
Oracle Endeca Platform Services
Application Controller Guide

Version 6.1.3 • June 2012

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...9
Contacting Oracle Support...10

Chapter 1: Introduction..11
About the Oracle Endeca Application Controller...11
EAC architecture...11

EAC architecture example...13

Chapter 2: Using the Application Controller..15
Installing the Application Controller..15
Enabling SSL security in the Application Controller..15
Specifying the EAC Central Server in Oracle Endeca Workbench...16
Starting and stopping the Application Controller directly on UNIX..16
Starting the Application Controller from inittab...16
Starting and stopping the Application Controller on Windows..17
Using the eac.properties file...17

Setting the MDEX Engine root directory..17
Setting the Copy utility’s temporary directory..18
Ensuring clean component shutdown..18
Managing server restarts...18

About the Application Controller log...18
Modifying Application Controller logging levels...18

Chapter 3:Provisioning an Implementation with the Application Controller.21
Provisioning overview...21
About the provisioning file and schema..21

Invalid characters in provisioning...22
Defining the root Application element..22
Defining hosts..22
Defining components in your provisioning file...23
Defining scripts in your provisioning file...25

Application Controller component reference...27
Forge...27
Dgidx...29
Dgraph...30
Agidx..33
Agraph...34
LogServer..36
ReportGenerator..37

Provisioning your implementation with eaccmd..39
Provisioning the Application Controller to work on multiple machines...39

Forcing the removal of an application...41
About incremental provisioning...41

Incrememental provisioning guidelines..41
About the def_file setting...41
About the --force flag...42
Adding a component in eaccmd..42
Removing a component in eaccmd...42
Modifying a component in eaccmd..42
Adding a host in eaccmd...43
Removing a host in eaccmd..43
Modifying a host in eaccmd...43
Adding a script in eaccmd...43

iii

Removing a script in eaccmd..44
Modifying a script in eaccmd...44

Provisioning your deployment with the Endeca Deployment Template...44
Using the Endeca Deployment Template...44

Chapter 4:Common System Architectures in an Endeca Implementation.45
Overview of system architectures...45
Development environment..45
Staging and testing environment..46
Sample production environments...46

Descriptions of implementation size..46
Small implementation with lower throughput...46
Medium implementation with higher throughput..47
Large implementation using an Agraph...48

Chapter 5: Using the eaccmd Tool..51
About eaccmd...51
Running eaccmd...51

eaccmd usage...51
eaccmd feedback..52
Component and utility status verbosity...53
Using the default host and port...53
eaccmd command reference..53

Provisioning commands...53
Incremental provisioning commands...54
Synchronization commands..56
Component and script control commands ..57
Utility commands...58

Chapter 6: Endeca Application Controller API Interface Reference....67
Using the Application Controller WSDL..67

Simple types in the Application Controller WSDL..67
ComponentControl interface...68

startComponent(FullyQualifiedComponentIDType startComponentInput)..68
stopComponent(FullyQualifiedComponentIDType stopComponentInput)...68

Synchronization interface..68
setFlag(FullyQualifiedFlagIDType setFlagInput)..68
removeFlag(FullyQualifiedFlagIDType removeFlagInput)..69
removeAllFlags(IDType removeAllFlagsInput)...69
listFlags(IDType listFlagsInput)..69

Utility interface..69
startBackup(RunBackupType startBackupInput)...70
startFileCopy(RunFileCopyType startFileCopyInput)...70
startRollback(RunRollbackType startRollbackInput)..71
startShell(RunShellType startShellInput)...72
stop(FullyQualifiedUtilityTokenType)..72
getStatus(String applicationID, String token)...72
listDirectoryContents(ListDirectoryContentsInputType listDirectoryContentsInput).............................73

Provisioning interface..73
defineApplication(ApplicationType application)..73
getApplication(IDType getApplicationInput)...74
getCanonicalApplication(IDType getCanonicalApplicationInput)...74
listApplicationIDs(listApplicationIDsInput)...75
removeApplication(RemoveApplicationType removeApplicationInput)..75
addComponent(AddComponentType addComponentInput)..75
removeComponent(RemoveComponentType removeComponentInput)...76
updateComponent(UpdateComponentType updateComponentInput)..76
addHost(AddHostType addHostInput)...76
updateScript(UpdateScriptType updateScriptInput)..77
removeHost(RemoveHostType removeHostInput)...77
updateHost(UpdateHostType updateHostInput)..78
addScript(AddScriptType addScriptInput)..78

Oracle Endeca Platform Servicesiv

removeScript(RemoveScriptType removeScriptInput)...78
ScriptControl interface..79

startScript(FullyQualifiedScriptIDType startScriptInput)..79
stopScript(FullyQualifiedScriptIDType stopScriptInput)...79
getScriptStatus(FullyQualifiedScriptIDType getScriptStatusInput)..79

Chapter 7: Endeca Application Controller API Class Reference..........81
AddComponentType class..81
AddHostType class...81
AddScriptType class...81
AgidxComponentType class...82
AgraphChildListType class..82
AgraphComponentType class...82
ApplicationIDListType class..83
ApplicationType class...83
BackupMethodType class...84
BatchStatusType class..84
ComponentListType class...84
ComponentType class..85
DgidxComponentType class...85
DgraphComponentType class...86
DgraphHostPortType class...87
DgraphReferenceType class...87
DirectoryListType class...87
DirectoryType class...87
EACFault class..88
FilePathListType class..88
FilePathType class..88
FlagIDListType class...88
ForgeComponentType class...88
FullyQualifiedComponentIDType class...89
FullyQualifiedFlagIDType class...89
FullyQualifiedHostIDType class..90
FullyQualifiedScriptIDType class..90
FullyQualifiedUtilityTokenType class...90
HostListType class..90
HostType class..91
ListApplicationIDsInput class..91
ListDirectoryContentsInputType class...91
LogServerComponentType class..91
PropertyListType class..92
PropertyType class...92
ProvisioningFault class...92
RemoveApplicationType class..92
RemoveComponentType class...93
RemoveHostType class..93
RemoveScriptType class...93
ReportGeneratorComponentType class...93
RunBackupType class...94
RunFileCopyType class..95
RunRollbackType class...95
RunShellType class..96
RunUtilityType class..96
ScriptListType class..96
ScriptType class..96
SSLConfigurationType class...97
StateType class...97
StatusType class...97
TimeRangeType class..98
TimeSeriesType class...98
UpdateComponentType class...98
UpdateHostType class..98
UpdateScriptType class..99

v

Contents

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes the tasks involved in managing implementations using the Oracle Endeca
Application Controller.

Who should use this guide
This guide is intended for developers responsible for provisioning and managing Endeca
implementations.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

| Preface10

https://support.oracle.com

Chapter 1

Introduction

This section introduces the Oracle Endeca Application Controller and its architecture.

About the Oracle Endeca Application Controller
The Oracle Endeca Application Controller (EAC) is a control system you can use to control, manage,
and monitor components in your Endeca implementation.

The EAC provides the infrastructure to support Endeca projects from design through deployment and
runtime. It replaces the deprecated Control Interpreter, while leaving the Endeca tools (Developer
Studio and Oracle Endeca Workbench) largely intact.

The EAC uses open standards, such as the Web Services Descriptive Language (WSDL), which
makes the Application Controller platform- and language-independent. As a result, the Application
Controller supports a wide variety of applications in production. It allows you to handle complex
operating environments that support features such as partial updates, delta updates, phased MDEX
Engine updates, and more.

EAC architecture
The EAC is installed on each machine that runs the Endeca software and is typically run in a distributed
environment.

Depending on the role that the EAC plays in the Endeca implementation, each instance of the EAC
can take one of two roles:

• EAC Central Server
• EAC Agent

You can communicate with the EAC and provide instance configuration and resource configuration
information to the EAC Central Server, using any of the three methods:

• Endeca Workbench. Endeca Workbench communicates through the WSDL interface to the EAC
Central Server. Using Endeca Workbench you can provision, run, and monitor your application.
For details, see the Oracle Endeca Workbench Help.

• The command line utility, eaccmd.eaccmd lets you script the EAC within a language such as Perl,
shell, or batch.

• Direct programmatic control through the Endeca WSDL-enabled interface and languages, such
as Java, that support Web services.

Note: The Endeca Deployment Template utilizes this method for communication with the
EAC Central Server.

Using any of these methods, you can instruct the EAC to perform different operations in your Endeca
implementations, such as start or stop a component (for example, Forge or Dgraph), or a utility (for
example, Copy or Shell environment).

The following diagram describes the EAC architecture and means of communication with it, while the
sections below describe the roles of the EAC Central Server and EAC Agents:

EAC Central Server

One instance of the EAC serves as the EAC Central Server for your implementation. This instance
includes a WSDL-enabled interface, through which you communicate with the EAC. Communication
is implemented with the standard Web services protocol, SOAP.

The EAC Central Server also contains a repository that stores provisioning information — that is, data
about the hosts, components, applications and scripts that the EAC is managing.

Note: You should configure only one EAC Central Server for a given application. The EAC can
run into issues when multiple Central Servers are provisioned with the same application on the
same EAC Agents (for example, it can lead to confusing clean-up instructions being sent to the
Agents from multiple Central Servers, which can interrupt scripts).

EAC Agents

All other instances of the EAC serve as Agents. The Agents instruct their host machines to do the
actual work of an Endeca implementation, such as processing data with a Forge component, or
coordinating the workings of multiple MDEX Engines with an Aggregated MDEX Engine component.

Each Agent also contains a small repository for its own use. The EAC Central Server communicates
with its Agents through an internal Web service interface.You do not communicate directly with the
Agents—all command, control, and monitoring functions are sent through the EAC Central Server.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Introduction | EAC architecture12

EAC architecture example
A typical Endeca implementation is usually spread across multiple host servers. Each of these physical
servers must have an EAC Agent that controls the components installed on the server.

The following diagram shows the architecture of the EAC.

The EAC Central Server communicates with EAC Agents that run on each machine hosting an entire
implementation (or components that comprise an implementation). The EAC Server communicates
to the Agents the information about the instance configuration and resource configuration.The Agents
run the necessary components and their processes on each machine, such as Forge, Dgidx, and
Dgraph.

Related Links
Using the eaccmd Tool on page 51

This section describes the eaccmd command-line tool, which can be used to provision and
run the Endeca Application Controller.

Endeca Application Controller API Interface Reference on page 67
Application Controller interfaces are documented here.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

13Introduction | EAC architecture

Chapter 2

Using the Application Controller

This section describes how to use the Application Controller.

Installing the Application Controller
This topic describes the ways you can install the Application Controller.

You have the following choices:

• Install the Agent. The Agent controls the workings of a single machine in an Application Controller
deployment. There are typically several Agents in a deployment.

• Install the EAC Central Server along with one or more EAC Agents. The Central Server acts as a
hub in an Application Controller deployment, relaying commands to each of the Agents in the
deployment. As such, there is only a single Central Server per deployment. Alternatively, you can
use an SSL-enabled Central Server. Upon configuration, this version encrypts the HTTP channel
between the Central Server and the client Web services.

During installation, when you select whether you want to run the Agent and/or the Central Server on
a machine, an XML pointer to the appropriate WAR file is copied to its workspace directory. The
presence or absence of these files in the workspace directory determines what that machine is running.
If you want to run the SSL-enabled version of the Central Server, you must copy the XML pointer to
it to your workspace directory manually, as described in the following section.

Enabling SSL security in the Application Controller
SSL in the Application Controller is disabled by default.

To enable SSL security (between the client and the EAC Central Server, between the Central Server
and an Agent, or between Agents), you need to do the following:

• Enable the SSL version of the appropriate Application Controller WAR file (eac-ssl.war replaces
eac.war for the Central Server, and eac-agent-ssl.war replaces eac-agent.war for the
Agent).

• Modify the server.xml file for the Tomcat that is hosting the Application Controller.

For details on enabling SSL security in the Application Controller, see the Endeca Security Guide.

Specifying the EAC Central Server in Oracle Endeca
Workbench

You can specify the EAC Central Server from the Endeca Workbench EAC Settings page.

On the EAC Settings page of Endeca Workbench, you specify the host and port for the EAC Central
Server. These settings control which machine Endeca Workbench communicates with when making
requests to EAC. See the Endeca Workbench help for more information.

Starting and stopping the Application Controller directly
on UNIX

Although you typically control the Application Controller through Endeca Workbench, you can also
start and stop it independently.

In a UNIX shell, you start the Application Controller (along with any other components using the same
port) with the following command:

$ENDECA_ROOT/tools/server/bin/startup.sh

You stop the Application Controller (along with any other components using the same port) with the
following command:

$ENDECA_ROOT/tools/server/bin/shutdown.sh

Starting the Application Controller from inittab
In a UNIX production environment, the Endeca Application Controller can be started by init from inittab.

In a UNIX development environment, the Endeca HTTP Service can be started from the command
line. In a UNIX production environment, however, Oracle recommends that it be started by init from
inittab. If the service crashes or is terminated, init automatically restarts it.

The UNIX version of Platform Services contains a file named endeca_run.sh that is in the
$ENDECA_ROOT/tools/server/bin directory. This is a version of startup.sh that calls run
instead of start and redirects stdout and stderr to $ENDECA_CONF/logs/catalina.out.

You can write a script that is referenced in inittab. The script sets environment variables and then
calls endeca_run.sh. When writing your script, it is recommended as a best practice that you run the
Endeca HTTP Service as a user other than root. When running the service as a non-root user, you
can set a USER environment variable that will be inherited by other scripts, such as EAC scripts.

This sample script (named start_endeca_http_service.sh) sets the ENDECA_USER variable
to the “endeca” user, sets the INSTALLER_SH variable to the path of the environment variables script
and sources it, and then does an su to change to the “endeca” user:

#!/bin/sh
ENDECA_USER=endeca
INSTALLER_SH=/usr/local/endeca/PlatformServices/workspace/setup/in¬
staller_sh.ini
We want to use installer_sh.ini variables in this script,
so we source it here.
source $INSTALLER_SH

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the Application Controller | Specifying the EAC Central Server in Oracle Endeca Workbench16

change to user endeca
su $ENDECA_USER -c "/bin/sh -c \"source $INSTALLER_SH; \
 cd $ENDECA_CONF/work; exec env USER=$ENDECA_USER \
 $ENDECA_ROOT/tools/server/bin/endeca_run.sh\""

On Solaris platforms, replace "source" with "." because source is not a command in the Bourne shell.
The start_endeca_http_service.sh script is then referenced in inittab with an entry similar to
this example.

ec:2345:respawn:/usr/local/endeca/PlatformServices/workspace/setup/start_en¬
deca_http_service.sh

When writing your startup script, keep in mind that it is server-specific, and therefore its details (such
as paths and user names) depend on the configuration of your server.

Starting and stopping the Application Controller on
Windows

Although you typically control the Application Controller through Endeca Workbench, you can also
start and stop it independently.

The Endeca HTTP service, which controls the Endeca Application Controller, is created, registered,
and configured by the installation, and started when you reboot your computer after installation.

To stop and restart the Application Controller after installation, do the following:

1. Go to Start > Control Panel > Administrative Tools > Services.

2. In the Windows Services editor, select the Endeca HTTP service.

3. Click Stop or Restart.

Using the eac.properties file
The eac.properties file, which is located in the $ENDECA_CONF/conf directory on UNIX, or
%ENDECA_CONF%\conf on Windows, is the general configuration file for the Endeca Application
Controller.

The following section describes the process control-related settings you can specify in
eac.properties.

Note: SSL-related properties in this file are discussed in the Endeca Security Guide.

Setting the MDEX Engine root directory
The attribute com.endeca.mdexRoot specifies the root directory of your MDEX Engine installation.

If you did not specify this directory upon installing Platform Services, the value for this setting will be
blank. Note that although the EAC will start if this is left blank, If you install the MDEX Engine package
later, you should specify the MDEX Engine root directory as an absolute path, including the MDEX
Engine version number. For example:

com.endeca.mdexRoot=C:\\Endeca\\MDEX\\6.2.2

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

17Using the Application Controller | Starting and stopping the Application Controller on Windows

Setting the Copy utility’s temporary directory
Directories are copied first to a specified temporary directory on the destination machine before being
copied one file at a time to the target location.

You can configure the location of this temporary directory in the eac.properties file, using the
optional setting com.endeca.eac.filetransfer.fileTransferTempDir as follows:

• If this setting is defined as an absolute path, the Copy utility uses it.
• If it is defined as a relative path, the Copy utility considers it to be relative to
%ENDECA_CONF%/state/

• If it is not defined, the Copy utility uses the directory %ENDECA_CONF%/state/file_transfer/

Ensuring clean component shutdown
Server components such as the Dgraph can be cleanly shut down via their HTTP interface.

When stopping a server, the Application Controller first attempts to shut down the server through its
HTTP interface. If this does not complete within 30 seconds, it kills the server process.You can modify
this default with the com.endeca.eac.process.shutdownTimeOutSecs setting in
eac.properties.

Managing server restarts
In an effort to make Endeca deployments more fault tolerant, the Application Controller automatically
restarts servers that crash.

You can configure the number of times the Application Controller attempts to restart a server within a
specified time window. If the server crashes more than the specified number of times in the specified
time window, then it is marked as failed.

Both of these variables are set in eac.properties. The
com.endeca.eac.process.maxServerRestartsPerWindow setting defaults to five, while
com.endeca.eac.process.serverRestartTimeWindowMins defaults to one.

About the Application Controller log
The Endeca Application Controller log is located in %ENDECA_CONF%\logs (on Windows) or
$ENDECA_CONF/logs (on UNIX).

The EAC log has a default size limit of 1G. The log is named main.rotation number.log and is
part of a two-log rotation that rolls automatically when the maximum size is reached.When the second
log file reaches the maximum size, the first is overwritten.That is, when main.0.log reaches the 1G
size limit, the system starts to write to main.1.log. Once main.1.log reaches the 1G size limit,
main.0.log is overwritten.

Modifying Application Controller logging levels
By default, Application Controller log files log WARNING and SEVERE messages.

