
Oracle Endeca Platform Services
Forge Guide

Version 6.1.2 • March 2012

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...9
Contacting Oracle Endeca Customer Support..10

Part I: Basic Pipeline Development...11

Chapter 1: The Endeca ITL...13
Introduction to the Endeca ITL..13
Endeca ITL components..14

Chapter 2: Endeca ITL Development..17
Endeca ITL development process...17
Endeca tools suite...17
A closer look at data processing and indexing..21

Chapter 3: Overview of Source Property Mapping................................27
About source property mapping..27
About using a single property mapper...27
About using explicit mapping...27
Minimum configuration...28
About mapping unwanted properties...28
About removing source properties after mapping..28
Types of source property mapping..29
About adding a property mapper...30
The Mappings editor..32

Chapter 4: Match Modes..35
About choosing a match mode for dimensions..35
Rules of thumb for dimension mapping...37
Dimension mapping example..37

Chapter 5: Advanced Mapping Techniques..39
The Property Mapper editor Advanced tab..39
About enabling implicit mapping..39
Enabling default mapping..40
About the default maximum length for source property values..41

Chapter 6: Before Building Your Instance Configuration......................43
Endeca Application Controller directory structure...43
Pipeline overview...43

Chapter 7: About Creating a Basic Pipeline...47
The Basic Pipeline template..47
Record adapters..48
Dimension adapter..49
Dimension server...50
Property mapper..51
Indexer adapter..51

Chapter 8: About Running Your Basic Pipeline.....................................53
Running a pipeline...53

iii

Viewing pipeline results in a UI reference implementation..53

Chapter 9: After Your Basic Pipeline Is Running...................................55
Additional tasks...55
About source property mapping..55
Setting the record specifier property..58
About specifying dimensions and dimension value order..59
Additional pipeline components...59
Additional index configuration options...60

Part II: Joins..63

Chapter 10: Overview of Joins..65
Record assemblers and joins..65
About performing joins in a database..66
Join keys and record indexes..66
Join types..68

Chapter 11: About Configuring Join Keys and Record Indexes..........75
Creating a record index...75
Creating a join key for a record cache...76
Join keys with multiple properties or dimensions...77

Chapter 12: About Implementing Joins..79
Implementing a join...79

Chapter 13: Advanced Join Behavior...83
Records that have multiple values for a join key..83
Sources that have multiple records with the same join key value..84
About tweaking left joins..85

Chapter 14: Tips and Troubleshooting for Joins....................................87
Joins that do not require record caches..87
Working with sources that have multiple records with the same join key value...................................87
Best practice for choosing left and right side of joins...87
Combining equivalent records in record caches..88
Forge warnings when combining large numbers of records..89

Part III: Advanced Dimension Features..91

Chapter 15: Externally-Created Dimensions..93
Overview of externally-created dimensions...93
XML requirements...95
Importing an externally-created dimension..97

Chapter 16: Externally-Managed Taxonomies..99
Overview of externally-managed taxonomies..99
Including externally-managed taxonomies in your project...99
XSLT and XML requirements...100
Pipeline configuration..102
About updating an externally-managed taxonomy in your pipeline...105
Unexpected default-mapping behavior..105

Part IV: Other Advanced Features...107

Chapter 17: The Forge Logging System...109

Oracle Endeca Platform Servicesiv

Overview of the Forge logging system..109
Log levels reference...109
About logging topics..109
The command line interface..110

Chapter 18: The Forge Metrics Web Service..113
About the Forge Metrics Web service..113
About enabling Forge metrics..114
About using Forge metrics...115
The MetricsService API...115

Appendix A: Forge Flag Reference...117
Forge flag options reference...117

Appendix B:File Formats Supported by the Document Conversion Module.125
Word processing formats..125
Text and markup formats..127
Spreadsheet formats..128
Vector image formats..129
Raster image formats...130
Presentation formats...132
Archive formats...132
Database formats...133
E-mail formats...134
Other formats..134

v

Contents

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Guided Search is the most effective way for your customers to dynamically explore
your storefront and find relevant and desired items quickly. An industry-leading faceted search and
Guided Navigation solution, Oracle Endeca Guided Search enables businesses to help guide and
influence customers in each step of their search experience. At the core of Oracle Endeca Guided
Search is the MDEX Engine,™ a hybrid search-analytical database specifically designed for
high-performance exploration and discovery. The Endeca Content Acquisition System provides a set
of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. Endeca Assembler dynamically assembles content from any resource
and seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes the major tasks involved in developing the instance configuration, including the
pipeline, of an Endeca application.

It assumes that you have read the Oracle Endeca Guided Search Getting Started Guide and are
familiar with the Endeca terminology and basic concepts.

Who should use this guide
This guide is intended for developers who are building applications using Oracle Endeca Guided
Search.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Endeca Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding
Oracle Endeca software, implementation questions, product and solution help, as well as overall news
and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support
at https://support.oracle.com.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

| Preface10

https://support.oracle.com

Part 1

Basic Pipeline Development

• The Endeca ITL
• Endeca ITL Development
• Overview of Source Property Mapping
• Match Modes
• Advanced Mapping Techniques
• Before Building Your Instance Configuration
• About Creating a Basic Pipeline
• About Running Your Basic Pipeline
• After Your Basic Pipeline Is Running

Chapter 1

The Endeca ITL

The Endeca Information Transformation Layer (ITL) is a major component of Oracle Endeca Guided
Search. This section provides an introduction to the Endeca ITL and its componenets.

Introduction to the Endeca ITL
The Endeca Information Transformation Layer (ITL) reads in your source data and manipulates it into
a set of indices for the Endeca MDEX Engine. The Endeca ITL consists of the Content Acquisition
System and the Data Foundry.

Although the original source data is not changed, this transformation process may change its
representation within your Endeca implementation.The Endeca ITL is an off-line process that you run
on your data at intervals that are appropriate for your business requirements.

Endeca Content Acquisition System
The Content Acquisition System includes the Endeca Web Crawler and the Endeca CAS Server, as
well as a rich set of packaged adapters.

These components crawl unstructured content sources and ingest structured data. This includes
relational databases, file servers, content management systems, and enterprise systems such as
enterprise resource planning (ERP) and master data management (MDM).

Packaged adapters reach the most common systems, including JDBC and ODBC.The Content Adapter
Development Kit (CADK) allows developers to write custom adapters and Java manipulators.

Endeca Data Foundry
The Endeca Data Foundry aggregates information and transforms it into Endeca records and MDEX
Engine indices.

During the data processing phase, the Data Foundry:

• Imports your source data
• Tags it with the dimension values used for navigating and Endeca properties used for display.
• Stores the tagged data—along with your dimension specifications and any configuration rules—as

Endeca records that are ready for indexing.

• Indexes the Endeca records it produced during its data processing phase, and produces a set of
indices in Endeca MDEX Engine format.

Endeca ITL components
At a base level, the Endeca ITL is a combination of programs and configuration files. The Endeca ITL
has additional components that support a variety of features.

This illustration shows a high-level view of the Endeca ITL architecture.

The components described in this section are the core components that all Endeca implementations
use, regardless of the additional features they implement.

Pipeline components will be discussed in this guide as is appropriate. For more detailed information
about pipeline components, see the Developer Studio online help.

Data Foundry programs
Data Foundry component is composed of two core programs, Forge and Dgidx.

• Forge is the data processing program that transforms your source data into standardized, tagged
Endeca records.

• Dgidx is the indexing program that reads the tagged Endeca records that were prepared by Forge
and creates the proprietary indices for the Endeca MDEX Engine.

Configuration files
Forge and Dgidx use an instance configuration to accomplish their tasks. An instance configuration
includes a pipeline, a dimension hierarchy, and an index configuration.

Pipeline

The pipeline functions as a script for the entire process of transforming source data to Endeca records.

The pipeline describes a data processing workflow as a graph of data transformation stages, known
as components, connected by links across which data flows.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

The Endeca ITL | Endeca ITL components14

The components specify the format and the location of the source data, any changes to be made to
the source data (manipulation), and how to map each record’s source properties to Endeca properties
and dimensions.

If you intend to run partial updates, your instance configuration will contain two pipelines: one for
running baseline updates and one for partial updates. See the Endeca Partial Updates Guide for details
on setting up the partial updates pipeline.

Dimension hierarchy

The dimension hierarchy contains a unique name and ID for each dimension, as well as names and
IDs for any dimension values created in Developer Studio.The Data Foundry uses these unique names
and IDs when it maps your data’s source properties to dimensions.

These names and IDs can be created in three different ways:

• Automatically, by the Data Foundry.
• In Developer Studio.
• In an external system, and then imported either into the Data Foundry or Developer Studio.

The dimension hierarchy is used during indexing to support the incremental filtering that is the essence
of Guided Navigation.

Index configuration

The index configuration defines how your Endeca records, Endeca properties, dimensions, and
dimension values are indexed by the Data Foundry. The index configuration is the mechanism for
implementing a number of Endeca features such as search and ranking.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

15The Endeca ITL | Endeca ITL components

Chapter 2

Endeca ITL Development

The Endeca Information Transformation Layer components provide a means for you to develop your
data processing back end.This section provides an overview of the development process and Endeca
tools suite, and a closer look at data processing and indexing.

Endeca ITL development process
The Endeca ITL uses an instance configuration to process, tag, and locate data.

Creating an instance configuration is an iterative process. Oracle recommends that you first create a
very simple instance configuration to test your data. After the simple configuration is working as you
expect, you can make additional modifications, view your results, and make changes as necessary.
Also, it is often useful to work on a subset of your data, for quicker turnaround of data processing,
while you are developing your instance configuration.

At a high level, Endeca ITL development looks like this:

1. Use Developer Studio to create an instance configuration.

This defines how your data should be indexed and displayed. It includes Content Acquisition System
components, such as a JDBC Adapter.

2. Use an Endeca Deployment Template application to do the following:

a) Run Forge, referencing the instance configuration, to process your source data into tagged
Endeca records.

b) Run Dgidx on the Forge output to create MDEX Engine indices from the tagged Endeca records.
c) Run Dgraph to start a MDEX Engine and point it at the indices created by Dgidx.

3. View the results and repeat these steps to make changes as necessary.

Endeca tools suite
The Endeca distribution includes two tools that help you create and edit your instance configuration,
and maintain your Endeca implementation: Endeca Developer Studio and Oracle Endeca Workbench.
This section provides a brief introduction to these tools.

Endeca Developer Studio
Endeca Developer Studio is a Windows application that you use to define all aspects of your instance
configuration.

With Developer Studio, you can define:

• Pipeline components for tasks such as loading, standardizing, joining, mapping, and exporting
data.

• Endeca properties and property attributes such as sort and rollup.
• Dimensions and dimension values, including dimension hierarchy.
• Precedence rules among dimensions that provide better control over your implementation’s

navigation flow.
• Search configurations, including which properties and dimensions are available for search.
• Dynamic business rules that allow you to promote certain records on your Web site using data-driven

business logic. Dynamic business rules are used to implement merchandising and content
spotlighting.

• User profiles that tailor the content returned to an end-user based upon preconfigured rules.

Developer Studio uses a project file, with an .esp extension, that contains pointers to the XML files
that support an instance configuration. Editing a project in Developer Studio edits these underlying
files.

Oracle Endeca Workbench
Oracle Endeca Workbench is a Web-based application that provides access to reports that describe
how end-users are using an Endeca implementation.

The two primary audiences for Endeca Workbench are:

• Business users who define business logic such as merchandising/content-spotlighting rules and
thesaurus entries.

Endeca Workbench lets business users make changes to parts of an Endeca implementation after
the implementation’s core functionality has been developed. For example, a developer uses
Developer Studio to specify which Endeca properties and dimensions are available for search,
then a business user uses Endeca Workbench to specify thesaurus entries that support search
functionality.

• System administrators who maintain and manage an Endeca implementation.

Endeca Workbench lets system administrators provision applications, components and scripts to
the Endeca Application Controller, monitor the status of an Endeca implementation, and start and
stop system processes.

Endeca Workbench can report the most popular search terms, the most popular navigation locations,
search terms that are most often misspelled, and so forth.

About system provisioning tasks in Endeca Workbench

System provisioning lets you assign resources to a new Endeca application in Endeca Workbench,
and modify the resources in an existing application.You can provision more than one application to
the EAC, using the EAC Admin Console page of Endeca Workbench.

Typically, you provision resources to the Endeca configuration in the following order:

1. Add, edit or remove an Endeca application.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Endeca ITL Development | Endeca tools suite18

2. Add, edit or remove hosts from the application.
3. Add, configure or remove Endeca components on one or more hosts.

Endeca components include Forge, the Indexer (Dgidx), Aggregated Indexer, MDEX Engine
(Dgraph), Aggregated MDEX Engine, Log Server, and Report Generator.

4. Add, edit, or remove an EAC script.

About system operations tasks in Endeca Workbench

System operations let you run Endeca components by using Endeca Workbench to call underlying
EAC processes.

On the EAC Admin Console page of Endeca Workbench, you can do the following:

• Start and stop the Endeca applications and components you provision.

Typically, each provisioned application can have its own set of components, such as Forge, the
Indexer, the MDEX Engine, the Log Server and the Report Generator.You can then start and stop
these components.

• Start and stop the EAC scripts you provision.These could include the scripts that perform a baseline
update and report generation for the application.

• Monitor the status of Endeca components.

Finding more information on tools setup and usage
You can find tool setup and usage information in the following locations:

• The Oracle Endeca Workbench Administrator’s Guide provides in-depth information about tool
setup and configuration.

• The Oracle Endeca Developer Studio Help and the Oracle Endeca Workbench Help provide details
on using each individual tool’s features.

About controlling your environment
While not part of the Endeca ITL development per se, before you can begin building and running
pipelines, you must put into place a mechanism for controlling the resources in your Endeca
implementation. This mechanism provides process execution and job management facilities.

About using the Endeca Application Controller
The Endeca Application Controller is the interface you use to control, manage, and monitor your
Endeca implementations.

The use of open standards, such as the Web Services Descriptive Language (WSDL), makes the
Application Controller platform and language agnostic. As a result, the Application Controller supports
a wide variety of applications in production. In addition, the Application Controller allows you to handle
complex operating environments that support features such as partial updates, delta updates, phased
Dgraph updates and more.

Application Controller architecture

Most implementations that use the Application Controller will follow the general setup outlined below.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

19Endeca ITL Development | Endeca tools suite

The following illustration shows the architecture of a typical implementation that uses the Application
Controller.

In this architecture diagram, the following happens:

1. The developer creates an instance configuration, using Developer Studio, that determines what
data and features will be incorporated into the index.

2. The developer creates a provisioning document in XML format that defines all the hosts and
components in the implementation.

3. The developer sends the provisioning files to the EAC Central Server machine. The developer can
use three methods for the provisioning tasks:

• Endeca Workbench
• The eaccmd utility
• A custom Web services interface.

4. Once the Agent machines in the implementation are provisioned, the developer sends commands
(again using either eaccmd, Endeca Workbench, or a custom interface) to the EAC Central Server.
The EAC Central Server communicates these tasks to its Agents, which reside on each machine
that is running Endeca components.

5. The Application Controller manages the entire data update process, according to the instructions
it receives.This includes running Forge and the Indexer (Dgidx) to create indexed data, and starting
the MDEX Engine (Dgraph) based on that indexed data.

For detailed information on configuring and using the Endeca Application Controller, see the Oracle
Endeca Application Controller Guide.

Ways of communicating with the Endeca Application Controller

You have three ways in which you can communicate with the EAC Central Server:

• Endeca Workbench
• The eaccmd utility
• A custom Web services interface (using the Endeca WSDL).

About using Endeca Workbench to communicate with the EAC Central Server

Endeca Workbench lets you provision the resources in your environment, such as applications,
components and logging, and start and stop these resources as needed. Endeca Workbench
communicates this information to the EAC Central Server to coordinate and execute the processes
that result in a running Endeca implementation.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Endeca ITL Development | Endeca tools suite20

Endeca Workbench is one of the ways of communicating with the EAC Central Server (the other two
are the eaccmd utility and a custom Web services interface).

The primary benefit of using Endeca Workbench as a means of communication with the EAC Central
Server is that it relieves you of the burden of using the command line utility eaccmd, or of creating a
custom Web services interface.

Endeca Workbench allows multiple users to edit the same implementation while avoiding conflicting
changes. Only one Endeca Workbench user can edit a particular implementation module at any given
time, locking out all other users from that module.

Important: Concurrent project editing can only happen in Endeca Workbench. There is no
built-in allowance for concurrent users of Endeca Workbench and Developer Studio. Therefore,
to prevent changes from being overwritten or otherwise lost, a project should be active in only
one of these tools at a time.

A closer look at data processing and indexing
It is important to have a clear understanding of how the Data Foundry works with source records before
you begin building your instance configuration. Read the following sections for a behind-the-scenes
look at the data processing and indexing functions in the Data Foundry.

Data processing
The data processing workflow in the Data Foundry is defined in your pipeline and typically follows a
specific path.

The Forge and Dgidx programs do the actual data processing, but the components you have defined
in the pipeline dictate which tasks are performed and when. The Data Foundry attempts to utilize all
of the hardware resources available to it, both by processing records in multiple components
simultaneously, and by processing multiple records simultaneously within the same component.

The data processing workflow typically follows this path:

1. Load the raw data for each source record.

2. Standardize each source record’s properties and property values to create consistency across
records.

3. Map the source record’s properties into Endeca properties and/or dimensions.

4. Write the tagged Endeca records, along with any dimension hierarchy and index configuration, as
finished data that is ready for indexing.

5. Index the finished data and create the proprietary indices used by the MDEX Engine.

Data processing workflow

The following illustration shows a simple conversion of source data into tagged Endeca records:

Oracle Endeca Platform Services Forge GuideEndeca Confidential

21Endeca ITL Development | A closer look at data processing and indexing

Source data
You can load source data from a variety of formats using the Content Acquisition System components.

Your Endeca applications will most often read data directly from one or more database systems, or
from database extracts. Input components load records in a variety of formats including delimited,
JDBC, and XML. Each input component has its own set of configuration properties. One of the most
commonly used type of input component loads data stored in delimited format.

About loading source data
Source data may be loaded into the Data Foundry from a variety of formats.The easiest format to use
is a two-dimensional format similar to the tables found in database management systems.

Database tables are organized into rows of records, with columns that represent the source properties
and property values for each record. The illustration below shows a simple example of source data in
a two-dimensional format.

You specify the location and format of the source data to be loaded in the pipeline. Forge loads and
processes one source record at a time, in sequential order. When Forge loads a source record, it
transforms the record into a series of property/property value pairs.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Endeca ITL Development | A closer look at data processing and indexing22

Standardizing source records
You specify any standardization of source properties and property values in the pipeline. Standardization
cleanses the data so that it is as consistent as possible before mapping begins.

You can take the following steps to standardize your data:

Note: The functionality described below supports limited data cleansing. If you have an existing
data cleansing infrastructure, it may be more advantageous to use that facility instead.

1. Fix misspellings in your source properties and property values.

2. Explicitly specify the encoding type (e.g., UTF-8, CP-1252, or Latin-1) of the source data when
Forge reads it into a Pipeline. If you are loading text-based source data in a Record Adapter, you
specify the encoding type in the Encoding field of the General tab. If an incorrect encoding is
specified, then Forge generates warnings about any characters that do not make sense in the
specified encoding. For example, in the ASCII encoding, any character with a number above 127
is considered invalid. Invalid characters are replaced with strings prefixed by %X, so the invalid
characters are not loaded into Forge.

3. Remove unsupported characters.

The only legal Unicode characters are U+09, U+0D, U+0A, U+20-U+7E, U+85, U+A0-U+D7FF,
and U+E000-U+FFFD. In particular, source data should not contain Unicode characters from the
range 0x00 through 0x1F with the exceptions of 0x09 (tab), 0x0A (newline), and 0x0D (carriage
return). For example, records based on databases may use 0x00 (null) as a default empty value.
Other characters that are often in existing database sources are 0x1C (field separator), 0x1E (record
separator), and 0x1F (unit separator).

