID 10000, rolled up on the property
WineType.

mdex :aggregate-record-details-query(<Query 1d="10000"
AggregationKey="WineType'/>)

Errors Thrown « endeca-err:SCHMOO0O01 if the input to the function did not pass

schema validation.

e endeca-err:MDEXO0O0O01 if the input to the function contextually
invalid.

» endeca-err:EXTFOO0O01 if an unexpected internal error of a
different nature occurred.

For more details about the errors thrown by external functions, see the
topic "Error code listing."

mdex:compound-dimension-search-query()

The mdex:compound-dimension-search-query() function executes a compound dimension
search query.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

76 About the MDEX API through XQuery | About mdex functions

Note: Dimension names have to match the NCName syntax rule defined in the XML specification.
In particular, there can be no spaces or colons in hames. If dimension names are not NCName
compliant, Dgidx issues a warning to its log file, but execution is not halted.

mdex : compound-dimension-search-query($query as
element(mdata:Query, xs:untyped)) as
element(mdata:Results, xs:untyped)

Function Signature

Function Summary Executes a compound dimension search query.

Parameters $query: An element representing a compound dimension search query.
This element should be of type
mdata:CompoundDimensionSearchQuery.

Return Values Returns a Resul ts element of type
mdata: CompoundDimensionSearchResult containing the results
of the query.

Example The following example returns the results from a compound dimension
search query for the term Merlot.

mdex :compound-dimension-search-query(
<Query>
<CompoundDimensionSearch>
Merlot
</CompoundDimensionSearch>
</Query>)

Errors Thrown » endeca-err:SCHMOO0O01 if the input to the function did not pass

schema validation.
» endeca-err:MDEXO0001 if the input to the function contextually
invalid.

» endeca-err:EXTFOO00L1 if an unexpected internal error of a different
nature occurred.

For more details about the errors thrown by external functions, see the
topic "Error code listing."

mdex:dimension-search-query()
The mdex:dimension-search-query() function executes a dimension search query.
Note: Dimension names have to match the NCName syntax rule defined in the XML specification.

In particular, there can be no spaces or colons in names. If dimension names are not NCName
compliant, Dgidx issues a warning to its log file, but execution is not halted.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | About mdex functions 77

mdex:dimension-search-query($query as
element(mdata:Query, xs:untyped)) as
element(mdata:Results, xs:untyped)

Function Signature

Function Summary Executes a dimension search query.

Parameters $query: An element representing a dimension search query. This
element should be of type mdata:DimensionSearchQuery.

Return Values Returns a Results element of type
mdata:DimensionSearchResult containing the results of the query.

Example The following example would return the results from a dimension search

query for the term Merlot.
mdex:dimension-search-query(
<Query>

<DimensionSearch>

Merlot

</DimensionSearch>

</Query>)

Errors Thrown » endeca-err:SCHMOO0O01 if the input to the function did not pass

schema validation.

» endeca-err:MDEX0Q0O01 if the input to the function contextually
invalid.

e endeca-err:EXTFO001 if an unexpected internal error of a
different nature occurred.

For more details about the errors thrown by external functions, see the
topic "Error code listing."

mdex:dimension-value-id-from-path(dimension-value-path)
The mdex:dimension-value-id-from-path function takes the path of a dimension value and
returns the dimension value ID as a string.

%
Note: Dimension names have to match the NCName syntax rule defined in the XML specification.
In particular, there can be no spaces or colons in names.

Function Signature | mdex:dimension-value-id-from-path($path as xs:string+) as
Xs:string

Function Summary | The mdex:dimension-value-id-from-path function is useful when you
don't know a precise dimension value ID. It takes a single sequence of string
values corresponding to the path to a dimension value, and returns the dimension
value ID as a string.

Parameters $dimension-value-path as xs:string+

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

78 About the MDEX API through XQuery | About mdex functions

Examples

Note: The mdata namespace used below contains all of the elements in
the output.

The following example would return the dimension value ID for Merlot.

mdex:dimension-value-id-from-path((""Wine_Type',"Red", ""Mer-
lot™))

Notes The extra set of parentheses around $dimension-value-path is necessary
because it represents a single sequence argument, and not string of separate
arguments.

Errors Thrown » endeca-err:SCHMOO0O1 if the input to the function did not pass schema

validation.

» endeca-err:MDEX00O01if the dimension value is not under the specified

parent or does not exist.

» endeca-err:EXTFOO001 if an unexpected internal error of a different nature

occurred.

mdex:metadata-query()

The mdex:metadata-query function retrieves static MDEX Engine metadata such as property data,
sort keys, search keys, and aggregation keys.

mdex:metadata-query() as element(mdata:Results,

Function Signature xs:untyped)

Function Summary Executes a metadata query.
Parameters none
Return Values Returns a Resul ts element of type mdata:MetadataResult

containing static MDEX Engine metadata such as property data, sort
keys, search keys, and aggregation keys.

Example The following example would return the MDEX Engine metadata.

mdex :metadata-query()

mdex:navigation-query()

The mdex:navigation-query() function executes a navigation query.

mdex:navigation-query($query as element(mdata:Query,

Function Signature xs:untyped)) as element(mdata:Results, xs:untyped)

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Function Summary

Parameters

Return Values

Example

Errors Thrown

About the MDEX API through XQuery | About mdex functions 79

Executes a navigation query.

$query: An element representing a navigation query. This element should
be of type mdata:NavigationQuery.

Returns a Results element of type mdata:NavigationResult
containing the results of the query.

The following example return the results from a root query.

mdex:navigation-query(<Query/>)

» endeca-err :SCHMOO0O01 if the input to the function did not pass
schema validation.

» endeca-err:MDEX0001 if the input to the function contextually
invalid.

» endeca-err:EXTFOO0O0L1 if an unexpected internal error of a different
nature occurred.

For more details about the errors thrown by external functions, see the
topic "Error code listing."

mdex:record-details-query()

The mdex: record-details-query() function executes a record details query.

Function Signature

Function Summary

Parameters

Return Values

Example

Errors Thrown

Endeca Confidential

mdex:record-details-query($query as
element(mdata:Query, xs:untyped)) as
element(mdata:Results, xs:untyped)

Executes a record details query.

$query: An element representing a record details query. This
element should be of type mdata:RecordDetai IsQuery.

Returns a Resul ts element of type
mdata:RecordDetai IsResult containing the results of the query.

The following example would return the results from a record details
query for the record with ID 10000.
mdex:record-detai ls-query(<Query 1d="10000"/>)

» endeca-err :SCHMO0O01 if the input to the function did not pass
schema validation.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide

80 About the MDEX API through XQuery | MDEX API through XQuery data types

» endeca-err :MDEX00O01 if the input to the function contextually
invalid

» endeca-err:EXTFO0OL1 if an unexpected internal error of a
different nature occurred.

For more details about the errors thrown by external functions, see
the topic "Error code listing."

MDEX API through XQuery data types

The following data types make up the schema(s).
Keep in mind the following points:

* Any data type that appears in the input can also be found in the output.
» IfaminOccurs is specified for an element but no maxOccurs is specified, the default maxOccurs
is 1, and not unbounded.

AdjustmentType data type

AdjustmentType is a simple type that enumerates the possible adjustments to a search term, such
as word-break analysis or spelling correction, made by the MDEX Engine while processing a search.

<simpleType name="AdjustmentType'>
<restriction base="'string'>
<enumeration value="Phrasing"'/>
<enumeration value="SpellingCorrection"/>
<enumeration value="WordBreak'/>
</restriction>
</simpleType>

AggregateRecord data type
The AggregateRecord data type represents an aggregated record in the MDEX Engine.

An aggregated record represents a collection of one or more records that have been grouped by a
property or dimension value, referred to as the aggregation key, or rollup key.

<complexType name="‘AggregateRecord">
<complexContent>
<extension base="tns:Record">
<sequence>
<element name="DerivedProperties"” type="tns:PropertyList™ minOc-
curs="0" maxOccurs="1" />
<element name="'ConstituentRecords' type="‘tns:RecordList" />
</sequence>
<attribute name="RecordslnAggregate" type="unsignedLong" use="'re-
quired'/>
</extension>
</complexContent>
</complexType>

Attributes:

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 81

RecordslInAggregate Number of records in the aggregate record.

AggregateRecordDetailsAppliedFilters data type

The AggregateRecordDetai IsAppliedFi lters data type represents the filters that were applied
to the navigation state by the AggregateRecordDetai IsQuery.

<complexType name="AggregateRecordDetailsAppliedFilters'>
<seguence>
<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />
<element name="EqlExpression" type="tns:NonEmptyString" minOccurs="0"

/>
<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>
<element name="RangeFilters"™ type=""tns:RangeFilterList™ minOccurs="0"
/>
</sequence>
</complexType>

AggregateRecordDetailsQuery data type

The AggregateRecordDetai IsQuery data type contains the elements used by aggregate record
queries.

In the list of elements below:

* EqlExpression is a string written in the Endeca Query Language (EQL). It cannot be
URL-escaped as it is in the Navigation API. For more information about EQL, see the Advanced
Development Guide.

* RecordFilter is an expression that restricts the results of the query.

For details on the other elements, see the corresponding data type entry.

<complexType name="AggregateRecordDetailsQuery">
<all>
<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />
<element name="EqlExpression" type="tns:NonEmptyString" minOccurs="0"

/>
<element name="RecordFilter" type="tns:NonEmptyString"” minOccurs="0"
/>
<element name="RangeFilters" type="'tns:RangeFilterList" minOccurs="0"
/>
<element name="'Sorts" type=""tns:SortList"™ minOccurs="0" />
</all>
<attribute name=""AggregationKey" type="tns:NonEmptyString" use="‘required"
/>
<attribute name="1d" type="tns:NonEmptyString" use="‘required"” />
</complexType>
Attributes:
AggregationKey The property upon which the records are aggregated.
Id The ID of the aggregate record.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

82 About the MDEX API through XQuery | MDEX API through XQuery data types

AggregateRecordDetailsResult data type

The AggregateRecordDetai IsResult data type represents the results of a query for a single
aggregate record retrieved from the MDEX Engine.

<complexType name="'AggregateRecordDetailsResult'>
<sequence>
<element name="Dimensions”™ type="tns:DimensionList"” />
<element name="'AggregateRecord” type='tns:AggregateRecord" />
<element name="AppliedFilters" type="tns:AggregateRecordDetailsApplied-
Filters"™ />
</sequence>
<attribute name=""AggregationKey" type="tns:NonEmptyString" use="‘required"
/>
</complexType>

Attributes:

AggregationKey The property upon which the records are aggregated.

AggregationKey data type

The AggregationKey data type represents the name of the property by which records should be
aggregated.

<complexType name="‘AggregationKey">
<simpleContent>
<extension base="tns:NonEmptyString">
<attribute name="'RecordsPerAggregateRecord" type=""tns:RecordsPerAggre-
gateRecord" />
</extension>
</simpleContent>
</complexType>

Attributes:

RecordsPerAggregateRecord The number of records returned per aggregated record:
all, none, or one.

AggregationKeyList data type

The AggregationKeyList data type represents a list of names of the property by which records
should be aggregated.

<complexType name="AggregationKeyList'>
<sequence>
<element name="AggregationKey" type=""tns:NonEmptyString"” minOccurs="1"
maxOccurs=""unbounded" />
</sequence>
</complexType>

AlternativePhrasingMode data type

The AlternativePhrasingMode data type enumerates the possible values for alternative phrasing
mode.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 83

This indicates whether the MDEX Engine uses one of the alternative phrasings it has computed instead
of the end user's original query when computing the set of documents to return.

<simpleType name="AlternativePhrasingMode>
<restriction base="'string'">
<enumeration value="ComputeAlternativePhrasing” />
<enumeration value="RewriteWithAlternativePhrasing" />
<enumeration value="Disabled" />
</restriction>
</simpleType>

AnalyticsResult data type

The AnalyticsResult data type represents the Analytics results returned by the MDEX Engine.

An AnalyticsResult element contains AnalyticsStatementResult elementsifan Analytic-
sExpression was used. There is one AnalyticsStatementResult per Analytics statement in
the request.

<complexType name="AnalyticsResult'>
<sequence>
<element name=""AnalyticsStatementResult” type=""tns:AnalyticsStatementRe-
sult™ minOccurs="0" maxOccurs=""unbounded”™ />
</sequence>
</complexType>

Note: When an Analytics statement is syntactically invalid, a dynamic error is raised within
XQuery.

AnalyticsStatementResult data type

The AnalyticsStatementResult data type represents the business rule results returned by the
MDEX Engine.

Each AnalyticsStatementResult represents an Analytics table. There is one per Analytics
statement. AnalyticsStatementResult elements contain records in the same formation as records in
navigation.

<complexType name="AnalyticsStatementResult">
<complexContent>
<extension base="tns:RecordList">
<attribute name="Name' type=""tns:NonEmptyString"” use="‘required"” />
<attribute name="TotalRecordCount" type="'unsignedlLong" use="required"

/>
</extension>
</complexContent>

</complexType>

Attributes:

Name The name of the result, as specified by the Analytics statement.
In the example RETURN ""Best Wineries'" AS, "Best
Wineries" is the value of the Name attribute.

TotalRecordCount The total record count.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

84 About the MDEX API through XQuery | MDEX API through XQuery data types

AttributeDimensionValue data type

The AttributeDimensionValue data type represents a dimension value.

<complexType name="AttributeDimensionValue'>
<simpleContent>
<extension base="tns:Property'>
<attribute name="Dimensionld"” type="tns:DimensionValueld" use="re-
quired” />
<attribute name="I1d" type="tns:DimensionValueld" use="required" />

</extension>
</simpleContent>
</complexType>
Attributes:
Dimensionid The ID of the dimension this dimension value belongs to.
Id The ID of the dimension value itself.

AttributelList data type

The AttributelList data type is used to encapsulate dimension values and property values.

<complexType name="AttributeList'>
<choice minOccurs="1" maxOccurs="unbounded’ >
<element name="‘AssignedDimensionValue" type="tns:AttributeDimensionValue"
/>
<element name="Property" type=""tns:Property" />
</choice>
</complexType>

AttributeMetadata data type

The AttributeMetadata data type represents metadata describing a property's type and whether
it can be searched, sorted, or can act as a aggregation key.

<complexType name="AttributeMetadata’>
<sequence>
<element name="Properties” type="tns:PropertyList"” minOccurs="0" maxOc-
curs="1" />

</sequence>

<attribute name="Name' type=""tns:NonEmptyString'" use="required" />
</complexType>
Attributes:
Name The name of the property that the metadata applies to.

AttributeMetadatalList data type

The AttributeMetadatal i st data type represents static metadata about dimensions and properties.

<complexType name="AttributeMetadatalList'>
<sequence>
<element name="AttributeMetadata" type=""tns:AttributeMetadata™ minOc-
curs="1" maxOccurs=""unbounded" />

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 85

</sequence>
</complexType>

BetweenkFilter data type

The BetweenFi I ter data type represents the conditions that can be set on a "between" range filter.
The two bounds in BetweenFi Iter are non-inclusive, and can be used with geocode properties.

<complexType name="BetweenFilter'>
<complexContent>
<extension base='"tns:RangeFilter'>
<sequence>
<element name="‘GeocodeReference" type=""tns:Geocode'" minOccurs="0"
maxOccurs="1" />
</sequence>
<attribute name="LowerBound' type="double" />
<attribute name="UpperBound"™ type="double" />
</extension>
</complexContent>
</complexType>

Attributes:

LowerBound The lower bound of the filter.

UpperBound The upper bound of the filter.

BusinessRule data type

The BusinessRule data type is a result data type representing a dynamic business rule. A business
rule allows certain records to be promoted and displayed to users as they search and navigate within
a data set.

<complexType name="BusinessRule'>
<seqguence>
<element name="SelectedDimensionValuelds"™ type=""tns:DimensionValuel-
dList"” minOccurs="0" maxOccurs="1" />
<element name="Properties" type="tns:PropertyList" minOccurs="0"
maxOccurs="1" />
<element name="Records" type="tns:RecordList" minOccurs="0" maxOc-
curs="1" />
</sequence>
<attribute name="I1d" type="'string" use="required"” />
<attribute name="NavigationStateRecordCount' type="‘unsignedLong"
use=""required" />
<attribute name="SortAttribute" type='string" use="optional" />
<attribute name="Style"™ type="string" use="required” />
<attribute name="Title" type="string" use="required” />
<attribute name='"Zone'" type="'string" use="'required" />
<attribute name="SortDirection" type=""tns:SortDirection" use="optional"
/>
</complexType>

Attributes:

id The rule ID.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

86 About the MDEX API through XQuery | MDEX API through XQuery data types

NavigationStateRecordCount |The number of records in the navigation state.

SortAttribute Attribute upon which to sort rules (typically name or priority).
Style The name of the rule's style.

Title The rule's title.

Zone The rule's zone.

SortDirection Ascending or Descending.

BusinessRuleList data type

The BusinessRuleList data type represents a collection of dynamic business rules.

<complexType name="BusinessRuleList">
<sequence>
<element name="BusinessRule' type="tns:BusinessRule'" minOccurs="1"
maxOccurs="1" />
</sequence>
</complexType>

BusinessRulePreviewTime data type

The BusinessRulePreviewTime data type represents the preview time for a business rule time
trigger.

<simpleType name='"BusinessRulePreviewTime'>
<restriction base="dateTime">
<pattern value="[0-9]1{4}-[0-9]1{2}-[0-9]1{2}T[0-91{2}: [0-9]1{2}: [0-91{2}"/>

</restriction>
</simpleType>

BusinessRulesResult data type

The BusinessRulesResult data type represents the business rule results returned by the MDEX
Engine.

<complexType name="BusinessRulesResult'>
<sequence>
<element name="BusinessRulesFilter" type=""tns:NonEmptyString" minOc—
curs="0" />
<element name="BusinessRulesPreviewTime" type="dateTime’™ minOccurs="0"
/>
<element name="BusinessRules" type="tns:BusinessRuleList" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
</complexType>

CompoundDimensionSearch data type

The CompoundDimensionSearch data type represents the search terms used to perform a keyword
search and retrieve dimension values with matching names.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 87

<complexType name="'CompoundDimensionSearch">
<simpleContent>
<extension base="tns:NonEmptyString'>
<attribute name="Mode'" type="'tns:SearchMode" />
</extension>
</simpleContent>
</complexType>

Attributes:

Mode The search mode, one of: All, AllAny, AllPartial, Any, Boolean, Partial,
PartialMax, or Unknown.

CompoundDimensionSearchAppliedFilters data type

The CompoundDimensionSearchAppliedFilters data type represents the query properties
defined by the CompoundDimensionSearchQuery.

