
Oracle Endeca Platform Services
Forge API Guide for Perl

Version 6.1.3 • June 2012

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Oracle Support...8

Chapter 1: Introduction to the Forge API...9
About the Perl manipulator...9
Classes available to a Perl manipulator..10
Understanding Forge and downstream record processing...10
About the Forge Execution Framework...12
An example Perl manipulator ...12
Additional use case examples..14

Remove a property from each record..14
Reformat a property on each record..15
Remove records with a particular property..16
Perform a left join on records from two record sources...17
Retrieve records matching a key from any number of record sources..19
Process records using a subclass...21
Add a geocode property to a record ...22

Chapter 2: EDF::DVal class..25
EDF::DVal class overview...25
EDF::DVal::dimension_id method...25
EDF::DVal::id method ...26

Chapter 3: EDF::Manipulator class...27
EDF::Manipulator class overview..27
EDF::Manipulator::context method...28
EDF::Manipulator::finish method..28
EDF::Manipulator::get_records method..28
EDF::Manipulator::name method..29
EDF::Manipulator::next_record method..29
EDF::Manipulator::prepare method..30
EDF::Manipulator::record_source method..30
EDF::Manipulator::record_sources method..31

Chapter 4: EDF::PVal class..33
EDF::PVal class overview ..33
EDF::PVal::name method ..33
EDF::PVal::value method ...34

Chapter 5: EDF::RecordKey class...35
EDF::RecordKey class overview ..35
EDF::RecordKey::add_columns method ..35
EDF::RecordKey::clone method ..36
EDF::RecordKey::columns method ..36
EDF::RecordKey::equals method ..36

Chapter 6: EDF::KeyColumn class..39
EDF::KeyColumn class overview ...39
EDF::KeyColumn::add_values method ..39
EDF::KeyColumn::id method..40
EDF::KeyColumn::type method ...40
EDF::KeyColumn::values method ..41

iii

EDF::KeyColumn::DVAL constant ..41
EDF::KeyColumn::PVAL constant ..42

Chapter 7: EDF::Record class...43
EDF::Record class overview ..43
EDF::Record::add_dvals method ...43
EDF::Record::add_pvals method ...44
EDF::Record::clone method ..44
EDF::Record::dvals method ...45
EDF::Record::key method ..45
EDF::Record::pvals method ...46

Chapter 8: EDF::RecordSource class...47
EDF::RecordSource class overview ..47
EDF::RecordSource::get_records method ...48
EDF::RecordSource::name method ...48
EDF::RecordSource::next_record method ...49
EDF::RecordSource::number method ..49

Chapter 9: Static methods...51
Static methods overview...51
EDF::print_error method ..51
EDF::print_info method ..52
EDF::print_warning method ...52

Oracle Endeca Platform Servicesiv

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

v

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This reference describes the classes and methods you can incorporate in a Perl manipulator component.
A Perl manipulator component uses Perl to efficiently manipulate source records as part of Forge's
data processing. For example, pipeline developers can use a Perl manipulator to add, remove, and
reformat properties, join record sources, and so on.

Who should use this guide
This reference is intended for developers who are building Data Foundry pipelines using Endeca
Developer Studio.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

| Preface8

https://support.oracle.com

Chapter 1

Introduction to the Forge API

This guide describes the classes and methods you can incorporate in a Perl manipulator component.

About the Perl manipulator
A Perl manipulator component uses Perl to efficiently manipulate source records as part of Forge's
data processing. For example, pipeline developers can use a Perl manipulator to add, remove, and
reformat properties, join record sources, and so on.

The Forge API is the interface between a Perl manipulator and the Forge Execution Framework . All
pipeline components (record adapter, spider, indexer adapter, and so on) plug into the Forge Execution
Framework using one of two methods: next_record or get_records. For all components except
the Perl manipulator, these two methods are hidden from the pipeline developer.

Before a component such as an indexer adapter processes records, it gets them from an upstream
component by calling next_record or get_records via the Forge Execution Framework. See the
topic on understanding Forge and downstream record processing for an explanation of this process.

However, for the Perl manipulator, the next_record and get_records methods are exposed to
you as methods that you can override. These methods allow the Perl manipulator to plug into the
Forge Execution Framework and make calls to upstream pipeline components during record processing.

There are the four overrideable methods available to a Perl manipulator.They are overrideable because
the Perl manipulator component in Developer Studio provides an empty implementation of each one.
If you run the default implementation, the methods do nothing. It is your custom implementation that
overrides the default and defines how a Perl manipulator behaves.

Each method can be called at different stages of record processing. At a minimum, one method (either
get_records or next_record) is required to retrieve records.

• EDF::Manipulator::prepare—called before record processing starts to perform setup and
initialization tasks. Optional.

• EDF::Manipulator::next_record—called during record processing when a downstream
pipeline component requests the next record from the Perl manipulator. This method accesses
any record sources specified on the Sources tab of your Perl manipulator. More commonly used
than get_records.

• EDF::Manipulator::get_records—called during record processing when a downstream
pipeline component requests the set of records matching a given key. This method accesses any
record sources specified on the Sources tab of your Perl manipulator.

• EDF::Manipulator::finish—called when record processing is complete. Typically performs
clean up or logging tasks. Optional.

Within these four overrideable methods, you can use classes and methods in the EDF namespace
that Endeca provides to perform record manipulation. In other words, you implement the four
overrideable methods of EDF::Manipulator using methods and classes in the EDF namespace
such as EDF::Record, EDF::PVal, EDF::DVal, and so on. See the classes available to a Perl
manipulator for an overview of each class.

Creating a Perl manipulator

See the Oracle Endeca Developer Studio Help for information about creating, modifying, or removing
a Perl manipulator component from your pipeline.

Classes available to a Perl manipulator
If Forge encounters a Perl manipulator component while processing your pipeline, it creates an instance
of the EDF::Manipulator class.

The EDF::Manipulator works with EDF::RecordSource to retrieve records using the classes
EDF::RecordKey and EDF::KeyColumn to identify records.The EDF::Manipulator manipulates
the structure of records with the EDF::Record, EDF::PVal, and EDF::DVal classes. In addition,
there are also several static methods available in the EDF name space for logging.