If you want to capture INFO level messages as well, you need to modify the logging.properties
file.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the Application Controller | About the Application Controller log18

To modify logging levels in the logging.properties file:

1. Stop the Endeca HTTP service.

2. Navigate to %ENDECA_CONF%\conf (on Windows) or $ENDECA_CONF/conf (on UNIX).

3. Open logging.properties.

4. Locate the section EAC Log Level.

5. In the line com.endeca.eac.level, change WARNING to INFO.

6. Save and close the file.

7. Start the Endeca HTTP service.

For more information about logging options, see the comments in logging.properties.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

19Using the Application Controller | About the Application Controller log

Chapter 3

Provisioning an Implementation with the
Application Controller

You specify Application Controller hosts, components, and scripts, and later reference them in Endeca
Workbench, eaccmd, or your custom Web services interface. This process is known as provisioning.

Provisioning overview
Provisioning an Endeca implementation with the Application Controller consists of the following steps.

• Creating a provisioning file, in which you define the hosts and components that comprise your
implementation, as well as the scripts that it uses.

• Referencing that file when creating an implementation with the eaccmd tool or your custom Web
service interface.

Note: This chapter provides examples using the sample wine reference implementation and
the eaccmd tool.

Related Links
About eaccmd on page 51

When you manage your Endeca implementation with the Endeca Application Controller, you
control and monitor its working through the EAC Central Server.

Endeca Application Controller API Interface Reference on page 67
Application Controller interfaces are documented here.

About the provisioning file and schema
The provisioning file is a file in XML format in which you define the following aspects of your
implementation.

• Application (the root element)
• Hosts (and, optionally, directories on hosts)
• Components
• Scripts

The provisioning schema (named eaccmdProvisioning.xsd) is located in the
$ENDECA_ROOT/conf/schema directory on UNIX (%ENDECA_ROOT%\conf\schema on Windows).

Note: You can name the provisioning file anything you like. In the remainder of this chapter,
we frequently refer to the provisioning file as app.xml.

Invalid characters in provisioning
The following characters cannot be used when provisioning applications, components, hosts, scripts,
or utility tokens.

Invalid Windows file name characters, including:

• Forward slash (/)
• Backslash (\)
• Colon (:)
• Asterisk (*)
• Question mark (?)
• Right and left angle brackets (< >)
• Double quotation mark (“)
• Vertical pipe (|)

These additional characters:

• Single quotation mark (‘)
• Space

Defining the root Application element
The root element in a provisioning file is the application element.

As you can see in the example below, the application identifier is an attribute to application:

<application application-id=”agraph-wine”>

You can also specify an applicationID in the eaccmd tool. If eaccmd specifies a different applicationID
for the same application, it overrides the one provided in the provisioning file.

Defining hosts
In the hosts element you list each host by a host ID, a host name, a port number, and (optionally)
properties and directories.

The host syntax is as follows:

<host host-id="host1" host-name="localhost" port="8888">
 <properties>
 <property name="department" value="engineering" />
 <property name="department" value="prof services" />
 <property name="enforceDiskQuota" />
 </properties>
</host>

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | About the provisioning file and schema22

In this example the port is the HTTP port through which the EAC Central Server communicates with
its Agents. The optional use of host-id to alias host definitions is explained in the following section.
The optional addition of properties and directories is described later in this document.

Related Links
Aliasing hosts with host-id on page 23

In each host definition, you can create a unique alias called host-id that may be used to refer
to the specified host and port. (The host-name and port do not need to be unique.)

Provisioning directories on hosts on page 23
As part of host provisioning, you can also provision directories using a full path and a name.

Adding properties to hosts and components on page 24
You can add properties, consisting of a required name and an optional value, to any host or
component element.

Aliasing hosts with host-id

In each host definition, you can create a unique alias called host-id that may be used to refer to the
specified host and port. (The host-name and port do not need to be unique.)

For example, say you defined host1 as follows:

<host host-id="host1" host-name="localhost" port="8888" />

Later, when defining components, you could simply refer to that host-id when specifying the host for
a given component.

<dgidx name="dgidx-0" host-id="host1">

Aliasing hosts in this way has two benefits:

• It allows you to switch staging and production machines easily, by changing the name and port
associated with a host-id alias.

• It makes it possible to reference a single physical host through different host-id aliases.

Provisioning directories on hosts

As part of host provisioning, you can also provision directories using a full path and a name.

For example, assuming a host has already been provisioned as defined above, you could add the
following element:

<host >
...
<directories>
<directory dir-id="input">
 <path>C:\staging_app\working\input</path>
 </directory>
</directories>
</host>

Defining components in your provisioning file
The components element contains all of the components in your implementation.

Depending on the component type, the settings vary. The following section provides details about all
supported component types.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

23Provisioning an Implementation with the Application Controller | About the provisioning file and schema

Note the following:

• The order of elements in a component does not matter.
• Unless otherwise noted, relative paths are supported.
• Required elements are labelled as such. If you attempt to provision a component without a required

element, you will receive an error.

Using XML entities in your provisioning file

The Application Controller supports the use of XML entities in provisioning files.

For example, assume you established the following entities in your XML provisioning file:

<!DOCTYPE application [
 <!ENTITY W_base "C:\Endeca\PlatformServices\reference\sample_wine_data\da¬
ta">
 ...
 <!ENTITY H1 "host1">
 ...
]>

Subsequently, when defining a Forge component, rather than having to enter the host machine and
working directory like this:

<forge component-id="forge1" host-id="host1">
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\
 </working-dir>
 ...
</forge>

you can instead refer to them by their entities, like this:

<forge component-id="forge1" host-id="&H1;">
 <working-dir>
 &W_base;\
 </working-dir>

Adding properties to hosts and components

You can add properties, consisting of a required name and an optional value, to any host or component
element.

Such properties can be used for value mapping as well as for flagging the element in question.

You add properties as part of provisioning your application. After your application is provisioned, any
properties that you defined are included in the application definition, which you can retrieve using
eaccmd’s describe-app command. This feature is only useful in user-provided scripts; it is not an
additional place to pass arguments or options to Endeca components.

Related Links
Forge on page 27

A Forge element launches the Forge (Data Foundry) software, which transforms source data
into tagged Endeca records.

Dgidx on page 29
A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which
generates the proprietary indices for each Dgraph.

Dgraph on page 30

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | About the provisioning file and schema24

A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries
against the indexed Endeca records.

Agidx on page 33
An Agidx component runs Agidx on a machine, creating a set of Agidx indices that support
the Agraph program in a distributed environment.

Agraph on page 34
An Agraph component runs the Agraph program, which defines and coordinates the activities
of multiple, distributed Dgraphs.

LogServer on page 36
The LogServer component controls the use of the Endeca Log Server.

ReportGenerator on page 37
The ReportGenerator component runs the Report Generator, which processes Log Server
files into HTML-based reports that you can view in your Web browser and XML reports that
you can view in Endeca Workbench.

Defining scripts in your provisioning file
A script is a named command that you provision and run within the Application Controller.

In most cases, a script invokes a batch file that runs a process, such as a baseline update or report
generation, or otherwise exercises component control. Scripts provide the automation that makes it
possible for you to wrap and reuse a sequence of commands, without removing your ability to configure
your application.

Although only one instance of each script can run at a time, most scripts are designed to be run
repeatedly. For example, rather than start each component separately using Endeca Workbench or
eaccmd, you can launch a baseline update script that will execute the start component commands in
the proper sequence.You can reuse this script as often as you like.

Scripts live on the EAC Central Server; the EAC runs them from there.You can use scripts with the
eaccmd tool, when accessing the Endeca WSDL programmatically, or within Endeca Workbench.
Details on starting, stopping, and obtaining status for scripts for each of these environments can be
found in the following places:

• Component and script control commands.
• The ScriptControl interface.
• In the Oracle Endeca Workbench Help.

Note: EAC scripts are not the same as Control Interpreter control scripts, which are deprecated.
EAC scripts are not supported on clusters that are not uniformly one platform.

Related Links
ScriptControl interface on page 79

The ScriptControl interface provides programmatic script management capabilities.

Component and script control commands on page 57
The component and script control commands are used to start and stop components or scripts
and retrieve their status.

Developing and maintaining scripts

You can write your own script in Java or .NET to contact the Central Server directly.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

25Provisioning an Implementation with the Application Controller | About the provisioning file and schema

Because the EAC does not offer any mechanism for passing arguments to scripts at runtime, you need
to provision a separate EAC script for every combination of arguments you plan to use. For example,
if you want the Report Generator to generate daily and weekly reports, you must provision the associated
script twice, once for each time period argument.

Script environment variables

You can write your own script in Java or .NET to contact the EAC Central Server directly. Script
environment variables allow you to look up the host, port, and application name if you want to use
them in your script.

These environment variables are set in the script’s runtime environment. The EAC Central Server
provides values for the following three variables:

• EAC_HOST is the hostname for the EAC Central Server host.
• EAC_PORT is the port number for the EAC Central Server host.
• EAC_APP is the application in which this script is provisioned.

Provisioning scripts

Scripts, like hosts and components, need to be provisioned before they can be used in the Application
Controller.

Scripts can be provisioned with the following elements:

DescriptionSub-element

Required. The name of this script.script-id

Required. The command to launch the script.cmd

Name of the script log file. If log-file is not specified, the default value
is used.

log-file

Working directory for the process that is launched. If it is specified, it
must be an absolute path. If working-dir is not specified, the default
value of $ENDECA_CONF/work/(app_id)/ is used.

working-dir

Example

This example provisions two scripts:

<scripts>
 <script script-id="script1">
 <cmd>runthis.sh</cmd>
 </script>
 <script script-id="script2">
 <cmd>run.sh --this</cmd>
 </script>
</scripts>

Using canonical paths in an application

The Application Controller provides a great deal of flexibility in computing directories.

However, if you want to write a generic script that can work with any kind of provisioning, the
getApplication() method can make it difficult to predict unspecified directory destinations.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | About the provisioning file and schema26

In such cases, the getCanonicalApplication() method returns the provisioning just as
getApplication() does, but with all paths canonicalized. This process ensures that all paths are
absolute, and that the working directory and log path settings are provided. It also prevents .. from
being used in a path name. In eaccmd, you use the optional --canonical flag to the describe-app
command to enable canonicalization.

Because it has to resolve paths on each Agent, getCanonicalApplication() can be slightly
slower than getApplication(). Therefore, if you know that your script uses full paths, you may
prefer to use getApplication().

Application Controller component reference
This section includes details and examples about the following components: Forge, Dgidx, Dgraph,
Agidx, Agraph, LogServer, and ReportGenerator.

Forge
A Forge element launches the Forge (Data Foundry) software, which transforms source data into
tagged Endeca records.

Every Application Controller component contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required.The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an
optional value.

properties

The Forge element contains the following sub-elements:

DescriptionSub-element

Command-line flags to pass to Forge, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value
must be on separate lines in the provisioning file. For example:

<args>
 <arg>--threads</arg>

args

 <arg>3</arg>
</args>

The path to the Forge input.input-dir

Name of the Forge log file. If the log-file is not specified, the default
is component working directory plus component name plus “.log”.

log-file

The implementation-specific prefix name, without any associated path
information.

output-prefix-name

Directory where the output from the Forge process will be stored.output-dir

Required. Name of the Pipeline.epx file to pass to Forge.pipeline-file

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

27Provisioning an Implementation with the Application Controller | Application Controller component
reference

DescriptionSub-element

The number of partitions.num-partitions

Working directory for the process that is launched. If it is specified, it
must be an absolute path. If any of the other properties of this

working-dir

component contain relative paths, they are interpreted as relative to
the working directory. If working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/ <componentName> on UNIX,
or %ENDECA_CONF%\work\<appName>/ <componentName> on
Windows.

The directory where the state file is located.state-dir

The temporary directory that Forge uses.temp-dir

The port on which the Forge metrics Web service listens.web-service-port

Both the parallel Forge and Forge metrics Web service can secure
their communications with SSL.The ssl-configuration element
contains three sub-elements of its own:

ssl-configuration

• cert-file: The cert-file specifies the path of the
eneCert.pem certificate file that is used by Forge processes to
present to any client.This is also the certificate that the Application
Controller Agent should present to Forge when trying to talk to it.
The file name can be a path relative to the component’s working
directory.

• ca-file: The ca-file specifies the path of the eneCA.pem
Certificate Authority file that Forge processes uses to authenticate
communications with other Endeca components. The file name
can be a path relative to the component’s working directory.

• cipher: The cipher is an optional cipher string (such as
RC4-SHA) that specifies the minimum cryptographic algorithm
that parallel Forge processes use during the SSL negotiation. If
you omit this setting, the SSL software tries an internal list of
ciphers, beginning with AES256-SHA. The Forge metrics Web
service does not use the cipher sub-element.

Example

The following example provisions a Forge component for use with the sample wine data:

<forge component-id="wine_forge" host-id="wine_indexer">
 <args>
 <arg>-vw</arg>
 </args>
 <num-partitions>1</num-partitions>
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <pipeline-file>.\data\forge_input\pipeline.epx</pipeline-file>
 <input-dir>.\data\forge_input</input-dir>
 <output-dir>.\data\partition0\forge_output</output-dir>
 <state-dir>.\data\partition0\state</state-dir>
 <log-file>.\logs\wine_forge.log</log-file>
 <output-prefix-name>wine</output-prefix-name>
</forge>

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

28

Dgidx
A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which generates
the proprietary indices for each Dgraph.

Every Application Controller element contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required.The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an
optional value.

properties

The Dgidx element contains the following sub-elements:

DescriptionSub-element

Command-line flags to pass to Dgidx, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value
must be on separate lines in the provisioning file. For example:

<args>
 <arg>--threads</arg>

args

 <arg>3</arg>
</args>

Path and file prefix that define the input for Dgidx. For example, in
/endeca/project/files/myProject, files beginning with

app-config-prefix

myProject in the directory /endeca/project/files are the ones
to be considered.

Required. Path and prefix name for the Dgidx output. For example,
output_prefix = c:\temp\wine generates files that start with
“wine” in the c:\temp directory.

output-prefix

The path to and name of the Dgidx log files. If the log-file is not
specified, the default is component working directory plus component

log-file

name plus “.log”. Dgidx can generate three distinct log files: the basic
component log file, and two files that log the subtasks described in
run-aspell, below.

• The file dgwordlist logs stdout/stderr for the dgwordlist subtask
described below. The name of this file is derived from the Dgidx
component’s log-file location, plus the term “dgwordlist”. If an
extension exists, “dgwordlist” is added before the extension. For
example, if the original log-file is C:\dir\dgidx-1.log, then
the dgwordlist log would be
C:\dir\dgidx-1.dgwordlist.log.

• The file aspellcopy logs the stdout/stderr for the subtask of
uploading the Aspell files to Dgidx’s output directory, where the
Dgraph can access them. The name of this file is derived from
the Dgidx component’s log-file location, plus the term “aspellcopy”.
If an extension exists, “aspellcopy” is added before the extension.
For example, if the original log-file is C:\dir\dgidx-1.txt,

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

29Provisioning an Implementation with the Application Controller | Application Controller component
reference

DescriptionSub-element

then the aspellcopy log would be
C:\dir\dgidx-1.aspellcopy.txt.

Required. Path and prefix name for the Forge output that Dgidx
indexes.

input-prefix

Working directory for the process that is launched. If it is specified,
it must be an absolute path. If any of the other properties of this

working-dir

component contain relative paths, they are interpreted as relative to
the working directory. If working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX,
or %ENDECA_CONF%\work\<appName>/<componentName> on
Windows.

Specifies Aspell as the spelling correction mode for the
implementation. This causes the Dgidx component to run dgwordlist

run-aspell

and to copy the Aspell files to its output directory, where the Dgraph
component can access them. The default is true. See log-file above
for details on the logging of these subtasks. For Aspell details, see
the Endeca Advanced Development Guide.

A temporary directory used by this component.temp-dir

Example

The following example provisions a Dgidx component to work with the sample wine data:

<dgidx component-id="wine_dgidx" host-id="wine_indexer">
 <args>
 <arg>-v</arg>
 </args>
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <input-prefix>.\data\partition0\forge_output\wine</input-prefix>
 <app-config-prefix>
 .\data\partition0\forge_output\wine
 </app-config-prefix>
 <output-prefix>.\data\partition0\dgidx_output\wine</output-prefix>
 <log-file>.\logs\wine_dgidx.log</log-file>
 <run-aspell>true</run-aspell>
</dgidx>

Dgraph
A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries against
the indexed Endeca records.

Every Application Controller component contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required.The alias of the host upon which the component is running.host-id

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

30

DescriptionAttribute

An optional list of properties, consisting of a required name and an
optional value.

properties

The Dgraph element contains the following sub-elements:

DescriptionSub-element

Command-line flags to pass to Dgraph, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value
must be on separate lines in the provisioning file. For example:

<args>
 <arg>--threads</arg>

args

 <arg>3</arg>
</args>

Required. The port at which the Dgraph should listen. The default is
8000.

port

The path to and name of the Dgraph log file. If the log-file is not
specified, the default is component working directory plus component
name plus “.log”.

log-file

Required. Path and prefix name for the Dgidx output that the Dgraph
uses as an input.

input-prefix

Path and file prefix that define the input for the Dgraph. For example,
in /endeca/project/files/myProject, files beginning with

app-config-prefix

myProject in the directory /endeca/project/files are the ones
to be considered.

Working directory for the process that is launched. If it is specified,
it must be an absolute path. If any of the other properties of this

working-dir

component contain relative paths, they are interpreted as relative to
the working directory. If working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX,
or %ENDECA_CONF%\work\<appName>/<componentName> on
Windows.

Specifies the amount of time in seconds that the Application Controller
waits while starting the Dgraph. If it cannot determine that the Dgraph
is running in this timeframe, it times out. The default is 60.

startup-timeout

Path to and name of the request log.req-log-file

If specified, is the directory in which the Dgraph will look for Aspell
files. If it is not specified, the Dgraph will look for Aspell files in the

spell-dir

Dgraph’s input directory (that is, input-prefix without the prefix). For
example, if input-prefix is /dir/prefix and all the Dgraph input files are
/dir/prefix.*, the Dgraph will look for the Aspell files in /dir/.

Specifies the directory from which the Dgraph reads partial update
file. For more information, see the Endeca Partial Updates Guide.

update-dir

Specifies the file for update-related log messages.update-log-file

A temporary directory used by this component.temp-dir

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

31Provisioning an Implementation with the Application Controller | Application Controller component
reference

DescriptionSub-element

Contains three sub-elements of its own:ssl-configuration

• cert-file: The cert-file specifies the path of the
eneCert.pem certificate file that is used by the Dgraph to present
to any client. This is also the certificate that the Application
Controller Agent should present to the Dgraph when trying to talk
to the Dgraph. The file name can be a path relative to the
component’s working directory.