<complexType name="CompoundDimensionSearchAppliedFilters'>

<sequence>
<element name="EqlExpression' type="tns:NonEmptyString" minOccurs="0"
/>
<element name="RangeFilters”™ type=""tns:RangeFilterList” minOccurs="0"
/>

<element name="RecordFilter" type=""tns:NonEmptyString"” minOccurs="0"
/>
<element name="'SearchReport" type="tns:SearchReport"™ minOccurs="0" />
<element name="'SearchWithinDimensionValuelds' type=""tns:DimensionValuel-
dList” minOccurs="0" />
<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />
<element name="Languageld" type='""tns:NonEmptyString" minOccurs="0" />
</sequence>
</complexType>

CompoundDimensionSearchQuery data type

The CompoundDimensionSearchQuery data type contains the elements used by compound
dimension search queries.

In the list of elements below:

« DimensionValuesPerDimension is the the number of dimension value results to return per
dimension. This is useful when the number of matching dimension values is high and you want to
limit it.

« EqlExpression is a string written in the Endeca Query Language (EQL). It cannot be
URL-escaped as it is in the Navigation API. For more information about EQL, see the Advanced
Development Guide.

* RecordFilter is an expression that restricts the results of the query.

» SearchWithinDimensionValuelds is a list of the IDs of the dimension values within which
you want to limit your search. For DimensionSearchQuery, this is a single value, whereas for
CompoundDimensionSearchQuery, itis a list of values.

« Languageld is a string that allows per-query specification of the language to parse search terms
in.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

88 About the MDEX API through XQuery | MDEX API through XQuery data types

For details on the other elements, see the corresponding data type entry.

<complexType name=""CompoundDimensionSearchQuery >
<all>
<element name="DimensionValuesPerDimension" type="unsignedLong"” minOc-
curs="0" />
<element name="EqlExpression" type="tns:NonEmptyString" minOccurs="0"

/>

<element name="RangeFilters"™ type=""tns:RangeFilterList™ minOccurs="0"
/>

<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>

<element name="'CompoundDimensionSearch" type=""tns:CompoundDimension-
Search"™ />

<element name="'SearchWithinDimensionValuelds' type=""tns:DimensionValuel-
dList” minOccurs="0" />

<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />

<element name="Languageld" type='"tns:NonEmptyString" minOccurs="0" />

</all>

</complexType>

CompoundDimensionSearchResult data type

The CompoundDimensionSearchResult data type represents the results of a compound dimension
search query.

<complexType name=""CompoundDimensionSearchResult">
<sequence>
<element name="Dimensions" type="tns:DimensionList" />
<element name="MatchingCompoundDimensionsResult" type="tns:MatchingCom-
poundDimensionsResult" />
<element name=""AppliedFilters" type=""tns:CompoundDimensionSearchApplied-
Filters™ />
</sequence>
</complexType>

CompoundDimensionValueList data type

The CompoundDimensionValuelList data type represents a list of dimension values associated
with a result from a compound dimension search query.

<complexType name="‘CompoundDimensionValueList'>
<sequence>
<element name="MatchingCompoundDimensionValue" type=""tns:MatchingDimen-
sionValueList" minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

Dimension data type

The Dimension data type is a core component of a navigation state query. It does not represent the
full dimension—just the portion of it that is relevant to the query.

<complexType name="Dimension'>
<sequence>
<element name="DimensionValue'" type="tns:DimensionValue" />

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 89

</sequence>

<attribute name="Name' type="'string" use="‘required"” />

<attribute name="1d" type="tns:DimensionValueld" use="required" />
<attribute name="MultiSelect" type="tns:MultiSelect" use="‘required" />
<attribute name="GroupName' type="'string" use="optional" />

</complexType>

Attributes:

Name The name of the dimension value.

Id The dimension value ID.

MultiSelect Tagging a dimension as multi-select.

GroupName The name of the dimension group that this dimension is part of, if any.

DimensionList data type

The DimensionList data type represents a list of dimensions.

<complexType name="DimensionList'>
<seguence>
<element name="Dimension" type="tns:Dimension" minOccurs="0" max0c-
curs=""unbounded" />
</sequence>
</complexType>

DimensionSearch data type

The DimensionSearch data type represents the search terms that can be used to perform a keyword
search and retrieve dimension values with matching names.

<complexType name="DimensionSearch">
<simpleContent>
<extension base="tns:NonEmptyString'>
<attribute name="RelevanceRankingStrategy" type='tns:NonEmptyString"
/>
<attribute name='"Mode'" type='"tns:SearchMode™ />
</extension>
</simpleContent>
</complexType>

Attributes:

RelevanceRankingStrategy | The relevance ranking strategy, composed of one or more
pre-defined relevance ranking modules.

Mode The search mode, one of: All, AllAny, AllPartial, Any, Boolean,
Partial, PartialMax, or Unknown.

DimensionSearchQuery data type

The DimensionSearchQuery data type can be used to perform a keyword search and retrieve
dimension values with matching names.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

90

About the MDEX API through XQuery | MDEX API through XQuery data types

Ata minimum, in order to execute a dimension search, the query has to be provided with search terms.
Additionally, DimensionSearchQuery has a number of properties that provide an application greater
control over the dimension values that are returned. For example, results may be limited to dimension
values from a single dimension by providing the ID of the dimension in the SearchWithinDimen-
sionValueld element.

In the list of elements below:

* DimensionValuesPerDimension is the the number of dimension value results to return per
dimension. This is useful when the number of matching dimension values is high and you want to
limit it.

* EqlExpression is a string written in the Endeca Query Language (EQL). It cannot be
URL-escaped as it is in the Navigation API. For more information about EQL, see the Advanced
Development Guide.

* RecordFilter is an expression that restricts the results of the query.

» SearchWithinDimensionValueld is the ID of the dimension within which you want to limit
your search. The ID of the root dimension may be used. For DimensionSearchQuery, this is a
single value, whereas for CompoundDimensionSearchQuery, it is a list of values.

« Languageld is a string that allows per-query specification of the language to parse search terms
in.

For details on the other elements, see the corresponding data type entry.

<complexType name="DimensionSearchQuery'>
<all>
<element name="DimensionValuesPerDimension" type="unsignedLong"” minOc-
curs="0" />
<element name="EqlExpression" type="tns:NonEmptyString" minOccurs="0"

/>

<element name="RangeFilters"™ type=""tns:RangeFilterList” minOccurs="0"
/>

<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>

<element name="DimensionSearch” type='tns:DimensionSearch" />

<element name="'SearchWithinDimensionValueld" type=""tns:DimensionValueld"
minOccurs=""0" />

<element name="SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />

<element name="Languageld" type='""tns:NonEmptyString" minOccurs="0" />

</all>

</complexType>

DimensionSearchAppliedFilters data type

The DimensionSearchAppliedFi lters data type represents filters that were applied to the
navigation state defined by the DimensionSearchQuery.

<complexType name="DimensionSearchAppliedFilters">
<sequence>
<element name="EqlExpression™ type="tns:NonEmptyString"” minOccurs="0"

/>

<element name="RangeFilters" type=""tns:RangeFilterList"™ minOccurs="0"
/>

<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>

<element name="'SearchReport" type="tns:SearchReport™ />
<element name="'SearchWithinDimensionValueld" type=""tns:DimensionValueld"
minOccurs="0" />

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 91

<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />
<element name="Languageld" type='""tns:NonEmptyString" minOccurs="0" />
</sequence>
</complexType>

DimensionSearchResult data type

The DimensionSearchResult data type represents results for a dimension search query.

<complexType name="DimensionSearchResult'>
<sequence>
<element name="Dimensions”™ type="tns:DimensionList"” />
<element name="MatchingDimensionsResult" type=""tns:MatchingDimensionsRe-
sult” />
<element name="AppliedFilters" type="tns:DimensionSearchAppliedFilters"
/>
</sequence>
</complexType>

DimensionState data type

The DimensionState data type represents the state of the dimension and is related to navigation.

<complexType name="DimensionState">
<sequence>
<element name="Refinements”™ type="tns:RefinementList” minOccurs="1"
maxOccurs="unbounded" />
<element name="'SelectedDimensionValues" type=""tns:DimensionValueS-
tateList” minOccurs="0" maxOccurs="1" />
<element name=""ImplicitDimensionValues"™ type="tns:DimensionValueS-
tatelList” minOccurs="0" maxOccurs="1" />
</sequence>
<attribute name='"DimensionName"™ type="string" use="required" />
<attribute name="Dimensionld" type="tns:DimensionValueld" use="required"

/>

</complexType>

Attributes:

DimensionName The name of a dimension.
Dimensionid The ID for a dimension.

DimensionStateList data type

The DimensionStatelList data type contains a list of dimension states.

<complexType name="DimensionStateList">
<sequence>
<element name='"DimensionState" type=""tns:DimensionState"™ minOccurs="1"
maxOccurs="'unbounded" />
</sequence>
</complexType>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

92 About the MDEX API through XQuery | MDEX API through XQuery data types

DimensionValue data type

The DimensionValue data type represents the lowest-level building block that composes dimensions,
navigations, and classifications of records.

DimensionValue is a node in the dimension tree. The DimensionValues child element is a list of
the child dimension values, and the PropertyList child element s a list of properties of this dimension
value.

<complexType name="DimensionValue'>
<sequence>
<element name="DimensionValues" type="tns:DimensionValueList" minOc—
curs="0" maxOccurs="1" />
<element name="Properties” type="tns:PropertyList’” minOccurs="0" maxOc-
curs="1" />
</sequence>
<attribute name="Name' type="'string" use="‘required" />
<attribute name="I1d" type="tns:DimensionValueld" use="required" />
<attribute name="lIsLeaf" type="boolean' use="required" />
<attribute name="IsNavigable'™ type="boolean™ use="‘required” />
<attribute name="StaticRecordCount' type="'unsignedLong" use="optional™

/>

</complexType>

Attributes:

Name The name of the dimension value.

Id The ID of the dimension value.

IsLeaf Whether this is a leaf dimension value.
IsNavigable Whether this is a navigable dimension value.

StaticRecordCount The total number of records that this dimension value is assigned to. This
number is not always returned, and does not change based on the
navigation state.

DimensionValueld data type

DimensionValueld is a simple type representing the unique identifier for the dimension value.

<simpleType name="DimensionValueld">
<restriction base="string'>
<pattern value="[0-9]+" />
</restriction>
</simpleType>

DimensionValueldList data type

The DimensionValueldList data type contains a list of dimension value IDs.
Each element this data type contains is the ID of a dimension value.

<complexType name="DimensionValueldList">
<sequence>
<element name="DimensionValueld"” type="tns:DimensionValueld"™ minOc-
curs="0" maxOccurs="unbounded" />

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 93

</sequence>
</complexType>

DimensionValueList data type

The DimensionValuelList data type represents a list of dimension values.

<complexType name="DimensionValueList'>
<sequence>
<element name='"DimensionValue" type="tns:DimensionValue'" minOccurs="1"
maxOccurs="unbounded” />
</sequence>
</complexType>

DimensionValueState data type

The DimensionValueState data type represents the actual dimension value in the dimension tree,
and can be used to display the dimension value or look it up. This type is used on results.

<complexType name="DimensionValueState">
<attribute name="Name'" type="string' use="required” />
<attribute name="I1d" type="tns:DimensionValueld" use="required" />

</complexType>

Attributes:

Name The name of the dimension value.
Id The ID of the dimension value.

DimensionValueStateList data type

The DimensionValueStatelL ist data type contains a list of dimension value states.

<complexType name="DimensionValueStateList">
<seguence>
<element name="DimensionValue'" type="tns:DimensionValueState" minOc-
curs="0" maxOccurs="unbounded™ />
</sequence>
</complexType>

DimensionValueStratum data type

The DimensionValueStratum data type represents the assignment of a dimension value to a
specific stratum for sorting for the dimension boost and bury feature.

Dimension values are sorted by their assigned strata and then by whatever the refinement sorting
method for the dimension is.

<complexType name="DimensionValueStratum'>

<attribute name="DimensionValueld" type=""tns:DimensionValueld" use="'re-
quired" />

<attribute name="Stratum" type="iInt" use="‘required"” />
</complexType>

Attributes:

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

94 About the MDEX API through XQuery | MDEX API through XQuery data types

DimensionValueld Specifies the ID of the dimension value to be assigned to a stratum.

Stratum An integer that represents the stratum to which the dimension value is
assigned. A positive integer indicates that the dimension value will be
boosted, while a negative integer indicates that the dimension value will
be buried.

DimensionValueStratumList data type

The DimensionValueStratumList data type contains a list of stratified dimension values.

<complexType name="DimensionValueStratumList'>
<sequence>
<element name="DimensionValueStratum" type=""tns:DimensionValueStratum"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

DisabledRefinementsConfig data type

The DisabledRefinementsConfig data type represents a configuration for disabled refinements.
It specifies which top-level filters (such as selected dimensions, text searches, range filters, EQL filters
or range filters) should be included in the base navigation state. The MDEX Engine uses base and
default navigation states to compute disabled refinements.

<complexType name="DisabledRefinementsConfig'>

<sequence>

<element name="BaseDimensionlds"™ type=""tns:DimensionValueldList"

minOccurs="0" maxOccurs="1" />

</sequence>

<attribute name="EqlFilterInBase" type="boolean'" use="optional' de-
fault=""false'/>

<attribute name="TextSearchlnBase" type="boolean" use="optional’ de-
fault="false"/>

<attribute name="RangeFilterslnBase" type="boolean'" use="optional™ de-
Ffault="false"/>

</complexType>
Attributes:
BaseDimensionlds A list of dimension IDs to be included into the base navigation state
EqlFilteriInBase Whether to include EQL filters into the base navigation state.
TextSearchlnBase Whether to include text searches into the base navigation state.
RangeFiltersinBase Whether to include range filters into the base navigation state.

Geocode data type

The Geocode data type contains the longitude and latitude values that represent a geocode property.

<complexType name="Geocode'>
<attribute name="Latitude' type="‘double' use="required" />
<attribute name="Longitude'" type="'double"™ use="required"” />
</complexType>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 95

Attribute:

Latitude The latitude of the location in whole and fractional degrees. Positive values
indicate north latitude and negative values indicate south latitude.

Longitude The longitude of the location in whole and fractional degrees. Positive values

indicate east longitude, and negative values indicate west longitude.

GreaterThanFilter data type

The GreaterThanFi lter data type represents one of the conditions that can be set on a range
filter.

This data type contains the non-inclusive lower bound of the filter, plus an optional GeocodeReference
element for geocode properties.

<complexType name="GreaterThanFilter'>
<complexContent>
<extension base='"tns:RangeFilter'>
<sequence>
<element name="'GeocodeReference" type=""tns:Geocode'" minOccurs="0"
maxOccurs="1" />
</sequence>
<attribute name="LowerBound™ type="double™ />
</extension>
</complexContent>
</complexType>

Attributes:

LowerBound The lower bound of the range filter.

GreaterThanOrEqualFilter data type

The GreaterThanOrEqualFi lter data type represents one of the conditions that can be set on a
range filter.

This data type contains the inclusive lower bound of the filter. Unlike GreaterThanFi I ter, it cannot
be used with geocode properties.

<complexType name="CGreaterThanOrEqualFilter'>
<complexContent>
<extension base="tns:RangeFilter' >
<attribute name="LowerBound™ type="double' />
</extension>
</complexContent>
</complexType>

Attributes:

LowerBound The lower bound of the range filter.

IncludedRecordAttributeList data type

The IncludedRecordAttributelList data type represents a list of included record attributes.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

96 About the MDEX API through XQuery | MDEX API through XQuery data types

<complexType name="IncludedRecordAttributelList">
<sequence>
<element name="IncludedRecordAttribute”™ type="tns:NonEmptyString"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

KeywordRedirectList data type

The KeywordRedirectList data type contains a list of search terms used to trigger a keyword
redirect to a defined URL.

<complexType name="KeywordRedirectList">
<sequence>
<element name="KeywordRedirect" type="string' minOccurs="0" maxOccurs=""un-
bounded™ />
</sequence>
</complexType>

LessThanFilter data type

The LessThanFi Iter data type represents one of the conditions that can be set on a range filter.

This data type contains the non-inclusive upper bound of the filter plus an optional GeocodeReference
element for geocode properties.

<complexType name="LessThanFilter'>
<complexContent>
<extension base="tns:RangeFilter'>
<sequence>
<element name="‘GeocodeReference" type=""tns:Geocode'" minOccurs="0"
maxOccurs="1" />
</sequence>
<attribute name="UpperBound"™ type="double" />
</extension>
</complexContent>
</complexType>

Attributes:

UpperBound The upper bound of the range filter.

LessThanOrEqualFilter data type

The LessThanOrEqualFi I'ter data type represents one of the conditions that can be set on arange
filter.

This data type contains the inclusive upper bound of the filter. Unlike LessThanFi I ter, it cannot be
used with geocode properties.

<complexType name="LessThanOrEqualFilter'>
<complexContent>
<extension base='"tns:RangeFilter'>
<attribute name="UpperBound"™ type="double" />
</extension>
</complexContent>
</complexType>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 97

Attributes:

UpperBound The upper bound of the range filter.

MatchingCompoundDimensionsResult data type

The MatchingCompoundDimensionsResult data type represents the results of a query for a
compound dimension result retrieved from the MDEX Engine.

<complexType name="MatchingCompoundDimensionsResult">
<sequence>
<element name="DimensionValuesPerDimension" type="unsignedLong”™ minOc-
curs="0" />
<element name="MatchingCompoundDimensionValues' type=""tns:CompoundDimen-
sionValueList" />

</sequence>

<attribute name="HasMore'" type="boolean' use="required" />
</complexType>
Attributes:
HasMore Indicates whether there are more results that are not shown.

MatchingDimensionsResult data type

The MatchingDimensionsResult data type represents the results of a query for a dimension result
retrieved from the MDEX Engine.

<complexType name="MatchingDimensionsResult">
<sequence>
<element name="DimensionValuesPerDimension" type="unsignedLong"” minOc-
curs="0" />
<element name=""MatchingDimensions' type=""tns:ResultDimensionList"
minOccurs="0" maxOccurs="1" />

</sequence>

<attribute name='"HasMore'" type="boolean'" use="required" />
</complexType>
Attributes:
HasMore Indicates whether there are more results that are not shown.

MatchingDimensionValuelList data type

The MatchingDimensionValuelList data type represents a list of matching dimension values.

<complexType name=""MatchingDimensionValueList'>
<seguence>
<element name="MatchingDimensionValue" type=""tns:AttributeDimensionValue"
minOccurs="0" maxOccurs="unbounded* />
</sequence>
</complexType>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

98 About the MDEX API through XQuery | MDEX API through XQuery data types

MetadataResult data type

The MetadataResult data type represents static MDEX Engine metadata such as property and
dimension data, sort keys, search keys, and aggregation keys.