Here is a summary of the available classes:

DescriptionClass

Represents a dimension value tagged to a record or contained in an
EDF::RecordKey.

EDF::DVal

Represents a value for comparison within an EDF::RecordKey.EDF::KeyColumn

Represents a Perl manipulator component in Forge.EDF::Manipulator

Represents a property value on a record or in an EDF::RecordKey.EDF::PVal

Describes a record.EDF::Record

Contains the information necessary to identify records for record selection
and joins.

EDF::RecordKey

Represents a record source specified on the Sources tab of the Perl
Manipulator editor.

EDF::RecordSource

Contains methods for logging different levels of messages (ERR, INF, WRN).Static methods

Understanding Forge and downstream record processing
The pipeline metaphor suggests all data moves downstream through a pipeline during processing. It
is important to understand that although the term pipeline suggests that record processing occurs in
a downstream order (a push scenario beginning with source data and ending with indexed Endeca
records), Forge actually processes records by requesting records from upstream components (a pull
scenario) to retrieve records as necessary.

Pipeline components, such as a record adapter, Perl manipulator, indexer adapter, spider, and so on,
call backwards up a pipeline, either requesting a record one at a time using the next_record method,

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Classes available to a Perl manipulator10

or requesting all records that match a key using the get_records method. Forge then returns the
records downstream to the requesting component for processing.

When you write the EDF::Manipulator::next_record or EDF::Manipulator::get_records
method for a Perl manipulator, you are defining how the Forge Execution Framework retrieves the
records from the Perl manipulator and how the framework returns them to the downstream component.

It's useful to contrast downstream record flow with upstream method calls in the diagrams below. The
first diagram shows the conceptual explanation of downstream processing. Records flow from a source
database through the pipeline, and Forge produces Endeca records as a result.

The second diagram shows each component in the pipeline calling next_record through the Forge
Execution Framework to make upstream requests for records.The upstream requests are represented
in steps 1, 2, and 3.The Forge Execution Framework returns the records to the requesting component.
The downstream record flow is represented in steps 4 and 5.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

11Introduction to the Forge API | Understanding Forge and downstream record processing

About the Forge Execution Framework
The Forge Execution Framework is the layer of Forge that runs a Forge pipeline.

The framework does this by having pipeline components request records from their upstream record
sources. See the topic on understanding Forge and downstream record processing for an explanation
of this process.

An example Perl manipulator
This Perl manipulator example adds a Record Number property to each record. The example uses
the prepare, next_record, and finish methods.

First, the General tab shows the name of the component and that prepare, next_record, and
finish methods are checked, which means that each method is defined in the Method Override
editor rather than as an external file or class.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | About the Forge Execution Framework12

Clicking Edit for the prepare() method displays the Method Override editor, which contains the Perl
code shown below. This code makes sure there is only one record source and initializes the record
count to zero.

Make sure there is exactly one record source configured
my @source_list = $this->record_sources;

if (scalar(@{ $this->record_sources }) != 1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one record source.");
}
Keep the current record number in our context.
$this->context->{RECNO} = 0;

Clicking Edit for the next_record() method displays the Method Override editor which contains
the Perl code shown below. This code counts the records processed and tags each record with a
property value with that indicates the record number.

#Count this record.
++$this->context->{RECNO};
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records.
if ($rec) {
 my $pval = new EDF::PVal("Record Number", $this->context->{RECNO});
 $rec->add_pvals($pval);
}
return $rec;

Clicking Edit for the finish() method displays the Method Override editor, which contains the Perl
code shown below.This code prints the number of records processed using the print_info method.

Print the number of records processed.
EDF::print_info("Perl Manipulator ".
 $this->name, " processed ".
 $this->context->{RECNO}.
 " records.");

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

13Introduction to the Forge API | An example Perl manipulator

Additional use case examples
This section contains additional use case examples.

Remove a property from each record
This Perl manipulator example removes the Password property from each record as it is processed.

First, the General tab shows the name of the component and that the next_record method is checked,
which means that next_record is defined in the Method Override editor rather than as an external
file or class.

Clicking Edit for the next_record() method displays the Method Override editor which contains the
Perl code shown below. This code removes the Password property from each record.

Get the next input record.
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records
if (!$rec) { return undef; }

There are two ways to do this: the slow way, which is to walk over
the array of PVals and splice out each one that is named 'Password';
and the fast way, which is to grep all of them out and re-assign the
array. We'll do it the fast way.

@{ $rec->pvals } = grep { $_->name ne 'Password' } @{ $rec->pvals };

return $rec;

Note: This example could also include a prepare method to perform the same record source
validation as in the introduction's example Perl manipulator.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples14

Reformat a property on each record
This example reformats the Price property on each record.

Assume the Price value has no dollar sign.The Perl manipulator replaces the Price value with a number
that has a leading dollar sign and exactly two decimal places.

First, the General tab shows the name of the component and that the next_record method is checked,
which means that next_record is defined in the Method Override editor rather than as an external
file or class.

Clicking Edit for the next_record() method displays the Method Override editor which contains the
Perl code shown below. This code reformats the Price property on each record.

Get the next input record.
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records.
if (!$rec) { return undef; }

Pull the PVals named 'Price' out of the list of PVals.
my @prices = grep { $_->name eq 'Price' } @{ $rec->pvals };

If there isn't exactly one price property, print a warning.
if (scalar(@prices) != 1) {
 EDF::print_warning("Expected 1 PVal named Price; found " .
 scalar(@prices));
}
Reformat all the Price properties. This works even if
there are 0 properties.
foreach my $pval (@prices) {
 # $pval is a reference the same PVal that is on the
 # record, so changing the value here changes it on the record.
 $pval->value = sprintf("\$%.2f", $pval->value);
}
return $rec;

Note: This example could also include a prepare method to perform the same record source
validation as in the introduction's example Perl manipulator.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

15Introduction to the Forge API | Additional use case examples

Remove records with a particular property
This example removes records with the property named Delete This Record.