• ca-file: The ca-file specifies the path of the eneCA.pem
Certificate Authority file that the Dgraph uses to authenticate
communications with other Endeca components. The file name
can be a path relative to the component’s working directory.

• cipher: The cipher is an optional cipher string (such as
RC4-SHA) that specifies the minimum cryptographic algorithm
that the Dgraph uses during the SSL negotiation. If you omit this
setting, the SSL software tries an internal list of ciphers, beginning
with AES256-SHA. See the Endeca Security Guide for more
information.

Example

The following example provisions an SSL-enabled Dgraph component for use with the sample wine
data:

<dgraph component-id="wine_dgraph" host-id="wine_indexer">
 <args>
 <arg>--spl</arg>
 <arg>--dym</arg>
 </args>
 <port>8000</port>
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <input-prefix>.\data\partition0\dgraph_input\wine</input-prefix>
 <app-config-prefix>
 .\data\partition0\dgraph_input\wine
 </app-config-prefix>
 <log-file>.\logs\wine_dgraph.log</log-file>
 <req-log-file>.\logs\wine_dgraph_req_log.out</req-log-file>
 <startup-timeout>120</startup-timeout>
 <ssl-configuration>
 <cert-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
 </cert-file>
 <ca-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
 </ca-file>
 <cipher>AES128-SHA</cipher>
 </ssl-configuration>
</dgraph>

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

32

Agidx
An Agidx component runs Agidx on a machine, creating a set of Agidx indices that support the Agraph
program in a distributed environment.

The Agidx component is used only in distributed environments and is run sequentially on multiple
machines. On the first machine, the Agidx component takes the Dgidx output from that machine as
its input. On the next machine, the output from the first Agidx run is copied over, using the Copy service.
It, along with the Dgidx output from that machine, is used as Agidx input.

Every Application Controller element contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required.The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an
optional value.

properties

The Agidx element contains the following sub-elements:

DescriptionSub-element

Command-line flags to pass to Agidx, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value
must be on separate lines in the provisioning file. For example:

<args>
 <arg>--threads</arg>

args

 <arg>3</arg>
</args>

Required. Path and prefix name for the Agidx output. For example,
output_prefix = c:\temp\wine generates files that start with
“wine” in the c:\temp directory.

output-prefix

The path to and name of the Agidx log file. If the log-file is not
specified, the default is component working directory plus component
name plus “.log”.

log-file

Required. The path to the output of various Dgidxes, which Agidx
uses as input. These are listed as a set of input-prefix sub-elements.

input-prefixes

Working directory for the process that is launched. If it is specified, it
must be an absolute path. If any of the other properties of this

working-dir

component contain relative paths, they are interpreted as relative to
the working directory. If working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX,
or %ENDECA_CONF%\work\<appName>/<componentName> on
Windows.

The file prefix of the Agidx data from the previous run, which has
been copied to this machine by a Copy operation. This parameter

previous-agidx-output- prefix

should not be used when running the Agidx component on the first
data subset.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

33Provisioning an Implementation with the Application Controller | Application Controller component
reference

Example

The following example provisions an Agidx component to work with the sample wine data:

<agidx component-id="mkt_agidx" host-id="host2">
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <args>
 <arg>-v</arg>
 </args>
 <input-prefixes>
 <input-prefix>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\
 partition0\dgidx_output1\wine
 </input-prefix>
 <input-prefix>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\
 partition0\dgidx_output2\wine</input-prefix>
 </input-prefixes>
 <output-prefix>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\
 partition0\agidx\wine
 </output-prefix>
 <log-path>
 C:\Endeca\PlatformServices\workspace\logs\agidx.out
 </log-path>
</agidx>

Agraph
An Agraph component runs the Agraph program, which defines and coordinates the activities of
multiple, distributed Dgraphs.

Every Application Controller component contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required. The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an optional
value.

properties

The Agraph component contains the following sub-elements:

DescriptionSub-element

Command-line flags to pass to Agraph, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value must
be on separate lines in the provisioning file. For example:

<args>
 <arg>--threads</arg>

args

 <arg>3</arg>
</args>

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

34

DescriptionSub-element

Required. The port at which the Agraph should listen.port

The path to and name of the Agraph log file. If the log-file is not specified,
the default is component working directory plus component name plus “.log”.

log-file

Required. A list of the child Dgraphs and related devices for this Agraph,
children is a single element that can contain a mixture of dgraph-ref and
host-port elements.

children

• The dgraph-ref element is a simple string name of a Dgraph that exists
within the same Application Controller implementation. For example:
<dgraph-ref name="dgraph-0"/>

• The host-port element has host and port attributes and is typically used
to refer to an unprovisioned device such as a load balancer. For example:
<host-port host-name="localhost" port="9900"/>

If you know you are referring only to actual Dgraphs, and not to load
balancers or other unprovisioned devices, you may use dgraph-ref elements
exclusively.

Required. Path and prefix name for the Agidx output that the Agraph uses
as an input.

input-prefix

Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain

working-dir

relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

Path and file prefix that define the input for the Agraph. For example, in
/endeca/project/files/myProject, files beginning with myProject
in the directory /endeca/project/files are the ones to be considered.

app-config-prefix

Specifies the amount of time in seconds that the Application Controller will
wait while starting the Agraph. If it cannot determine that the Agraph is
running in this timeframe, it times out. The default is 60.

startup-timeout

Path to and name of the request log.req-log-file

Contains three sub-elements of its own:ssl-configuration

• cert-file: The cert-file specifies the path of the eneCert.pem
certificate file that is used by the Agraph to present to any client. This
is also the certificate that the Application Controller Agent should present
to the Agraph when trying to talk to the Agraph. The file name can be a
path relative to the component’s working directory.

• ca-file:The ca-file specifies the path of the eneCA.pem Certificate
Authority file that the Agraph uses to authenticate communications with
other Endeca components. The file name can be a path relative to the
component’s working directory.

• cipher: The cipher is an optional cipher string (such as RC4-SHA)
that specifies the minimum cryptographic algorithm that the Agraph
processes use during the SSL negotiation. If you omit this setting, the
SSL software tries an internal list of ciphers, beginning with
AES256-SHA. See the Endeca Security Guide for more information.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

35Provisioning an Implementation with the Application Controller | Application Controller component
reference

Example

The following example provisions a non-SSL Agraph component to work with the sample wine data:

<agraph component-id="mkt_agraph-3" host-id="host2">
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <args/>
 <port>10020</port>
 <app-config-prefix>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\forge_in¬
put\wine
 </app-config-prefix>
 <log-file>
 C:\Endeca\PlatformServices\workspace\logs\agraph3.out
 </log-file>
 <req-log-file>
 C:\Endeca\PlatformServices\workspace\logs\agraph_requests3.out
 </req-log-file>
 <children>
 <dgraph-ref component-id="dgraph-0"/>
 <host-port host-name="localhost" port="9900"/>
 <dgraph-ref component-id="dgraph-1"/>
 <host-port host-name="localhost" port="9901"/>
 </children>
 <input-prefix>
 C:\Endeca\PlatformServices\reference\sample_wine_data\data\
 partition0\agraph-3\wine
 </input-prefix>
 <startup-timeout>120</startup-timeout>
</agraph>

LogServer
The LogServer component controls the use of the Endeca Log Server.

Every Application Controller component contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required. The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an optional
value.

properties

The LogServer component contains the following sub-elements:

DescriptionSub-element

Required. Port on which to run the LogServer.ort

Required. Path and prefix name for the LogServer output. For example,
output_prefix = c:\temp\wine generates files that start with “wine”
in c:\temp.

output-prefix

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

36

DescriptionSub-element

Required. Controls the archiving of log files. Possible values are true and
false.

gzip

Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain

working-dir

relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

Specifies the amount of time in seconds that the eaccmd waits while starting
the LogServer. If it cannot determine that the LogServer is running in this
timeframe, it times out. The default is 60.

startup-timeout

The path to the LogServer log file. If the log-file is not specified, the default
is component working directory plus component name plus “.log”.

log-file

Example

The following example provisions a LogServer component based on the sample wine data.

<logserver component-id="wine_logserver" host-id="wine_indexer">
 <port>8002</port>
 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <output-prefix>.\logs\logserver_output\wine</output-prefix>
 <gzip>false</gzip>
 <startup-timeout>120</startup-timeout>
 <log-file>.\logs\wine_logserver.log</log-file>
</logserver>

ReportGenerator
The ReportGenerator component runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can view in
Endeca Workbench.

Every Application Controller component contains the following attributes:

DescriptionAttribute

Required. The name of this instance of the component.component-id

Required. The alias of the host upon which the component is running.host-id

An optional list of properties, consisting of a required name and an optional
value.

properties

The ReportGenerator component contains the following sub-elements:

DescriptionSub-element

Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain

working-dir

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

37Provisioning an Implementation with the Application Controller | Application Controller component
reference

DescriptionSub-element

relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

Required. Path to the file or directory containing the logs to report on. If it
is a directory, then all log files in that directory are read. If it is a file, then
just that file is read.

input-dir-or-file

Required. Name the generated report file and path to where it is stored.
For example:

C:\Endeca\reports\myreport.html on Windows

output-file

/endeca/reports/myreport.html on UNIX

Required. Filename and path of the XSL stylesheet used to format the
generated report. For example:

%ENDECA_CONF%\etc\ report_stylesheet.xsl on Windows

stylesheet-file

$ENDECA_CONF/etc/report_stylesheet.xsl on UNIX

Path to the report_settings.xml file. For example:
settings-file

%ENDECA_CONF%\etc\report_settings.xml on Windows

$ENDECA_CONF/etc/report_settings.xml on UNIX

Sets the time span of interest (or report window). Allowed keywords:timerange

• Yesterday
• LastWeek
• LastMonth
• DaySoFar
• WeekSoFar
• MonthSoFar

These keywords assume that days end at midnight, and weeks end on the
midnight between Saturday and Sunday.

These set the report window to the given date and time. The date format
should be either yyyy_mm_dd or yyyy_mm_dd.hh_mm_ss. For example,
2009_10_23.19_30_57 expresses Oct 23, 2009 at 7:30:57 in the evening.

start-date <date>

stop-date <date>

Turns on the generation of time-series data and specifies the frequency,
Hourly or Daily.

time-series

Turns on the generation of report charts. Disabled by default.charts

The path to the ReportGenerator log file. If the log-file is not specified, the
default is component working directory plus component name plus “.log”.

log-file

Should indicate a JDK 1.5.x or later. Defaults to the JDK that Endeca installs.java_binary

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Application Controller component
reference

38

DescriptionSub-element

Command-line options for the java_binary setting.This command is primarily
used to adjust the ReportGenerator memory, which defaults to 1GB. To
set the memory, use the following:

java_options = -Xmx[MemoryInMb]m -Xms[MemoryInMb]m

java_options

Command-line flags to pass to the ReportGenerator, expressed as a set
of arg sub-elements.

args

Example

The following example provisions a ReportGenerator component based on the sample wine data.

<reportgenerator component-id="wine_gen_html_report" host-id="wine_indexer">

 <working-dir>
 C:\Endeca\PlatformServices\reference\sample_wine_data
 </working-dir>
 <input-dir-or-file>.\logs\logserver_output</input-dir-or-file>
 <output-file>.\reports\daily\daily_report.html</output-file>
 <stylesheet-file>.\etc\report_stylesheet.xsl</stylesheet-file>
 <settings-file>.\etc\report_settings.xml</settings-file>
 <timerange>day-so-far</timerange>
 <charts>true</charts>
 <log-file>.\logs\wine_gen_html_report.log</log-file>
</reportgenerator>

Provisioning your implementation with eaccmd
You can use the eaccmd command-line interface to create an implementation based on the provisioning
file you created.

To provision your implementation:

1. Create a provisioning document as described above.

2. Run eaccmd with the --define-app command, specifying the provisioning document you created
in step 1. For example:
eaccmd localhost:8888 define-app --app myApp --def app.xml

Related Links
Using the eaccmd Tool on page 51

This section describes the eaccmd command-line tool, which can be used to provision and
run the Endeca Application Controller.

Provisioning the Application Controller to work on multiple machines
Typically, you provision the Application Controller to work in a distributed environment.You do this by
defining the implementation appropriately and then starting the components on the provisioned delegate
machines.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

39Provisioning an Implementation with the Application Controller | Provisioning your implementation with
eaccmd

The following steps walk you through multi-machine provisioning and execution using the Application
Controller.

1. Write a provisioning document for the EAC Central Server in which you define all of the components
and their corresponding host machines. Save this document as app.xml.

2. Run eaccmd on the host_1 machine, using the app.xml provisioning document as follows:

eaccmd devhost:8888 define-app --app myApp --def app.xml

3. To start the component Forge on machine data_proc, issue this eaccmd command on host_1:

eaccmd devhost:8888 start --app myApp --comp forge

4. To start the component Dgidx on machine data_proc, issue this eaccmd command on host_1:
eaccmd devhost:8888 start --app myApp --comp dgidx

5. To start the component Dgraph on machine dgraph_1, issue this eaccmd command on host_1:
eaccmd devhost:8888 start --app myApp --comp dgraph

Multi-machine example

The example below illustrates how provisioning and running the Application Controller work in
multi-machine environments. In this scenario, there are three machines: devhost, which serves as
the EAC Central Server, and dev555 and dev777, which serve as Agent machines running Forge
and Dgraph respectively. The Application Controller is installed identically on each machine. Eaccmd
is run on devhost (aliased host_1), using HTTP port 8888.

Eaccmd issues commands to the EAC Central Server, which in turn passes them on to Agent machines
dev555 (aliased data_proc) and dev777 (aliased dgraph_1) via HTTP. The EAC Central Server
machine, devhost, handles all direct communication with the user, while the Agent machines execute
application tasks.

Note: EAC task tokens (names or IDs) must be unique across an application. If two tasks have
the same token (such as "copy_index_files_to_dgraph_server"), and exist on separate EAC
Agent machines, you cannot run both instances of this task simultaneously.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Provisioning your implementation with
eaccmd

40

Forcing the removal of an application
You remove an application in eaccmd with the remove-app command.

If you want to remove an application that is throwing an error (for example, because it contains a host
or component that has become unreachable), or one with running utilities or components, you must
add the --force flag. The syntax is as follows:

remove-app --force --app app_id

In a WSDL tool, this behavior is controlled by the forceRemove property on the RemoveApplicationType
class.

About incremental provisioning
With incremental provisioning, it is possible to add, remove, or modify one or more hosts, components,
or scripts without having to bring down the entire implementation.

You can perform incremental provisioning in eaccmd or your custom Web service tool.We use eaccmd
in the examples below.

Related Links
About eaccmd on page 51

When you manage your Endeca implementation with the Endeca Application Controller, you
control and monitor its working through the EAC Central Server.

Endeca Application Controller API Interface Reference on page 67
Application Controller interfaces are documented here.

Incrememental provisioning guidelines
The following guidelines apply to incremental provisioning.

• Scripts can be changed at any time, as long as they are not running.
• Properties on either hosts or components can be changed at any time.
• Anything other than a property on a component cannot be changed, nor can a component be

removed, if the component is either running or unreachable.
• Anything other than a property or a directory on a host cannot be changed, nor can a host be

removed, if any components or utilities on it are running, or if the host is unreachable.

You can attempt to override the constraints mentioned above by using the --force flag.

About the def_file setting
The def_file is the provisioning document used to add a component or host to the implementation.

You can use a larger provisioning file for this purpose, or you can use one that specifies exactly one
component or host. If you choose to use a larger provisioning file, then you must specify which
component or host listed within it that you are adding.

For example, say you want to add a host called new_host to your application.You could add provisioning
information for new_host to your existing provisioning file, myApp.xml. When you run the add-host
command, you would give it the host name as well as the provisioning file name.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

41Provisioning an Implementation with the Application Controller | Forcing the removal of an application

In the case of scripts, you have two options: you can use a def_file, as you do with components and
hosts, or you can provide the necessary information individually, through the --cmd (command), --wd
(working directory), and --log-file settings.

About the --force flag
The --force flag indicates whether or not the Application Controller should attempt to force any running
components, utilities, or scripts to stop before attempting an update or a remove operation.

In the case of updates, the update persists in the application provisioning, regardless of whether or
not the forced stop was successful, even if this leaves a dangling process somewhere.

Examples

• In the case of a component, the command:

update-component --force --app myApp --name forge

would first stop the component forge, if it is running, before updating it.
• In the case of a host, the command:

remove-host --force --app myApp --name dev777

would first stop any running components or services on host dev777 before removing that host.
• In the case of a script, the command:

update-script --force --app myApp --script newbaseline.pl
--cmd perl

would first stop the script newbaseline.pl before updating it.

Adding a component in eaccmd
You can use eaccmd to add components to your application.

To add a component in eaccmd, use the following syntax:

add-component --app app_id [--comp comp_id] --def def_file

For example:

add-component --app myApp --comp new_forge --def myApp.xml

Removing a component in eaccmd
You can use eaccmd to remove components from applications.

To remove a component in eaccmd, use the following syntax:

remove-component [--force] --app app_name --comp comp_id

For example:

remove-component --force --app myApp --comp forge

Modifying a component in eaccmd
You can use eaccmd to modify components in an application.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | About incremental provisioning42

To change the attributes of a previously-defined component in eaccmd, use the following syntax:

update-component [--force] --app app_id [--comp comp_id]
--def def_file

For example:

update-component --force --app myApp --def newDgraphProps.xml

Adding a host in eaccmd
You can use eaccmd to add hosts to your application.

To add a host in eaccmd, use the following syntax:

add-host --app app_id [--host host_id] --def def_file

For example:

add-host --app myApp --host mktg022 --def myApp.xml

Removing a host in eaccmd
You can use eaccmd to remove hosts from an application.

To remove a host in eaccmd, use the following syntax:

remove-host [--force] --app app_id --host host_id

For example:

remove-host --force --app myApp --host dev777

Modifying a host in eaccmd
You can use eaccmd to modify hosts in an application.

To change the attributes of a previously-defined host in eaccmd, use the following syntax:

update-host [--force] --app app_id [--host host_id]
--def def_file

For example:

update-host --force --app myApp --host mktg022
--def newMktgHostProps.xml

Adding a script in eaccmd
You can use eaccmd to add scripts to your application.