If a data source contains additional control characters as defined by the chosen encoding, remove
or replace the control characters. For example, Windows-1252 specifies 0x7F-0x81, 0x8D-0x90,
0x9D-0x9E as control characters, and Latin-1 specifies x7F and x9F as control characters.

The following are some notes and suggestions for dealing with control characters:

• The default input adapter encoding (LATIN-1) for delimited and vertical record input adapters
in Forge makes the assumption, for throughput efficiency, that input data does not contain
control characters (i.e. x00-x1F [except x09, x0A, x0D] and x7F-x9F).

• For data sources that contain control characters because of character data in a non-Latin
encoding (e.g., UTF-8 or Windows-1252), the recommended and best practice solution is to
explicitly specify the encoding type (e.g., "UTF-8" or "Windows-1252").

• For data sources that contain character data in more than one non-Latin encoding (e.g., a
mixture of UTF-8 and Windows-1252), the recommended and best practice solution is to explicitly
specify the more conservative encoding type (e.g., UTF-8).

Oracle Endeca Platform Services Forge GuideEndeca Confidential

23Endeca ITL Development | A closer look at data processing and indexing

• For data sources where the data-cleanliness assumption is not satisfied because of real control
characters (i.e., x00-x1F [except x09, x0A, x0D] and x7F), the recommended and best practice
solution is to clean the data ahead of time to remove or replace those control characters. If data
sources contain additional control characters as defined by the chosen encoding, these should
also be removed or replaced.For data sources where the data-cleanliness assumption is not
satisfied because of real control characters (i.e., x00-x1F [except x09, x0A, x0D] and x7F), the
recommended and best practice solution is to clean the data ahead of time to remove or replace
those control characters. If data sources contain additional control characters as defined by
the chosen encoding, these should also be removed or replaced.

4. Edit source property values to use a consistent format (for example, USA instead of United States
or U.S.).

5. Re-assign similar source properties to one common property. (for example, you could assign a
Flavor1 property and a Flavor2 property to a generic Flavors property).

Example of standardized source records

The following image shows a simple standardization example:

About mapping source properties and property values
After a source record has been standardized, Forge maps the record’s source properties to dimensions
and Endeca properties.

• Mapping a source property to a dimension indicates that the record should be tagged with a
dimension value ID from within that dimension. This enables navigation on the property.

• Mapping a source property to an Endeca property indicates that the property should be retained
for display and search.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your
source data to Endeca properties and/or dimensions to make them navigable, displayable,
both, or neither. The property mapper is a key component in developing a pipeline, so it is
important to understand its functions well.

About writing out tagged data
After all the source records have been mapped, the Forge program writes its finished data.

The finished data consists of:

• The Endeca records along with their tagged dimension value IDs and Endeca properties.
• The names and IDs for each dimension and dimension value, along with any dimension hierarchy.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Endeca ITL Development | A closer look at data processing and indexing24

• Any index configuration specified.

About indexing
After Forge creates the tagged data, Dgidx indexes the output and creates the proprietary indices for
the Endeca MDEX Engine.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

25Endeca ITL Development | A closer look at data processing and indexing

Chapter 3

Overview of Source Property Mapping

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand its
functions well.

About source property mapping
Source property mappings dictate which dimension values are tagged to each record and which
property information is available for record search, sort, and display.

Note that before you can map a source property to an Endeca property or dimension, you must have
created that Endeca property or dimension.

Source properties can be mapped in three different ways. They can be:

• Mapped to an Endeca property (for search, sort, and display only).
• Mapped to a dimension (for search, sort, display, and navigation).
• Ignored by specifying a null mapping.

You use a property mapper component to establish source property mappings. Typically, the property
mapper is placed in the pipeline after the Perl manipulator (if one exists) that is used to clean and
prepare source properties.You should use a single property mapper to map all of your source properties
to both Endeca properties or dimensions.

About using a single property mapper
You should use a single property mapper to map all of your source properties to both Endeca properties
or dimensions. Although there are rare cases where multiple property mappers may be used, Oracle
strongly recommends that you use only one property mapper in any given pipeline.

About using explicit mapping
When you specify a source property and a target Endeca property or dimension to map to, you are
creating an explicit mapping. In general, explicit mapping is the type of mapping Oracle recommends
you use.

However, Developer Studio also offers some advanced techniques that allow you to automate the
mapping process. These techniques are intended to facilitate the process of building prototypes and
should not be used for building production-ready implementations.

Related Links
Advanced Mapping Techniques on page 39

You can specify mapping techniques and default behavior using the Property Mapper editor
Advanced tab.

Types of source property mapping on page 29
There are four types of source property mappings:

Minimum configuration
At a minimum, a property mapper requires both a record source and a dimension source to define the
components that will supply it with record and dimension data.

The dimension source must be a dimension server.You can leave the other settings at their defaults
while developing your initial working pipeline, then add mappings as needed.

About mapping unwanted properties
Mapping properties that do not add value to the application is wasteful in terms of processing time and
resources. Oracle recommends, therefore, that you only create mappings for those source properties
you intend to use in your final application.

Source properties that do not have mappings specified for them are ignored during the mapping
process, unless you use the advanced mapping techniques on the Property Mapper editor Advanced
tab.

Related Links
Advanced Mapping Techniques on page 39

You can specify mapping techniques and default behavior using the Property Mapper editor
Advanced tab.

About removing source properties after mapping
After mapping, source properties still exist as part of the Endeca record.You can remove them and
create a record that consists exclusively of Endeca properties and dimension values by enabling the
Filter Unknown Properties setting in your pipeline's indexer adapter.

The following example shows this option:

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Source Property Mapping | Minimum configuration28

Types of source property mapping
There are four types of source property mappings:

• Explicit mapping — Explicit mappings are created when you use the property mapper's Mappings
editor to specify a source property and a target Endeca property or dimension to map to. In other
words, the mapping does not exist until you explicitly create it. In general, this is the type of mapping
Oracle recommends that you use.

• Null mapping — Null mappings are a type of explicit mapping, because you have to use the
Mappings editor to explicitly create one. The difference is that while explicit mappings map a
source property to an Endeca property or dimension, a null mapping tells the Data Foundry that
it should not try to map a specific source property.

Explicit null mappings provide a means to prevent an implicit or default mapping from being formed
for a particular source property. In other words, you can enable either implicit or default mapping,
and then turn off mapping altogether for selected source properties using explicit null mappings.

• Implicit mapping — When implicit mapping is enabled, any source property that has a name that
is identical to an existing dimension is automatically mapped to that dimension. The like-named
dimension, and any of its constituent dimension values, must already exist in your dimension
hierarchy.

Note: Implicit mapping works only if no explicit mapping exists.

Implicit mapping is limited to mappings between source properties and dimensions. Implicit mapping
cannot take place between source properties and Endeca properties.

You enable implicit mapping from the property mapper Advanced tab.

• Default mapping — This option defines the default that Forge uses to handle source properties
that have neither explicit nor implicit mappings.You can specify that Forge ignore source properties
without explicit or implicit mappings, create a new Endeca property to map to the source property,
or create a new dimension to map to the source property.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

29Overview of Source Property Mapping | Types of source property mapping

You enable default mapping from the property mapper Advanced tab.

Important: Techniques to automate the mapping process are intended to facilitate the process
of building prototypes and should not be used for building production-ready implementations.
Implicit and default mapping techniques can have unexpected results if you’re not careful when
using them.

Related Links
About enabling implicit mapping on page 39

The first advanced option, Map source properties to Endeca dimensions with the same
name, enables implicit mapping.

Enabling default mapping on page 40
The default mapping option defines the default that Forge uses to handle source properties
that have neither explicit nor implicit mappings. There are three possible settings.

Priority order of source property mapping
Forge uses a specific prioritization when mapping source properties.

1. Forge looks for an explicit mapping for the source property.
2. If no explicit mapping exists and “Map source properties to Endeca dimensions with the same

name” is enabled, Forge tries to create an implicit mapping between the source property and a
like-named dimension.

3. If no explicit or implicit mapping exists, Forge uses the “If no mapping is found, map source
properties to Endeca: Properties/Dimensions” option to determine how to handle the mapping.

About adding a property mapper
This section provides a quick overview to adding a property mapper to the pipeline, including:

• Determining where to place the property mapper in the pipeline.
• Creating the property mapper in Developer Studio.
• Using the Mappings editor, which you use to create explicit and null mappings.

Determining where to add the property mapper
The fundamental requirements for the placement of a property mapper in the pipeline are:

• The property mapper must come after a record input component (such as a record adapter) and
a dimension input component (such as a dimension server).

• The property mapper must come before the indexer adapter.

In a basic pipeline, the property mapper uses the record adapter as its record source and the dimension
server as its dimension source, and then the indexer adapter takes the property mapper’s output as
its record source.

Partial Update Pipeline

Pipelines used for partial updates also use a property mapper, as explained in the Endeca Partial
Updates Guide. The Pipeline Diagram example below shows a partial update pipeline:

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Source Property Mapping | About adding a property mapper30

In this partial update pipeline, the property mapper (PropDimMapper) uses the record adapter
(LoadUpdateData) as its record source and the dimension server as its dimension source.The record
manipulator (UpdateManipulator) uses the property mapper as its record source.

Creating the property mapper
The Developer Studio help provides a step-by-step procedure of how to add a property mapper to
your pipeline. This section gives an overview of the general steps.

To create a property mapper:

1. In Developer Studio, open the Pipeline Diagram dialog.

2. Select New > Property Mapper.
A New Property Mapper editor is displayed.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

31Overview of Source Property Mapping | About adding a property mapper

3. Enter a name for the property mapper, a record source, and a dimension source.You can leave
the other settings at their defaults while developing your initial working pipeline.

4. To add the property mapper, click OK.

The next sections will give overviews of the functions available in the Mappings editor.

The Mappings editor
The Mappings editor is where you create your source property mappings.You access this editor
from the Property Mapper editor by clicking the Mappings button.

When you open the Mappings editor, it displays a table of the existing source property mappings:

The meanings of the table columns are:

• Source – The name of the source property to be mapped.
• Target – The name of an Endeca property or dimension to which the source property will be

mapped. This cell will be empty if the source property has a null mapping.
• Match mode – Indicates the type of match mode used for a dimension mapping (the cell will be

empty for properties).

Related Links
About choosing a match mode for dimensions on page 35

In Developer Studio, you set the type of dimension value handling, on a per mapping basis,
by selecting a mode from the Match mode list in the Dimension Mapping editor, as illustrated
below:

Creating new source mappings
The New button lets you create a new source property mapping.

To create a new mapping:

1. Left-click the New button.
Three choices are displayed.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Source Property Mapping | The Mappings editor32

2. Select the type of mapping you wish to create.
The corresponding editor appears. For example, selecting Property Mapping displays the Property
Mapping editor.

3. Enter the name of the source property and select a target Endeca property or dimension to which
the source property will be mapped.

The Maximum Length field defines the maximum source property value length allowed when
creating mappings. That is, source properties that have values that exceed this length are not
mapped.

The Oracle Endeca Developer Studio help also provides information on the Property Mapping editor
and the Dimension Mapping editor.

Using null mappings to override implicit and default mappings
Explicit null mappings provide a means to prevent an implicit or default mapping from being formed
for a particular source property. In other words, you can enable either implicit or default mapping, and
then turn off mapping altogether for selected source properties using explicit null mappings.

To create a null mapping:

1. Select New > Null Mapping in the Mappings editor.

2. Enter the source property name in the Null Mapping editor.

Example

The following example shows a source property named P_TestProp that will have a null mapping:

Oracle Endeca Platform Services Forge GuideEndeca Confidential

33Overview of Source Property Mapping | The Mappings editor

About assigning multiple mappings
You can assign more than one mapping to a source property—for example, you can map a source
property to both a dimension and an Endeca property. A typical source property that you may want to
map to both a dimension and an Endeca property is Price.

You can map the Price source property in the following ways:

• To a Price Range dimension that allows the end-user to search for records within a given price
range (for example, wines that cost between $10 and $25).

• To an Endeca property that allows you to display the discrete price of each individual record.

Conversely, you can assign more than one source property to a single dimension or Endeca property.
For example, if you have multiple source properties that are equivalent, most likely they should all be
mapped to the same dimension or Endeca property. Flavor and Color are example properties that
might require this behavior.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Source Property Mapping | The Mappings editor34

Chapter 4

Match Modes

When Forge maps a source property value to a dimension value, the dimension value it uses can
either be explicitly defined in the dimension hierarchy or automatically generated by Forge.You control
this behavior by using match modes.

About choosing a match mode for dimensions
In Developer Studio, you set the type of dimension value handling, on a per mapping basis, by selecting
a mode from the Match mode list in the Dimension Mapping editor, as illustrated below:

There are three match modes you can choose from:

• Normal
• Must Match
• Auto Generate

Note: Match modes only apply to dimensions.They are not used when mapping source properties
to Endeca properties.

Normal mode
Normal match mode maps only those source property values that have a matching dimension value
explicitly defined in the dimension hierarchy.

Forge assigns the IDs for any matching dimension values to the Endeca records. Any source property
values that do not have matching dimension values in the dimension hierarchy are ignored.

In order for a source property value to match a dimension value, the dimension value’s definition must
contain a synonym that:

• Is an exact text match to the source property value.
• Has its Classify option enabled.

Example

This example shows the Synonyms dialog in the Dimension Value editor with a dimension value
synonym that has its Classify option enabled:

Must Match mode
Must Match behaves identically to Normal, with the exception that Must Match issues a warning for
any source property values that do not have matching dimension values.

Related Links
The Forge Logging System on page 109

This section provides a brief introduction to the Forge logging system. Its command-line
interface allows you to focus on the messages that interest you globally and by topic.

Auto Generate mode
Auto Generate specifies that Forge automatically generates a dimension value name and ID for any
source property value that does not have a matching dimension value in the dimension hierarchy.
Forge uses these automatically-generated names and IDs to tag the Endeca records the same as it
would explicitly-defined dimension values.

Auto Generate mode dramatically reduces the amount of editing you have to do to the dimension
hierarchy. However, auto-generated dimensions are always flat. Auto-generated names and IDs are
persisted in a file that you specify as part of a dimension server component.

Related Links
Dimension server on page 50

Dimension servers work in conjunction with dimension adapters, and serve as a centralized
source of dimension information for all other pipeline components.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Match Modes | About choosing a match mode for dimensions36

Rules of thumb for dimension mapping
When you choose the match mode to use for generating your dimension values, keep in mind the
following two rules of thumb:

• If you manually define dimension values in the dimension hierarchy, the Normal, Must Match, and
Auto Generate features behave identically with respect to those dimension values.

• Any source property value that does not have a matching dimension value specified in the dimension
hierarchy will not be mapped unless you have set the dimension to Auto Generate in the pipeline.

Dimension mapping example
The following illustration shows a simple dimension mapping example that uses a combination of
generation methods. The sections after the illustration describe the mapping behavior in the example.

Dimension mapping

Wine_Type dimension

The Red and White property values have matching Red and White dimension values specified in the
dimension hierarchy. These property values are mapped to the Red and White dimension value IDs,

Oracle Endeca Platform Services Forge GuideEndeca Confidential

37Match Modes | Rules of thumb for dimension mapping

respectively. Bottles B and C are tagged with the Red dimension value ID, and Bottle A is tagged with
the White dimension value ID.

The Sparkling property value does not have a matching dimension value in the dimension hierarchy.
The Wine Type dimension is set to Must Match, so this property is ignored and a warning is issued.
As a result, Bottle D does not get tagged with a dimension value ID from the Wine Type dimension.

Country dimension

There are no dimension values explicitly defined in the dimension hierarchy for the Country dimension.
However, this dimension is set to Auto Generate, so all three of the Country property values (USA,
France, and Chile) are mapped to automatically-generated dimension value IDs.

Bottle A is tagged with the auto-generated ID for the USA dimension value. Bottles B and D are tagged
with the auto-generated ID for the France dimension value. Bottle C is tagged with the auto-generated
ID for the Chile dimension value.

Body dimension

The Crisp property value has a matching dimension value specified in the dimension hierarchy, so the
Crisp property value is mapped to the Crisp dimension value. Bottle A is tagged with the Crisp dimension
value ID.

The other three property values (Elegant, Full, and Fresh) do not have matching dimension values in
the dimension hierarchy but, because the Body dimension is set to Auto Generate, these three property
values are mapped to automatically-generated dimension value IDs.

Bottle B is tagged with the auto-generated ID for the Elegant dimension value. Bottle C is tagged with
the auto-generated ID for the Full dimension value. Bottle D is tagged with the auto-generated ID for
the Fresh dimension value.

Regardless of how they were generated, all of the dimension value IDs are included in the finished
data that Forge produces for indexing.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Match Modes | Dimension mapping example38

Chapter 5

Advanced Mapping Techniques

You can specify mapping techniques and default behavior using the Property Mapper editor Advanced
tab.

The Property Mapper editor Advanced tab
The Property Mapper editor Advanced tab (shown below) lets you configure advanced mapping
techniques when you are building prototypes.

The following sections describes these techniques.

Important: Oracle strongly recommends that you use the explicit mapping techniques, because
the advanced mapping techniques can have unexpected results if you are not careful when
using them.

About enabling implicit mapping
The first advanced option, Map source properties to Endeca dimensions with the same name,
enables implicit mapping.

When implicit mapping is enabled, any source property that has a name that is identical to an existing
dimension is automatically mapped to that dimension. The like-named dimension, and any of its
constituent dimension values, must already exist in your dimension hierarchy (in other words, you’ve
already defined them using the Dimensions and Dimension Values editors).

Implicit mapping uses the Normal mapping mode where only those source property values that have
a matching dimension value explicitly defined in the dimension hierarchy are mapped. Forge assigns
the IDs for any matching dimension values to the Endeca records. Any source property values that
do not have matching dimension values in the dimension hierarchy are ignored.

Note: Implicit mapping is limited to mappings between source properties and dimensions. This
means that implicit mapping cannot take place between source properties and Endeca properties.
In addition, implicit mapping only works if no explicit mapping exists.

Enabling default mapping
The default mapping option defines the default that Forge uses to handle source properties that have
neither explicit nor implicit mappings. There are three possible settings.

Use the default mapping option with caution because:

• With this option enabled, all source properties will ultimately be mapped and mapped properties
use system resources. Ideally, you should only map source properties that you intend to use in
your implementation so that you minimize the use of system resources.

• Many production-level implementations automatically pull and process new data when it is available.
If this data has new source properties, these properties will be mapped and included in your MDEX
Engine indices. Again, this uses system resources unnecessarily but, perhaps more importantly,
this situation may also result in the display of dimensions or Endeca properties that you do not
want your users to see.

To set the default mapping options:

1. Select the Advanced tab in the Property Mapper editor.
The tab includes the following option:

If no mapping is found, map source properties to Endeca:

• Properties
• Dimensions

2. Select one or neither of the two settings:

DescriptionOption

Uncheck the option altogether to ignore source properties that do not have an
explicit or implicit mapping defined.

Neither

Check Property to create a mapping between the source property and an
Endeca property. Forge does this by creating a new Endeca property that uses
the same name and value as the source property and assigning it to the record.

Properties

Check Dimension to create a mapping between the source property and a
dimension. Forge does this by creating a new dimension, using the source

Dimensions

property’s name. Forge uses the Auto Generate mode to populate the
dimension with dimension values that match the source property’s values.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Advanced Mapping Techniques | Enabling default mapping40

About the default maximum length for source property
values

The Default Maximum Length option defines the maximum source property value length allowed
when creating mappings. Source properties that have values that exceed this length are not mapped,
and a warning is issued by the Forge Logging system, if so configured.

If you do not explicitly specify a Default Maximum Length, Forge checks against the following limits
when determining whether to map a value:

• Source properties that are mapped to Endeca properties can have values of any length.
• Source properties that are mapped to dimensions must have values that are 255 characters or

less.