<complexType name="MetadataResult">
<sequence>
<element name="'SearchKeys"™ type='""tns:SearchKeyList" />
<element name="SortKeys'" type=""tns:SortKeyList" />
<element name="AggregationKeys" type='"tns:AggregationKeyList" />
<element name="'AttributeMetadatalList" type="tns:AttributeMetadatalList"
/>
</sequence>
</complexType>

MultiSelect data type

The MultiSelect data type is an enumeration of possible multi-select values.

If a dimension is multi-select enabled, end users can select more than one dimension value for that
dimension.

<simpleType name="MultiSelect'>
<restriction base="string">
<enumeration value="And" />
<enumeration value="0r" />
<enumeration value="None" />
</restriction>
</simpleType>

NavigationAppliedFilters data type

The NavigationAppliedFilters data type represents the set of filters applied to a havigation
state.

<complexType name="NavigationAppliedFilters">
<sequence>
<element name="EglExpression’ type="tns:NonEmptyString"” minOccurs="0"
maxOccurs="1" />
<element name="RangeFilterList"” type='"tns:RangeFilterList" minOccurs="0"
maxOccurs="1" />

<element name="RecordFilter" type="tns:NonEmptyString"” minOccurs="0"
maxOccurs=""1" />

<element name="'SearchReports" type='"tns:SearchReportList" minOccurs="0"
maxOccurs=""1" />

<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" maxOccurs="1" />

<element name="Languageld”™ type="tns:NonEmptyString" minOccurs="0" />
</sequence>
</complexType>

NavigationQuery data type

The NavigationQuery data type contains the elements, such as RecordFi I 'ter and RangeFi I ter,
used by navigation queries.

In the list of elements below:

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 99

* RecordOffset is the offset in your record list.
* RecordsPerPage is the number of records to return.

* BusinessRulesFilter is a filter for your business rules. Dynamic business rule filters allow an
Endeca application to define arbitrary subsets of dynamic business rules and restrict merchandising
results to only the records that can be promoted by these subsets

* EqlExpression is a string written in the Endeca Query Language (EQL). It cannot be
URL-escaped as it is in the Navigation API. For more information about EQL, see the Advanced
Development Guide.

* RecordFilter is an expression that restricts the results of the query.
* UserProfile is a string that identifies a condition that makes a dynamic business rule fire.
« AnalyticsExpression is a string in the Analytics language.

« Languageld is a string that allows per-query specification of the language to parse search terms
in.

» DimensionValueStrata is a list of stratified dimension values
For details on the other elements, see the corresponding data type entry.

<complexType name="NavigationQuery">
<all minOccurs="0">
<element name="'SelectedDimensionValuelds" type=""tns:DimensionValueldList"
minOccurs="0" />
<element name="RefinementConfigs" type="tns:RefinementConfigList"
minOccurs="0" />
<element name="AggregationKey" type=""tns:AggregationKey'" minOccurs="0"
/>
<element name=""RecordOffset" type="unsignedLong" minOccurs="0" />
<element name="‘RecordsPerPage'" type="‘unsignedLong" minOccurs="0" />
<element name="IncludedRecordAttributes” type=""tns:IncludedRecordAt-
tributeList” minOccurs="0" />
<element name="'Sorts" type=""tns:SortList"™ minOccurs="0" />
<element name="BusinessRulesFilter"™ type="tns:NonEmptyString"” minOc-
curs="0" />
<element name="BusinessRulesPreviewTime" type=""tns:BusinessRulePreview-
Time" minOccurs="0" />
<element name="EqglExpression"” type=""tns:NonEmptyString"” minOccurs="0"

/>

<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>

<element name="RangeFilters" type=""tns:RangeFilterList" minOccurs="0"
/>

<element name="Searches" type="tns:SearchList" minOccurs="0" />
<element name="‘AnalyticsExpression” type="tns:NonEmptyString"” minOc-
curs="0" />
<element name="UserProfiles" type="tns:UserProfileList" minOccurs="0"
/>
<element name="Languageld”™ type="tns:NonEmptyString" minOccurs="0" />
<element name="DimensionValueStrata" type="tns:DimensionValueStratumList"
minOccurs="0"/>
</all>
<attribute name="AlternativePhrasingMode'" type=""tns:AlternativePhrasing-
Mode' use="optional’ />
</complexType>

Attributes:

AlternativePhrasingMode The AlternativePhrasingMode data type enumerates the
possible values for alternative phrasing mode. It indicates
whether the MDEX Engine uses one of the alternative phrasings

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

100 About the MDEX API through XQuery | MDEX API through XQuery data types

it has computed instead of the end user's original query when
computing the set of documents to return.

NavigationResult data type

The NavigationResult data type represents the results of a NavigationQuery.

<complexType name="NavigationResult'>
<sequence>
<element name="Dimensions" type='"tns:DimensionList" />
<element name="'NavigationStatesResult" type="tns:NavigationStatesResult"
/>
<element name="RecordsResult" type=""tns:RecordsResult” />
<element name="'AppliedFilters" type=""tns:NavigationAppliedFilters" />
<element name="BusinessRulesResult" type=""tns:BusinessRulesResult" />
<element name="KeywordRedirects" type=""tns:KeywordRedirectList" />
<element name="‘AnalyticsResult” type="tns:AnalyticsResult"/>
</sequence>
</complexType>

NavigationStatesResult data type

The NavigationStatesResult data type represents the results of a query for a navigation state
result retrieved from the MDEX Engine.

<complexType name="NavigationStatesResult'>
<sequence>
<element name=""RefinementConfigs" type="tns:RefinementConfigList"
minOccurs="0" maxOccurs="1" />
<element name="DimensionStates" type="tns:DimensionStateList"” minOc—
curs="0" maxOccurs="1" />
</sequence>
</complexType>

NonEmptyString data type

The NonEmptyString data type is a simple type.

<simpleType name="NonEmptyString'>
<restriction base="'string'>
<minLength value="1"/>
</restriction>
</simpleType>

PropertyList data type

The PropertyList data type contains a list of property values.

<complexType name="PropertyList’'>
<sequence>
<element name="Property" type=""tns:Property' minOccurs="1" maxOccurs=""un-
bounded™ />
</sequence>
</complexType>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 101

Property data type

The Property data type represents an Endeca property.

<complexType name="‘Property''>
<simpleContent>
<extension base="string'>
<attribute name="Key' type=""tns:NonEmptyString" use="required” />
</extension>
</simpleContent>
</complexType>

Attributes:

Key The name of the property.

RangeFilter data type

The RangeFi I ter data type represents a range filter on a navigation record set. A filter is composed
of a record property name and a set of conditions that have to be true in order for a record to pass
through the filter.

All range filters extend from the RangeFi I ter data type, so they all include the AttributeName
attribute. AttributeName is the name of the property or dimension value you want to filter on.

<complexType name="RangeFilter">
<attribute name="AttributeName"™ type="string" use="required" />
</complexType>

Attributes:

AttributeName The record property or dimension value name.

RangekFilterList data type

The RangeFi lterList data type represents a a collection of range filters.

This data type contains some number of typed range filters, but cannot contain the base RangeFi I ter.

<complexType name="RangeFilterList'>
<sequence>
<choice minOccurs="1" maxOccurs="unbounded’>
<element name="LessThanFilter"” type="tns:LessThanFilter" />
<element name="LessThanOrEqualFilter"™ type="tns:LessThanOrEqualFilter"
/>
<element name="'GreaterThanFilter" type="tns:GreaterThanFilter" />
<element name="GreaterThanOrEqualFilter" type=""tns:GreaterThanOrEqual-
Filter” />
<element name="BetweenFilter"™ type=""tns:BetweenFilter" />
</choice>
</sequence>
</complexType>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

102 About the MDEX API through XQuery | MDEX API through XQuery data types

Record data type

The Record data type represents an individual Endeca record from the data set stored in an MDEX
Engine.

<complexType name="Record">
<sequence>
<element name="Attributes”™ type="tns:AttributeList” minOccurs="0" max-
Occurs="1" />
<element name="'Snippets" type=""tns:SnippetList" minOccurs="0" maxOc—
curs="1" />

</sequence>

<attribute name="I1d" type="string" use="required" />
</complexType>
Attributes:
Id The record ID.

RecordDetailsAppliedFilters data type

The RecordDetai IsAppliedFilters datatype represents a record filter on a record details query.

<complexType name="RecordDetailsAppliedFilters">
<sequence>
<element name="RecordFilter" type="tns:NonEmptyString" minOccurs="0"
/>
</sequence>
</complexType>

RecordDetailsQuery data type

The RecordDetai IsQuery data type represents the record details for a single record from the MDEX
Engine.

This data type contains the record spec of the record in question. The optional RecordFi I ter element
is an expression that restricts the results of the query.

<complexType name="RecordDetai lsQuery'>

<all>
<element name="RecordFilter" type="tns:NonEmptyString"” minOccurs="0"

/>

</all>

<attribute name="1d" type="tns:NonEmptyString" use="‘required" />
</complexType>
Attributes:
Id The record ID.

RecordDetailsResult data type

The RecordDetai IsResul t data type represents the results of a query for a record details result
retrieved from the MDEX Engine.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 103

<complexType name="RecordDetailsResult">
<sequence>
<element name="Dimensions" type="tns:DimensionList" />
<element name="Record" type=''tns:Record" />
<element name="AppliedFilters" type=""tns:RecordDetailsAppliedFilters"
/>
</sequence>
</complexType>

RecordList data type

The RecordList data type contains a list of Endeca records.

<complexType name="‘RecordList'>
<sequence>
<choice>
<element name=""Record" type='"tns:Record"™ minOccurs="1" maxOccurs=""un-
bounded" />
<element name="'AggregateRecord”™ type="tns:AggregateRecord”™ minOc—
curs="1" maxOccurs=""unbounded® />
</choice>
</sequence>
</complexType>

RecordsPerAggregateRecord data type

The RecordsPerAggregateRecord data type enumerates the available choices for specifying how
may constituent records to include with each aggregate record.

<simpleType name="'RecordsPerAggregateRecord">
<restriction base="string">
<enumeration value="All" />
<enumeration value="None" />
<enumeration value="0One" />
</restriction>
</simpleType>

RecordsResult data type

The RecordsResult data type provides the information relating to records that is returned by the
MDEX Engine in response to a navigation query.

<complexType name="RecordsResult''>
<seguence>
<element name="Sorts" type="tns:SortList"” minOccurs="0" maxOccurs="1"
/>
<element name=""IncludedRecordAttributes" type=""tns:IncludedRecordAt-
tributeList” minOccurs="0" maxOccurs="1" />
<element name="AggregationKey" type=""tns:AggregationKey'" minOccurs="0"
maxOccurs="1" />
<element name="Records™ type="tns:RecordList”™ minOccurs="0" maxOccurs="1"
/>
</sequence>
<attribute name="Offset" type="unsignedLong" use="‘required" />
<attribute name='"RecordsPerPage'" type="unsignedlLong" use="‘required" />
<attribute name="TotalRecordCount" type="‘unsignedLong" use="required" />

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

104 About the MDEX API through XQuery | MDEX API through XQuery data types

<attribute name="TotalAggregateRecordCount' type="unsignedLong™ use="op-

tional"/>

</complexType>

Attributes:

Offset The record offset.
RecordsPerPage The number of records per page.
TotalRecordCount The total record count.
TotalAggregateRecordCount The total aggregate record count.

RefinementConfig data type

The RefinementConTfig data type represents a dynamic refinement configuration for a dimension
value. This will determine how refinements are computed under this dimension value.

<complexType name="RefinementConfig">

<attribute name="DimensionValueld"” type="tns:DimensionValueld™ use="re-
quired” />

<attribute name="Expose" type='"boolean' default="true' use="optional" />

<attribute name="LimitDimensionValues" type="boolean'" use="optional" />

<attribute name="OrderByRecordCount"™ type="boolean' use="optional" />

<attribute name="MaximumDimensionValueCount™ type="unsignedLong"
use="‘optional" />

</complexType>

Attributes:

DimensionValueld The dimension value 1D

Expose Whether to expose the refinements for the dimension value.
LimitDimensionValues Whether to limit the number of refinements.
OrderByRecordCount Whether to order the dimension values by record count.

] .

" Note: If you are using the OrderByRecordCount
attribute to enable dynamic refinement ranking, keep
in mind that the counts used by this feature are
returned in the dimension tree, while the ordering is
returned in the navigation state refinement tree. (This
is true regardless of whether this feature is enabled
globally in the ReFinement_config.xml file or on
a per-query basis.)

MaximumDimensionValueCount The maximum number of dimension values to return, if

LimitDimensionValues is true.

RefinementList data type

The RefinementList data type represents a list of refinements.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 105

<complexType name="RefinementList">
<complexContent>
<extension base="tns:DimensionValueStatelList">
<attribute name="ParentName' type="string" use="required" />
<attribute name="Parentld" type="tns:DimensionValueld" use="required"

/>
<attribute name="HasMore'" type="boolean'™ use="required" />
<attribute name="IsRefinable" type="boolean™ use="‘required"” />

</extension>
</complexContent>

</complexType>

Attributes:

ParentName The name of the parent dimension value.

Parentld The parent's dimension value ID

HasMore Indicates whether there are more results that are not shown.

IsRefinable Whether the dimension value can be refined.

RefinementConfigList data type

The RefinementConfigList data type represents a collection of dynamic refinement configs.

<complexType name="RefinementConfigList'>
<sequence>
<element name="RefinementConfig" type=""tns:RefinementConfig" minOc-
curs="0" maxOccurs="unbounded” />
</sequence>
<attribute name="ExposeAllRefinements" type="boolean’™ use="optional" />
</complexType>

Attributes:

ExposeAl IRefinements | Globally sets whether to expose all of the dynamic refinement configs.
Individual refinement settings override this setting.

RelevanceRanking data type

The RelevanceRanking data type sets the options for standalone relevance ranking.
The content of this data type is the collection of terms you want to perform relevance ranking upon.

<complexType name="RelevanceRanking'>
<simpleContent>
<extension base=""tns:NonEmptyString">
<attribute name="Key" type=""tns:NonEmptyString' use="required” />
<attribute name="Strategy" type=""tns:NonEmptyString" use="required”
/>
<attribute name="Mode'" type="'tns:SearchMode" />
</extension>
</simpleContent>
</complexType>

Attributes:

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

106 About the MDEX API through XQuery | MDEX API through XQuery data types

Key The search key.
Strategy The relevance ranking strategy to use.
Mode The search mode, one of: All, AllAny, AllPartial, Any, Boolean, Partial,

PartialMax, or Unknown.

ResultDimension data type

The ResultDimension data type represents the dimension search result, of which there is one per
dimension.

<complexType name="ResultDimension'>
<sequence>
<element name=""MatchingDimensionValue' type=""tns:AttributeDimensionValue"
minOccurs="1" maxOccurs="unbounded™ />
</sequence>
<attribute name="Name' type=""tns:NonEmptyString" use="'required" />
<attribute name="I1d" type="tns:DimensionValueld" use="required" />

</complexType>

Attributes:

Name The dimension value name.
Id The dimension value ID

ResultDimensionList data type

The ResultDimensionList data type represents a list of dimension search results.

<complexType name="ResultDimensionList">
<sequence>
<element name="‘MatchingDimension" type="tns:ResultDimension’™ minOc-
curs="1" maxOccurs=""unbounded" />
</sequence>
</complexType>

Search data type

The Search data type sets the options for record search in the navigation query.
The content of the Search element is your search terms.

<complexType name="'Search">
<attribute name="Key'" type=''string' use="‘required" />
<attribute name="RelevanceRankingStrategy' type="'string" />
<attribute name="Mode'" type=""tns:SearchMode™ />
<attribute name="SnippetLength™ type="unsignedLong"™ use="optional" />
<attribute name="EnableSnippeting" type="boolean"™ use="optional" />
</complexType>

Attributes:

Key The search key.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 107

RelevanceRankingStrategy | The relevance ranking strategy, composed of one or more pre-defined
relevance ranking modules.

Mode The search mode, one of: All, AllAny, AllPartial, Any, Boolean, Partial,
PartialMax, or Unknown.

SnippetLength Maximum number of words in a snippet. This only takes effect if
snippeting is enabled either in your configuration or via the En-
ableSnippeting attribute.

EnableSnippeting Whether to enable the snippeting feature, which returns excerpts
from records.

SearchAdjustment data type

The SearchAdjustment data type represents a single alternate search adjustment made by the
MDEX Engine when a record search is performed.

The suggestion may or may not have been applied to the result set.

<complexType name="'SearchAdjustment">
<seguence>
<element name="AdjustmentType" type=""tns:AdjustmentType'™ minOccurs="1"
maxOccurs=""unbounded" />
</sequence>
<attribute name="Terms"™ type="tns:NonEmptyString" use="‘required"” />
<attribute name="RecordCountlfApplied" type="unsignedLong" use="‘required"
/>
</complexType>

Attributes:

Terms Search terms.

RecordCountlfApplied | The number of records that would match if the terms of the search
adjustment were used in the search.

SearchAdjustmentList data type

The SearchAdjustmentList data type represents a list of alternate search adjustments made by
the MDEX Engine when a record search is performed.

<complexType name="'SearchAdjustmentList">
<sequence>
<element name="'SearchAdjustment" type=""tns:SearchAdjustment' minOc-
curs="1" maxOccurs=""unbounded" />
</sequence>
</complexType>

SearchKey data type

The SearchKey data type represents a search on a navigation record set.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

108 About the MDEX API through XQuery | MDEX API through XQuery data types

The search key can be the name of an Endeca property or dimension (if enabled for record search)
or an Endeca search interface. The search key indicates which field of the records to search the terms
against.

<complexType name='"SearchKey'>
<simpleContent>
<extension base="tns:NonEmptyString'>
<attribute name="IsSearchinterface" type="boolean" use="‘required" />

</extension>
</simpleContent>
</complexType>

Attributes:

IsSearchinterface Whether this search key is a search interface.

SearchKeyList data type

The SearchKeyL ist data type represents a collection of record search keys.

<complexType name="SearchKeyList'>
<sequence>
<element name="'SearchKey" type=""tns:SearchKey" minOccurs="1" maxOc-
curs="unbounded" />
</sequence>
</complexType>

SearchList data type

The SearchList data type represents a list of searches.
This data type contains your search elements.