To add a script in eaccmd, use the following syntax:

add-script --app app_id --script script_id [--cmd command --wd working_dir
 --log-file log_file] | [--def def_file]

For example:

add-script --app myApp --script newbaseline.pl --cmd perl

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

43Provisioning an Implementation with the Application Controller | About incremental provisioning

Removing a script in eaccmd
You can use eaccmd to remove scripts from applications.

To remove a script in eaccmd, use the following syntax:

remove-script [--force] --app app_id --script script_id

For example:

remove-script --app myApp --script testbaseline.pl

Modifying a script in eaccmd
You can use eaccmd to modify a script in an application.

To modify an existing script in eaccmd, use the following syntax:

update-script [--force] --app app_id --script script_id [--cmd command --
wd working_dir --log-file log_file] | [--def def_file]

For example:

update-script --app myApp --script newbaseline.pl --def myApp.xml

Provisioning your deployment with the Endeca Deployment
Template

The Endeca Deployment Template is a collection of operational components that provides a starting
point for development and application deployment.

Representing the best practices of Endeca’s Customer Solutions organization, the template includes
the complete directory structure required for deployment, including EAC scripts, configuration files,
and batch files or shell scripts that wrap common script functionality.

This template includes functionality required for a Dgraph deployment powered by the EAC and the
Java EAC Development Toolkit, including support for baseline and partial index updates and Endeca
Workbench integration.

Using the Endeca Deployment Template
The Endeca Deployment Template should be installed immediately following the installation of Oracle
Endeca Guided Search on all servers that will be hosting Oracle Endeca Guided Search components,
and before any provisioning has been done through Endeca Workbench.

If Endeca Workbench has been used to make any changes to Oracle Endeca Guided Search
configuration prior to installing the Endeca Deployment Template, they will be overwritten and lost.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Provisioning an Implementation with the Application Controller | Provisioning your deployment with the
Endeca Deployment Template

44

Chapter 4

Common System Architectures in an
Endeca Implementation

This section describes typical system architectures for each stage of an Endeca implementation.

Overview of system architectures
This topic provides a general description of typical system architectures for each stage of an Endeca
implementation.

Endeca implementations typically have three stages:

1. Development
2. Staging and testing
3. Production

This section does not provide specific system sizing requirements for a particular implementation.
There are too many variables in each unique implementation to give general guidance. Some of these
variables include hardware cost restrictions, data processing demands, application throughput demands,
query load demands, scale requirements, failover availability, and so on. Endeca Professional Services
can perform a hardware sizing analysis for your implementation.

Development environment
A development environment is one in which developers create or substantially modify an Endeca
implementation.

This implementation does not serve end-user queries. Because data processing and query processing
demands are not very important at this stage, development typically occurs on a single machine. The
single machine runs the Endeca Application Controller, Forge, Dgidx, a Web server, and the MDEX
Engine.

Staging and testing environment
A staging environment is one that validates the correctness of the implementation including data
processing and all necessary search and navigation features.

Features such as merchandising, thesaurus entries, and others may require business users to modify
the implementation during this implementation phase. This environment is also typically used to test
performance of the system. Once the implementation works as required, it is migrated to the production
environment.

In terms of hardware architecture, most staging environments closely resemble or exactly match the
intended production environment. This means the production environment typically determines the
architecture of the staging environment.

Sample production environments
A production environment is a live Endeca implementation that serves end-user search and navigation
queries.

There are a variety of system architectures in a production environment. All of them typically use at
least two servers and one load balancer. As system demand increases, the number of servers necessary
in the implementation increases. Demand may take the form of time to crawl source data, frequent
source data updates, faster query throughput, faster response time under increasing load, and so on.
Several of the most common implementation architectures are described in the following sections.

Descriptions of implementation size
We can roughly divide implementations into small, medium, and large.

A full definition of these terms includes an accounting of record size (number and size of properties
and dimension values per record), total data set size, the number of indexing and MDEX Engine
servers, and other measurements of scale.

Although that level of detail is necessary for sizing a specific implementation, it is not necessary for
the more general discussion of hardware architecture here. For simplicity's sake, this chapter uses
the terms small, medium, and large as follows:

• A small implementation means the Dgraph runs an application's data set on a single processor.
• A medium implementation means a single Dgraph is mirrored several times for throughput (rather

than solely for redundancy), and it means a dedicated server may be necessary for crawling or
indexing.

• A large implementation means a data set must be partitioned into multiple Dgraphs (that is, an
Agraph implementation) and a dedicated machine is required for indexing.

Small implementation with lower throughput
A simple architecture for smaller implementations is made up of two servers and a single load balancer.

Server 1 runs only the MDEX Engine. Server 2 runs a mirror of the MDEX Engine (for redundancy)
and Forge and Dgidx. A single load balancer distributes queries between the MDEX Engines on servers
1 and 2.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Common System Architectures in an Endeca Implementation | Staging and testing environment46

The advantage of this scenario is low cost and MDEX Engine redundancy. If one MDEX Engine is
offline for any reason, the load balancer distributes user queries to the other MDEX Engine.

The disadvantage of this scenario is that the system operates at reduced throughput capacity during
Forge and Dgidx processing, and during a server failure of either machine. Also, if the single load
balancer fails, the system goes offline.

Medium implementation with higher throughput
In this example system architecture, a medium implementation that requires higher query throughput
is made up of four servers and two load balancers.

To achieve higher throughput, servers 1, 2, and 3 all run mirror copies of the MDEX Engine. This level
of redundancy provides faster throughput by load balancing the incoming queries over a greater number
of MDEX Engines. If either load balancer or any MDEX Engine should fail, then the redundant load
balancer and remaining MDEX Engines handle all queries. Server 4 runs all the offline processes
including Forge and Dgidix.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

47Common System Architectures in an Endeca Implementation | Sample production environments

The advantage of this scenario is that overall throughput and redundancy is high. Each MDEX Engine
runs on a dedicated server, so the servers do not need to share resources for Forge processing and
indexing. Also, this scenario employs two load balancers to reduce potential offline time if one balancer
fails.

The disadvantage of this scenario is that the implementation operates at reduced throughput if any
MDEX Engine server fails. However, a single server failure has less effect on the implementation than
the previous examples because the MDEX Engine has been replicated more times than in previous
examples.

Large implementation using an Agraph
In this example system architecture, a large implementation requires a data set that is partitioned over
several MDEX Engine servers and controlled by an Aggregated MDEX Engine (Agraph). The
implementation is made up of eight servers and two load balancers.

The eight servers are grouped into two clusters of four servers per cluster. Each cluster has three
servers running a partition of the total data set. The remaining server in each cluster runs an Agraph
to coordinate their respective cluster partitions. Each cluster mirrors the other’s MDEX Engines;
however, one of the clusters also runs the Forge and Dgidx processes.

Two load balancers distribute queries to both clusters. If either load balancer fails, then the redundant
load balancer distributes all queries.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Common System Architectures in an Endeca Implementation | Sample production environments48

There are several advantages of this scenario. First, the cluster of MDEX Engines is redundant and
one cluster of MDEX Engines runs on dedicated servers, so those servers do not need to share
resources for Forge processing and indexing. Second, this scenario employs two load balancers to
reduce potential offline time if one balancer fails.

The disadvantage of this scenario is that the system operates at reduced throughput during Forge
and Dgidx processing. Also, if one MDEX Engine in a cluster fails, that entire cluster goes offline, and
the system operates at reduced capacity while the remaining cluster services all queries.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

49Common System Architectures in an Endeca Implementation | Sample production environments

Chapter 5

Using the eaccmd Tool

This section describes the eaccmd command-line tool, which can be used to provision and run the
Endeca Application Controller.

About eaccmd
When you manage your Endeca implementation with the Endeca Application Controller, you control
and monitor its working through the EAC Central Server.

You can communicate with the EAC Central Server in two ways:

• With the eaccmd command-line tool, as described in this chapter.
• Through direct programmatic control with a language that understands Web services.

The Application Controller’s WSDL API is described in the “Endeca Application Controller API Interface
Reference."

Running eaccmd
This topic describes how to run eaccmd.

The eaccmd tool is installed by default in %ENDECA_ROOT%\bin on Windows. On UNIX, it is
$ENDECA_ROOT/bin.You run eaccmd within a scripting environment such as Bash or Perl.You can
run eaccmd on any machine as long as it is pointing at the EAC Central Server.

The eaccmd syntax is platform-independent.

Related Links
eaccmd usage on page 51

This topic describes the usage of eaccmd.

eaccmd usage
This topic describes the usage of eaccmd.

The eaccmd usage is as follows:

eaccmd host:eac_port <cmd> [--async] [-verbose]

where settings in square brackets ([]) are optional and <cmd> is one of:

[Provisioning commands:]
 define-app [--app app_id] [--def def_file]
 describe-app --app app_id [--canonical]
 remove-app [--force] --app app_id
 list-apps
[Incremental Provisioning commands:]
 add-component --app app_id [--comp comp_id] --def def_file
 add-host --app app_id [--host host_id] --def def_file
 add-script --app app_id --script script_id (--def def_file |
 [--wd working_dir] [--log-file log_file] --cmd command [args...])
 remove-component [--force] --app app_id --comp comp_id
 remove-host [--force] --app app_id --host host_id
 remove-script --app app_id --script script_id
 update-component [--force] --app app_id [--comp comp_id] --def def_file
 update-host [--force] --app app_id [--host host_id] --def def_file
 update-script [--force] --app app_id --script script_id
 (--def def_file | [--wd working_dir] [--log-file log_file]
 --cmd command [args...])
[Synchronization commands:]
 set-flag --app app_id --flag flag
 remove-flag --app app_id --flag flag
 remove-all-flags --app app_id
 list-flags --app app_id
[Component and Script Control commands:]
 start --app app_id [--comp comp_id | --script script_id]
 stop --app app_id [--comp comp_id | --script script_id]
 status --app app_id [--comp comp_id | --script script_id]
[Utility commands:]
 ls --app app_id --host host_id --pattern file_pattern
 start-util --type shell --app app_id [--token token]
 --host host_id [--wd working_dir] --cmd command [args...]
 start-util --type copy --app app_id [--token token] [--recursive]
 --from host_id --to host_id --src src_path --dest dest_path
 start-util --type backup --app app_id [--token token] --host host_id
 --dir ls [--method <copy|move>] [--backups num_backups]
 start-util --type rollback --app app_id [--token token] --host host_id
 --dir ls
 stop-util --app app_id --token token
 status-util --app app_id --token token

eaccmd feedback
Eaccmd gives no feedback in cases of success (that is, if a component is running or completed or a
service is completed).

If an operation fails, a FAILED message is printed to the screen.

If instead you want eaccmd to run asynchronously, you must use the --async flag on the command
line after the command, as follows:

eaccmd host:port <cmd> [--async]

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd feedback52

Component and utility status verbosity
By default, eaccmd provides single-word component and utility status messages, such as Running.
To receive more detailed feedback, you can run eaccmd with the --verbose flag.

This flag provides useful information beyond simply the state.

Server component status verbosity

The following is an example of a verbose status message for a server component. Server components
include the Dgraph, Agraph, and LogServer.

State: NotRunning
Start time: 10/11/08 3:58 PM
Failure Message:

Batch component status verbosity

The following is an example of a verbose status message for a batch component. Batch components
include Forge, Dgidx, Agidx, and ReportGenerator.

State: NotRunning
Start time: 10/11/08 3:58 PM
Duration: 0 days 0 hours 0 minutes 6.96 seconds
Failure Message:

Using the default host and port
The eaccmd.properties file supplies host and port information to eaccmd.

In the eaccmd.properties file, which is located in the $ENDECA_CONF/conf directory on UNIX
and %ENDECA_CONF%\conf on Windows, you can specify a host and port for eaccmd to use. (The
default values are host=localhost and port=8888.) With this file in place, you do not have to specify
the host and port on the command line.

If your EAC Central Server is not on localhost:8888, you must either edit the file to point to the correct
host and port or continue to specify host:port on the command line. Any host:port specified on the
command line overrides the settings in the eaccmd.properties file.

eaccmd command reference
The eaccmd tool contains commands for provisioning, resource configuration, and component use.

Provisioning commands
The provisioning commands make it possible for you to define and manage your applications from the
command line.

DescriptionCommand

Defines an application. Def_file takes an XML
provisioning file, a sample of which,

define-app [--app app_id] [--def def_file]

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

53Using the eaccmd Tool | Component and utility status verbosity

DescriptionCommand

sample_wine_definition.xml, is located in
the %ENDECA_REFERENCE_DIR%\
sample_wine_data\etc directory on Windows,
or the $ENDECA_
REFERENCE_DIR\sample_wine_data\etc
directory on UNIX. The provisioning file typically
contains an application ID. If eaccmd specifies a
different app_id for the same application, the
eaccmd version overrides the one in provided in
the provisioning file.

Describes an application. Returns an XML file in
the format used by the def_file setting of

describe-app --app app_id [--canonical]

define-app. If --canonical is specified, all paths
are canonicalized.

Removes the named application. The optional
--force flag indicates whether or not this remove

remove-app [--force] --app app_id

operation should force any running components
or services to stop before attempting the remove.
Remove fails if any components or services are
still running (that is, not forced to stop).

Lists all defined applications.list-apps

Provisioning example

The following example defines an application called my_wine. (In this and all examples that follow we
assume that the host and port are set in the eaccmd.properties file and so do not need to be
included on the command line.)

eaccmd define-app --app my_wine --def sample_wine_definition.xml

Incremental provisioning commands
The incremental provisioning commands make it possible for you to add, remove, or update a host,
component, or script without having to bring down the entire application.

DescriptionCommand

Adds a single component to an application. Def_file
is a provisioning document.You can use a larger

add-component --app app_id [--comp comp_id]
--def def_file

provisioning file for this purpose, or you can use
one that specifies exactly one component or host.
If you choose to use a larger provisioning file, then
you must specify which component listed within it
that you are adding, using the --comp flag.

Adds a single host to an application. Def_file is a
provisioning document.You can use a larger

add-host --app app_id [--host host_id] --def def_file

provisioning file for this purpose, or you can use
one that specifies exactly one component or host.
If you choose to use a larger provisioning file, then

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference54

DescriptionCommand

you must specify which host listed within it that you
are adding, using the --host flag.

Adds a script to an application. Scripts can be
added at any time.You can use --def to specify

add-script --app app_id --script script_id (--def
def_file | [--wd working_dir] [--log-file log_file] --cmd
command [args...]) a definition file to start the script, or use the

following settings: --log-file is the file for
appended stdout/stderr output. If it is not specified,
it defaults to $ENDECA_CONF/logs/script/
(app_id).(script_id).log

--wd is the working directory. If it is not specified,
it defaults to
$ENDECA_CONF/working/(app_id)/

--cmd is the command that is used to start the
script. If --cmd is omitted, the first unrecognized
argument is taken as the start of your command.
The --log-file and --wd, if used, should come
before --cmd.

Removes a single component from an application.
The optional --force flag indicates whether or not

remove-component [--force] --app app_id --comp
comp_id

this remove operation should force any running
components or services to stop before attempting
the remove. Remove fails if any components or
services are still running (that is, not forced to
stop).

Removes a single host from an application. The
optional --force flag indicates whether or not

remove-host [--force] --app app_id --host host_id

this remove operation should force any running
components or services to stop before attempting
the remove. Remove fails if any components or
services are still running (that is, not forced to
stop).

Removes a script from an application.The optional
--force flag indicates whether or not this remove

remove-script [--force] --app app_id --script
script_id

operation should force a running script to stop
before attempting the remove.

Updates a component. Component properties can
be updated at any time. Other changes cannot be

update-component [--force] --app app_id [--comp
comp_id] --def def_file

made if the component is running or unreachable.
The optional --force flag indicates that the
Application Controller will attempt to force the
conditions under which the specified updates can
be made (by stopping stop a running component
or utility invocation, for example). Regardless of
whether or not the forced stop is successful,
however, the update persists in the application
provisioning, even if this leaves a dangling process
somewhere.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

55Using the eaccmd Tool | eaccmd command reference

DescriptionCommand

Updates a host. Host properties can be updated
at any time. Other changes cannot be made if any

update-host [--force] --app app_id [--host host_id]
--def def_file

components or services are running on the host,
or if the host is unreachable. The optional
--force flag indicates that the Application
Controller will attempt to force the conditions under
which the specified updates can be made (by
stopping stop a running component or utility
invocation, for example). Regardless of whether
or not the forced stop is successful, however, the
update persists in the application provisioning,
even if this leaves a dangling process somewhere.

Updates a script. The optional --force flag
indicates whether or not this update operation

update-script [--force] --app app_id --script script_id
(--def def_file | [--wd working_dir] [--log-file log_file]
--cmd command [args...]) should force a running script to stop before

attempting the update.You can use --def to specify
a definition file to update the script, or use the
following settings:

--wd is the working directory. If it is not specified,
it defaults to
$ENDECA_CONF/working/(app_id)/

--log-file is the file for appended stdout/stderr
output. If it is not specified, it defaults to
$ENDECA_CONF/logs/script/
(app_id).(script_id).log

--cmd is the command that is used to start the
script. If --cmd is omitted, the first unrecognized
argument is taken as the start of your command.
The --log-file and --wd, if used, should come
before --cmd.

Incremental provisioning example

The following example adds a Forge component to the my_wine application. Because this provisioning
file contains only a single component, it is not necessary to use the --comp flag.

eaccmd add-component --app my_wine --def update_forge.xml

Synchronization commands
Synchronization commands are used by the Synchronization service (described below) to manage
application-level flags that let users know when processes are in use.

DescriptionCommand

Sets a flag that demonstrates that a group of
processes are in use.You specify the flag with the

set-flag --app app_id --flag flag

application name and a flag name, which may be
arbitrary but should be well-known.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference56

DescriptionCommand

Removes the named flag and releases the
reserved processes.

remove-flag --app app_id --flag flag

Removes all flags in an application and releases
all reserved processes.

remove-all-flags --app app_id

Lists all flags in an application.list-flags --app app_id

About the Synchronization service

The Synchronization service lets you create, query, and delete application-level flags on a series of
processes. These flags indicate that the flagged processes are in use. The service creates flags on
the fly at the user’s request and deletes them when they are released. Using this service, multiple
users can synchronize their activities by obtaining and querying the flags. If two users attempt to flag
the same processes at the same time an error occurs.