If you do explicitly specify a Default Maximum Length, that length is applied to both Endeca property
and dimension mappings.

Related Links
The Forge Logging System on page 109

This section provides a brief introduction to the Forge logging system. Its command-line
interface allows you to focus on the messages that interest you globally and by topic.

About overriding the default maximum length setting
You can override the Default Maximum Length setting on a per-mapping basis by using the Maximum
Length field in both the Property Mapping and Dimension Mapping editors.

Example

Suppose you use the Default Maximum Length to limit the length of all your source property mappings
to be 100 characters. However, you want to allow the P_Description property to have a greater limit
(say, 255 characters).You would then use the Property Mapping editor to set an override for the
P_Description source property that allows the description to be up to 255 characters:

Oracle Endeca Platform Services Forge GuideEndeca Confidential

41Advanced Mapping Techniques | About the default maximum length for source property values

Chapter 6

Before Building Your Instance
Configuration

Before you start building your instance configuration, you must create a directory structure to support
your data processing back end.

Endeca Application Controller directory structure
While the Endeca Application Controller builds the directory structure it requires, you first have to build
two directories:

• Endeca instance configuration directory — You create this directory and its contents with
Developer Studio (using the File > New Project menu). The directory contains the Developer
Studio project file, the baseline pipeline file, the partial updates pipeline file (if you are running
partial updates), and the index configuration files (XML).You then use Developer Studio to send
the instance configuration to Endeca Workbench.

• Incoming directory — This directory contains the source data to be processed by Forge.You
then provision this directory in Endeca Workbench by using the EAC Administration > Admin
Console menu, and selecting the Forge component tab.

You must create these directories before you use Endeca Workbench to provision your application
and its components to the EAC. Be sure to copy your source data to the incoming directory on the
machine that will be running Forge. This is the location where Forge looks for source data.

Pipeline overview
Your pipeline functions as the script for the entire data transformation process that occurs when you
run the Forge program. The pipeline specifies things like the format and location of the source data,
any changes to be made to the source data (standardization), and the mapping method to use for
each of the source data’s properties.

A pipeline is composed of a collection of components. Each component performs a specific function
during the transformation of your source data into Endeca records. Components are linked together
by means of cross-references, giving the pipeline a sequential flow.

About adding and editing pipeline components
You add and edit pipeline components using the Pipeline Diagram editor in Developer Studio.

The pipeline diagram depicts the components in your pipeline and the relationship between them. It
describes the flow of events that occur in the process of converting raw data to a format that the Endeca
MDEX Engine can use, making it easy for you to trace the logic of your data model. The pipeline
diagram is the best way to maneuver and maintain a high-level view of your pipeline as it grows in
size and complexity.

For details on adding and editing pipeline components, see the Oracle Endeca Developer Studio Help.

About creating a data flow using component names
You must give every component in your pipeline a unique name that identifies it to the other components.
You use these names to specify cross-references between components, effectively creating a flow of
data through the pipeline.

Pipeline Example

For example, by tracing the data flow backwards in the following illustration and starting from the
bottom, you can see that:

1. IndexerAdapter gets its data from PropMapper and DimensionServer.
2. PropMapper gets its data from LoadData and DimensionServer.
3. DimensionServer gets its data from Dimensions.
4. LoadData and Dimensions both get their data from source files (this is indicated by the lack of

arrows feeding them).

When you specify a data source within a component’s editor, you are indicating which of the other
components will provide data to that component. Components can have multiple data sources, such
as the PropMapper component above, which has both a record source, LoadData, and a dimension
source, DimensionServer.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Before Building Your Instance Configuration | Pipeline overview44

Pipeline Example: Adding a Pipeline Component

Alternatively, you can connect pipeline components graphically in the Pipeline Diagram editor.

When you add and remove components, you must be careful to make any data source changes
required to maintain the correct data flow. To illustrate this point, the example above is modified to
include another component, RecordManipulator, that comes between LoadData and PropMapper in
the data flow of the pipeline. Adding RecordManipulator in this location requires that:

• RecordManipulator’s data source is set to LoadData.
• PropMapper’s data source is changed to RecordManipulator.

Similar care must be taken when removing a component from a pipeline.

URLs in the pipeline
Some of the components in the pipeline require URLs that point to external files, such as source data
files. All of these URLs are relative to the location of the Pipeline.epx file.

This file contains the pipeline specifications that you have created in Developer Studio. Developer
Studio automatically generates a Pipeline.epx file when you create a new project and saves it in
the same directory as your .esp project file.

Note: As a rule, you should not move the Pipeline.epx file, or any other automatically
generated files, from their location in the same directory as the .esp project file.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

45Before Building Your Instance Configuration | Pipeline overview

Chapter 7

About Creating a Basic Pipeline

Endeca Developer Studio provides a Basic Pipeline template that helps you get started when building
your pipeline from scratch. The goal of the Basic Pipeline template is to get you up and running with
a working pipeline as quickly as possible. A working pipeline is defined as a pipeline that can read in
source records and output finished records, ready for indexing.

The Basic Pipeline template
The Basic Pipeline template streamlines the setup for a pipeline that contains the following five
components:

• Record adapter (LoadData) for loading source data.
• Property mapper (PropMapper) for mapping source properties to Endeca properties and dimensions.
• Indexer adapter (IndexerAdapter) for writing out data that is ready to be indexed by the Dgidx

program.
• Dimension adapter (Dimensions) for loading dimension data.
• Dimension server (DimensionServer) that functions as a single repository for dimension data that

has been input via one or more dimension adapters.

The following illustration shows the pipeline diagram for a basic pipeline:

Oracle recommends that you leave most of the Basic Pipeline component options at their default
settings and customize them later, after you have a basic pipeline functioning. Endeca also recommends
that you do not include other components to perform additional tasks until after you have a functioning
pipeline. The remainder of this section describes how to get a Basic Pipeline working.

Note: This section does not describe all of the features of a basic pipeline’s components in
exhaustive detail. It describes the minimum you need to know to create a functioning pipeline.
Detailed information on individual components is included in subsequent chapters of this book
and in the Oracle Endeca Developer Studio Help.

Record adapters
Record adapters load and save records in a variety of formats, including delimited, binary, ODBC
(Windows only), JDBC, and Microsoft Exchange. Each record adapter format has its own set of
attributes.

This section describes the most common type of record adapter: an input record adapter that loads
data stored in delimited format. See the Oracle Endeca Developer Studio help for detailed information
on the other record adapter types.

Note: Output record adapters are primarily used as a diagnostic tool and for translating formats.

Source data in delimited format

A delimited file is a rectangular file with columns and rows separated by specified characters. Each
row corresponds to a record and each column corresponds to a property.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Creating a Basic Pipeline | Record adapters48

The records in a delimited file must have identical properties, in terms of number and type, although
it is possible for a record to have a null value for a property.

About the Record Index tab
The Record Index tab allows you to add dimensions or properties that are used in the record adapter's
record index to control the order in which records are read in for downstream components.

A record index is used to support join functionality, and is needed only if a downstream component
will need to request records by ID. For example, a cache needs to be able to respond to a record
assembler's (left join) request for a particular record.

If the order of the records being used by the downstream component do not matter, then you should
not add a record index to the record adapter. For example, a switch join does not require a record
index on components above it because it does not matter what order the records are pulled in.

If the record adapter has a record index that is not required, you may see a Forge log WARN message
about an ID conflict, as illustrated by the following example:

FORGE {baseline}: The RecordAdapter 'LoadMainData' has records
that do not follow the index specified.
Record number '14' violates the index sort order with record key
[R_VHNR] => {'PVal [value= 361945]'} (the previous record key
was [R_VHNR] => {'PVal [value= 957483]'})!

If you see this warning, remove the record index from the record adapter and Forge will stop removing
records that do not conform to the record index.

Note: There are two cases where join keys are not required for data sources and, hence, neither
are record indexes.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Dimension adapter
You use dimension adapters to load dimension data.

When you create a new project in Developer Studio, a default dimensions file, called Dimensions.xml,
is created for you and stored in the same directory as your .esp project file. As you make changes
to your dimension hierarchy in Developer Studio, this file is updated to reflect the changes.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

49About Creating a Basic Pipeline | Dimension adapter

Note: Dimension adapters can also save dimension information for diagnostic purposes. Saving
dimensions is an advanced topic and it is not covered in this section.

Dimension server
Dimension servers work in conjunction with dimension adapters, and serve as a centralized source
of dimension information for all other pipeline components.

Dimension information typically follows the path outlined below:

1. Dimension adapters load dimension information from your dimension source files.
2. The dimension server gets its dimension information from the dimension adapters.
3. Other pipeline components get their dimension information from the dimension server.

Setting up your pipeline with a dimension server allows you to change your dimension adapters as
needed without having to change the dimension source for all other pipeline components that require
dimension information.

In addition to functioning as a centralized source for dimension information, dimension servers also
coordinate the loading and saving of dimension information that is generated when using the Auto
Generate option during source property-to-dimension mapping. Auto-generated dimensions are
persisted in the file location that is specified as part of the dimension server component.

Typically, there is only one dimension server per pipeline.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your
source data to Endeca properties and/or dimensions to make them navigable, displayable,

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Creating a Basic Pipeline | Dimension server50

both, or neither. The property mapper is a key component in developing a pipeline, so it is
important to understand its functions well.

Property mapper
You use a property mapper component to establish mappings between source properties, and Endeca
properties and dimensions.These mappings dictate which dimension values are tagged to the current
record and which property information is available for record search and display.

Oracle strongly recommends that you have only one property mapper per pipeline.

At a minimum, a property mapper requires both a record source and a dimension source to define the
components that will supply it with record and dimension data.You can leave the other settings at
their defaults while developing your initial working pipeline.

Important: The property mapper is a crucial component and you should be very familiar with
its settings.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your
source data to Endeca properties and/or dimensions to make them navigable, displayable,
both, or neither. The property mapper is a key component in developing a pipeline, so it is
important to understand its functions well.

Indexer adapter
An indexer adapter writes out data that is ready to be indexed by the Dgidx program. An indexer
adapter requires two data sources: one for record data and one for dimension data. Typically, there
is only one indexer adapter per pipeline.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

51About Creating a Basic Pipeline | Property mapper

Chapter 8

About Running Your Basic Pipeline

After you have created your basic pipeline, you should run it and view the results.Your initial goal is
to make sure that your source data is running through the entire pipeline and being incorporated into
the MDEX Engine indices.

Running a pipeline
This task describes the steps you use to run your basic pipeline.

The Basic Pipeline template does not contain a source data file. Therefore, before you run the Basic
Pipeline, make sure you have created an incoming directory that contains source data. Alternatively,
you can use the incoming directory in the sample_wine_data reference implementation.

See the Oracle Endeca Workbench Administrator’s Guide for more details on running a pipeline under
the Endeca Application Controller.

To run a pipeline:

1. In Endeca Workbench, provision your application and its components to the EAC Central Server,
as documented in the Oracle Endeca Workbench Administrator’s Guide.

2. In Developer Studio, use the Tools > Endeca Workbench menu option to send your instance
configuration to Endeca Workbench by using the Set Instance Configuration option.

3. In Endeca Workbench, run a baseline update script to process your data and start the MDEX Engine
(optionally, you can run a baseline update script using the eaccmd utility, or the custom Web
services interface).

Viewing pipeline results in a UI reference implementation
Once you have an MDEX Engine running, you can use a generic front-end, called a UI reference
implementation, to view the data. UI reference implementations are sample Web applications included
with the Endeca distribution.

This procedure assumes that the JSP UI reference implementation that is shipped with the Endeca
Workbench is running.

To test your basic pipeline using a UI reference implementation:

1. Open Internet Explorer 6.0 or later.

2. Navigate to the JSP reference implementation; for example:

http://localhost:8888/endeca_jspref

3. Enter the host and port for your MDEX Engine and click Go.

At this point in the process, you should see a list of records but no Endeca properties or dimensions.

You must define and map Endeca properties and dimensions before they can appear in your Web
application.

Related Links
After Your Basic Pipeline Is Running on page 55

After you get your basic pipeline running, you can begin crafting your Endeca implementation
in earnest. Again, Oracle recommends a stepped approach where you implement a small
set of features, test them to make sure your implementation is behaving as expected, and
then implement additional features.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Running Your Basic Pipeline | Viewing pipeline results in a UI reference implementation54

Chapter 9

After Your Basic Pipeline Is Running

After you get your basic pipeline running, you can begin crafting your Endeca implementation in earnest.
Again, Oracle recommends a stepped approach where you implement a small set of features, test
them to make sure your implementation is behaving as expected, and then implement additional
features.

Additional tasks
Additional tasks you will most likely want to do include:

• Create Endeca properties and dimensions, and then map them to your source properties.
• Designate an Endeca property to be the record specifier.
• Add pipeline components for various tasks such as joining source data and manipulating source

data properties.
• Specify additional index configuration settings such as search configuration, dimension groups,

and so forth.

Important: The information in this section gives a high level overview of these additional tasks
and is not intended to be complete. Refer to other sections in this documentation and the Oracle
Endeca Developer Studio Help for detailed information on implementing the features listed here,
as well as many others.

About source property mapping
Source property mappings dictate which dimension values are tagged to each record and which
property information is available for record search, sort, and display.

Before you can map a source property to an Endeca property or dimension, you must create the
Endeca property or dimension. This section covers how to create Endeca properties and dimensions
as well as how to map source properties to them. It also tells you how to create null mappings.

Source properties can be mapped in three different ways. They can be:

• Mapped to an Endeca property (for search, sort, and display only).
• Mapped to a dimension (for search, sort, display, and navigation).
• Ignored by specifying a null mapping.

Note: The mapping described in this section is known as explicit mapping. In general, this is
the type of mapping Oracle recommends that you use.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your
source data to Endeca properties and/or dimensions to make them navigable, displayable,
both, or neither. The property mapper is a key component in developing a pipeline, so it is
important to understand its functions well.

Adding and mapping Endeca properties
Preparing an Endeca property for display within an Endeca implementation is a two-step process.

Note: The UI reference implementation has been written to iterate over all the Endeca properties
that are returned with a query and display them, so you don’t have to do any additional coding
to get the Endeca property to display in the UI.

You must:

1. Add the Endeca property to your project.You do this in the Property editor in Developer Studio.

2. Create a mapping between a source property and the Endeca property.You do this in the Property
Mapper editor in Developer Studio.

This step instructs the Data Foundry to populate the Endeca property with the value from the source
property. Without this mapping, the Endeca property will not be available for display.

Continue adding Endeca properties and mapping them to source properties.You can map multiple
source properties to a single Endeca property.

Adding and mapping dimensions
Similar to creating an Endeca property, the process for adding a dimension to your implementation
has several steps.

To create a dimension, you must:

1. Add the dimension to your project.You do this in the Dimension editor in Developer Studio.

2. Add any dimension values that you want to create manually.

3. Create a mapping between a source property and the dimension in the Developer Studio Property
Mapper editor. Without this mapping, the dimension will be removed from the MDEX Engine.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your
source data to Endeca properties and/or dimensions to make them navigable, displayable,
both, or neither. The property mapper is a key component in developing a pipeline, so it is
important to understand its functions well.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

After Your Basic Pipeline Is Running | About source property mapping56

About synonyms

Synonyms provide a textual way to refer to a dimension value, rather than by ID alone.You specify
the way each synonym is used by the MDEX Engine in the Dimension Value Synonyms editor in
Developer Studio.

A dimension value can have multiple synonyms.You can choose from Search, Classify, and (Display)
options as follows:

• Enabling the Search option indicates that this synonym should be considered during record and
dimension searches.You can enable search for multiple synonyms, allowing you to create a more
robust dimension value for searching.

• Enabling the Classify option indicates that this synonym should be considered when attempting
to map a source property value to this dimension value. In order for a source property value to
match a dimension value, the dimension value’s definition must contain a synonym that:

• Is an exact text match to the source property value.
• Has its Classify option enabled.

If a synonym does not have its Classify option enabled, it is ignored during mapping, regardless
of whether or not it is a text match to a source property value.

Again, by enabling classification for multiple synonyms, you increase the mapping potential for a
dimension value because a source property can map to any of the synonyms that have been
marked with Classify.

• While you can have multiple synonyms for a dimension value, only one synonym can be marked
for display. This is the synonym whose text is displayed in your implementation whenever this
dimension value is shown. By default, the first synonym you create is set to be displayed, as is
indicated by the parentheses around the synonym’s name, but you can set any synonym for display
in the Synonyms dialog box

To better understand these three options, consider the following example.

Example

This dimension value has an ID of 100 (automatically assigned by Developer Studio) and three
synonyms:

Dimension Value ID = 100
Synonyms =
 2002 SEARCH=enabled CLASSIFY=enabled DISPLAY=yes
 ‘02 SEARCH=enabled CLASSIFY=enabled DISPLAY=no
 02 SEARCH=enabled CLASSIFY=enabled DISPLAY=no

In this example, records with source property values matching any of the following terms would be
tagged with the dimension value ID 100, and dimension searches on those terms would return that
dimension value ID:

2002

‘02

02

Additionally, anytime the dimension value with an ID of 100 is displayed in the implementation, the
text used to represent the dimension value is “2002”.

After you have created the dimension and defined any manual dimension values, you create the
mapping between a source property and the dimension.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

57After Your Basic Pipeline Is Running | About source property mapping

Note: The UI reference implementation has been written to iterate over all the dimensions that
are returned with a query and display them, so you don’t have to do any additional coding to
get the dimension to display in the UI.

Continue adding dimensions and mapping them to source properties.You can map multiple source
properties to a single dimension.

About null mappings
A null mapping, set in the Developer Studio Property Mapper editor, indicates that a source property
should be ignored.

Explicit null mappings provide a means to prevent an automated mapping from being formed for a
particular source property. In other words, you can enable automated mapping, and then turn off
mapping for selected source properties using explicit null mappings.

Related Links
Types of source property mapping on page 29

There are four types of source property mappings:

Setting the record specifier property
Developer Studio lets you configure how records should be identified by your application. The
RECORD_SPEC attribute allows you to specify the property that you wish to use to identify specific
records.

Records can have only one record spec during updates and at startup.You may set the RECORD_SPEC
attribute’s value to TRUE in any property where the values for the property meet the following
requirements:

• The value for this property on each record must be unique.
• Each record should be assigned exactly one value for this property.

Only one property in the project may have the RECORD_SPEC attribute set to TRUE.

For example, Forge uses the RECORD_SPEC property value to identify the records that it is transforming.
If the project does not have a designated the RECORD_SPEC property, Forge assigns a unique record
specifier value to each record. As another example, implementing partial updates requires that the
project have an assigned RECORD_SPEC property.

Although it is valid for a project to not have a specific RECORD_SPEC property, it is recommended that
you assign one. For example, you may wish to use a field such as UPC, SKU, or part_number to
identify a record.

To configure a RECORD_SPEC attribute for an existing property:

1. In the Project tab of Developer Studio, double-click Properties.

2. From the Properties view, select a property and click Edit.
The Property editor is displayed.

3. In the General tab, check Use for Record Spec.

4. Click OK.
The Properties view is redisplayed.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

After Your Basic Pipeline Is Running | Setting the record specifier property58

5. Select File > Save.

About specifying dimensions and dimension value order
The MDEX Engine returns dimensions and dimension values in the order in which they are specified
in the Developer Studio Dimensions and Dimension Values editors, respectively. As a result, you
may want to reorder your dimensions and dimension values to better control their display.

Additional pipeline components
After you have added your dimensions and Endeca properties to your project, you may want to include
other pipeline components to perform additional tasks. The following table describes the components
you can add:

For More InfoDescriptionComponent

"Adding a record assembler" in
this guide and in the Oracle
Endeca Developer Studio Help.

Join data from one or more secondary data
sources to the current record.

Record
assemblers

"Adding a record cache" in this
guide and in the Oracle Endeca
Developer Studio Help.