First, the General tab shows the name of the component and that the next_record method is
checked, which means that next_record is defined in the Method Override editor rather than as
an external file or class.

Clicking Edit for the next_record() method displays the Method Override editor, which contains
the Perl code shown below. This code removes records with the property named Delete This Record.

Here's the trick: as long as the record has at least one PVal named
"Delete This Record", we don't return it; instead, we skip it by
looping back up and fetching the next record. This effectively
removes (by skipping) records with PVals named "Delete This Record".
my $rec;
my $skip;

do {
 $rec = $this->record_source(0)->next_record;
 # Careful: $rec will be undef if there are no more records
 return undef unless $rec;
 # Find all the pvals named "Delete This Record"
 my @pvals = grep { $_->name eq "Delete This Record" } @{ $rec->pvals };

 # If there's at least one, skip this record.
 skip = (scalar(@pvals) > 0);
} while ($skip);

If you want to do additional work, do it here.
return $rec;

Note: This example could also include a prepare method to perform the same record source
validation as in the introduction's example Perl manipulator.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples16

Perform a left join on records from two record sources
This example performs a left join on records from two record sources.

First, the General tab shows the name of the component and that both prepare and next_record
methods are checked, which means that each method is defined in the Method Override editor rather
than as an external file or class.

Clicking Edit for the prepare method displays the Method Override editor, which contains the Perl
code shown below. This code makes sure there are exactly two record sources.

Make sure we have exactly two record sources
if (scalar(@{ $this->record_sources }) != 2) {
 die("Perl Manipulator ", $this->name,
 " must have exactly two record sources.");
}

Make sure the record sources are named "Left" and "Right"
This name is arbitrary, and only done to demonstrate
retrieving record sources by name.
if (!$this->record_source("Left")) {
 die("Perl Manipulator ", $this->name,
 " must have a record source named 'Left'.");
}

if (!$this->record_source("Right")) {
 die("Perl Manipulator ", $this->name,
 " must have a record source named 'Right'.");
}

Keep the canonical record key in our context.
This key has two columns. The first column is the values
of the property "KeyProp". The second column is the values
from the dimension with ID 1000.

my $key = new EDF::RecordKey;
$key->add_columns(new EDF::KeyColumn(EDF::KeyColumn::PVAL, "KeyProp"));
$key->add_columns(new EDF::KeyColumn(EDF::KeyColumn::DVAL, 1000));
$this->context->{KEY} = $key;

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

17Introduction to the Forge API | Additional use case examples

Clicking Edit for the next_record() method displays the Method Override editor, which contains
the Perl code shown below. This code joins the two record sources.

my $left_src = $this->record_source('Left');
my $right_src = $this->record_source('Right');
my $left_rec;
my @right_recs;
$left_rec = $left_src->next_record;
if (!$left_rec) { return undef; } # End of input

This makes a copy of the canonical key and fills it in.
my $key = $left_rec->key($this->context->{KEY});

Find matching records on the right-hand side.
@right_recs = $right_src->get_records($key);

Move PVals and DVals from the right-hand records onto the
left-hand records.

foreach my $right_rec (@right_recs) {
 # Don't move KeyProp over.
 my @pvals = grep { $_->name ne "KeyProp" } @{ $right_rec->pvals };
 $left_rec->add_pvals(@pvals);
 # Don't move DVals from dimension 1000 over.
 my @dvals = grep { $_->dimension_id != 1000 } @{ $right_rec->dvals };
 $left_rec->add_dvals(@dvals);
}
return $left_rec;

Clicking the Sources tab of the Perl Manipulator editor shows that both Left and Right record sources
are available.

Note: A Perl manipulator causes Forge to fail when the Perl manipulator is on the left side of a
left join and no record cache adapter is used. Forge returns the following error:

---FATAL ERROR---
FTL: [LoadData]: (RecordAdapter.cpp:566) Can't call nextRecordInput at end-

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples18

of-stream
on RecordAdapter 'LoadData'

To work around this issue, add a record cache adapter after the Perl manipulator. See the Endeca
Developer Studio Help for details about using a record cache.

Retrieve records matching a key from any number of record sources
This example retrieves records from any number of record sources that match a key.

First, the General tab shows the name of the component and that the prepare and get_records()
methods are checked, which means that they are defined in the Method Override editor rather than
as an external file or class.

Clicking Edit for the prepare() method displays the Method Override editor which contains the
Perl code shown below.This code sets a flag for later manipulation on the first call of get_records().

We want to do special processing on the first call to
GET_RECORDS.
Setting this context flag will let us determine later
what to do for the first call.
$this->context->{FIRST} = 1;

Clicking Edit for the get_records() method displays the Method Override editor, which contains
the Perl code shown below. This code retrieves records from all the record sources available on the
Sources tab of the Perl Manipulator editor.

my $key = shift;
my @recs;

Things to do on the first call only.
if ($this->context->{FIRST}) {

Not the first call any more; reset the flag.
$this->context->{FIRST} = 0;

Build a hash of the names of PVals that are in the key.
$this->context->{PVAL_KEYS} = \{ };

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

19Introduction to the Forge API | Additional use case examples

Build a hash of the dimension IDs of that are in the key.
$this->context->{DVAL_KEYS} = \{ };
 foreach $col (@{ $key->columns }) {
 if ($col->type eq PVAL) {
 $this->context->{PVALS}->{$col->id} = 1;
 }
 else {
 $this->context->{DVALS}->{$col->id} = 1;
 }
 }
 }
Do the rest on each call to get_records.
foreach my $src ($this->record_sources) {
my @fetched = $src->get_records($key);

Remove the PVals that are in the key. This is done on the
assumption that we're on the right-hand side of a join, so
the key PVals are already on the record used to make the key
that was passed to us. Leaving these PVals on the key would
create duplicates that we'd have to remove later.
 foreach my $rec (@fetched) {
 # Remove PVals that are in the key.
 @{ $rec->pvals } =
 grep { !$this->context->{PVALS}->{$_->name} }
 @{ $rec->pvals };
 # Remove DVals that are in the key.
 @{ $rec->dvals } =
 grep { !$this->context->{DVALS}->{$_->dimension_id} }
 @{ $rec->dvals };
 }
push(@recs, @fetched);
}
return @recs;

Clicking the Sources tab of the Perl Manipulator editor shows that the First, Second, and Third record
sources are available.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples20

Process records using a subclass
This example uses a subclass of EDF::Manipulator to add a property to each record in the same
way as in the first example Perl manipulator.This approach provides an alternative to writing your Perl
code in the Method Override editor or in a Perl file.