Synchronization service flags are identified by an application name/flag name pair. Because flag names
are user-created and arbitrary, all users must be aware of flag names and consistent in their use. If a
set of processes needs to be reserved, then everyone concerned needs to know the name of the flag.

Synchronization examples

The following example adds a flag called mkt1010 to the my_wine application:

eaccmd set-flag --app my_wine --flag mkt1010

The following example removes all flags in the my_wine application:

eaccmd remove-all-flags --app my_wine

Component and script control commands
The component and script control commands are used to start and stop components or scripts and
retrieve their status.

DescriptionCommand

Starts a component or a script.start --app app_id [--comp comp_id | --script
script_id]

Stops a component or a script.stop --app app_id [--comp comp_id | --script
script_id]

Gets the status of a component (one of Starting,
Running, NotRunning, or Failed) or a script (one
of Running, NotRunning, or Failed).

status --app app_id [--comp comp_id | --script
script_id]

Component control example

The following example starts a Dgraph named wine_dgraph in the my_wine application.

eaccmd start --app my_wine --comp wine_dgraph

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

57Using the eaccmd Tool | eaccmd command reference

Utility commands
The utility commands allow you to run and monitor Application Controller utilities through the eaccmd
tool.

There are three kinds of Utility commands: Shell, Copy, and Archive.

General notes on Application Controller utilities

Keep in mind the following general points about Application Controller utilities.

• Utility naming: Be sure to name your utilities carefully. If you create a new utility that has the same
name as a running utility, an error is issued. However, if there is an existing utility with the same
name that is not running, the new utility overwrites it.

• System cleanup of utility output: Each instance of the Shell and Copy utilities stores status
information and output logs. The Application Controller clears this information for non-running
utilities instances every seven days (that is, 10,080 minutes) to save system resources.This setting
can be modified in the eac.properties file.

The List Directory Contents (ls) command

The List Directory Contents command lets you see the contents of directories on remote machines.
Its behavior is similar to that of ls on UNIX, although some non-ls restrictions, noted below, apply.

DescriptionCommand

Returns a list of files matching the pattern input in
file_pattern. Note the following: A file_pattern must

ls --app app_id --host host_id --pattern file_pattern

start with an absolute path, such as C:\ or /. A
file_pattern can contain . or .. as directory names,
and expands * and ? wildcards. A file_pattern
cannot contain the wildcard expressions .*, .?, or
..* as directory or file names. Bracketed wildcards,
such as file[123].txt, are not supported. Wildcards
cannot be applied to drive names.You cannot use
.. to create paths that do not exist. For example,
the path /temp/../../a.txt refers to a path
that is above the root directory. This is an invalid
path that causes the operation to fail.

Wildcard behavior

The List Directory Contents command expands the wildcards in a pattern. If the expansion results in
a file, it returns a file. If the expansion results in a directory, it returns the directory non-recursively.
Wildcard expansion can result in any combination of files and directories.

For example, assume that the following directories and files exist:

/home/endeca/reference/...
/home/endeca/install.log
/home/e.txt

The following command:

eaccmd ls --app my_wine --host my_host --pattern /home/e*

would list all of these files and directories, because they match the file_pattern.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference58

Delimiting wildcard arguments

To prevent inappropriate expansion, any wildcard arguments you use with the List Directory Contents
utility in eaccmd need to be delimited with double quotation marks. For example: On Windows, "C:*.txt".
On UNIX, "/home/endeca/test/*.txt".

The Shell utility

The Shell utility allows you to run arbitrary commands in a host system shell.

DescriptionCommand

Starts a Shell utility with the specified command
string. The token is a string. If you do not specify

start-util --type shell --app app_id [--token token]
--host host_id [--wd working_dir] --cmd command
[args...] a token, one is generated and returned when you

start the utility. The token is used to stop the utility
or to get its status. --wd, which is optional, sets the
working directory for the process that gets
launched. If specified, it must be an absolute path.
If wd is not specified, the setting defaults to
%ENDECA_CONF%\working\
<appName>\shell on Windows or
$ENDECA_CONF/working/ <appName>/shell
on UNIX. The --cmd arguments are passed in a
single string. If --cmd is omitted, the first
unrecognized argument is taken as the start of
your command.

Stops a Shell utility. The token is a string, either
user-created or generated and returned when you

stop-util --app app_id --token token

start the utility, that eaccmd prints to screen. The
token can be used to stop the utility or to get its
status.

Gets the status of a Shell utility. The token is a
string, either user-created or generated and

status-util --app app_id --token token

returned when you start the utility, that eaccmd
prints to screen. The token can be used to stop
the utility or to get its status.

Shell utility examples

The first example deletes the Dgidx output after it has been copied in a separate action over to the
Dgraph:

eaccmd start-util --type shell --app my_wine --host mkt1010
--cmd rm <dgidx-output-dir>/*.*

The second example performs a recursive directory copy:

eaccmd start-util --type shell --app myapp --host hosttorunon
--cmd cp–r /mysourcedir /mydestdir

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

59Using the eaccmd Tool | eaccmd command reference

Troubleshooting the Shell utility

In many cases, particularly cross-platform scenarios, the Shell command must be wrapped in double
quotation marks.The error message returned, which occurs at the console level, is usually something
similar to the following:

The system cannot find the path specified.

The Copy utility

The Copy utility uses an internal Web services interface to copy files or directories, either locally or
between machines.

DescriptionCommands

As part of the Copy utility, starts a copy.You
identify the hostname, port, and path for both the

start-util --type copy --app app_id [--token token]
[--recursive] --from host_id --to host_id --src
file_pattern --dest dest_path source and destination directories. If the copy is

local, you do not need to specify the host_id.

Keep in mind that you are not necessarily copying
to the machine you are running eaccmd on. The
hosts you are copying to and from are those you
specified in your provisioning file.

--token is a string used to stop the utility or get
its status. If you do not specify a token, one is
generated and returned when you start the utility.

If --recursive is specified, it indicates that the
Copy utility recursively copies any directories that
match the wildcard.

If --recursive is not specified, the Copy utility
does not copy directories, even if they match the
wildcard. Instead, it creates intermediate directories
required to place the copied files at the destination
path.

--src is a string representing the file, wildcard,
or directory to be copied. A --src must start with
an absolute path, such as C:\ or /. A --src can
contain . or .. as directory names, and expands *
and ? wildcards.

Note the following:

• You cannot use the wildcard expressions .*,
.?, or ..* as directory or file names.

• Bracket wildcards, such as file[123].txt, are not
supported.

• Wildcards cannot be applied to drive names.

--dest is the full path to the destination file or
directory. --dest must be an absolute path, and
no wildcards are allowed.

If --dest is a directory, that directory must exist,
unless the following conditions are met:

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference60

DescriptionCommands

• The parent of the destination already exists.
• You are copying only one thing.

Stops a Copy utility. The token is a string, either
user-created or generated and returned when you

stop-util --app app_id --token token

start the utility, that eaccmd prints to screen. The
token can be used to stop the utility or to get its
status.

Gets the status of a Copy utility. The token is a
string, either user-created or generated and

status-util --app app_id --token token

returned when you start the utility, that eaccmd
prints to screen. The token can be used to stop
the utility or to get its status.

Copy utility examples

This section illustrates several different Copy actions. For simplicity, the majority of the Copy actions
are done on a single machine. The final example shows how to copy across machines.

First, assume the following directory structure exists on the source:

/
 endeca1/
 work/
 dgraphlogs/
 a.log
 forgelogs/
 b.log
 endeca2/
 work/
 dgraphlogs/
 c.log
 forgelogs/
 d.log
 e.log
 destination/

The following command copies one file to a new name:

eaccmd start-util --type copy --app myApp
 --src "/endeca1/work/dgraphlogs/a.log" --dest "/destination/out.log"

The resulting directory change would look like this:

 destination/
 out.log

The following command copies one file into an existing directory:

eaccmd start-util --type copy --app myApp
 --src "/endeca1/work/dgraphlogs/a.log" --dest "/destination"

The resulting directory change would look like this:

destination/
 a.log

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

61Using the eaccmd Tool | eaccmd command reference

The following command recursively copies a directory to a new name:

eaccmd start-util --type copy --app myApp
 --src "/endeca1/work/dgraphlogs" --dest "/destination/outlogs" --recursive

The resulting directory change would look like this:

destination/
 outlogs/
 a.log

The following command recursively copies a directory into an existing directory:

eaccmd start-util --type copy --app myApp
 --src "/endeca1/work/dgraphlogs" --dest "/destination"
 --recursive

The resulting directory change would look like this:

destination/
 dgraphlogs/
 a.log

The following command copies all files in a directory.

eaccmd start-util --type copy --app myApp
 --src "/endeca2/work/forgelogs/*" --dest "/destination"

The resulting directory change would look like this:

destination/
 d.log
 e.log

The following copy command demonstrates the use of multiple wildcards:

eaccmd start-util --type copy --app myApp
 --src "/e*/work/*logs/*.log" --dest "/destination"

The resulting directory change would look like this:

destination/
 a.log
 b.log
 c.log
 d.log
 e.log

The following copy demonstrates a recursive copy with wildcards:

eaccmd start-util --type copy --app myApp
 --src "/e*/work" --dest "/destination" --recursive

The resulting directory change would look like this:

destination/
 work/
 dgraphlogs/
 a.log
 c.log
 forgelogs/
 b.log
 d.log
 e.log

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference62

When copying to another machine, the syntax is as follows:

eaccmd start-util --type copy --app myApp --from ITLHost --to MDEXHost
 --src /full/path/to/file/src.txt --dest /full/path/to/file/dest.txt

Keep in mind that the hostnames are not IP addresses or DNS names, but rather are the hosts that
are defined within the EAC. If you are using the Deployment Template, these are the hosts defined in
the AppConfig.xml file with tags similar to this example:

<host id="ITLHost" hostName="itl.example.com" port="8888" />
<host id="MDEXHost" hostName="mdex.example.com" port="8888" />

Also make sure that you have a clear network path between hosts (if necessary, make the appropriate
modifications in any firewall to allow traffic).

About the Copy utility
This topic provides details about how the Copy utility works.

The Copy utility supports wildcards (* and ?) and recursive copying. In some cases, the destination
directory must already exist; in others, the utility automatically creates both the destination directory
and any empty directories in the transfer.

Directories are copied first to a temporary directory on the destination machine before being copied
one file at a time to the target location.You can configure the location of this temporary directory in
the eac.properties file, using the optional setting com.endeca.eac.filetransfer.fileTrans¬
ferTempDir as follows:

• If this setting is defined as an absolute path, the Copy utility uses it.
• If it is defined as a relative path, the Copy utility considers it to be relative to
%ENDECA_CONF%/state/

• If it is not defined, the Copy utility uses the directory %ENDECA_CONF%/state/file_transfer/

If the Copy utility tries to copy a file to a location where another file already exists, the utility overwrites
the preexisting file.

Note: The Copy utility supports both SSL and non-SSL communication, with SSL being off by
default. For details on enabling SSL, see the Endeca Security Guide.

Destination directories

In most cases, the destination directory where the copied files are placed has to exist already. However,
there are a few exceptions where the destination directory does not have to exist prior to the copy:

• Copying just one file to the location of an existing file.
• Copying just one file to a new file name in an existing directory.
• Copying just one directory to a new directory name in an existing parent directory.

Failure and recovery

The following situations result in a failure of the Copy utility:

• The Copy utility tries to write to a directory it doesn’t have permissions to.
• There is not enough disk space.
• There is no file at the source location.
• The wildcard expression matches no files.
• When there are mismatches between directories and files (for example, the Copy utility tries to

copy a file to path where a directory with that name already exists, or tries to create a directory in
the destination and a file with that name already exists).

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

63Using the eaccmd Tool | eaccmd command reference

• You cannot use .. to create paths that do not exist. For example, the path /temp/../../a.txt
refers to a path that is above the root directory. This is an invalid path that causes the utility to fail.

• Asking for a copy that results in multiple files being written to the same location. For example,
given the following directory structure on the source:

/trunk/src/a.txt
/testbranch/src/a.txt

a copy from /t*/src/* to /temp would result in the Copy utility trying to write both a.txt files to the
same location in the temp directory.

There is no recovery for copies. Therefore, if the transfer of a large file fails, the entire file must be
transferred again. Likewise, if a multi-file transfer fails before completion, you must either re-run the
entire transfer or request only those parts that did not transfer.

Explicit machine naming

Keep in mind that when you are using the Copy utility, you are potentially working with three machines:
the EAC Central Server, from which you issue eaccmd commands, the Agent machine you are copying
data from, and the one you are copying data to. In such cases, the name localhost can be confusing.
Unless you are using the Copy utility to move files on a single machine, you should use explicit machine
names rather than simply localhost.

Delimiting wildcard elements

To prevent inappropriate expansion, any wildcard arguments you use with the Copy utility in eaccmd
need to be delimited with double quotation marks. For example:

On Windows, "C:*.txt".

On UNIX, "/home/endeca/test/*.txt".

Copying across platforms

If you are copying files or directories between machines on different platforms, you have to wrap any
Window paths on a Linux or Solaris shell in double quotation marks (for example, "C:*.txt").

The Archive utility

The Archive utility allows you to archive and roll back directories.

Using the Archive utility, you can save off and back up a set of component outputs, which later can
be rolled back on demand. With the backup operation, you create back up copies of directories
distinguished by time stamps.With the rollback operation, you replace the current version of a directory
with the most recently backed-up version. The current version is then renamed with an .unwanted
suffix.

Note: Do not start a backup or rollback operation while another such operation is in progress
on the same directory. Unexpected behavior may occur if you do so.

Related Links
Backup operations on page 65

Backup operations create an archive directory from an existing directory.

Rollback operations on page 65
Rollback operations roll back the directory to the most recent backed up version.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference64

Backup operations
Backup operations create an archive directory from an existing directory.

Backup operations create an archive directory from an existing directory. The archive directory has
the same name as the original directory, but with a timestamp appended to the end. The timestamp
reflects the time when the backup operation was performed.

For example, if the original directory is called logs and was backed up on October 11, 2008 at 8:00
AM, the backup operation creates a directory called logs.2008_10_11.08_00_00.

DescriptionCommand

Starts the backup operation. The token is a string.
If you do not specify a token, one is generated and

start-util --type backup --app app_id [--token token]
--host host-id --dir dir [--method] <copy|move>
[--backups num_backups] returned when you start the utility. The token is

used to stop the utility or to get its status.The host
and dir settings specify the path to the directory
that will be archived. The method is either copy or
move (the default).

The optional backups setting specifies the
maximum number of archives to store.This number
does not include the original directory itself, so if
backups is set to 3, you would have the original
directory plus up to three archive directories, for a
total of as many as four directories. The default
num_backups is 5.

Stops a backup operation. The token is a string,
either user-created or system-generated when you

stop-util --app app_id --token token

start the utility. The token can be used to stop the
utility or to get its status.

Gets the status of a backup operation. The token
is a string, either user-created or system-generated

status-util --app app_id --token token

when you start the utility. The token can be used
to stop the utility or to get its status.

Backup operation example

In the following example, an archive version of the logs directory is created.

eaccmd start-util --type backup --app my_wine --host mkt1010
--dir c:\my_wine\data\logs --backups 2

Rollback operations
Rollback operations roll back the directory to the most recent backed up version.

For example, say you have a directory called logs, one called logs.2008_10_11.08_00_00, and other,
older versions. When you roll back, the following things happen:

• logs is renamed logs.unwanted.
• logs.2008_10_11.08_00_00 is renamed logs.
• The older versions are left alone.

Note: There can only be a single .unwanted directory at a time. If you roll back twice, the
.unwanted directory from the first rollback is deleted.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

65Using the eaccmd Tool | eaccmd command reference

DescriptionCommand

Starts the rollback operation.The token is a string.
If you do not specify a token, one is generated and

start-util --type rollback --app app_id [--token token]
--host host_id --dir dir

returned when you start the utility. The token is
used to stop the utility or to get its status.The host
and dir settings specify the path to the directory
that will be rolled back.

Stops a rollback operation. The token is a string,
either user-created or generated and returned

stop-util --app app_id --token token

when you start the utility, that eaccmd prints to
screen. The token can be used to stop the utility
or to get its status.

Gets the status of a rollback operation. The token
is a string, either user-created or generated and

status-util --app app_id --token token

returned when you start the utility, that eaccmd
prints to screen. The token can be used to stop
the utility or to get its status.

Rollback operation example

In the following example, the archived logs directory is rolled back.

eaccmd start-util --type rollback --app my_wine --host mkt1010
--dir c:\my_wine\data\logs

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference66

Chapter 6

Endeca Application Controller API Interface
Reference

Application Controller interfaces are documented here.

Using the Application Controller WSDL
You can use the Endeca Application Controller WSDL API to write your application in the language
of your choice (such as Java, C#, or Perl).

Using the Web Services tool of your choice (such as Axis for Java), do the following:

1. Run the WSDL through your tool to generate the stubs (that is, an API that your code can call).

2. Write your application, using that code to control the Application Controller.

Note:

• The Application Controller schema is defined in eac.wsdl, which is located in the
$ENDECA_ROOT/lib/services directory on UNIX and %ENDECA_ROOT%\lib\services
on Windows.

• You generate clent stubs (or proxies) using the eac.wsdl file located in the file system provided
by the Endeca installation.You cannot generate client stubs using the SOAP Web services
addresses associated with each service within the WSDL file.

Simple types in the Application Controller WSDL
The Application Controller WSDL defines several data types that can be treated as simple data types.

• IDType, TokenType, BackupMethodType, TimeRangeType, and TimeSeriesType can be treated
as Strings.

• PortNumber can be treated as an Integer.
• TimeOut can be treated as a Long.

ComponentControl interface
The ComponentControl interface provides component management capabilities.

It consists of the following methods:

startComponent(FullyQualifiedComponentIDType startComponentInput)
Starts the named component.

FullyQualifiedComponentIDType parameters:

• applicationID identifies the application to use.
• componentID identifies the component to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

stopComponent(FullyQualifiedComponentIDType stopComponentInput)
Stops the named component.

FullyQualifiedComponentIDType parameters:

• applicationID identifies the application to use.
• componentID identifies the component to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Synchronization interface
The Synchronization interface manages application-level flags that let users know when processes
are in use.

For example, your code could create a flag named update-running to ensure that a new baseline
update does not start while another update is already in progress.