Store a temporary copy of record data that has
been read in by a record adapter. Record
caches are generally used in conjunction with
record assemblers and are set up to contain
data from secondary data sources.

Record caches

For information on how to write
your own Java manipulator and

A Java manipulator is your own code in Java
that you can use to perform data manipulation

Java manipulators

for a sample code, see theon properties and records. Java manipulators
Endeca Content Adapter
Development Kit (CADK) Guide.

provide you with the most generic way of
changing records in the Forge pipeline.

A Java manipulator contains a class that is
based on the Java API Adapter interface in the
Content Adapter Development Kit (CADK).

See "Using Perl Manipulators to
Change Source Properties" in the

Allow you to write custom Perl code that
changes the data associated with an Endeca

Perl manipulators

Oracle Endeca Developer Studio
Help.

record. Perl manipulators are useful for such
tasks as manually adding or removing source
properties, changing the value of a source

For details on Perl code syntax,
see the Endeca Forge API Guide
for Perl.

property, retrieving records based on a
particular key, and so on.

"Creating a spider" in this guide.Crawl document hierarchies on a file system
or over HTTP. From a root URL, a spider spools
URLs of documents to crawl.

Spiders

Oracle Endeca Platform Services Forge GuideEndeca Confidential

59After Your Basic Pipeline Is Running | About specifying dimensions and dimension value order

For More InfoDescriptionComponent

See "Record Manipulators and
Expressions" in the Oracle
Endeca Developer Studio Help.

Provide support, such as URL extraction, for a
content acquisition system, such as a crawler
implementation.

Record
manipulators

See the Endeca Partial Updates
Guide.

Provide support for partial (rapid) updates.Update adapters

Related Links
Adding a record cache on page 79

Use the options in the Record Cache editor to add and configure a record cache for each
of your record sources.

Additional index configuration options
The Endeca MDEX Platform offers a rich set of index configuration options that allow you to customize
your Endeca implementation.You use the index configuration to specify things like search
configurations, precedence rules, dynamic business rules, and so on.

The major index configuration features are described in the table below. Refer to other sections of this
guide as well as to the Endeca Basic Development Guide and the Endeca Advanced Development
Guide for information on all of the features you can choose to implement.

For More InfoDescriptionComponent

See the "Working with
Dimensions" chapter in Endeca
Basic Development Guide.

Allow you to organize dimensions into explicit
groupings for presentation purposes.

Dimension groups

See "Configuring Dimension
Groups" in the Oracle Endeca
Developer Studio Help.

See the "Working with Search
Interfaces" chapter in Endeca
Basic Development Guide.

Allow you to control record search behavior for
groups of one or more properties or
dimensions. Some of the features that can be

Search interfaces

specified for a search interface include
See "Configuring Search
Interfaces" in the Oracle Endeca
Developer Studio Help.

relevance ranking, matching across multiple
properties and dimensions, and partial
matching.

See the "Using Stemming and
Thesaurus" chapter in the Endeca
Advanced Development Guide.

The thesaurus allows the MDEX Engine to
return matches for related concepts to words
or phrases contained in user queries. For

Thesaurus entries

example, an thesaurus entry might specify that
See "Configuring Search" in the
Oracle Endeca Developer Studio
Help.

the phrase "Mark Twain" is interchangeable
with the phrase "Samuel Clemens".

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

After Your Basic Pipeline Is Running | Additional index configuration options60

For More InfoDescriptionComponent

See the Oracle Endeca
Workbench Help.

See the "Advanced Search
Features" section in the Endeca
Advanced Development Guide.

Stop words are words that are set to be ignored
by the Endeca MDEX Engine. Typically,
common words like "the" are included in the
stop word list.

Stop words

See "Configuring Search" in
Oracle Endeca Developer Studio
Help.

See the "Search Characters"
chapter in the Endeca Basic
Development Guide.

Allow you to configure the handling of
punctuation and other non-alphanumeric
characters in search queries.

Search characters

See "Configuring Search" in
Oracle Endeca Developer Studio
Help.

See the "Using Stemming and
Thesaurus" chapter in the Endeca
Advanced Development Guide.

Stemming allows the word root and word
derivations of search terms to be included in
search results. For example, a search for the

Stemming

term “children” would also consider “child”
See “Configuring Search” in the
Oracle Endeca Developer Studio
Help.

(which is the word root). This means that
singular and plural forms of nouns are
considered equivalent and interchangeable for
all search operations. Preconfigured stemming
files are shipped for supported languages.You
cannot modify these files, but you can enable
or disable stemming with Developer Studio.

See "Configuring Precedence
Rules" in the Oracle Endeca
Developer Studio Help.

Allow your Endeca implementation to delay the
display of a dimension until the user triggers it,
making navigation through the data easier and
avoiding information overload.

Precedence rules

See "Promoting Records with
Dynamic Business Rules" in the

Dynamic business rules allow you to promote
contextually relevant result records, based on

Dynamic business
rules

Endeca Advanced Development
Guide.

data-driven rules, to users as they navigate or
search within a dataset. For example, you can
show a list of best-selling merlots when a user

See "Configuring Dynamic
Business Rules" in Oracle
Endeca Developer Studio Help.

has navigated to a record set made up of
merlots. Dynamic business rules make it
possible to implement features such as
merchandising and content spotlighting. See "Working with dynamic

business rules" in the Oracle
Endeca Workbench Help.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

61After Your Basic Pipeline Is Running | Additional index configuration options

Part 2

Joins

• Overview of Joins
• About Configuring Join Keys and Record Indexes
• About Implementing Joins
• Advanced Join Behavior
• Tips and Troubleshooting for Joins

Chapter 10

Overview of Joins

Generally, applications consist of more than one data source. For example, an application used to
navigate books would have records that contain both title and author information. If the title and author
source data reside in different locations, you would need to join them together to create a single record
with both pieces of information.

Record assemblers and joins
You add a record assembler component to your pipeline to join data from one or more data sources.
To use a record assembler, you must define:

• The data sources to be joined. With two exceptions, all data sources feeding a join must be record
caches, described below.

• The type of join to perform.

Record caches give Forge random access to the data, allowing it to look up records by join key. Forge
uses available RAM for the cache and then allocates hard drive space as necessary.

When you configure a join in a record assembler, you specify a join key for each source. Join keys
are dimension or property names. Forge uses these keys to find equivalent records within the data
sources participating in the join.

During a record assembly, the following happens:

1. Forge finds the value for the join key in the current record.
2. Forge looks for a matching value to the join key within the record cache. If Forge finds a record

with a matching value, that record is considered equivalent to the current record.

3. Forge performs the join according to the configuration that you have specified.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Overview of Joins on page 65
Generally, applications consist of more than one data source. For example, an application
used to navigate books would have records that contain both title and author information. If
the title and author source data reside in different locations, you would need to join them
together to create a single record with both pieces of information.

About performing joins in a database
While the Data Foundry offers a large variety of join types and functionality, you are encouraged to
perform joins within a database prior to exporting the information to the Data Foundry, if possible. The
advantages of using a database to perform the join include:

• Many users are more familiar with this technology.
• Databases typically provide support for more data types.
• If the data is already in a database, existing indexes may be used, eliminating the need to recreate

the index.
• Eliminating joins from your pipeline makes for simpler pipelines.
• Using the database, in some cases, may reduce I/O by collapsing data in the join.

However, it is not always possible to join information in a database. Data may exist outside of a
database or in incompatible databases, may require a transformation prior to aggregation, and so on.
It is for these cases that the Data Foundry provides its extensive join facility.

Join keys and record indexes
Join keys determine how records are compared by the record assembler. For each data source feeding
a join, you designate one or more properties or dimensions to function as the source's join key.

During the course of the join, the record assembler compares the values within each source's join key.
Records that have the same values for their respective keys are considered equivalent for the purposes
of the join. With two exceptions, all joins require a join key for each data source.

Comparisons are based solely on property and dimension values, not names. It is not a requirement,
therefore, that the properties and dimensions you specify for your record keys have identical names.

Example

As an example, consider the following left join with four record sources. Source 1 and Source 2 use
Id as their join key. Source 3 and Source 4 use Pid as their join key. The other properties are not
part of the join key for any of the sources.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Joins | About performing joins in a database66

For this data, we know:

• The join key for the first record in Source 1 is Id=A. The second record's key is Id=C. The third
record's key is Id=B.

• The join key for the first record in Source 2 is Id=C. The second record's key is Id=D.
• The join key for the record in Source 3 is Pid=A.
• The join key for the record in Source 4 is Pid=B.

The resulting left join looks like this:

In this example, the following occurred:

• Record Id=A from Source 1 is joined to record Pid=A from Source 3.
• Record Id=B from Source 1 is joined to record Pid=B from Source 4.
• Record Id=C from Source 1 is joined to record Id=C in Source 2.
• Record Id=D from Source 2 has no equivalent in the left source, so it is discarded.

Note: Join keys rarely incorporate dimensions. One reason is that if you use dimensions in a
key, the records must have previously been processed and mapped by Forge. That is, the
records must have the dimensions tagged on them before the join begins.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

About matching record indexes for join sources
In addition to a join key, you must also configure a record index for each data source that feeds a join.
A record index is a key that indicates to the record assembler how it can identify records from that
source.

A source's record index key must match its join key. In other words, the key that tells the record
assembler how to find a source's records must be the same as the key that the record assembler uses
to compare records from that source.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

67Overview of Joins | Join keys and record indexes

Note: There are two cases where join keys are not required for data sources and, hence, neither
are record indexes.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

About Configuring Join Keys and Record Indexes on page 75
In addition to a join key, you must also configure a record index for each data source that
feeds a join. A record index is a key that indicates to the record assembler how it can identify
records from that source.

Join types
The following sections describe the join types supported by the Data Foundry. Each section provides
a simple example for the join type being discussed. Note that while most of the examples use two
record sources, many of the join types accept more than two sources, while other join types accept
only one. Also note that in the examples, Id is the name of the join key for all sources.

Left join
With a left join, if a record from the left source compares equally to any records from the other sources,
those records are combined. Records from the non-left sources that do not compare equally to a record
in the left source are discarded.

In a left join, records from the left source are always processed, regardless of whether or not they are
combined with records from non-left sources.

In the example below, the left source is Source 1. Records A, C, and D from Source 1 are combined
with their equivalents from Source 2. Record E is discarded because it comes from a non-left source
and has no equivalent in the left source. Record B is not combined with any other records, because
it has no equivalent in Source 2, but it is still processed because it comes from the left source.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Joins | Join types68

Inner join
In an inner join, only records common to all sources are processed. Records that appear in all sources
are combined and the combined record is processed. Records that do not exist in all sources are
discarded.

In the example below, Records A, C, and D are combined and processed. Records B and E are not
common to all sources and are discarded.

Outer join
In an outer join, all records from all sources are processed. Records that compare equally are combined
into a single record.

With an outer join, records that do not have equivalents in other data sources are not combined, but
are still processed and included in the join output. An outer join requires two or more record sources.

In the example below, Records A, C, and D have equivalents in both Source 1 and Source 2. These
records are combined. Records B and E do not have equivalents but they are still processed. As a
result, Record B does not have values for Retail and Wholesale because there is no Record B
in Source 2. Correspondingly, Record E has no values for Name and Brand because there is no
Record E in Source 1.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

69Overview of Joins | Join types

Disjunct join
In a disjunct join, only records that are unique across all sources are processed. All other records are
discarded.

In this example, records B and E are unique across all sources, so they are processed. Records A,
C, and D are not unique and therefore are discarded. Note that, in this example, the results for the
join appear odd, because a record will never have both Name/Brand properties and Retail/Whole¬
sale properties. Typically, this join is most useful when working with sources that share a common
set of properties.

Switch join
In a switch join, given N sources, all records from Source 1 are processed, then all records from Source
2, and so on until all records from all N sources have been processed.

Note that records are never compared or combined, and all records from all sources are processed.
Generally, a switch join is applied to sources that have similar properties but unique records, with
respect to record keys, across the sources.

In this example, all the records from Source 1 are processed, then all the records from Source 2 are
processed.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Joins | Join types70

Sort switch join
In a sort switch, all records from all sources are processed in such a way as to maintain the record
index. The record index specifies that records should be processed in a sorted order, determined by
record key comparison.

With a sort switch join, records are never combined. If a record from Source 1 compares equally to a
record from Source 2, the record from Source 1 is processed first, consistent with the order of the
sources as specified in the join settings.

In the example below, records A, C, and D are common to both Source 1 and Source 2. For each of
these records, the Source 1 instance is processed before the Source 2 instance. Records B and E
do not have equivalents, but they are processed in the order dictated by the record index which is,
in this case, the Id key.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

71Overview of Joins | Join types

First record join
In a first record join, the sources are prioritized such that, if a record from a higher priority source
compares equally to records from lower priority sources, the record from the highest priority source is
processed and the records from the lower priority sources are discarded.

Sources are listed in order of decreasing priority in the join configuration.

Records are never combined. The most common use of this join is for handling incremental feeds.
For incremental feeds, history data (previously processed records) is given a lower priority and the
latest data feed takes precedence. Records from the latest feed replace records in the history data,
and records from the history data are processed only if a corresponding record does not exist in the
latest feed.

In this example, records A, C, and D from Source 1 are processed, while their equivalents in Source
2 are discarded. Records B and E are both processed because they have no equivalents.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Overview of Joins | Join types72

Combine join
A combine join combines like records from a single data source. Combine is a pseudo-join that operates
on a single source.

In the example below, there are multiple records with Id=A, Id=C, and Id=D. These records are
combined. Only one records exists for Id=B and Id=E, so neither of these records is combined, but
both are processed and included in the joined data.

Note: Combining large numbers of records will cause Forge to print warning messages about
slow performance.

Related Links
Forge warnings when combining large numbers of records on page 89

When combining a large number of records (via either a Combine join or a record cache with
the Combine Records setting enabled), Forge will issue a warning that performance may
be slow. The default number of records at which this warning is issued is 100.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

73Overview of Joins | Join types

Chapter 11

About Configuring Join Keys and Record
Indexes

In addition to a join key, you must also configure a record index for each data source that feeds a join.
A record index is a key that indicates to the record assembler how it can identify records from that
source.

Creating a record index
You specify a record index for a data source in the source's editor. The following example describes
how to create a record index for a record cache.

We use a record cache in this example because, with two exceptions, all data sources that feed a join
must be record caches.

To create a record index for a record cache:

1. In the pipeline diagram, double-click the record cache you want to edit to open it in the Record
Cache editor.

2. Click the Record Index tab.

3. Click Add.

4. In the Type frame, do one of the following:

• Choose Custom Property. Type a name for the property in the Custom Property text box.
• Choose Dimension. Select a dimension name from the Dimension list.

5. (Optional) Repeat steps 2 and 3 to add additional dimensions or properties to the index.

6. (Optional) To reorder the components in the index, select a property or dimension and click Up or
Down.

7. Click OK.

Example

The following illustration shows a record cache called LeftDataCache with a record index of P_Name,
P_Price.

You specify a record cache's join key in the Record Assembler editor that uses the cache.

A source's record index key must match its join key. In other words, the key that tells the record
assembler how to find a source's records must be the same as the key that the record assembler uses
to compare records from that source.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Join keys with multiple properties or dimensions on page 77
You can specify multiple properties or dimensions, called key components, for a single join
key in order to join records based on more than one characteristic.

Creating a join key for a record cache on page 76
The following example describes how to create a join key for a record cache.

Creating a join key for a record cache
The following example describes how to create a join key for a record cache.

In addition to a join key, you must also configure a record index for each data source that feeds a join.
A record index is a key that indicates to the record assembler how it can identify records from that
source.

To create a join key for a record cache:

1. In the pipeline diagram, double-click the record assembler that uses the cache to open it in the
Record Assembler editor.

2. Click the Record Join tab.

The list of join entries corresponds with the data sources you specified in the Sources tab.

3. Select the record cache and click Edit.
The Join Entry editor appears.

4. Click Add.
The Key Component editor appears.

5. Using the steps below, create a join key that is identical to the record index key you created for the
record cache.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Configuring Join Keys and Record Indexes | Creating a join key for a record cache76

In the Type frame, do one of the following:a)

• Choose Custom Property. Type a name for the property in the Custom Property text box.
• Choose Dimension. Select a dimension name from the Dimension list.

b) Click OK to return to the Join Entry editor.
c) (Optional) Repeat these steps for each component you want to add to the key.
d) (Optional) To reorder the components in the key, select a component in the Join Entry editor

and click Up or Down.
e) Click OK to close the Join Entry editor.

6. Repeat steps 3 through 5 for each record source that is participating in the join.

7. When you are done configuring your join, click OK to close the Record Assembler editor.

Example

The join key for LeftDataCache should look like this:

Related Links
Creating a record index on page 75

You specify a record index for a data source in the source's editor. The following example
describes how to create a record index for a record cache.

Join keys with multiple properties or dimensions
You can specify multiple properties or dimensions, called key components, for a single join key in
order to join records based on more than one characteristic.

For example, consider the task of joining book data to corresponding price data. Assume that the
primary key component for a book is BID and price is determined by this BID plus another characteristic,
the cover type CTYPE.Therefore, the join must be configured to join on both BID and CTYPE, as shown
below:

Oracle Endeca Platform Services Forge GuideEndeca Confidential

77About Configuring Join Keys and Record Indexes | Join keys with multiple properties or dimensions

For consistency in the comparison, the join key for each source participating in a join must be parallel.
In other words, they must have the same number of key components, in the same order. Also, the
type of each join key component must be parallel for all join entries in a given record assembler. This
means that a dimension value key component cannot be compared to a property name key component.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Configuring Join Keys and Record Indexes | Join keys with multiple properties or dimensions78

Chapter 12

About Implementing Joins

With two exceptions, all data sources feeding a join must be record caches, so the procedures in this
section are written from that perspective.

Implementing a join
In order to implement a join, you must add the join and the records it will process into your pipeline,
and configure the join accordingly.

Implementing a join is a three-step process:

1. Add a record cache to your pipeline for each record source that will feed the join.

2. Add a record assembler to your pipeline.

3. Configure the join in the record assembler.

Each step is described in the following sections.

Adding a record cache
Use the options in the Record Cache editor to add and configure a record cache for each of your
record sources.

To add a record cache for each record source that will feed the join:

1. In the Pipeline Diagram editor, click New, and then choose Record > Cache.
The Record Cache editor appears.

2. In the Name text box, type a unique name for this record cache.

3. (Optional) In the General tab, you may do the following:

a) If the cache should load fewer than the total number of records from the record source, type
the number of records to load in the Maximum Records text box. This features is provided for
testing purposes.

b) If you want to merge records with equivalent record index key values into a single record, check
the Combine Records option. For one-to-many or many-to-many joins, leave Combine Records
unchecked.

Important: The Combine Records option can have unexpected results if you do not
understand how it functions.

4. In the Sources tab, select a record source and, optionally, a dimension source.

If a component's record index contains dimension values, you must provide a dimension source.
Generally, this is only the case if you are caching data that has been previously processed by
Forge.

5. In the Record Index tab, do the following:

a) Specify which properties or dimensions you want to use as the record index for this component.
Note that the record index you specify for a cache must match the join key that you will specify
for that cache in the record assembler.

b) Indicate whether you want to discard records with duplicate keys.

6. (Optional) In the Comment tab, add a comment for the component.

7. Click OK.

8. Repeat these steps for all record sources that will be part of the join.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Combining equivalent records in record caches on page 88
The General tab on the Record Cache editor has a Combine Records setting. With the
setting enabled for record caches, equivalent records in data sources are combined.

Adding a record assembler
Use the Record Assembler editor to add and configure a new record assembler for your pipeline.

To add a record assembler to your pipeline:

1. In the Pipeline Diagram editor, click New, and then choose Record > Assembler.
The Record Assembler editor appears.

2. In the Name text box, type a unique name for the new record assembler.

3. In the Sources tab, do the following:

a) In the Record Sources list, select a record source and click Add. Repeat as necessary to add
additional record sources.