Note: The Perl class must be located on the machine running Forge. It is convenient to locate
the PM file in the in the same location as other Perl modules for Endeca
(ENDECA_ROOT\lib\perl). Placing your PM file in ENDECA_ROOT\lib\perl does not require
any additional configuration for Forge to locate it. However, if you upgrade Forge, you will have
to copy this file to another location and copy it back in after upgrading.

If you place the file in a location other than ENDECA_ROOT\lib\perl, you must modify Perl's library
search path to include the path to the PM file.You can modify the path by either modifying your
PERLLIB environment variable or by running Forge with the --perllib command line option and
providing the path as an argument.

The Perl manipulator component is configured to access a Perl class as shown:

The contents of the MyPerlManip class are as follows:

package MyPerlManip;
use EDF::Manipulator;
@ISA = qw(EDF::Manipulator);
sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $this = {};
 bless($this, $class);
 $this->SUPER::init(@_);
 return $this;
}
sub prepare
{
 # Make sure there is exactly one record source configured
 my @source_list = $this->record_sources;

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

21Introduction to the Forge API | Additional use case examples

 if (scalar(@{ $this->record_sources }) != 1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one record source.");
 }
 $this->{RECNO} = 0;
}
sub next_record
{
 my $this = shift;
 ++$this->{RECNO};
 my $rec = $this->record_source(0)->next_record;
 if ($rec) {
 my $pval = new EDF::PVal("Record Number", $this->{RECNO});
 $rec->add_pvals($pval);
 }
return $rec;
}

Add a geocode property to a record
An application may include geocode properties in its records to enable record sorting by distance from
a given reference point.

The indexer requires geocode data in the form d,d where each d is a double-precision floating-point
value:

• The first d is the latitude of the location in whole and fractional degrees. Positive values indicate
north latitude and negative values indicate south latitude.

• The second d is the longitude of the location in whole and fractional degrees. Positive values
indicate east longitude, and negative values indicate west longitude.

For example, Endeca’s main office is located at 42.365615 north latitude, 71.075647 west longitude.
This geocode should be supplied to the indexer as "42.365615,-71.075647". If the input data is not
available in this format, it can be assembled from separate properties using EDF Perl.

This example creates a Location property by concatenating the values of a record's Latitude property
and its Longitude property.

First, the General tab shows the name of the component and that the next_record method is
checked, which means that next_record is defined in the Method Override editor rather than as
an external file or class.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples22

Clicking Edit for the next_record method shows the Perl code.This code creates a Location property
and adds it to each record that contains Latitude and Longitude properties.

Note: The contents of the Method Override editor are as follows:

#Get the next record from the first record source.
my $rec = $this->record_source(0)->next_record;
return undef unless $rec;
#Return an array of property values from the record.
my @pvals = @{$rec->pvals};

#Return the value of the Latitude property.
my @lat = grep {$_->name eq "Latitude"} @{$rec->pvals};

#Return the value of the Longitude property.
my @long = grep {$_->name eq "Longitude"} @{$rec->pvals};

#Exit if there is more than one Latitude property.
if (scalar (@lat) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Latitude property.");
}

#Exit if there is more than one Longitude property.
if (scalar (@long) !=1) {
 die("Perl Manipulator ", $this->name,
 " must have exactly one Longitude property.");
}

#Concatenate Latitude and Longitude into Location.
my $loc = $lat[0]->value . "," . $long[0]->value;

#Add new Location property to record.
my $pval = new EDF::PVal("Location", $loc);
$rec->add_pvals($pval);

return $rec;

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

23Introduction to the Forge API | Additional use case examples

Note: This example could also include a prepare method to perform the same record source
validation as in the introduction's example Perl manipulator.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples24

Chapter 2

EDF::DVal class

This section describes the EDF::DVal class.

EDF::DVal class overview
An EDF::DVal object represents a dimension value tagged to a record or contained in an
EDF::RecordKey.

Constructor

The new method constructs a new EDF::DVal object. The method takes up to two optional input
arguments, the dimension ID, and the DVal ID. For example:

my $empty_dval = new EDF::DVal;
my $full_dval = new EDF::DVal(1000, 1234);</p>

Methods

• dimension_id

• id

EDF::DVal::dimension_id method
The dimension_id method returns a scalar value representing the ID of the dimension that contains
the DVal.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dval = $rec->dvals->[0];
if ($dval->dimension_id == 1000) {
 $dval->dimension_id = 2000; # Swap dimensions
}

Input Arguments

None.

Return Values

A scalar value representing the ID of the dimension that contains the DVal.

EDF::DVal::id method
The id method returns a scalar value representing the ID of the DVal.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dval = $rec->dvals->[0];
if ($dval->id == 1234) {
 $dval->id = 4321; # Change all 1234's into 4321's
}

Input Arguments

None.

Return Values

A scalar value representing the ID of the DVal.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::DVal class | EDF::DVal::id method26

Chapter 3

EDF::Manipulator class

his section describes the EDF::Manipulator class.

EDF::Manipulator class overview
Each Perl manipulator that Forge runs as part of your pipeline is an instance of the EDF::Manipulator
class.

The EDF::Manipulator class varies from other classes in the EDF namespace because you, the
pipeline developer, write the body of the overrideable methods for an EDF::Manipulator. The
overrideable methods are prepare, get_records, next_records, and finish.