Typical usage is as follows:

if (setFlag(MY_FLAG_ID) == true)
 [perform action, such as a baseline update]
 removeFlag(MY_FLAG_ID)
else
 [signal error such as "an update is already in progress"]

setFlag(FullyQualifiedFlagIDType setFlagInput)
Creates a new flag, identified by flagID, that is associated with the named application.

FullyQualifiedFlagIDType parameters:

• applicationID identifies the application to use.
• flagID is a unique string identifier for this flag.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | ComponentControl interface68

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• A Boolean, false if the flag was already set, or true if it was not set meaning the method succeeded).

removeFlag(FullyQualifiedFlagIDType removeFlagInput)
Removes the named flag.

FullyQualifiedFlagIDType parameters:

• applicationID identifies the application to use.
• flagID is a unique string identifier for this flag.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

removeAllFlags(IDType removeAllFlagsInput)
Removes all flags in an application.

IDType parameter:

• applicationID identifies the application to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

listFlags(IDType listFlagsInput)
Lists the collection of flags in an application.

IDType parameter:

• applicationID identifies the application to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• flagIDList, a string collection of flagIDs.

Utility interface
The Utility interface allows you to manage the Application Controller utilities (Shell, Copy, and Archive)
programmatically.

Note: Be sure to name your utilities carefully. If you create a new utility that has the same name
as a running utility, an error is issued. However, if there is an existing utility with the same name
that is not running, the new utility overwrites it.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

69Endeca Application Controller API Interface Reference | Utility interface

The Utility interface consists of the following methods:

startBackup(RunBackupType startBackupInput)
Starts the backup operation of the Archive utility.

Backup operations create an archive directory from an existing directory. The archive directory has
the same name as the original directory, but with a timestamp appended to the end. The timestamp
reflects the time when the backup operation was performed.

For example, if the original directory is called logs and was backed up on October 11, 2008 at 8:00
AM, the backup operation creates a directory called logs.2008_10_11.08_00_00.

Note: Do not start a backup or rollback operation while another such operation is in progress
on the same directory. Unexpected behavior may occur if you do so.

RunBackupType parameters:

• applicationID identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• hostID is a unique identifier for the host. The hostID and dirName parameters specify the path to

the directory that will be archived.
• dirName is the full path of the directory. The hostID and dirName parameters specify the path to

the directory that will be archived.
• backupMethod is either copy or move.
• numBackups specifies the maximum number of archives to store. This number does not include

the original directory itself, so if numBackups is set to 3, you would have the original directory plus
up to three archive directories, for a total of as many as four directories. The default numBackups
is 5.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• The string token assigned to this invocation.

startFileCopy(RunFileCopyType startFileCopyInput)
Launches the Copy utility, which copies files either on a single machine or between machines.

RunFileCopyType parameters:

• applicationID identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• fromHostID is a unique identifier for the host from which you are copying.
• toHostID is a unique identifier for the host to which you are copying.
• sourcePath is a string representing the file, wildcard, or directory to be copied. A sourcePath must

start with an absolute path, such as C:\ or /. A sourcePath can contain . or .. as directory names,
and expands * and ? wildcards. Note the following:

• You cannot use the wildcard expressions .*, .?, or ..* as directory or file names.
• Bracket wildcards, such as file[123].txt, are not supported.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Utility interface70

• Wildcards cannot be applied to drive names.
• destinationPath is the full path to the destination file or directory. destinationPath must be an

absolute path, and no wildcards are allowed.

The destination directory must exist, unless the parent of the destination already exists and you
are copying only one thing.

• recursive, when true, indicates that the Copy utility recursively copies any directories that match
the wildcard.

If recursive is false, the Copy utility does not copy directories, even if they match the wildcard.
Instead, it creates intermediate directories required to place the copied files at the destination path.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• The string token assigned to this invocation.

startRollback(RunRollbackType startRollbackInput)
Rollback operations roll back the directory to the most recent backed up version.

For example, say you have a directory called logs, one called logs.2008_10_11.08_00_00, and other,
older versions. When you roll back, the following things happen:

• logs is renamed logs.unwanted.

• logs.2008_10_11.08_00_00 is renamed logs.

• The older versions are left alone.

Note: There can only be a single .unwanted directory at a time. If you roll back twice, the
.unwanted directory from the first rollback is deleted.

Note: Do not start a backup or rollback operation while another such operation is in progress
on the same directory. Unexpected behavior may occur if you do so.

RunRollbackType parameters:

• applicationID identifies the application to use.

• token identifies the token used to stop the utility or to get its status. If you do not specify a token,
one is generated and returned when you start the utility.

• hostID is a unique identifier for the host. The hostID and dirName parameters specify the path to
the directory that will be archived.

• dirName is the full path of the directory. The hostID and dirName parameters specify the path to
the directory that will be archived.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

71Endeca Application Controller API Interface Reference | Utility interface

• The string token assigned to this invocation.

startShell(RunShellType startShellInput)
The startShell() method launches the Shell utility, which allows you to run arbitrary commands in a
host system shell.

RunShellType parameters:

• applicationID identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• hostID is a unique identifier for the host.
• cmd is the command line to execute.
• workingDir is the full path to the working directory.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• The string token assigned to this invocation.

stop(FullyQualifiedUtilityTokenType)
Takes a token returned by any of the start methods, and stops that invocation by terminating the
process that is running it.

FullyQualifiedUtilityTokenType parameters:

• applicationID identifies the application to use.

• token identifies the token used to stop the utility.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

getStatus(String applicationID, String token)
Takes a token returned by any of the Utility start methods (startBackup(), startFileCopy(), startRollback(),
or startShell()), and returns the current status of that utility.

Parameters:

• applicationID identifies the application to use.
• token identifies the token used to get the utility’s status.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• A BatchStatusType object.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Utility interface72

listDirectoryContents(ListDirectoryContentsInputType
listDirectoryContentsInput)

Performs a list operation similar to UNIX ls on a remote host, with the following restrictions on the input
file pattern.

• A filePattern must start with an absolute path, such as C:\ or /.
• A filePattern can contain . or .. as directory names, and expands * and ? wildcards.
• A filePattern cannot contain the wildcard expressions .*, .?, or ..* as directory or file names.
• Bracketed wildcards, such as file[123].txt, are not supported.
• Wildcards cannot be applied to drive names.
• You cannot use .. to create paths that do not exist. For example, the path /temp/../../a.txt refers to

a path that is above the root directory. This is an invalid path that causes the operation to fail.

ListDirectoryContentsInputType parameters:

• applicationID (required) identifies the application to use.

• hostID (required) is a unique identifier for the host.

• filePattern (required) is the name of the directory, file, or wildcard combination of directory and file
whose contents are to be listed.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails. Failure
conditions correspond to bad input cases.

Returns:

• A FilePathListType object representing the contents of the requested directory.

Provisioning interface
The Provisioning interface allows you to define and manage your Endeca applications programmatically.

It contains the following methods:

defineApplication(ApplicationType application)
Defines an application.

ApplicationType parameters:

• applicationID identifies the application to use.
• hosts is a collection of HostType objects, representing the hosts to define.
• components is a collection of ComponentType objects (such as ForgeComponentType,

DgraphComponentType, and so on) representing the components to define.
• scripts is a collection of ScriptType objects.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when
there are fatal errors during provisioning.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

73Endeca Application Controller API Interface Reference | Provisioning interface

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

Related Links
ComponentType class on page 85

A class that describes the base type for all components within an application.

ScriptType class on page 96
A class that describes the base type for all scripts within an application.

getApplication(IDType getApplicationInput)
Gets an application, which is composed of hosts, components, and scripts and identified by an
application ID.

IDType parameter:

• applicationID identifies the application to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• An ApplicationType object.

Related Links
ApplicationType class on page 83

A class that describes an application to be deployed by the Application Controller. An
application is composed of a set of components residing on a set of hosts.

getCanonicalApplication(IDType getCanonicalApplicationInput)
The getCanonicalApplication() method returns the provisioning just as getApplication() does, but with
all paths canonicalized.

This process ensures that all paths are absolute, and that the working directory and log path settings
are provided. It also prevents .. from being used in a path name.

IDType parameter:

• applicationID identifies the application to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

• An ApplicationType object, as described on page 248.

Related Links
ApplicationType class on page 83

A class that describes an application to be deployed by the Application Controller. An
application is composed of a set of components residing on a set of hosts.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface74

listApplicationIDs(listApplicationIDsInput)
Lists the applications that are defined.

Returns:

• An ApplicationIDListType object.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Related Links
ApplicationIDListType class on page 83

A class that describes a returned value of a list application call to the Provisioning service.

removeApplication(RemoveApplicationType removeApplicationInput)
Removes the named application.

RemoveApplicationType parameter:

• applicationID identifies the application to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

addComponent(AddComponentType addComponentInput)
Adds a single component to an application.

AddComponentType parameters:

• applicationID identifies the application to use.
• component is one of the following: Forge, Dgidx, Dgraph, Agidx, Agraph, LogServer,

ReportGenerator

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

75Endeca Application Controller API Interface Reference | Provisioning interface

removeComponent(RemoveComponentType removeComponentInput)
Removes a single component from an application.

RemoveComponentType parameters:

• applicationID identifies the application to use.

• componentID identifies the component to use.

• forceRemove indicates whether or not a remove operation should force the component to stop
before attempting the remove. If the component is running, and forceRemove is not set to true,
then the remove call will fail.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when
there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

updateComponent(UpdateComponentType updateComponentInput)
Updates a running component.

UpdateComponentType parameters:

• applicationID identifies the application to use.
• component is one of the following: Forge, Dgidx, Dgraph, Agidx, Agraph, LogServer,

ReportGenerator.
• forceUpdate indicates that the Application Controller will attempt to force the conditions under

which the update can take place, by stopping running components.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

addHost(AddHostType addHostInput)
Adds a host to an application.

AddHostType parameters:

• applicationID identifies the application to use.
• host is a HostType object specifying the host to add.
• directories allows you to specify directories using a full path and a name. These directories are

associated with hosts and created when the host is provisioned.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface76

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

updateScript(UpdateScriptType updateScriptInput)
Updates a running script.

UpdateScriptType parameters:

• applicationID identifies the application to use.
• script is a ScriptType object specifying the script to be updated.
• forceUpdate is a Boolean that indicates whether the Application Controller should force a running

script to stop before attempting the update.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

removeHost(RemoveHostType removeHostInput)
Removes a single host from an application.

RemoveHostType parameters:

• applicationID identifies the application to use.
• hostID is a unique string identifier for this host.
• forceRemove indicates whether or not the Application Controller should force any running

components or services to stop before attempting the remove. If a component or service is running,
and forceRemove is not set to true, then the remove call will fail.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

77Endeca Application Controller API Interface Reference | Provisioning interface

updateHost(UpdateHostType updateHostInput)
Updates a running host.

UpdateHostType parameters:

• applicationID identifies the application to use.
• host is a HostType object specifying the host to add.
• directories allows you to specify directories using a full path and a name. These directories are

associated with hosts and created when the host is provisioned.
• forceUpdate indicates that the Application Controller will attempt to force the conditions under

which the update can take place, by stopping running components or services.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

addScript(AddScriptType addScriptInput)
Adds a script to an application.

AddScriptType parameters:

• applicationID identifies the application to use.
• script is a ScriptType object (see page 269) specifying the script to add.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

Related Links
ScriptType class on page 96

A class that describes the base type for all scripts within an application.

removeScript(RemoveScriptType removeScriptInput)
Removes a script from an application.

RemoveScriptType parameters:

• applicationID identifies the application to use.
• scriptID is a unique string identifier for this host.
• forceRemove indicates that the Application Controller will attempt to force the conditions under

which the remove can take place.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface78

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.
• ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when

there are fatal errors during provisioning.

Returns:

• A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning
problems.

ScriptControl interface
The ScriptControl interface provides programmatic script management capabilities.

It contains the following methods:

startScript(FullyQualifiedScriptIDType startScriptInput)
Starts the named script.

FullyQualifiedScriptIDType parameters:

• applicationID identifies the application to use.
• scriptID identifies the script to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

stopScript(FullyQualifiedScriptIDType stopScriptInput)
Stops the named script.

FullyQualifiedScriptIDType parameters:

• applicationID identifies the application to use.
• scriptID identifies the script to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

getScriptStatus(FullyQualifiedScriptIDType getScriptStatusInput)
Returns the status of a script.

FullyQualifiedScriptIDType parameters:

• applicationID identifies the application to use.
• scriptID identifies the script to use.

Throws:

• EACFault is the error message returned by the Application Controller when the method fails.

Returns:

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

79Endeca Application Controller API Interface Reference | ScriptControl interface

• A ScriptStatus object (a sub-class of the StatusType class). This status may be Running,
NotRunning, or Failed. (Failure results from a failure error code or internal EAC errors).

Related Links
StatusType class on page 97

Describes the status of a server component in the Application Controller.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | ScriptControl interface80

Chapter 7

Endeca Application Controller API Class
Reference

This section describes the Endeca Application Controller API classes.

AddComponentType class
A class that describes a component to be added to a named application during incremental provisioning.

AddComponentType properties

• applicationID (required) identifies the application to use.
• component (required) is one of the following: Forge, Dgidx, Dgraph, Agidx, Agraph, LogServer, or

ReportGenerator.

AddHostType class
A class that describes a host to be added to a named application during incremental provisioning.

AddHostType properties

• applicationID (required) identifies the application to use.
• host (required) is a description of the host to add.
• directories allows you to specify directories using a full path and a name.

AddScriptType class
A class that describes a script to be added to a named application during incremental provisioning.

AddScriptType properties

• applicationID (required) identifies the application to use.
• script (required) is a description of the script to add.

AgidxComponentType class
A class that describes an Agidx component within an application. An Agidx component runs Agidx on
a machine, creating a set of Agidx indices that support the Agraph program in a distributed environment.

The Agidx component is used only in distributed environments and is run sequentially on multiple
machines. On the first machine, the Agidx component takes the Dgidx output from that machine as
its input. On the next machine, the output from the first Agidx run is copied over, using the Copy service.
It, along with the Dgidx output from that machine, is used as Agidx input.

AgdixComponentType properties

• componentID (required) identifies the component to use.
• hostID (required) is a unique string identifier for this host.
• workingDir is a string identifying the working directory for this component. Any relative paths in

component properties are be interpreted as relative to the component's workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.
• args is a list of command-line flags to pass to Agidx.
• previousAgidxOutputPrefix is the file prefix of the Agidx data from the previous run, which has

been copied to this machine by a Copy operation.This parameter should not be used when running
the Agidx component on the first data subset.

• inputPrefixList (required) is the paths to the output of various Dgidxes, which Agidx uses as input.
outputPrefix (required) is the path and prefix name for the Agidx output.

AgraphChildListType class
A class used by the AgraphComponentType class to establish the list of child Dgraphs and related
devices used by a resulting Agraph.

Each Agraph component can contain a mixture of DgraphReferenceType and DgraphHostPortType
objects. A DgraphReferenceType object refers to a child Dgraph, while a DgraphHostPortType object
is typically used to refer to an unprovisioned device such as a load balancer. If you know you are
referring only to actual Dgraphs, and not to load balancers or other unprovisioned devices, you do not
need to use DgraphHostPortType objects.

AgraphChildListType properties

• child (required) is a collection of child Dgraphs and related devices comprising this
AgraphChildListType object.

AgraphComponentType class
A class that describes an Agraph component within an application. An Agraph component runs the
Agraph program, which defines and coordinates the activities of multiple, distributed Dgraphs.

AgraphComponentType properties

• componentID (required) identifies the component to use.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | AgidxComponentType class82

• hostID (required) is a unique string identifier for this host.

• workingDir is a string identifying the working directory for this component. Any relative paths in
component properties are be interpreted as relative to the component’s workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.

• args is a list of command-line flags to pass to Agidx.

• port (required) is the port at which the Agraph should listen.

• appConfigPrefix is the path and file prefix that define the input for the Agraph.

• reqLogFile is the path to and name of the request log.

• children is a list of the child Dgraphs and related devices for this Agraph.

• inputPrefix (required) is the path and prefix name for the Agidx output that the Agraph uses as an
input.

• startupTimeout specifies the amount of time in seconds that the Application Controller will wait
while starting the Agraph. Note that your stub generation tool may generate a Boolean property
(for example, startupTimeoutSpecified in .NET) that is used to detect whether the user called the
set method for this attribute; the property will be used to determine whether to include this field in
the serialized XML.

• sslConfiguration sets SSL usage for this Agraph.

ApplicationIDListType class
A class that describes a returned value of a list application call to the Provisioning service.

ApplicationIDListType encapsulates the list of applications running on this EAC Central Server.

ApplicationIDListType properties

• applicationID identifies the application to use.

ApplicationType class
A class that describes an application to be deployed by the Application Controller. An application is
composed of a set of components residing on a set of hosts.

You can construct an ApplicationType object as a full specification of the application, including all
hosts and components. Alternatively, you can start with an empty an ApplicationType object and
incrementally fill in the hosts, components, and scripts. In the latter case, order matters, because a
host must be added before you add a component that lives on that host.

ApplicationType properties

• applicationID identifies the application to use.

• hosts is a list of hosts.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

83Endeca Application Controller API Class Reference | ApplicationIDListType class

• components is a list of components.

• scripts is a list of scripts.

BackupMethodType class
In relation to the Archive utility, this class serves as an identifier for the type of backup you want the
utility to perform, Copy or Move.

BackupMethodType fields

The enumeration of possible values is as follows:

• Copy.
• Move.

BatchStatusType class
Based on the StatusType class, a BatchStatusType object describes the status of a batch component.

Batch components include Forge, Dgidx, Agidx, and ReportGenerator..

BatchStatusType properties

• StateType – (required) An enumeration of the following fields:

Starting, which only applies to server components (Dgraph, Agraph, or LogServer)

Running

NotRunning

Failed

• startTime – (required) The time the batch component started; for example, 10/11/08 3:58 PM.
• failureMessage – The failure message, which tells you that a failure has occurred in the execution

of the component. failureMessage is empty unless state is FAILED. (This is different from EACFault,
which tells you that a problem has occurred while processing the Web Service request to get the
status.)

• duration – (required) The length of time the batch component has been running; for example, 0
days 0 hours 0 minutes 6.96 seconds.

Related Links
StatusType class on page 97

Describes the status of a server component in the Application Controller.

ComponentListType class
A class that describes a list of components, such as ForgeComponentType and DgraphComponentType.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | BackupMethodType class84

ComponentListType properties

• component (required) A collection of components comprising this ComponentListType object.