<complexType name="SearchList">
<sequence>
<element name="'Search" type=""tns:Search" minOccurs="1" maxOccurs=""un-
bounded™ />
</sequence>
<attribute name="EnableDidYouMean' type="boolean™ use="‘optional* />
</complexType>

Attributes:

EnableDidYouMean Whether "did you mean" is enabled for all searches in this query,
allowing an application to provide the user with explicit alternative
suggestions for a keyword search.

SearchMode data type

The SearchMode data type enumerates the search modes available when performing a text search.

<simpleType name='"SearchMode'>
<restriction base="string">
<enumeration value="All"/>
<enumeration value="AllAny"/>
<enumeration value="AllPartial"/>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery data types 109

<enumeration value="Any"/>
<enumeration value="Boolean'/>
<enumeration value="Partial'/>
<enumeration value="PartialMax'/>
<enumeration value="Unknown'/>
</restriction>
</simpleType>

SearchReport data type

The SearchReport data type represents a description of a text search executed by the MDEX Engine.

<complexType name="'SearchReport'>
<sequence>
<element name="ErrorMessage' type="'string" minOccurs="0" maxOccurs="1"
/>
<choice>
<sequence>
<element name="Search"™ type=""tns:Search" />
<element name="‘MatchedRecordCount™ type="‘unsignedLong"™ />ERec class
is composed of properties and values it is tagged by.

</sequence>
<sequence>
<element name="DimensionSearch”™ type='"tns:DimensionSearch" />
<element name="MatchedDimensionValueCount" type="unsignedLong" />
</sequence>
<sequence>
<element name="'CompoundDimensionSearch" type=""tns:CompoundDimension-
Search™ />
<element name="MatchedCompoundDimensionValueCount™ type="unsigned-
Long™ />
</sequence>
</choice>
<element name="‘MatchedMode' type=""tns:SearchMode" />
<element name=""MatchedTermsCount'" type="‘unsignedLong" />
<element name=""AppliedSearchAdjustments’ type=""tns:SearchAdjustmentList"
minOccurs="0" maxOccurs="1" />
<element name="'SuggestedSearchAdjustments' type=""tns:SearchAdjust-
mentList"” minOccurs="0" maxOccurs="1" />
<element name="TruncatedTerms" type="'string" minOccurs="0" maxOccurs=""1"
/>
<element name="WordlInterpretations"” type=""tns:WordlnterpretationList"
minOccurs="0" maxOccurs="1" />
</sequence>
</complexType>

SearchReportList data type

The SearchReportList data type contains a list of search report elements.

<complexType name="SearchReportList'>
<seguence>
<element name="'SearchReport" type="tns:SearchReport™ minOccurs="1"
maxOccurs=""unbounded" />
</sequence>
</complexType>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

110 About the MDEX API through XQuery | MDEX API through XQuery data types

SnippetList data type

The SnippetList data type represents a list of snippets.

A snippet consists of search terms, surrounding context words, and ellipses.

<complexType name="SnippetList">
<sequence>
<element name="Snippet” type=""tns:Property” minOccurs="1" maxOccurs=""un-
bounded™ />
</sequence>
</complexType>

Sort data type

The Sort data type contains the key on which records are sorted and describes how records should
be sorted in relation to a particular property.

<complexType name="Sort'>
<seguence>
<element name="ReferenceGeocode" type=""tns:Geocode'" minOccurs="0" max-
Occurs=""1" />
</sequence>
<attribute name="Key" type=""tns:NonEmptyString" use="required" />
<attribute name="Direction" type="tns:SortDirection” use="optional" />

</complexType>

Attributes:

Key The sort key.
Direction Ascending or Descending.

SortDirection data type

The SortDirection data type enumerates the directions in which records may be sorted.

<simpleType name="'SortDirection">
<restriction base="string">
<enumeration value="Ascending'/>
<enumeration value=""Descending"/>
</restriction>
</simpleType>

SortKeyList data type

The SortKeyL ist data type represents a collection of record sort keys.

<complexType name="'SortKeyList">
<seguence>
<element name="SortKey" type=""tns:NonEmptyString"” minOccurs="1" max0Oc-
curs="unbounded" />
</sequence>
</complexType>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 111

SortList data type

The SortList data type represents a list of record sort keys.

This data type contains either a single standalone RelevanceRanking element or some number of
Sort elements.

<complexType name="SortList'>
<sequence>
<choice>
<element name="'Sort" type=""tns:Sort" minOccurs="1" maxOccurs="unbound-
ed"” />
<element name="RelevanceRanking" type=""tns:RelevanceRanking" />
</choice>
</sequence>
</complexType>

UserProfileList data type

The UserProfilelList data type represents a collection of user profiles.

<complexType name="UserProfileList">
<sequence>

<element name="UserProfile" type=""tns:string” minOccurs=1 maxOccurs="un-
bounded™ />

</sequence>
</complexType>

WordInterpretationList data type

The WordInterpretationList datatype represents word or phrase substitutions made during text
search processing.

<complexType name="WordlnterpretationList">
<sequence>
<element name="WordInterpretation™ type="tns:Property"” minOccurs="1"
maxOccurs=""unbounded" />
</sequence>
</complexType>

MDEX API through XQuery examples

This section contains some examples of the MDEX API through XQuery in action.

Dimension search query example

This example uses the dimension tree structure to build a sequence of strings that represent the path
from the root to the specified dimension value.

The following query:

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

112 About the MDEX API through XQuery | MDEX API through XQuery examples

let $query :=
<Query xmlns="http://www.endeca.com/MDEX/data/IR600">
<DimensionSearch>best</DimensionSearch>
<DimensionValuesPerDimension>3</DimensionValuesPerDimension>
<SelectedDimensionValuelds>
<DimensionValueld>4294967161</DimensionValueld>
</SelectedDimensionValuelds>
</Query>
return
mdex:dimension-search-query($query)

Would return this result:

<Results xmlns="http://www.endeca.com/MDEX/data/IR600"">
<Dimensions>
<Dimension Name="Drinkability"” 1d="3" MultiSelect="None" Group-
Name=""Characteristics'>
<DimensionValue Name='"Drinkability" 1d=""3" IsLeaf="false" IsNavi-
gable="false'>
<DimensionValues>
<DimensionValue Name='"Best after 1998" 1d="4294967041"
IsLeaf="true" IsNavigable=""true"/>
<DimensionValue Name="Best after 1997 1d="4294967052"
IsLeaf=""true" IsNavigable=""true"/>
<DimensionValue Name="Best after 1996" 1d="4294967093"
IsLeaf=""true" IsNavigable=""true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="'Designation™ 1d="7" MultiSelect=""None" GroupName="'Rat-
ings'>
<DimensionValue Name="Designation' 1d="7" IsLeaf="false" IsNaviga—
ble="false'">
<DimensionValues>
<DimensionValue Name="Best Buy" 1d="8031" IsLeaf=""true" Is-
Navigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
</Dimensions>
<MatchingDimensionsResult HasMore="true'>
<DimensionValuesPerDimension>3</DimensionValuesPerDimension>
<MatchingDimensions>
<MatchingDimension Name='"Designation" 1d="7">
<MatchingDimensionValue Key="Designation'™ Dimensionld=""7"
1d=""8031">Best Buy</MatchingDimensionValue>
</MatchingDimension>
<MatchingDimension Name="Drinkability" 1d="3">
<MatchingDimensionValue Key="Drinkability" Dimensionld="3"
1d="'4294967093"">Best after 1996</MatchingDimensionValue>
<MatchingDimensionValue Key="Drinkability'" Dimensionld="3"
1d=""4294967052">Best after 1997</MatchingDimensionValue>
<MatchingDimensionValue Key="Drinkability" Dimensionld="3"
1d="'4294967041">Best after 1998</MatchingDimensionValue>
</MatchingDimension>
</MatchingDimensions>
</MatchingDimensionsResult>
<AppliedFilters>
<SearchReport>
<DimensionSearch>best</DimensionSearch>
<MatchedDimensionValueCount>80</MatchedDimensionValueCount>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 113

<MatchedMode>Al 1</MatchedMode>
<MatchedTermsCount>1</MatchedTermsCount>

</SearchReport>

<SelectedDimensionValuelds>
<DimensionValueld>4294967161</DimensionValueld>

</SelectedDimensionValuelds>

</AppliedFilters>
</Results>

Build display record output example

This example converts a record from the default MDEX API through XQuery format into a customized
format for an application to consume.

The following query:

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

declare namespace mdata = "http://www.endeca.com/MDEX/data/IR600";

(-

: Converts a record from the default MDEX APl through XQuery format

into a customized format for an application to consume

@param $record An mdata:Record element in MDEX APl through XQuery format

: @param $titleKey The key of an attribute that should be used as the title

element. Title will default to the record ID if an attribute with this
key does not exist. IT multiple attributes with this key exists, it will

use the first one as dictated by document order.
@return An element of the following format
<Record>
<Title>title</Title>
<Row>
<Key>key</Key>
<Value>value</Value>
</Row>
</Record>

déclare function local:build-display-record($record as element(mdata:Record,
xs:untyped), $titleKey as xs:string)
as element(Record, Xxs:untyped)

element Record {
let $titleAttribute := $record/mdata:Attributes/*[@Key = $titleKey][1]

return
element Title {
if (fn:exists($titleAttribute)) then
fn:data($titleAttribute)
else
fn:data($record/@1d)

}.
for $attribute in $record/mdata:Attributes/*[@Key != $titleKey]
return
element Row {
element Key {fn:data($attribute/@Key)},
element Value {fn:data($attribute)}

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

114 About the MDEX API through XQuery | MDEX API through XQuery examples

}
}
¥

let $query :=
<Query xmlns="http://www.endeca.com/MDEX/data/1R600">

<SelectedDimensionValuelds>
<DimensionValueld>8026</DimensionValueld>
<DimensionValueld>29</DimensionValueld>

</SelectedDimensionValuelds>

<RefinementConfigs>
<RefinementConfig DimensionValueld="8"/>

</RefinementConfigs>

<Searches>
<Search Key="'P_Description">fruity</Search>
</Searches>
<RecordsPerPage>1</RecordsPerPage>
</Query>

let $navigationResults := mdex:navigation-query($query)
for $record in $navigationResults/mdata:RecordsResult/mdata:Records/mda-
ta:Record
return

local :build-display-record($record, "P_Name'™)

Would return this result:

<Record>
<Title>Cabernet Franc Yakima Valley Red Willow Vineyard Signature Se-
ries</Title>
<Row>
<Key>Review Score</Key>
<Value>80 to 90</Value>
</Row>
<Row>
<Key>P_DateReviewed</Key>
<Value>09/30/94</Value>
</Row>
<Row>
<Key>P_Description</Key>
<Value>Bright and fruity, soft-textured, sharply focused, with mar-
velous berry and cranberry flavors and none of the stalkiness that afflicts
other Cabernet Francs. Drinkable now. (400 cases produced)</Value>
</Row>
<Row>
<Key>P_Price</Key>
<Value>16.000000</Value>
</Row>
<Row>
<Key>P_Region</Key>
<Value>Washington</Value>
</Row>
<Row>
<Key>P_Score</Key>
<Value>87</Value>
</Row>
<Row>
<Key>P_WinelD</Key>
<Value>35078</Value>
</Row>
<Row>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 115

<Key>P_Winery</Key>
<Value>Columbia</Value>

</Row>

<Row>
<Key>P_WineType</Key>
<Value>Cabernet Franc</Value>

</Row>

<Row>
<Key>P_WineType</Key>
<Value>Red</Value>

</Row>

<Row>
<Key>P_Year</Key>
<Value>1992</Value>

</Row>

</Record>

Build breadcrumbs output example

This example creates breadcrumbs for selected dimension values and text searches based on results
returned from an invocation of the mdex:navigation-query() function.

The following query:

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

declare namespace mdata = "http://www.endeca.com/MDEX/data/I1R600™;

(

l

Creates bread crumbs for selected dimension values and text

searches based on results returned from an mdex:navigation-query()

invocation

@param $navigationResults mdata:NavigationResults element as returned

om an

mdex:navigation-query() invocation

@return Breadcrumbs element of the following format

<Breadcrumbs>
<Breadcrumb>Wine Type -> Red -> Merlot</Breadcrumb>
<Breadcrumb>Text Search: Sparkling</Breadcrumb>

</Breadcrumbs>

L

VO ™ i

declare function local:build-breadcrumbs($navigationResults as element(mda-
ta:NavigationResults, xs:untyped))
as element(Breadcrumbs, xs:untyped)

let $appliedFilters := $navigationResults/mdata:AppliedFilters
return
element Breadcrumbs {
for $selectedDimValld in $appliedFilters/mdata:SelectedDimension-
Valuelds/mdata:DimensionValueld
return
element Breadcrumb {
fn:string-join(local:path-from-dimval-id(fn: data($selectedﬂ
DimvValld), fn:exactly-one($navigationResults/mdata:Dimensions)), -> ")

for $searchReport in $appliedFilters/mdata:SearchReports/mda-
ta:SearchReport
return
element Breadcrumb {

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

116

About the MDEX API through XQuery | MDEX API through XQuery examples

fn:concat(""Text Search:
port/mdata:Search)))

}

, fn:zero-or-one(fn:data($searchRe-

(o]

l

~

Uses the Dimension tree(s) structure to build a sequence of strings
that represent the path from the root to the specified dimension value
(Note: This function will run fairly slowly when used on a large
collection of dimensions)

@param $dimValld Dimension value ID of the dimension value to search for

@param $dimensions mdata:Dimensions element from a result returned from

MDEX API through XQuery invocation

@return Sequence of strings that represent the path from the root
dimension value up to the specified dimension value if the dimension
value is found. Returns the empty sequence otherwise.

Vi Q@ s
o/

declare function local :path-from-dimval-id($dimValld as xs:string, $dimen-
sions as element(mdata:Dimensions, Xs:untyped))
as xs:string*

for $dimvVal in $dimensions//mdata:DimensionValue[descendant-or-
self::mdata:DimensionValue/@ld = $dimValld]
return
fn:string(fn:exactly-one(fn:data($dimVal/@Name)))
}:

let $query :=
<Query xmlns="http://www.endeca.com/MDEX/data/IR600">

<SelectedDimensionValuelds>
<DimensionValueld>8026</DimensionValueld>
<DimensionValueld>4294967281</DimensionValueld>

</SelectedDimensionValuelds>

<RefinementConfigs>
<RefinementConfig DimensionValueld="8"/>

</RefinementConfigs>

<Searches>
<Search Key="'P_Description">fruity</Search>
</Searches>
<RecordsPerPage>1</RecordsPerPage>
</Query>
let $navigationResults := mdex:navigation-query($query)
return

local :build-breadcrumbs($navigationResults)

Would return this result:

<Breadcrumbs>
<Breadcrumb>Wine Type -> Red -> Cabernet Franc</Breadcrumb>
<Breadcrumb>Flavors -> Berry</Breadcrumb>
<Breadcrumb>Text Search: fruity</Breadcrumb>

</Breadcrumbs>

Navigation query example

The following example shows a navigation query and its result.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 117

The following query:

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008" at
"mdex.xq";

let $query :=
<Query xmlns="http://www.endeca.com/MDEX/data/1R600">

<SelectedDimensionValuelds>
<DimensionValueld>8026</DimensionValueld>
<DimensionValueld>4294967281</DimensionValueld>

</SelectedDimensionValuelds>

<RefinementConfigs>
<RefinementConfig DimensionValueld="8"/>

</RefinementConfigs>

<Searches>
<Search Key="P_Description">fruity</Search>
</Searches>
<RecordsPerPage>1</RecordsPerPage>
</Query>
return

mdex:navigation-query($query)

Would return this result:

<Results xmlns="http://www.endeca.com/MDEX/data/1R600"">
<Dimensions>
<Dimension Name="Vintage" 1d="2" MultiSelect="None">
<DimensionValue Name="Vintage" 1d="2" IsLeaf="false" IsNaviga-
ble="false'">
<DimensionValues>
<DimensionValue Name='"1992" 1d="4294967284" IslLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Drinkability"” 1d="3" MultiSelect="None" Group-
Name=""Characteristics'>
<DimensionValue Name='"Drinkability" 1d=""3" IsLeaf="false" IsNavi-
gable="false"/>
</Dimension>
<Dimension Name="Body" 1d="5" MultiSelect="None" GroupName="'Character-
istics'>
<DimensionValue Name='"Body"™ 1d="5" IsLeaf="false" IsNaviga-
ble="false">
<DimensionValues>
<DimensionValue Name=""Complex" 1d="4294967064" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Delicious™ 1d="4294967140" IsLeaf="true"
IsNavigable="true"/>
<DimensionValue Name="Lively" 1d="4294967199" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Rich" 1d="4294967236" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name=""Designation™ 1d="7" MultiSelect=""None" GroupName="'Rat-
ings'>
<DimensionValue Name="Designation’ 1d="7" IsLeaf="false" IsNaviga—
ble="false">
<DimensionValues>
<DimensionValue Name="Highly Recommended" 1d="'8029"

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

118

About the MDEX API through XQuery | MDEX API through XQuery examples

IsLeaf="true" IsNavigable=""true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Region" 1d="8" MultiSelect="None'">
<DimensionValue Name="Region' 1d="'8" IsLeaf="false" IsNaviga-
ble="false">
<DimensionValues>
<DimensionValue Name="Virginia" 1d=""4294965997" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Northeast™ 1d="4294966758" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Washington™ 1d="'4294966974"
IsLeaf="true" IsNavigable=""true"/>
<DimensionValue Name="Napa"™ 1d="4294967161" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
<Properties>
<Property Key="DGraph.More">0</Property>
</Properties>
</DimensionValue>
</Dimension>
<Dimension Name=""Review Score' 1d=""9" MultiSelect="None'" GroupName='""Rat-—
ings'>
<DimensionValue Name="Review Score' 1d="9" IsLeaf=""false" IsNavi-
gable="false'>
<DimensionValues>
<DimensionValue Name="80 to 90" 1d="29" IsLeaf=""true" IsNav-
igable="true'"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Price Range' 1d="10" MultiSelect=""None'" GroupName='"'Rat-—
ings'>
<DimensionValue Name="Price Range'" 1d="10" IsLeaf=""false" IsNavi-
gable="fTalse">
<DimensionValues>
<DimensionValue Name="$10 to $20" 1d="8033" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Winery" 1d="11" MultiSelect="None'">
<DimensionValue Name="Winery" 1d="11" IsLeaf="false" IsNaviga-
ble="false">
<DimensionValues>
<DimensionValue Name="Dickerson" 1d="4294965608" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Flavors" 1d="12" MultiSelect="None" GroupName="'Char-
acteristics'>
<DimensionValue Name="Flavors"™ 1d="12" IsLeaf="false" IsNaviga—-
ble="false">
<DimensionValues>
<DimensionValue Name="Currant' 1d="4294967155" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="0Oak' 1d="'4294967194" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Fruity" 1d="4294967218" IsLeaf=""true"