Note: For convenience, the local variable $this is already initialized to reference the
EDF::Manipulator instance when your code is evaluated. This initialization is approximately
equivalent to the code:

package EDF::Manipulator;
sub next_record($) {
 my $this = shift;
 # Your code goes here
}

Constructor

There is no constructor method for this class. Forge constructs an EDF::Manipulator object at
runtime when Forge encounters a Perl manipulator component in your pipeline.

Methods

• context

• finish

• get_records

• name

• next_record

• prepare

• record_source

• record_sources

EDF::Manipulator::context method
The context method stores information that needs to persist across method calls and that needs to
be restricted to a specific Perl manipulator.

For example, you might use this method to store the number of records processed, a key used for
lookups, and so forth. This method is useful when you have multiple Perl manipulators that each store
information, such the number of records or a particular key, and that information must not be shared
among them. The information stored by the context method is not global— each Perl manipulator in
a pipeline has its own context.

Example Usage

Recall $this is initialized with the EDF::Manipulator instance.
$this->context->{RECNO} += 1;

Input Arguments

None.

Return Values

A reference to a hash.

EDF::Manipulator::finish method
The finish method contains your custom-written Perl code that you want Forge to call after record
processing is complete. The code you provide here becomes the body of the finish method.

Calls to next_record or get_records methods result in an error. To signal a failure during finish,
call Perl's die() function. See the Introduction's example Perl manipulator for a sample usage of this
method.

Input Arguments

None.

Return Values

None.

EDF::Manipulator::get_records method
The get_records method contains your custom-written Perl code that Forge calls to retrieve all the
records matching an EDF::RecordKey argument you specify.

The code you provide here becomes the body of the get_records method. Although you write the
Perl code to determine how Forge implements get_records, you do not call this method. Forge calls
this method when the component downstream of the Perl manipulator requests records. The
get_records method returns an array of records to the requesting pipeline component. Like the
next_record method, get_records has access to any record sources specified on the Sources
tab of your Perl Manipulator editor.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::Manipulator class | EDF::Manipulator::context method28

See the example that retrieves records matching a key for a sample usage.

Input Arguments

Provide an EDF::RecordKey argument to identify records.

Return Values

An array of records matching the provided EDF::RecordKey. This array is passed back to the
requesting pipeline component. Returning an empty list or undef does not signal the end of processing.
An undef or an empty list indicates there are no records that match the key provided.

EDF::Manipulator::name method
The name method returns the value of the Name field that you specified in the Perl Manipulator editor.

The local variable $this is initialized to contain the EDF::Manipulator instance for the Perl
manipulator. Such initialization means calling $this->name; returns the name of the EDF::Manip¬
ulator instance.

Example Usage

EDF::print_info("This Perl manipulator is named ". $this->name);

Input Arguments

None.

Return Values

The name of the Perl manipulator.

EDF::Manipulator::next_record method
The next_record method contains your custom-written Perl code that returns the next record from
this Perl manipulator during record processing.

Although you write the Perl code to determine how the next record should be returned to Forge, you
do not call this method. Forge calls this method when a component downstream of the Perl manipulator
requests the next record. The next_record method returns a single record per invocation. Like the
get_records method, next_record has access to any record sources specified on the Sources
tab of the Perl manipulator.

See the example that reformats a property on each record for a sample usage.

Input Arguments

None.

Return Values

A single record, which is passed to the requesting pipeline component. To signal the end of records
to be processed, return the undef value.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

29EDF::Manipulator class | EDF::Manipulator::name method

EDF::Manipulator::prepare method
The prepare method contains custom-written Perl code that you want Forge to call before record
processing starts.

This code typically performs pre-processing tasks such as checking data sources, initializing record
counts, and so on.The code you provide here becomes the body of the prepare method. Calling either
next_record or get_records from prepare results in an error. To signal a failure during prepare,
call Perl's die() function. Also see the Manipulator::finish method.

See the Introduction's example Perl manipulator for a sample usage of this method.

Input Arguments

None.

Return Values

None.

EDF::Manipulator::record_source method
The record_source method provides the Perl manipulator access to any record source specified
on the Sources tab of the Perl Manipulator editor.

Sources can be identified by either name or position number. The number of a record source is
determined by the position in which it appears in the Sources tab of the Perl Manipulator editor
beginning from the index point 0. In this example, record source number 0 is named "Left," and record
source number 1 is named "Right."

Example Usage

This example accesses the record source identified by name:

my $rec = $this->record_source("Left")->next_record;

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::Manipulator class | EDF::Manipulator::prepare method30

This example accesses the record source identified by position:

my $rec = $this->record_source(0)->next_record;

Input Arguments

Either the name or position number of the desired record source.

Return Values

An EDF::RecordSource object or undef if the indicated source does not exist.

EDF::Manipulator::record_sources method
The record_sources method provides a Perl manipulator access to all the record sources specified
on the Sources tab of the Perl Manipulator editor.

See record_source to get a single record source.

Example Usage

Make sure we have exactly two record sources
if (scalar(@{ $this->record_sources }) != 2) {
 die("Perl manipulator ", $this->name,
 " must have exactly two record sources.");

Input Arguments

None.

Return Values

An array of EDF::RecordSource objects.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

31EDF::Manipulator class | EDF::Manipulator::record_sources method

Chapter 4

EDF::PVal class

This section describes the EDF::PVal class.

EDF::PVal class overview
An EDF::PVal object represents a property value on a record or an EDF::RecordKey.

Constructor

The new method creates a new EDF::PVal object. The method takes two optional input arguments,
the name and value of the PVal. For example:

my $empty_pval = new EDF::PVal;
my $full_pval = new EDF::PVal("Name", "Value");

Methods

• name

• value

EDF::PVal::name method
The name method returns a scalar value representing the name of the EDF::PVal. Manipulating the
value changes the EDF::PVal object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = $rec->pvals->[0];
if ($pval->name =~ /^Endeca\./) {
 $pval->name = "Internal Property.";
}

Input Arguments

None.

Return Values

A scalar value representing the name of the EDF::PVal.

EDF::PVal::value method
The value method returns a scalar value representing the value of the EDF::PVal object. Manipulating
the value changes the EDF::PVal object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = $rec->pvals->[0];
if ($pval->value =~ /^file:/) {
 $pval->value = "File Path";
}

Input Arguments

None.