ComponentType class
A class that describes the base type for all components within an application.

ComponentType properties

Each component contains these properties, as well as some others.

• componentID (required) identifies the component to use.

• hostID (required) is a unique string identifier for this host.

• workingDir is a string identifying the working directory for this component.

• logFile is a string identifying the log file for this component.

• properties is a string identifying any properties associated with this component.

DgidxComponentType class
A class that describes a Dgidx component within an application.

A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which generates
the proprietary indices for each Dgraph.

DgidxComponentType properties

• componentID (required) identifies the component to use.

• hostID (required) is a unique string identifier for this host.

• workingDir is a string identifying the working directory for this component. Any relative paths in
component properties are be interpreted as relative to the component's workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.

• args is a list of command-line flags to pass to Dgidx.

• appConfigPrefix is the path and file prefix that define the input for Dgidx.

• inputPrefix (required) is the path and prefix name for the Forge output that Dgidx indexes.

• outputPrefix (required) is the path and prefix name for the Dgidx output.

• runAspell prepares the Aspell files for the Dgraph. The default is true, which causes the Dgidx
component to run dgwordlist and to copy the Aspell files to its output directory, where the Dgraph
component can access them. Note that your stub generation tool may generate a Boolean property
(for example, runAspellSpecified in .NET) that is used to detect whether the user called the set
method for this attribute; the property will be used to determine whether to include this field in the
serialized XML.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

85Endeca Application Controller API Class Reference | ComponentType class

• tempDir is the path to the temporary directory that Dgidx uses.

DgraphComponentType class
A class that describes a Dgraph component within an application.

A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries against
the indexed Endeca records.

DgraphComponentType properties

• componentID (required) identifies the component to use.

• hostID (required) is a unique string identifier for this host.

• workingDir is a string identifying the working directory for this component. Any relative paths in
component properties are be interpreted as relative to the component's workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.

• args is a list of command-line flags to pass to the Dgraph.

• port (required) is the port the Dgraph listens at. The default is 8000.

• appConfigPrefix is the path and file prefix that define the input for Dgraph.

• inputPrefix (required) is the path and prefix name for the Dgidx output that the Dgraph uses as an
input.

• reqLogFile is the path to and name of the request log.

• spellDir, if specified, is the directory in which the Dgraph will look for Aspell files. If it is not specified,
the Dgraph will look for Aspell files in the Dgraph’s input directory (that is, inputPrefix without the
prefix). For example, if inputPrefix is /dir/prefix and all the Dgraph input files are /dir/prefix.*, the
Dgraph will look for the Aspell files in /dir/).

• startupTimeout specifies the amount of time in seconds that the Application Controller will wait
while starting the Dgraph. Note that your stub generation tool may generate a Boolean property
(for example, startupTimeoutSpecified in .NET) that is used to detect whether the user called the
set method for this attribute; the property will be used to determine whether to include this field in
the serialized XML.

• sslConfiguration sets SSL usage for this Dgraph.

• updateDir is the directory from which Dgraph reads partial update files. For more information, see
the Endeca Partial Updates Guide.

• updateLogFile specifies the file for update-related log messages.

• tempDir is the path to the temporary directory that the Dgraph uses.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | DgraphComponentType class86

DgraphHostPortType class
A class used by the AgraphChildListType class to represent a (non-Dgraph) related device used by a
parent Agraph.

Each Agraph component can contain a mixture of DgraphReferenceType and DgraphHostPortType
objects. A DgraphReferenceType object refers to a child Dgraph that is provisioned with the Application
Controller, while a DgraphHostPortType object is typically used to refer to an unprovisioned device
such as a load balancer. If you know you are referring only to actual Dgraphs, and not to load balancers
or other unprovisioned devices, you do not need to use DgraphHostPortType objects.

DgraphHostPortType properties

• hostname (required) is the name of the host.

• port (required) is the communications port.

DgraphReferenceType class
A class used by the AgraphComponentType class to represent a child Dgraph.

Each Agraph component can refer to a mixture of DgraphReferenceType and DgraphHostPortType
objects.

DgraphReferenceType properties

• componentID (required) is the unique identifier of a Dgraph that exists within the same Application
Controller application.

DirectoryListType class
A class that represents a collection of DirectoryType objects.

DirectoryListType property

• directory (required) is a collection of DirectoryType objects.

DirectoryType class
A class used by the HostType class to define a directory while provisioning a host.

DirectoryType properties

• dirID (required) is a unique identifier for this directory.

• dir (required) is a full path for this directory.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

87Endeca Application Controller API Class Reference | DgraphHostPortType class

EACFault class
The class that creates the EACFault. EACFault is the error message returned by the Application
Controller when the method fails.

EAC Fault property

• error is the error message.

FilePathListType class
An array of FilePathTypes that describes a returned value of a listDirectoryContents call.

FilePathListType operates on the application level.

FilePathListType property

• filePaths (required) describe a file on a remote host.

FilePathType class
A class that describes a file on a remote host.

FilePathType properties

• path (required) is the full path to the file.

• directory (required) indicates whether the path is a directory.

FlagIDListType class
A class that describes a returned value of a list flags call. FlagIDListType operates on the application
level.

FlagIDListType property

• flagID is a unique string identifier for this flag.

ForgeComponentType class
A class that describes a Forge component within an application.

A Forge element launches the Forge (Data Foundry) software, which transforms source data into
tagged Endeca records.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | EACFault class88

ForgeComponentType properties

• componentID (required) identifies the component to use.

• hostID (required) is a unique string identifier for this host.

• workingDir is a string identifying the working directory for this component. Any relative paths in
component properties are be interpreted as relative to the component's workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.

• args is a list of command-line flags to pass to Forge.

• stateDir is the directory where the state file is located.

• inputDir is the path to the Forge input.

• outputDir is the directory where the output from the Forge process will be stored.

• outputPrefixName is the prefix, without any associated path information, that Forge uses to save
its output files. These files are located in the directory specified by outputDir.

• numPartitions is the number of partitions. Note that your stub generation tool may generate a
Boolean property (for example, numPartitionsSpecified in .NET) that is used to detect whether the
user called the set method for this attribute; the property will be used to determine whether to
include this field in the serialized XML.

• pipelineFile (required) is the name of the Pipeline.epx file to pass to Forge.

• tempDir is the temporary directory that Forge uses.

• webServicePort is the port used by the Forge metrics Web service, which provides progress and
performance metrics for Forge. For details, see "The Forge Metrics Web Service" in the Endeca
Forge Guide. Note that your stub generation tool may generate a Boolean property (for example,
webServicePortSpecified in .NET) that is used to detect whether the user called the set method
for this attribute; the property will be used to determine whether to include this field in the serialized
XML.

FullyQualifiedComponentIDType class
A class that serves as an input to the start, stop, get status, and remove component commands.

FullyQualifiedComponentIDType properties

• applicationID (required) identifies the application to use.

• componentID (required) identifies the component to use.

FullyQualifiedFlagIDType class
In relation to the Synchronization service, this class serves as an input to an acquire or release flag
method.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

89Endeca Application Controller API Class Reference | FullyQualifiedComponentIDType class

FullyQualifiedFlagIDType properties

• applicationID (required) identifies the application to use.

• flagID (required) is a unique string identifier for this flag.

FullyQualifiedHostIDType class
A class that identifies a host so that it can be used as an input to another command, such as remove
host.

FullyQualifiedHostIDType properties

• applicationID (required) identifies the application to use.

• hostID (required) is a unique string identifier for this host.

FullyQualifiedScriptIDType class
A class that identifies a script so that it can be used as an input to another command, such as
startScript().

FullyQualifiedScriptIDType properties

• applicationID (required) identifies the application to use.

• scriptID (required) is a unique string identifier for this script.

FullyQualifiedUtilityTokenType class
In relation to the Utility service, this object represents the token.

FullyQualifiedUtilityTokenType properties

• applicationID (required) identifies the application to use.

• token (required) identifies the token used to stop the utility or to get its status. If you do not specify
a token, one is generated and returned when you start the utility.

HostListType class
A class that represents a collection of HostType objects.

HostListType property

• host (required) is a unique identifier comprising a hostname, port, and hostID.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | FullyQualifiedHostIDType class90

HostType class
A class that describes a host within an application.

Along with components, a collection of HostType objects define an application.

HostType properties

• hostname (required) is the name of the host.
• port (required) is the connection port.
• hostID is a unique string identifier for this host.
• directories allows you to specify directories using a full path and a name.

ListApplicationIDsInput class
An empty object you pass into the Web services interface to get back a list of applications.

ListDirectoryContentsInputType class
An object that serves as an input to the listDirectoryContents object.

ListDirectoryContentsInputType properties

• applicationID (required) identifies the application to use to look up the host.
• hostID (required) is a unique identifier for the host within that application.
• filePattern (required) is the pattern that listDirectoryContents() expands the wildcards in a pattern.

If the expansion results in a file, it returns a file. If the expansion results in a directory, it returns
the directory non-recursively. Wildcard expansion can result in any combination of files and
directories.

LogServerComponentType class
A class that describes a LogServerComponent within an application.

The LogServer component controls the use of the Endeca Log Server.

LogServerComponentType properties

• componentID (required) identifies the component to use.
• hostID (required) is a unique string identifier for this host.
• workingDir is a string identifying the working directory for this component. Any relative paths in

component properties are be interpreted as relative to the component’s workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component.
• port (required) is the port on which to run the LogServer.
• outputPrefix (required) is the path and prefix name for the LogServer output.
• gzip (required) controls the archiving of log files. Possible values are true and false.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

91Endeca Application Controller API Class Reference | HostType class

• startupTimeout (required) specifies the amount of time in seconds that the Application Controller
will wait while starting the LogServer. Note that your stub generation tool may generate a Boolean
property (for example, startupTimeoutSpecified in .NET) that is used to detect whether the user
called the set method for this attribute; the property will be used to determine whether to include
this field in the serialized XML.

PropertyListType class
A class that represents a collection of PropertyType objects.

PropertyListType property

• properties is a collection of name/value pairs.

PropertyType class
The PropertyType class allows you to add arbitrary properties (that is, name/value pairs) to host and
all component elements.

PropertyType properties

• name (required) is a non-null string.

• value is a string.

ProvisioningFault class
An extension of EACFault, the ProvisioningFault class is thrown when there are fatal errors during
provisioning.

ProvisioningFault properties

• errors is a list of provisioning errors.
• warnings is a list of provisioning warnings.

RemoveApplicationType class
Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveApplicationType properties

• applicationID (required) identifies the application to use.
• forceRemove indicates whether or not a remove operation should force any running components

or services to stop before attempting the remove. Note that your stub generation tool may generate
a Boolean property (for example, forceRemoveSpecified in .NET) that is used to detect whether

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | PropertyListType class92

the user called the set method for this attribute; the property will be used to determine whether to
include this field in the serialized XML.

RemoveComponentType class
Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveComponentType properties

• FullyQualifiedComponentIDType (required) identifies the component to use.
• forceRemove indicates whether or not a remove operation should force the component to stop

before attempting the remove. Note that your stub generation tool may generate a Boolean property
(for example, forceRemoveSpecified in .NET) that is used to detect whether the user called the
set method for this attribute; the property will be used to determine whether to include this field in
the serialized XML.

RemoveHostType class
Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveHostType properties

• FullyQualifiedHostIDType (required) is a unique string identifier for this host.
• forceRemove is a Boolean that indicates whether or not a remove operation should force any

running components or services to stop before attempting the remove. Note that your stub
generation tool may generate a Boolean property (for example, forceRemoveSpecified in .NET)
that is used to detect whether the user called the set method for this attribute; the property will be
used to determine whether to include this field in the serialized XML.

RemoveScriptType class
Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveScriptType properties

• applicationID (required) identifies the application.
• scriptID (required) identifies the script to remove.
• forceRemove is a Boolean that indicates whether or not a remove operation should force any

running components or services to stop before attempting the remove. Note that your stub
generation tool may generate a Boolean property (for example, forceRemoveSpecified in .NET)
that is used to detect whether the user called the set method for this attribute; the property will be
used to determine whether to include this field in the serialized XML.

ReportGeneratorComponentType class
A class that describes a ReportGenerator component within an application.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

93Endeca Application Controller API Class Reference | RemoveComponentType class

The ReportGenerator component runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can view in
Endeca Workbench.

ReportGeneratorComponentType properties

• componentID (required) identifies the component to use.
• hostID (required) is a unique string identifier for this host.
• workingDir is a string identifying the working directory for this component. Any relative paths in

component properties are be interpreted as relative to the component's workingDir.The workingDir
property, if specified, must be an absolute path.

• logFile is a string identifying the log file for this component. args is a list of command-line flags to
pass to the ReportGenerator.

• javaBinary, if used, should indicate a JDK 1.5.x or later. Defaults to the JDK that Endeca installs.
• javaOptions are the command-line options for the javaBinary parameter.This parameter is primarily

used to adjust the ReportGenerator memory, which defaults to 1GB. To set the memory, use the
following: java_options = -Xmx[MemoryInMb]m -Xms[MemoryInMb]m inputDirOrFile (required) is
the path to the file or directory containing the logs to report on. If it is a directory, then all log files
in that directory are read. If it is a file, then just that file is read.

• outputFile (required) is the name the generated report file and path to where it is stored.
• stylesheetFile (required) is the filename and path of the XSL stylesheet used to format the generated

report.
• settingsFile is the path to the report_settings.xml file.
• timerange sets the time span of interest (or report window). Allowed keywords:Yesterday, LastWeek,

LastMonth, DaySoFar,WeekSoFar, and MonthSoFar. These keywords assume that days end at
midnight, and weeks end on the midnight between Saturday and Sunday. Note that your stub
generation tool may generate a Boolean property (for example, timerangeSpecified in .NET) that
is used to detect whether the user called the set method for this attribute; the property will be used
to determine whether to include this field in the serialized XML.

• startDate set the report window to the given date and time. The date format should be either
yyyy_mm_dd or yyyy_mm_dd.hh_mm_ss.

• stopDate sets the report window to the given date and time. The date format should be either
yyyy_mm_dd or yyyy_mm_dd.hh_mm_ss. timeSeries turns on the generation of time-series data
and specifies the frequency, Hourly or Daily.

• charts turns on the generation of report charts. Note that your stub generation tool may generate
a Boolean property (for example, chartsSpecified in .NET) that is used to detect whether the user
called the set method for this attribute; the property will be used to determine whether to include
this field in the serialized XML.

RunBackupType class
A child of the RunUtilityType class, this class provides all the information you need to perform a backup
operation to the Archive utility.

RunBackupType properties

• applicationID (required) is the unique identifier for this application.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | RunBackupType class94

• hostID (required) is a unique identifier for the host. The hostID and dirName parameters specify
the path to the directory that will be archived.

• dirName (required) is the full path of the directory. The hostID and dirName parameters specify
the path to the directory that will be archived.

• backupMethod is either Copy or Move. Note that your stub generation tool may generate a Boolean
property (for example, backupMethodSpecified in .NET) that is used to detect whether the user
called the set method for this attribute; the property will be used to determine whether to include
this field in the serialized XML.

• numBackups specifies the maximum number of archives to store. This number does not include
the original directory itself, so if numBackups is set to 3, you would have the original directory plus
up to three archive directories, for a total of as many as four directories. The default numBackups
is 5. Note that your stub generation tool may generate a Boolean property (for example,
numBackupsSpecified in .NET) that is used to detect whether the user called the set method for
this attribute; the property will be used to determine whether to include this field in the serialized
XML.

RunFileCopyType class
A child of the RunUtilityType class, this class provides all the information you need to run the Copy
utility.

RunFileCopyType properties

• applicationID (required) identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• fromHostID (required) is the unique identifier for the host you are copying the data from. toHostID

(required) is the unique identifier for the host you are copying the data to.
• sourcePath (required) is the full path to the source file or directory. If sourcePath contains no

wildcards, then destinationPath must be the destination file or directory itself, rather than the parent
directory.

• destinationPath (required) is the full path to the destination file or directory.
• recursive, when specified, downloads the directories recursively. Note that your stub generation

tool may generate a Boolean property (for example, recursiveSpecified in .NET) that is used to
detect whether the user called the set method for this attribute; the property will be used to determine
whether to include this field in the serialized XML.

RunRollbackType class
A child of the RunUtilityType class, this class provides all the information you need to perform a rollback
operation to the Archive utility.

RunRollbackType properties

• applicationID (required) identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• hostID (required) is a unique identifier for the host. The hostID and dirName parameters specify

the path to the directory that will be archived.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

95Endeca Application Controller API Class Reference | RunFileCopyType class

• dirName (required) is the full path for the directory. The hostID and dirName parameters specify
the path to the directory that will be archived.

RunShellType class
A child of the RunUtilityType class, this class provides all the information you need to run the Shell
utility.

RunShellType properties

• applicationID (required) identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.
• hostID (required) is a unique identifier for the host.
• cmd (required) is the command(s). workingDir is the full path for the working directory.

RunUtilityType class
Parent class of the other Utility classes.

RunUtilityType properties

• applicationID (required) identifies the application to use.
• token identifies the token used to stop the utility or to get its status. If you do not specify a token,

one is generated and returned when you start the utility.

ScriptListType class
A class that describes a list of scripts.

ScriptListType properties

• script (required) is a collection of scripts comprising this ScriptListType object.

ScriptType class
A class that describes the base type for all scripts within an application.

ScriptType properties

• scriptID (required) is a unique string identifier for the script.
• cmd (required) is the command that is used to start the script.
• logFile is the file for appended stdout/stderr output. It defaults to

$ENDECA_CONF/logs/script/(app_id).(script_id).log.
• workingDir is the working directory. It defaults to $ENDECA_CONF/working/(app_id)/.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | RunShellType class96

SSLConfigurationType class
A class used by the DgraphComponentType class and AgraphComponentType class to enable SSL
on the resulting components.

SSLConfigurationType properties

• certFile (required) specifies the path of the eneCert.pem certificate file that is used by the Dgraph
or Agraph processes to present to any client.

The file name can be a path relative to the component’s working directory.

• caFile (required) specifies the path of the eneCA.pem Certificate Authority file that the Dgraph or
Agraph processes use to authenticate communications with other Endeca components. The file
name can be a path relative to the component’s working directory.