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 119

IsNavigable="true"/>
<DimensionValue Name="Fruit" 1d=""4294967269" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Cherry" 1d="4294967279" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Berry" 1d="4294967281" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="Wine Type'" 1d="6200" MultiSelect="'"None''>
<DimensionValue Name="Wine Type" 1d="6200" IsLeaf=""false" IsNavi-
gable="false">
<DimensionValues>
<DimensionValue Name="Red" 1d="8021" IslLeaf="false" IsNavi-
gable=""true">
<DimensionValues>
<DimensionValue Name="Merlot"™ 1d="8025" IsLeaf=""true"
IsNavigable="true"/>
<DimensionValue Name="Cabernet Franc" 1d="8026""
IsLeaf=""true" IsNavigable=""true"/>
</DimensionValues>
</DimensionValue>
</DimensionValues>
</DimensionValue>
</Dimension>
<Dimension Name="'Endeca' 1d="'4294967294" MultiSelect=""None''>
<DimensionValue Name="Endeca' 1d="'4294967294" IslLeaf="false" IsNav-
igable="fTalse">
<DimensionValues>
<DimensionValue Name="Endeca'" 1d=""4294967293" IsLeaf=""true"
IsNavigable="true"/>
</DimensionValues>
</DimensionValue>
</Dimension>
</Dimensions>
<NavigationStatesResult>
<RefinementConfigs>
<RefinementConfig DimensionValueld="8"/>
</RefinementConfigs>
<DimensionStates>
<DimensionState DimensionName="Wine Type' Dimensionld="'6200">
<Refinements ParentName="'"Cabernet Franc' Parentld="8026" Has-
More="false" IsRefinable="false"/>
<SelectedDimensionValues>
<DimensionValueReference Name='"Cabernet Franc'" 1d="8026"/>
</SelectedDimensionValues>
</DimensionState>
<DimensionState DimensionName="Region’ Dimensionld="8">
<Refinements ParentName=""Region’ Parentld="8" HasMore="false"
IsRefinable=""true'>
<DimensionValueReference Name="Napa" 1d="'4294967161"/>
<DimensionValueReference Name="Northeast'™ 1d="4294966758"/>

<DimensionValueReference Name="Virginia" 1d="4294965997"/>
<DimensionValueReference Name="Washington' 1d=""4294966974'/>

</Refinements>

</DimensionState>

<DimensionState DimensionName="Vintage"™ Dimensionld="2">
<Refinements ParentName="Vintage'" Parentld="2" HasMore="false"

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

120 About the MDEX API through XQuery | MDEX API through XQuery examples

IsRefinable=""true"/>
</DimensionState>
<DimensionState DimensionName="Price Range' Dimensionld="10">
<Refinements ParentName="Price Range' Parentld="10" Has-
More="false" IsRefinable=""true"/>
</DimensionState>
<DimensionState DimensionName="'"Review Score'" Dimensionld="9">
<Refinements ParentName="Review Score" Parentld="9" Has-
More="false" IsRefinable=""true"/>
</DimensionState>
<DimensionState DimensionName="Body" Dimensionld="5">
<Refinements ParentName="Body' Parentld="5" HasMore="false"
IsRefinable=""true"/>
</DimensionState>
<DimensionState DimensionName="Flavors"™ Dimensionld="12">
<Refinements ParentName='"Berry" Parentld="4294967281" Has-
More="false" IsRefinable="false"/>
<SelectedDimensionValues>
<DimensionValueReference Name="Berry' 1d=""4294967281"/>
</SelectedDimensionValues>
<ImplicitDimensionValues>
<DimensionValueReference Name="Fruit" 1d="'4294967269"/>
<DimensionValueReference Name="Fruity" 1d="4294967218"/>
</ImplicitDimensionValues>
</DimensionState>
<DimensionState DimensionName="Drinkability" Dimensionld="3">
<Refinements ParentName="Drinkability" Parentld="3" Has-
More="false" IsRefinable=""true"/>
</DimensionState>
<DimensionState DimensionName="Endeca' Dimensionld="4294967294">
<Refinements ParentName="Endeca' Parentld="'4294967294" Has-
More="false" IsRefinable="false"/>
<ImplicitDimensionValues>
<DimensionValueReference Name="Endeca' 1d="4294967293"/>
</ImplicitDimensionValues>
</DimensionState>
</DimensionStates>
</NavigationStatesResult>
<RecordsResult Offset=""0" RecordsPerPage=""1" TotalRecordCount="6">

<Records>
<Record 1d=""35078"">
<Attributes>

<AssignedDimensionValue Key=""Review Score'™ Dimensionld="9"
1d=""29">80 to 90</AssignhedDimensionValue>

<Property Key=""P_DateReviewed''>09/30/94</Property>

<Property Key="P_Description">Bright and fruity, soft-tex-
tured, sharply focused, with marvelous berry and cranberry flavors and none
of the stalkiness that afflicts other Cabernet Francs. Drinkable now. (400
cases produced)</Property>

<Property Key="P_Name'>Cabernet Franc Yakima Valley Red
Willow Vineyard Signature Series</Property>

<Property Key="P_Price">16.000000</Property>

<Property Key=""P_Region''>Washington</Property>

<Property Key=""P_Score">87</Property>

<Property Key="P_WinelD">35078</Property>

<Property Key="P_Winery">Columbia</Property>

<Property Key="P_WineType'>Cabernet Franc</Property>

<Property Key="P_WineType">Red</Property>

<Property Key="P_Year'>1992</Property>

</Attributes>
</Record>

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 121

</Records>
</RecordsResul t>
<AppliedFilters>
<SearchReports>
<SearchReport>
<Search Key="'P_Description">fruity</Search>
<MatchedRecordCount>3802</MatchedRecordCount>
<MatchedMode>Al I</MatchedMode>
<MatchedTermsCount>1</MatchedTermsCount>
</SearchReport>
</SearchReports>
<SelectedDimensionValuelds>
<DimensionValueld>8026</DimensionValueld>
<DimensionValueld>4294967281</DimensionValueld>
</SelectedDimensionValuelds>
</AppliedFilters>
<BusinessRulesResult>
<BusinessRules>
<BusinessRule 1d="1" NavigationStateRecordCount="18" Style="Style
1" Title=""Recommended Merlots" Zone='"Zone One''>
<SelectedDimensionValuelds>
<DimensionValueld>8025</DimensionValueld>
<DimensionValueld>8029</DimensionValueld>
</SelectedDimensionValuelds>

<Properties>
<Property Key="StyleTitle">Style One Title</Property>
</Properties>
<Records>
<Record 1d=""37370">
<Attributes>

<AssignedDimensionValue Key="Wine Type' Dimension-
1d=""6200" 1d="8025">Merlot</AssignedDimensionValue>
<AssignedDimensionValue Key="Region" Dimensionld="8"
1d=""4294967161">Napa</AssignedDimensionValue>
<AssignedDimensionValue Key="Winery" Dimensionld=""11"
1d=""4294965608"">Dickerson</AssignedDimensionValue>
<AssignedDimensionValue Key="Vintage' Dimensionld="2"
1d="'4294967284'">1992</AssignedDimensionValue>
<AssignedDimensionValue Key="Price Range'" Dimension-
1d=""10" 1d=""8033">%$10 to $20</AssignedDimensionValue>
<AssignedDimensionValue Key="Review Score'™ Dimension-
1d=""9"" 1d=""29">80 to 90</AssignedDimensionValue>
<AssignedDimensionValue Key="Designation™ Dimension-
1d="7"" 1d=""8029"">Highly Recommended</AssignedDimensionValue>
<AssignedDimensionValue Key="Body" Dimensionld="5"
1d=""4294967064">Complex</AssignedDimensionValue>
<AssignedDimensionValue Key="Body' Dimensionld="5"
1d=""4294967140">Del icious</AssignedDimensionValue>
<AssignedDimensionValue Key="Body' Dimensionld="5"
1d=""4294967199">Lively</AssignedDimensionValue>
<AssignedDimensionValue Key="Body" Dimensionld="5"
1d=""4294967236">Rich</AssignedDimensionValue>
<AssignedDimensionValue Key="Flavors' Dimensionld=""12"
1d=""4294967279">Cherry</AssignedDimensionValue>
<AssignedDimensionValue Key="Flavors" Dimensionld=""12"
1d=""4294967155">Currant</AssignedDimensionValue>
<AssignedDimensionValue Key="Flavors™ Dimensionld="12"
1d=""4294967194'"">0ak</AssignedDimensionValue>
<Property Key="P_Body''>Complex</Property>
<Property Key="P_Body''>Delicious</Property>
<Property Key="P_Body'>Lively</Property>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

122

About the MDEX API through XQuery | MDEX API through XQuery examples

<Property
<Property

Key="P_Body"'>Rich</Property>
Key="P_DateReviewed>02/28/95</Property>

<Property Key="P_Description">Intense and lively, with

a solid core of currant, cherry and light oak shadings that give it rich-
ness, depth and complexity. Delicious now, but should drink well through
1998. (200 cases produced) Highly Recommended</Property>

<Property Key=""P_Designation”>Highly Recommended</Prop-

erty>
<Property Key=""P_Designation">Limited Reserve</Property>
<Property Key="P_Designation''>Reserve</Property>
<Property Key="P_Flavor'>Cherry</Property>
<Property Key="P_Flavor'>Currant</Property>
<Property Key="P_Flavor'>0ak</Property>
<Property Key="P_Name'>Merlot Napa Valley Limited Re-
serve</Property>
<Property Key="P_Price">17.000000</Property>
<Property Key=""P_Region''>Napa</Property>
<Property Key="P_Score">90</Property>
<Property Key="P_WinelD">37370</Property>
<Property Key="P_Winery'">Dickerson</Property>
<Property Key=""P_WineType''>Merlot</Property>
<Property Key=""P_WineType">Red</Property>
<Property Key="P_Year'>1992</Property>
</Attributes>
</Record>
</Records>
</BusinessRule>
</BusinessRules>
</BusinessRulesResul t>
<KeywordRedirects/>
</Results>

Analytics example

In this example, an Analytics query selects the top three highest-rated wineries based on wines priced
less than $20.

The Analytics statement is submitted as a string, and a list of records is returned.
P L . . .
77 Note: Analytics is a separately licenced product. For details, contact your Endeca representative.

The following query:

mdex:navigation-query(

<Query xmlns="http://www.endeca.com/MDEX/data/1R600">
<AnalyticsExpression>RETURN *'Best Wineries™ AS SELECT AVG(''P_Score') AS

"Average Score' WHERE P_Price < 20 GROUP BY "Winery' ORDER BY "Average

Score' DESC PAGE (0, 3)</AnalyticsExpression>

</Query>

Would return the following result. (This snippet displays only the Analytics portion of the query. This
element would be under a NavigationResults element.)

<AnalyticsResult xmlns="http://www.endeca.com/MDEX/data/IR600"">
<AnalyticsStatementResult Name="Best Wineries" TotalRecordCount="4902">
<Record 1d="528">
<Attributes>
<AssignedDimensionValue Dimensionld="11" 1d="4294964603" Key="Win-

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

About the MDEX API through XQuery | MDEX API through XQuery examples 123

ery'>Jean-Paul Droin</AssignedDimensionValue>
<Property Key="Average Score''>94_000000</Property>
</Attributes>
</Record>
<Record 1d="4664">
<Attributes>
<AssignedDimensionValue Dimensionld=""11" 1d="4294960751" Key="Win-
ery'>3 Bridges</AssignedDimensionValue>
<Property Key="'Average Score''>94_000000</Property>
</Attributes>
</Record>
<Record 1d="'1266">
<Attributes>
<AssignedDimensionValue Dimensionld="11" 1d="4294961269" Key="Win-
ery''>Roberto Ferraris</AssignedDimensionValue>
<Property Key="Average Score''>93.000000</Property>
</Attributes>
</Record>
</AnalyticsStatementResult>
</AnalyticsResult>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

Chapter 5
Early Access features

Early Access content in this release

This release of Web services and XQuery for Endeca includes some features that are in an Early
Access state.

The interfaces and behavior of these Early Access features may change, based on information gathered
during this Early Access program, and they are not supported for use in production. Endeca gives no
guarantees about backwards compatibility of these features in future releases.

The Early Access release of these features gives you a chance to start working with the new functionality
as soon as possible in the development cycle. At the same time, your feedback can uncover problems
and help shape ongoing development. Please direct your comments on this new functionality to the
EDeN forums, and notify your Endeca Support representative of any bugs you discover.

Dimension value specs

A dimension value spec, or dimension value specifier, is a special dimension value property used to
identify a dimension value. The Data Update API uses dimension value specs to represent assignments.
."ﬁ'x
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

A dimension value spec, together with the name of the dimension, provides a simple way to refer to
dimension values that is stable from one baseline update to the next and across Dgraph replicas in a
cluster. The dimension value spec will gradually replace dimension value IDs as a way to refer to
dimension values in the various Endeca XQuery APIs. During this transitional period, over the course
of the next several releases, a set of conversion functions (documented below) make it possible for
you to link the two.

Although a dimension value spec is not required, when one is present it serves as the primary key for
the dimension values within a dimension. One dimension value property, called DGraph.Spec, is
used to assign and read the dimension value spec. Unlike other dimension value properties, dimension
value specs are indexed, making it possible to use them for efficient lookup.

You can create dimension value properties, including the dimension value spec, in Developer Studio,
except on the root dimension value. If you want to add the dimension value spec to a root dimension
value, you must edit or transform the dimensions.xml file directly. (For more information about

126 Early Access features | Dimension value specs

adding dimension value properties, see the section "Working with Dimensions and Dimension Values"
in the Developer Studio Help.)

Dimension value specs have the following requirements:

« They must be unique within the dimension. That is to say, two dimension values in the same
dimension cannot have the same value of DGraph . Spec.

» They must be single assign. That is, one dimension value cannot have two properties named
DGraph.Spec. (Take care when creating properties in Developer Studio, because that tool does
not enforce single assign.)

If either of these requirements is violated, you will receive an error during Dgidx processing or when
using the Data Update API.

S o
7 Note: Neither the explicit setting of dimension value specs nor their auto-generation is supported
with file-based partial updates in this release.

Auto-generating dimension value specs

In situations where is it not possible to assign a dimension value spec using the DGraph . Spec property,
you can set Dgidx to automatically create a dimension value spec upon baseline or delta update (but
not upon partial update).

A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

There are a number of scenarios in which it is not possible to assign dimension value specs using the
DGraph.Spec property:

< On root dimension values created through Developer Studio.

< On auto-generated dimensions derived from source data properties.

 During file-based partial updates, where changes to dimension value properties are not supported.

In such cases, you can use the Dgidx flag -—autogenerate-dval-specs to specify the

auto-generation of dimension value specs. If this flag is specified, then during baseline updates, any
dimension value that does not have a dimension value spec is assigned one. Subsequently, the MDEX
Engine treats the value of the auto-generated property the same as any other dimension value spec.

Generated dimension value specs are created as follows:

« For the dimension value that is the root of the dimension, the generated dimension value spec is
a forward slash "/".

» For a dimension value that is a child of the root, the generated dimension value spec is a forward
slash "/" followed by a URI encoding of its name.

« For all other dimension values, the generated dimension value spec is the URI encoding of its
name appended to the generated dimension value spec of its parent dimension value, separated
by a forward slash "/".

The URI encoding, which is applied so that it is possible to use slashes in dimension value names, is
defined by XQuery fn:encode-for-uri().

Dimension value siblings and dimension value specs

Because auto-generated dimension value specs are derived from dimension value names,
auto-generation of dimension value specs is not possible for sibling dimension values with the same

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | Dimension value specs 127

name. While auto-generating dimension value specs, Dgidx checks for duplicate dimension value
specs. If it encounters any, it reports the errors and exits without generating new indices.

Example of auto-generated dimension value specs

%
Note: This example is for illustrative purposes only. In reality, Dgidx does not produce a modified
dimensions.xml file.

Using auto-generated dimension value specs, the following dimension tree:

<DIMENSION NAME="Decimal'>
<DIMENSION_ 1D ID="100000"/>
<DIMENSI1ON_NODE>
<DVAL TYPE="EXACT"'>
<DVAL_ID ID="'100000"/>
<SYN DISPLAY="TRUE" SEARCH="'FALSE"
CLASSIFY="FALSE">Decimal</SYN>
</DVAL>
<DIMENSI1ON_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID ID="110000"/>
<SYN DISPLAY="TRUE" SEARCH=""TRUE"
CLASSIFY="FALSE">0ne through 100</SYN>
</DVAL>
<DIMENSI1ON_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID ID="120000"/>
<SYN DISPLAY="TRUE" SEARCH=""TRUE"
CLASSIFY="FALSE"'>0One through 10</SYN>
</DVAL>
<DIMENSI1ON_NODE>
<DVAL TYPE="EXACT"'>
<DVAL_ID ID="130001"/>
<SYN DISPLAY="TRUE" SEARCH=""TRUE"
CLASSIFY="TRUE"">1</SYN>
</DVAL>
</DIMENSION_NODE>
<DIMENSI1ON_NODE>
<DVAL TYPE="EXACT"'>
<DVAL_ID ID="130002"/>
<SYN DISPLAY="TRUE" SEARCH=""TRUE"
CLASSIFY="TRUE">2</SYN>
</DVAL>
</DIMENSION_NODE>
</DIMENSION_NODE>
</DIMENSION_NODE>
</DIMENSION_NODE>
</DIMENSION>

appears as follows:

<DIMENSION NAME=""Decimal"'>
<DIMENSION_ID ID="100000"/>
<DIMENS10N_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID 1D="100000"/>
<SYN DISPLAY=""TRUE" SEARCH="'FALSE"
CLASSIFY=""FALSE">Decimal</SYN>

<DVAL_ID ID="100000"/>
<PROP NAME="'DGraph.Spec'>

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

128 Early Access features | Dimension value specs

<PVAL>/</PVAL>
</PROP>
</DVAL>
<DIMENS10N_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID 1D="110000"/>
<SYN DISPLAY=""TRUE" SEARCH=""TRUE"
CLASSIFY="FALSE">0One through 100</SYN>
<PROP NAME="'DGraph.Spec'>
<PVAL></0ne%20through%20100</PVAL>
</PROP>
</DVAL>
<DIMENSI10ON_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID ID="120000"/>
<SYN DISPLAY="TRUE"™ SEARCH="TRUE"
CLASSIFY="FALSE">0ne through 10</SYN>
<PROP NAME="DGraph.Spec'>
<PVAL></0ne%20through%20100/
One%20through%2010</PVAL>
</PROP>
</DVAL>
<DIMENSI10ON_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID 1D="130001"/>
<SYN DISPLAY=""TRUE" SEARCH=""TRUE"
CLASSIFY=""TRUE"'>1</SYN>
<PROP NAME="'DGraph.Spec'>
<PVAL></0ne%20through%20100/
One%20through%2010/1</PVAL>
</PROP>
</DVAL>
</DIMENSION_NODE>
<DIMENS10N_NODE>
<DVAL TYPE="EXACT">
<DVAL_ID 1D="130002"/>
<SYN DISPLAY=""TRUE" SEARCH=""TRUE"
CLASSIFY="TRUE">2</SYN>
<PROP NAME="'DGraph.Spec'>
<PVAL></0ne%20through%20100/
One%20through%2010/2</PVAL>
</PROP>
</DVAL>
</DIMENSI10ON_NODE>
</DIMENSION_NODE>
</DIMENSION_NODE>
</DIMENSI10ON_NODE>
</DIMENSION>

Dimension value spec limitations
Keep in mind the following limitations to using dimension value specs.