With two exceptions, record assemblers must use record caches as their source of record data.

b) In the Dimension Source list, select a dimension source.

If the key on which a join is performed contains dimension values, you must provide a dimension
source. Generally, this is only the case if you are joining data that has already been processed
once by Forge.

4. (Optional) In the Record Index tab, do the following:

a) Specify which properties or dimensions you want to use as the record index for this component.

An assembler's record index does not affect the join, it only affects the order in which downstream
components will retrieve records from the assembler.

b) Indicate whether you want to discard records with duplicate keys.

5. In the Record Join tab, configure your joins.

6. (Optional) In the Comment tab, add a comment for the component.

7. Click OK.

Related Links

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Implementing Joins | Implementing a join80

Joins that do not require record caches on page 87
There are two join cases that do not require record caches:

Configuring the join on page 81
You can use the Record Assembler and Join Type editors to choose from and configure
the different types of joins.

Configuring the join
You can use the Record Assembler and Join Type editors to choose from and configure the different
types of joins.

To configure the join in the record assembler:

1. In the Record Assembler editor, click the Record Join tab.

2. Use the Join Type list to select the kind of join you want to perform.

3. If you are performing a left join, check the Multi Sub-records option if the left record can be joined
to more than one right record.

4. The join entries list represents the record sources that will participate in the join, as specified on
the Sources tab. In the Join Entries list, define the order of your join entries by selecting an entry
and clicking Up or Down.

For all joins, properties get processed from join sources in the order in they are in the list. The first
entry is the Left entry for a left join.

5. To define the join key for a join entry, select the entry from the Join Entries list and click Edit.
The Join Entry editor appears.

6. Click Add.
The Key Component editor appears.

7. Using the steps below, create a join key that is identical to the record index key for the join entry
you selected.

a) In the Type frame, do one of the following:

• Choose Custom Property. Type a name for the property in the Custom Property text box.
• Choose Dimension. Select a dimension name from the Dimension list.

b) Click OK to return to the Join Entry editor.
c) (Optional) Repeat these steps for each component you want to add to the key.
d) (Optional) To reorder the components in the key, select a component in the Join Entry editor

and click Up or Down.
e) Click OK to close the Join Entry editor.

8. Repeat steps 5 through 7 for each record source that is participating in the join.

9. When you are done configuring your join, click OK to close the Record Assembler editor.

Related Links
About tweaking left joins on page 85

The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes
the behavior of a left join if a record from the left source has multiple values for the join key.
It is used only used with left joins. Enabling this option forces Forge to create multiple keys
for such records.

Join keys with multiple properties or dimensions on page 77
You can specify multiple properties or dimensions, called key components, for a single join
key in order to join records based on more than one characteristic.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

81About Implementing Joins | Implementing a join

Join types on page 68
The following sections describe the join types supported by the Data Foundry. Each section
provides a simple example for the join type being discussed. Note that while most of the
examples use two record sources, many of the join types accept more than two sources,
while other join types accept only one. Also note that in the examples, Id is the name of the
join key for all sources.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

About Implementing Joins | Implementing a join82

Chapter 13

Advanced Join Behavior

In some cases, multiple sets of records may use identical join keys, or a single record may include
multiple keys (such as a database table with two Id columns). These sections cover how joins are
handled for such situations.

Records that have multiple values for a join key
A record can have multiple property values for a given property name. For example, a record could
have two values for the property Id.

If a record is configured to join to another record based on a key that has multiple values in one or
both of the records, the join implementation must consider the multiple values in the comparison.

The question is, if the record has the values {A, B} for the property Id, should it match to records with
value A, value B, or both? The answer is that the record matches to records that have exactly both
values. This behavior is different than the semantics of a database join, because tuples in a database
have only one value per column. Therefore, you should carefully consider how to handle records that
have multiple values per key component.

Note: This section describes how to deal with records that have multiple values per join key.
Do not confuse this scenario with one where your join keys incorporate multiple
properties/dimensions.

The following example illustrates the effects of joining records that have multiple values for a join key.

A left join, using Id as the join key, on these two data sources results in the following:

The record from Source 1 with join key (Id=A, Id=BB) is combined with a record with the same key
from Source 2. Similarly, since both sources have a record with keys (Id=A, Id=CC) and (Id=B, Id=CC),
these records are combined appropriately. Finally, the record (Id=DD, Id=A) from Source 1 is combined
with the record (Id=A, Id=DD) from Source 2. The order of the property values is not significant.

You can tweak left joins in which the left source has multiple values for a key by telling Forge to create
a separate join key based on each value.

Related Links
Join keys with multiple properties or dimensions on page 77

You can specify multiple properties or dimensions, called key components, for a single join
key in order to join records based on more than one characteristic.

About tweaking left joins on page 85
The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes
the behavior of a left join if a record from the left source has multiple values for the join key.
It is used only used with left joins. Enabling this option forces Forge to create multiple keys
for such records.

Sources that have multiple records with the same join key
value

This section explains Forge's behavior when joining sources where each source may have more than
one record with the same join key value (higher cardinality joins).

For example, a record source might process 5 records each with Id=A. This behavior has a database
counterpart. It is considered here because the results of the join can be complicated. The result of the
join is a Cartesian product of the sets of records, from each source, with the same join key.

Consider performing a left join on the following two data sources, assuming the join key is the property
Id. Both sources have records with redundant keys. For example, Source 1 has three records with
Id=A and two records with Id=B. Source 2 has three records with Id=A and two records with Id=B.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Advanced Join Behavior | Sources that have multiple records with the same join key value84

The results of a left join on these two data sources look like this:

As discussed above, the join produces a Cartesian product. The first record from Source 1 (Id=A,
Name=Shirt, Color=Blue) is combined with each of the three records from Source 2 that have the
join key Id=A, producing the first three records shown in the results table. Similarly, the second record
from Source 1 (Id=A, Name=shirt, Color=blue) is combined with each of the three records from Source
2 with the join key Id=A to produce the next three records.

For a given join key Id=x, the number of records created by a Cartesian product is the product of the
number of records in each source with Id=x. In the example above, Source 1 had two records with
Id=A and Source 2 had three. Therefore, the Cartesian product produces six records (2 x 3 = 6).
Adding a third source with three records of Id=A would produce 18 records (2 x 3 x 3 = 18). Because
the number of records produced can grow quickly, you should take care should to evaluate correctness
when dealing with data of this nature. Often, the desired behavior is to combine records with duplicate
keys, using a Combine join or the Combine Records option on a record cache, from all or several
sources.

About tweaking left joins
The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes the
behavior of a left join if a record from the left source has multiple values for the join key. It is used only
used with left joins. Enabling this option forces Forge to create multiple keys for such records.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

85Advanced Join Behavior | About tweaking left joins

Note: In the case where a left source's join key consists of a single property/dimension, each
value becomes an independent key.

For example, if the join key is Id, a record with the values Id=1, Id=2, Id=3 produces three independent
keys, one for each value. The right sources are searched for each of these keys. That is, each right
source is queried for a match to the join key Id=1, a match to Id=2, and finally a match to Id=3. All
records that match any of the keys are combined with the record from the left source, producing the
joined record.

Multi sub-records can be extrapolated to join keys with multiple key components by considering the
values corresponding to each key component as a set. Performing a Cartesian product of these sets
provides the key combinations. For example, given the key components idA and idB and a record from
the left source with the values idA=1, idA=2, idB=11, idB=12, the keys produced by the Cartesian
product are [{idA=1, idB=11}, {idA=1, idB=12}, {idA=2, idB=11}, {idA=2, idB=12}]. Again, the right
sources are searched for each of these keys.

Multi sub-records

A good example that illustrates the use of multi sub-records is one where you have a left table that
consists of a CD and the songs on it, and a right table with song details.

In this example, you would perform the join on the SongId, so that each song in the left table is joined
appropriately with its counterpart in the right table. Note that in this example, SongId is the join key
for all sources.

Related Links
Join keys with multiple properties or dimensions on page 77

You can specify multiple properties or dimensions, called key components, for a single join
key in order to join records based on more than one characteristic.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Advanced Join Behavior | About tweaking left joins86

Chapter 14

Tips and Troubleshooting for Joins

The sections below provide tips and troubleshooting information for joins.

Joins that do not require record caches
There are two join cases that do not require record caches:

• Switch joins do not do record comparisons and, hence, do not require record caches for their data
sources.You can use any type of record server component (record adapter, record cache, record
assembler, Perl manipulator, and so on) as a source for a switch join.

• For a left join, for which all of the right sources are record caches, the left source does not require
a record cache. This special case is useful for optimizing a left join with a large, unsorted data
source.

Working with sources that have multiple records with the
same join key value

In order to configure a join with the desired behavior, it is important to have a strong understanding of
what happens when record assemblers process records that do not have unique values for their join
keys (higher cardinality joins).

Related Links
Sources that have multiple records with the same join key value on page 84

This section explains Forge's behavior when joining sources where each source may have
more than one record with the same join key value (higher cardinality joins).

Best practice for choosing left and right side of joins
A best practice is to keep record sources with the most values per join key on the left side of joins.

When performing joins (such as an outer join), Forge can output records from both sides of the join,
except where two records, one from each side, match on the join key, in which case it combines the
two records into one.The interesting case is when multiple records on each side have the same value
for the join key. For example, if 10 records from the left side and 10 records from the right side each

have the same value for the join key, the result of the join is the cross-product of all the records, 100
in total.

Thus, when Forge does joins, it typically streams records from each side, joining where appropriate
and outputting records, joining them where appropriate. But in the cross-product case, it cannot stream
records from both sides simultaneously. For each record on one side, Forge has to do a separate
iteration of the records on the other side. Forge has to pick at least one side of the join for loading all
the records with the same join key into memory. Forge's design chooses the right side for that; it always
streams records from the left side. On the right side, however, while Forge streams whenever possible,
it will load all records with a common join key value into memory.

Thus, a best practice is to keep record sources with the most values per join key on the left side of
joins.

Combining equivalent records in record caches
The General tab on the Record Cache editor has a Combine Records setting. With the setting
enabled for record caches, equivalent records in data sources are combined.

The setting controls how the cache handles records that have equivalent values for the record index
key, and it is turned off by default. Care should be taken if you choose to use it.

Consider performing a left join on the following two data sources, assuming the record index key is
the property Id. Both sources have records with redundant keys. For example, Source 1 has three
records with Id=A and two records with Id=B. Source 2 has three records with Id=A and two records
with Id=B.

Without the Combine Records setting enabled, the results of a left join on these two data sources
look like this:

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Tips and Troubleshooting for Joins | Combining equivalent records in record caches88

With the Combine Records setting enabled for the record caches, equivalent records in the data
sources would be combined, so the new data sources would look like this:

The results of a left join on these two combined data sources would look like this:

Forge warnings when combining large numbers of records
When combining a large number of records (via either a Combine join or a record cache with the
Combine Records setting enabled), Forge will issue a warning that performance may be slow. The
default number of records at which this warning is issued is 100.

This threshold can be adjusted with the Forge --combineWarnCount command-line flag.

Two messages will be printed:

• The first is an informational message that is printed when the number of records combined reaches
the --combineWarnCount threshold. The message includes the key of the records being

Oracle Endeca Platform Services Forge GuideEndeca Confidential

89Tips and Troubleshooting for Joins | Forge warnings when combining large numbers of records

combined. The intent of this message is to give users an early warning that Forge has just started
a potentially long operation and therefore may seem to be stalled, but is actually working.

• The second message is a warning, indicating the total number of records combined, and the value
of the key.

Note: Setting the --combineWarnCount value to 0 (zero) will disable these messages.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Tips and Troubleshooting for Joins | Forge warnings when combining large numbers of records90

Part 3

Advanced Dimension Features

• Externally-Created Dimensions
• Externally-Managed Taxonomies

Chapter 15

Externally-Created Dimensions

This section describes how to include and work with an externally-created dimension in a Developer
Studio project. This capability allows you to build all or part of a logical hierarchy for your data set
outside of Developer Studio and then import that logical hierarchy as an Endeca dimension available
for use in search and Guided Navigation.

Overview of externally-created dimensions
An externally-created dimension describes a logical hierarchy of a data set; however, the dimension
hierarchy is transformed from its source format to Endeca compatible XML outside of Developer Studio.

The logical hierarchy of an externally-created dimension must conform to Endeca’s external interface
for describing a data hierarchy (found in external_dimensions.dtd) before you import the
dimension into your project. Once you import an externally-created dimension, its ownership is wholly
transferred to Developer Studio, so that afterwards you can modify the dimension with Developer
Studio.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include
them in a Developer Studio project and how Developer Studio treats them once they are part
of a project.

External dimensions and external taxonomies
Externally-managed taxonomies and externally-created dimensions differ in how you include them in
a Developer Studio project and how Developer Studio treats them once they are part of a project.

It is important to clarify the difference between an externally-managed taxonomy and an
externally-created dimension to determine which feature document is appropriate for your purposes.
Use the table below to determine which one you are working with.

The following table compares an externally-managed taxonomy and an externally-created dimension:

Externally-created dimensionExternally-managed
taxonomy

Operation

You generally do not update the source file for the
hierarchy after you import it into your project. If you

Any changes to the dimension
must be made in third-party

How do you
modify or update

do update the file and re-import, then any changestool.You then export thethe hierarchy
you made to the dimension using Developer Studiotaxonomy from the tool, andafter it is in the

project? are discarded. After importing the hierarchy, you
can modify a dimension just as if you created it
manually using Developer Studio.

Forge transforms the
taxonomy and re-integrates
the changes into your project.

After you import the file, Developer Studio takes
full ownership of the dimension and its dimension

The third-party tool that
created the file retains

How does
Developer Studio

values.You can modify any characteristics of the
dimension and its dimension values.

ownership. The dimension is
almost entirely read-only in the
project.You cannot add or

manage the
hierarchy?

remove dimension values from
the dimension. However, you
can modify whether dimension
values are inert and
collapsible.

Created either directly in an XML file or created
using a third-party tool.

Created using a third-party
tool.

How do you
create the XML
file?

By choosing Import External Dimension on the
File menu. During import, Developer Studio creates

Read in to a pipeline using a
dimension adapter with

How do you
include the file in

internal dimensions and dimension values for eachFormat set to XML -a Developer
Studio project? node in the file's hierarchy. If you create the file

using a third-party tool and any XML transformation
Externally Managed. Forge
transforms the taxonomy file

is necessary, you must transform the file outsidein to a dimension according to
the project before you choose Import Externalthe .xslt file that you specify
Dimension on the File menu.The file must conform
to external_dimensions.dtd.

on the Transformer tab of the
dimension adapter.

Related Links
Overview of externally-managed taxonomies on page 99

An externally-managed taxonomy is a logical hierarchy for a data set that is built and managed
using a third-party tool. Once you include an externally-managed taxonomy in your project,
it becomes a dimension whose hierarchy is managed by the third-party tool that created it.

Including externally-created dimensions in your project
You can use Developer Studio to include an externally-created dimension file in your project, as long
as the dimension file conforms to the external_dimensions.dtd file.

Ensure you are working with an externally-created dimension, and not an externally-managed taxonomy.
Any created dimension files must conform to the Endeca external_dimensions.dtd file.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Created Dimensions | Overview of externally-created dimensions94

An overview of the process to include an externally-created dimension in a Developer Studio project
is as follows:

1. Create a dimension hierarchy.You can do this one of two ways:

• Create it manually in an XML file.
• Create a dimension using a third-party tool.

2. Import the XML file for the dimension into Developer Studio, and modify the dimension and dimension
values as necessary.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include
them in a Developer Studio project and how Developer Studio treats them once they are part
of a project.

XML requirements on page 95
When you create an external dimension—whether by creating it directly in an XML file or by
transforming it from a source file—the dimension must conform to Endeca’s
external_dimensions.dtd file before you import it into your project.

Importing an externally-created dimension on page 97
You add an externally-created dimension to your pipeline by importing it with Developer
Studio.

XML requirements
When you create an external dimension—whether by creating it directly in an XML file or by transforming
it from a source file—the dimension must conform to Endeca’s external_dimensions.dtd file
before you import it into your project.

The external_dimensions.dtd file defines Endeca-compatible XML used to describe dimension
hierarchies in an Endeca system. This file is located in %ENDECA_ROOT%\conf\dtd on Windows
and $ENDECA_ROOT/conf/dtd on UNIX.

Also, an XML declaration that specifies the external_dimensions.dtd file is required in an external
dimensions file. If you omit specifying the DTD in the XML declaration, none of the DTD’s implied
values or other default values, such as classification values, are applied to the external dimensions
during Endeca ITL processing. Here is an example XML declaration that should appear at the beginning
of an external dimension file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE external_dimensions SYSTEM "external_dimensions.dtd">

Here is a very simple example of an external dimension file with the required XML declaration and two
dimensions:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE external_dimensions SYSTEM "external_dimensions.dtd">

<external_dimensions>
 <node id="1" name="color" classify="true">
 <node id="2" name="red" classify="true"/>
 <node id="3" name="blue" classify="true"/>
 </node>

Oracle Endeca Platform Services Forge GuideEndeca Confidential

95Externally-Created Dimensions | XML requirements

 <node id="10" name="size" classify="true">
 <node id="20" name="small" classify="true"/>
 <node id="30" name="med" classify="true"/>
 </node>

</external_dimensions>

Related Links
XML syntax to specify dimension hierarchy on page 96

The XML elements available to external_dimensions.dtd allow a flexible XML syntax
to describe a dimension hierarchy. There are three different syntax approaches you can
choose from when building the hierarchy structure of your externally-created dimension.

XML syntax to specify dimension hierarchy
The XML elements available to external_dimensions.dtd allow a flexible XML syntax to describe
a dimension hierarchy.There are three different syntax approaches you can choose from when building
the hierarchy structure of your externally-created dimension.

All three approaches are supported by external_dimensions.dtd. Each provides a slightly different
syntax structure to define a dimension and express the parent/child relationship among dimensions
and dimension values. The three syntax choices are as follows:

• Use nested node elements within node elements.
• Use the parent attribute of a node to reference a parent’s node ID.
• Use the child element to reference the child’s node ID.

You can use only one of the three approaches to describe a hierarchy within a single XML file. In other
words, do not mix different syntax structures within one file. Any node element without a parent node
describes a new dimension.You can describe as many dimensions as necessary in a single XML file.

The following examples show each approach to building a dimension hierarchy. The these examples
are semantically equivalent: each describes the same dimension and child dimension values.

Example of using nested node elements

This example shows nested dimension values red and blue within the dimension color:

<node name="color" id="1">
 <node name="red" id="2"/>
 <node name="blue" id="3"/>
</node>

Example of using parent attributes

This example shows the red and blue dimension values using the parent attribute. The value of the
parent attribute references the ID for the dimension color:

<node name="color" id="1"/>
<node id="2" name="red" parent="1"/>
<node id="3" name="blue" parent="1"/>

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Created Dimensions | XML requirements96

Example of using child elements

This example uses child elements to indicate that red and blue are dimension values of the color
dimension. The ID of each child element references the ID of the red and blue nodes:

<node name="color" id="1">
 <child id="2"/>
 <child id="3"/>
</node>
<node name="red" id="2"/>
<node name="blue" id="3"/>

Node ID requirements

Each node element in your dimension hierarchy must have an id attribute. Depending on your
requirements, you may choose to provide any of the following values for the id attribute:

• Name — If the name of a dimension value is what determines its identity, then provide the id
attribute with the name.

• Path — If the path from the root node to the dimension value determines its identity, then provide
a value representing the path in the id attribute.

• Existing identifier — If a node already has an identifier, then that identifier can be used in the id
attribute.

The id value must be unique. If you are including multiple XML files, the identifier must be unique
across the files.

There is one scenario where an id attribute is optional. It is optional only if you are using an
externally-created dimension and also defining your dimension hierarchy using nested node
sub-elements (rather than using parent or child ID referencing).