Return Values

A scalar value representing the value of the EDF::PVal.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::PVal class | EDF::PVal::value method34

Chapter 5

EDF::RecordKey class

This section describes the EDF::RecordKey class.

EDF::RecordKey class overview
An EDF::RecordKey contains the information necessary to identify records for record selection and
joins. An EDF::RecordKey contains one or more EDF::KeyColumn objects that represent values
for comparison.

Constructor

The new method constructs a new EDF::RecordKey. The constructor takes no input arguments. For
example:

my $key = new EDF::RecordKey;

Methods

• add_columns

• clone

• columns

• equals

EDF::RecordKey::add_columns method
The add_columns method adds one or more EDF::KeyColumn objects to an EDF::RecordKey.

Example Usage

my $key = shift;
$key->add_columns(new EDF::KeyColumn);

Input Arguments

A list of EDF::KeyColumn objects.

Return Values

None.

EDF::RecordKey::clone method
The clone method takes an EDF::RecordKey and clones it according to the EDF::PVal and
EDF::DVal contents of the EDF::RecordKey. The EDF::PVal and EDF::DVal values in the
RecordKey are not shared between the original and the copy.

By contrast, EDF:Record:key creates a copy where EDF::PVal and EDF::DVal values are shared
between the original and the copy.

Example Usage

my $key = shift;
my $copy = $key->clone;

Input Arguments

An EDF::RecordKey object.

Return Values

A new EDF::RecordKey object.

EDF::RecordKey::columns method
The columns method returns a reference to the array of columns in the EDF::RecordKey.
Manipulating the referenced array changes the EDF::RecordKey.

Example Usage

my $key = shift;
if (scalar @{ $key->columns } > 0) {
 @{ $key->columns } = (); # Remove all columns
}

Input Arguments

None.

Return Values

A reference to the array of columns in the EDF::RecordKey.

EDF::RecordKey::equals method
The equals method takes one argument, another EDF::RecordKey, and returns 1 if the second
key is the same as the first or 0 if it is not.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::RecordKey class | EDF::RecordKey::clone method36

Example Usage

my $key = shift;
my $copy = $key->clone;
if (!$key->equals($copy)) {
 die("Something is awry.");
}

Input Arguments

An EDF::RecordKey object.

Return Values

1 if the record keys are equal or 0 if they are not.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

37EDF::RecordKey class | EDF::RecordKey::equals method

Chapter 6

EDF::KeyColumn class

This section describes the EDF::KeyColumn class.

EDF::KeyColumn class overview
An EDF::KeyColumn object represents a value for comparison within an EDF::RecordKey. Each
column has a type, an ID, and zero or more values that are either EDF::DVal or EDF::PVal objects.

Constructor

The new method constructs a new EDF::KeyColumn object.The method takes two input arguments,
a type and an ID. See the type and id methods below for more information. For example:

my $col = new EDF::KeyColumn(PVAL, "Color");

Methods

• add_values

• id

• type

• values

Constants

• PVAL

• DVAL

EDF::KeyColumn::add_values method
The add_values method adds one or more values to the column.You can add either property values
or dimension values; however, the type of the value must match the columntype.

You can use the KeyColumn::type method to check whether EDF::KeyColumn values are type
EDF::KeyColumn::PVAL or EDF::KeyColumn::DVAL.

Example Usage

my $key = new EDF::RecordKey;
my $col = new EDF::KeyColumn;
$key->add_columns($col);
$col->type = PVAL;
my @pvals;
for my $i (1..10) {
 push(@pvals, new EDF::PVal("Number", $i));
}
$col->add_values(@pvals);
$col = new EDF::KeyColumn;
$col->type = DVAL;
$key->add_columns($col);
my @dvals;
for my $i (1001..1010) {
 push(@dvals, new EDF::DVal(1000, $i));
}
$key->add_values(@dvals);

Input Arguments

Either EDF::PVal or EDF::DVal objects depending on the column type.

Return Values

None.

EDF::KeyColumn::id method
The id method returns a scalar value representing the ID of the column.

This value is either a property name, if the column type is KeyColumn::PVAL, or a dimension ID if
the column type is KeyColumn::DVAL. Manipulating the value changes the EDF::KeyColumn object.

Example Usage

my $pcol = new EDF::KeyColumn;
$pcol->type = EDF::KeyColumn::PVAL;
$pcol->id = "Color";
my $dcol = new EDF::KeyColumn;
$dcol->type = EDF::KeyColumn::DVAL;
$dcol->id = 1000;

Input Arguments

None.

Return Values

Either a property name or a dimension ID.

EDF::KeyColumn::type method
The type method returns a scalar value representing the type of the column.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::KeyColumn class | EDF::KeyColumn::id method40

Example Usage

This example creates a new KeyColumn object and assigns it the type PVAL.

my $col = new EDF::KeyColumn;
$col->type = EDF::KeyColumn::PVAL;

Input Arguments

None.

Return Values

Either an EDF::KeyColumn::PVAL constant or an EDF::KeyColumn::DVAL constant.

EDF::KeyColumn::values method
The values method returns a reference to the array of values in the EDF::KeyColumn object.

Each entry in the array is either an EDF::PVal or an EDF::DVal. Manipulating the referenced array
changes the EDF::KeyColumn object.

Example Usage

my $key = shift;
for $col (@{ $key->columns }) {
 if ($col->type eq PVAL) {
 my @pvals = @{ $col->values };
 }
 else {
 my @dvals = @{ $col->values };
 }
}

Input Arguments

None.

Return Values

A reference to the array of values in the column.

EDF::KeyColumn::DVAL constant
The DVAL constant indicates that the column type contains EDF::DVal values. If you need to compare
this value to others, use Perl's string comparison operators eq or ne.