• cipher is an optional cipher string (such as RC4-SHA) that specifies the minimum cryptographic
algorithm that the Dgraph or Agraph processes use during the SSL negotiation. If you omit this
setting, the SSL software tries an internal list of ciphers, beginning with AES256-SHA. See the
Endeca Security Guide for more information.

StateType class
A class used by the StatusType class to describe the state of a component.

StateType fields

An enumeration of the following fields:

• Starting Starting only applies to server components (Dgraph, Agraph, or LogServer).
• Running
• NotRunning
• Failed

StatusType class
Describes the status of a server component in the Application Controller.

Server components include the Dgraph, Agraph, and LogServer. All other components (Forge, Dgidx,
Agidx, and ReportGenerator) are batch components.Their status is described by the BatchStatusType
class.

StatusType properties

• StateType – (required) An enumeration of the following fields: Starting (which only applies to server
components (Dgraph, Agraph, or LogServer), Running, NotRunning, or Failed.

• startTime – (required) The time the component started; for example, 10/25/07 3:58 PM.
• failureMessage – The failure message, which tells you that a failure has occurred in the execution

of the component. failureMessage is empty unless state is FAILED. (This is different from EACFault,
which tells you that a problem has occurred while processing the Web Service request to get the
status.)

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

97Endeca Application Controller API Class Reference | SSLConfigurationType class

TimeRangeType class
A class used by the ReportGeneratorComponentType class to set the time span of interest (or report
window).

TimeRangeType fields

The enumeration of possible values is as follows:

• Yesterday
• LastWeek
• LastMonth
• DaySoFar
• WeekSoFar
• MonthSoFar

TimeSeriesType class
A class used by the ReportGeneratorComponentType class to turn on the generation of time-series
data and specify the frequency, hourly or daily.

TimeSeriesType fields

The enumeration of possible values is as follows:

• Hourly
• Daily

UpdateComponentType class
A class that describes a component to be updated during incremental provisioning.

UpdateComponentType properties

• applicationID (required) identifies the application.
• component (required) identifies the component to update.
• forceUpdate indicates whether or not the Application Controller should force the component to

stop before attempting the update. Note that your stub generation tool may generate a Boolean
property (for example, forceUpdateSpecified in .NET) that is used to detect whether the user called
the set method for this attribute; the property will be used to determine whether to include this field
in the serialized XML.

UpdateHostType class
A class that describes a host to be updated during incremental provisioning.

Endeca ConfidentialOracle Endeca Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | TimeRangeType class98

UpdateHostType properties

• applicationID (required) identifies the application.
• host (required) identifies the host to update.
• forceUpdate indicates whether the Application Controller should force any components or services

running on the host to stop before attempting the update. Note that your stub generation tool may
generate a Boolean property (for example, forceUpdateSpecified in .NET) that is used to detect
whether the user called the set method for this attribute; the property will be used to determine
whether to include this field in the serialized XML.

UpdateScriptType class
A class that describes a script to be updated during incremental provisioning.

UpdateScriptType properties

• applicationID (required) identifies the application.
• scriptID (required) identifies the script to update.
• forceUpdate indicates whether the Application Controller should force any components or services

running on the host to stop before attempting the update. Note that your stub generation tool may
generate a Boolean property (for example, forceUpdateSpecified in .NET) that is used to detect
whether the user called the set method for this attribute; the property will be used to determine
whether to include this field in the serialized XML.

Oracle Endeca Platform Services Application Controller GuideEndeca Confidential

99Endeca Application Controller API Class Reference | UpdateScriptType class

Index

A

addComponent(AddComponentType
addComponentInput) 75
AddComponentType class 81
addHost(AddHostType addHostInput) 76
AddHostType class 81
adding

components in eaccmd 42
hosts in eaccmd 43
properties to hosts and components 24
scripts in eaccmd 43

addScript(AddScriptType addScriptInput) 78
AddScriptType class 81
Agidx components 33
AgidxComponentType class 82
Agraph

system architecture 48
Agraph components 34
AgraphChildListType class 82
AgraphComponentType class 82
aliasing hosts with host-id 23
ApplicationIDListType class 83
applications, forcing the removal of 41
ApplicationType class 83
architecture

development environment 45
production environment 46
sizing 46
staging environment 46
testing environment 46

architecture of the EAC 11
archive utility

eaccmd 64
backup operations 65
rollback operations 65

B

backup operations with eaccmd 65
BackupMethodType class 84
BatchStatusType class 84

C

canonical paths in an application 26
class

AddComponentType 81
AddHostType 81
AddScriptType 81
AgidxComponentType 82
AgraphChildListType 82
AgraphComponentType 82

class (continued)
ApplicationIDListType 83
ApplicationType 83
BackupMethodType 84
BatchStatusType 84
ComponentListType 85
ComponentType 85
DgidxComponentType 85
DgraphComponentType 86
DgraphHostPortType 87
DgraphReferenceType 87
DirectoryListType 87
DirectoryType 87
EACFault 88
FilePathListType 88
FilePathType 88
FlagIDListType 88
ForgeComponentType 88
FullyQualifiedComponentIDType 89
FullyQualifiedFlagIDType 90
FullyQualifiedHostIDType 90
FullyQualifiedScriptIDType 90
FullyQualifiedUtilityTokenType 90
HostListType 90
HostType 91
ListApplicationIDsInput 91
ListDirectoryContentsInputType 91
LogServerComponentType 91
PropertyListType 92
PropertyType 92
ProvisioningFault 92
RemoveApplicationType 92
RemoveComponentType 93
RemoveHostType 93
RemoveScriptType 93
ReportGeneratorComponentType 94
RunBackupType 94
RunFileCopyType 95
RunRollbackType 95
RunShellType 96
RunUtilityType 96
ScriptListType 96
ScriptType 96
SSLConfigurationType 97
StateType 97
StatusType 97
TimeRangeType 98
TimeSeriesType 98
UpdateComponentType 98
UpdateHostType 99
UpdateScriptType 99

component and script control commands in eaccmd 57
ComponentControl interface 68
ComponentListType class 85

components
Agidx 33
Agraph 34
defining in your provisioning file 23
Dgidx 29
Dgraph 30
Forge 27
LogServer 36
ReportGenerator 37

ComponentType class 85
controlling the EAC on Windows 17

D

def_file, about 41
defineApplication(ApplicationType application) 73
defining

components in your provisioning file 23
hosts 22
the root Application element 22

developing and maintaining scripts 26
Dgidx components 29
DgidxComponentType class 85
Dgraph components 30
DgraphComponentType class 86
DgraphHostPortType class 87
DgraphReferenceType class 87
DirectoryListType class 87
DirectoryType class 87

E

EAC Central Server, specifying in Oracle Endeca
Workbench 16
EAC log 18
eac.properties

ensuring clean component shutdown 18
managing server restarts 18
setting the Copy utility temporary directory 18
setting the MDEX root directory 17
using 17

eaccmd
about 51
adding components 42
adding hosts 43
adding scripts 43
archive utility 64
component and script control commands 57
component and utility status verbosity 53
feedback from 52
incremental provisioning commands 54
ls command 58
modifying components 43
modifying hosts in 43
modifying scripts 44
provisioning command 53
provisioning with 39
removing components 42
removing hosts 43

eaccmd (continued)
removing scripts 44
running 51
shell utility 59
synchronization commands 56
usage 51
utility commands 58

EACFault class 88
Endeca Application Controller

about 11
architecture 11
installing 15
simple types in WSDL 67
using the WSDL 67
architecture example 13
starting from inittab 16

Endeca Deployment Template
using 44
using to provision 44

ensuring clean component shutdown 18
environment variables for scripts 26

F

feedback from eaccmd 52
FilePathListType class 88
FilePathType class 88
FlagIDListType class 88
force flag 42
forcing the removal of an application 41
Forge component 27
ForgeComponentType class 88
FullyQualifiedComponentIDType class 89
FullyQualifiedFlagIDType class 90
FullyQualifiedHostIDType class 90
FullyQualifiedScriptIDType class 90
FullyQualifiedUtilityTokenType class 90

G

getApplication(IDType getApplicationInput) 74
getCanonicalApplication(IDType
getCanonicalApplicationInput) 74
getScriptStatus(FullyQualifiedScriptIDType
getScriptStatusInput) 79
getStatus(String applicationID, String token) 72
guidelines for incremental provisioning 41

H

HostListType class 90
hosts

aliasing with host-id 23
defining 22
provisioning directories on 23

HostType class 91

Oracle Endeca Platform Services102

Index

I

incremental provisioning
eaccmd 54
guidelines 41
the --force flag 42
the def_file setting 41
what is 41

inittab, starting the EAC from 16
installing the Application Controller 15
invalid characters in provisioning 22

L

List Directory Contents command with eaccmd 58
listApplicationIDs(listApplicationIDsInput) 75
ListApplicationIDsInput class 91
listDirectoryContents(ListDirectoryContentsInputType
listDirectoryContentsInput) 73
ListDirectoryContentsInputType class 91
listFlags(IDType listFlagsInput) 69
logging levels, modifying in the EAC 18
logs, EAC 18
LogServer components 36
LogServerComponentType class 91

M

managing server restarts 18
modifying

components in eaccmd 43
EAC logging levels 18
hosts in eaccmd 43

multi-machine provisioning 40

O

Oracle Endeca Workbench, controlling the EAC in 16
overview of EAC provisioning 21

P

properties for hosts and components, adding 24
PropertyListType class 92
PropertyType class 92
provisioning

directories on hosts 23
invalid characters 22
on multiple machines 40
scripts 26
using eaccmd 39
with the Endeca Deployment Template 44

provisioning commands in eaccmd 53
provisioning file

about 21
defining scripts in 25
using XML elements in 24

provisioning overview 21

provisioning schema, about 21
ProvisioningFault class 92

R

removeAllFlags(IDType removeAllFlagsInput) 69
removeApplication(RemoveApplicationType
removeApplicationInput) 75
RemoveApplicationType class 92
removeComponent(RemoveComponentType
removeComponentInput) 76
RemoveComponentType class 93
removeFlag(FullyQualifiedFlagIDType removeFlagInput)
69
removeHost(RemoveHostType removeHostInput) 77
RemoveHostType class 93
removeScript(RemoveScriptType removeScriptInput) 78
RemoveScriptType class 93
removing

components in eaccmd 42
hosts in eaccmd 43
scripts in eaccmd 44

ReportGenerator components 37
ReportGeneratorComponentType class 94
rollback operations in eaccmd 65
root Application element, defining 22
RunBackupType class 94
RunFileCopyType class 95
running eaccmd 51
RunRollbackType class 95
RunShellType class 96
RunUtilityType class 96

S

sample implementation
large, using an Agraph 48
medium, high throughput 47
small, low throughput 46

ScriptListType class 96
scripts

developing and maintaining 26
environment variables 26
modifying in eaccmd 44
provisioning 26
defining in your provisioning file 25

ScriptType class 96
setFlag(FullyQualifiedFlagIDType setFlagInput) 68
setting the Copy utility's temporary directory 18
shell utility in eaccmd 59
SSL security, enabling 15
SSLConfigurationType class 97
startBackup(RunBackupType startBackupInput) 70
startComponent(FullyQualifiedComponentIDType
startComponentInput) 68
startFileCopy(RunFileCopyType startFileCopyInput) 70
starting the EAC

in UNIX 16
on Windows 17

103

Index

startRollback(RunRollbackType startRollbackInput) 71
startScript(FullyQualifiedScriptIDType startScriptInput)
79
startShell(RunShellType startShellInput) 72
StateType class 97
StatusType class 97
stop(FullyQualifiedUtilityTokenType) 72
stopComponent(FullyQualifiedComponentIDType
stopComponentInput) 68
stopScript(FullyQualifiedScriptIDType stopScriptInput)
79
synchronization commands in eaccmd 56
Synchronization interface 68
system architecture

overview 45

T

TimeRangeType class 98
TimeSeriesType class 98

U

UNIX, controlling the EAC in 16
updateComponent(UpdateComponentType
updateComponentInput) 76

UpdateComponentType class 98
updateHost(UpdateHostType updateHostInput) 78
UpdateHostType class 99
updateScript(UpdateScriptType updateScriptInput) 77
UpdateScriptType class 99
usage for eaccmd 51
using

canonical paths in applications 26
the Endeca Deployment Template 44

utility commands in eaccmd 58
Utility interface 69

V

verbosity in eaccmd 53

W

Windows, controlling the EAC from 17
WSDL

simple types in 67
using 67

X

XML entities in provisioning files 24

Oracle Endeca Platform Services104

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	About the Oracle Endeca Application Controller
	EAC architecture
	EAC architecture example

	Using the Application Controller
	Installing the Application Controller
	Enabling SSL security in the Application Controller
	Specifying the EAC Central Server in Oracle Endeca Workbench
	Starting and stopping the Application Controller directly on UNIX
	Starting the Application Controller from inittab
	Starting and stopping the Application Controller on Windows
	Using the eac.properties file
	Setting the MDEX Engine root directory
	Setting the Copy utility’s temporary directory
	Ensuring clean component shutdown
	Managing server restarts

	About the Application Controller log
	Modifying Application Controller logging levels

	Provisioning an Implementation with the Application Controller
	Provisioning overview
	About the provisioning file and schema
	Invalid characters in provisioning
	Defining the root Application element
	Defining hosts
	Aliasing hosts with host-id
	Provisioning directories on hosts

	Defining components in your provisioning file
	Using XML entities in your provisioning file
	Adding properties to hosts and components

	Defining scripts in your provisioning file
	Developing and maintaining scripts
	Script environment variables
	Provisioning scripts
	Using canonical paths in an application

	Application Controller component reference
	Forge
	Dgidx
	Dgraph
	Agidx
	Agraph
	LogServer
	ReportGenerator

	Provisioning your implementation with eaccmd
	Provisioning the Application Controller to work on multiple machines

	Forcing the removal of an application
	About incremental provisioning
	Incrememental provisioning guidelines
	About the def_file setting
	About the --force flag
	Adding a component in eaccmd
	Removing a component in eaccmd
	Modifying a component in eaccmd
	Adding a host in eaccmd
	Removing a host in eaccmd
	Modifying a host in eaccmd
	Adding a script in eaccmd
	Removing a script in eaccmd
	Modifying a script in eaccmd

	Provisioning your deployment with the Endeca Deployment Template
	Using the Endeca Deployment Template

	Common System Architectures in an Endeca Implementation
	Overview of system architectures
	Development environment
	Staging and testing environment
	Sample production environments
	Descriptions of implementation size
	Small implementation with lower throughput
	Medium implementation with higher throughput
	Large implementation using an Agraph

	Using the eaccmd Tool
	About eaccmd
	Running eaccmd
	eaccmd usage

	eaccmd feedback
	Component and utility status verbosity
	Using the default host and port
	eaccmd command reference
	Provisioning commands
	Incremental provisioning commands
	Synchronization commands
	Component and script control commands
	Utility commands
	The List Directory Contents (ls) command
	The Shell utility
	The Copy utility
	About the Copy utility

	The Archive utility
	Backup operations
	Rollback operations

	Endeca Application Controller API Interface Reference
	Using the Application Controller WSDL
	Simple types in the Application Controller WSDL

	ComponentControl interface
	startComponent(FullyQualifiedComponentIDType startComponentInput)
	stopComponent(FullyQualifiedComponentIDType stopComponentInput)

	Synchronization interface
	setFlag(FullyQualifiedFlagIDType setFlagInput)
	removeFlag(FullyQualifiedFlagIDType removeFlagInput)
	removeAllFlags(IDType removeAllFlagsInput)
	listFlags(IDType listFlagsInput)

	Utility interface
	startBackup(RunBackupType startBackupInput)
	startFileCopy(RunFileCopyType startFileCopyInput)
	startRollback(RunRollbackType startRollbackInput)
	startShell(RunShellType startShellInput)
	stop(FullyQualifiedUtilityTokenType)
	getStatus(String applicationID, String token)
	listDirectoryContents(ListDirectoryContentsInputType listDirectoryContentsInput)

	Provisioning interface
	defineApplication(ApplicationType application)
	getApplication(IDType getApplicationInput)
	getCanonicalApplication(IDType getCanonicalApplicationInput)
	listApplicationIDs(listApplicationIDsInput)
	removeApplication(RemoveApplicationType removeApplicationInput)
	addComponent(AddComponentType addComponentInput)
	removeComponent(RemoveComponentType removeComponentInput)
	updateComponent(UpdateComponentType updateComponentInput)
	addHost(AddHostType addHostInput)
	updateScript(UpdateScriptType updateScriptInput)
	removeHost(RemoveHostType removeHostInput)
	updateHost(UpdateHostType updateHostInput)
	addScript(AddScriptType addScriptInput)
	removeScript(RemoveScriptType removeScriptInput)

	ScriptControl interface
	startScript(FullyQualifiedScriptIDType startScriptInput)
	stopScript(FullyQualifiedScriptIDType stopScriptInput)
	getScriptStatus(FullyQualifiedScriptIDType getScriptStatusInput)

	Endeca Application Controller API Class Reference
	AddComponentType class
	AddHostType class
	AddScriptType class
	AgidxComponentType class
	AgraphChildListType class
	AgraphComponentType class
	ApplicationIDListType class
	ApplicationType class
	BackupMethodType class
	BatchStatusType class
	ComponentListType class
	ComponentType class
	DgidxComponentType class
	DgraphComponentType class
	DgraphHostPortType class
	DgraphReferenceType class
	DirectoryListType class
	DirectoryType class
	EACFault class
	FilePathListType class
	FilePathType class
	FlagIDListType class
	ForgeComponentType class
	FullyQualifiedComponentIDType class
	FullyQualifiedFlagIDType class
	FullyQualifiedHostIDType class
	FullyQualifiedScriptIDType class
	FullyQualifiedUtilityTokenType class
	HostListType class
	HostType class
	ListApplicationIDsInput class
	ListDirectoryContentsInputType class
	LogServerComponentType class
	PropertyListType class
	PropertyType class
	ProvisioningFault class
	RemoveApplicationType class
	RemoveComponentType class
	RemoveHostType class
	RemoveScriptType class
	ReportGeneratorComponentType class
	RunBackupType class
	RunFileCopyType class
	RunRollbackType class
	RunShellType class
	RunUtilityType class
	ScriptListType class
	ScriptType class
	SSLConfigurationType class
	StateType class
	StatusType class
	TimeRangeType class
	TimeSeriesType class
	UpdateComponentType class
	UpdateHostType class
	UpdateScriptType class

	Index