Importing an externally-created dimension
You add an externally-created dimension to your pipeline by importing it with Developer Studio.

Once you import the XML file, the dimension appears in the Dimensions view, and Developer Studio
has full read-write ownership of the dimension.You can modify any aspects of a dimension and its
dimension values as if you created it in Developer Studio.

To import an externally-created dimension:

Note: Unlike the procedure to import an externally-managed taxonomy, you do not need to run
a baseline update to import an externally-created dimension.

1. Select File > Import External Dimensions.
The Import External Dimensions dialog box displays.

2. Specify the XML file that defines the dimensions.

3. Chose a dimension adapter from the Dimension adapter to receive imported dimensions
drop-down list.

4. Click OK.
The dimensions appear in the Dimensions editor for you to configure as necessary.

5. Save the project.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

97Externally-Created Dimensions | Importing an externally-created dimension

Related Links
Including externally-managed taxonomies in your project on page 99

You can use Developer Studio to include an externally-managed taxonomy into your project,
but you cannot alter the taxonomy within Developer Studio, even after importing it.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Created Dimensions | Importing an externally-created dimension98

Chapter 16

Externally-Managed Taxonomies

This section describes how to work with an externally-managed taxonomy in a Developer Studio
project. This capability allows you to build all or part of a logical hierarchy for your data set outside of
Developer Studio and use Developer Studio to transform that logical hierarchy into Endeca dimensions
and dimension values for use in search and Guided Navigation.

Overview of externally-managed taxonomies
An externally-managed taxonomy is a logical hierarchy for a data set that is built and managed using
a third-party tool. Once you include an externally-managed taxonomy in your project, it becomes a
dimension whose hierarchy is managed by the third-party tool that created it.

In Developer Studio, you cannot add or remove dimension values from an externally-managed
taxonomy. If you want to modify a dimension or its dimension values, you have to edit the taxonomy
using the third-party tool and then update the taxonomy in your project.

It is important to clarify the difference between an externally-managed taxonomy and an
externally-created dimension to determine which feature document is appropriate for your purposes.
The two concepts are similar yet have two important key differences: externally-managed taxonomies
and externally-created dimensions differ in how you include them in a Developer Studio project and
how Developer Studio treats them once they are part of a project.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include
them in a Developer Studio project and how Developer Studio treats them once they are part
of a project.

Including externally-managed taxonomies in your project
You can use Developer Studio to include an externally-managed taxonomy into your project, but you
cannot alter the taxonomy within Developer Studio, even after importing it.

Ensure you are working with an externally-managed taxonomy, and not an externally-created dimension.

An overview of the process to include an externally-managed taxonomy in a Developer Studio project
is as follows:

1. You build an externally-managed taxonomy using a third-party tool. This guide does not describe
any third-party tools or procedures that you might use to perform this task.

2. You create an XSLT style sheet that instructs Forge how to transform the taxonomy into Endeca
XML that conforms to external_dimensions.dtd.

3. You configure your Developer Studio pipeline to perform the following tasks:

a) Describe the location of an externally-managed taxonomy and an XSLT style sheet with a
dimension adapter.

b) Transform an externally-managed taxonomy into an externally-managed dimension by running
a baseline update.

c) Add an externally-managed dimension to the Dimensions view and the Dimension Values
view.

After you finish the tasks listed above, you can perform additional pipeline configuration that uses the
externally-managed dimension, and then run a second baseline update to process and tag your Endeca
records.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include
them in a Developer Studio project and how Developer Studio treats them once they are part
of a project.

XSLT and XML requirements on page 100
To transform an externally-managed taxonomy into an externally-managed dimension, you
have to create an XSLT style sheet that instructs Forge how to map the taxonomy XML to
Endeca XML. The mapping in your XSLT style sheet and your resulting hierarchy must
conform to the Endeca external_dimensions.dtd file.

XSLT and XML requirements
To transform an externally-managed taxonomy into an externally-managed dimension, you have to
create an XSLT style sheet that instructs Forge how to map the taxonomy XML to Endeca XML. The
mapping in your XSLT style sheet and your resulting hierarchy must conform to the Endeca
external_dimensions.dtd file.

About XSLT mapping
In order for Developer Studio to process the XML from your externally-managed taxonomy, you have
to create an XSLT style sheet that instructs Forge how to map the XML elements in an
externally-managed taxonomy to Endeca-compatible XML.

This requires configuring the Transformer tab of a dimension adapter with the path to the XSLT style
sheet and the path to the taxonomy XML file, and then running a baseline update to transform the
external taxonomy into an Endeca dimension.

The external_dimensions.dtd defines Endeca-compatible XML to describe dimension hierarchies.
This file is located in %ENDECA_ROOT%\conf\dtd on Windows and $ENDECA_ROOT/conf/dtd on
UNIX.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Managed Taxonomies | XSLT and XML requirements100

XML syntax to specify dimension hierarchy
The XML elements available to external_dimensions.dtd allow a flexible XML syntax to describe
dimension hierarchy. There are three different syntax approaches you can choose from when building
the hierarchy structure of your externally-managed dimension.

All three options are supported by external_dimensions.dtd. Each approach provides a slightly
different syntax structure to define a dimension and express the parent/child relationship among
dimensions and dimension values. The three syntax choices are as follows:

• Use nested node elements within node elements.
• Use the parent attribute of a node to reference a parent’s node ID.
• Use the child element to reference the child’s node ID.

You can use only one of the three approaches to describe a hierarchy within a single XML file. In other
words, do not mix different syntax structures within one file. Any node element without a parent node
describes a new dimension.You can describe as many dimensions as necessary in a single XML file.

The following examples show each approach to building a dimension hierarchy. These examples are
semantically equivalent: each describes the same dimension and child dimension values.

Example of using nested node elements

This example shows nested dimension values red and blue within the dimension color:

<node name="color" id="1">
 <node name="red" id="2"/>
 <node name="blue" id="3"/>
</node>

Example of using parent attributes

This example shows the red and blue dimension values using the parent attribute. The value of the
parent attribute references the ID for the dimension color.

<node name="color" id="1"/>
<node name="red" id="2" parent="1"/>
<node name="blue" id="3" parent="1"/>

Example of using child elements

This example uses child elements to indicate that red and blue are dimension values of the color
dimension. The ID of each child element references the ID of the red and blue nodes.

<node name="color" id="1">
 <child id="2"/>
 <child id="3"/>
</node>
<node name="red" id="2"/>
<node name="blue" id="3"/>

Node ID requirements and identifier management in Forge
When you transform the hierarchy structure from an external taxonomy, each node element in your
dimension hierarchy must have an id attribute. Forge ensures that each identifier is unique across an
Endeca implementation by creating a mapping between a node’s ID and an internal identifier that
Forge creates.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

101Externally-Managed Taxonomies | XSLT and XML requirements

This internal mapping ensures that Forge assigns the same identifier to a node from an external
taxonomy each time the taxonomy is processed. For example, if you provide updated versions of a
taxonomy file, Forge determines which dimension values map to dimension values from a previous
version of the file according to the internal identifier. However, there is a scenario where Forge does
not preserve the mapping between the id attribute and the internal identifier that Forge creates for the
dimension value. This occurs if you reorganize a dimension value to become a child of a different
parent dimension. Reorganizing a dimension value within the same parent dimension does not affect
the id mapping when Forge reprocesses updated files.

Depending on your requirements, you may choose to provide any of the following values for the id
attribute:

• Name — If the name of a dimension value is what determines its identity, then the XSLT style
sheet should fill the id attribute with the name.

• Path — If the path from the root node to the dimension value determines its identity, then the XSLT
style sheet should put a value representing the path in the id attribute.

• Existing identifier — If a node already has an identifier, then that identifier can be used in the id
attribute.

You can provide an arbitrary ID as long as the value is unique. If you are including multiple XML files,
the identifier must be unique across all files. As described above, Forge ensures that identifiers are
unique across the system.

Pipeline configuration
These sections describe the pipeline configuration requirements to incorporate an externally-managed
taxonomy into your Developer Studio project.

Integrating an externally-managed taxonomy
You use a dimension adapter to read in XML from an externally-managed taxonomy and transform it
to an externally-managed Endeca dimension. If necessary, you can import and transform multiple
taxonomies by using a different dimension adapter for each taxonomy file.

To perform the taxonomy transformation, you configure a dimension adapter with the XML file of the
taxonomy and the XSLT style sheet that Forge uses to transform the taxonomy file’s XML elements.
You then build the rest of your pipeline, set the instance configuration, and run a baseline update.
When the update runs, Forge transforms the taxonomy into a dimension that you can load and examine
in the Dimensions view.

To integrate an externally-managed taxonomy:

1. In the Project tab of Developer Studio, double-click Pipeline Diagram.

2. In the Pipeline Diagram editor, choose New > Dimension > Adapter.
The Dimension Adapter editor displays.

3. In the Dimension Adapter Name text box, enter a unique name for the dimension adapter.

4. In the General tab, do the following:

a) In the Direction frame, select Input.
b) In the Format field, select XML - Externally Managed.
c) In the URL field, enter the path to the source taxonomy file.This path can be absolute or relative

to the location of your project’s Pipeline.epx file.
d) Check Require Data if you want Forge to generate an error if the file does not exist or is empty.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Managed Taxonomies | Pipeline configuration102

5. In the Transformer tab, do the following:

a) In the Type field, enter XSLT.
b) In the URL field, specify the path to the XSLT file you created.

6. Click OK.

7. Select File > Save

8. If necessary, repeat steps 2 through 6 to include additional taxonomies.

9. Create a dimension server to provide a single point of reference for other pipeline components to
access dimension information. For more information about dimension servers, see the Oracle
Endeca Developer Studio Help.

Transforming an externally managed taxonomy
In order to transform your externally-managed taxonomy into an Endeca dimension, you have to set
the instance configuration and run a baseline update.

Running the update allows Forge to transform the taxonomy and store a temporary copy of the resulting
dimension in the EAC Central Server. After you run the update, you can then create a dimension in
the Dimensions view.

To transform an externally-managed taxonomy:

Note: To reduce processing time for large source data sets, you may want to run the baseline
update using the -n flag for Forge. (The -n flag controls the number of records processed in a
pipeline, for example, -n 10 processes ten records.) You can specify the flag in the Forge
section of the EAC Admin Console page of Endeca Workbench.

1. Add any pipeline components to your pipeline which are required for the update to run.

You cannot, for example, run the update without a property mapper. However, you can temporarily
add a default property mapper and later configure it with property and dimension mapping.

2. Ensure you have sent the latest instance configuration to Endeca Workbench.

Oracle recommends using the update_web_studio_config script to perform this task, as it will
not overwrite any configuration files which are maintained by Endeca Workbench. The
update_web_studio_config script is included in the Endeca Deployment Template.

The Oracle Endeca Deployment Template is available on the Oracle Software Delivery Cloud. For
more information about the Endeca Deployment Template, see the Oracle Endeca Deployment
Template Usage Guide, included in the downloadable ZIP file.

3. On the EAC Admin Console page of Endeca Workbench, run your baseline update script.

Related Links
Loading an externally-managed dimension on page 104

After you transform an external taxonomy into an Endeca dimension, you can then load the
dimension in the Dimensions view and add its dimension values to the Dimension Values
view.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

103Externally-Managed Taxonomies | Pipeline configuration

Uploading post-Forge dimensions to Endeca Workbench
If you are using the baseline update script provided with the Deployment Template, it will automatically
upload the post-Forge dimensions to Endeca Workbench. If, however, you are not using these scripts,
you must use the emgr_update utility.

After the baseline update finishes, the latest dimension values generated by the Forge process must
be uploaded to Endeca Workbench. This will ensure that any new dimension values (including values
for autogen dimensions and external dimensions) are available to Endeca Workbench for use (for
example, for merchandizing rule triggers).

If you are not using the baseline update script provided with the Deployment Template, you must use
the emgr_update utility as follows:

1. Open a command prompt or UNIX shell to run the utility.

2. Enter the following into the command line:emgr_update --action set_post_forge_dims
This will update the Endeca Workbench configuration with the post-Forge dimensions.

For more information on this utility, see the Oracle Endeca Guided Search Administrator’s Guide.

Loading an externally-managed dimension
After you transform an external taxonomy into an Endeca dimension, you can then load the dimension
in the Dimensions view and add its dimension values to the Dimension Values view.

Rather than click New, as you would to manually create a dimension in Developer Studio, you instead
click Discover in Dimensions view to add an externally-managed dimension. Developer Studio
discovers the dimension by reading in the dimension’s file that Forge created when you ran the first
baseline update. Next, you load the dimension values in the Dimension Values editor.

To load a dimension and its dimension values:

Note: Because the dimension values are externally managed, you cannot add or remove
dimension values.You can however modify whether dimension values are inert or collapsible.

1. In the Project tab of Developer Studio, double-click Dimensions.
The Dimensions view displays.

2. Click the Discover button to add the externally-managed dimension to the Dimensions view.

Most characteristics of an externally-managed dimension and its dimension values are not modifiable.
These characteristics either appear as unavailable or Developer Studio displays a message indicating
what actions are possible.

The dimension appears in the Dimensions view with its Type column set to Externally Managed.

3. In Dimensions view, select the externally-managed dimension and click Values.
The Dimension Values view appears with the root dimension value of the externally-managed
dimension displayed.

4. Select the root dimension value and click Load.
The remaining dimension values display.

5. Repeat steps 3 and 4 for any additional externally-managed taxonomies you integrated in your
project.

Related Links
About updating an externally-managed taxonomy in your pipeline on page 105

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Managed Taxonomies | Pipeline configuration104

If you want to modify an externally-managed taxonomy and replace it with a newer version,
you have to revise the taxonomy using the third-party tool that created it, and then repeat the
process of incorporating the externally-managed taxonomy into your pipeline.

Running a second baseline update
After loading dimension values and building the rest of your pipeline, you must run a second baseline
update to process and tag your Endeca records. The second baseline update performs property and
dimension mapping that could not be performed in the first baseline update because the
externally-managed dimensions had not yet been transformed and available for mapping.

Before running this update, make sure you have transformed and mapped your externally-managed
dimensions.

To run a second baseline update:

1. Ensure you have sent the latest instance configuration to Endeca Workbench.

Oracle recommends using the update_web_studio_config script to perform this task, as it will
not overwrite any configuration files which are maintained by Endeca Workbench. The
update_web_studio_config script is included in the Endeca Deployment Template.

The Oracle Endeca Deployment Template is available on the Oracle Software Delivery Cloud. For
more information about the Endeca Deployment Template, see the Oracle Endeca Deployment
Template Usage Guide, included in the downloadable ZIP file.

2. On the EAC Admin Console page of Endeca Workbench, run your baseline update script.

About updating an externally-managed taxonomy in your
pipeline

If you want to modify an externally-managed taxonomy and replace it with a newer version, you have
to revise the taxonomy using the third-party tool that created it, and then repeat the process of
incorporating the externally-managed taxonomy into your pipeline.

Related Links
Pipeline configuration on page 102

These sections describe the pipeline configuration requirements to incorporate an
externally-managed taxonomy into your Developer Studio project.

Unexpected default-mapping behavior
Under certain circumstances, Forge will default-map dimensions from externally-managed taxonomies
even when default dimension mapping is disabled in the Property Mapper.The following two conditions
are required for this behavior to occur:

• A dimension mapping exists in the Property Mapper which points to a dimension sourced from an
externally-managed taxonomy file.

• The source node for the mapped dimension is not present in the externally-managed taxonomy
file (for example, because of a taxonomy change or user error).

Oracle Endeca Platform Services Forge GuideEndeca Confidential

105Externally-Managed Taxonomies | About updating an externally-managed taxonomy in your pipeline

When these two conditions are met, Forge dynamically creates an entry for the missing node's
dimension in its output dimensions files; this entry has the attribute value SRC_TYPE="PROPMAPPER",
as seen on default-mapped dimension entries.

This behavior occurs even when the default dimension mapping functionality is disabled (that is, the
If no mapping is found, map source properties to Endeca dimensions option on the Advanced
tab of the Property Mapper component editor in Developer Studio is not checked).

The reason for the behavior is that in this case, Forge is handling the pipeline differently than Developer
Studio. In Developer Studio, you cannot map a source property to a non-existent dimension. Forge,
however, allows for properties to be mapped to undeclared dimensions, and when it encounters such
a mapping, it creates a new dimension for it using the property mapper.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Externally-Managed Taxonomies | Unexpected default-mapping behavior106

Part 4

Other Advanced Features

• The Forge Logging System
• The Forge Metrics Web Service

Chapter 17

The Forge Logging System

This section provides a brief introduction to the Forge logging system. Its command-line interface
allows you to focus on the messages that interest you globally and by topic.

Overview of the Forge logging system
The Forge logging system provides a logging interface to Forge components. With this system, you
can specify the logging level for a component globally or by topic.

The logging level allows you to filter logging messages so you can monitor elements of interest at the
appropriate granularity without being overwhelmed by messages that are not relevant.

A simple command-line interface makes it easy to adjust your logging strategy to respond to your
needs. During development, you might be interested in feedback on only the feature you are working
on, while in production, you would typically focus on warnings and errors.

Log levels reference
The log levels used by Forge logging are as follows:

DescriptionLog level

Indicates a problem so severe that you have to shut down.FATAL

Non-fatal error messages.ERROR

Alerts you to any peculiarities the system notes.You may want to address these.WARN

Provides status messages, even if everything is working correctly.INFO

Provides all information of interest to a user.DEBUG

About logging topics
All log messages are flagged with one or more topics.There are different types for different components,
all logically related to some aspect of the component.

In Forge, you can specify individual logging levels for each of the following topics:

• baseline
• update
• config
• webservice
• metrics

The command line interface
You access logging on Forge with the --logLevel option. Its usage is as follows: --logLevel
(<topicName>=)<logLevel>

By selecting a level you are requesting all feedback at of that level of severity and greater. For example,
by specifying the WARN level, you receive WARN, ERROR, and FATAL messages.

The --logLevel option sets either the default log level, the topic log level, or both:

• The default log level provides global logging for the component:

forge --logLevel WARN

This example logs all WARN level or higher messages.

Note: Forge defaults to log all INFO or higher level messages if a default level is not specified.

• The topic log level provides logging at the specified level for just the specified topic:

forge --logLevel baseline=DEBUG

This example overrides the default log level and logs all DEBUG messages and higher in the baseline
topic.

• If two different log levels are specified, either globally or to the same topic, the finer-grained level
is used:

forge –logLevel INFO –logLevel WARN

In the case of this example, all INFO level messages and higher are printed out.

It is possible to specify both default and topic level logging in the same command to filter the feedback
that you receive. For example:

forge --logLevel WARN --logLevel config=INFO --logLevel update=DEBUG

This command works as follows:

• It logs all WARN or higher messages, regardless of topic.
• It logs any message flagged with the config topic if it is INFO level or higher.
• It logs any message flagged with the update topic if it is DEBUG level or higher.

Aliasing existing -v levels
The Forge -v logging option is still supported, but has been changed to alias the --logLevel option
as follows: -v[f|e|w|i|d]. The following table maps the relationships and indicates the status of
the arguments in this release (supported or deprecated).

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

The Forge Logging System | The command line interface110

6.1 log levelPre-6.x meaningStatus in 6.1Argument

DEBUGDefaults to v (verbose) or the EDF_LOG_LEVEL
environment variable.

Supported-v

DEBUGVerbose (all messages).Deprecated-vv

INFOInfo (info, stat, warnings, and errors).Supported-vi

INFOStat (stat, warnings, and errors).Deprecated-va

WARNWarnings and errors.Supported-vw

ERRORErrors.Supported-ve

ERRORQuiet mode (errors).Deprecated-vq

FATALSilent mode (fatal errors).Deprecated-vs

DEBUGn/aSupported-vd

FATALn/aSupported-vf

Has no effect. The
timestamp is always
printed now.

Printed out the timestamp when using
--legacyLogFormat.