Example Usage

This example creates a new KeyColumn object of type DVAL.

my $col = new EDF::KeyColumn;
$col->type = EDF::KeyColumn::DVAL;

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

41EDF::KeyColumn class | EDF::KeyColumn::values method

This example shows a comparison using eq:

if ($col->type eq EDF::KeyColumn::DVAL) {...}

EDF::KeyColumn::PVAL constant
The PVAL constant indicates that the column type contains EDF::PVal objects. If you need to compare
this value to others, use Perl's string comparison operators eq or ne.

Example Usage

This example creates a new EDF::KeyColumn object of type PVAL:

my $col = new EDF::KeyColumn;
$col->type = EDF::KeyColumn::PVAL;

This example shows a comparison using eq:

if ($col->type eq EDF::KeyColumn::PVAL) {...}

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::KeyColumn class | EDF::KeyColumn::PVAL constant42

Chapter 7

EDF::Record class

This section describes the EDF::Record class.

EDF::Record class overview
An EDF::Record object describes a record. Records have a list of property values and a list of
dimension values.

Constructor

The new method creates a new EDF::Record object.The method takes no arguments. For example:

my $rec = new EDF::Record;

Methods

• add_dvals

• add_pvals

• clone

• dvals

• key

• pvals

EDF::Record::add_dvals method
The add_dvals method adds a list of EDF::DVal objects to the record.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dval = new EDF::DVal(1, 1);
$rec->add_dvals($dval);
my @newvals;
foreach $n (1..10) {
 push(@newvals, new EDF::DVal(1, $n));
}
$rec->add_dvals(@newvals);

Input Arguments

A list of EDF::DVal objects.

Return Values

None.

EDF::Record::add_pvals method
The add_pvals method adds a single EDF::PVal or a list of EDF::PVals to the record.

This method is synonymous to the following code: push(@{$rec->pvals},@newvals);

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = new EDF::PVal("Number", 1);
$rec->add_pvals($pval);
my @newvals;
foreach $n (1..10) {
 push(@newvals, new EDF::PVal("Number", $n));
}
$rec->add_pvals(@newvals);

Input Arguments

A single EDF::PVal or a list of EDF::PVal objects.

Return Values

None.

EDF::Record::clone method
The clone method creates a copy of the record including the EDF::PVal and EDF::DVal items on
the record. This is useful if you want to make a copy of a record to modify, while retaining a copy of
the original.

Example Usage

my $rec = $this->record_source(0)->next_record;
$clone has copies of $rec's PVals
my $clone = $rec->clone;
Rename the first PVal on $clone to "Wilma" -
the first PVal on $rec is left untouched.
$clone->pvals->[0]->name = "Wilma";

Input Arguments

An EDF::Record object.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::Record class | EDF::Record::add_pvals method44

Return Values

A new EDF::Record object.

EDF::Record::dvals method
The dvals method returns an array of the dimension values tagged to a record. Manipulating the
referenced array changes the EDF::Record object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dvals = $rec->dvals;
Add a constant DVal to the record
push(@{$dvals}, new EDF::DVal(1,1));

Input Arguments

None.

Return Values

An array of the dimension values tagged to the record.

EDF::Record::key method
The key method takes an EDF::RecordKey, clones it according to the contents of the EDF::Record,
and fills the dimensions of the cloned key in with the appropriate EDF::PVal and EDF::DVal values.
The resulting copy has EDF::PVal and EDF::DVal values that are shared between the original and
the copy. See also EDF::RecordKey:clone.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $col = new EDF::KeyColumn(EDF::KeyColumn::PVAL, "KeyProp");
my $empty_key = new EDF::RecordKey;
$empty_key->add_columns($col);
my $filled_in_key = $rec->key($empty_key);

Input Arguments

An EDF::RecordKey object.

Return Values

A new EDF::RecordKey object.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

45EDF::Record class | EDF::Record::dvals method

EDF::Record::pvals method
The pvals method returns a reference to the array of property values (EDF::PVal objects) on the
record. Manipulating the referenced array changes the EDF::Record object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pvals = $rec->pvals;
Change the name of the first PVal on the record
to "Wilma"
$pvals->[0]->name = "Wilma";
Remove all PVals from the record
@{ $pvals } = ();

Input Arguments

None.

Return Values

A reference to the array of EDF::PVal objects (property values) on the record.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::Record class | EDF::Record::pvals method46

Chapter 8

EDF::RecordSource class

This section describes the EDF::RecordSource class.

EDF::RecordSource class overview
An EDF::RecordSource object represents the record source specified on the Sources tab of the
Perl Manipulator editor.

The data in this object becomes the record input that the EDF::Manipulator modifies. An
EDF::RecordSource has a name and a number, and can be addressed by either.You can retrieve
records from an EDF::RecordSource using the next_record and get_records methods.

Note: The number of a record source is determined by the position in which it appears in the
Sources tab of the Perl Manipulator editor beginning from the index point 0.

In this example, record source number 0 is named "Left," and record source number 1 is named "Right."

Constructor

There is no constructor method for this class. Calling the EDF::Manipulator::record_source
method returns an EDF::RecordSource object.

Methods

• get_records

• name

• next_record

• number

EDF::RecordSource::get_records method
The get_records method returns the list of records matching a specified EDF::RecordKey.

Note that different pipeline components that act as record sources handle the get_records call in
different ways. For example, a record cache retains copies of all records, and can return multiple
copies if the same request is made repeatedly. Most other components do not retain copies. They
return a matching record the first time a given request is made and discard non-matching records
between request.

Example Usage

my $key = shift;
my $src = $this->record_source(0);
my @recs = $src->get_records($key);

Input Arguments

An EDF::RecordKey object.

Return Values

The list of records matching a given EDF::RecordKey.

EDF::RecordSource::name method
The name method returns the name of a record source as specified on the Sources tab of the Perl
Manipulator editor.

Example Usage

my $src = $this->record_source(0);
EDF::print_info("Record source 0 is ".
 $src->name);

Input Arguments

None.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

EDF::RecordSource class | EDF::RecordSource::get_records method48

Return Values

The name of the record source.

EDF::RecordSource::next_record method
The next_record method returns the next record from this source, or undef if there are no more
records available from this source.