« The auto-generation of dimension value specs is not possible for sibling dimension values with
the same name

* You cannot use dimension value specs to navigate to or look up details of dimension values in the
Presentation APIs. You can only do so through XQuery, using the conversion functions provided
for this purpose.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | Dimension value specs 129

Note: Dimension value IDs continue to work in the Presentation API as in previous releases.

Conversion functions for dimension value specs

Three conversion functions facilitate the use of dimension value specs at query time by allowing
convenient translation between dimension value specs and dimension value IDs.
A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Many Endeca features, including the MDEX API through XQuery (or MAX), use dimension value IDs
rather than dimension value specs as identifiers. However, you may write a custom Web service that
uses dimension value specs. The conversion functions described below, when used within a custom
Web service, allow you convert request and response values between dimension value IDs and
dimension value specs.

For example, you might submit a query with a dimension name and dimension value spec pair. You
could use the mdex-data:dimension-value-id-from-spec function to rewrite the dimension
name and its dimension value spec to its ID. You could run the query with the ID through MAX and
get the result, and then use the mdex-data:dimension-value-spec-from-id function to rewrite
ID to dimension name plus dimension value spec. (Keep in mind that while dimension value IDs are
unigue across the MDEX Engine, dimension value specs are only unique by dimension. That is why
both the dimension hame and the dimension value spec are required.)

+ mdex-data:dimension-value-spec-from-id returns the dimension value spec of the
dimension value with the given ID, if any.

+ mdex-data:dimension-name-from-id returns the name of the dimension containing the
dimension value with the given ID, if any.

+ mdex-data:dimension-value-id-from-spec returns the ID of the dimension value within
the given dimension, with the given spec, if any.

All of these functions raise an error if the specified dimension value does not exist or has no spec. For
more information, see the topic "XQuery try/catch expressions.”

For full details and examples of these functions, see the specific topics that follow.

Declaring and using conversion functions
The conversion functions use the namespaces and schema described below.
The namespace used by conversion functions is:
http://www.endeca.com/MDEX/update/2009/EarlyAccess
The namespace used by conversion functions elements is:

http://www.endeca.com/MDEX/datas/2009/EarlyAccess

To use any of the mdex-data functions, the import statement that follows, or equivalent declarations,
must be included in that module.

import module namespace mdex-data =
"http://www.endeca.com/MDEX/update/2009/EarlyAccess at "mdex_data.xq';

The schema file, ndex_data.xsd, is located in $ENDECA_MDEX_ROOT/conf/schema.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

130 Early Access features | Dimension value specs

mdex-data:dimension-value-id-from-spec

The mdex-data:dimension-value-id-from-spec function returns the ID of the dimension value
within the given dimension, with the given spec, if any. It raises an error if there is no dimension value
within the dimension with the given spec value.

A

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Function
Declaration

Function
Summary

Parameters

Returns

Example

declare function
mdex-data:dimension-value-id-from-spec($dimensionName as
Xs:string,

$spec as xs:string) as xs:string

Returns the ID for the dimension value that is associated with $spec within the
dimension $dimensionName.

$dimensionName is the name of the dimension that the dimension value belongs
to.

$spec is the value of the spec property on the dimension value you are looking
for.

The dimension value ID of the dimension value within $dimensionName that is
associated with $spec.

Using the following example dimension value (in MAX format):

<data:DimensionValue Name="Merlot'™ 1d=""8025" IsLeaf="true"
IsNavigable="true">

<data:Properties>

<data:Property Key="DGraph.Spec">/Wine%20Type/Merlot</mda-
ta:Property>

</data:Properties>
</data:DimensionValue>

the function mdex-data:dimension-value-id-from-spec("Wine Type",
"/Wine%20Type/Merlot™)

returns "8025".

mdex-data:dimension-value-spec-from-id

The mdex-data:dimension-value-spec-from-id function returns the dimension value spec of
the dimension value with the given ID, if any. It raises an error if there is no dimension value within
the dimension with the given ID.

M

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Function
Declaration

Function
Summary

Parameters
Returns

Example

Early Access features | Dimension value specs 131

declare function
mdex-data:dimension-value-spec-from-id($id as xs:string) as
Xs:string

Returns the spec value associated with the dimension value specified by $id.

$id is the ID of the dimension value you want the spec for.
The dimension value spec associated with the dimension value.

Using the following example dimension value (in MAX format):

<data:DimensionValue Name="Merlot' 1d="8025" IsLeaf="true"
IsNavigable="true">

<data:Properties>

<data:Property Key="DGraph.Spec">/Wine%20Type/Merlot</mda-
ta:Property>

</data:Properties>
</data:DimensionValue>

the function mdex-data:dimension-value-spec-from-id(*'8025"")

returns "/Wine%20Type/Merlot".

mdex-data:dimension-name-from-id

The dimension-name-from-id function returns the name of the dimension containing the dimension
value with the given ID, if any. It raises an error if no dimension contains a dimension value with the

given ID.

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Function
Declaration

Function
Summary

Parameters
Returns

Example

Endeca Confidential

declare function
mdex-data:dimension-name-from-id($id as xs:string) as
Xs:string

Returns the name of the dimension that the dimension value with ID $id belongs
to.

$id is the ID of the dimension value you want to find the dimension for.
The name of the dimension that the dimension value belongs to.

Using the following example dimension value (in MAX format):

<data:DimensionValue Name="Merlot" 1d="8025" IsLeaf=""true"
IsNavigable=""true">

<data:Properties>

<data:Property Key="DGraph.Spec">/Wine%20Type/Merlot</mda-
ta:Property>

</data:Properties>
</data:DimensionValue>

the function mdex-data:dimension-name-from-id(*'8025") returns "Wine
Type".

Endeca® MDEX Engine Web Services and XQuery Developer's Guide

132 Early Access features | Data Update API

Data Update API

The Data Update API provides developers with a programmatic way to create, update, and delete
records and add dimension values, without needing to use Forge.
iy
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Using Web services to update your Endeca application

You can use custom Web services to update certain aspects of your Endeca application.

The Endeca approach to updating Web services is based on the use of updating XQuery main modules
or functions, as described in the XQuery Update Facility 1.0 Candidate Recommendation. A
non-updating function may not invoke an updating expression.

Updates (whether performed by the updating XQuery functions or file-based partial updates) never
execute concurrently. If an update request of any kind is received while another is executing, it is
blocked until it can proceed. Like file-based partial updates, updating XQuery functions effectively
reinitialize the Dgraph cache.
A
7 Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Note the following limitations on updating Web services:

Use of the Agraph with the Data Update API is not supported in this EA release.

eutil:eval () cannot evaluate an updating main module.

Because the MDEX Web service uses eutil :eval (), which cannot evaluate an updating main
module, it cannot be used to invoke updating expressions.

« There is no default updating Web service—you must create a custom Web service to use this
feature.

In version 6.1.3 and later, you can do the following:

» Store XML documents persistently within the MDEX Engine, using the fn:put() function, and
retrieve them with the fn:doc () function.

* Add a record.

* Delete a record.

» Add a dimension value.

Each invocation of an updating Web service is a single transaction that shares some important
characteristics:

« It provides Level 3 isolation, meaning that transactions are serializable.

« Itis rolled back if there is an uncaught exception.

* Itis committed atomically to persistent storage when the invocation of the main module succeeds.

* Calls it makes to the MDEX API through XQuery (MAX), fn:zdoc(), fn:put(), and other updating
functions all participate in a common atomic transaction.

4 Note: The use of file-based partial updates and updating Web services in the same application
is not supported, because dimension values created via file-based partial updates use dimension
value IDs rather than dimension value specs as identifiers. Therefore, updating Web services
could not access those dimension values.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

http://www.w3.org/TR/xqupdate/

Early Access features | Data Update APl 133

Benefits of updating Web services
Updating Web services provide a number of significant advantages over file-based partial updates.

» The API is available through Web services, which are easier to integrate into existing applications
than the file-based partial update mechanism.

« Updating Web services provide transactional guarantees, which makes it easier to know precisely
the state of your data and ensures that it is always consistent.

« Updating Web services allow dimension value assignments to be represented by dimension value
specs. This facilitates integration with third-party systems by eliminating the need to manager
integer dimension value IDs.

» They provide direct feedback about whether an update succeeded, without requiring you to do a
lot of research into the logs.

* The use of Forge is not required.

Returning results from updating Web services
In this Early Access release, you cannot return results from an updating Web service.

If an updating transaction succeeds, an HTTP return code of 200 (OK) is returned. If the transaction
fails for any reason, an HTTP return code of 500 (Internal Server Error) is returned. The HTTP response
body contains a human-readable description of the failure. To obtain more detailed information about
the failure, you can look at the MDEX Engine request log.

In subsequent releases, updating Web services will be able to return more detailed results.

A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Updating functions

The functions declared in the mdex_data. xq library module provide updating functionality.

Declaring and using updating functions
The updating functions use the namespaces and schema described below.
The namespace used by updating functions is:
http://www.endeca.com/MDEX/update/2009/EarlyAccess
The namespace used by updating function elements is:

http://www.endeca.com/MDEX/data/2009/Ear lyAccess

To use any of the mdex-data functions in an updating module, the import statement that follows, or
equivalent declarations, must be included in that module.

import module namespace mdex-data =
"http://www.endeca.com/MDEX/update/2009/EarllyAccess at "'mdex_data.xq";

The schema file that defines the record, property, and dimension value elements used by updating
Web services, mdex_data.xsd, is located in SENDECA_MDEX_ ROOT/conf/schema.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

134 Early Access features | Data Update API

mdex-data:get-record(spec)

The mdex-data:get-record(spec) function returns a representation of the specified record.

A

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Function
Declaration

Function
Summary

Parameters

Returns

Example

Errors Thrown

declare function mdex-data:get-record($spec as xs:string)
as element(data:Record, xs:untyped)

Returns a representation of the record identified by the $spec.

$spec is the record specifier for the record you want to retrieve.

The record identified by the specifier.

Using the following example record (in MAX format):

<data:Record>
<data:Spec>
<data:Assignment Key="OrderNo''>X1102</data:Assignment>
</data:Spec>
<data:Assignment
Key="Price">10</data:Assignment>
<data:Assignment
Key="Wine Type''>WT1l0l</data:Assignment>
<data:Assignment
Key=""Flavors''>Hay</data:Assignment>
<data:Assignment
Key="Description'”>Tastes like hay</data:Assignment>
</data:Record>

the function mdex-data:get-record(*'X1102")

returns the XML structure given above.

* endeca-err :MDEXO0O0OL1 if the input to the function is contextually invalid
(because, for example, the given record specifier was not found).

e endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

mdex-data:put-record(record)

The mdex-data:put-record(record) function adds the provided record to the corpus.

A

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

%
Note: This function causes a dynamic error when the record does not exist.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | Data Update APl 135

‘ . - . . -
Note: When assigning dimension values to a record, the Assignment element expects a
dimension spec as the value, and not a dimension name.

Function declare updating function

Signature mdex-data:put-record($record as element(data:Record, Xs:un-
typed))

Function Adds the provided record to the corpus.

Summary

Parameters $record is the record to add to the corpus.

Returns The return type is none. The record is added to the corpus. If a record already

exists in the corpus with the same specifier, it will be overwritten.

Example Using the following example record (in MAX format):

let $record :=
<data:Record>
<data:Spec>
<data:Assignment
Key=""SorderNo''>X1102</data:Assignment>
</data:Spec>
<data:Assignment
Key="Price">10</data:Assignment>
<data:Assignment
Key=""Wine Type'>WT1l0l</data:Assignment>
<data:Assignment
Key=""Flavors''>Hay</data:Assignment>
<data:Assignment
Key=""Description'>Tastes like hay</data:Assignment>
</data:Record>

the function mdex-data: put-record($record)

adds the record to the corpus.

Errors Thrown » endeca-err:SCHMO0O01 if the input to the function did not pass schema

validation (because, for example, the record contained more than one specifier
assignment).

» endeca-err:MDEX0O0OL1 if the input to the function contextually invalid
(because, for example, the record contained an assignment that specified an
invalid dimension or property name).

« endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

mdex-data:delete-record(spec)

The mdex-data:delete-record(spec) function deletes the specified record from the corpus.

A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

136 Early Access features | Data Update API

Function
Declaration

Function
Summary
Parameters

Returns

Example

Errors Thrown

declare updating function
mdex-data:delete-record($spec as xs:string)

Deletes the record identified by $spec from the corpus.

$spec is the record specifier for the record you want to delete.

The return type is none. The record is deleted from the corpus. If a record specifier
does not exist in the corpus, the operation is ignored without failure.

Using the following example record (in MAX format):

<data:Record>
<data:Spec>
<data:Assignment
Key=""SorderNo''>X1102</data:Assignment>
</data:Spec>
<data:Assignment
Key="Price">10</data:Assignment>
<data:Assignment
Key=""Wine Type'>WT1l0l</data:Assignment>
<data:Assignment
Key=""Flavors''>Hay</data:Assignment>
<data:Assignment
Key=""Description'>Tastes like hay</data:Assignment>
</data:Record>

the function mdex-data:delete-record(*'X1102'")

deletes the record from the corpus.

None.

mdex-data:put-dimension-value(dval)

The mdex-data:put-dimension-value(dval) function adds the specified dimension value to
the associated dimension.

A

Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Function
Declaration

Function
Summary

Parameters

Returns

declare updating function
mdex-data:put-dimension-value($dval as element
(data:DimensionValue, xs:untyped))

Adds the provided dimension value with a unique specifier to the associated
dimension. A unique ID is automatically generated for the new dimension value.
$dval is the dimension value to add to the associated dimension.

The return type is none. The dimension value is added to the associated dimension.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | Data Update APl 137

Example Using the following example dimension value (in MAX format):

let $dval :=
<data:DimensionValue Name="Merlot" Parent="Red"
Dimension="WineType">
<data:Spec>
<data:Property
Key=""DGraph.Spec'>WT1l0l</data:Property>
</data:Spec>
<data:Property
Key=""Weight''>Medium</data:Property>
</data:DimensionValue>

the function mdex-data: put-dimension-value($dval)

adds the dimension value Merlot to the WineType dimension under the parent Red.

Errors Thrown » endeca-err:SCHMO0O01 if the input to the function did not pass schema

validation (because, for example, the dimension value contained more than
one specifier assignment).

* endeca-err :MDEXO0O0OL1 if the input to the function contextually invalid.

« endeca-err:EXTFO0O01 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

Notes This function can only be used to add child dimension values.

mdex-data:put-dimension-value(dval,id)

The mdex-data:put-dimension-value(dval, id) function adds the provided dimension value
with a unique specifier and ID to the associated dimension.

This version of the mdex-data:put-dimension-value function is used with externally managed
dimension values.
A
3 Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

&
~ Note: If an ID is not provided, a unique value in the range of 2147483647 to 3221225471 is
assigned automatically. This range, which is intended to minimize the risk of conflicting IDs being
assigned by different tools, may change in subsequent releases.

Function declare updating function

Declaration mdex-data:put-dimension-value
($dval as element(data:DimensionValue, xs:untyped),
$dvalld as xs:unsignedInt)

Function Adds the provided dimension value with a unique specifier and ID to the associated
Summary dimension.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

138 Early Access features | Data Update API

Parameters $dval is the dimension value to add to the associated dimension.

$id is the explicitly specified dimension value ID to use in the dimension value.

Returns The return type is none. The dimension value is added to the associated dimension.
Example Using the following example dimension value (in MAX format):
let $dval :=

<data:DimensionValue Name="Merlot"
Parent="Red" Dimension="WineType'>
<data:Spec>
<data:Property
Key="'"DGraph.Spec'">WT1l0l</data:Property>
</data:Spec>
<data:Property
Key="Weight''>Medium</data:Property>
</data:DimensionValue>

the function mdex-data:put-dimension-value($dval, 10001)

adds the dimension value Merlot with ID 10001 to the WineType dimension under
the parent Red.

Errors Thrown e endeca-err:SCHMOO0O01 if the input to the function did not pass schema

validation, (because, for example, the dimension value contained more than
one specifier assignment).

» endeca-err:MDEX0O0OL1 if the input to the function contextually invalid.

* endeca-err:EXTFO001 if an unexpected internal error of a different nature
occurred.

For more details about the errors thrown by external functions, see the topic "Error
code listing."

Notes This function can only be used to add child dimension values.

Adding or updating a record

An XQuery Web service can be used to insert one or more records into the MDEX Engine. A single
Web service call can add multiple records.
A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

The Data Update API provides the same record create functionality as file-based partial updates.

All of the properties and dimensions specified in the record must already exist. All dimension values
assigned to the record must either exist or be created in the same transaction (using the
put-dimension-value() function).

In addition, the record's dimension values must use the dimension value spec as the identifier. For
information about dimension value specs, which are also an Early Access feature in this release, see
the previous section in this chapter.

Newly-added records are not visible until the end of the transaction, because the transaction is not
committed until main module evaluation completes. Errors such as a duplicate dimension value specs
or an unknown property or dimension are not detected until the transaction is committed.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | Data Update APl 139

The typical workflow to add a record is as follows:

1. If a dimension value for the record has not yet been created, use the put-dimension-value()
function to add it. Each dimension value should only be added once, even if it appears on more
than one record.

2. Save the record to the MDEX Engine using the put-record() function.
The typical workflow to update a record is as follows:

1. Obtain the record using the get-record() function, using the record spec to look it up.
2. Transform it programmatically.
3. Save the result to the MDEX Engine using the put-record() function.

The update:Record schema specifies that the root element of a record is Record. Record contains
sub-elements, the Key attribute of which specifies the names of properties or dimensions. The text
values of those sub-elements are the values of the assignments.