Deprecated-vt

About logging output to a file
In Forge, the -o flag defines a location for the logging output file. If you do not specify a location, it
logs to standard error.

The following snippet shows the start of an output file:

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: forge 6.1.0.52 ("i86pc-win32")

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Copyright 2001-2007 Endeca
Technologies, Inc.

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Command Line: i86pc-
win32\bin\forge.exe

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Initialized cURL, version:
libcurl/7.15.5 OpenSSL/0.9.8

ERROR 01/25/07 15:15:50.791 UTC FORGE {config}: A file name is required!

Changes to the EDF_LOG_LEVEL environment variable
The EDF_LOG_LEVEL environment variable continues to be supported. If used, it should be set to one
of the new log level names.

The EDF_LOG_LEVEL environment variable sets the default Forge log level.

If you choose to use EDF_LOG_LEVEL, the variable should be set to one of the new log level names,
such as WARN or ERROR. Just as in previous versions of logging, the value set in EDF_LOG_LEVEL
may be overridden by any command line argument that changes the global log level.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

111The Forge Logging System | The command line interface

Chapter 18

The Forge Metrics Web Service

You can query a running Forge component for performance metrics using the Forge Metrics Web
service. This makes Forge easier to integrate into your management and monitoring framework.

About the Forge Metrics Web service
The Forge Metrics Web service provides progress and performance metrics for Forge.You can use
the output of this Web service in the monitoring tool or interface of your choice.

A running instance of Forge hosts a WSDL interface, metrics.wsdl. Using this WSDL interface,
you can query Forge for specific information about its performance.

Metrics are hierarchical, with parent-child relationships indicated by their location in the tree.You can
either give the service a full path to precisely the information you are seeking, or get the full tree and
traverse it to find what you want.

The following is an example of the kind of information tree returned by the Forge Metrics Web service:

(Root)
 Start time: Wed Jan 24 14:34:14 2007
 Percent complete: 41.4%
 Throughput: 871 records/second
 Records processed: 24000
 Components
 IndexerAdapter
 Records processed: 24902
 Total processing time: 2.331 seconds
 PropDimMapper
 Records processed: 24902
 Total processing time: 6.983 seconds
 LoadMainData
 Records processed: 24903
 Total processing time: 8.19 seconds

Each metric can be one of three types:

• Metric — serves as a parent category for child metrics, without containing any data of its own.
• Attribute metric — stores attributes, such as the start time of the Forge being queried.

For each attribute metric you request, you receive ID, Name, and Attribute Value (a string).

• Measurement metric — contains quantatative data, such as:

• Estimated percent complete.
• Overall throughput.
• Number of records processed.
• Per-component throughput.

For each measurement metric you request, you receive ID, Name, Measurement Units (a string),
and Measurement Value (a number).

Note:

The Forge Metrics Web service does not tell you what step Forge is on or its estimated time to
completion.

The service is not long-lived; it exits when Forge does. For this reason, you cannot use this
service to find out how long the Forge run took.

The Forge Metrics Web service does not work in conjunction with parallel Forge.

About enabling Forge metrics
Before you can generate Forge metrics, you have tell Forge the port on which to set up the Forge
Metrics Web service. By doing so, you also turn Forge metrics on.

In the Endeca Application Controller, you set the web-service-port when you provision the Forge
component.You can do this three ways:

• In Endeca Workbench, on the EAC Administration page.
• In a provisioning file used with the eaccmd tool (for details on provisioning a Forge component,

see the Oracle Endeca Application Controller Guide.
• Programmatically, via the webServicePort on the ForgeComponentType object. For details,

see the Oracle Endeca Application Controller Guide.

Outside of the Application Controller environment, you can also set or change the Web service port
(and thus turn on Forge metrics) at the Forge commandline. The commandline argument for setting
the metrics port is --wsport <port-number> .

About enabling SSL security
You can enable SSL on the Forge component to make the Forge Metrics Web service secure.

For information on enabling SSL on the Forge component programmatically or while provisioning with
eaccmd, see the Oracle Endeca Application Controller Guide.

Note: The Web services port disregards the cipher sub-element of the ssl-configuration
element.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

The Forge Metrics Web Service | About enabling Forge metrics114

About using Forge metrics
Assuming Forge’s web-service-port is set, when you start Forge, it serves up the Metrics Web
service.You can then use any Web services interface to talk to it and request metrics.

You can request global information on the parent node, or request on a component-by-component
basis. (Each pipeline component has corresponding metrics.) If you request "/" , the Metrics Web
service returns the root and all of its children. To refine your request, you give the Web service the
path to the node you are interested in.

The MetricsService API
The MetricsService interface includes the methods and classes described below.

The metrics schema is defined in metrics.wsdl, which is located in the
$ENDECA_ROOT/lib/services directory on UNIX and %ENDECA_ROOT%\lib\services on
Windows.

Methods

ReturnsExceptionParameters
Purpose

Name

getMetricOutput,
a string

MetricFault
is the error

getMetricInput is a
MetricInputType object

Lists the
collection of

getMetric
(MetricInputType
getMetricInput)

collection of
metrics.

message
returned
when the
method fails.

consisting of a path to the node you
want to query and a Boolean setting
that allows you to exclude that
node’s children from the query.

metrics in an
application.

Classes

PropertiesPurposeName

id is a unique string identifier for the metric.A class that describes a metric.MetricType

displayName is the name for the metric,
as it appears in the output file.

children is a collection of metric objects.

metric is a collection of metrics comprising
this MetricListType object.

A class that describes a list of
metrics.

MetricListType

path is the path to the node you want to
query. Null indicates top level, returning the
whole tree.

A class that describes the input to
the getMetric method.

MetricInputType

excludeChildren lets you indicate if you
want just the metrics of the node specified
in path or those of its children too.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

115The Forge Metrics Web Service | About using Forge metrics

PropertiesPurposeName

metric is an object of type MetricType.A class that describes the output
returned by the getMetric method.

MetricResultType

value is a string describing the attribute.An extension of MetricType, the
AttributeType class describes
an attribute metric.

AttributeType

value is a double representing the value of
the measurement metric.

An extension of MetricType, the
MeasurementType class describes
a measurement metric.

MeasurementType

units is a string describing the unit of
measure used by the metric.

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

The Forge Metrics Web Service | The MetricsService API116

Appendix A

Forge Flag Reference

This reference provides a description of the options (flags) used by the Forge program.

Forge flag options reference
The included table lists the different flag options that Forge takes.

The usage of Forge is as follows:

forge [-bcdinov] [--options] <Pipeline-XML-File>

<Pipeline-XML-File> can be a relative path or use the file://[hostname]/ protocol.

Forge takes the following options:

Important: All flags are case-sensitive.

DescriptionOption

Specify the maximum number of records that the record caches should
buffer. This may be set individually in the Maximum Records field of
the Record Cache editor in Developer Studio.

-b <cache-num>

Forge has a set of XML entity definitions whose values can be
overridden at the command line, such as current_date, cur¬

-c <name=value>

rent_time, and end_of_line.You can specify a replacement
string for the default entity values using the -c option, or in an .ini
file specified with -i (described below).

The format is:

<configValName=configVal>

For example:

end_of_line=”\n”

which would be specified on the command line with:

-c end_of_line=”\n”

DescriptionOption

or included as a line in an .ini file specified with -i.

This allows you to assign pipeline values to Forge at the command
line. In the above example, you would specify &end_of_line; in
your pipeline file instead of hard-coding “\n”, then invoke Forge with
the -c option shown above. Forge would substitute “\n” whenever it
encountered &end_of_line;.

For a complete list of entities and their default values, see the ENTITY
definitions in Endeca_Root/conf/dtd/common.dtd.

Specify the directory containing DTDs (overrides the DOCTYPE directive
in XML).

-d <dtd-path>

Specify an .ini file that contains XML entity string replacements.
Each line must be in this form:

-i <ini-filename>

<configValName=configVal>

See the description of the -c option for details.

Specify the number of records to pull through the pipeline.This option
is ignored by the record cache component.

-n <parse-num>

Specify an output file for messages.-o <filename>

Set the global log level. See --logLevel for corresponding
information.

-v[f|e|w|i|d]

If the -v option is omitted, the global log level defaults to d (DEBUG)
or the value set in the EDF_LOG_LEVEL environment variable. If the
-v option is used without a level, it defaults to d (DEBUG).

f = FATAL messages only.

e = ERROR and FATAL messages.

w = WARNING, ERROR, and FATAL messages.

i = INFO, WARNING, ERROR, and FATAL messages.

d = DEBUG, INFO, WARNING, ERROR, and FATAL messages.

Note: Options -v[a|q|s|t|v] have been deprecated.

Run as a client and connect to a Forge server in a Parallel Forge
environment.

--client <server:port>

Direct a Forge server to use <num> instead of assigning a client
number. Useful when the client number must remain consistent (that

--clientNum <num>

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference118

DescriptionOption

is, it must start from zero and be sequential for all clients). Requires
the --client option.

Specify the number of records that can be combined (via a Combine
join or a record cache with the Combine Records setting enabled)

--combineWarnCount
<num>

before issuing a warning that performance may be slow. The default
is 100, while 0 will disable the warnings.

Instruct Forge to compress the output to a level of <num>, which is 0
to 9 (where 0 = minimum, 9 = maximum). Specify off to turn off
compression.

--compression <num> |
off

Specify the number of retries (-1 to 100) when connecting to the
server. The default is 12 while -1 = retry forever. Requires the
--client option.

--connectRetries <num>

Deprecated. Encrypt a key pair so that only Forge can read it.--encryptKey
[user:]<password>

Print full help if used with no options. Prints specific help with these
options (option names and arguments are case sensitive):

--help [option]

• expression = Prints help on expression syntax.
• expression:TYPE = Prints help on the syntax for a specific

expression type, which can be DVAL, FLOAT, INTEGER,
PROPERTY, STREAM, STRING, or VOID.

• config = Prints help on configuration options.

Set the compression of the IndexerAdapter output Forge to a level of
<num>, which is 0 to 9 (where 0 = minimum, 9 = maximum). Specify
off to turn off compression.

--idxCompression
[<num> | off]

Instruct Forge to ignore any state files on startup. The state files are
ignored only during the startup process. After start up, Forge creates
state files during an update and overwrites the existing state files.

--ignoreState

Instruct Forge to copy index configuration files from the specified
directory to its output directory.

--indexConfigDir
<path>

Instruct Forge to load input data from this directory.<path> must be
an absolute path and will be used as a base path for the pipeline. Any
relative paths in the pipeline will be relative to this base path.

--inputDir <path>

Note: If the pipeline uses absolute paths, Forge ignores this
flag.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

119Forge Flag Reference | Forge flag options reference

DescriptionOption

Deprecated. Specify the encoding of non-XML input files.--input-encoding
<encoding>

Prepend the given Java option to the Java command line used to start
a Java virtual machine (JVM).

--javaArgument
<java_arg>

Override the value of the Class path field on the General tab of the
Record adapter, if one is specified.

--javaClasspath
<classpath>

If the Record adapter has a Format setting with JDBC selected, then
Class path indicates the JDBC driver.

If the Record adapter has a Format setting with Java Adapter
selected, then Class path indicates the absolute path to the custom
record adapter’s .jar file.

Specifies the location of the Java runtime engine (JRE). This option
overrides the value of the Java home field on the General tab of a
Record adapter, if one is specified.

--javaHome <java_home>

The --javaHome setting requires Java 2 Platform Standard Edition
5.0 (aka JDK 1.5.0) or later.

Instructs Forge to write logs to this directory, overriding any directories
specified in the pipeline.

--logDir <path>

Set the global log level and/or topic-specific log level.--logLevel
(<topicName> =)
<logLevel>

If this option is omitted, the value defaults to INFO or to that set in the
EDF_LOG_LEVEL environment variable.

For corresponding information, see the -v option.

Possible log levels are:

• FATAL = FATAL messages only.
• ERROR = ERROR and FATAL messages.
• WARN = WARN, ERROR, and FATAL messages.
• INFO = INFO, WARN, ERROR, and FATAL messages.
• DEBUG = DEBUG, INFO, WARN, ERROR, and FATAL messages.

Possible topics for Forge are:

• baseline
• update
• config
• webservice
• metrics

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference120

DescriptionOption

Do not generate new dimension value IDs (for incremental updates
when batch processing is running).

--noAutoGen

The number of Parallel Forge clients connecting. Required with
--server option.

--numClients <num>

Specify the number of Dgidx instances available to Forge.This number
corresponds to the number of Dgraphs, which in turn corresponds to
the number of file sets Forge creates.

--numPartitions <num>

This option overrides the value of the NUM_IDX attribute in the
ROLLOVER element of your project’s Pipeline.epx file, if one is
specified.

Instruct Forge to save output data to this directory, overriding any
directories specified in the pipeline.

--outputDir <path>

Override the value specified in Output prefix field of the Indexer
Adapter or Update Adapter editors in your Developer Studio pipeline.

--outputPrefix
<prefix>

Add <dir> to perl’s library path. May be repeated.--perllib <dir>

File in which to store process ID (PID).--pidfile
<pidfile-path>

Print records as they are produced by each pipeline component. If
number is specified, start printing after that number of records have
been processed.

--printRecords
[number]

Instructs Forge to remove from the AutoGen state any dimensions
that have been promoted as internal dimensions. When a pipeline

--pruneAutoGen

developer promotes a dimension that was automatically generated,
the dimension is copied into the dimensions.xml file and is removed
from the AutoGen state file.

Specify the number of seconds (0 to 60) to sleep between connection
attempts. The default is 5. Requires the --client option.

--retryInterval <num>

Run as a server and listen on port specified Requires the
--numClients option.

--server <portNum>

Deprecated. During a crawl, throttle the rate at which URLs are fetched
by the spider, where:

--spiderThrottle
<wait>:<expression_type>
:<expression> <wait> is the fetch interval in seconds.

Oracle Endeca Platform Services Forge GuideEndeca Confidential

121Forge Flag Reference | Forge flag options reference

DescriptionOption

<expression_type> specifies the type of regular or host expression to
use:

• url-regex

• url-wildcard

• host-regex

• host-wildcard

<expression> is the corresponding expression.

Example:

--spiderThrottle 10:url-wildcard:*.html

This would make all URLs that match the wildcard “*.html” wait 10
seconds between fetches.

Specify the path of the eneCA.pem Certificate Authority file that the
Forge server and Forge clients will use to authenticate each other.

--sslcafile
<CAcertfile-path>

Specify the path of the eneCert.pem certificate file that will be used
by the Forge server and Forge client for SSL communications.

--sslcertfile
<certfile-path>

Set a cipher string (such as RC4-SHA) that specifies the minimum
cryptographic algorithm the Forge server/client will use during the SSL
negotiation.

--sslcipher <cipher>

Note: This setting is ignored by the --wsport flag, even when
it uses SSL to secure its communications.

Instruct Forge to persist data in this directory, overriding any directories
specified in the pipeline.

--stateDir <path>

Instruct Forge to write temporary files in the specified directory,
overriding any directories specified by environment variables. The

--tmpDir <path>

<path> value is interpreted as being based in Forge’s working directory,
not in the directory containing Pipeline.epx.

Timing statistics (comp = time each component).--time <comp>

Specify the number of seconds (from -1 to 300) that the server waits
for clients to connect. Default is 60 and -1 means wait forever.
Requires the --server option.

--timeout <num>

Print out the current version information.--version

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference122

DescriptionOption

Start the Forge Metrics Web service, which is off by default. It listens
on the port specified.

--wsport <portNum>

Oracle Endeca Platform Services Forge GuideEndeca Confidential

123Forge Flag Reference | Forge flag options reference

Appendix B

File Formats Supported by the Document
Conversion Module

This section lists the file formats that are supported by the Endeca Document Conversion Module.
After installing this module, you can use the CONVERTTOTEXT expression in your pipeline to convert
any of the supported source document formats.The Endeca Web Crawler and the Endeca CAS Server
provide tight integrations with the Document Conversion Module, which means that they can convert
binary files as they are being crawled.

Word processing formats
The following table lists supported word processing formats:

Version (if applicable)Format

Versions 3.0 - 6.0Adobe FrameMaker (MIF)

Level 2Adobe Illustrator Postscript

Ami

Ami Pro for OS2

2.0, 3.0Ami Pro for Windows

Through 4.0DEC DX

4.0, 4.1DEC DX Plus

3.0 - 4.5Enable Word Processor

1.0, 3.0First Choice WP

3.0Framework WP

97 - 2007Hangul

IBM DCA/FFT

2.0 - 5.0IBM DisplayWrite

1.01IBM Writing Assistant

5.0, 6.0, 8.0 - 13.0, 2004Ichitaro

Version (if applicable)Format

Through 3.0JustWrite

2010Kingsoft WPS Writer

1.1Legacy

Through 2.0Lotus Manuscript

9.7, 96, - Millennium 9.6Lotus WordPro

97 - Millennium 9.6Lotus WordPro (non-Win32)

1.1MacWrite II

All versions through 8.0Mass 11

2003 - 2007Microsoft Publisher (File ID only)

4.0 - 6.0Microsoft Word for DOS

4.0 - 6.0, 98 - 2008Microsoft Word for Macintosh

1.0 - 2007Microsoft Word for Windows

98-JMicrosoft Word for Windows

Microsoft WordPad

2.0Microsoft Works WP for DOS

2.0Microsoft Works WP for Macintosh

3.0, 4.0Microsoft Works WP for Windows

1.0 - 3.0Microsoft Write for Windows

Through 4.0MultiMate

2.0MultiMate Advantage

Navy DIF

3.0Nota Bene

2.0Novell Perfect Works

4.0 - 6.0Office Writer

1.1 - 3.0OpenOffice Writer

3.xOracle Open Office Writer

5.0PC File Doc

Versions A, BPFS:Write

1.0, 2.0Professional Write (DOS)

1.0Professional Write Plus (Windows)

2.0, 3.0Q&A Write (Windows)

1.0 - 3.0Samna Word IV

Smna Work IV+

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Word processing formats126

Version (if applicable)Format

Samsung JungUm Global (File ID
only)

1.0Signature

1.02SmartWare II WP

1.0Sprint

5.2 - 9.0StarOffice Writer

1.2Total Word

Versions through 2.6Wang PC (IWP)

WordMarc Composer

WordMarc Composer+

WordMarc Word Processor

4.2WordPerfect for DOS

1.02 - 3.1WordPerfect for Macintosh

5.1 - X4WordPerfect for Windows

1.0 - 3.0WordStar 2000 for DOS

2.0, 3.0WordStar 2000 for DOS

3.0 - 7.0WordStar for DOS

1.0WordStar for Windows

Through III+XyWrite

Text and markup formats
The following table lists supported text and markup formats:

Notes:

• The Document Conversion Module supports converting XML content contained in both PCDATA
and CDATA elements.

• In the case of XHTML, "file ID only" means that the conversion process produces an Endeca
property representing the file format type but nothing else.