Example Usage

my $src = $this->record_source(0);
my $rec = $src->next_record;

Input Arguments

None.

Return Values

The next record from this source, or undef if there are no more records available from this source.

EDF::RecordSource::number method
The number method returns the index of the record source in the array of record sources for a particular
Perl manipulator.

Note that if the same record source serves as an input to multiple Perl manipulators (for example, a
record cache), it may have a different number in each.

Example Usage

my $src = $this->record_source('RecordCache');
EDF::print_info("RecordCache is source number ".
$src->number);

Input Arguments

None.

Return Values

The index of the record source in the array of record sources for a particular Perl Manipulator.

Oracle Endeca Platform Services Forge API Guide for PerlEndeca Confidential

49EDF::RecordSource class | EDF::RecordSource::next_record method

Chapter 9

Static methods

This section describes the Static methods.

Static methods overview
The Static methods can be used in any Forge Perl code to log messages.

Use these methods to log different levels of messages (ERR, INF, WRN): print_error,
print_info, and print_warning.

EDF::print_error method
The EDF::print_error method prints a message at log level ERR.

A terminating new line token (\n) is not required. EDF::print_error does not cause Forge to exit.
Call Perl's die() function to exit Forge. When Forge exits, it exits with an error code.

Example Usage

Make sure we have exactly one record source,
or print error and stop Forge.
if (scalar(@{ $this->record_sources }) != 1) {
 EDF::print_error ("Perl Manipulator ", $this->name .
 " must have exactly one record source.");
 die("Perl Manipulator ", $this->name,
 " must have exactly one record source.");
}

Input Arguments

A string message to print.

Return Values

None.

EDF::print_info method
The EDF::print_info method prints a message at log level INF.

A terminating new line token (\n) is not required.

Example Usage

my $src = $this->record_source('RecordCache');
EDF::print_info("RecordCache is source number " .
$src->number);

Input Arguments

A string message to print.

Return Values

None.

EDF::print_warning method
The EDF::print_warning method prints a message at log level WRN.

A terminating new line token (\n) is not required.

Example Usage

If there isn't exactly one price property, print a warning.
if (scalar(@prices) != 1) {
 EDF::print_warning("Expected 1 PVal named Price; found" .
 scalar(@prices));
}

Input Arguments

A string message to print.

Return Values

None.

Endeca ConfidentialOracle Endeca Platform Services Forge API Guide for Perl

Static methods | EDF::print_info method52

Index

A

add_columns 35
add_dvals 43
add_pvals 44
add_values 39

C

clone 44
columns 36
context 28

D

dimension_id 25
DVal class

dimension_id 25
id 26
overview 25

dvals 45

E

equals 37
examples

add a geocode property 22
perform a left join 17
process records with a subclass 21
reformat a property 15
remove property 14
remove records by a property 16
retrieve records matching a key 19

F

finish 28
Forge Execution Framework

introduced 12
record processing 10

G

get_records 28, 48

K

key 45
KeyColumn class

add_values 39
DVAL 41
id 40

KeyColumn class (continued)
PVAL 42
type 41
values 41

M

Manipulator class
context 28
get_records 28
name 29
next_record 29
overview 27
prepare 30
record_source 30
record_sources 31
finish 28

N

name 29, 33, 48
next_record 29, 49
number, RecordSource class 49

P

Perl manipulator
class summary 10
example 12
introduced 9

prepare 30
print_error 51
print_info 52
print_warning 52
PVal class

name 33
overview 33
value 34

pvals, Record class 46

R

Record class
add_dvals 43
add_pvals 44
clone 44
dvals 45
key 45
overview 43

record_source 30
record_sources 31

RecordKey class
add_columns 35
clone 36
columns 36
equals 37
overview 35

RecordSource class
get_records 48
name 48
next_record 49
overview 47

S

static methods
overview 51

static methods (continued)
print_error 51
print_info 52
print_warning 52

T

type 41

V

value 34
values 41

Oracle Endeca Platform Services54

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to the Forge API
	About the Perl manipulator
	Classes available to a Perl manipulator
	Understanding Forge and downstream record processing
	About the Forge Execution Framework
	An example Perl manipulator
	Additional use case examples
	Remove a property from each record
	Reformat a property on each record
	Remove records with a particular property
	Perform a left join on records from two record sources
	Retrieve records matching a key from any number of record sources
	Process records using a subclass
	Add a geocode property to a record

	EDF::DVal class
	EDF::DVal class overview
	EDF::DVal::dimension_id method
	EDF::DVal::id method

	EDF::Manipulator class
	EDF::Manipulator class overview
	EDF::Manipulator::context method
	EDF::Manipulator::finish method
	EDF::Manipulator::get_records method
	EDF::Manipulator::name method
	EDF::Manipulator::next_record method
	EDF::Manipulator::prepare method
	EDF::Manipulator::record_source method
	EDF::Manipulator::record_sources method

	EDF::PVal class
	EDF::PVal class overview
	EDF::PVal::name method
	EDF::PVal::value method

	EDF::RecordKey class
	EDF::RecordKey class overview
	EDF::RecordKey::add_columns method
	EDF::RecordKey::clone method
	EDF::RecordKey::columns method
	EDF::RecordKey::equals method

	EDF::KeyColumn class
	EDF::KeyColumn class overview
	EDF::KeyColumn::add_values method
	EDF::KeyColumn::id method
	EDF::KeyColumn::type method
	EDF::KeyColumn::values method
	EDF::KeyColumn::DVAL constant
	EDF::KeyColumn::PVAL constant

	EDF::Record class
	EDF::Record class overview
	EDF::Record::add_dvals method
	EDF::Record::add_pvals method
	EDF::Record::clone method
	EDF::Record::dvals method
	EDF::Record::key method
	EDF::Record::pvals method

	EDF::RecordSource class
	EDF::RecordSource class overview
	EDF::RecordSource::get_records method
	EDF::RecordSource::name method
	EDF::RecordSource::next_record method
	EDF::RecordSource::number method

	Static methods
	Static methods overview
	EDF::print_error method
	EDF::print_info method
	EDF::print_warning method

	Index