For example, a manually-created record might look like this:

<mupdate:Record>
<mupdate:Spec>
<mupdate:Assignment Key="0OrderNo''>X1102</Assignment>
</mupdate:Spec>
<mupdate:Assignment Key="Price’'>10</Assignment>
<mupdate:Assignment Key="Wine Type">WT101l</Assignment>
<mupdate:Assignment Key="Flavors'>Hay</Assignment>
<mupdate:Assignment Key="Description'>Tastes like hay</Assignment>
</mupdate:Record>

In this example, Price and Description are properties, while Flavors and Wine Type are dimensions,
although the assignment elements look the same. The value of the dimension assignments are the
dimension value specs. Dimension assignments can only be made to dimension values that have
specs and that exist.

Deleting a record

An XQuery Web service can be used to delete one or more records from the MDEX Engine. One Web
service call can delete multiple records.
;"ﬁ'\
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Deleted records are not removed until the end of the transaction, because the transaction is not
committed until main module evaluation completes. Errors are not detected until the transaction is
committed.

Adding a dimension value

An XQuery Web service can be used to add one or more dimension values to the MDEX Engine. A
single Web service invocation can create multiple dimension values. You can create dimension values
and records assigned those values in a single transaction.
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

140

Early Access features | Data Update API

Newly-added dimension values are not visible until the end of the transaction, because the transaction
is not committed until main module evaluation completes. This function can only be used to create
new dimension values. It cannot be used to modify an existing dimension value.

Unlike file-based partial updates, you can specify dimension value properties and therefore dimension
value specs, using the property DGraph.Spec.

The following aspects of a dimension value can be set via the updating Web service:

* Name.

* Parent.

¢ Synonyms.

» Properties, including the dimension value spec.

» Dimension value ID (optional). If an ID is not provided, a unique value in the range of 2147483647
to 3221225471 is assigned automatically. This range, which is intended to minimize the risk of
conflicting IDs being assigned by different tools, may change in subsequent releases.

There are different mechanisms for determining that a new dimension value is needed, including the
following:

* The Web service might determine the need for a dimension value during the validation phase of
record creation, if no dimension value with the proper dimension value spec existed in the dimension.

» Data processing may determine the need for a dimension value, if an external system manages
IDs.

An example dimension value from the WineType dimension looks like this:

<mupdate:DimensionValue Name="Merlot" Parent="Red" Dimension=""WineType'>
<mupdate:Spec>
<mupdate:Property Key="DGraph.Spec'>WT1l0l</mupdate:Property>
</mupdate:Spec>
<mupdate:Property Key="Weight''>Medium</mupdate:Property>
</mupdate:DimensionValue>

Creating hierarchical dimension structure during updates

A single call to one of the put-dimension-value functions creates just one dimension value.
However, it is possible to create an entire tree of dimension values in one Web service call. To do this,
call put-dimension-value multiple times, specifying the tree structure in the "Parent" attribute.

Because XQuery is not a procedural language, it is not possible to specify the order in which the
dimension values are created. When the main module exits and the updates are applied, the dimension
values to be added are checked for consistency. Any dimension value update that depends on other
dimension value updates is processed after the dimension value updates it depends upon. If there
are any remaining dimension values whose parent is still not available (because it neither exist before
the update nor was not added during the update), the Web service call fails.

Error handling in updating Web services

This topic describes what happens when updating functions raise errors.
A
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Updating functions sometimes raise errors, which can be handled using try/catch expressions. However,
due to current limitations in updating Web services, it is not possible to return error information to the
client. Any uncaught errors cause the transaction to roll back and the Web service response to have

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Early Access features | fn:put() and persistent document storage 141

an HTTP 500 status code. The HTTP response body contains a human-readable description of the
failure.

Many of the errors resulting from updates cannot be detected until the updates are applied at the end
of updating main module execution. This "implied commit" at the end of the main module cannot be
surrounded by a try/catch block, so any errors raised will be uncaught, the transaction will be rolled
back and a 500 status code will be returned.

In subsequent releases, updating Web services will provide a way to determine programmatically
whether an update has been successful, and for the client to receive detailed information about failures.

Limitations to updating Web services in this Early Access release

Bear in mind the following limitations to updating Web services in this release.

iy
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

It is not possible to return a SOAP response from an updating Web service, regardless of whether it
is successful.

There is no default updating Web service—you must create a custom Web service to use this feature.
Because the MDEX Web service uses eutil :eval (), which is a non-updating function, it cannot
be used to invoke updating expressions.

fn:put() and persistent document storage

The built-in functions fn:put() and fn:doc() can be used to store and retrieve XML documents
in the MDEX Engine.

iy
Important: This feature is available as Early Access software. Its interface is likely to change
in a future release, and its use is not supported in production.

Tn:put() is an updating function specified by the XQuery Update Facility 1.0 Candidate
Recommendation 1 that stores a specified document or element at a specified URI. Documents stored
via fn:put() can be retrieved in subsequent queries via fn:doc().

The syntax of fn:put() is as follows:

fn:put($node as node(), $uri as xs:string) as empty-sequence()

The Endeca XQuery implementation supports the use of fn: put() with the following constraints:

» $node must be a document or an element node. (Element nodes stored by n:put() are implicitly
converted to documents.)
» The $uri at which the document node is place must begin with the prefix "'mdex://documents/"".

Note the following:

 Calling fn:put() with a URI for which a document already exists overwrites the previous value.

« Directly calling fn:put() with any URI that does not begin with the mdex://documents/ prefix
results in the error err -FODCO005: Invalid argument to fn:doc or fn:doc-available
being called. (The prefix err here maps to the namespace http://www.w3.0rg/2005/xqgt-errors.)

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

http://www.w3.org/2005/xqt-errors

142 Early Access features | fn:put() and persistent document storage

* The use of fn:doc() on a URI that does not begin with mdex:// (suchas file:// orhttp://)
is unaffected by this feature.

* The use of fn:doc() on URIs that begin with mdex:// is unaffected by the --xquery_fndoc
command-line flag.

« Itis not possible to completely remove documents stored with the fn:put() function. However,
documents can be overwritten with very small documents of the same name.

Persistent document storage example
The code example below stores the element <prices/> at the URI mdex://documents/prices.
fn:put(<prices/>, "mdex://documents/prices™)

Subsequent queries can retrieve the <prices/> document using fn:doc() and specifying the same
URI, as in the example code below:

fn:doc("'mdex://documents/prices')

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Chapter 6
Features Enabled with XQuery

This section contains topics describing how to implement various MDEX Engine features using the
MDEX Engine API for XQuery (MAX) and the MDEX Engine Web service.

Using the MAX API for disabled refinements requests

You can use the MDEX Engine API for XQuery (MAX API) to issue navigation requests that let you
display disabled refinements.

Disabled refinements represent those refinements that end users could reach if they were to remove
top-level filters that have been already selected from their current navigation state. To compute disabled
refinements, the MDEX Engine calculates the base navigation state and the default navigation state.

%
Note: For more information about disabled refinements, as well as about the base and default
navigation states used to calculate disabled refinements, see the section "Working with
Dimensions" in the Basic Developer's Guide.

You can display disabled refinements in your front-end application using the DisabledRefine-
mentsConfig data type that is described in one of the MAX API schema files, mdex . xsd, located
in ENDECA_MDEX_ROOT/conf/schema.

Here is a snippet from the mdex . xsd file that describes the DisabledRefinementsConfig data
type:

<complexType name="DisabledRefinementsConfig">

<sequence>

<element name="BaseDimensionlds" type=""tns:DimensionValueldList"

minOccurs="0" maxOccurs="1" />

</sequence>

<attribute name="EqlFilterInBase" type="boolean"™ use="optional' de-
Ffault="false"/>

<attribute name="TextSearchlnBase' type="boolean" use="optional' de-
fault=""false'/>

<attribute name="RangeFilterslInBase" type="boolean" use="optional™ de-
fault="false"/>

</complexType>

You can see that for the DisabledReFfinementsConfig type, you can specify the following aspects
of the base navigation state:

* BaseDimensionlDs — this is the list of dimension IDs that should be included in the base
navigation state

144

Features Enabled with XQuery | Using the MAX API for disabled refinements requests

e EqlFilterlInBase — this is the EQL filter that should be included in the base navigation state

» TextSearchlnBase — this is the text search that should be included in the base navigation state

« RangeFilterslInBase — this is the range filter that should be included in the base navigation
state

If the DisabledRefinementsConfig elementis empty, or not included in the navigation query, this
means that no configuration for disabled refinements is sent to the MDEX Engine.

For example, the following navigation query contains the DisabledRefinementsConfig element:

mdex:navigation-query(
<Query xmlns="http://www.endeca.com/MDEX/data/1R600">
<SelectedDimensionValuelds>
<DimensionValueld>110001</DimensionValueld>
<DimensionValueld>210001</DimensionValueld>
</SelectedDimensionValuelds>

<RefinementConfigs>
<DisabledRefinementsConfig TextSearchlnBase="true'>
<BaseDimensionlds>
<DimensionValueld>100000</DimensionValueld>
</BaseDimensionlds>

</DisabledRefinementsConfig>
<RefinementConfig i1d="400000"/>
</RefinementConfigs>
<Searches>
<Search Key="All">television</Search>
</Searches>
</Query>

In this query, a text search and a dimension value ID are specified. This means that the MDEX Engine
will include these top-level filters into its base navigation state.

Sending this query to the MDEX Engine through the MDEX Web service (with the SOAP Ul or another
Web services testing tool), results in the MDEX Engine response which contains the

DGraph. IsDisabledRefinement property. You can locate this property in the MDEX Engine
response and render the disabled refinements as grayed out in the front-end application.

Example: identifying disabled refinements from query output

Disabled refinements are returned in the same way as regular refinements. You can identify disabled
refinements with the DGraph .DisabledRefinement property of the MDEX Engine.

In the MAX API output, you can locate this property in the dimension tree returned with the query
results. For example, the following function determines whether results contain dimension values that
are disabled refinements:

-This function determines whether $results indicate that

the dimension with id $dimValld is a disabled refinement
declare function isDisabledRefinement(

$results as element(mdata:NavigationResults, Xxs:untyped),

$dimvalld as xs:string
) as xs:bool {

let $dimVal := $results/mdata:Dimensions//mdata:DimensionValue[@1d=$dim-
Valld]

let $disabledRefinementProp :=

$dimVal/mdata:Properties/mdata:Property[@Key="DGraph.DisabledRefinement"]

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Features Enabled with XQuery | Retrieving refinement counts for records that match descriptors 145

return
if(not exists $disabledRefinementProp)
then false()
else
data($disabledRefinementProp) eq "1*

Retrieving refinement counts for records that match
descriptors

For each dimension that has been enabled to return refinement counts, the MDEX Engine returns
refinement counts for records that match descriptors. Descriptors are selected dimension values in
this navigation state.

The counts for descriptors are returned as part of the results in XML format that the MDEX Engine
returns for a navigation query.

This capability of retrieving refinement counts for descriptors is the default behavior of the MDEX
Engine. No additional configuration (for example, Dgraph command line options) is needed to enable
this capability.

The count represents the number of records that match this dimension value in the current navigation
state.

» For a multi-AND or a single-select dimension, this number is the same as the number of matching
records.

e For a multi-OR dimension, this number is smaller than the total number of matching records if
there are multiple selections from that dimension.

The following procedure shows how you can retrieve counts for descriptors using a custom module

in XQuery that is in turn being used by the main XQuery module for making a navigation query. The
examples illustrate the logic for retrieving this information from the MDEX Engine; However, you can
organize your code in a different way to achieve similar results.

To access the refinement counts for descriptors:

1. Create a custom XQuery module, similar to the following example. The example.xq is a library
module containing a custom function for retrieving descriptor counts from the output of a navigation
query. This example uses the MDEX Engine XQuery APl (MAX).

This example does the following:
« |dentifies the dimension states
« For each dimension state, finds descriptors for records and aggregated records
» Finds DGraph.Bins and Dgraph.AggrBins dimension value properties for these specific

dimension values. (DGraph.Bins and Dgraph.AggrBins are dimension value properties
that are computed at query time).

module namespace example = "http://www.endeca.com/example”;
declare namespace mdata = "http://www.endeca.com/MDEX/data/IR600";
declare function example:property-value-for-dval(

$dimName as xs:string,
$id as xs:string,

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

146 Features Enabled with XQuery | Retrieving refinement counts for records that match descriptors

$dimensions as element(mdata:Dimensions, Xs:untyped),
$propName as xs:string
) as xs:string?

let $dval := $dimensions/mdata:Dimension[@Name = $dimName]//mdata:Di-
mensionValue[@1d = $id]
let $prop := $dval/mdata:Properties/mdata:Property[@Key = $propName]
return string(zero-or-one($prop))

};

declare function example:descriptors-with-counts(
$results as element(mdata:NavigationResults, Xxs:untyped)
) as element(example:descriptors, xs:untyped)

<example:descriptors>{
for $dimState in $results/mdata:NavigationStatesResult/mdata:Dimen—
sionStates/mdata:DimensionState
let $dimName := data($dimState/@DimensionName)
for $descriptor in $dimState/mdata:SelectedDimensionValues/mdata:Di-
mensionValueReference
let $dvalld := data($descriptor/@id)
return
<example:descriptor>{
attribute DimensionName { $dimName 1},
attribute 1d { $dvalld },
attribute Name { data($descriptor/@Name) },
attribute RecordCount {
example:property-value-for-dval (
exactly-one($dimName),
exactly-one($dvalld),
exactly-one($results/mdata:Dimensions),
"DGraph.Bins*
)

3.
attribute AggrRecordCount {
example:property-value-for-dval(
exactly-one($dimName),
exactly-one($dvalld),
exactly-one($results/mdata:Dimensions),
"DGraph.AggrBins*
)

}</example:descriptor>
}</example:descriptors>

Once you have the example.xq library module, you can use it as part of the main module in
XQuery which you use for making a navigation query.

2. Declare and use the example.xq module as part of the main module. This can be done as shown
in the following example of the example-main.xq main module:

import module namespace mdex = "http://www.endeca.com/XQuery/mdex/2008"
at "mdex.xq";
import module namespace example = "http://www.endeca.com/example’ at

“example.xq";
declare namespace mdata = "http://www.endeca.com/MDEX/data/1R600";

let $result = mdex:navigation-query(
<Query xmlns="http://www.endeca.com/MDEX/data/1R600">

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Features Enabled with XQuery | Issuing dimension value boost requests 147

<RefinementConfigs ExposeAl lRefinements=""true'">
<RefinementConfig DimensionValueld="5" Expose=""true' LimitDimension-
Values="false" />
</RefinementConfigs>
<SelectedDimensionValuelds>
<DimensionValueld>4294967187</DimensionValueld>
<DimensionValueld>4294967250</DimensionValueld>
</SelectedDimensionValuelds>
</Query>
)

return example:descriptors-with-counts($result)

3. Use the example-main.xqg module to make a navigation query to the MDEX Engine using the
packaged MDEX Query Web service.

Depending on your development environment, you can use any of the Web services testing tools
to run this query with the Endeca MDEX Query Web service.

4. Examine the results of the navigation query returned by the example-main.xq module. The

results are returned by the MDEX Engine in XML and may look as follows:
<descriptors xmlns="http://www.endeca.com/example'>

<descriptor DimensionName="Body" 1d="4294967250" Name="'Ripe" Record-
Count="12493" AggrRecordCount="""/>

<descriptor DimensionName="Body" 1d=""4294967187" Name=""Smooth' Record-
Count="4461" AggrRecordCount="""/>
</descriptors>

You can now use the returned counts for records that match descriptors in your front-end application.

Issuing dimension value boost requests

The MAX API supports making requests that boost or bury returned refinements.

Dimension value boost and bury is an MDEX Engine feature that lets you specify, in a request, that
certain dimension values should be sorted higher (boosted) or lower (buried) than other dimension
values. The feature is documented in the Basic Development Guide.

The DimensionValueStratum data type represents the assignment of a dimension value to a
specific stratum:
<complexType name="DimensionValueStratum'>

<attribute name="DimensionValueld"” type=""tns:DimensionValueld" use="'re-
quired” />

<attribute name="Stratum" type="iInt" use="'required" />
</complexType>

The DimensionValueld attribute specifies the ID of the dimension value to be assigned to a stratum,
while the Stratum attribute is an integer that represents the stratum to which the dimension value is
assigned.

The DimensionValueStratumList data type contains a list of stratified dimension values (Dimen-
sionValueStratum elements):

<complexType name="DimensionValueStratumList">
<sequence>
<element name="DimensionValueStratum" type="tns:DimensionValueStratum"

minOccurs=""0" maxOccurs="unbounded" />

Endeca Confidential Endeca® MDEX Engine Web Services and XQuery Developer's Guide

148

Features Enabled with XQuery | Issuing dimension value boost requests

</sequence>
</complexType>

In turn, the NavigationQuery data type takes a DimensionValueStrata element that specifies
the list of stratified dimension values:

<complexType name="NavigationQuery'>
<all minOccurs="0">
<element name="DimensionValueStrata" type=""tns:DimensionValueStratum-
List"™ minOccurs="0"/>
</all>

</complexType>

Thus, a navigation query for dimension value boost would contain a DimensionValueStrata element
similar to this example:

<mdata:NavigationQuery>
<mdata:DimensionValueStrata>
<mdata:DimensionValueStratum DimensionValueld="405" Stratum="2"/>
<mdata:DimensionValueStratum DimensionValueld="406" Stratum="2"/>
<mdata:DimensionValueStratum DimensionValueld="409" Stratum="'1"/>
<mdata:DimensionValueStratum DimensionValueld="410" Stratum="1"/>
</mdata:DimensionValueStrata>
</mdata:NavigationQuery>

The request creates two strata (stratum 2 and stratum 1) and assigns two dimension values to each
of them.