Version (if applicable)Format

7 bit and 8 bitANSI Text

7 bit and 8 bitASCII Text

DOS character set

EBCDIC

1.0 - 4.0HTML (CSS rendering not supported)

IBM DCA/RFT

Oracle Endeca Platform Services Forge GuideEndeca Confidential

127File Formats Supported by the Document Conversion Module | Text and markup formats

Version (if applicable)Format

Macintosh character set

Rich Text Format (RTF)

3.0, 4.0Unicode Text

UTF-8

1.0Wireless Markup Language

text onlyXML

1.0XHTML (file ID only)

Spreadsheet formats
The following table lists supported spreadsheet formats:

VersionFormat

3.0 - 4.5Enable Spreadsheet

Through 3.0First Choice SS

3.0Framework SS

1.xIBM Lotus Symphony Spreadsheets

2010Kingsoft WPS Spreadsheets

Through Millennium 9.6Lotus 1-2-3

Through 5.0Lotus 1-2-3 Charts (DOS and Windows)

2.0Lotus 1-2-3 (OS/2)

2.x - 2007Microsoft Excel Charts

98 - 2008Microsoft Excel for Macintosh

3.0 - 2010Microsoft Excel for Windows

2007 - 2010 BinaryMicrosoft Excel for Windows (xslb)

4.0Microsoft Multiplan

2.0Microsoft SS Works for DOS

2.0Microsoft Works for Macintosh

3.0, 4.0Microsoft SS Works for Windows

2.0Novell PerfectWorks

1.1 - 3.0OpenOffice Calc

3.xOracle Open Office Calc

1.0PFS: Professional Plan

Through 5.0Quattro for DOS

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Spreadsheet formats128

VersionFormat

Through X4QuattroPro for Windows

SmartWare Spreadsheet

1.02SmartWare II SS

5.2 - 9.0StarOffice Calc

5.0SuperCalc

Through 2.0Symphony

1.0VP Planner

Vector image formats
The following table lists supported vector image formats:

Version (if applicable)Format

4.0 - 7.0, 9.0Adobe Illustrator

11 - 13 (CS 1 - 3)Adobe Illustrator (XMP only)

3.0 - 5.0 (CS 1 - 3)Adobe InDesign (XMP only)

Adobe InDesign Interchange (XMP
only)

8.0 -10.0 (CS 1 - 3)Adobe Photoshop (XMP only)

1.0 - 1.7 (Acrobat 1 - 9)Adobe PDF

1.7 (Acrobat 8 - 9)Adobe PDF Package

1.7 (Acrobat 8 - 9)Adobe PDF Portfolio

4.0Adobe Photoshop

SDWAmi Draw

2.5, 2.6AutoCAD Drawing

9.0 - 14.0AutoCAD Drawing

2000i - 2007AutoCAD Drawing

2.0AutoShade Rendering

2.0 - 9.0Corel Draw

5.0, 7.0Corel Draw Clipart

Enhanced Metafile (EMF)

Escher graphics

3.0 - 5.0FrameMaker Vector and Raster
Graphics (FMV)

Oracle Endeca Platform Services Forge GuideEndeca Confidential

129File Formats Supported by the Document Conversion Module | Vector image formats

Version (if applicable)Format

Gem File (Vector)

2.0 - 3.0Harvard Graphics Chart (DOS)

Harvard Graphics for Windows

2.0HP Graphics Language

5.1 - 5.3Initial Graphics Exchange Specification
(IGES) Drawing

Through 3.1Micrografx Designer

6.0Micrografx Designer

Through 4.0Micrografx Draw

Microsoft XPS (Text only)

2.0Novell PerfectWorks Draw

1.1 - 3.0OpenOffice Draw

3.xOracle Open Office Draw

4Visio (Page Preview mode only
WMF/EMF)

5.0 - 2007Visio

2007Visio XML VSX (File ID only)

Windows Metafile

Notes on Adobe PDF text extraction

The CAS Document Conversion Module works as follows when processing Adobe PDF files with
security settings:

• The CAS Document Conversion Module will respect the no-copy option of a PDF. That is, if a PDF
publishing application has a no-copy option (which prohibits the copying or extraction of text within
the PDF), the Document Conversion Module will not extract text from that PDF.

• The CAS Document Conversion Module does not support text extraction from password-protected
files.

• The CAS Document Conversion Module does not support text extraction from PDFs with encrypted
content.

To extract the text from these types of PDFs, you must re-create them without setting the appropriate
security option.

In addition, text added with the Sticky Note tool is not extracted.

Raster image formats
The following table lists supported raster image formats:

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Raster image formats130

VersionFormat

Type I and Type IICALS Raster (GP4)

ANSI, CALS, NISTComputer Graphics Metafile

TIFF header onlyEncapsulated PostScript (EPS)

GEM Image (Bitmap)

Graphics Interchange Format (GIF)

1.0IBM Graphics Data Format (GDF)

1.0IBM Picture Interchange Format (PIF)

graphic embeddings in PDF filesJBIG2

JFIF (JPEG not in TIFF format)

JPEG

JP2JPEG 2000

Kodak Flash Pix

1.0Kodak Photo CD

Lotus PIC

Lotus Snapshot

BMP onlyMacintosh PICT1 and PICT2

MacPaint

Microsoft Windows Bitmap

Microsoft Windows Cursor

Microsoft Windows Icon

OS/2 Bitmap

OS/2 Warp Bitmap

5.0, 6.0Paint Shop Pro (Win32 only)

PC Paintbrush (PCX)

PC Paintbrush DCX (multi-page PCX)

Portable Bitmap (PBM)

Portable Graymap (PGM)

Portable Network Graphics (PNG)

Portable Pixmap (PPM)

Progressive JPEG

6.x - 9.0StarOffice Draw

Sun Raster

Group 5 and Group 6TIFF

Group 3 and Group 4TIFF CCITT Fax

Oracle Endeca Platform Services Forge GuideEndeca Confidential

131File Formats Supported by the Document Conversion Module | Raster image formats

VersionFormat

2.0Truevision TGA (Targa)

WBMP wireless graphics format

1.0Word Perfect Graphics

x10 compatibleX-Windows Bitmap

x10 compatibleX-Windows Dump

x10 compatibleX-Windows Pixmap

2.0, 7.0, 8.0, 9.0, 10.0WordPerfect Graphics

Presentation formats
The following table lists supported presentation formats:

Version (if applicable)Format

6.0 - X3Corel Presentations

3.0Harvard Graphics (DOS)

1.xIBM Lotus Symphony Presentations

2010Kingsoft WPS Presentation

1.0 - Millennium 9.6Lotus Freelance

2.0Lotus Freelance (OS/3)

95, 97Lotus Freelance for Windows

4.0 - 2008Microsoft PowerPoint for Macintosh

3.0 - 2010Microsoft PowerPoint for Windows

2007 - 2010Microsoft PowerPoint for Windows
Slideshow

2007 - 2010Microsoft PowerPoint for Windows Template

3.0, 7.0Novell Presentations

1.1, 3.0OpenOffice Impress

3.xOracle Open Office Impress

5.2 - 9.0StarOffice Impress

5.1 - X4WordPerfect Presentations

Archive formats
The following table lists supported archive formats:

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Presentation formats132

Version (if applicable)Format

LZA Self Extracting Compress

LZH Compress

95, 97Microsoft Binder

1.5, 2.0, 2.9RAR

Self-extracting .exe

UNIX Compress

UNIX GZip

UNIX TAR

Uuencode

PKZipZIP

WinZipZIP

Database formats
The following table lists supported database formats:

VersionFormat

4.xDataEase

III, IV, and VDBase

Through 3.0First Choice DB

3.0Framework DB

1.0, 2.0Microsoft Access

2000 - 2003Microsoft Access Report Snapshot (File ID
only)

1.0, 2.0Microsoft Works DB for DOS

2.0Microsoft Works DB for Macintosh

3.0, 4.0Microsoft Works DB for Windows

2.0 - 4.0Paradox (DOS)

1.0Paradox (Windows)

Through 2.0Q & A

R:Base 5000 and R:Base System VR:Base

2.0Reflex

1.02SmartWare II

Oracle Endeca Platform Services Forge GuideEndeca Confidential

133File Formats Supported by the Document Conversion Module | Database formats

E-mail formats
The following table lists supported e-mail formats:

VersionFormat

MHTEncoded mail messages

Multi Part AlternativeEncoded mail messages

Multi Part DigestEncoded mail messages

Multi Part MixedEncoded mail messages

Multi Part News GroupEncoded mail messages

Multi Part SignedEncoded mail messages

TNEFEncoded mail messages

8.5IBM Lotus Notes Domino XML
Language DXL

7.x, 8.xIBM Lotus Notes NSF (File ID
only)

8.xIBM Lotus Notes NSF (Windows
only with Notes client or Domino
Server)

97 - 2007Microsoft Outlook MSG

Microsoft Outlook Express
(EML)

97 - 2007Microsoft Outlook Forms
Template (OFT)

97 - 2007Microsoft Outlook OST

97 - 2007Microsoft Outlook PST

2001Microsoft Outlook PST (Mac)

Other formats
The following table lists other supported formats:

Version (if applicable)Format

2007Microsoft InfoPath (file ID
only)

2007Microsoft OneNote (file ID
only)

98 - 2003Microsoft Project (text only)

2007Microsoft Project (file ID only)

Endeca ConfidentialOracle Endeca Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | E-mail formats134

Version (if applicable)Format

Microsoft Windows DLL

Microsoft Windows
Executable

2.1vCard

2.1vCalendar

6.x - 8.0Yahoo! Messenger

Oracle Endeca Platform Services Forge GuideEndeca Confidential

135File Formats Supported by the Document Conversion Module | Other formats

Index

A

adding components to a pipeline 44
Auto Generate mode

described 36
saving state information for 50

B

basic pipeline
dimension adapter 49
dimension server 50
indexer adapter 51
property mapper 51
record adapter 48
testing 53

C

combine joins 73
Combine Records setting in record caches 88
component names as used in a pipeline 44

D

data processing
general workflow 21
in detail 21
loading raw data 22
mapping source properties to dimensions 24
standardizing properties 23
writing out finished data 24

default mappings
enabling 40
overriding with null mappings 33

Default Maximum Length 41
override 41

Developer Studio 18
Dgidx

introduced 14
running 17

Dgraph, running the 17
dimension adapter 49
dimension groups 60
dimension hierarchy 15

configuring in Developer Studio 18
dimension mapping 24, 35

advanced techniques 39
Auto Generate mode 36
behavior when no mapping is found 40
default mapping 40
example 37
implicit mapping 40

dimension mapping (continued)
Must Match mode 36
Normal match mode 35
priority order for advanced techniques 30
source properties to like-named dimensions 40
synonyms 57
viewing existing 32

dimension search configured in Developer Studio 18
dimension server

for persisting auto-generated dimensions 50
overview 50

dimension values
auto generating 36
mapping to source property values 24
specifying the order of 59

dimensions
assigning multiple mappings to 34
creating 56
mapping to source properties 24
specifying the order of 59

directory structure for the Endeca Application Controller
43
disjunct joins 70
Document Conversion module

other supported formats 134
supported compressed formats 133
supported database formats 133
supported e-mail formats 134
supported presentation formats 132
supported raster image formats 131
supported text and markup formats 127
supported vector image formats 129
supported word processing formats 125

dynamic business rules 60
configuring in Developer Studio 18
configuring in Oracle Endeca Workbench 18

E

emgr_update utility 104
Endeca Application Controller

architecture 20
communicating with 20
communicating with Oracle Endeca Workbench 21
directory structure 43
introduced 19

Endeca CAS 13
Endeca Crawler

Document Conversion module
supported spreadsheet formats 128

Endeca Developer Studio
creating a basic pipeline project 47
creating and mapping dimensions 56

Endeca Developer Studio (continued)
creating and mapping Endeca properties 56
specifying index configuration options 60
using to add and edit pipeline components 44, 59

Endeca ITL
architecture 14
Data Foundry programs 14
data processing with 13
indexing

about 25
indexing with 13, 14, 25
introduced 13
loading raw data 22
mapping source properties to dimensions 24
standardizing source properties 23
writing out tagged data 24

Endeca properties
assigning multiple mappings to 34
creating 56

Endeca Tools setup information 19
Endeca tools suite 18
explicit mapping

creating 32
described 28

externally created dimensions
compared to externally managed taxonomies 93
Developer Studio configuration 94
importing 97
introduced 93
XML requirements 95

externally managed taxonomies
Developer Studio configuration 99
integrating 102
introduced 99
loading 104
node ID requirements 102
pipeline configuration 102
transforming 103
XML syntax 101
XSLT mapping 100

F

filtering unknown properties 28
first record joins 72
Forge

flags 117
introduced 14
running 17

Forge logging system 109
Forge metrics

enabling 114
using 115

Forge Metrics Web service 113
API 115
enabling SSL 114

H

higher cardinality joins 84

I

implicit mapping
described 29
enabling 40
overriding with null mappings 33

importing externally created dimensions 97
index configuration 15, 60
indexer adapters 51
inner joins 69
input components 22
instance configuration

creating 17
described 14

J

Java manipulators, about 59
join keys for data sources 66
joins

adding a record assembler 80
adding a record cache 79
cases where record caches are not required 87
choosing left and right 87
combine 73
combining equivalent records 88
configuring in a record assembler 81
creating record indexes 75
disjunct 70
first record 72
higher cardinality 84
implementing 79
inner 69
left 68
multiple keys in left joins 86
multiple values for join key 83
outer 69
overview 65
performing in a database 66
record index keys 67
sort switch 71
switch 70

L

left joins
described 68
multiple keys for records 86

loading source data 22
logging

aliasing v-levels 111
command line interface 110
EDF_LOG_LEVEL settings 111
levels 109
logLevel 110

Oracle Endeca Platform Services138

Index

logging (continued)
output file 111
topics 110

M

mapping
explicit 29
source properties to dimensions 35
source properties to like-named dimensions 40

match modes
Auto Generate 36
Must Match 36
Normal 35

Multi Sub-records option for record assembler 86
multiple values for a join key 83
Must Match mode 36

N

node ID requirements for externally managed taxonomies
102
Normal match mode 35
null mapping

described 29
overriding implicit and default mappings 33

O

Oracle Endeca Workbench 18
outer joins 69

P

Perl assembler 59
pipeline 22

adding components to 44
creating a data flow for 44
creating using the Basic Pipeline template 47
described 14
editing components in 44
fundamentals 43
placement of property mapper 30
running 53
sequential record processing 22
URLs in 45
using only one property mapper in 27

precedence rules
introduced 18
specifying in Developer Studio 18, 60

priority order of source property mapping 30
property mapper

creating 31
described 51
minimum configuration 28
placement in pipeline 30
using only one per pipeline 27, 51
using the Mappings editor 32

R

record adapter
overview 48
record index 49

record assembler
adding for joins 80
configuring joins in 81
creating join keys 76
described 59, 65
join keys with multiple properties 77
Multi Sub-records option 86

record cache
adding for joins 79
Combine Records setting 88
creating record indexes 75
described 59

record index keys for joins 49, 67
record search configured in Developer Studio 18
record specifier property, creating 58
reference implementation, UI 53

S

search characters 60
search configuration 18
search interfaces, about 60
sort switch join 71
source data

in delimited format 48
loading 22

source properties
assigning multiple mappings to 34
mapping 55
removing unknown 28
specifying null mappings for 58
standardizing 23

source property mapping
described 27
priority order 30
types 29
viewing existing 32

source property values
defining maximum length for importing 41
mapping to dimension values 35

source records 22
spiders 59
standardizing source properties 23
stemming 60
stop words 60
switch joins 70
system operations 19
system provisioning 18

T

tagging Endeca records 17
thesaurus entries

configuring in Oracle Endeca Workbench 18

139

Index

thesaurus entries (continued)
introduced 60

U

UI reference implementation, using 53
unknown source properties, removing 28

W

Web service, Forge Metrics 113

X

XML syntax for dimension hierarchy 96

Oracle Endeca Platform Services140

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Endeca Customer Support

	Basic Pipeline Development
	The Endeca ITL
	Introduction to the Endeca ITL
	Endeca Content Acquisition System
	Endeca Data Foundry

	Endeca ITL components
	Data Foundry programs
	Configuration files
	Pipeline
	Dimension hierarchy
	Index configuration

	Endeca ITL Development
	Endeca ITL development process
	Endeca tools suite
	Endeca Developer Studio
	Oracle Endeca Workbench
	About system provisioning tasks in Endeca Workbench
	About system operations tasks in Endeca Workbench

	Finding more information on tools setup and usage
	About controlling your environment
	About using the Endeca Application Controller
	Application Controller architecture
	Ways of communicating with the Endeca Application Controller
	About using Endeca Workbench to communicate with the EAC Central Server

	A closer look at data processing and indexing
	Data processing
	Source data
	About loading source data
	Standardizing source records
	About mapping source properties and property values
	About writing out tagged data
	About indexing

	Overview of Source Property Mapping
	About source property mapping
	About using a single property mapper
	About using explicit mapping
	Minimum configuration
	About mapping unwanted properties
	About removing source properties after mapping
	Types of source property mapping
	Priority order of source property mapping

	About adding a property mapper
	Determining where to add the property mapper
	Creating the property mapper

	The Mappings editor
	Creating new source mappings
	Using null mappings to override implicit and default mappings
	About assigning multiple mappings

	Match Modes
	About choosing a match mode for dimensions
	Normal mode
	Must Match mode
	Auto Generate mode

	Rules of thumb for dimension mapping
	Dimension mapping example

	Advanced Mapping Techniques
	The Property Mapper editor Advanced tab
	About enabling implicit mapping
	Enabling default mapping
	About the default maximum length for source property values
	About overriding the default maximum length setting

	Before Building Your Instance Configuration
	Endeca Application Controller directory structure
	Pipeline overview
	About adding and editing pipeline components
	About creating a data flow using component names
	URLs in the pipeline

	About Creating a Basic Pipeline
	The Basic Pipeline template
	Record adapters
	About the Record Index tab

	Dimension adapter
	Dimension server
	Property mapper
	Indexer adapter

	About Running Your Basic Pipeline
	Running a pipeline
	Viewing pipeline results in a UI reference implementation

	After Your Basic Pipeline Is Running
	Additional tasks
	About source property mapping
	Adding and mapping Endeca properties
	Adding and mapping dimensions
	About synonyms

	About null mappings

	Setting the record specifier property
	About specifying dimensions and dimension value order
	Additional pipeline components
	Additional index configuration options

	Joins
	Overview of Joins
	Record assemblers and joins
	About performing joins in a database
	Join keys and record indexes
	About matching record indexes for join sources

	Join types
	Left join
	Inner join
	Outer join
	Disjunct join
	Switch join
	Sort switch join
	First record join
	Combine join

	About Configuring Join Keys and Record Indexes
	Creating a record index
	Creating a join key for a record cache
	Join keys with multiple properties or dimensions

	About Implementing Joins
	Implementing a join
	Adding a record cache
	Adding a record assembler
	Configuring the join

	Advanced Join Behavior
	Records that have multiple values for a join key
	Sources that have multiple records with the same join key value
	About tweaking left joins

	Tips and Troubleshooting for Joins
	Joins that do not require record caches
	Working with sources that have multiple records with the same join key value
	Best practice for choosing left and right side of joins
	Combining equivalent records in record caches
	Forge warnings when combining large numbers of records

	Advanced Dimension Features
	Externally-Created Dimensions
	Overview of externally-created dimensions
	External dimensions and external taxonomies
	Including externally-created dimensions in your project

	XML requirements
	XML syntax to specify dimension hierarchy
	Node ID requirements

	Importing an externally-created dimension

	Externally-Managed Taxonomies
	Overview of externally-managed taxonomies
	Including externally-managed taxonomies in your project
	XSLT and XML requirements
	About XSLT mapping
	XML syntax to specify dimension hierarchy
	Node ID requirements and identifier management in Forge

	Pipeline configuration
	Integrating an externally-managed taxonomy
	Transforming an externally managed taxonomy
	Uploading post-Forge dimensions to Endeca Workbench
	Loading an externally-managed dimension
	Running a second baseline update

	About updating an externally-managed taxonomy in your pipeline
	Unexpected default-mapping behavior

	Other Advanced Features
	The Forge Logging System
	Overview of the Forge logging system
	Log levels reference
	About logging topics
	The command line interface
	Aliasing existing -v levels
	About logging output to a file
	Changes to the EDF_LOG_LEVEL environment variable

	The Forge Metrics Web Service
	About the Forge Metrics Web service
	About enabling Forge metrics
	About enabling SSL security

	About using Forge metrics
	The MetricsService API

	Forge Flag Reference
	Forge flag options reference

	File Formats Supported by the Document Conversion Module
	Word processing formats
	Text and markup formats
	Spreadsheet formats
	Vector image formats
	Raster image formats
	Presentation formats
	Archive formats
	Database formats
	E-mail formats
	Other formats

	Index