Endeca® MDEX Engine Web Services and XQuery Developer's Guide Endeca Confidential

Index

6.1.2 release, changes since 17

A

AdjustmentType data type 80
Advanced Query Module 14
AggregateRecord data type 80
AggregateRecordDetailsAppliedFilters data type 81
AggregateRecordDetailsQuery data type 81
AggregateRecordDetailsResult data type 82
AggregationKey data type 82
AggregationKeyList data type 82
AlternativePhrasingMode data type 83
AnalyticsResult data type 83
AnalyticsStatementResult data type 83
APl example

build display record output 113

build breadcrumb output 115

dimension search query 111

navigation query 117
AttributeDimensionValue data type 84
AttributeList data type 84
AttributeMetadata data type 84
AttributeMetadataL.ist data type 84
auto-generating dimension value specs 126

B

BetweenFilter data type 85
binding generators for the MDEX Web service 33
build breadcrumbs output example 115
build display record output example 113
built-in functions

about 51

unimplemented in this release 51
BusinessRule data type 85
BusinessRuleList data type 86
BusinessRulePreviewTime data type 86
BusinessRulesResult data type 86

C

changes since the 6.1.2 release 17

client stubs, generating 33

collation 47

command-line tool 38

CompoundDimensionSearch data type 87
CompoundDimensionSearchAppliedFilters data type 87
CompoundDimensionSearchQuery data type 87
CompoundDimensionSearchResult data type 88
CompoundDimensionValueList data type 88
connecting a Web browser to your MDEX Engine 19
conventions used in this guide 18

creating your own XQuery modules 14

data type

AdjustmentType 80
AggregateRecord 80
AggregateRecordDetailsAppliedFilters 81
AggregateRecordDetailsQuery 81
AggregateRecordDetailsResult 82
AggregationKey 82
AggregationKeyList 82
AlternativePhrasingMode 83
AnalyticsResult 83
AnalyticsStatementResult 83
AttributeDimensionValue 84
AttributeList 84

AttributeMetadata 84
AttributeMetadataList 84
BetweenFilter 85

BusinessRule 85
BusinessRuleList 86
BusinessRulePreviewTime 86
BusinessRulesResult 86
CompoundDimensionSearch 87
CompoundDimensionSearchAppliedFilters 87
CompoundDimensionSearchQuery 87
CompoundDimensionSearchResult 88
CompoundDimensionValueList 88
Dimension 88

DimensionList 89
DimensionSearch 89
DimensionSearchAppliedFilters 90
DimensionSearchQuery 90
DimensionSearchResult 91
DimensionState 91
DimensionStateList 91
DimensionValue 92
DimensionValueld 92
DimensionValueldList 92
DimensionValueList 93
DimensionValueState 93
DimensionValueStateList 93
DimensionValueStratum 93
DimensionValueStratumList 94
DisabledRefinementsConfig 94
Geocode 94

GreaterThanFilter 95
GreaterThanOrEqualFilter 95
IncludedRecordAttributeList 96
KeywordRedirectList 96

LessThan OrEqualFilter 96
LessThanFilter 96

Index

data type (continued)
MatchingCompoundDimensionsResult 97
MatchingDimensionResult 97
MatchingDimensionValueList 97
MetadataResult 98
MultiSelect 98
NavigationAppliedFilters 98
NavigationQuery 98
NavigationResult 100
NavigationStatesResult 100
NonEmptyString 100
Property 101
PropertyList 100
Range Filter 101
RangekFilterList 101
Record 102
RecordDetailsAppliedFilters 102
RecordDetailsQuery 102
RecordDetailsResult 103
RecordList 103
RecordsPerAggregateRecord 103
RecordsResult 103
RefinementConfig 104
RefinementConfigList 105
RefinementList 105
RelevanceRanking 105
ResultDimension 106
ResultDimensionList 106
Search 106
SearchAdjustment 107
SearchAdjustmentList 107
SearchKey 108
SearchKeyList 108
SearchList 108
SearchMode 108
SearchReport 109
SearchReportList 109
SnippetList 110
Sort 110
SortDirection 110
SortKeyList 110
SortList 111
UserProfileList 111
WordinterpretationList 111
Data Update API 132
adding a dimension value with 139
adding or updating a record with 138
deleting a record with 139
debugging applications with exquery 39
declaring and using
eutil functions 56
http functions 52
mdex functions 74
Dgraph flags that control XQuery use 21
Dimension data type 88
dimension search query 111
dimension value boost queries 147
dimension value specs
auto-generating 126
conversion functions 129

150

dimension value specs (continued)

introduced 125

limitations 128
DimensionList data type 89
DimensionSearch data type 89
DimensionSearchAppliedFilters data type 90
DimensionSearchQuery data type 90
DimensionSearchResult data type 91
DimensionState data type 91
DimensionStateList data type 91
DimensionValue data type 92
DimensionValueld data type 92
DimensionValueldList data type 92
DimensionValueList data type 93
DimensionValueState data type 93
DimensionValueStateList data type 93
DimensionValueStratum data type 93
DimensionValueStratumList data type 94
directory structure 22
disabled refinements configuration 143
DisabledRefinementsConfig data type 94
doc() implementation-specific behavior 44

E

Early Access content, about 125
empty sequences 46
environment variables, exquery access to 39
ep:emit-dynamic-type pragma 60
ep:emit-static-type pragma 60
ep:time pragma 61
error messages
in Web services mode 73
details for XQuery 50
eutil function namespace 56
eutil functions
about 56
about declaring and using 56
eutil:eval(xquery-string,context-item) 57
eutil:eval(xquery-string) 56
eutil:parse(xml-string) 57
example
build breadcrumbs output 115
navigation query 117
build display record output 113
dimension search query 111
examples used in this guide 18

exposing XQuery main modules as Web services 23

expression-skipping
in the XQuery evaluator 49
exquery
command-line tool 38
debugging applications with 39
access to environment variables 39
usage 39
external functions
about 51
library modules 52
treatment of 46

Endeca® MDEX Engine

F

file location in module import, determining 22
fn
error() behavior 45
fn:put() function and persistent document storage 141
format for HTTP URLS 62
function declaration syntax 52

G

generating

client stubs 33
Geocode data type 94
GreaterThanFilter data type 95
GreaterThanOrEqualFilter data type 95

H

http functions

about 52

declaring and using 52

namespace 52
HTTP URL format, about 62
http:get-body() 54
http:get-header-names() 54
http:get-header(header-name) 53
http:get-id() function 54
http:get-method() function 52
http:get-path() function 53
http:get-query-parameter-names() function 55
http:get-query-parameter() function 55
http:get-query() function 55

illegal characters in XML 47
impact on Endeca application development 15
implementation-defined behavior

replace() 45
implementation-defined behavior of XQuery for Endeca
41
implementation-specific behavior

casting strings to xs:decimal 47

collation 47

doc() 44

integer overflow 46

missing external functions 46

numeric operations with extra digits 46

ordering of empty sequences 46

static type checking 41

trace() 45

treatment of options 46

xs:decimal precision details 46

xs:integer precision details 46

xs:string length limitation 46

fn:error() 45
IncludedRecordAttributeList data type 96
inputs and outputs to the MDEX Web service 29

Index

integer overflow 46

K

KeywordRedirectList data type 96
known issues with this release 18

L

learning more
about Web services 16
about XQuery 16
LessThan OrEqualFilter data type 96
LessThanFilter data type 96
library modules, external function 52
logging details
coordinating for Web services invocations 67
for XQuery for Endeca 67

M

MatchingCompoundDimensionsResult data type 97
MatchingDimensionResult data type 97
MatchingDimensionValueList data type 97
MDEX API through XQuery

details 71

error reporting 73

internal namespace 73

naming scheme 71

schema location 72
MDEX Engine, connecting Web browsers to 19
mdex functions

about 74

declaring and using 74

namespace 74
MDEX Web service

about 27

binding generators for 33

exception handling in 34

inputs and outputs 29

invoking 31

mdex.wsdl file 33

namespaces used by 33

overview 14

returning non-MAX XML in 38

returning the WSDL for 33
MDEX Web service, updating 28
mdex-data

delete-record(spec) function 135

dimension-name-from-id function 131

dimension-value-id-from-spec function 130

dimension-value-spec-from-id function 130

get-record(spec) function 134

put-dimension-value(dval,id) function 137

put-dimension-value(dval) function 136

put-record(record) function 134
mdex:add-navigation-descriptors() 74
mdex:compound-dimension-search-query() 76
mdex:dimension-search-query() 76

151

Index

mdex:dimension-value-id-from-path(dimension-value-path)
77

mdex:metadata-query() 78

mdex:navigation-query() 78
mdex:record-details-query() 79

mdex.wsdl file, about 33

MetadataResult data type 98

module import, determining file location in 22
MultiSelect data type 98

N

namespace
for eutil functions 56
for http functions 52
for mdex functions 74
used by the MDEX Web service 33
for conversion functions 129
for updating functions 133
navigation query example 117
NavigationAppliedFilters data type 98
NavigationQuery data type 98
NavigationResult data type 100
NavigationStatesResult data type 100
non-MAX XML returned in the MDEX Web service 38
NonEmptyString data type 100
numeric operations with extra digits 46

o

obtaining more information about
Web services 16
options 46
overview of Web services and XQuery for Endeca 11

P

performance expectations 18
for Web services 23
pragmas
about 59
ep:emit-dynamic-type 60
ep:emit-static-type 60
ep:time 61
namespace 59
Property data type 101
PropertyList data type 100

R

RangeFilter data type 101

RangeFilterList data type 101

rationale for using XQuery 14

Record data type 102
RecordDetailsAppliedFilters data type 102
RecordDetailsQuery data type 102
RecordDetailsResult data type 103
RecordList data type 103

152

RecordsPerAggregateRecord data type 103
RecordsResult data type 103
refinement counts

for records that match descriptors 145
RefinementConfig data type 104
RefinementConfigList data type 105
RefinementList data type 105
release, unsupported features in 18
RelevanceRanking data type 105
replace() behavior 45
request IDs 67
ResultDimension data type 106
ResultDimensionList data type 106
returning WSDL in the MDEX Web service 33

S

Search data type 106
SearchAdjustment data type 107
SearchAdjustmentList data type 107
SearchKey data type 108
SearchKeyList data type 108
SearchList data type 108
SearchMode data type 108
SearchReport data type 109
SearchReportList data type 109
security 19
SnippetList data type 110
Sort data type 110
SortDirection data type 110
SortKeyList data type 110
SortList data type 111
static type checking behavior 41
stubs

generating client 33

T

tips for optimizing XQuery 48
trace() implementation-specific behavior 45
type system troubleshooting 43

U

unimplemented built-in functions 51
unsupported features in this release 18
updating Web services

benefits of 133

error handling in 140

returning results from 133
updating Web services, introduction to 132
updating Web services, limitations in EA 141
user-defined functions, about 59
UserProfileList data type 111

w

Web service response bodies 63

Endeca® MDEX Engine

Web services for Endeca, overview of 11
Web services invocations
coordinating logging details 67
logging details 67
Web services mode
how the pieces work together 12
understanding error messages 73
WSDL support in 64
WordlInterpretationList data type 111
WSDL support in Web services mode 64

X

XML treatment of illegal characters 47

XQuery
exposing main modules as Web services 23
function declaration syntax 52

Index

XQuery (continued)
impact on Endeca application development 15
rationale for using 14
tips for optimizing 48
treatment of illegal XML characters 47
type system troubleshooting 43
obtaining more information about 16
processing time 18
XQuery for Endeca
error message details 50
implementation-defined behavior 41
overview 11
related Dgraph flags 21
setting up your directory 22
xs:decimal, casting strings to 47
xs:decimal, precision details 46
xs:integer precision details 46
xs:string length limitation 46

153

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	Overview of Web services and XQuery for Endeca
	How the pieces of Web services and XQuery for Endeca work together
	Using XQuery with the MDEX Engine
	Creating custom Web services with the Advanced Query Module
	Using the MDEX Web service to access XQuery functionality

	Why XQuery?
	Impact on Endeca application development
	Obtaining more information about XQuery
	Obtaining more information about Web services
	About this release of Web services and XQuery for Endeca
	Changes since the 6.1.2 release
	Early Access features in this release

	What's not in this release
	Performance expectations for this release
	About the examples used in this guide

	About connecting Web browsers to your MDEX Engine

	Getting Started with Web Services and XQuery for Endeca
	Dgraph flags that control XQuery use
	Setting up your XQuery for Endeca directory
	Determining file location in module import
	Developer checklist
	Performance expectations for Web services
	Exposing XQuery main modules as Web services
	Web services and XQuery for Endeca example
	An example XQuery main module
	Example request and response bodies

	Using the MDEX Web service
	About the MDEX Web service
	Updating with the MDEX Web service

	Inputs and outputs of the MDEX Web service
	Invoking the MDEX Web service
	About the mdex.wsdl file
	Requesting the WSDL
	Namespaces used by the MDEX Web service
	Supported binding generators for the MDEX Web service
	Exception handling in the MDEX Web service
	SOAP fault schema used by the MDEX Web service
	Examples using SOAP Faults within the MDEX Web service

	Returning non-MAX XML in the MDEX Web service

	Using the exquery command-line tool
	Application debugging with exquery
	Exquery usage
	Exquery access to environment variables

	Web Services and XQuery Components and Features
	Implementation-defined behavior in XQuery for Endeca
	Static type checking
	Troubleshooting static type system errors
	fn:doc() behavior
	fn:error() behavior
	fn:trace() behavior
	fn:replace() behavior
	xs:integer precision details
	xs:decimal precision details
	xs:string length limitation
	System response to integer overflow
	Default ordering mode for an empty sequence
	Treatment of external functions
	Treatment of options
	Treatment of extra digits in numeric operations
	Treatment of collation
	Treatment of illegal characters in XML
	Casting strings to xs:decimal
	XQuery try/catch expressions

	Optimizations and error message details
	Tips for optimizing XQuery
	Impact of optimizations in the Endeca XQuery evaluator
	Treatment of unused variables in let statements
	Error message details

	About functions
	Built-in functions
	Unimplemented functions in this release

	External functions
	XQuery function declaration syntax
	External function library modules
	Endeca http functions
	Declaring and using http functions
	Http function namespace
	http:get-method()
	http:get-path()
	http:get-header(header-name)
	http:get-header-names()
	http:get-body()
	http:get-id()
	http:get-query()
	http:get-query-parameter-names()
	http:get-query-parameter()

	Endeca eutil functions
	Declaring and using eutil functions
	Eutil function namespace
	eutil:eval(xquery-string)
	eutil:eval(xquery-string,context-item)
	eutil:parse(xml-string)
	eutil:get-stack-trace()

	User-defined functions

	About pragmas
	Pragma namespace
	ep:emit-dynamic-type
	ep:emit-static-type
	ep:stats-timing
	ep:time

	Working with Web services in the MDEX Engine
	The HTTP URL format
	EBNF for the URL format
	About URL paths

	Web service request and response headers
	Web service text encoding
	WSDL support
	About request IDs
	Coordinating logging details for Web services invocations
	Error code listing

	About the MDEX API through XQuery
	MDEX API through XQuery details
	MDEX API through XQuery naming scheme
	MDEX API through XQuery schema location
	About the internal namespace
	Understanding error messages in the MDEX API through XQuery
	About mdex functions
	About declaring and using mdex functions
	Mdex function namespace
	mdex:add-navigation-descriptors()
	mdex:aggregate-record-details-query()
	mdex:compound-dimension-search-query()
	mdex:dimension-search-query()
	mdex:dimension-value-id-from-path(dimension-value-path)
	mdex:metadata-query()
	mdex:navigation-query()
	mdex:record-details-query()

	MDEX API through XQuery data types
	AdjustmentType data type
	AggregateRecord data type
	AggregateRecordDetailsAppliedFilters data type
	AggregateRecordDetailsQuery data type
	AggregateRecordDetailsResult data type
	AggregationKey data type
	AggregationKeyList data type
	AlternativePhrasingMode data type
	AnalyticsResult data type
	AnalyticsStatementResult data type
	AttributeDimensionValue data type
	AttributeList data type
	AttributeMetadata data type
	AttributeMetadataList data type
	BetweenFilter data type
	BusinessRule data type
	BusinessRuleList data type
	BusinessRulePreviewTime data type
	BusinessRulesResult data type
	CompoundDimensionSearch data type
	CompoundDimensionSearchAppliedFilters data type
	CompoundDimensionSearchQuery data type
	CompoundDimensionSearchResult data type
	CompoundDimensionValueList data type
	Dimension data type
	DimensionList data type
	DimensionSearch data type
	DimensionSearchQuery data type
	DimensionSearchAppliedFilters data type
	DimensionSearchResult data type
	DimensionState data type
	DimensionStateList data type
	DimensionValue data type
	DimensionValueId data type
	DimensionValueIdList data type
	DimensionValueList data type
	DimensionValueState data type
	DimensionValueStateList data type
	DimensionValueStratum data type
	DimensionValueStratumList data type
	DisabledRefinementsConfig data type
	Geocode data type
	GreaterThanFilter data type
	GreaterThanOrEqualFilter data type
	IncludedRecordAttributeList data type
	KeywordRedirectList data type
	LessThanFilter data type
	LessThanOrEqualFilter data type
	MatchingCompoundDimensionsResult data type
	MatchingDimensionsResult data type
	MatchingDimensionValueList data type
	MetadataResult data type
	MultiSelect data type
	NavigationAppliedFilters data type
	NavigationQuery data type
	NavigationResult data type
	NavigationStatesResult data type
	NonEmptyString data type
	PropertyList data type
	Property data type
	RangeFilter data type
	RangeFilterList data type
	Record data type
	RecordDetailsAppliedFilters data type
	RecordDetailsQuery data type
	RecordDetailsResult data type
	RecordList data type
	RecordsPerAggregateRecord data type
	RecordsResult data type
	RefinementConfig data type
	RefinementList data type
	RefinementConfigList data type
	RelevanceRanking data type
	ResultDimension data type
	ResultDimensionList data type
	Search data type
	SearchAdjustment data type
	SearchAdjustmentList data type
	SearchKey data type
	SearchKeyList data type
	SearchList data type
	SearchMode data type
	SearchReport data type
	SearchReportList data type
	SnippetList data type
	Sort data type
	SortDirection data type
	SortKeyList data type
	SortList data type
	UserProfileList data type
	WordInterpretationList data type

	MDEX API through XQuery examples
	Dimension search query example
	Build display record output example
	Build breadcrumbs output example
	Navigation query example
	Analytics example

	Early Access features
	Early Access content in this release
	Dimension value specs
	Auto-generating dimension value specs
	Dimension value spec limitations
	Conversion functions for dimension value specs
	Declaring and using conversion functions
	mdex-data:dimension-value-id-from-spec
	mdex-data:dimension-value-spec-from-id
	mdex-data:dimension-name-from-id

	Data Update API
	Using Web services to update your Endeca application
	Benefits of updating Web services
	Returning results from updating Web services

	Updating functions
	Declaring and using updating functions
	mdex-data:get-record(spec)
	mdex-data:put-record(record)
	mdex-data:delete-record(spec)
	mdex-data:put-dimension-value(dval)
	mdex-data:put-dimension-value(dval,id)

	Adding or updating a record
	Deleting a record
	Adding a dimension value
	Error handling in updating Web services
	Limitations to updating Web services in this Early Access release

	fn:put() and persistent document storage

	Features Enabled with XQuery
	Using the MAX API for disabled refinements requests
	Retrieving refinement counts for records that match descriptors
	Issuing dimension value boost requests

	Index

